The relationship of hospital ownership and service composition to hospital charges
Eskoz, Robin; Peddecord, K. Michael
1985-01-01
The relationship of hospital ownership and service composition to hospital charges was examined for 456 general acute hospitals in California. Ancillary services had higher profit margins, both gross and net profits, than daily hospital services. Ancillary services accounted for 55.3 percent of total patient revenue. Charges per day were 23 percent higher for ancillary services than for daily hospital services. Net profits for daily and ancillary services were lowest at county hospitals. Proprietary hospitals had the highest net profits for total ancillary services and the highest mean charges. Not-for-profit hospitals had the highest profit margins for daily hospital services. Neither direct nor total costs for ancillary services were significantly different among ownership groups, although direct costs for daily hospital services were significantly higher at proprietary hospitals. PMID:10311161
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
NASA Astrophysics Data System (ADS)
Hirae, Sadao; Kohno, Motohiro; Okada, Hiroshi; Matsubara, Hideaki; Nakatani, Ikuyoshi; Kusuda, Tatsufumi; Sakai, Takamasa
1994-04-01
This paper describes a novel approach to the quantitative characterization of semiconductor surface charging caused by plasma exposures and ion implantations. The problems in conventional evaluation of charging are also discussed. Following the discussions above, the necessity of unified criteria is suggested for efficient development of systems or processes without charging damage. Hence, the charging saturation voltage between a top oxide surface and substrate, V s, and the charging density per unit area per second, ρ0, should be taken as criteria of charging behavior, which effectively represent the charging characteristics of both processes. The unified criteria can be obtained from the exposure time dependence of a net charging density on the thick field oxide. In order to determine V s and ρ0, the analysis using the C-V curve measured in a noncontact method with the metal-air-insulator-semiconductor (MAIS) technique is employed. The total space-charge density in oxide and its centroid can be determined at the same time by analyzing the flat-band voltage (V fb) of the MAIS capacitor as a function of the air gap. The net charge density can be obtained by analyzing the difference between the total space-charge density in oxide before and after charging. Finally, it is shown that charge damage of the large area metal-oxide-semiconductor (MOS) capacitor can be estimated from both V s and ρ0 which are obtained from results for a thick field oxide implanted with As+ and exposed to oxygen plasma.
Kimalov, Boaz; Gal-On, Amit; Stav, Ran; Belausov, Eduard; Arazi, Tzahi
2004-11-01
Zucchini yellow mosaic virus (ZYMV) surface exposed coat protein (CP) N-terminal domain (Nt) is 43 aa long and contains an equal number of positively and negatively charged amino acid residues (CP-Nt net charge = 0). A ZYMV-AGII truncation mutant lacking the first 20 aa of its CP-Nt (AGII-CP Delta 20; CP-Nt net charge = +2) was found to be systemically non-infectious even though AGII mutants harbouring larger CP-Nt deletions were previously demonstrated to be fully infectious. Nevertheless, AGII-CP Delta 20 infectivity was restored by fusion to its CP-Nt two Asp residues or a negatively charged Myc peptide, both predicted to neutralize CP-Nt net positive charge. To evaluate further the significance of CP-Nt net charge for AGII infectivity, a series of CP-Nt net charge mutants was generated and analysed for systemic infectivity of squash plants. AGII-CP(KKK) harbouring a CP-Nt amino fusion of three Lys residues (CP-Nt net charge = +3) was not systemically infectious. Addition of up to four Asp residues to CP-Nt did not abolish virus infectivity, although certain mutants were genetically unstable and had delayed infectivity. Addition of five negatively charged residues abolished infectivity (AGII-CP(DDDDD); CP-Nt net charge = -5) even though a recombinant CP(DDDDD) could assemble into potyviral-like particle in bacteria. Neutralization of CP-Nt net charge by fusing Asp or Lys residues recovered infectivity of AGII-CP(KKK) and AGII-CP(DDDDD). GFP-tagging of these mutants has demonstrated that both viruses have defective cell-to-cell movement. Together, these findings suggest that maintenance of CP-Nt net charge and not primary sequence is essential for ZYMV infectivity.
Haddrell, Allen E; Davies, James F; Yabushita, Akihiro; Reid, Jonathan P
2012-10-11
The most used instrument in single particle hygroscopic analysis over the past thirty years has been the electrodynamic balance (EDB). Two general assumptions are made in hygroscopic studies involving the EDB. First, it is assumed that the net charge on the droplet is invariant over the time scale required to record a hygroscopic growth cycle. Second, it is assumed that the composition of the droplet is constant (aside from the addition and removal of water). In this study, we demonstrate that these assumptions cannot always be made and may indeed prove incorrect. The presence of net charge in the humidified vapor phase reduces the total net charge retained by the droplet over prolonged levitation periods. The gradual reduction in charge limits the reproducibility of hygroscopicity measurements made on repeated RH cycles with a single particle, or prolonged experiments in which the particle is held at a high relative humidity. Further, two contrasting examples of the influence of changes in chemical composition changes are reported. In the first, simple acid-base chemistry in the droplet leads to the irreversible removal of gaseous ammonia from a droplet containing an ammonium salt on a time scale that is shorter than the hygroscopicity measurement. In the second example, the net charge on the droplet (<100 fC) is high enough to drive redox chemistry within the droplet. This is demonstrated by the reduction of iodic acid in a droplet made solely of iodic acid and water to form iodine and an iodate salt.
Financial impact of hand surgery programs on academic medical centers.
Hasan, Jafar S; Chung, Kevin C; Storey, Amy F; Bolg, Mary L; Taheri, Paul A
2007-02-01
This study analyzes the financial performance of hand surgery in the Department of Surgery at the University of Michigan. This analysis can serve as a reference for other medical centers in the financial evaluation of a hand surgery program. Fiscal year 2004 billing records for all patients (n = 671) who underwent hand surgery procedures were examined. The financial data were separated into professional revenues and costs (relating to the hand surgery program in the Section of Plastic Surgery) and into facility revenues and costs (relating to the overall University of Michigan Health System). Professional net revenue was calculated by applying historical collection rates to procedural and clinic charges. Facility revenue was calculated by applying historical collection rates to the following charge categories: inpatient/operating room, clinic facility, neurology/electromyography, radiology facilities, and occupational therapy. Total professional costs were calculated by adding direct costs and allocated overhead costs. Facility costs were obtained from the hospital's cost accounting system. Professional and facility incomes were calculated by subtracting costs from revenues. The net professional revenue and total costs were 1,069,836 and 1,027,421 dollars, respectively. Professional operating income was 42,415 dollars, or 3.96 percent of net professional revenue. Net facility revenue and total costs were 5,500,606 and 4,592,534 dollars, respectively. Facility operating income was 908,071 dollars, or 16.51 percent of net facility revenues. While contributing to the academic mission of the institution, hand surgery is financially rewarding for the Department of Surgery. In addition, hand surgery activity contributes substantially to the financial well-being of the academic medical center.
High resolution printing of charge
Rogers, John; Park, Jang-Ung
2015-06-16
Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.
A machine independent expert system for diagnosing environmentally induced spacecraft anomalies
NASA Technical Reports Server (NTRS)
Rolincik, Mark J.
1991-01-01
A new rule-based, machine independent analytical tool for diagnosing spacecraft anomalies, the EnviroNET expert system, was developed. Expert systems provide an effective method for storing knowledge, allow computers to sift through large amounts of data pinpointing significant parts, and most importantly, use heuristics in addition to algorithms which allow approximate reasoning and inference, and the ability to attack problems not rigidly defines. The EviroNET expert system knowledge base currently contains over two hundred rules, and links to databases which include past environmental data, satellite data, and previous known anomalies. The environmental causes considered are bulk charging, single event upsets (SEU), surface charging, and total radiation dose.
Shi, Yunhua; Abdolvahabi, Alireza; Shaw, Bryan F
2014-01-01
This article utilized “protein charge ladders”—chemical derivatives of proteins with similar structure, but systematically altered net charge—to quantify how missense mutations that cause amyotrophic lateral sclerosis (ALS) affect the net negative charge (Z) of superoxide dismutase-1 (SOD1) as a function of subcellular pH and Zn2+ stoichiometry. Capillary electrophoresis revealed that the net charge of ALS-variant SOD1 can be different in sign and in magnitude—by up to 7.4 units per dimer at lysosomal pH—than values predicted from standard pKa values of amino acids and formal oxidation states of metal ions. At pH 7.4, the G85R, D90A, and G93R substitutions diminished the net negative charge of dimeric SOD1 by up to +2.29 units more than predicted; E100K lowered net charge by less than predicted. The binding of a single Zn2+ to mutant SOD1 lowered its net charge by an additional +2.33 ± 0.01 to +3.18 ± 0.02 units, however, each protein regulated net charge when binding a second, third, or fourth Zn2+ (ΔZ < 0.44 ± 0.07 per additional Zn2+). Both metalated and apo-SOD1 regulated net charge across subcellular pH, without inverting from negative to positive at the theoretical pI. Differential scanning calorimetry, hydrogen-deuterium exchange, and inductively coupled plasma mass spectrometry confirmed that the structure, stability, and metal content of mutant proteins were not significantly affected by lysine acetylation. Measured values of net charge should be used when correlating the biophysical properties of a specific ALS-variant SOD1 protein with its observed aggregation propensity or clinical phenotype. PMID:25052939
MAP, MAC, and vortex-rings configurations in the Weinberg-Salam model
NASA Astrophysics Data System (ADS)
Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming
2015-11-01
We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)×U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the ϕ-winding number n = 1, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the z-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number n = 3. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of 4 πn / e. In the MAP configurations, the monopole-antimonopole pair is bounded by the Z0 field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges ± 4πn/e sin2θW respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges ± 4 πn/e respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant 0 ≤ λ ≤ 40 at Weinberg angle θW = π/4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less
Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.; ...
2016-10-17
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less
Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A
2017-04-01
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases. Biotechnol. Bioeng. 2017;114: 740-750. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lee, Eon S.; Xu, Bin; Zhu, Yifang
2012-12-01
This paper presents measurements of electrical charges on ultrafine particles (UFPs) of different electrical mobility diameters (30, 50, 80, and 100 nm) in on- and near-freeway environments. Using a tandem Differential Mobility Analyzer (DMA) system, we first examined the fraction of UFPs carrying different number of charges on two distinctive freeways: a gasoline-vehicle dominated freeway (I-405) and a heavy-duty diesel truck dominated freeway (I-710). The fractions of UFPs of a given size carrying one or more charges were significantly higher on the freeways than in the background. The background UFPs only carried up to two charges but freeway UFPs could have up to three charges. The total fraction of charged particles was higher on the I-710 than I-405 across the studied electrical mobility diameters. Near the I-405 freeway, we observed a strong decay of charged particles on the downwind side of the freeway. We also found fractional decay of the charged particles was faster than total particle number concentrations, but slower than total ion concentrations downwind from the freeway I-405. Among charged particles, the highest decay rate was observed for particles carrying three charges. Near the I-710 freeway, we found strong net positive charges on nucleation mode particles, suggesting that UFPs were not at steady-state charge equilibrium near freeways.
Freeze-out conditions from net-proton and net-charge fluctuations at RHIC
Alba, Paolo; Alberico, Wanda; Bellwied, Rene; ...
2014-09-26
We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net-protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and transverse momentum used in the experimental analysis, as well as a randomization of the isospin of nucleons in the hadronic phase. By comparing these results to the latest experimental data from the STAR Collaboration, we determine the freeze-out conditions from net-electric charge and net-proton distributions and discuss their consistency.
Emergency general surgery outcomes at safety net hospitals.
Shahan, Charles Patrick; Bell, Teresa; Paulus, Elena; Zarzaur, Ben L
2015-06-01
The United States hospital safety net is defined by the Agency for Healthcare Research and Quality as the top decile of hospitals, which see the greatest proportion of uninsured patients. These hospitals provide important access to health care for uninsured patients but are commonly believed to have worse outcomes. The aim of this study was to compare the outcomes of emergency general surgery procedures performed at safety net and nonsafety net hospitals. The Healthcare Cost and Utilization Project Nationwide Inpatient Sample from 2008-2010 was used to create a cohort of inpatients who underwent emergency appendectomy, cholecystectomy, or herniorrhaphy. Outcomes measured included length of stay, charge, cost, death in hospital, complications, and failure to rescue (FTR). Univariate and logistic regression analysis was performed to associate variables with outcomes. A total of 187,913 emergency general surgery cases were identified, 11.5% of which were performed at safety net hospitals. The safety net cohort had increased length of stay but lower mean charge and cost. Age, comorbidity score, black race, male gender, and Medicaid and Medicare insurance were associated with mortality, complication, and FTR. Lower socioeconomic status was associated with mortality and complication. Safety net status was positively associated with complication but not mortality or FTR. Safety net hospitals had higher complication rates but no difference in FTR or mortality. This may mean that the hospitals are able to effectively recognize and treat patient complications and do so without increased cost. Copyright © 2015 Elsevier Inc. All rights reserved.
Ndjinga, Julie K; Minakawa, Noboru
2010-10-12
Malaria is the most prominent disease in the Democratic Republic of the Congo (DRC), and long-lasting insecticide-treated nets (LLINs) have been distributed free of charge since 2006 to combat the disease. However, the success of this bed net campaign depends on sufficient bed net use in all age groups. This study was designed to examine the factors affecting bed net use in villages outside of Kinshasa. Two villages along the Congo River, totalling 142 households with 640 residents, were surveyed using a standard questionnaire. The interview determined the number, ages, and sexes of family members; the education level of the family head; the number, colour, and type of nets owned; and the number of nets used in the previous night. The size of house was also measured, and numbers of rooms and beds were recorded. These variables were examined to reveal important factors that affect bed net use. A total of 469 nets were counted, and nearly all nets were white LLINs. Of these nets, 229 (48.8%) nets were used by 284 (44.4%) residents. Bed nets were used by over 90% of children 5 to 15 years of age, whereas less than 50% of the residents in other age groups used bed nets. The important variables affecting bed net use were numbers of beds and rooms in the house and the education level of the family head of household. Education was the most important factor affecting bed net use in the villages outside Kinshasa. Development of an educational programme, particularly one directed toward parents, is necessary to reduce misconceptions and increase prevalence of bed net use among all age groups.
Conserved charge fluctuations at vanishing and non-vanishing chemical potential
NASA Astrophysics Data System (ADS)
Karsch, Frithjof
2017-11-01
Up to 6th order cumulants of fluctuations of net baryon-number, net electric charge and net strangeness as well as correlations among these conserved charge fluctuations are now being calculated in lattice QCD. These cumulants provide a wealth of information on the properties of strong-interaction matter in the transition region from the low temperature hadronic phase to the quark-gluon plasma phase. They can be used to quantify deviations from hadron resonance gas (HRG) model calculations which frequently are used to determine thermal conditions realized in heavy ion collision experiments. Already some second order cumulants like the correlations between net baryon-number and net strangeness or net electric charge differ significantly at temperatures above 155 MeV in QCD and HRG model calculations. We show that these differences increase at non-zero baryon chemical potential constraining the applicability range of HRG model calculations to even smaller values of the temperature.
Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.
Chan, Derek Y C
2015-09-15
Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.
Dores, R M; Sei, C A; Morrissey, M A; Crim, J W; Kawauchi, H
1988-01-01
Acid extracts of the intermediate pituitary of the holostean fish, Amia calva, were fractionated by gel filtration chromatography and analyzed with radioimmunoassays specific for N-acetylated beta-endorphin and C-terminally amidated alpha-MSH. In these extracts beta-endorphin-related immunoreactive material and alpha-MSH-related immunoreactive material were present in roughly equimolar amounts. The immunoreactive beta-endorphin-sized material was tested for opiate receptor binding activity using a beta-endorphin radioreceptor assay. The results of these studies were negative. The immunoreactive beta-endorphin-sized material was further analyzed by cation exchange chromatography at pH 2.5. Two major and three minor peaks of immunoreactive material were isolated. Peak 5 exhibited a net charge of +7 at pH 2.5 and represented 53% of the total immunoreactivity recovered. Peak 2 with a net charge of +3 at this pH represented 38% of the total immunoreactivity recovered. The minor forms, Peaks 1, 3 and 4, exhibited net charges of +2, +4 and +6, respectively. The apparent molecular weights of Peaks 2 and 5 were determined on a Sephadex G-50 column. Peak 2 had an apparent molecular weight of 2.7 Kd and Peak 5 had an apparent molecular weight of 3.5 Kd. Reverse phase HPLC analysis of Peak 5 indicates that this form of Amia beta-endorphin had chromatographic properties similar to salmon beta-endorphin II. These results would suggest that N-terminal acetylation and C-terminal proteolytic cleavage are important post-translational modifications of the forms of Amia beta-endorphin.
Ordinioha, Best
2012-01-01
Insecticide-treated bed net (ITN) is currently distributed free of charge to vulnerable groups in Nigeria, for malaria control. Consistent use of the nets is required for maximum effectiveness; but studies indicate that the nets are often jettisoned in periods of low mosquito activity and high night time temperature. The objective of this study has been to assess the use of mass distributed nets in a semi-urban community in Rivers State, south-south Nigeria, during the late dry season, when mosquito activity is at the lowest in the community. The study was carried out in Ishiodu - Emohua, using a cross-sectional study design. The data was collected using a structured, interviewer-administered questionnaire, administered to female head of households in the community, with under-five children. A total of 170 respondents were studied; they had an average age of 34.3 ± 7.6 years, most were married (86.5%), and had secondary school education (68.2%). All the households owned at least one ITN, and an average of 1.7 nets, with 75.3% of the households owning two or more ITNs. Almost all the nets (99.4%) were obtained free of charge. Of the 170 households that received the nets, 71.8% had hanged the nets as at the time of the survey; 83.6% of these hanged the nets over a bed, while 10.7% used the nets as window curtain. Of the 102 ITNs that were properly deployed, only 27.5% were occupied the night before the survey, by an average of 2.5 persons, mainly under-five children (37.7%). The distribution of free ITNs has resulted in universal household ownership, but the use of the nets is still very poor. Proper health education is required to encourage the consistent use of the nets, even in hot night, with low mosquito activity.
Direct Measurement of Charge Regulation in Metalloprotein Electron Transfer.
Zahler, Collin T; Zhou, Hongyu; Abdolvahabi, Alireza; Holden, Rebecca L; Rasouli, Sanaz; Tao, Peng; Shaw, Bryan F
2018-05-04
Determining whether a protein regulates its net electrostatic charge during electron transfer (ET) will deepen our mechanistic understanding of how polypeptides tune rates and free energies of ET (e.g., by affecting reorganization energy, and/or redox potential). Charge regulation during ET has never been measured for proteins because few tools exist to measure the net charge of a folded protein in solution at different oxidation states. Herein, we used a niche analytical tool (protein charge ladders analyzed with capillary electrophoresis) to determine that the net charges of myoglobin, cytochrome c, and azurin change by 0.62±0.06, 1.19±0.02, and 0.51±0.04 units upon single ET. Computational analysis predicts that these fluctuations in charge arise from changes in the pK a values of multiple non-coordinating residues (predominantly histidine) that involve between 0.42-0.90 eV. These results suggest that ionizable residues can tune the reactivity of redox centers by regulating the net charge of the entire protein-cofactor-solvent complex. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of heterocyclic rings through quantum chemical topology.
Griffiths, Mark Z; Popelier, Paul L A
2013-07-22
Five-membered rings are found in a myriad of molecules important in a wide range of areas such as catalysis, nutrition, and drug and agrochemical design. Systematic insight into their largely unexplored chemical space benefits from first principle calculations presented here. This study comprehensively investigates a grand total of 764 different rings, all geometry optimized at the B3LYP/6-311+G(2d,p) level, from the perspective of Quantum Chemical Topology (QCT). For the first time, a 3D space of local topological properties was introduced, in order to characterize rings compactly. This space is called RCP space, after the so-called ring critical point. This space is analogous to BCP space, named after the bond critical point, which compactly and successfully characterizes a chemical bond. The relative positions of the rings in RCP space are determined by the nature of the ring scaffold, such as the heteroatoms within the ring or the number of π-bonds. The summed atomic QCT charges of the five ring atoms revealed five features (number and type of heteroatom, number of π-bonds, substituent and substitution site) that dictate a ring's net charge. Each feature independently contributes toward a ring's net charge. Each substituent has its own distinct and systematic effect on the ring's net charge, irrespective of the ring scaffold. Therefore, this work proves the possibility of designing a ring with specific properties by fine-tuning it through manipulation of these five features.
Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws
NASA Astrophysics Data System (ADS)
Fu, Jing-Hua
2017-09-01
Higher moments of multiplicity fluctuations of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the canonical ensemble. Exact conservation of three charges, baryon number, electric charge, and strangeness is enforced in the large volume limit. Moments up to the fourth order of various particles are calculated at CERN Super Proton Synchrotron, BNL Relativistic Heavy Ion Collider (RHIC), and CERN Large Hadron Collider energies. The asymptotic fluctuations within a simplified model with only one conserved charge in the canonical ensemble are discussed where simple analytical expressions for moments of multiplicity distributions can be obtained. Moments products of net-proton, net-kaon, and net-charge distributions in Au + Au collisions at RHIC energies are calculated. The pseudorapidity coverage dependence of net-charge fluctuation is discussed.
Protein charge distribution in proteomes and its impact on translation
Requião, Rodrigo D.; Fernandes, Luiza; de Souza, Henrique José Araujo; Rossetto, Silvana; Domitrovic, Tatiana
2017-01-01
As proteins are synthesized, the nascent polypeptide must pass through a negatively charged exit tunnel. During this stage, positively charged stretches can interact with the ribosome walls and slow the translation. Therefore, charged polypeptides may be important factors that affect protein expression. To determine the frequency and distribution of positively and negatively charged stretches in different proteomes, the net charge was calculated for every 30 consecutive amino acid residues, which corresponds to the length of the ribosome exit tunnel. The following annotated and reviewed proteins in the UniProt database (Swiss-Prot) were analyzed: 551,705 proteins from different organisms and a total of 180 million protein segments. We observed that there were more negative than positive stretches and that super-charged positive sequences (i.e., net charges ≥ 14) were underrepresented in the proteomes. Overall, the proteins were more positively charged at their N-termini and C-termini, and this feature was present in most organisms and subcellular localizations. To investigate whether the N-terminal charges affect the elongation rates, previously published ribosomal profiling data obtained from S. cerevisiae, without translation-interfering drugs, were analyzed. We observed a nonlinear effect of the charge on the ribosome occupancy in which values ≥ +5 and ≤ -6 showed increased and reduced ribosome densities, respectively. These groups also showed different distributions across 80S monosomes and polysomes. Basic polypeptides are more common within short proteins that are translated by monosomes, whereas negative stretches are more abundant in polysome-translated proteins. These findings suggest that the nascent peptide charge impacts translation and can be one of the factors that regulate translation efficiency and protein expression. PMID:28531225
Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide.
Owczarz, Marta; Casalini, Tommaso; Motta, Anna C; Morbidelli, Massimo; Arosio, Paolo
2015-12-14
In this work we quantified the role of electrostatic interactions in the self-assembly of a model amphiphilic peptide (RADA 16-I) into fibrillar structures by a combination of size exclusion chromatography and molecular simulations. For the peptide under investigation, it is found that a net charge of +0.75 represents the ideal condition to promote the formation of regular amyloid fibrils. Lower net charges favor the formation of amorphous precipitates, while larger net charges destabilize the fibrillar aggregates and promote a reversible dissociation of monomers from the ends of the fibrils. By quantifying the dependence of the equilibrium constant of this reversible reaction on the pH value and the peptide net charge, we show that electrostatic interactions contribute largely to the free energy of fibril formation. The addition of both salt and a charged destabilizer (guanidinium hydrochloride) at moderate concentration (0.3-1 M) shifts the monomer-fibril equilibrium toward the fibrillar state. Whereas the first effect can be explained by charge screening of electrostatic repulsion only, the promotion of fibril formation in the presence of guanidinium hydrochloride is also attributed to modifications of the peptide conformation. The results of this work indicate that the global peptide net charge is a key property that correlates well with the fibril stability, although the peptide conformation and the surface charge distribution also contribute to the aggregation propensity.
The relationship between safety net activities and hospital financial performance
2010-01-01
Background During the 1990's hospitals in the U.S were faced with cost containment charges, which may have disproportionately impacted hospitals that serve poor patients. The purposes of this paper are to study the impact of safety net activities on total profit margins and operating expenditures, and to trace these relationships over the 1990s for all U.S urban hospitals, controlling for hospital and market characteristics. Methods The primary data source used for this analysis is the Annual Survey of Hospitals from the American Hospital Association and Medicare Hospital Cost Reports for years 1990-1999. Ordinary least square, hospital fixed effects, and two-stage least square analyses were performed for years 1990-1999. Logged total profit margin and operating expenditure were the dependent variables. The safety net activities are the socioeconomic status of the population in the hospital serving area, and Medicaid intensity. In some specifications, we also included uncompensated care burden. Results We found little evidence of negative effects of safety net activities on total margin. However, hospitals serving a low socioeconomic population had lower expenditure raising concerns for the quality of the services provided. Conclusions Despite potentially negative policy and market changes during the 1990s, safety net activities do not appear to have imperiled the survival of hospitals. There may, however, be concerns about the long-term quality of the services for hospitals serving low socioeconomic population. PMID:20074367
NASA Astrophysics Data System (ADS)
Chen, C.-H.; Tan, T. Y.
1995-10-01
Using the theoretically calculated point-defect total-energy values of Baraff and Schlüter in GaAs, an amphoteric-defect model has been proposed by Walukiewicz to explain a large number of experimental results. The suggested amphoteric-defect system consists of two point-defect species capable of transforming into each other: the doubly negatively charged Ga vacancy V {Ga/2-} and the triply positively charged defect complex (ASGa+ V As)3+, with AsGa being the antisite defect of an As atom occupying a Ga site and V As being an As vacancy. When present in sufficiently high concentrations, the amphoteric defect system V {Ga/2-}/(AsGa+ V As)3+ is supposed to be able to pin the GaAs Fermi level at approximately the E v +0.6 eV level position, which requires that the net free energy of the V Ga/(AsGa+ V As) defect system to be minimum at the same Fermi-level position. We have carried out a quantitative study of the net energy of this defect system in accordance with the individual point-defect total-energy results of Baraff and Schlüter, and found that the minimum net defect-system-energy position is located at about the E v +1.2 eV level position instead of the needed E v +0.6 eV position. Therefore, the validity of the amphoteric-defect model is in doubt. We have proposed a simple criterion for determining the Fermi-level pinning position in the deeper part of the GaAs band gap due to two oppositely charged point-defect species, which should be useful in the future.
ERIC Educational Resources Information Center
Tovar, Glomen
2018-01-01
A software to calculate the net charge and to predict the isoelectric point (pI) of a polypeptide is developed in this work using the graphical programming language LabVIEW. Through this instrument the net charges of the ionizable residues of the chains of the proteins are calculated at different pH values, tabulated, pI is predicted and an Excel…
Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.
2016-07-01
We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
NASA Technical Reports Server (NTRS)
Marshall, J.; Sauke, T.
1999-01-01
Electrostatic forces strongly influence the behavior of granular materials in both dispersed (cloud) systems and semi-packed systems. These forces can cause aggregation or dispersion of particles and are important in a variety of astrophysical and planetary settings. There are also many industrial and commercial settings where granular matter and electrostatics become partners for both good and bad. This partnership is important for human exploration on Mars where dust adheres to suits, machines, and habitats. Long-range Coulombic (electrostatic) forces, as opposed to contact-induced dipoles and van der Waals attractions, are generally regarded as resulting from net charge. We have proposed that in addition to net charge interactions, randomly distributed charge carriers on grains will result in a dipole moment regardless of any net charge. If grains are unconfined, or fluidized, they will rotate so that the dipole always induces attraction between grains. Aggregates are readily formed, and Coulombic polarity resulting from the dipole produces end-to-end stacking of grains to form filamentary aggregates. This has been demonstrated in USML experiments on Space Shuttle where microgravity facilitated the unmasking of static forces. It has also been demonstrated in a computer model using grains with charge carriers of both sign. Model results very closely resembled micro-g results with actual sand grains. Further computer modeling of the aggregation process has been conducted to improve our understanding of the aggregation process, and to provide a predictive tool for microgravity experiments slated for Space Station. These experiments will attempt to prove the dipole concept as outlined above. We have considerably enhanced the original computer model: refinements to the algorithm have improved the fidelity of grain behavior during grain contact, special attention has been paid to simulation time steps to enable establishment of a meaningful, quantitative time axis, and calibration of rounding accuracies have been conducted to test cumulative numerical influences in the model. The model has been run for larger grain populations, variable initial cloud densities, and we have introduced random net charging to individual grains, as well as a net charge to the cloud as a whole. The model uses 3 positive and 3 negative charges randomly distributed on each grain, with up to 160 grains contained within various size "boxes" that define the initial number densities in the clouds. Each charge represents localized charged region on a grain, but does not necessarily imply single quantized charge carriers. The Coulomb equations are then allowed to interact for each monopole: dipoles and any higher order charge coupling is a natural product of these "free" interactions over which the modeler exerts no influence. The charges are placed on surfaces of grains at random locations. A series of runs was conducted for neutral grains that had a perfect balance of negative and positive char carriers. Runs were also conducted with grains having additional fractional charges ranging between 0 and 1. By adding fractional charges of one sign, the model created grain populations in which all grains had excess charges the same sign, giving the cloud an overall net charge. This simulates clouds subjected to ionizing radiation (e. protoplanetary debris disk around a protosun), or any other process of charge biasing in a grain population (e.g., volcanic plumes). In another run series, random fractional charges of either sign were added to the grains so th some grains had a slight net positive charge while others had a slight net negative charge. This simulates triboelectrically-charged grain populations in which acquisition of an electron by one surface is at the expense creating a hole elsewhere. This dual sign charging was applied in two ways: in one case the cloud remained neutral by ensuring that all grain excess charges added to zero; in the other case, the cloud was permitted slight net char by not imposing a charge-balance condition. Additional information is contained in the original.
Assessment of the Electrification of the Road Transport Sector on Net System Emissions
NASA Astrophysics Data System (ADS)
Miller, James
As worldwide environmental consciousness grows, electric vehicles (EVs) are becoming more common and despite the incredible potential for emissions reduction, the net emissions of the power system supply side plus the transportation system are dependent on the generation matrix. Current EV charging patterns tend to correspond directly with the peak consumption hours and have the potential to increase demand sharply allowing for only a small penetration of Electric Vehicles. Using the National Household Travel Survey (NHTS) data a model is created for vehicle travel patterns using trip chaining. Charging schemes are modeled to include uncontrolled residential, uncontrolled residential/industrial charging, optimized charging and optimized charging with vehicle to grid discharging. A charging profile is then determined based upon the assumption that electric vehicles would directly replace a percentage of standard petroleum-fueled vehicles in a known system. Using the generation profile for the specified region, a unit commitment model is created to establish not only the generation dispatch, but also the net CO2 profile for variable EV penetrations and charging profiles. This model is then used to assess the impact of the electrification of the road transport sector on the system net emissions.
Charge tunable thin-film composite membranes by gamma-ray triggered surface polymerization.
Reis, Rackel; Duke, Mikel C; Tardy, Blaise L; Oldfield, Daniel; Dagastine, Raymond R; Orbell, John D; Dumée, Ludovic F
2017-06-30
Thin-film composite poly(amide) (PA) membranes have greatly diversified water supplies and food products. However, users would benefit from a control of the electrostatic interactions between the liquid and the net surface charge interface in order to benefit wider application. The ionic selectivity of the 100 nm PA semi-permeable layer is significantly affected by the pH of the solution. In this work, for the first time, a convenient route is presented to configure the surface charge of PA membranes by gamma ray induced surface grafting. This rapid and up-scalable method offers a versatile route for surface grafting by adjusting the irradiation total dose and the monomer concentration. Specifically, thin coatings obtained at low irradiation doses between 1 and 10 kGy and at low monomer concentration of 1 v/v% in methanol/water (1:1) solutions, dramatically altered the net surface charge of the pristine membranes from -25 mV to +45 mV, whilst the isoelectric point of the materials shifted from pH 3 to pH 7. This modification resulted in an improved water flux by over 55%, from 45.9 to up 70 L.m -2 .h -1 , whilst NaCl rejection was found to drop by only 1% compared to pristine membranes.
NASA Astrophysics Data System (ADS)
Bazavov, A.; Bhattacharya, Tanmoy; DeTar, C. E.; Ding, H.-T.; Gottlieb, Steven; Gupta, Rajan; Hegde, P.; Heller, Urs M.; Karsch, F.; Laermann, E.; Levkova, L.; Mukherjee, Swagato; Petreczky, P.; Schmidt, Christian; Soltz, R. A.; Soeldner, W.; Sugar, R.; Vranas, Pavlos M.
2012-08-01
We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results are obtained using calculations with tree-level improved gauge and the highly improved staggered quark actions with almost physical light and strange quark masses at three different values of the lattice cutoff. Our choice of parameters corresponds to a value of 160 MeV for the lightest pseudoscalar Goldstone mass and a physical value of the kaon mass. The three diagonal charge susceptibilities and the correlations among conserved charges have been extrapolated to the continuum limit in the temperature interval 150MeV≤T≤250MeV. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T≲150MeV. We observe significant deviations in the temperature range 160MeV≲T≲170MeV and qualitative differences in the behavior of the three conserved charge sectors. At T≃160MeV quadratic net baryon number fluctuations in QCD agree with HRG model calculations, while the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These findings are relevant to the discussion of freeze-out conditions in relativistic heavy ion collisions.
Zakim, D; Eibl, H
1992-07-05
Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do not inhibit GT2p. This result again illustrates the importance of the dipole of phosphocholine for modulating the functional state of GT2p.
Charged anisotropic matter with linear or nonlinear equation of state
NASA Astrophysics Data System (ADS)
Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi
2010-08-01
Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua’s method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (1019C) and maximum electric field intensities are very large (1023-1024statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.
Electrically charged: An effective mechanism for soft EOS supporting massive neutron star
NASA Astrophysics Data System (ADS)
Jing, ZhenZhen; Wen, DeHua; Zhang, XiangDong
2015-10-01
The massive neutron star discoverer announced that strange particles, such as hyperons should be ruled out in the neutron star core as the soft Equation of State (EOS) can-not support a massive neutron star. However, many of the nuclear theories and laboratory experiments support that at high density the strange particles will appear and the corresponding EOS of super-dense matters will become soft. This situation promotes a challenge between the astro-observation and nuclear physics. In this work, we introduce an effective mechanism to answer this challenge, that is, if a neutron star is electrically charged, a soft EOS will be equivalently stiffened and thus can support a massive neutron star. By employing a representative soft EOS, it is found that in order to obtain an evident effect on the EOS and thus increasing the maximum stellar mass by the electrostatic field, the total net charge should be in an order of 1020 C. Moreover, by comparing the results of two kind of charge distributions, it is found that even for different distributions, a similar total charge: ~ 2.3 × 1020 C is needed to support a ~ 2.0 M ⊙ neutron star.
Mamun, A A; Shukla, P K
2009-09-01
Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-01-01
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518
Chiti, Fabrizio; Calamai, Martino; Taddei, Niccolo; Stefani, Massimo; Ramponi, Giampietro; Dobson, Christopher M
2002-12-10
Protein aggregation and the formation of highly insoluble amyloid structures is associated with a range of debilitating human conditions, which include Alzheimer's disease, Parkinson's disease, and the Creutzfeldt-Jakob disease. Muscle acylphosphatase (AcP) has already provided significant insights into mutational changes that modulate amyloid formation. In the present paper, we have used this system to investigate the effects of mutations that modify the charge state of a protein without affecting significantly the hydrophobicity or secondary structural propensities of the polypeptide chain. A highly significant inverse correlation was found to exist between the rates of aggregation of the protein variants under denaturing conditions and their overall net charge. This result indicates that aggregation is generally favored by mutations that bring the net charge of the protein closer to neutrality. In light of this finding, we have analyzed natural mutations associated with familial forms of amyloid diseases that involve alteration of the net charge of the proteins or protein fragments associated with the diseases. Sixteen mutations have been identified for which the mechanism of action that causes the pathological condition is not yet known or fully understood. Remarkably, 14 of these 16 mutations cause the net charge of the corresponding peptide or protein that converts into amyloid deposits to be reduced. This result suggests that charge has been a key parameter in molecular evolution to ensure the avoidance of protein aggregation and identifies reduction of the net charge as an important determinant in at least some forms of protein deposition diseases.
NASA Astrophysics Data System (ADS)
Woodland, Brandon Jay
An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high performance to cost ratio of this machine lends significant credence to the economic viability of small-scale, low-temperature ORCs. The experimental campaign covered two heat source temperatures, the full range of pump and expander speeds, a full range of heat source and heat sink fluid flow rates, and various charge levels for the three working fluids. This resulted in 366 steady-state measurements. The steady state measurements are used to develop a detailed ORC model. The model is based on multi-fluid performance maps for the pump and expander and a robust moving-boundary heat exchanger model. It is validated against the measured data and predicts the net power output of the tested ORC with a mean absolute percent error of 7.16%. Comparisons made with the detailed model confirm the predictions of the design-stage model. Using a conservative estimate of the condenser fan power, 19.1% improvement of the ZRC over the baseline ORC is indicated for a source temperature of 80 °C. For a 100 °C source temperature, 13.8% improvement is indicated. A key feature of the detailed ORC model is that it calculates the charge inventory of the working fluid in each heat exchanger and line set. Total system charge can also be specified as a model input. The model can represent the total charge well for R134a at low measured charge levels. As the measured charge level increases, the model becomes less accurate. Reasons for the deviation of the model at higher charge are investigated. It is expected that a charge tuning scheme could be employed to improve the accuracy of model-predicted charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alba, Paolo; Alberico, Wanda; Bellwied, Rene
We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net-protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and transverse momentum used in the experimental analysis, as well as a randomization of the isospin of nucleons in the hadronic phase. By comparing these results to the latest experimental data from the STAR Collaboration, we determine the freeze-out conditions from net-electric charge and net-proton distributions and discuss their consistency.
Biscombe, Christian J C; Davidson, Malcolm R; Harvie, Dalton J E
2012-01-01
A mathematical framework for analysing electrokinetic flow in microchannel networks is outlined. The model is based on conservation of volume and total charge at network junctions, but in contrast to earlier theories also incorporates conservation of ion charge there. The model is applied to mixed pressure-driven/electro-osmotic flows of binary electrolytes through homogeneous microchannels as well as a 4:1:4 contraction-expansion series network. Under conditions of specified volumetric flow rate and ion currents, non-linear steady-state phenomena may arise: when the direction of the net co-ion flux is opposite to the direction of the net volumetric flow, two different fully developed, steady-state flow solutions may be obtained. Model predictions are compared with two-dimensional computational fluid dynamics (CFD) simulations. For systems where two steady states are realisable, the ultimate steady behaviour is shown to depend in part upon the initial state of the system. Copyright © 2011 Elsevier Inc. All rights reserved.
Bromine-doped DWNTs: A Molecular Faraday Cage
NASA Astrophysics Data System (ADS)
Chen, Gugang; Margine, Roxana; Gupta, Rajeev; Crespi, Vincent; Eklund, Peter; Sumanasekera, Gamini; Bandow, Shunji; Iijima, S.
2003-03-01
Raman scattering is used to probe the charge transfer distribution in Bromine-doped double-walled carbon nanotubes (DWNT). Using 1064 nm and 514.5 nm laser excitation we are able to study the charge-transfer sensitive phonons in the inner ( (5,5)) and outer ( (10,10)) tubes of the double-walled pair. The experimental results are compared to our tight binding band structure calculations that include a self-consistent electrostatic term sensitive to the average net charge density on each tube. Upon doping, the nanotube tangential and radial Raman bands from the outer (primary) tubes were observed to shift dramatically to higher frequencies, consistent with a C-C bond contraction driven by the acceptor-doping. The peak intensities of these bands significantly decreased with increasing doping exposure, and they eventually vanished, consistent with a deep depression in the Fermi energy that extinguishes the resonant Raman effect. Interestingly, at the same time, we observed little or no change for the tangential and radial Raman features identified with the inner (secondary) tubes during the bromine doping. Our electronic structure calculations show that the charge distribution between the outer and inner tubes depends on doping level and also, to some extent, on specific tube chirality combinations. In general, in agreement with experiment, the calculations find a very small net charge on the inner tube, consistent with a "Molecular Faraday Effect", e.g., a DWNT of (10, 10)/ (5, 5) configuration that exhibits 0.5 holes/Å total charge transfer, has only 0.04 holes/Å on the inner (secondary) tube.
VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew
2016-09-19
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less
Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel; Kalle, Wouter H J
2004-03-24
This study looks at the development of a novel combination vector consisting of adenovirus conjugated to liposomes (AL complexes) bound to cation-exchanging microspheres (MAL complexes). With adenovirus having a net negative charge and the liposomes a net positive charge it was possible to modify the net charge of the AL complexes by varying the concentrations of adenovirus to liposomes. The modification of the net charge resulted in altered binding and release characteristics. Of the complexes tested, the 5:1 and 2:1 ratio AL complexes were able to be efficiently bound by the microspheres and exhibited sustained release over 24 h. The 1:1 and 1:2 AL complexes, however, bound poorly to the microspheres and were rapidly released. In addition the MAL complexes also were able to reduce the toxicity of the AL complexes, which was seen with the 10:1 ratio. The AL complexes showed considerably more toxicity alone than in combination with microspheres, highlighting a potential benefit of this vector.
Whole body acid-base modeling revisited.
Ring, Troels; Nielsen, Søren
2017-04-01
The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis. Copyright © 2017 the American Physiological Society.
Der, Bryan S.; Kluwe, Christien; Miklos, Aleksandr E.; Jacak, Ron; Lyskov, Sergey; Gray, Jeffrey J.; Georgiou, George; Ellington, Andrew D.; Kuhlman, Brian
2013-01-01
Reengineering protein surfaces to exhibit high net charge, referred to as “supercharging”, can improve reversibility of unfolding by preventing aggregation of partially unfolded states. Incorporation of charged side chains should be optimized while considering structural and energetic consequences, as numerous mutations and accumulation of like-charges can also destabilize the native state. A previously demonstrated approach deterministically mutates flexible polar residues (amino acids DERKNQ) with the fewest average neighboring atoms per side chain atom (AvNAPSA). Our approach uses Rosetta-based energy calculations to choose the surface mutations. Both protocols are available for use through the ROSIE web server. The automated Rosetta and AvNAPSA approaches for supercharging choose dissimilar mutations, raising an interesting division in surface charging strategy. Rosetta-supercharged variants of GFP (RscG) ranging from −11 to −61 and +7 to +58 were experimentally tested, and for comparison, we re-tested the previously developed AvNAPSA-supercharged variants of GFP (AscG) with +36 and −30 net charge. Mid-charge variants demonstrated ∼3-fold improvement in refolding with retention of stability. However, as we pushed to higher net charges, expression and soluble yield decreased, indicating that net charge or mutational load may be limiting factors. Interestingly, the two different approaches resulted in GFP variants with similar refolding properties. Our results show that there are multiple sets of residues that can be mutated to successfully supercharge a protein, and combining alternative supercharge protocols with experimental testing can be an effective approach for charge-based improvement to refolding. PMID:23741319
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-10-28
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Takahashi, Koji
2006-01-01
The effects of lysine (Lys), monosodium glutamate (GluNa), glycine, alanine and epsilon-poly(L-lysine) (PL) with different degrees of polymerization on the gelatinization behavior of potato starch granules were investigated by DSC, viscosity and swelling measurements, microscopic observation, and measurement of the retained amino acid amount to clarify the contribution of the net charge to their regulatory effects on the gelatinization behavior. The amino acids and PL each contributed to an increase in the gelatinization temperature, and a decrease in the peak viscosity and swelling. These effects strongly depended on the absolute value of their net charge. The disappearance of a negative or positive net charge by adjusting the pH value weakened the contribution. The swelling index and size of the potato starch granules changed according to replacement of the swelling medium. The amino acids and PL were easily retained by the swollen potato starch granules according to replacement of the outer solution of the starch granules.
California's Hospital Fair Pricing Act reduced the prices actually paid by uninsured patients.
Bai, Ge
2015-01-01
California's Hospital Fair Pricing Act, passed in 2006, aims to protect uninsured patients from paying hospital gross charges: the full, undiscounted prices based on each hospital's chargemaster. In this study I examined how the law affects the net price actually paid by uninsured patients--a question critical for evaluating the law's impact. I found that from 2004 to 2012 the net price actually paid by uninsured patients shrank from 6 percent higher than Medicare prices to 68 percent lower than Medicare prices; the adjusted collection ratio, essentially the amount the hospital actually collected for every dollar in gross price charged, for uninsured patients dropped from 32 percent to 11 percent; and although hospitals have been increasingly less able to generate revenues from uninsured patients, they have raised the proportion of services provided to them in relation to total services provided to all patients. The substantial protection provided to uninsured patients by the California Hospital Fair Pricing Act has important implications for federal and state policy makers seeking to achieve a similar goal. States or Congress could legislate criteria determining the eligibility for discounted charges, mandate a lower price ceiling, and regulate for-profit hospitals in regard to uninsured patients. Project HOPE—The People-to-People Health Foundation, Inc.
NASA Astrophysics Data System (ADS)
Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H.
2015-10-01
An electric field screen is a physical device used to exclude pest insects from greenhouses and warehouses to protect crop production and storage. The screen consists of iron insulated conductor wires (ICWs) arrayed in parallel and linked to each other, an electrostatic DC voltage generator used to supply a negative charge to the ICWs, and an earthed stainless net placed on one side of the ICW layer. The ICW was negatively charged to polarize the earthed net to create a positive charge on the ICW side surface, and an electric field formed between the opposite charges of the ICW and earthed net. The current study focused on the ability of the screen to repel insects reaching the screen net. This repulsion was a result of the insect's behaviour, i.e., the insects were deterred from entering the electric field of the screen. In fact, when the screen was negatively charged with the appropriate voltages, the insects placed their antennae inside the screen and then flew away without entering. Obviously, the insects recognized the electric field using their antennae and thereby avoided entering. Using a wide range of insects and spiders belonging to different taxonomic groups, we confirmed that the avoidance response to the electric field was common in these animals.
Apparent electric charge of protein molecules. Human thyroxine - binding proteins.
Hocman, G; Sadlon, J
1977-01-01
1. By comparison of electrophoretic mobilities of two different charged particles under the same conditions the net elementary electrostatic charge of one particle could be calculated when the charge of the other is known. 2. The electrophoretic mobility of human thyroxine - binding globulin does not depend upon the concentration of Tris - HCl buffer in the range 0.05 to 0.20 molar. The value of this mobility is 0.078 and 0.083 cm2 vol(-1) hour(-1) at pH 7.0 and 8.6, respectively. 3. The net elementary electrostatic charge of the human thyroxine - binding globulin appears to be approximately 22 negative elementary electrostatic units in mild alkaline solutions.
Vitrac, Heidi; Bogdanov, Mikhail; Heacock, Phil; Dowhan, William
2011-04-29
The N-terminal six-transmembrane domain (TM) bundle of lactose permease of Escherichia coli is uniformly inverted when assembled in membranes lacking phosphatidylethanolamine (PE). Inversion is dependent on the net charge of cytoplasmically exposed protein domains containing positive and negative residues, net charge of the membrane surface, and low hydrophobicity of TM VII acting as a molecular hinge between the two halves of lactose permease (Bogdanov, M., Xie, J., Heacock, P., and Dowhan, W. (2008) J. Cell Biol. 182, 925-935). Net neutral lipids suppress the membrane translocation potential of negatively charged amino acids, thus increasing the cytoplasmic retention potential of positively charged amino acids. Herein, TM organization of sucrose permease (CscB) and phenylalanine permease (PheP) as a function of membrane lipid composition was investigated to extend these principles to other proteins. For CscB, topological dependence on PE only becomes evident after a significant increase in the net negative charge of the cytoplasmic surface of the N-terminal TM bundle. High negative charge is required to overcome the thermodynamic block to inversion due to the high hydrophobicity of TM VII. Increasing the positive charge of the cytoplasmic surface of the N-terminal TM hairpin of PheP, which is misoriented in PE-lacking cells, favors native orientation in the absence of PE. PheP and CscB also display co-existing dual topologies dependent on changes in the charge balance between protein domains and the membrane lipids. Therefore, the topology of both permeases is dependent on PE. However, CscB topology is governed by thermodynamic balance between opposing lipid-dependent electrostatic and hydrophobic interactions.
47 CFR 69.610 - Other hypothetical net balances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 3 2011-10-01 2011-10-01 false Other hypothetical net balances. 69.610 Section... (CONTINUED) ACCESS CHARGES Exchange Carrier Association § 69.610 Other hypothetical net balances. (a) The hypothetical net balance for an access element other than a Common Line element shall be computed as provided...
47 CFR 69.610 - Other hypothetical net balances.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Other hypothetical net balances. 69.610 Section... (CONTINUED) ACCESS CHARGES Exchange Carrier Association § 69.610 Other hypothetical net balances. (a) The hypothetical net balance for an access element other than a Common Line element shall be computed as provided...
47 CFR 32.7210 - Operating investment tax credits-net.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Operating investment tax credits-net. 32.7210....7210 Operating investment tax credits—net. (a) This account shall be charged and Account 4320, Unamortized Operating Investment Tax Credits—Net, shall be credited with investment tax credits generated from...
Schultz, Leonard Gene
1969-01-01
X-ray analysis of Li+- and K+-saturated samples, differential thermal analysis (DTA), thermal gravimetric analysis (TGA), and chemical analysis of 83 samples enable a distinction to be made between Wyoming, Tatatilla, Otay, Chambers, and non-ideal types of montmorillonite, and between ideal and non-ideal types of beidellite. The Greene-Kelly Li+-test differentiates between the montmorillonites and beidellites. Re-expansion with ethylene glycol after K+-saturation and heating at 300°C depends upon total net layer charge and not upon location of the charge. Wyoming-type montmorillonites characteristically have low net layer charge and re-expand to 17 Å. whereas most other montmorillonites and beidellites have a higher net layer charge and re-expand to less than 17 Å.Major differences in dehydroxylation temperatures cannot be related consistently to the amount of Al3+-for-Si4+ substitution, nor to the amount of Mg, Fe, type of interlayer cations, or particle size. The major factor controlling temperature of dehydroxylation seems to be the amount of structural (OH). Of 19 samples analyzed by TGA, montmorillonites and the one ideal beidellite that give dehydroxylation endotherms on their DTA curves between 650° and 760°C all contain nearly the ideal amount of 4(OH) per unit cell, but the non-ideal montmorillonites and beidellites that give dehydroxylation peaks between 550° and 600°C do not. Non-ideal beidellites contain more than the ideal amount of structural (OH) and non-ideal montmorillonites seem to contain less, although the low temperature of dehydroxylation of the latter could also be due to other structural defects. Change in X-ray diffraction intensity of the 001 reflection during dehydroxylation suggests that the extra (OH) of beidellite occurs at the apex of SiO4 or AlO4 tetrahedrons with the H+ of the (OH)- polarized toward vacant cation sites in the octahedral sheet.
NASA Astrophysics Data System (ADS)
Sohnen, Julia Meagher
This thesis explores the implications of the increased adoption of plug-in electric vehicles in California through its effect on the operation of the state's electric grid. The well-to-wheels emissions associated with driving an electric vehicle depend on the resource mix of the electricity grid used to charge the battery. We present a new least-cost dispatch model, EDGE-NET, for the California electricity grid consisting of interconnected sub-regions that encompass the six largest state utilities that can be used to evaluate the impact of growing electric vehicle demand on existing power grid infrastructure system and energy resources. This model considers spatiality and temporal dynamics of energy demand and supply when determining the regional impacts of additional charging profiles on the current electricity network. Model simulation runs for one year show generation and transmission congestion to be reasonable similar to historical data. Model simulation results show that average emissions and system costs associated with electricity generation vary significantly by time of day, season, and location. Marginal cost and emissions also exhibit seasonal and diurnal differences, but show less spatial variation. Sensitivity of demand analysis shows that the relative changes to average emissions and system costs respond asymmetrically to increases and decreases in electricity demand. These results depend on grid mix at the time and the marginal power plant type. In minimizing total system cost, the model will choose to dispatch the lowest-cost resource to meet additional vehicle demand, regardless of location, as long as transmission capacity is available. Location of electric vehicle charging has a small effect on the marginal greenhouse gas emissions associated with additional generation, due to electricity losses in the transmission grid. We use a geographically explicit, charging assessment model for California to develop and compare the effects of two charging profiles. Comparison of these two basic scenarios points to savings in greenhouse gas emissions savings and operational costs from delayed charging of electric vehicles. Vehicle charging simulations confirm that plug-in electric vehicles alone are unlikely to require additional generation or transmission infrastructure. EDGE-NET was successfully benchmarked against historical data for the present grid but additional work is required to expand the model for future scenario evaluation. We discuss how the model might be adapted for high penetrations of variable renewable energy resources, and the use of grid storage. Renewable resources such as wind and solar vary in California vary significantly by time-of-day, season, and location. However, combination of multiple resources from different geographic regions through transmission grid interconnection is expected to help mitigate the impacts of variability. EDGE-NET can evaluate interaction of supply and demand through the existing transmission infrastructure and can identify any critical network bottlenecks or areas for expansion. For this reason, EDGE-NET will be an important tool to evaluate energy policy scenarios.
NASA Astrophysics Data System (ADS)
Gluck, Paul
2004-03-01
The Faraday ice-pail experiment is performed when studying the distribution of charges in conductors: Inside a hollow conductor the net charge is zero, and any excess charge resides on the outside surface.
Coacervates of lactotransferrin and β- or κ-casein: structure determined using SAXS.
de Kruif, C G Kees; Pedersen, JanSkov; Huppertz, Thom; Anema, Skelte G
2013-08-20
Lactotransferrin (LF) is a large globular protein in milk with immune-regulatory and bactericidal properties. At pH 6.5, LF (M = 78 kDa) carries a net (calculated) charge of +21. β-Casein (BCN) and κ-casein (KCN) are part of the casein micelle complex in milk. Both BCN and KCN are amphiphillic proteins with a molar mass of 24 and 19 kDa and carry net charges of -14 and -4, respectively. Both BCN and KCN form soap-like micelles, with 40 and 65 monomers, respectively. The net negative charges are located in the corona of the micelles. On mixing LF with the caseins, coacervates are formed. We analyzed the structure of these coarcervates using SAXS. It was found that LF binds to the corona of the micellar structures, at the charge neutrality point. BCN/LF and KCN/LF ratios at the charge neutrality point were found to be ~1.2 and ~5, respectively. We think that the findings are relevant for the protection mechanism of globular proteins in bodily fluids where unstructured proteins are abundant (saliva). The complexes will prevent docking of enzymes on specific charged groups on the globular protein.
Trevino, Saul R; Scholtz, J Martin; Pace, C Nick
2007-02-16
Poor protein solubility is a common problem in high-resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all 20 amino acids to protein solubility has not been done. Here, 20 variants at the completely solvent-exposed position 76 of ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II beta-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine.
Emissions and Economics of Behind-the-Meter Electricity Storage.
Fisher, Michael J; Apt, Jay
2017-02-07
Annual installations of behind-the-meter (BTM) electric storage capacity are forecast to eclipse grid-side electrochemical storage by the end of the decade. Here, we characterize the economic payoff and regional emission consequences of BTM storage without colocated generation under different tariff conditions, battery characteristics, and ownership scenarios using metered loads for several hundred commercial and industrial customers. Net emissions are calculated as increased system emissions from charging minus avoided emissions from discharging. Net CO 2 emissions range from 75 to 270 kg/MWh of delivered energy depending on location and ownership perspective, though in New York, these emissions can be reduced with careful tariff design. Net NO x emissions range from -0.13 to 0.24 kg/MWh, and net SO 2 emissions range from -0.01 to 0.58 kg/MWh. Emission rates are driven primarily by energy losses, not by the difference between marginal emission rates during battery charging and discharging. Economics are favorable for many buildings in regions with high demand charges like California and New York, even without subsidies. Future penetration into regions with average charges like Pennsylvania will depend greatly on installation cost reductions and wholesale prices for ancillary services.
Magnetically charged calorons with non-trivial holonomy
NASA Astrophysics Data System (ADS)
Kato, Takumi; Nakamula, Atsushi; Takesue, Koki
2018-06-01
Instantons in pure Yang-Mills theories on partially periodic space R^3× {S}^1 are usually called calorons. The background periodicity brings on characteristic features of calorons such as non-trivial holonomy, which plays an essential role for confinement/deconfinement transition in pure Yang-Mills gauge theory. For the case of gauge group SU(2), calorons can be interpreted as composite objects of two constituent "monopoles" with opposite magnetic charges. There are often the cases that the two monopole charges are unbalanced so that the calorons possess net magnetic charge in R3. In this paper, we consider several mechanism how such net magnetic charges appear for certain types of calorons through the ADHM/Nahm construction with explicit examples. In particular, we construct analytically the gauge configuration of the (2 , 1)-caloron with U(1)-symmetry, which has intrinsically magnetic charge.
Ionic conductors for solid oxide fuel cells
Krumpelt, Michael; Bloom, Ira D.; Pullockaran, Jose D.; Myles, Kevin M.
1993-01-01
An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.
Higher Moments of Net-Particle Multiplicity Distributions
NASA Astrophysics Data System (ADS)
Thäder, Jochen
2016-12-01
Studying fluctuations of conserved quantities, such as baryon number, strangeness, and charge, provides insights into the properties of matter created in high-energy nuclear collisions. Lattice QCD calculations suggest that higher moments of these quantities are sensitive to the phase structure of the hot and dense nuclear matter created in such collisions. In this paper, we present first experimental results of volume and temperature independent cumulant ratios of net-charge and net-proton distributions in Au+Au collisions at √{sNN} = 14.5 GeV completing the first RHIC Beam Energy Scan (BES-I) program for √{sNN} = 7.7 to 200GeV, together with the first measurement of fully corrected net-kaon results, measured with the STAR detector at RHIC at mid-rapidity and a transverse momentum up to pT = 2GeV/c. The pseudorapidity dependence of the √{sNN} = 14.5 GeV net-charge cumulant ratios is discussed. The estimated uncertainties on the ratio c4 /c2, the most statistics-hungry of the present observables, at √{sNN} = 7.7 GeV in the upcoming RHIC BES-II program will also be presented.
Plasma source for spacecraft potential control
NASA Technical Reports Server (NTRS)
Olsen, R. C.
1983-01-01
A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.
Controlling the net charge on a nanoparticle optically levitated in vacuum
NASA Astrophysics Data System (ADS)
Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas
2017-06-01
Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.
Newhall, Karina; Stone, David; Svoboda, Ryan; Goodney, Philip
2016-12-01
Ongoing health reform in the United States encourages quality-based reimbursement methods such as bundled payments for surgery. The effect of such changes on high-risk procedures is unknown, especially at safety net hospitals. This study quantified the burden of diabetes-related amputation and the potential financial effect of bundled payments at safety net hospitals in Texas. We performed a cross-sectional analysis of diabetic amputation burden and charges using publically available data from Centers for Medicare and Medicaid and the Texas Department of Health from 2008 to 2012. Using hospital referral region (HRR)-level analysis, we categorized the proportion of safety net hospitals within each region as very low (0%-9%), low (10%-20%), average (20%-33%), and high (>33%) and compared amputation rates across regions using nonparametric tests of trend. We then used charge data to create reimbursement rates based on HRR to estimate financial losses. We identified 51 adult hospitals as safety nets in Texas. Regions varied in the proportion of safety net hospitals from 0% in Victoria to 65% in Harlingen. Among beneficiaries aged >65, amputation rates correlated to the proportion of safety net hospitals in each region; for example, patients in the lowest quartile of safety net had a yearly rate of 300 amputations per 100,000 beneficiaries, whereas those in the highest quartile had a yearly rate of 472 per 100,000 (P = .007). Charges for diabetic amputation-related admissions varied almost 200-fold, from $5000 to $1.4 million. Using reimbursement based on HRR to estimate a bundled payment, we noted net losses would be higher at safety net vs nonsafety net hospitals ($180 million vs $163 million), representing a per-hospital loss of $1.6 million at safety nets vs $700,000 at nonsafety nets (P < .001). Regions with a high proportion of safety net hospitals perform almost half of the diabetic amputations in Texas. Changes to traditional payment models should account for the disproportionate burden of high-risk procedures performed by these hospitals. Copyright © 2016. Published by Elsevier Inc.
Wiegand, Timothy J; Crane, Peter W; Kamali, Michael; Reif, Marilynn; Wratni, Rose; Montante, Ronald; Loveland, Tracey
2015-03-01
A bedside toxicology consult service may improve clinical care, facilitate patient clearance and disposition, and result in potential cost savings for poisoning exposures. Despite this, there is scant data regarding economic feasibility for such a service. Previously published information suggests low hourly reimbursement at approximately $26.00/h at the bedside for toxicology consultations. A bedside toxicology consultant service was initiated in 2011. Coverage was available 24 h a day for 50 out of 52 weeks. Bedside rounding on toxicology consult patients was available 6/7 days per week. The practice is associated with >800 bed teaching institution in a large upstate NY region with elements of urban and suburban practice. Demographic and billing data was collected for all patients consulted upon from July 1, 2011 to June 31, 2012. In charges of $514,941 were generated during the period of data collection. Monthly average was $42,912. Net reimbursement of charges was 29 % of overall charges at $147,792. In terms of total encounters, net collection rate in which something was reimbursed or "paid" against charges for that encounter was 82.6 % of all encounters at 999/1,210. Average encounter time for inpatients, including critical care, was 1.05 h, and the average time spent for outpatients was 1.18 h. Reimbursement rates appear higher than previously reported. Revenue generated from reimbursement from toxicology consultation can result in recouping a substantial portion of a toxicologist's salary or potentially fund fellowship positions and salaries or toxicology division infrastructure.
Martínez-Araya, Jorge Ignacio; Grand, André; Glossman-Mitnik, Daniel
2016-01-28
Correction for 'Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges' by Jorge Ignacio Martínez-Araya et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp03822g.
The Role of Solution Conditions in the Bacteriophage PP7 Capsid Charge Regulation
Nap, Rikkert J.; Bozic, Anze Losdorfer; Szleifer, Igal; ...
2014-10-21
Here, we investigate and quantify the effects of pH and salt concentration on the charge regulation of the bacteriophage PP7 capsid. These effects are found to be extremely important and substantial, introducing qualitative changes in the charge state of the capsid such as a transition from net-positive to net-negative charge depending on the solution pH. The overall charge of the virus capsid arises as a consequence of a complicated balance with the chemical dissociation equilibrium of the amino acids and the electrostatic interaction between them, and the translational entropy of the mobile solution ions, i.e., counterion release. We show thatmore » to properly describe and predict the charging equilibrium of viral capsids in general, one needs to include molecular details as exemplified by the acid-base equilibrium of the detailed distribution of amino acids in the proteinaceous capsid shell.« less
Trevino, Saul R.; Scholtz, J. Martin; Pace, C. Nick
2009-01-01
SUMMARY Poor protein solubility is a common problem in high resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all twenty amino acids to protein solubility has not been done. Here, twenty variants at the completely solvent-exposed position 76 of Ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II β-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine. PMID:17174328
NASA Astrophysics Data System (ADS)
Zhang, Li; Jabbari, Faryar; Brown, Tim; Samuelsen, Scott
2014-12-01
Plug-in electric vehicles (PEVs) shift energy consumption from petroleum to electricity for the personal transportation sector. This work proposes a decentralized charging protocol for PEVs with grid operators updating the cost signal. Each PEV calculates its own optimal charging profile only once based on the cost signal, after it is plugged in, and sends the result back to the grid operators. Grid operators only need to aggregate charging profiles and update the load and cost. The existing PEV characteristics, national household travel survey (NHTS), California Independent System Operator (CAISO) demand, and estimates for future renewable generation in California are used to simulate PEV operation, PEV charging profiles, grid demand, and grid net load (demand minus renewable). Results show the proposed protocol has good performance for overnight net load valley filling if the costs to be minimized are proportional to the net load. Annual results are shown in terms of overnight load variation and comparisons are made with grid level valley filling results. Further, a target load can be approached in the same manner by using the gap between current load and the target load as the cost. The communication effort involved is quite modest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Sigrin, Ben; Gleason, Mike
As the adoption of distributed photovoltaics (DPV) has continued to rapidly increase, a national conversation has begun about the efficacy of full-retail net metering as a means of achieving the diverse objectives of electricity pricing. This conversation has prompted studies that have primarily focused on the total costs and benefits of DPV. To compliment those studies, we here characterize the potential impacts of tariff design on the customer-economics and adoption of DPV, where recent changes in Nevada are taken as a case study. We show that an increase in fixed charges more strongly impacts the payback period of small systems,more » and a decrease in credit for exported electricity more strongly impacts the payback period of large systems. We project that these combined changes will reduce DPV adoption in Nevada; total capacity in 2030 was projected to reach up to 363 MW, with 226 MW having already been installed at the end of the second quarter of 2016. In contrast, if full retail net metering had continued, DPV capacity was projected to reach up to 1,280 MW at the end of 2030, which would account for an estimated 6.5% of the total sales of electricity by NV Energy at that time. We project that the DPV systems will decrease the gross revenue from bill collection by $48 million per year under the new tariffs, whereas the decrease in gross revenue could have reached $255 million per year if full retail net metering had been continued. Although these results are given in the context of Nevada, the trends shown are intended to help information similar upcoming decisions in other states.« less
MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.
2010-01-01
In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672
Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution
NASA Astrophysics Data System (ADS)
Borgohain, Dima Rani; Saharia, K.
2018-03-01
Electronegative plasma sheath is addressed in a collisional unmagnetized plasma consisting of q-nonextensive electrons, Boltzmann distributed negative ions and cold fluid positive ions. Considering the positive ion-neutral collisions and ignoring the effects of ionization and collisions between negative species and positive ions (neutrals), a modified Bohm sheath criterion and hence floating potential are derived by using multifluid model. Using the modified Bohm sheath criterion, the sheath characteristics such as spatial profiles of density, potential and net space charge density have been numerically investigated. It is found that increasing values of q-nonextensivity, electronegativity and collisionality lead to a decrease of the sheath thickness and an increase of the sheath potential and the net space charge density. With increasing values of the electron temperature to negative ion temperature ratio, the sheath thickness increases and the sheath potential as well as the net space charge density in the sheath region decreases.
Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals.
Collins, Y E; Stotzky, G
1992-01-01
The electrokinetic patterns of four bacterial species (Bacillus subtilis, Bacillus megaterium, Pseudomonas aeruginosa, and Agrobacterium radiobacter), two yeasts (Saccharomyces cerevisiae and Candida albicans), and two clay minerals (montmorillonite and kaolinite) in the presence of the chloride salts of the heavy metals, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, and of Na and Mg were determined by microelectrophoresis. The cells and kaolinite were net negatively charged at pH values above their isoelectric points (pI) in the presence of Na, Mg, Hg, and Pb at an ionic strength (mu) of 3 x 10(-4); montmorillonite has no pI and was net negatively charged at all pH values in the presence of these metals. However, the charge of some bacteria, S. cerevisiae, and kaolinite changed to a net positive charge (charge reversal) in the presence of Cd, Cr, Cu, Ni, and Zn at pH values above 5.0 (the pH at which charge reversal occurred differed with the metal) and then, at higher pH values, again became negative. The charge of the bacteria and S. cerevisiae also reversed in solutions of Cu and Ni with a mu of greater than 3 x 10(-4), whereas there was no reversal in solutions with a mu of less than 3 x 10(-4). The clays became net positively charged when the mu of Cu was greater than 3 x 10(-4) and that of Ni was greater than 1.5 x 10(-4). The charge of the cells and clays also reversed in solutions containing both Mg and Ni or both Cu and Ni (except montmorillonite) but not in solutions containing both Mg and Cu (except kaolinite) (mu = 3 x 10(-4)). The pIs of the cells in the presence of the heavy metals were at either higher or lower pH values than in the presence of Na and Mg. Exposure of the cells to the various metals at pH values from 2 to 9 for the short times (ca. 10 min) required to measure the electrophoretic mobility did not affect their viability. The specific adsorption on the cells and clays of the hydrolyzed species of some of the heavy metals that formed at higher pH values was probably responsible for the charge reversal. These results suggest that the toxicity of some heavy metals to microorganisms varies with pH because the hydrolyzed speciation forms of these metals, which occur at higher pH values, bind on the cell surface and alter the net charge of the cell.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1622229
López-Alonso, Jorge P; Diez-García, Fernando; Font, Josep; Ribó, Marc; Vilanova, Maria; Scholtz, J Martin; González, Carlos; Vottariello, Francesca; Gotte, Giovanni; Libonati, Massimo; Laurents, Douglas V
2009-08-19
RNase A self-associates under certain conditions to form a series of domain-swapped oligomers. These oligomers show high catalytic activity against double-stranded RNA and striking antitumor actions that are lacking in the monomer. However, the dissociation of these metastable oligomers limits their therapeutic potential. Here, a widely used conjugating agent, 1-ethyl-3-(3-dimethylaminoisopropyl) carbodiimide (EDC), has been used to induce the formation of amide bonds between carboxylate and amine groups of different subunits of the RNase A C-dimer. A cross-linked C-dimer which does not dissociate was isolated and was found have augmented enzymatic activity toward double-stranded RNA relative to the unmodified C-dimer. Characterization using chromatography, electrophoresis, mass spectrometry, and NMR spectroscopy revealed that the EDC-treated C-dimer retains its structure and contains one to three novel amide bonds. Moreover, both the EDC-treated C-dimer and EDC-treated RNase A monomer were found to carry an increased number of positive charges (about 6 ± 2 charges per subunit). These additional positive charges are presumably due to adduct formation with EDC, which neutralizes a negatively charged carboxylate group and couples it to a positively charged tertiary amine. The increased net positive charge endowed by EDC adducts likely contributes to the heightened cleavage of double-stranded RNA of the EDC-treated monomer and EDC-treated C-dimer. Further evidence for EDC adduct formation is provided by the reaction of EDC with a dipeptide Ac-Asp-Ala-NH(2) monitored by NMR spectroscopy and mass spectrometry. To determine if EDC adduct formation with proteins is common and how this affects protein net charge, conformation, and activity, four well-characterized proteins, ribonuclease Sa, hen lysozyme, carbonic anhydrase, and hemoglobin, were incubated with EDC and the products were characterized. EDC formed adducts with all these proteins, as judged by mass spectrometry and electrophoresis. Moreover, all suffered conformational changes ranging from slight structural modifications in the case of lysozyme, to denaturation for hemoglobin as measured by NMR spectroscopy and enzyme assays. We conclude that EDC adduct formation with proteins can affect their net charge, conformation, and enzymatic activity.
Role of protein surface charge in monellin sweetness.
Xue, Wei-Feng; Szczepankiewicz, Olga; Thulin, Eva; Linse, Sara; Carey, Jannette
2009-03-01
A small number of proteins have the unusual property of tasting intensely sweet. Despite many studies aimed at identifying their sweet taste determinants, the molecular basis of protein sweetness is not fully understood. Recent mutational studies of monellin have implicated positively charged residues in sweetness. In the present work, the effect of overall net charge was investigated using the complementary approach of negative charge alterations. Multiple substitutions of Asp/Asn and Glu/Gln residues radically altered the surface charge of single-chain monellin by removing six negative charges or adding four negative charges. Biophysical characterization using circular dichroism, fluorescence, and two-dimensional NMR demonstrates that the native fold of monellin is preserved in the variant proteins under physiological solution conditions although their stability toward chemical denaturation is altered. A human taste test was employed to determine the sweetness detection threshold of the variants. Removal of negative charges preserves monellin sweetness, whereas added negative charge has a large negative impact on sweetness. Meta-analysis of published charge variants of monellin and other sweet proteins reveals a general trend toward increasing sweetness with increasing positive net charge. Structural mapping of monellin variants identifies a hydrophobic surface predicted to face the receptor where introduced positive or negative charge reduces sweetness, and a polar surface where charges modulate long-range electrostatic complementarity.
Counting the ions surrounding nucleic acids
2017-01-01
Abstract Nucleic acids are strongly negatively charged, and thus electrostatic interactions—screened by ions in solution—play an important role in governing their ability to fold and participate in biomolecular interactions. The negative charge creates a region, known as the ion atmosphere, in which cation and anion concentrations are perturbed from their bulk values. Ion counting experiments quantify the ion atmosphere by measuring the preferential ion interaction coefficient: the net total number of excess ions above, or below, the number expected due to the bulk concentration. The results of such studies provide important constraints on theories, which typically predict the full three-dimensional distribution of the screening cloud. This article reviews the state of nucleic acid ion counting measurements and critically analyzes their ability to test both analytical and simulation-based models. PMID:28034959
Rai, Ansaar T; Evans, Kim
2015-02-01
Economic viability is important to any hospital striving to be a comprehensive stroke center. An inability to recover cost can strain sustained delivery of advanced stroke care. To carry out a comparative financial analysis of intravenous (IV) recombinant tissue plasminogen activator and endovascular (EV) therapy in treating large vessel strokes from a hospital's perspective. Actual hospital's charges, costs, and payments were analyzed for 265 patients who received treatment for large vessel strokes. The patients were divided into an EV (n=141) and an IV group (n=124). The net gain/loss was calculated as the difference between payments received and the total cost. The charges, costs, and payments were significantly higher for the EV than the IV group (p<0.0001 for all). Medicare A was the main payer. Length of stay was inversely related to net gain/loss (p<0.0001). Favorable outcome was associated with a net gain of $3853 (±$21,155) and poor outcome with a net deficit of $2906 (±$15,088) (p=0.003). The hospital showed a net gain for the EV group versus a net deficit for the IV group in patients who survived the admission (p=0.04), had a favorable outcome (p=0.1), or were discharged to home (p=0.03). There was no difference in the time in hospital based on in-hospital mortality for the EV group but patients who died in the IV group had a significantly shorter length of stay than those who survived (p=0.04). The favorable outcome of 42.3% in the EV group was significantly higher than the 29.4% in the IV group (p=0.03). Endovascular therapy was associated with better outcomes and higher cost-recovery than IV thrombolysis in patients with large vessel strokes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Interaction of Charged Patchy Protein Models with Like-Charged Polyelectrolyte Brushes.
Yigit, Cemil; Kanduč, Matej; Ballauff, Matthias; Dzubiella, Joachim
2017-01-10
We study the adsorption of charged patchy particle models (CPPMs) on a thin film of a like-charged and dense polyelectrolyte (PE) brush (of 50 monomers per chain) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined one- and two-patched spherical globules, each of the same net charge and (nanometer) size, with mono- and multipole moments comparable to those of small globular proteins. We focus on electrostatic effects on the adsorption far away from the isoelectric point of typical proteins, i.e., where charge regulation plays no role. Despite the same net charge of the brush and globule, we observe large binding affinities up to tens of the thermal energy, k B T, which are enhanced by decreasing salt concentration and increasing charge of the patch(es). Our analysis of the distance-resolved potentials of mean force together with a phenomenological description of all leading interaction contributions shows that the attraction is strongest at the brush surface, driven by multipolar, Born (self-energy), and counterion-release contributions, dominating locally over the monopolar and steric repulsions.
[Fluctuations in biophysical measurements as a result of variations in solar activity].
Peterson, T F
1995-01-01
A theory is proposed to explain variations in the net electrical charge of biological substances at the Earth's surface. These are shown to occur in association with changes in the solar wind and geomagnetic field. It is suggested that a liquid dielectric's net volume charge will imitate pH effects, influence chemical reaction rates, and alter ion transfer mechanisms in biophysical systems. An experiment is described which measures dielectric volume charge, or non-neutrality, to allow correlation of this property with daily, 28-day, and 11-year fluctuation patterns in geophysical and satellite data associated with solar activity and the interplanetary magnetic field.
Quark charge retention in final state hadrons from deep inelastic muon scattering
NASA Astrophysics Data System (ADS)
Albanese, J. P.; Arneodo, M.; Arvidson, A.; Aubert, J. J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Callebaut, D.; Carr, J.; Chima, J. S.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dahlgren, S.; Davies, J. K.; Dau, W. D.; Dengler, F.; Derado, I.; Dobinson, R. W.; Dosselli, U.; Dreyer, T.; Drees, J.; Dumont, J. J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Gössling, C.; Grafström, P.; Grard, F.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jachołkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Manz, A.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Paul, L.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pönsgen, B.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Schlagböhmer, A.; Schmitz, N.; Schneegans, M.; Schröder, T.; Schultze, K.; Shiers, J.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G.; Thénard, J. M.; Thompson, J. C.; de la Torre, A.; Toth, J.; Urban, L.; Wahlen, H.; Wallucks, W.; Whalley, M.; Williams, W. S. C.; Wheeler, S.; Wimpenny, S.; Windmolders, R.; Wolf, G.; Zank, P.; European Muon Collaboration
1984-08-01
The net charge of final state hadrons in both the current and target fragmentation regions has been measured in 280 GeV/ c muon-proton scattering experiment. A clean kinematic separation of the two regions in the centre-of-mass rapidity is demonstrated. The dependence on xBj of the mean net charges is found to be consistent with a large contribution of sea quarks at small xBj and with the dominance of valence quarks at large xBj thus giving clear confirmation of the quarck- parton model. It is also shown that the lending forward hadron has a high probability of containing the struck quark.
The harmonic impact of electric vehicle battery charging
NASA Astrophysics Data System (ADS)
Staats, Preston Trent
The potential widespread introduction of the electric vehicle (EV) presents both opportunities and challenges to the power systems engineers who will be required to supply power to EV batteries. One of the challenges associated with EV battery charging comes from the potentially high harmonic currents associated with the conversion of ac power system voltages to dc EV battery voltages. Harmonic currents lead to increased losses in distribution circuits and reduced life expectancy of such power distribution components as capacitors and transformers. Harmonic current injections also cause harmonic voltages on power distribution networks. These distorted voltages can affect power system loads and specific standards exist regulating acceptable voltage distortion. This dissertation develops and presents the theory required to evaluate the electric vehicle battery charger as a harmonic distorting load and its possible harmonic impact on various aspects of power distribution systems. The work begins by developing a method for evaluating the net harmonic current injection of a large collection of EV battery chargers which accounts for variation in the start-time and initial battery state-of-charge between individual chargers. Next, this method is analyzed to evaluate the effect of input parameter variation on the net harmonic currents predicted by the model. We then turn to an evaluation of the impact of EV charger harmonic currents on power distribution systems, first evaluating the impact of these currents on a substation transformer and then on power distribution system harmonic voltages. The method presented accounts for the uncertainty in EV harmonic current injections by modeling the start-time and initial battery state-of-charge (SOC) of an individual EV battery charger as random variables. Thus, the net harmonic current, and distribution system harmonic voltages are formulated in a stochastic framework. Results indicate that considering variation in start-time and SOC leads to reduced estimates of harmonic current injection when compared to more traditional methods that do not account for variation. Evaluation of power distribution system harmonic voltages suggests that for any power distribution network there is a definite threshold penetration of EVs, below which the total harmonic distortion of voltage exceeds 5% at an insignificant number of buses. Thus, most existing distribution systems will probably be able to accommodate the early introduction of EV battery charging without widespread harmonic voltage problems.
Electrochromatographic retention of peptides on strong cation-exchange stationary phases.
Nischang, Ivo; Höltzel, Alexandra; Tallarek, Ulrich
2010-03-01
We analyze the systematic and substantial electrical field-dependence of electrochromatographic retention for four counterionic peptides ([Met5]enkephalin, oxytocin, [Arg8]vasopressin, and luteinizing hormone releasing hormone (LHRH) ) on a strong cation-exchange (SCX) stationary phase. Our experiments show that retention behavior in the studied system depends on the charge-selectivity of the stationary phase particles, the applied voltage, and the peptides' net charge. Retention factors of twice positively charged peptides ([Arg8]vasopressin and LHRH at pH 2.7) decrease with increasing applied voltage, whereas lower charged peptides (oxytocin and [Met5]enkephalin at pH 2.7, [Arg8]vasopressin and LHRH at pH 7.0) show a concomitant increase in their retention factors. The observed behavior is explained on the basis of electrical field-induced concentration polarization (CP) that develops around the SCX particles of the packing. The intraparticle concentration of charged species (buffer ions, peptides) increases with increasing applied voltage due to diffusive backflux from the enriched CP zone associated with each SCX particle. For twice charged and on the SCX phase strongly retained peptides the local increase in mobile phase ionic strength reduces the electrostatic interactions with the stationary phase, which explains the decrease of retention factors with increasing applied voltage and CP intensity. Lower charged and weaker retained peptides experience a much stronger relative intraparticle enrichment than the twice-charged peptides, which results in a net increase of retention factors with increasing applied voltage. The CP-related contribution to electrochromatographic retention of peptides on the SCX stationary phase is modulated by the applied voltage, the mobile phase ionic strength, and the peptides' net charge and could be used for selectivity tuning in difficult separations.
Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi
2017-12-01
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of ideal anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (v2±) as a function of the net charge asymmetry A±, we find that the linear dependence of Δ v2± ≡ v2- - v2+ on the net charge asymmetry A± can come from a mechanism unrelated to anomalous transport effects. Instead, we find that a finite intercept Δ v2± (A± = 0) can come from anomalous effects.
Bapst, Jean-Philippe; Eberle, Alex N
2017-01-01
A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [ 111 In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro , good tumor uptake in vivo , but they may suffer from relatively high kidney uptake and retention in vivo . We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C -terminal end (overall net charge of the molecule -2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH 2 (DOTA-Phospho-MSH 2-9 ) with two negative charges in the N -terminal region (net charge -1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [ 111 In]DOTA-Phospho-MSH 2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [ 111 In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [ 111 In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [ 111 In]DOTA-Phospho-MSH 2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH 2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and -2, we now demonstrate that a net charge of -1, with the extra negative charges preferably placed in the N -terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or -2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH 2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide.
Bapst, Jean-Philippe; Eberle, Alex N.
2017-01-01
A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [111In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro, good tumor uptake in vivo, but they may suffer from relatively high kidney uptake and retention in vivo. We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C-terminal end (overall net charge of the molecule −2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH2 (DOTA-Phospho-MSH2-9) with two negative charges in the N-terminal region (net charge −1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [111In]DOTA-Phospho-MSH2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [111In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [111In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [111In]DOTA-Phospho-MSH2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and −2, we now demonstrate that a net charge of −1, with the extra negative charges preferably placed in the N-terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or −2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide. PMID:28491052
Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface
Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.
2009-01-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599
Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.
Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A
2009-05-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.
Charged-to-neutral correlation at forward rapidity in Au+Au collisions at s NN = 200 GeV
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2015-03-20
Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at √s NN=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess tomore » the model prediction when charged particles and photons are measured in the same acceptance. Thus, we find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (< 1%) deviation is observed.« less
The effect of repair costs on the profitability of a ureteroscopy program.
Tosoian, Jeffrey J; Ludwig, Wesley; Sopko, Nikolai; Mullins, Jeffrey K; Matlaga, Brian R
2015-04-01
Ureteroscopy (URS) is a common treatment for patients with stone disease. One of the disadvantages of this approach is the great capital expense associated with the purchase and repair of endoscopic equipment. In some cases, these costs can outpace revenues and lead to an unprofitable and unsustainable enterprise. We sought to characterize the profitability of our URS program when accounting for endoscope maintenance and repair costs. We identified all URS cases performed at a single hospital during fiscal year 2013 (FY2013). Charges, collection rates, and fixed and variable costs including annual equipment repair costs were obtained. The net margin and break-even point of URS were derived on a per-case basis. For 190 cases performed in FY2013, total endoscope repair costs totaled $115,000, resulting in an average repair cost of $605 per case. The vast majority of cases (94.2%) were conducted in the outpatient setting, which generated a net margin of $659 per case, while inpatient cases yielded a net loss of $455. URS was ultimately associated with a net positive margin approaching $600 per case. On break-even analysis, URS remained profitable until repair costs reached $1200 per case. Based on these findings, an established URS program can sustain profitability even with large equipment repair costs. Nonetheless, our findings serve to emphasize the importance of controlling costs, particularly in the current setting of decreasing reimbursement. A multifaceted approach, based on improving endoscope durability and exploring digital and disposable platforms, will be critical in maintaining the sustainability of URS.
[Topography structure and flocculation mechanism of polymeric phosphate ferric sulfate (PPFS)].
Zheng, Huai-li; Zhang, Hui-qin; Jiang, Shao-jie; Li, Fang; Jiao, Shi-jun; Fang, Hui-li
2011-05-01
Characteristics of polymeric phosphate ferric sulfate (PPFS) were investigated using FTIR (Fourier transform infrared spectrometer), XRD (X-ray diffraction) and SEM (scanning electron microscope) in the present study. The formed PPFS structure and morphology were stereo meshwork, which was clustered and close to coral reef, synthesis of high charge density, bioactive polyhydroxy and mixed polynuclear complex PPFS. The results showed that charge neutralization of PPFS had not played a decisive role in the coagulation beaker test and the zeta potential proved that PPFS was largely affected by bridging and netting sweep. Therefore, the coagulation mechanisms of PPFS were mainly composed of charge neutralization, adsorption bridging and netting sweep mechanisms.
Dynamics of glycoprotein charge in the evolutionary history of human influenza.
Arinaminpathy, Nimalan; Grenfell, Bryan
2010-12-30
Influenza viruses show a significant capacity to evade host immunity; this is manifest both as large occasional jumps in the antigenic phenotype of viral surface molecules and in gradual antigenic changes leading to annual influenza epidemics in humans. Recent mouse studies show that avidity for host cells can play an important role in polyclonal antibody escape, and further that electrostatic charge of the hemagglutinin glycoprotein can contribute to such avidity. We test the role of glycoprotein charge on sequence data from the three major subtypes of influenza A in humans, using a simple method of calculating net glycoprotein charge. Of all subtypes, H3N2 in humans shows a striking pattern of increasing positive charge since its introduction in 1968. Notably, this trend applies to both hemagglutinin and neuraminidase glycoproteins. In the late 1980s hemagglutinin charge reached a plateau, while neuraminidase charge started to decline. We identify key groups of amino acid sites involved in this charge trend. To our knowledge these are the first indications that, for human H3N2, net glycoprotein charge covaries strongly with antigenic drift on a global scale. Further work is needed to elucidate how such charge interacts with other immune escape mechanisms, such as glycosylation, and we discuss important questions arising for future study.
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-01-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159
Curvature of the freeze-out line in heavy ion collisions
Bazavov, A.; Ding, H. -T.; Hegde, P.; ...
2016-01-28
Here, we calculate the mean and variance of net-baryon number and net-electric charge distributions from quantum chromodynamics (QCD) using a next-to-leading order Taylor expansion in terms of temperature and chemical potentials. Moreover, these expansions with experimental data from STAR and PHENIX are compared, we determine the freeze-out temperature in the limit of vanishing baryon chemical potential, and, for the first time, constrain the curvature of the freeze-out line through a direct comparison between experimental data on net-charge fluctuations and a QCD calculation. We obtain a bound on the curvature coefficient, κmore » $^f$$_2$$<0.011, that is compatible with lattice QCD results on the curvature of the QCD transition line.« less
Datta-Mannan, Amita; Thangaraju, Arunkumar; Leung, Donmienne; Tang, Ying; Witcher, Derrick R; Lu, Jirong; Wroblewski, Victor J
2015-01-01
Lowering the isoelectric point (pI) through engineering the variable region or framework of an IgG can improve its exposure and half-life via a reduction in clearance mediated through non-specific interactions. As such, net charge is a potentially important property to consider in developing therapeutic IgG molecules having favorable pharmaceutical characteristics. Frequently, it may not be possible to shift the pI of monoclonal antibodies (mAbs) dramatically without the introduction of other liabilities such as increased off-target interactions or reduced on-target binding properties. In this report, we explored the influence of more subtle modifications of molecular charge on the in vivo properties of an IgG1 and IgG4 monoclonal antibody. Molecular surface modeling was used to direct residue substitutions in the complementarity-determining regions (CDRs) to disrupt positive charge patch regions, resulting in a reduction in net positive charge without affecting the overall pI of the mAbs. The effect of balancing the net positive charge on non-specific binding was more significant for the IgG4 versus the IgG1 molecule that we examined. This differential effect was connected to the degree of influence on cellular degradation in vitro and in vivo clearance, distribution and metabolism in mice. In the more extreme case of the IgG4, balancing the charge yielded an ∼7-fold improvement in peripheral exposure, as well as significantly reduced tissue catabolism and subsequent excretion of proteolyzed products in urine. Balancing charge on the IgG1 molecule had a more subtle influence on non-specific binding and yielded only a modest alteration in clearance, distribution and elimination. These results suggest that balancing CDR charge without affecting the pI can lead to improved mAb pharmacokinetics, the magnitude of which is likely dependent on the relative influence of charge imbalance and other factors affecting the molecule's disposition.
Datta-Mannan, Amita; Thangaraju, Arunkumar; Leung, Donmienne; Tang, Ying; Witcher, Derrick R; Lu, Jirong; Wroblewski, Victor J
2015-01-01
Lowering the isoelectric point (pI) through engineering the variable region or framework of an IgG can improve its exposure and half-life via a reduction in clearance mediated through non-specific interactions. As such, net charge is a potentially important property to consider in developing therapeutic IgG molecules having favorable pharmaceutical characteristics. Frequently, it may not be possible to shift the pI of monoclonal antibodies (mAbs) dramatically without the introduction of other liabilities such as increased off-target interactions or reduced on-target binding properties. In this report, we explored the influence of more subtle modifications of molecular charge on the in vivo properties of an IgG1 and IgG4 monoclonal antibody. Molecular surface modeling was used to direct residue substitutions in the complementarity-determining regions (CDRs) to disrupt positive charge patch regions, resulting in a reduction in net positive charge without affecting the overall pI of the mAbs. The effect of balancing the net positive charge on non-specific binding was more significant for the IgG4 versus the IgG1 molecule that we examined. This differential effect was connected to the degree of influence on cellular degradation in vitro and in vivo clearance, distribution and metabolism in mice. In the more extreme case of the IgG4, balancing the charge yielded an ∼7-fold improvement in peripheral exposure, as well as significantly reduced tissue catabolism and subsequent excretion of proteolyzed products in urine. Balancing charge on the IgG1 molecule had a more subtle influence on non-specific binding and yielded only a modest alteration in clearance, distribution and elimination. These results suggest that balancing CDR charge without affecting the pI can lead to improved mAb pharmacokinetics, the magnitude of which is likely dependent on the relative influence of charge imbalance and other factors affecting the molecule's disposition. PMID:25695748
Variable Charge Soils: Mineralogy and Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nik; Van Ranst, Eric; Noble, Andrew
2003-11-01
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered variable charge soils (2). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH, ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, andmore » hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid. Highly weathered soils usually undergo isoeletric weathering and reach a “zero net charge” stage during their development. They have a slightly acidic to acidic soil solution pH, which is close to either point of zero net charge (PZNC) (3) or point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems. The coexistence and interactions of oppositely charged surfaces or particles confers a different pattern of physical and chemical behavior on the soil, relatively to a homogeneously charged system of temperate regions. In some variable charge soils (Oxisols and some Ultisols developed on ferromagnesian-rich parent materials) the surfaces of phyllosilicates are coated to a lesser or greater extent by amorphous or crystalline, oppositely charged nanoparticles of Fe and Al oxides. These coatings exhibit a high reactive surface area and help cementing larger particles with one another. As a result of these electrostatic interactions, stable microaggregates that are difficult to disperse are formed in variable charge soils. Most of highly weathered soils have reached the “advanced stage” of Jackson-Sherman weathering sequence that is characterized by the removal of Na, K, Ca, Mg, and Fe(II), the presence of Fe and Al polymers, and very dilute soil solutions with an ionic strength (IS) of less than 1 mmol L-1. The inter-penetration or overlapping of the diffuse double layers on oppositely charged surfaces may occur in these dilute systems. These diffuse layer interactions may affect the magnitude of the effective charge, i.e., the counter-ion charge (4). In addition, salt adsorption, which is defined as the simultaneous adsorption in equivalent amounts of the cation and anion of an electrolyte with no net release of other ions into the soil solution, appears to be a common phenomenon in these soils. They act as cation- and anion-exchangers and as salt-sorbers. The magnitude of salt adsorption depends strongly on initial IS in the soil solution and the presence in appreciable amounts of oppositely charged surfaces. Among the authors that have made illustrious contributions towards a better understanding of these fascinating soil systems are S. Matson, R.K. Schofield, van Olphen, M.E. Sumner, G.W. Thomas, G.P. Gillman, G. Uehara, B.K.G. Theng, K. Wada, N.J. Barrow, J.W. Bowden, R.J. Hunter and G. Sposito. This entry is mainly based on publications by these authors.« less
Perico, Angelo; Manning, Gerald S
2014-11-01
We formulate and analyze a minimal model, based on condensation theory, of the lamellar cationic lipid (CL)-DNA complex of alternately charged lipid bilayers and DNA monolayers in a salt solution. Each lipid bilayer, composed by a random mixture of cationic and neutral lipids, is assumed to be a rigid uniformly charged plane. Each DNA monolayer, located between two lipid bilayers, is formed by the same number of parallel DNAs with a uniform separation distance. For the electrostatic calculation, the model lipoplex is collapsed to a single plane with charge density equal to the net lipid and DNA charge. The free energy difference between the lamellar lipoplex and a reference state of the same number of free lipid bilayers and free DNAs, is calculated as a function of the fraction of CLs, of the ratio of the number of CL charges to the number of negative charges of the DNA phosphates, and of the total number of planes. At the isoelectric point the free energy difference is minimal. The complex formation, already favoured by the decrease of the electrostatic charging free energy, is driven further by the free energy gain due to the release of counterions from the DNAs and from the lipid bilayers, if strongly charged. This minimal model compares well with experiment for lipids having a strong preference for planar geometry and with major features of more detailed models of the lipoplex. © 2014 Wiley Periodicals, Inc.
Simultaneous Nanoscale Surface Charge and Topographical Mapping.
Perry, David; Al Botros, Rehab; Momotenko, Dmitry; Kinnear, Sophie L; Unwin, Patrick R
2015-07-28
Nanopipettes are playing an increasingly prominent role in nanoscience, for sizing, sequencing, delivery, detection, and mapping interfacial properties. Herein, the question of how to best resolve topography and surface charge effects when using a nanopipette as a probe for mapping in scanning ion conductance microscopy (SICM) is addressed. It is shown that, when a bias modulated (BM) SICM scheme is used, it is possible to map the topography faithfully, while also allowing surface charge to be estimated. This is achieved by applying zero net bias between the electrode in the SICM tip and the one in bulk solution for topographical mapping, with just a small harmonic perturbation of the potential to create an AC current for tip positioning. Then, a net bias is applied, whereupon the ion conductance current becomes sensitive to surface charge. Practically this is optimally implemented in a hopping-cyclic voltammetry mode where the probe is approached at zero net bias at a series of pixels across the surface to reach a defined separation, and then a triangular potential waveform is applied and the current response is recorded. Underpinned with theoretical analysis, including finite element modeling of the DC and AC components of the ionic current flowing through the nanopipette tip, the powerful capabilities of this approach are demonstrated with the probing of interfacial acid-base equilibria and high resolution imaging of surface charge heterogeneities, simultaneously with topography, on modified substrates.
Planning and Implementing a Hospital Recycling Program at Naval Hospital, Camp Pendleton, California
1992-08-01
communities have refused to license incinerators, saying "not in my back yard!" Recycling is quick, it’s economical, it can save natural resources, and...total costs - total credits) 4. Net Savings <Costs>: Present disposal Net recycling Net savings costs program costs <costs> * Assign only a...RECYCLING PROGRAM COSTS $ 9,739 (total costs - total credits) 4. Net Savings <Costs>: $ 9.287 _ $ 9.739 - S > Present disposal Net recycling Net
18 CFR 367.23 - Transactions with non-associate companies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... excess or deficiency of the cost on servicing the non-associate companies must be charged to account 458... charged to account 458.4 (§ 367.4584). In computing charges to associate companies for any calendar year, any net credit in this account must be deducted from amounts reimbursable by associate companies as...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaloper, Nemanja; Padilla, Antonio, E-mail: kaloper@physics.ucdavis.edu, E-mail: antonio.padilla@nottingham.ac.uk
2009-10-01
A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beaconsmore » like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.« less
NASA Astrophysics Data System (ADS)
Kaloper, Nemanja; Padilla, Antonio
2009-10-01
A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.
NASA Astrophysics Data System (ADS)
Gilmore, Elisabeth A.; Apt, Jay; Walawalkar, Rahul; Adams, Peter J.; Lave, Lester B.
In a restructured electricity market, utility-scale energy storage technologies such as advanced batteries can generate revenue by charging at low electricity prices and discharging at high prices. This strategy changes the magnitude and distribution of air quality emissions and the total carbon dioxide (CO 2) emissions. We evaluate the social costs associated with these changes using a case study of 500 MW sodium-sulfur battery installations with 80% round-trip efficiency. The batteries displace peaking generators in New York City and charge using off-peak generation in the New York Independent System Operator (NYISO) electricity grid during the summer. We identify and map charging and displaced plant types to generators in the NYISO. We then convert the emissions into ambient concentrations with a chemical transport model, the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAM x). Finally, we transform the concentrations into their equivalent human health effects and social benefits and costs. Reductions in premature mortality from fine particulate matter (PM 2.5) result in a benefit of 4.5 ¢ kWh -1 and 17 ¢ kWh -1 from displacing a natural gas and distillate fuel oil fueled peaking plant, respectively, in New York City. Ozone (O 3) concentrations increase due to decreases in nitrogen oxide (NO x) emissions, although the magnitude of the social cost is less certain. Adding the costs from charging, displacing a distillate fuel oil plant yields a net social benefit, while displacing the natural gas plant has a net social cost. With the existing base-load capacity, the upstate population experiences an increase in adverse health effects. If wind generation is charging the battery, both the upstate charging location and New York City benefit. At 20 per tonne of CO 2, the costs from CO 2 are small compared to those from air quality. We conclude that storage could be added to existing electricity grids as part of an integrated strategy from a human health standpoint.
Ion energy distributions in silane-hydrogen plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamers, E.A.G.; Sark, W.G.J.H.M. van; Bezemer, J.
1996-12-31
For the first time ion energy distributions (IED) of different ions from silane-hydrogen (SiH{sub 4}-H{sub 2}) RF plasmas are presented, i.e., the distributions of SiH{sub 3}{sup +}, SiH{sub 2}{sup +} and Si{sub 2}H{sub 4}{sup +}. The energy distributions of SiH{sub 3}{sup +} and SiH{sub 2}{sup +} ions show peaks, which are caused by a charge exchange process in the sheath. A method is presented by which the net charge density in the sheath is determined from the plasma potential and the energy positions of the charge exchange peaks. Knowing the net charge density in the sheath and the plasma potential,more » the sheath thickness can be determined and an estimation of the absolute ion fluxes can be made. The flux of ions can, at maximum, account for 10% of the observed deposition rate.« less
Universal charge-radius relation for subatomic and astrophysical compact objects.
Madsen, Jes
2008-04-18
Electron-positron pair creation in supercritical electric fields limits the net charge of any static, spherical object, such as superheavy nuclei, strangelets, and Q balls, or compact stars like neutron stars, quark stars, and black holes. For radii between 4 x 10(2) and 10(4) fm the upper bound on the net charge is given by the universal relation Z=0.71R(fm), and for larger radii (measured in femtometers or kilometers) Z=7 x 10(-5)R_(2)(fm)=7 x 10(31)R_(2)(km). For objects with nuclear density the relation corresponds to Z approximately 0.7A(1/3)( (10(8)10(12)), where A is the baryon number. For some systems this universal upper bound improves existing charge limits in the literature.
Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less
Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions
Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi
2017-12-10
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less
Effect of physicochemical properties of peptides from soy protein on their antimicrobial activity.
Xiang, Ning; Lyu, Yuan; Zhu, Xiao; Bhunia, Arun K; Narsimhan, Ganesan
2017-08-01
Antimicrobial peptides (AMPs) kill microbial cells through insertion and damage/permeabilization of the cytoplasmic cell membranes and has applications in food safety and antibiotic replacement. Soy protein is an attractive, abundant natural source for commercial production of AMPs. In this research, explicit solvent molecular dynamics (MD) simulation was employed to investigate the effects of (i) number of total and net charges, (ii) hydrophobicity (iii) hydrophobic moment and (iv) helicity of peptides from soy protein on their ability to bind to lipid bilayer and their transmembrane aggregates to form pores. Interaction of possible AMP segments from soy protein with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPC/POPG) bilayers, a mimic of bacterial cell membrane, was investigated. Pore formation was insensitive to helicity and occurred for hydrophobicity threshold in the range of -0.3-0kcal/mol, hydrophobic moment threshold of 0.3kcal/mol, net charge threshold of 2. Though low hydrophobicity and high number of charges help in the formation of water channel for transmembrane aggregates, insertion of peptides with these properties requires overcome of energy barrier, as shown by potential of mean force calculations, thereby resulting in low antimicrobial activity. Experimental evaluation of antimicrobial activity of these peptides against Gram positive L. monocytogenes and Gram negative E. coli as obtained by spot-on-lawn assay was consistent with simulation results. These results should help in the development of guidelines for selection of peptides with antimicrobial activity based on their physicochemical properties. Copyright © 2017 Elsevier Inc. All rights reserved.
E. coli Surface Properties Differ between Stream Water and Sediment Environments.
Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M
2016-01-01
The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .
NASA Technical Reports Server (NTRS)
Digman, R. Michael
1988-01-01
The components necessary for the success of the commercialization of an Ada Technology Transition Network are reported in detail. The organizational plan presents the planned structure for services development and technical transition of AdaNET services to potential user communities. The Business Plan is the operational plan for the AdaNET service as a commercial venture. The Technical Plan is the plan from which the AdaNET can be designed including detailed requirements analysis. Also contained is an analysis of user fees and charges, and a proposed user fee schedule.
NASA Astrophysics Data System (ADS)
Zhou, S.
2017-12-01
Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.
Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong
2013-01-01
We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643
Charges and Fields in a Current-Carrying Wire
ERIC Educational Resources Information Center
Redzic, Dragan V.
2012-01-01
Charges and fields in a straight, infinite, cylindrical wire carrying a steady current are determined in the rest frames of ions and electrons, starting from the standard assumption that the net charge per unit length is zero in the lattice frame and taking into account a self-induced pinch effect. The analysis presented illustrates the mutual…
Comparison of house spraying and insecticide-treated nets for malaria control.
Curtis, C. F.; Mnzava, A. E.
2000-01-01
The efficacies of using residual house spraying and insecticide-treated nets against malaria vectors are compared, using data from six recent comparisons in Africa, Asia and Melanesia. By all the entomological and malariological criteria recorded, pyrethroid-treated nets were at least as efficacious as house spraying with dichlorodiphenyltrichloroethane (DDT), malathion or a pyrethroid. However, when data from carefully monitored house spraying projects carried out between the 1950s and 1970s at Pare-Taveta and Zanzibar (United Republic of Tanzania), Kisumu (Kenya) and Garki (Nigeria) are compared with recent insecticide-treated net trials with apparently similar vector populations, the results with the insecticide-treated nets were much less impressive. Possible explanations include the longer duration of most of the earlier spraying projects and the use of non-irritant insecticides. Non-irritant insecticides may yield higher mosquito mortalities than pyrethroids, which tend to make insects leave the site of treatment (i.e. are excito-repellent). Comparative tests with non-irritant insecticides, including their use on nets, are advocated. The relative costs and sustainability of spraying and of insecticide-treated net operations are briefly reviewed for villages in endemic and epidemic situations and in camps for displaced populations. The importance of high population coverage is emphasized, and the advantages of providing treatment free of charge, rather than charging individuals, are pointed out. PMID:11196486
Tovar, Glomen
2018-01-01
A software to calculate the net charge and to predict the isoelectric point (pI) of a polypeptide is developed in this work using the graphical programming language LabVIEW. Through this instrument the net charges of the ionizable residues of the polypeptide chains of the proteins are calculated at different pH values, tabulated, pI is predicted and an Excel (-xls) type file is generated. In this work, the experimental values of the pIs (pI) of different proteins are compared with the values of the pIs (pI) calculated graphically, achieving a correlation coefficient (R) of 0.934746 which represents a good reliability for a p < 0.01. In this way the generated program can constitute an instrument applicable in the laboratory, facilitating the calculation to graduate students and junior researchers. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):39-46, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.
17 CFR 240.16a-1 - Definition of terms.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., investment adviser, investment manager, trustee or person or entity performing a similar function; provided... when payable, is calculated based upon net capital gains and/or net capital appreciation generated from... issuer in charge of a principal business unit, division or function (such as sales, administration or...
17 CFR 240.16a-1 - Definition of terms.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., investment adviser, investment manager, trustee or person or entity performing a similar function; provided... when payable, is calculated based upon net capital gains and/or net capital appreciation generated from... issuer in charge of a principal business unit, division or function (such as sales, administration or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, C.L.; Hanson, D.L.; Poukey, J.W.
Space charge neutralization for intense beams for inertial confinement fusion is usually assumed to be perfect. However, small charge clumps in the beam will not be totally charge neutralized, and the residual net minimum potential set by electron trapping (e{phi} {approx} {1/2}m{sub e}v{sup 2}{sub i}, where m{sub e} is the electron mass and v{sub i} is the ion velocity) may lead to a substantial microdivergence. Experiments on the SABRE accelerator and simulations with the IPROP computer code are being performed to assess this mechanism. The authors have successfully created a 5 mrad beam on the SABRE accelerator, by expanding themore » beam (a process consistent with Liouville`s theorem) and, by passing the beam through a plate with pinholes, they have created low divergence beamlets to study this mechanism. Results clearly show: (1) at low pressures, trapping does neutralize the beamlets, but only down to e{phi} {approx} {1/2}m{sub e}v{sup 2}{sub i}; and (2) at higher pressures ({approx} 0.1-1 Torr), plasma shielding does remove the effect.« less
DFT computational analysis of piracetam
NASA Astrophysics Data System (ADS)
Rajesh, P.; Gunasekaran, S.; Seshadri, S.; Gnanasambandan, T.
2014-11-01
Density functional theory calculation with B3LYP using 6-31G(d,p) and 6-31++G(d,p) basis set have been used to determine ground state molecular geometries. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of piracetam is calculated using B3LYP/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO/NLMO analysis. The calculation of first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. Molecular electrostatic potential (MEP) at a point in the space around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution of the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charge is also calculated. Because of vibrational analysis, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-Vis spectra and electronic absorption properties are explained and illustrated from the frontier molecular orbitals.
NASA Astrophysics Data System (ADS)
Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje
2014-11-01
A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the boundary condition for total electric field is fulfilled. The new density of space charge and the new radius of channel corona envelope, immediately before the return stroke stage, are calculated. The obtained results indicate a strong dependence of channel charge distribution on the breakdown electric field value. Among the compared return stroke models, transmission-line-type models have exhibited a good agreement with the predictions of the Gauss' law regarding total breakdown electric field on the corona sheath's outer surface. The generalized lightning traveling current source return stroke model gives similar results if the adjustment of the space charge density inside the corona sheath is performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Gonder, Jeff; Burton, Evan
This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than themore » hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.« less
NASA Astrophysics Data System (ADS)
Magnuson, Brian
A proof-of-concept software-in-the-loop study is performed to assess the accuracy of predicted net and charge-gaining energy consumption for potential effective use in optimizing powertrain management of hybrid vehicles. With promising results of improving fuel efficiency of a thermostatic control strategy for a series, plug-ing, hybrid-electric vehicle by 8.24%, the route and speed prediction machine learning algorithms are redesigned and implemented for real- world testing in a stand-alone C++ code-base to ingest map data, learn and predict driver habits, and store driver data for fast startup and shutdown of the controller or computer used to execute the compiled algorithm. Speed prediction is performed using a multi-layer, multi-input, multi- output neural network using feed-forward prediction and gradient descent through back- propagation training. Route prediction utilizes a Hidden Markov Model with a recurrent forward algorithm for prediction and multi-dimensional hash maps to store state and state distribution constraining associations between atomic road segments and end destinations. Predicted energy is calculated using the predicted time-series speed and elevation profile over the predicted route and the road-load equation. Testing of the code-base is performed over a known road network spanning 24x35 blocks on the south hill of Spokane, Washington. A large set of training routes are traversed once to add randomness to the route prediction algorithm, and a subset of the training routes, testing routes, are traversed to assess the accuracy of the net and charge-gaining predicted energy consumption. Each test route is traveled a random number of times with varying speed conditions from traffic and pedestrians to add randomness to speed prediction. Prediction data is stored and analyzed in a post process Matlab script. The aggregated results and analysis of all traversals of all test routes reflect the performance of the Driver Prediction algorithm. The error of average energy gained through charge-gaining events is 31.3% and the error of average net energy consumed is 27.3%. The average delta and average standard deviation of the delta of predicted energy gained through charge-gaining events is 0.639 and 0.601 Wh respectively for individual time-series calculations. Similarly, the average delta and average standard deviation of the delta of the predicted net energy consumed is 0.567 and 0.580 Wh respectively for individual time-series calculations. The average delta and standard deviation of the delta of the predicted speed is 1.60 and 1.15 respectively also for the individual time-series measurements. The percentage of accuracy of route prediction is 91%. Overall, test routes are traversed 151 times for a total test distance of 276.4 km.
NASA Astrophysics Data System (ADS)
Kashir, Babak; Perri, Anthony; Yarin, Alexander L.; Mashayek, Farzad
2017-11-01
The charging of leaky dielectric liquids inside an electrostatic atomizer is studied numerically by developed codes based on OpenFOAM platform. Faradaic reactions are taken into account as the electrification mechanism. The impact of ionic finite size (steric terms) in high voltages is also investigated. The fundamental electrohydrodynamic understanding of the charging mechanism is aimed in the present work where the creation of polarized near-electrode layer and the movement of charges due to hydrodynamic flow are studied in conjunction with the solution of the Navier-Stokes equations. The case of a micro channel electrohydrodynamic flow subjected to two electrodes of the opposite polarity is considered as an example, with the goal to predict the resulting net charge at the exit. Even though the electrodes constitute a small portion of the channel wall, otherwise insulated, it is indicated that the channel length plays a dominant role in the discharging net charge. The ionic fluxes at the electrode surfaces are accounted through the Frumkin-Butler-Volmer relation found from the concurrent in-house experimental investigations. This projects was supported by National science Foundation (NSF) GOALI Grant CBET-1505276.
Skepö, Marie; Linse, Per; Arnebrant, Thomas
2006-06-22
Structural properties of the acidic proline rich protein PRP-1 of salivary origin in bulk solution and adsorbed onto a negatively charged surface have been studied by Monte Carlo simulations. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. In addition to PRP-1, some mutants were considered to assess the role of the interactions in the systems. Contrary to polyelectrolytes, the protein has a compact structure in salt-free bulk solutions, whereas at high salt concentration the protein becomes more extended. The protein adsorbs to a negatively charged surface, although its net charge is negative. The adsorbed protein displays an extended structure, which becomes more compact upon addition of salt. Hence, the conformational response upon salt addition in the adsorbed state is the opposite as compared to that in bulk solution. The conformational behavior of PRP-1 in bulk solution and at charged surfaces as well as its propensity to adsorb to surfaces with the same net charge are rationalized by the block polyampholytic character of the protein. The presence of a triad of positively charged amino acids in the C-terminal was found to be important for the adsorption of the protein.
Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia
2014-01-01
Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678
Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes.
Dasmeh, Pouria; Kepp, Kasper P
2017-08-01
Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers of this selection are unknown. We mapped 30 extant SOD1 sequences to the recently established mammalian species tree and inferred ancestors, key substitutions, and signatures of selection during the protein's evolution. We detected elevated substitution rates leading to great apes (Hominidae) at ~1 per 2 million years, significantly higher than in other primates and rodents, although these paradoxically generally evolve much faster. The high evolutionary rate was partly due to relaxation of some selection pressures and partly to distinct positive selection of SOD1 in great apes. We then show that higher stability and net charge and changes at the dimer interface were selectively introduced upon separation from old world monkeys and lesser apes (gibbons). Consequently, human, chimpanzee and gorilla SOD1s have a net charge of -6 at physiological pH, whereas the closely related gibbons and macaques have -3. These features consistently point towards selection against the malicious aggregation effects of elevated SOD1 levels in long-living great apes. The findings mirror the impact of human SOD1 mutations that reduce net charge and/or stability and cause ALS, a motor neuron disease characterized by oxidative stress and SOD1 aggregates and triggered by aging. Our study thus marks an example of direct selection for a particular chemical phenotype (high net charge and stability) in a single human protein with possible implications for the evolution of aging.
The surface charge of trypanosomatids.
Souto-Padrón, Thaïs
2002-12-01
The surface charge of trypanosomatids was evaluated by means of the binding of cationic particles, as visualized by electron microscopy and by direct measurements of the electrophoretic mobility of cells. The results obtained indicate that most of the trypanosomatids exhibit a negatively charged surface whose value is species specific and varies according to the developmental stages. Sialic acids associated with glycoproteins, glycolipids and phosphate groups are the major components responsible for the net negative surface charge of the trypanosomatids.
Statistical fluctuations as the origin of nontopological solitons
NASA Technical Reports Server (NTRS)
Griest, Kim; Kolb, Edward W.; Masarotti, Alessandro
1989-01-01
Nontopological solitons can be formed during a phase transition in the early universe as long as some net charge can be trapped in regions of false vacuum. It has been previously suggested that a particle-antiparticle asymmetry would provide a source for such trapped charge. It is pointed out that, for the model and parameters considered, statistical fluctuations provide a much larger concentration of charge, and are therefore, the dominant source of charge fluctuations in solitogenesis.
Weis, Allison; Michalek, Jeremy J; Jaramillo, Paulina; Lueken, Roger
2015-05-05
We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.
Universal Charge-Radius Relation for Subatomic and Astrophysical Compact Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madsen, Jes
2008-04-18
Electron-positron pair creation in supercritical electric fields limits the net charge of any static, spherical object, such as superheavy nuclei, strangelets, and Q balls, or compact stars like neutron stars, quark stars, and black holes. For radii between 4x10{sup 2} and 10{sup 4} fm the upper bound on the net charge is given by the universal relation Z=0.71R{sub fm}, and for larger radii (measured in femtometers or kilometers) Z=7x10{sup -5}R{sub fm}{sup 2}=7x10{sup 31}R{sub km}{sup 2}. For objects with nuclear density the relation corresponds to Z{approx_equal}0.7A{sup 1/3} (10{sup 8}10{sup 12}), where A is the baryonmore » number. For some systems this universal upper bound improves existing charge limits in the literature.« less
NASA Astrophysics Data System (ADS)
Jahanianl, Nahid; Aram, Majid; Morshedian, Nader; Mehramiz, Ahmad
2018-03-01
In this report, the distribution of and deviation in the electric field were investigated in the active medium of a TE CO2 laser. The variation in the electric field is due to injection of net electron and proton charges as a plasma generator. The charged-particles beam density is assumed to be Gaussian. The electric potential and electric field distribution were simulated by solving Poisson’s equation using the SOR numerical method. The minimum deviation of the electric field obtained was about 2.2% and 6% for the electrons and protons beams, respectively, for a charged-particles beam-density of 106 cm-3. This result was obtained for a system geometry ensuring a mean-free-path of the particles beam of 15 mm. It was also found that the field deviation increases for a the mean-free-path smaller than that or larger than 25 mm. Moreover, the electric field deviation decreases when the electrons beam density exceeds 106 cm-3.
Currents between tethered electrodes in a magnetized laboratory plasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Urrutia, J. M.
1989-01-01
Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.
Oh, J E; Lee, K H
2000-01-01
The incorporation of a reduced amide bond, psi(CH(2)NH), into peptide results in an increase in the net positive charge and the perturbation of alpha-helical structure. By using this characteristic of the reduced amide bond, we designed and synthesized novel pseudopeptides containing reduced amide bonds, which had a great selectivity between bacterial and mammalian cells. A structure-activity relationship study on pseudopeptides indicated that the decrease in alpha-helicity and the increase in net positive charge in the backbone, caused by the incorporation of a reduced amide bond into the peptide, both contributed to an improvement in the selectivity between lipid membranes with various surface charges. However, activity results in vitro indicated that a perturbation of alpha-helical structure rather than an increase in net positive charge in the backbone is more important in the selectivity between bacterial and mammalian cells. The present result revealed that the backbone of membrane-active peptides were important not only in maintaining the secondary structure for the interactions with lipid membranes but also in direct interactions with lipid membranes. The present study showed the unique function of a reduced amide bond in cytolytic peptides and a direction for developing novel anti-bacterial agents from cytolytic peptides that act on the lipid membrane of micro-organisms. PMID:11104671
Dynamic dielectrophoresis model of multi-phase ionic fluids.
Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu
2015-01-01
Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.
Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.
Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W
2014-09-01
Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.
Xie, Wangshen; Orozco, Modesto; Truhlar, Donald G; Gao, Jiali
2009-02-17
A recently proposed electronic structure-based force field called the explicit polarization (X-Pol) potential is used to study many-body electronic polarization effects in a protein, in particular by carrying out a molecular dynamics (MD) simulation of bovine pancreatic trypsin inhibitor (BPTI) in water with periodic boundary conditions. The primary unit cell is cubic with dimensions ~54 × 54 × 54 Å(3), and the total number of atoms in this cell is 14281. An approximate electronic wave function, consisting of 29026 basis functions for the entire system, is variationally optimized to give the minimum Born-Oppenheimer energy at every MD step; this allows the efficient evaluation of the required analytic forces for the dynamics. Intramolecular and intermolecular polarization and intramolecular charge transfer effects are examined and are found to be significant; for example, 17 out of 58 backbone carbonyls differ from neutrality on average by more than 0.1 electron, and the average charge on the six alanines varies from -0.05 to +0.09. The instantaneous excess charges vary even more widely; the backbone carbonyls have standard deviations in their fluctuating net charges from 0.03 to 0.05, and more than half of the residues have excess charges whose standard deviation exceeds 0.05. We conclude that the new-generation X-Pol force field permits the inclusion of time-dependent quantum mechanical polarization and charge transfer effects in much larger systems than was previously possible.
Yang, Ming; Zhang, Chunye; Zhang, Michael Z; Zhang, Shuping
2017-02-23
Avian β-defensins (AvBD) possess broad-spectrum antimicrobial, LPS neutralizing and chemotactic properties. AvBD-12 is a chemoattractant for avian immune cells and mammalian dendritic cells (JAWSII) - a unique feature that is relevant to the applications of AvBDs as chemotherapeutic agents in mammalian hosts. To identify the structural components essential to various biological functions, we have designed and evaluated seven AvBD analogues. In the first group of analogues, the three conserved disulfide bridges were eliminated by replacing cysteines with alanine and serine residues, peptide hydrophobicity and charge were increased by changing negatively charged amino acid residues to hydrophobic (AvBD-12A1) or positively charged residues (AvBD-12A2 and AvBD-12A3). All three analogues in this group showed improved antimicrobial activity, though AvBD-12A3, with a net positive charge of +9, hydrophobicity of 40% and a predicted CCR2 binding domain, was the most potent antimicrobial peptide. AvBD-12A3 also retained more than 50% of wild type chemotactic activity. In the second group of analogues (AvBD-12A4 to AvBD-12A6), one to three disulfide bridges were removed via substitution of cysteines with isosteric amino acids. Their antimicrobial activity was compromised and chemotactic activity abolished. The third type of analogue was a hybrid that had the backbone of AvBD-12 and positively charged amino acid residues AvBD-6. The antimicrobial and chemotactic activities of the hybrid resembled that of AvBD-6 and AvBD-12, respectively. While the net positive charge and charge distribution have a dominating effect on the antimicrobial potency of AvBDs, the three conserved disulfide bridges are essential to the chemotactic property and the maximum antimicrobial activity. Analogue AvBD-12A3 with a high net positive charge, a moderate degree of hydrophobicity and a CCR2-binding domain can serve as a template for the design of novel antimicrobial peptides with chemotactic property and salt resistance.
Dry Sintered Metal Coating of Halloysite Nanotubes
Nicholson, James C.; Weisman, Jeffery A.; Boyer, Christen J.; ...
2016-09-19
Halloysite nanotubes (HNTs) are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes,more » the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Moreover, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, James C.; Weisman, Jeffery A.; Boyer, Christen J.
Halloysite nanotubes (HNTs) are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen’s net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes,more » the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonates—compounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagents—through a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Moreover, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure« less
Functionally charged nanosize particles differentially activate BV2 microglia.
The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Nanosize (860-950 nm) spherical polystyrene microparticles (SPM) were coated with carboxyl (COOH-) or dimethyl amino (CH3)2-N- groups to give a net negative or p...
ERIC Educational Resources Information Center
Cawley, Robert
1978-01-01
Considers the problem of determining the force on an element of a finite length line of charge moving horizontally with extreme relativistic speed through an evacuated space above an infinite plane ideal conducting surface. (SL)
48 CFR 1552.232-70 - Submission of invoices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... contract financing payment in accordance with the invoice preparation instructions identified as a separate... any supporting data for each work assignment as identified in the instructions. (2) The invoice or... preparation instructions. Cumulative charges represent the net sum of current charges by cost element for the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Gonder, Jeff; Burton, Evan
This study evaluates the costs and benefits associated with the use of a stationary-wireless- power-transfer-enabled plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep was performed over many different battery sizes, charging power levels, and number/location of bus stop charging stations. The net present cost was calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybridmore » electric comparison scenario. The study also performed parameter sensitivity analysis under favorable and high unfavorable market penetration assumptions. The analysis identifies fuel saving opportunities with plug-in hybrid electric bus scenarios at cumulative net present costs not too dissimilar from those for conventional buses.« less
Utah | Midmarket Solar Policies in the United States | Solar Research |
Credit: Net excess generation is credited at the retail rate for residential and small commercial customers; large commercial and industrial customers with demand charge may choose between valuing net cost) for residential taxpayers; $50,000 (or 10% of system cost) for commercial taxpayers. Renewable
NASA Astrophysics Data System (ADS)
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garg, P.; Garishvili, A.; Garishvili, I.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Hartouni, E. P.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H. J.; Kim, K.-B.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mohanty, A. K.; Mohapatra, S.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nouicer, R.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Phenix Collaboration
2016-01-01
We report the measurement of cumulants (Cn,n =1 ,...,4 ) of the net-charge distributions measured within pseudorapidity (|η |<0.35 ) in Au +Au collisions at √{sNN}=7.7 -200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C1/C2 , C3/C1 ) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2 and C3/C1 can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy. The extracted baryon chemical potentials are in excellent agreement with a thermal-statistical analysis model.
Electrostatic charge characteristics of jet nebulized aerosols.
Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim
2010-06-01
Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from computational simulation models in the literature, the numbers of elementary charges per droplet estimated from the data were not high enough to potentially affect lung deposition.
Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Johnson, Scott M.
2010-01-01
The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.
The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Same size (~850-950 nm) spherical polystyrene microparticles (SPM) with net negative (carboxyl, COOH-) or positive (dimethyl amino, CH3)2
North Carolina | Midmarket Solar Policies in the United States | Solar
impose standby charges consistent with approved standby rates applicable to other customer-owned utilities without customer compensation. RECs: Utilities owns renewable energy certificates (RECs), unless customer chooses to net meter under a time of use tariff with demand charges. Meter aggregation: Not
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-10
... for convenience and customs purposes, the written description of the merchandise subject to this order... and unaffiliated customers, net of all movement charges, direct selling expenses, and packing. Where... market prices, less any applicable movement charges, discounts, rebates, and direct and indirect selling...
NASA Astrophysics Data System (ADS)
Adak, Rama Prasad; Das, Supriya; Ghosh, Sanjay K.; Ray, Rajarshi; Samanta, Subhasis
2017-07-01
We estimate chemical freeze-out parameters in Hadron Resonance Gas (HRG) and Excluded Volume HRG (EVHRG) models by fitting the experimental information of net-proton and net-charge fluctuations measured in Au + Au collisions by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider (RHIC). We observe that chemical freeze-out parameters obtained from lower and higher order fluctuations are almost the same for √{sNN}>27 GeV, but tend to deviate from each other at lower √{sNN}. Moreover, these separations increase with decrease of √{sNN}, and for a fixed √{sNN} increase towards central collisions. Furthermore, we observe an approximate scaling behavior of (μB/T ) /(μB/T)central with (Npart) /(Npart)central for the parameters estimated from lower order fluctuations for 11.5 ≤√{sNN}≤200 GeV. Scaling is violated for the parameters estimated from higher order fluctuations for √{sNN}=11.5 and 19.6 GeV. It is observed that the chemical freeze-out parameter, which can describe σ2/M of net protons very well in all energies and centralities, cannot describe the s σ equally well, and vice versa.
Sharma, Vikas K.; Patapoff, Thomas W.; Kabakoff, Bruce; Pai, Satyan; Hilario, Eric; Zhang, Boyan; Li, Charlene; Borisov, Oleg; Kelley, Robert F.; Chorny, Ilya; Zhou, Joe Z.; Dill, Ken A.; Swartz, Trevor E.
2014-01-01
For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. PMID:25512516
Net Tuition and Net Price Trends in the United States: 2000-2009
ERIC Educational Resources Information Center
Gillen, Andrew; Robe, Jonathan; Garrett, Daniel
2011-01-01
While the most visible measure of college costs is published tuition, because of financial aid, this "sticker price" does not necessarily reflect the costs that students and their families actually pay. To the extent that students and their families are concerned about what costs they will need to pay to cover tuition charges, the…
An oppositely charged insect exclusion screen with gap-free multiple electric fields
NASA Astrophysics Data System (ADS)
Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kimbara, Junji; Kusakari, Shin-ichi; Osamura, Kazumi; Toyoda, Hideyoshi
2012-12-01
An electric field screen was constructed to examine insect attraction mechanisms in multiple electric fields generated inside the screen. The screen consisted of two parallel insulated conductor wires (ICWs) charged with equal but opposite voltages and two separate grounded nets connected to each other and placed on each side of the ICW layer. Insects released inside the fields were charged either positively or negatively as a result of electricity flow from or to the insect, respectively. The force generated between the charged insects and opposite ICW charges was sufficient to capture all insects.
Microcystin distribution in physical size class separations of natural plankton communities
Graham, J.L.; Jones, J.R.
2007-01-01
Phytoplankton communities in 30 northern Missouri and Iowa lakes were physically separated into 5 size classes (>100 ??m, 53-100 ??m, 35-53 ??m, 10-35 ??m, 1-10 ??m) during 15-21 August 2004 to determine the distribution of microcystin (MC) in size fractionated lake samples and assess how net collections influence estimates of MC concentration. MC was detected in whole water (total) from 83% of takes sampled, and total MC values ranged from 0.1-7.0 ??g/L (mean = 0.8 ??g/L). On average, MC in the > 100 ??m size class comprised ???40% of total MC, while other individual size classes contributed 9-20% to total MC. MC values decreased with size class and were significantly greater in the >100 ??m size class (mean = 0.5 ??g /L) than the 35-53 ??m (mean = 0.1 ??g/L), 10-35 ??m (mean = 0.0 ??g/L), and 1-10 ??m (mean = 0.0 ??g/L) size classes (p < 0.01). MC values in nets with 100-??m, 53-??m, 35-??m, and 10-??m mesh were cumulatively summed to simulate the potential bias of measuring MC with various size plankton nets. On average, a 100-??m net underestimated total MC by 51%, compared to 37% for a 53-??m net, 28% for a 35-??m net, and 17% for a 10-??m net. While plankton nets consistently underestimated total MC, concentration of algae with net sieves allowed detection of MC at low levels (???0.01 ??/L); 93% of lakes had detectable levels of MC in concentrated samples. Thus, small mesh plankton nets are an option for documenting MC occurrence, but whole water samples should be collected to characterize total MC concentrations. ?? Copyright by the North American Lake Management Society 2007.
Li, Mingxing; Chen, Jia-Shiang; Routh, Prahlad K.; ...
2018-05-17
Atomically thin transition metal dichalcogenides (TMDCs) have intriguing nanoscale properties like high charge mobility, photosensitivity, layer-thickness-dependent bandgap, and mechanical flexibility, which are all appealing for the development of next generation optoelectronic, catalytic, and sensory devices. Their atomically thin thickness, however, renders TMDCs poor absorptivity. For this study, bilayer MoS 2 is combined with core-only CdSe QDs and core/shell CdSe/ZnS QDs to obtain hybrids with increased light harvesting and exhibiting interfacial charge transfer (CT) and nonradiative energy transfer (NET), respectively. Field-effect transistors based on these hybrids and their responses to varying laser power and applied gate voltage are investigated with scanningmore » photocurrent microscopy (SPCM) in view of their potential utilization in light harvesting and photodetector applications. CdSe–MoS 2 hybrids are found to exhibit encouraging properties for photodetectors, like high responsivity and fast on/off response under low light exposure while CdSe/ZnS–MoS 2 hybrids show enhanced charge carrier generation with increased light exposure, thus suitable for photovoltaics. While distinguishing optically between CT and NET in QD–TMDCs is nontrivial, it is found that they can be differentiated by SPCM as these two processes exhibit distinctive light-intensity dependencies: CT causes a photogating effect, decreasing the photocurrent response with increasing light power while NET increases the photocurrent response with increasing light power, opposite to CT case.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingxing; Chen, Jia-Shiang; Routh, Prahlad K.
Atomically thin transition metal dichalcogenides (TMDCs) have intriguing nanoscale properties like high charge mobility, photosensitivity, layer-thickness-dependent bandgap, and mechanical flexibility, which are all appealing for the development of next generation optoelectronic, catalytic, and sensory devices. Their atomically thin thickness, however, renders TMDCs poor absorptivity. For this study, bilayer MoS 2 is combined with core-only CdSe QDs and core/shell CdSe/ZnS QDs to obtain hybrids with increased light harvesting and exhibiting interfacial charge transfer (CT) and nonradiative energy transfer (NET), respectively. Field-effect transistors based on these hybrids and their responses to varying laser power and applied gate voltage are investigated with scanningmore » photocurrent microscopy (SPCM) in view of their potential utilization in light harvesting and photodetector applications. CdSe–MoS 2 hybrids are found to exhibit encouraging properties for photodetectors, like high responsivity and fast on/off response under low light exposure while CdSe/ZnS–MoS 2 hybrids show enhanced charge carrier generation with increased light exposure, thus suitable for photovoltaics. While distinguishing optically between CT and NET in QD–TMDCs is nontrivial, it is found that they can be differentiated by SPCM as these two processes exhibit distinctive light-intensity dependencies: CT causes a photogating effect, decreasing the photocurrent response with increasing light power while NET increases the photocurrent response with increasing light power, opposite to CT case.« less
Arivazhagan, M; Jeyavijayan, S; Geethapriya, J
2013-03-01
The FTIR and FT-Raman spectra of 5-nitro-2-furaldehyde oxime (NFAO) have been recorded in the regions 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The total energies of different conformations have been obtained from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The computational results identify the most stable conformer of NFAO as the C1 form. Utilizing the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, were calculated by density functional theory (DFT/B3LYP) method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of NFAO is also reported based on total energy distribution (TED). Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. Besides, molecular electrostatic potential (MEP), HOMO and LUMO analysis, and several thermodynamic properties were performed by the DFT method. Mulliken's net charges have been calculated and compared with the natural atomic charges. Ultraviolet-visible spectrum of the title molecule has also been calculated using TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.
DFT computational analysis of piracetam.
Rajesh, P; Gunasekaran, S; Seshadri, S; Gnanasambandan, T
2014-11-11
Density functional theory calculation with B3LYP using 6-31G(d,p) and 6-31++G(d,p) basis set have been used to determine ground state molecular geometries. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of piracetam is calculated using B3LYP/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO/NLMO analysis. The calculation of first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. Molecular electrostatic potential (MEP) at a point in the space around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution of the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charge is also calculated. Because of vibrational analysis, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-Vis spectra and electronic absorption properties are explained and illustrated from the frontier molecular orbitals. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan
An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative ofmore » the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector—because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation—this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... correctly to account for all farm produce received by them,” approved March 3, 1927 (44 Stat. 1355; 7 U.S.C... farm products of any kind or character. (h) Truly and correctly to account means, unless otherwise... selling charges and all other charges or expenses paid and a statement of the net proceeds or deficit, and...
Charge scheduling of an energy storage system under time-of-use pricing and a demand charge.
Yoon, Yourim; Kim, Yong-Hyuk
2014-01-01
A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power.
Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge
Yoon, Yourim
2014-01-01
A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power. PMID:25197720
California | Midmarket Solar Policies in the United States | Solar Research
interconnection fee ($75-$150), pay all "non-bypassable" charges for all electricity consumed from the distribution grid, non-export facilities connecting to an IOU's transmission grid and all net-metered systems Interconnection All non-exporting systems or net metering facility Fast track Exporting facility â¤3MW on a 12 kV
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
...) to fulfill its continuing obligations under the New and Emerging Technologies 911 Improvement Act of 2008, Public Law 110-283, 122 Stat. 2620 (2008) (NET 911 Act) to submit an annual ``Fee Accountability... or Charges for Enhanced 911 (E911) Services Under the NET 911 Improvement Act of 2008. Form No.: Not...
ERIC Educational Resources Information Center
St. John, Edward P.; Starkey, Johnny B.
1995-01-01
This study reviews higher education assumptions of traditional net-price theory and an emerging approach considering a set of price and subsidies in enrollment and persistence decisions. Results suggest that within-year persistence decisions made by students from all income groups are more sensitive to tuition charges than to student aid.…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... consistent with the regulatory principle of ensuring technological neutrality. Providers deploying new CMRS... Expenditures of Fees or Charges for Enhanced 911 (E911) Services Under the NET 911 Improvement Act of 2008..., village or regional corporation therein as defined by Section 6(f)(1) of the NET 911 Act, has established...
Code of Federal Regulations, 2012 CFR
2012-01-01
... covered debt instrument that is subject to a non-zero specific risk capital charge. (A) For covered debt... indices. (iii) An organization must multiply the absolute value of the current market value of each net... multiply the absolute value of the current market value of each net long or short covered equity position...
Adare, A.; Afanasiev, S.; Aidala, C.; ...
2016-01-19
Our report presents the measurement of cumulants (C n,n=1,...,4) of the net-charge distributions measured within pseudorapidity (|η|<0.35) in Au+Au collisions at √s NN=7.7–200GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C 1/C 2, C 3/C 1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do notmore » observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. These measured values of C 1/C 2 and C 3/C 1 can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy. Moreover, the extracted baryon chemical potentials are in excellent agreement with a thermal-statistical analysis model.« less
Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao
2008-08-01
Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.
The National Survey of Stroke. Economic impact.
Adelman, S M
1981-01-01
The estimated economic costs of stroke in 1976 amounted to $7,363,784,000 (based on a 6 percent gross, or 4 percent net, discount rate). Almost half were direct costs, the majority of these were related to inpatient hospital and nursing facility care. Only about six percent of the total were morbidity costs, and the remaining fifty percent consisted of mortality costs, stated in terms of the present value of future earnings. Direct costs include charges by short-term hospitals, extended care facilities, physicians and other medical and allied health personnel, and the costs of aids and appliances. Indirect costs include both morbidity and mortality costs. These costs are distributed as follows. [Formula: see text].
Spin current induced by a charged tip in a quantum point contact
NASA Astrophysics Data System (ADS)
Shchamkhalova, B. S.
2017-03-01
We show that the charged tip of the probe microscope, which is widely used in studying the electron transport in low-dimensional systems, induces a spin current. The effect is caused by the spin-orbit interaction arising due to an electric field produced by the charged tip. The tip acts as a spin-flip scatterer giving rise to the spin polarization of the net current and the occurrence of a spin density in the system.
Local and global anatomy of antibody-protein antigen recognition.
Wang, Meryl; Zhu, David; Zhu, Jianwei; Nussinov, Ruth; Ma, Buyong
2018-05-01
Deciphering antibody-protein antigen recognition is of fundamental and practical significance. We constructed an antibody structural dataset, partitioned it into human and murine subgroups, and compared it with nonantibody protein-protein complexes. We investigated the physicochemical properties of regions on and away from the antibody-antigen interfaces, including net charge, overall antibody charge distributions, and their potential role in antigen interaction. We observed that amino acid preference in antibody-protein antigen recognition is entropy driven, with residues having low side-chain entropy appearing to compensate for the high backbone entropy in interaction with protein antigens. Antibodies prefer charged and polar antigen residues and bridging water molecules. They also prefer positive net charge, presumably to promote interaction with negatively charged protein antigens, which are common in proteomes. Antibody-antigen interfaces have large percentages of Tyr, Ser, and Asp, but little Lys. Electrostatic and hydrophobic interactions in the Ag binding sites might be coupled with Fab domains through organized charge and residue distributions away from the binding interfaces. Here we describe some features of antibody-antigen interfaces and of Fab domains as compared with nonantibody protein-protein interactions. The distributions of interface residues in human and murine antibodies do not differ significantly. Overall, our results provide not only a local but also a global anatomy of antibody structures. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Kathleen; Xu, Bingjun; Yan, Yushan
The design of better heterogeneous catalysts for applications such as fuel cells and electrolyzers requires a mechanistic understanding of electrocatalytic reactions and the dependence of their activity on operating conditions such as pH. A satisfactory explanation for the unexpected pH dependence of electrochemical properties of platinum surfaces has so far remained elusive, with previous explanations resorting to complex co-adsorption of multiple species and resulting in limited predictive power. This knowledge gap suggests that the fundamental properties of these catalysts are not yet understood, limiting systematic improvement. In this paper, we analyze the change in charge and free energies upon adsorptionmore » using density-functional theory (DFT) to establish that water adsorbs on platinum step edges across a wide voltage range, including the double-layer region, with a loss of approximately 0.2 electrons upon adsorption. We show how this as-yet unreported change in net surface charge due to this water explains the anomalous pH variations of the hydrogen underpotential deposition (H upd) and the potentials of zero total charge (PZTC) observed in published experimental data. This partial oxidation of water is not limited to platinum metal step edges, and we report the charge of the water on metal step edges of commonly used catalytic metals, including copper, silver, iridium, and palladium, illustrating that this partial oxidation of water broadly influences the reactivity of metal electrodes.« less
NASA Technical Reports Server (NTRS)
Arnott, W. Patrick (Inventor); Chakrabarty, Rajan K. (Inventor); Moosmuller, Hans (Inventor)
2011-01-01
Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.
Moosmuller, Hans [Reno, NV; Chakrabarty, Rajan K [Reno, NV; Arnott, W Patrick [Reno, NV
2011-04-26
Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.
13 CFR 120.971 - Allowable fees paid by Borrower.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Development Company Loan Program (504) Fees § 120.971 Allowable fees paid by Borrower. (a) CDC fees. The fees a CDC may charge the Borrower in connection with a 504 loan and Debenture are limited to the following: (1) Processing fee. The CDC may charge up to 1.5 percent of the net Debenture proceeds to process...
13 CFR 120.971 - Allowable fees paid by Borrower.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Development Company Loan Program (504) Fees § 120.971 Allowable fees paid by Borrower. (a) CDC fees. The fees a CDC may charge the Borrower in connection with a 504 loan and Debenture are limited to the following: (1) Processing fee. The CDC may charge up to 1.5 percent of the net Debenture proceeds to process...
13 CFR 120.971 - Allowable fees paid by Borrower.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Development Company Loan Program (504) Fees § 120.971 Allowable fees paid by Borrower. (a) CDC fees. The fees a CDC may charge the Borrower in connection with a 504 loan and Debenture are limited to the following: (1) Processing fee. The CDC may charge up to 1.5 percent of the net Debenture proceeds to process...
13 CFR 120.971 - Allowable fees paid by Borrower.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Development Company Loan Program (504) Fees § 120.971 Allowable fees paid by Borrower. (a) CDC fees. The fees a CDC may charge the Borrower in connection with a 504 loan and Debenture are limited to the following: (1) Processing fee. The CDC may charge up to 1.5 percent of the net Debenture proceeds to process...
13 CFR 120.971 - Allowable fees paid by Borrower.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Development Company Loan Program (504) Fees § 120.971 Allowable fees paid by Borrower. (a) CDC fees. The fees a CDC may charge the Borrower in connection with a 504 loan and Debenture are limited to the following: (1) Processing fee. The CDC may charge up to 1.5 percent of the net Debenture proceeds to process...
12 CFR Appendix C to Part 325 - Risk-Based Capital for State Non-Member Banks: Market Risk
Code of Federal Regulations, 2012 CFR
2012-01-01
... instrument is a covered debt instrument that is subject to a non-zero specific risk capital charge. (A) For... indices. (iii) A bank must multiply the absolute value of the current market value of each net long or... conversion. (iii)(A) A bank must multiply the absolute value of the current market value of each net long or...
Snoopy--a unifying Petri net framework to investigate biomolecular networks.
Rohr, Christian; Marwan, Wolfgang; Heiner, Monika
2010-04-01
To investigate biomolecular networks, Snoopy provides a unifying Petri net framework comprising a family of related Petri net classes. Models can be hierarchically structured, allowing for the mastering of larger networks. To move easily between the qualitative, stochastic and continuous modelling paradigms, models can be converted into each other. We get models sharing structure, but specialized by their kinetic information. The analysis and iterative reverse engineering of biomolecular networks is supported by the simultaneous use of several Petri net classes, while the graphical user interface adapts dynamically to the active one. Built-in animation and simulation are complemented by exports to various analysis tools. Snoopy facilitates the addition of new Petri net classes thanks to its generic design. Our tool with Petri net samples is available free of charge for non-commercial use at http://www-dssz.informatik.tu-cottbus.de/snoopy.html; supported operating systems: Mac OS X, Windows and Linux (selected distributions).
Onwujekwe, Obinna; Hanson, Kara; Fox-Rushby, Julia
2004-01-01
Objective To explore the equity implications of insecticide-treated nets (ITN) distribution programmes that are based on user charges. Methods A questionnaire was used to collect information on previous purchase of untreated nets and hypothetical willingness to pay (WTP) for ITNs from a random sample of householders. A second survey was conducted one month later to collect information on actual purchases of ITNs. An economic status index was used for characterizing inequity. Major findings The lower economic status quintiles were less likely to have previously purchased untreated nets and also had a lower hypothetical and actual WTP for ITNs. Conclusion ITN distribution programmes need to take account of the diversity in WTP for ITNs if they are to ensure equity in access to the nets. This could form part of the overall poverty reduction strategy. PMID:15023234
Effects of Discrete Charge Clustering in Simulations of Charged Interfaces.
Grime, John M A; Khan, Malek O
2010-10-12
A system of counterions between charged surfaces is investigated, with the surfaces represented by uniform charged planes and three different arrangements of discrete surface charges - an equispaced grid and two different clustered arrangements. The behaviors of a series of systems with identical net surface charge density are examined, with particular emphasis placed on the long ranged corrections via the method of "charged slabs" and the effects of the simulation cell size. Marked differences are observed in counterion distributions and the osmotic pressure dependent on the particular representation of the charged surfaces; the uniformly charged surfaces and equispaced grids of discrete charge behave in a broadly similar manner, but the clustered systems display a pronounced decrease in osmotic pressure as the simulation size is increased. The influence of the long ranged correction is shown to be minimal for all but the very smallest of system sizes.
Quasi-elastic light scattering of carnauba wax in the liquid phase: dynamics 2.
de Almeida, F J; Barbosa, G A
1983-12-01
Quasi-elastic light scattering of carnauba wax in the liquid phase is obtained in a heterodyne setup, and dynamic processes are analyzed through electrophoresis. Nonspherical polar clusters are found, containing a net electrical charge. An applied square-wave electric field induces drift and rotation of these clusters.These effects are dependent on strength and frequency of the applied electric field. At 373 K and in the low frequency limit the local electric field strength is approximately 70 times the strength of the applied one. This enhancement is believed to be caused by collective orientation of the clusters. The electrophoretic mobility is 1.1 X 10(-12) m2/V sec in the high frequency limit and 7.4 X 10(-11) m2/V sec in the low frequency limit. The electric dipole moment is 6.3 X 10(-16) N(-1/2) m(-1/2) where N is the cluster density/cubic meter and the net charge is about one or two elementary charges.
Plasma bullet current measurements in a free-stream helium capillary jet
NASA Astrophysics Data System (ADS)
Oh, Jun-Seok; Walsh, James L.; Bradley, James W.
2012-06-01
A commercial current monitor has been used to measure the current associated with plasma bullets created in both the positive and negative half cycles of the sinusoidal driving voltage sustaining a plasma jet. The maximum values of the positive bullet current are typically ˜750 µA and persist for 10 µs, while the peaks in the negative current of several hundred μA are broad, persisting for about 40 µs. From the time delay of the current peaks with increasing distance from the jet nozzle, an average bullet propagation speed has been measured; the positive and negative bullets travel at 17.5 km s-1 and 3.9 km s-1 respectively. The net space charge associated with the bullet(s) has also been calculated; the positive and negative bullets contain a similar net charge of the order of 10-9 C measured at all monitor positions, with estimated charged particle densities nb of ˜1010-1011 cm-3 in the bullet.
Gharu, Lavina; Ringe, Rajesh; Satyakumar, Anupindi; Patil, Ajit; Bhattacharya, Jayanta
2011-02-01
Abstract HIV-1 clade C is the major subtype circulating in India and preferentially uses CCR5 during the entire disease course. We have recently shown that env clones from an Indian patient; NARI-VB105 uses multiple coreceptors for entry and was presented with an unusual V3 loop sequence giving rise to high net V3 loop positive charges. Here we show that env clones belonging to subtype C obtained from an AIDS patient, NARI-VB52, use CXCR6 and CCR8 in addition to CCR5 for entry. However, unlike the NARI-105 patient, the env clones contained a low V3 loop net charge of +3 with a conserved GPGQ motif typical of CCR5 using subtype C strains, indicating that residues outside the V3 loop contributed to extended coreceptor use in this particular patient.
Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.
Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A
2005-02-04
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots
NASA Astrophysics Data System (ADS)
Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.
2005-02-01
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Isoelectric Point, Electric Charge, and Nomenclature of the Acid-Base Residues of Proteins
ERIC Educational Resources Information Center
Maldonado, Andres A.; Ribeiro, Joao M.; Sillero, Antonio
2010-01-01
The main object of this work is to present the pedagogical usefulness of the theoretical methods, developed in this laboratory, for the determination of the isoelectric point (pI) and the net electric charge of proteins together with some comments on the naming of the acid-base residues of proteins. (Contains 8 figures and 4 tables.)
Orientation Control of Interfacial Magnetism at La 0.67Sr 0.33MnO 3/SrTiO 3 Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Er-Jia; Charlton, Timothy; Ambaye, Haile
Understanding the magnetism at the interface between a ferromagnet and an insulator is essential because the commonly posited magnetic “dead” layer close to an interface can be problematic in magnetic tunnel junctions. Previously, degradation of the magnetic interface was attributed to charge discontinuity across the interface. In this paper, the interfacial magnetism was investigated using three identically prepared La 0.67Sr 0.33MnO 3 (LSMO) thin films grown on different oriented SrTiO 3 (STO) substrates by polarized neutron reflectometry. In all cases the magnetization at the LSMO/STO interface is larger than the film bulk. We show that the interfacial magnetization is largestmore » across the LSMO/STO interfaces with (001) and (111) orientations, which have the largest net charge discontinuities across the interfaces. In contrast, the magnetization of LSMO/STO across the (110) interface, the orientation with no net charge discontinuity, is the smallest of the three orientations. We show that a magnetically degraded interface is not intrinsic to LSMO/STO heterostructures. Finally, the approach to use different crystallographic orientations provides a means to investigate the influence of charge discontinuity on the interfacial magnetization.« less
NASA Astrophysics Data System (ADS)
Mishra, Smruti; Meher, Geetanjali; Chakraborty, Hirak
2017-11-01
Intrinsically disordered proteins (IDPs) are under intense analysis due to their structural flexibility and importance in biological functions. Minuscule modulation in the microenvironment induces significant conformational changes in IDPs, and these non-native conformations of the IDPs often induce aggregation and cause cell death. Changes in the membrane composition often change the microenvironment, which promote conformational change and aggregation of IDPs. κ-Casein, an important milk protein, belongs to the class of IDPs containing net negative charges. In this present work, we have studied the interaction of κ-casein with cetyltrimethyl ammonium bromide (CTAB), a positively charged surfactant, utilizing various steady state fluorescence, time-resolved fluorescence and circular dichroism spectroscopy. Our results clearly indicate that κ-casein undergoes at least two conformational transitions in presence of various concentrations of CTAB. The intrinsically disordered κ-casein assumes a partially folded conformation at lower concentration of CTAB, which adopts an unstructured conformation at higher concentration of CTAB. The partially folded conformation of κ-casein at a lower CTAB concentration might be induced by the favorable electrostatic interaction between the positively charged surfactant headgroup and net negative charges of the protein, whereas surfactant nature of CTAB is being pronounced at higher concentration of CTAB.
Orientation Control of Interfacial Magnetism at La 0.67Sr 0.33MnO 3/SrTiO 3 Interfaces
Guo, Er-Jia; Charlton, Timothy; Ambaye, Haile; ...
2017-05-16
Understanding the magnetism at the interface between a ferromagnet and an insulator is essential because the commonly posited magnetic “dead” layer close to an interface can be problematic in magnetic tunnel junctions. Previously, degradation of the magnetic interface was attributed to charge discontinuity across the interface. In this paper, the interfacial magnetism was investigated using three identically prepared La 0.67Sr 0.33MnO 3 (LSMO) thin films grown on different oriented SrTiO 3 (STO) substrates by polarized neutron reflectometry. In all cases the magnetization at the LSMO/STO interface is larger than the film bulk. We show that the interfacial magnetization is largestmore » across the LSMO/STO interfaces with (001) and (111) orientations, which have the largest net charge discontinuities across the interfaces. In contrast, the magnetization of LSMO/STO across the (110) interface, the orientation with no net charge discontinuity, is the smallest of the three orientations. We show that a magnetically degraded interface is not intrinsic to LSMO/STO heterostructures. Finally, the approach to use different crystallographic orientations provides a means to investigate the influence of charge discontinuity on the interfacial magnetization.« less
Timber resource statistics for the Juneau inventory unit, Alaska, 1970.
Vernon J. LaBau; Willem W.S. Van Hees
1983-01-01
Statistics on forest area, total gross and net timber volumes, and annual net growth and mortality are presented for the 1970 timber inventory of the Juneau unit, Alaska. Estimates for commercial forest land area total 1.3 million acres (535 000 ha) with a net growing stock volume of 8.3 billion cubic feet (234 million m3), and annual net growth...
Active charge trapping control in dielectrics under ionizing radiation
NASA Astrophysics Data System (ADS)
Dominguez-Pumar, M.; Bheesayagari, C.; Gorreta, S.; Pons-Nin, J.
2017-12-01
Charge trapping is is a design and reliability factor in plasma sensors. Examples can be found in microchannel plate detectors in plasma analyzers, where multiple layers have been devised to ensure filled trapped electrons for enhanced secondary emission [1]. Charge trap mapping is used to recover distortion in telescope CCDs [2]. Specific technologies are designed to mitigate the effect of ionizing radiation in monolithic Active Pixel Sensors [3]. We report in this paper a control loop designed to control charge in Metal-Oxide-Semiconductor capacitors. We find that the net trapped charge in the device can be set within some limits to arbitrary values that can be changed with time. The control loop periodically senses the net trapped charge by detecting shifts in the capacitance vs voltage characteristic, and generates adequate waveform sequences to keep the trapped charge at the desired level [4]. The waveforms continuously applied have been chosen to provide different levels of charge injection into the dielectric. The control generates the adequate average charge injection to reach and maintain the desired level of trapped charge, compensating external disturbances. We also report that this control can compensate charge generated by ionizing radiation. Experiments will be shown in which this compensation is obtained with X-rays and gamma radiation. The presented results open the possibility of applying active compensation techniques for the first time in a wide number of devices such as radiation sensors, MOS transistors and other devices. The continuous drive towards integration may allow the implementation of this type of controls in devices needing to reject external disturbances, or needing to optimize their response to radiation or ion fluxes. References: [1] patent US 2009/0212680 A1. [2] A&A 534, A20 (2011). [3] Hemperek, Nucl. Instr. and Meth. in Phys. Res. Sect. A.796, pp 8-12, 2015. [4] Dominguez, IEEE Trans. Ind. Electr, 64 (4), 3023-3029, 2017.
Anany, H.; Chen, W.; Pelton, R.; Griffiths, M. W.
2011-01-01
The ability of phages to specifically interact with and lyse their host bacteria makes them ideal antibacterial agents. The range of applications of bacteriophage can be extended by their immobilization on inert surfaces. A novel method for the oriented immobilization of bacteriophage has been developed. The method was based on charge differences between the bacteriophage head, which exhibits an overall net negative charge, and the tail fibers, which possess an overall net positive charge. Hence, the head would be more likely to attach to positively charged surfaces, leaving the tails free to capture and lyse bacteria. Cellulose membranes modified so that they had a positive surface charge were used as the support for phage immobilization. It was established that the number of infective phages immobilized on the positively charged cellulose membranes was significantly higher than that on unmodified membranes. Cocktails of phages active against Listeria or Escherichia coli immobilized on these membranes were shown to effectively control the growth of L. monocytogenes and E. coli O157:H7 in ready-to-eat and raw meat, respectively, under different storage temperatures and packaging conditions. The phage storage stability was investigated to further extend their industrial applications. It was shown that lyophilization can be used as a phage-drying method to maintain their infectivity on the newly developed bioactive materials. In conclusion, utilizing the charge difference between phage heads and tails provided a simple technique for oriented immobilization applicable to a wide range of phages and allowed the retention of infectivity. PMID:21803890
NASA Technical Reports Server (NTRS)
Marshall, J.; Weislogel, M.; Jacobson, T.
1999-01-01
The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single grain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three-dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction.
Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters
NASA Astrophysics Data System (ADS)
Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.
Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.
Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.
Draper, Neil D; Bakhoum, Samuel F; Haddrell, Allen E; Agnes, George R
2007-09-19
We have investigated the nucleation and growth of sodium chloride in both single quiescent charged droplets and charged droplet populations that were levitated in an electrodynamic levitation trap (EDLT). In both cases, the magnitude of a droplet's net excess charge (ions(DNEC)) influenced NaCl nucleation and growth, albeit in different capacities. We have termed the phenomenon ion-induced nucleation in solution. For single quiescent levitated droplets, an increase in ions(DNEC) resulted in a significant promotion of NaCl nucleation, as determined by the number of crystals observed. For levitated droplet populations, a change in NaCl crystal habit, from regular cubic shapes to dome-shaped dendrites, was observed once a surface charge density threshold of -9 x 10(-4) e.nm(-2) was surpassed. Although promotion of NaCl nucleation was observed for droplet population experiments, this can be attributed in part to the increased rate of solvent evaporation observed for levitated droplet populations having a high net charge. Promotion of nucleation was also observed for two organic acids, 2,4,6-trihydroxyacetophenone monohydrate (THAP) and alpha-cyano-4-hydroxycinnamic acid (CHCA). These results are of direct relevance to processes that occur in both soft-ionization techniques for mass spectrometry and to a variety of industrial processes. To this end, we have demonstrated the use of ion-induced nucleation in solution to form ammonium nitrate particles from levitated droplets to be used in in vitro toxicology studies of ambient particle types.
Acute pain management efficiency improves with point-of-care handheld electronic billing system.
Fahy, Brenda G
2009-02-01
Technology advances continue to impact patient care and physician workflow. To enable more efficient performance of billing activities, a point-of-care (POC) handheld computer technology replaced a paper-based system on an acute pain management service. Using a handheld personal digital assistant (PDA) and software from MDeverywhere (MDe, MDeverywhere, Long Island, NY), we performed a 1-yr prospective observational study of an anesthesiology acute pain management service billings and collections. Seventeen anesthesiologists providing billable acute pain services were trained and entered their charges on a PDA. Twelve months of data, just before electronic implementation (pre-elec), were compared to a 12-m period after implementation (post-elec). The total charges were 4883 for 890 patients pre-elec and 5368 for 1128 patients post-elec. With adoption of handheld billing, the charge lag days decreased from 29.3 to 7.0 (P < 0.001). The days in accounts receivable trended downward from 59.9 to 51.1 (P = 0.031). The average number of charge lag days decreased significantly with month (P = 0.0002). The net collection rate increased from 37.4% pre-elec to 40.3% post-elec (P < 0.001). The return on investment was 1.18 fold (118%). Implementation of POC electronic billing using PDAs to replace a paper-based billing system improved the collection rate and decreased the number of charge lag days with a positive return on investment. The handheld PDA billing system provided POC support for physicians during their daily clinical (e.g., patient locations, rounding lists) and billing activities, improving workflow.
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.
2013-01-01
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol−1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol−1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning. PMID:24320250
Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H
2013-11-14
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol(-1)). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.
NASA Astrophysics Data System (ADS)
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.
2013-11-01
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol-1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.
Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon.
Liu, Jian; Ma, Jie; He, Congwu; Li, Xiuli; Zhang, Wenjun; Xu, Fangsen; Lin, Yongjun; Wang, Lijun
2013-11-01
The stresses acting on plants that are alleviated by silicon (Si) range from biotic to abiotic stresses, such as heavy metal toxicity. However, the mechanism of stress alleviation by Si at the single-cell level is poorly understood. We cultivated suspended rice (Oryza sativa) cells and protoplasts and investigated them using a combination of plant nutritional and physical techniques including inductively coupled plasma mass spectrometry (ICP-MS), the scanning ion-selective electrode technique (SIET) and X-ray photoelectron spectroscopy (XPS). We found that most Si accumulated in the cell walls in a wall-bound organosilicon compound. Total cadmium (Cd) concentrations in protoplasts from Si-accumulating (+Si) cells were significantly reduced at moderate concentrations of Cd in the culture medium compared with those from Si-limiting (-Si) cells. In situ measurement of cellular fluxes of the cadmium ion (Cd(2+) ) in suspension cells and root cells of rice exposed to Cd(2+) and/or Si treatments showed that +Si cells significantly inhibited the net Cd(2+) influx, compared with that in -Si cells. Furthermore, a net negative charge (charge density) within the +Si cell walls could be neutralized by an increase in the Cd(2+) concentration in the measuring solution. A mechanism of co-deposition of Si and Cd in the cell walls via a [Si-wall matrix]Cd co-complexation may explain the inhibition of Cd ion uptake, and may offer a plausible explanation for the in vivo detoxification of Cd in rice. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Charge calculation studies done on a single walled carbon nanotube using MOPAC
NASA Astrophysics Data System (ADS)
Negi, S.; Bhartiya, Vivek Kumar; Chaturvedi, S.
2018-04-01
Dipole symmetry of induced charges on DWNTs are required for their application as a nanomotor. Earlier a molecular dynamics analysis was performed for a double-walled carbon-nanotube based motor driven by an externally applied sinusoidally varying electric field. One of the ways to get such a system is chemical or end functionalization, which promises to accomplish this specific and rare configuration of the induced charges on the surface of the carbon nanotube (CNT). CNTs are also a promising system for attaching biomolecules for bio-related applications. In an earlier work, ab initio calculations were done to study the electronic and structural properties of the groups -COOH, -OH, -NH2 and -CONH2 functionalized to an (8, 0) SWNT. The systems were shown to have a very stable interaction with the CNTs. The exterior surface of the SWNT is found to be reactive to NH2 (amidogen). In this work, charge calculations are done on a CNT using MOPAC, which is a semi empirical quantum chemistry software package. As a first step, we calculate the effect of NH2 functionalization to a (5,0) SWNT of infinite length. The symmetric charge distribution of the bare SWNT is observed to be disturbed on addition of a single NH2 in the close proximity of the SWNT. A net positive and opposite charge is observed to be induced on the opposite sides of the nanotube circumference, which is, in turn, imperative for the nanomotor applications. The minimum and maximum value of the charge on any atom is observed to increase from - 0.3 to 0.6 and from - 0.3 to - 1.8 electronic charge as compared to the bare SWNT. This fluctuation of the surface charge to larger values than bare CNT, can be attributed to the coulomb repulsion between NH2 and the rest of the charge on the surface which results into minimizing the total energy of the system. No such opposite polarity of charges are observed on adding NH2 to each ring of the SWNT implying addition of a single amidogen to be the most appropriate configuration to produce a DWNT configuration suited to act like a nanomotor.
Sistrom, Christopher Lee; McKay, Niccie L
2005-06-01
This study examined financial data reported by Florida hospitals concerning costs, charges, and revenues related to imaging services. Financial reports to the Florida Hospital Uniform Reporting System by all licensed acute care facilities for fiscal year 2002 were used to calculate four financial indices on a per procedure basis. These included charge, net revenue, operating expense (variable cost), and contribution margin. Analysis, stratified by cost center (imaging modality), tested the effects of bed size, ownership, teaching status, and urban or rural status on the four indices. The mean operating expense and charge per procedure were as follows: computed tomography (CT): $51 and $1565; x-ray and ultrasound: $55 and $410; nuclear medicine (NM): $135 and $1138; and magnetic resonance imaging (MRI): $165 and $2048. With all four modalities, for-profit hospitals had higher charges than not-for-profit and public facilities. Excepting NM, however, the difference by ownership disappeared when considering net revenue. Operating expense did not differ by ownership type or bed size. Operating expense (variable cost) per procedure is considerably lower for CT than for MRI. Consequently, when diagnostically equivalent, CT is preferable to MRI in terms of costs for hospitals. If the cost structure of nonhospital imaging is at all similar to hospitals, the profit potential for performing CT and MRI seems to be substantial, which has relevance to the issue of imaging self-referral.
NASA Technical Reports Server (NTRS)
Mumaw, Susan J. (Inventor); Evers, Jeffrey (Inventor); Craig, Calvin L., Jr. (Inventor); Walker, Stuart D. (Inventor)
2001-01-01
The invention is a circuit and method of limiting the charging current voltage from a power supply net work applied to an individual cell of a plurality of cells making up a battery being charged in series. It is particularly designed for use with batteries that can be damaged by overcharging, such as Lithium-ion type batteries. In detail. the method includes the following steps: 1) sensing the actual voltage level of the individual cell; 2) comparing the actual voltage level of the individual cell with a reference value and providing an error signal representative thereof; and 3) by-passing the charging current around individual cell necessary to keep the individual cell voltage level generally equal a specific voltage level while continuing to charge the remaining cells. Preferably this is accomplished by by-passing the charging current around the individual cell if said actual voltage level is above the specific voltage level and allowing the charging current to the individual cell if the actual voltage level is equal or less than the specific voltage level. In the step of bypassing the charging current, the by-passed current is transferred at a proper voltage level to the power supply. The by-pass circuit a voltage comparison circuit is used to compare the actual voltage level of the individual cell with a reference value and to provide an error signal representative thereof. A third circuit, designed to be responsive to the error signal, is provided for maintaining the individual cell voltage level generally equal to the specific voltage level. Circuitry is provided in the third circuit for bypassing charging current around the individual cell if the actual voltage level is above the specific voltage level and transfers the excess charging current to the power supply net work. The circuitry also allows charging of the individual cell if the actual voltage level is equal or less than the specific voltage level.
Pasupuleti, Mukesh; Walse, Björn; Svensson, Bo; Malmsten, Martin; Schmidtchen, Artur
2008-09-02
The anaphylatoxin C3a and its inactivated derivative C3adesArg, generated during complement activation, exert direct antimicrobial effects, mediated via its C-terminal region [Nordahl et al. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 16879-16884]. During evolution, this region of C3a displays subtle changes in net charge, while preserving a moderate but variable amphipathicity [Pasupuleti et al. (2007) J. Biol. Chem. 282, 2520-2528]. In this study, we mimic these evolutionary changes, employing a design approach utilizing selected amino acid substitutions at strategic and structurally relevant positions in the original human C3a peptide CNYITELRRQHARASHLGLA, followed by structure-activity studies incorporating sequence-dependent QSAR models as tools for generation of C3a peptide variants with enhanced effects. While the native peptide and related amphipathic analogues of moderate positive net charge were active against the Gram-negative Escherichia coli, activity against the Gram-positive Staphylococcus aureus was primarily observed for peptides characterized by a combination of a relatively high net charge (+6-7) and a propensity to adopt an alpha-helical conformation with amphipathic character. Such increased helicity and charge also conferred activity against the fungus Candida albicans. A central histidine residue (H11), evolutionarily conserved among vertebrates, conferred high selectivity toward microbes, while substitutions with leucine rendered the peptides hemolytic. Selected C3a analogues retained their specificity against staphylococci in the presence of human plasma, while showing low cytotoxicity. The work illustrates structure-activity relationships underlying the function and specificity of antimicrobial C3a and related analogues and provides insights into the forces that drive evolution of antimicrobial peptides.
Phosphorylation-dependent mineral-type specificity for apatite-binding peptide sequences.
Addison, William N; Miller, Sharon J; Ramaswamy, Janani; Mansouri, Ahmad; Kohn, David H; McKee, Marc D
2010-12-01
Apatite-binding peptides discovered by phage display provide an alternative design method for creating functional biomaterials for bone and tooth tissue repair. A limitation of this approach is the absence of display peptide phosphorylation--a post-translational modification important to mineral-binding proteins. To refine the material specificity of a recently identified apatite-binding peptide, and to determine critical design parameters (net charge, charge distribution, amino acid sequence and composition) controlling peptide affinity for mineral, we investigated the effects of phosphorylation and sequence scrambling on peptide adsorption to four different apatites (bone-like mineral, and three types of apatite containing initially 0, 5.6 and 10.5% carbonate). Phosphorylation of the VTKHLNQISQSY peptide (VTK peptide) led to a 10-fold increase in peptide adsorption (compared to nonphosphorylated peptide) to bone-like mineral, and a 2-fold increase in adsorption to the carbonated apatite, but there was no effect of phosphorylation on peptide affinity to pure hydroxyapatite (without carbonate). Sequence scrambling of the nonphosphorylated VTK peptide enhanced its specificity for the bone-like mineral, but scrambled phosphorylated VTK peptide (pVTK) did not significantly alter mineral-binding suggesting that despite the importance of sequence order and/or charge distribution to mineral-binding, the enhanced binding after phosphorylation exceeds any further enhancement by altered sequence order. Osteoblast culture mineralization was dose-dependently inhibited by pVTK and to a significantly lesser extent by scrambled pVTK, while the nonphosphorylated and scrambled forms had no effect, indicating that inhibition of osteoblast mineralization is dependent on both peptide sequence and charge. Computational modeling of peptide-mineral interactions indicated a favorable change in binding energy upon phosphorylation that was unaffected by scrambling. In conclusion, phosphorylation of serine residues increases peptide specificity for bone-like mineral, whose adsorption is determined primarily by sequence composition and net charge as opposed to sequence order. However, sequence order in addition to net charge modulates the mineralization of osteoblast cultures. The ability of such peptides to inhibit mineralization has potential utility in the management of pathologic calcification. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hickey, Owen A; Shendruk, Tyler N; Harden, James L; Slater, Gary W
2012-08-31
We introduce a mesoscale simulation method based on multiparticle collision dynamics (MPCD) for the electrohydrodynamics of polyelectrolytes with finite Debye lengths. By applying the Debye-Hückel approximation to assign an effective charge to MPCD particles near charged monomers, our simulations are able to reproduce the rapid rise in the electrophoretic mobility with respect to the degree of polymerization for the shortest polymer lengths followed by a small decrease for longer polymers due to charge condensation. Moreover, these simulations demonstrate the importance of a finite Debye length in accurately determining the mobility of uniformly charged polyelectrolytes and net neutral polyampholytes.
Shotorban, B
2015-10-01
A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the grain charge between two macrostates, was shown to be possible.
Zhang, Zheng-Jie; Shi, Wei; Niu, Zheng; Li, Huan-Huan; Zhao, Bin; Cheng, Peng; Liao, Dai-Zheng; Yan, Shi-Ping
2011-06-14
An interesting new MOF, built with interpenetrating cationic (MOF-A(+)) and anionic (MOF-B(-)) nets that do not require counter ions to balance charge, together with an architectural strategy focused on the use of MOPs as nodes and MOCs as spacers for the generation of 3D frameworks, is reported. This journal is © The Royal Society of Chemistry 2011
The development of pressure across membranes in Donnan systems
Ilani, Asher
2015-01-01
The pressure that develops between the two sides of a Donnan system is equal to the difference between the osmotic values of the two solutions, even though permeant ions may constitute a significant part of that difference. This is amply documented for the case of membranes that allow water movement through them by single molecules diffusing in isolation or in series through specific proteins (such as aquaporins). In this article, the development of pressure was analysed for a system in which membranes contain a few bulk aqueous pores that prevent charged polymers from entering them due to their size. It is shown analytically that the pressure that develops by the action of the electric field on the net charges in the pores is equal to the difference in the osmotic values of the solutions contributed by the permeant ions. Thus, the sum of the pressures that develop in the system due to the action of the electric field in the pores (a pushing force) and the concentration of the impermeant polymers at the interface (a sucking force), accounts for the total colloid osmotic pressure in these systems. PMID:26456154
Partial oxidation of step-bound water leads to anomalous pH effects on metal electrode step-edges
Schwarz, Kathleen; Xu, Bingjun; Yan, Yushan; ...
2016-05-26
The design of better heterogeneous catalysts for applications such as fuel cells and electrolyzers requires a mechanistic understanding of electrocatalytic reactions and the dependence of their activity on operating conditions such as pH. A satisfactory explanation for the unexpected pH dependence of electrochemical properties of platinum surfaces has so far remained elusive, with previous explanations resorting to complex co-adsorption of multiple species and resulting in limited predictive power. This knowledge gap suggests that the fundamental properties of these catalysts are not yet understood, limiting systematic improvement. In this paper, we analyze the change in charge and free energies upon adsorptionmore » using density-functional theory (DFT) to establish that water adsorbs on platinum step edges across a wide voltage range, including the double-layer region, with a loss of approximately 0.2 electrons upon adsorption. We show how this as-yet unreported change in net surface charge due to this water explains the anomalous pH variations of the hydrogen underpotential deposition (H upd) and the potentials of zero total charge (PZTC) observed in published experimental data. This partial oxidation of water is not limited to platinum metal step edges, and we report the charge of the water on metal step edges of commonly used catalytic metals, including copper, silver, iridium, and palladium, illustrating that this partial oxidation of water broadly influences the reactivity of metal electrodes.« less
NASA Astrophysics Data System (ADS)
Arifin, M.; Nurlaeny, N.; Devnita, R.; Fitriatin, B. N.; Sandrawati, A.; Supriatna, Y.
2018-02-01
Andisols has a great potential as agriculture land, however, it has a high phosphorus retention, variable charge characteristics and high value of zero net charge or pH0. The research is aimed to study the effects of nanoparticles of rock phosphate (NPRP) and biofertilizer (phosphate solubilizing bacteria/PSB) on soil pH, pHo (zero point of charge, ZPC) and organic-C in one subgroup of Andisols, namely Acrudoxic Durudands, Ciater Region West Java. The research was conducted from October 2016 to February 2017 in Soil Physics Laboratory and Laboratory of Soil Chemistry and Fertility, Soil Science Department, Faculty of Agriculture, Universitas Padjadjaran. This experiment used a completely randomized factorial design, consisting of two factors and three replications. The first factor was nanoparticles of rock phosphate consist of 4 doses 0; 25; 50 and 75 g/1 kg soil and the second factor was biofertilizer dose consist of g/1 kg soil and without biofertilizer. Total treatment combinations were 8 with 3 replications, so there were 24 experimental plots. The results showed that in general NPRR and biofertilizer will decrease the value of soil pH throughout the incubation periods. There is an interaction between nanoparticles of rock phosphate and biofertilizer in decreasing pHo in the first month of incubation, but after 4-month incubation period, NPRP increased. Interaction between 75 g nanoparticles of rock phosphate with 1 g biofertilizer/1 kg soil in fourth months of incubation decreased soil organic-C to 3.35%.
Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A
2007-10-01
Effective electrophoretic mobility data of 20 amino acids reported in the literature are analyzed and interpreted through simple physicochemical models, which are able to provide estimates of coupled quantities like hydrodynamic shape factor, equivalent hydrodynamic radius (size), net charge, actual pK values of ionizing groups, partial charges of ionizing groups, hydration number, and pH near molecule (microenvironment-pH of the BGE). It is concluded that the modeling of the electrophoretic mobility of these analytes requires a careful consideration of hydrodynamic shape coupled to hydration. In the low range of pH studied here, distinctive hydrodynamic behaviors of amino acids are found. For instance, amino acids with basic polar and ionizing side chain remain with prolate shape for pH values varying from 1.99 to 3.2. It is evident that as the pH increases from low values, amino acids get higher hydrations as a consequence each analyte total charge also increases. This result is consistent with the monotonic increase of the hydrodynamic radius, which accounts for both the analyte and the quite immobilized water molecules defining the electrophoretic kinematical unit. It is also found that the actual or effective pK value of the alpha-carboxylic ionizing group of amino acids increases when the pH is changed from 1.99 to 3.2. Several limitations concerning the simple modeling of the electrophoretic mobility of amino acids are presented for further research.
Facing the Recession: How Did Safety-Net Hospitals Fare Financially Compared with Their Peers?
Reiter, Kristin L; Jiang, H Joanna; Wang, Jia
2014-01-01
Objective To examine the effect of the recession on the financial performance of safety-net versus non-safety-net hospitals. Data Sources/Study Setting Agency for Healthcare Research and Quality Hospital Cost and Utilization Project State Inpatient Databases, Medicare Cost Reports, American Hospital Association Annual Survey, InterStudy, and Area Health Resource File. Study Design Retrospective, longitudinal panel of hospitals, 2007–2011. Safety-net hospitals were identified using percentage of patients who were Medicaid or uninsured. Generalized estimating equations were used to estimate average effects of the recession on hospital operating and total margins, revenues and expenses in each year, 2008–2011, comparing safety-net with non-safety-net hospitals. Data Collection/Extraction Methods 1,453 urban, nonfederal, general acute hospitals in 32 states with complete data. Principal Findings Safety-net hospitals, as identified in 2007, had lower operating and total margins. The gap in operating margin between safety-net and non-safety-net hospitals was sustained throughout the recession; however, total margin was more negatively affected for non-safety-net hospitals in 2008. Higher percentages of Medicaid and uninsured patients were associated with lower revenue in private hospitals in all years, and lower revenue and expenses in public hospitals in 2011. Conclusions Safety-net hospitals may not be disproportionately vulnerable to macro-economic fluctuations, but their significantly lower margins leave less financial cushion to weather sustained financial pressure. PMID:25220012
Raja, Zahid; André, Sonia; Piesse, Christophe; Sereno, Denis; Nicolas, Pierre; Foulon, Thierry
2013-01-01
Transcriptomic and peptidomic analysis of skin secretions from the Painted-belly leaf frog Phyllomedusa sauvagii led to the identification of 5 novel phylloseptins (PLS-S2 to -S6) and also of phylloseptin-1 (PSN-1, here renamed PLS-S1), the only member of this family previously isolated in this frog. Synthesis and characterization of these phylloseptins revealed differences in their antimicrobial activities. PLS-S1, -S2, and -S4 (79–95% amino acid sequence identity; net charge = +2) were highly potent and cidal against Gram-positive bacteria, including multidrug resistant S. aureus strains, and killed the promastigote stage of Leishmania infantum, L. braziliensis and L. major. By contrast, PLS-S3 (95% amino acid identity with PLS-S2; net charge = +1) and -S5 (net charge = +2) were found to be almost inactive against bacteria and protozoa. PLS-S6 was not studied as this peptide was closely related to PLS-S1. Differential scanning calorimetry on anionic and zwitterionic multilamellar vesicles combined with circular dichroism spectroscopy and membrane permeabilization assays on bacterial cells indicated that PLS-S1, -S2, and -S4 are structured in an amphipathic α-helix that disrupts the acyl chain packing of anionic lipid bilayers. As a result, regions of two coexisting phases could be formed, one phase rich in peptide and the other lipid-rich. After reaching a threshold peptide concentration, the disruption of lipid packing within the bilayer may lead to local cracks and disintegration of the microbial membrane. Differences in the net charge, α-helical folding propensity, and/or degree of amphipathicity between PLS-S1, -S2 and -S4, and between PLS-S3 and -S5 appear to be responsible for their marked differences in their antimicrobial activities. In addition to the detailed characterization of novel phylloseptins from P. sauvagii, our study provides additional data on the previously isolated PLS-S1 and on the mechanism of action of phylloseptins. PMID:23967105
The electrification of stratiform anvils
NASA Astrophysics Data System (ADS)
Boccippio, Dennis J.
1997-10-01
Stratiform precipitation regions accompany convective activity on many spatial scales. The electrification of these regions is anomalous in a number of ways. Surface and above-cloud fields are often 'inverted' from normal thunderstorm conditions. Unusually large, bright, horizontal 'spider' lightning and high current and charge transfer positive cloud-to-ground (CC) lightning dominates in these regions. Mesospheric 'red sprite' emissions have to date been observed exclusively over stratiform cloud shields. We postulate that a dominant 'inverted dipole' charge structure may account for this anomalous electrification. This is based upon laboratory observations of charge separation which show that in low liquid water content (LWC) environments, or dry but ice- supersaturated environments, precipitation ice tends to charge positively (instead of negatively) upon collision with smaller crystals. Under typical stratiform cloud conditions, liquid water should be depleted and this charging regime favored. An inverted dipole would be the natural consequence of large-scale charge separation (net flux divergence of charged ice), given typical hydrometeor profiles. The inverted dipole hypothesis is tested using radar and electrical observations of four weakly organized, late- stage systems in Orlando, Albuquerque and the Western Pacific. Time-evolving, area-average vertical velocity profiles are inferred from single Doppler radar data. These profiles provide the forcing for a 1-D steady state micro-physical retrieval, which yields vertical hydrometeor profiles and ice/water saturation conditions. The retrieved microphysical parameters are then combined with laboratory charge transfer measurements to infer the instantaneous charging behavior of the systems. Despite limitations in the analysis technique, the retrievals yield useful results. Total charge transfer drops only modestly as the storm enters the late (stratiform) stage, suggesting a continued active generator is plausible. Generator currents show an enhanced lowermost inverted dipole charging structure, which we may infer will result in a comparable inverted dipole charge structure, consistent with surface, in-situ and remote observations. Fine-scale vertical variations in ice and liquid water content may yield multipolar generator current profiles, despite unipolar charge transfer regimes. This suggests that multipoles observed in balloon soundings may not necessarily conflict with the simple ice-ice collisional charge separation mechanism. Overall, the results are consistent with, but not proof of, the inverted dipole model. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)
Ferroelectric ferrimagnetic LiFe2F6 : Charge-ordering-mediated magnetoelectricity
NASA Astrophysics Data System (ADS)
Lin, Ling-Fang; Xu, Qiao-Ru; Zhang, Yang; Zhang, Jun-Jie; Liang, Yan-Ping; Dong, Shuai
2017-12-01
Trirutile-type LiFe2F6 is a charge-ordered material with an Fe2 +/Fe3 + configuration. Here, its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2F6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effects and desirable functions.
Wu, Dongni; Zhang, Shuangying; Zhao, Yuyuan; Ao, Ningjian; Ramakrishna, Seeram; He, Liumin
2018-03-16
RADA16-I (Ac-(RADA) 4 -CONH 2 ) is a widely investigated self-assembling peptide (SAP) in the biomedical field. It can undergo ordered self-assembly to form stable secondary structures, thereby further forming a nanofiber hydrogel. The modification of RADA16-I with functional peptide motifs has become a popular research topic. Researchers aim to exhibit particular biomedical signaling, and subsequently, further expand its applications. However, only a few fundamental reports are available on the influences of the peptide motifs on self-assembly mechanisms of designer functional RADA16-I SAPs. In this study, we designed RGD-modified RADA16-I SAPs with a series of net charges and amphiphilicities. The assembly/reassembly of these functionally designer SAPs was thoroughly studied using Raman spectroscopy, CD spectroscopy, and AFM. The nanofiber morphology and the secondary structure largely depended on the balance between the hydrophobic effects versus like-charge repulsions of the motifs, which should be to the focus in order to achieve a tailored nanostructure. Our study would contribute insight into considerations for sophisticated design of SAPs for biomedical applications.
Options for Hardening FinFETS with Flowable Oxide Between Fins
2017-03-01
thus hardening by process is needed. Using the methodology of CV measurements on inexpensive experimental blanket oxides we have determined options...NY 10598 Abstract: A methodology using radiation-induced charge measurements by CV techniques on blanket oxides is shown to aid in the choice...of process options for hardening FinFETs. Net positive charge in flowable oxides was reduced by 50 % using a simple non -intrusive process change
Dielectric boundary force and its crucial role in gramicidin
NASA Astrophysics Data System (ADS)
Nadler, Boaz; Hollerbach, Uwe; Eisenberg, R. S.
2003-08-01
In an electrostatic problem with nonuniform geometry, a charge Q in one region induces surface charges [called dielectric boundary charges (DBC)] at boundaries between different dielectrics. These induced surface charges, in return, exert a force [called dielectric boundary force (DBF)] on the charge Q that induced them. The DBF is often overlooked. It is not present in standard continuum theories of (point) ions in or near membranes and proteins, such as Gouy-Chapman, Debye-Huckel, Poisson-Boltzmann or Poisson-Nernst- Planck. The DBF is important when a charge Q is near dielectric interfaces, for example, when ions permeate through protein channels embedded in biological membranes. In this paper, we define the DBF and calculate it explicitly for a planar dielectric wall and for a tunnel geometry resembling the ionic channel gramicidin. In general, we formulate the DBF in a form useful for continuum theories, namely, as a solution of a partial differential equation with boundary conditions. The DBF plays a crucial role in the permeation of ions through the gramicidin channel. A positive ion in the channel produces a DBF of opposite sign to that of the fixed charge force (FCF) produced by the permanent charge of the gramicidin polypeptide, and so the net force on the positive ion is reduced. A negative ion creates a DBF of the same sign as the FCF and so the net (repulsive) force on the negative ion is increased. Thus, a positive ion can permeate the channel, while a negative ion is excluded from it. In gramicidin, it is this balance between the FCF and DBF that allows only singly charged positive ions to move into and through the channel. The DBF is not directly responsible, however, for selectivity between the alkali metal ions (e.g., Li+, Na+, K+): we prove that the DBF on a mobile spherical ion is independent of the ion’s radius.
Chen, Wei; Shen, Jana K
2014-10-15
Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma. Copyright © 2014 Wiley Periodicals, Inc.
Chen, Wei; Shen, Jana K.
2014-01-01
Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416
Dobson, Allen; DaVanzo, Joan E; Haught, Randy; Phap-Hoa, Luu
2017-11-01
Safety-net hospitals play a vital role in delivering health care to Medicaid enrollees, the uninsured, and other vulnerable patients. By reducing the number of uninsured Americans, the Affordable Care Act (ACA) was also expected to lower these hospitals’ significant uncompensated care costs and shore up their financial stability. To examine how the ACA’s Medicaid expansion affected the financial status of safety-net hospitals in states that expanded Medicaid and in states that did not. Using Medicare hospital cost reports for federal fiscal years 2012 and 2015, the authors compared changes in Medicaid inpatient days as a percentage of total inpatient days, Medicaid revenues as a percentage of total net patient revenues, uncompensated care costs as a percentage of total operating costs, and hospital operating margins. Medicaid expansion had a significant, favorable financial impact on safety-net hospitals. From 2012 to 2015, safety-net hospitals in expansion states, compared to those in nonexpansion states, experienced larger increases in Medicaid inpatient days and Medicaid revenues as well as reduced uncompensated care costs. These changes improved operating margins for safety-net hospitals in expansion states. Margins for safety-net hospitals in nonexpansion states, meanwhile, declined.
Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid
NASA Astrophysics Data System (ADS)
Zheng, Menglian; Meinrenken, Christoph
2013-04-01
As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Gonder, Jeff; Brooker, Aaron
This study evaluated the costs and benefits associated with the use of stationary-wireless-power-transfer-enabled plug-in hybrid electric buses and determined the cost effectiveness relative to conventional buses and hybrid electric buses. A factorial design was performed over a number of different battery sizes, charging power levels, and f bus stop charging stations. The net present costs were calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario.more » The parameter sensitivity was also investigated under favorable and unfavorable market penetration assumptions.« less
Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M
2014-03-01
A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10(-2) to 10(7) Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.
Net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76 TeV.
Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S A; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Bugaiev, K; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Carrillo Montoya, C A; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; Demanov, V; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; Erasmo, G D; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Ducroux, L; Dupieux, P; Dutta Majumdar, M R; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Di Giglio, C; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Gonschior, A; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanova, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, V; Ivanov, M; Ivanov, A; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jang, H J; Jangal, S; Janik, M A; Janik, R; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kanaki, K; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, P; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, M; Kim, M; Kim, S H; Kim, D J; Kim, S; Kim, J H; Kim, J S; Kim, B; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lazzeroni, C; Lea, R; Le Bornec, Y; Lechman, M; Lee, S C; Lee, K S; Lee, G R; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; León Vargas, H; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Mohanty, A K; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastirčák, B; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pujol Teixido, J; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, S; Sano, M; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stan, I; Stefanek, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Šumbera, M; Susa, T; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Szymanski, M; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Øvrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, V; Wagner, B; Wan, R; Wang, M; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilk, A; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, X; Zhang, H; Zhou, F; Zhou, D; Zhou, Y; Zhu, J; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M
2013-04-12
We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at sqrt[sNN]=2.76 TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at the LHC are smaller compared to the measurements at the BNL Relativistic Heavy Ion Collider, and as such, closer to what has been theoretically predicted for the formation of a quark-gluon plasma.
NASA Astrophysics Data System (ADS)
Elhadj, S.; de Yoreo, J. J.; Hoyer, J. J.; Dove, P. M.
2006-12-01
The compartment-specific compositions of biologic molecules isolated from biominerals suggest that control of mineral growth may be linked to biochemical features. Here we define a systematic relationship between the ability of biomolecules in solution to promote the growth of calcite (CaCO3) and their net negative molecular charge and hydrophilicity. The degree of enhancement is dependent on peptide composition, but not on peptide sequence. Data analysis shows that this rate enhancement arises from an increase in the kinetic coefficient. We interpret the mechanism of growth enhancement to be a catalytic process whereby biomolecules reduce the magnitude of the diffusive barrier, Ek, by perturbations that displace water molecules- a water shell destruction mechanism. The result is a decrease in the repulsive barrier for attachment of solutes to the solid phase. This previously unrecognized relationship also rationalizes recently reported data showing acceleration of calcite growth rates over rates measured in the pure system by nanomolar levels of abalone nacre proteins. These findings show that the growth-modifying properties of small model peptides may be scaled up to analyze mineralization processes that are mediated by more complex proteins. We suggest that enhancement of calcite growth may now be estimated a priori from the composition of peptide sequences and the calculated values of hydrophilicity and net molecular charge without need for detailed tests for each biomolecule. This insight may contribute to an improved understanding of mineralization in diverse systems of biomineralization.
Tielens, Frederik; Gracia, Lourdes; Polo, Victor; Andrés, Juan
2007-12-20
A theoretical study on the nature of Au-XO(0,-1,+1) (X=C, N, O) interaction is carried out in order to provide a better understanding on the adsorption process of XO molecules on Au surfaces or Au-supported surfaces. The effect of the total charge as well as the presence of an external electric field on the formation processes of the Au-XO complex are analyzed and discussed using DFT (B3LYP) and high-level ab initio (CCSD(T)//MP2) methods employing a 6-311+G(3df) basis set for X and O atoms and Stuttgart pseudopotentials for Au atom. The presence of an electric field can increase the binding of O2 molecule to Au while weakening the formation of the Au-CO complex. These behaviors are discussed in the context of adsorption or deadsorption of these molecules on Au clusters. The formation of the Au-XO complex, the effect of addition/removal of one electron, and the role of the electric field are rationalized by studying the nature of the bonding interactions by means of the electron localization function (ELF) analysis. The net interaction between Au and XO fragments is governed by the interplay of three factors: (i) the amount of charge transfer from Au to XO, (ii) the sharing of the lone pair from X atom by the Au core (V(X, Au) basin), and (iii) the role of the lone pair of Au (V(Au) basin) mainly formed by 6s electrons. The total charge of the system and the applied electric field determine the population and orientation of the V(Au) basin and, subsequently, the degree of repulsion with the V(X, Au) basin.
Zhao, Ling; Cao, Xinde; Zheng, Wei; Wang, Qun; Yang, Fan
2015-10-01
The feedstocks for biochar production are diverse and many of them contain various minerals in addition to being rich in carbon. Twelve types of biomass classified into 2 categories: plant-based and municipal waste, were employed to produce biochars under 350 °C and 500 °C. Their pH, point of zero net charge (PZNC), zeta potential, cation and anion exchange capacity (CEC and AEC) were analyzed. The municipal waste-based biochars (MW-BC) had higher mineral levels than the plant-based biochars (PB-BC). However, the water soluble mineral levels were lower in the MW-BCs due to the dominant presence of less soluble minerals, such as CaCO3 and (Ca,Mg)3(PO4)2. The higher total minerals in MW-BCs accounted for the higher PZNC (5.47-9.95) than in PB-BCs (1.91-8.18), though the PZNCs of the PB-BCs increased more than that of the MW-BCs as the production temperature rose. The minerals had influence on the zeta potentials via affecting the negative charges of biochars and the ionic strength of solution. The organic functional groups in PB-BCs such as -COOH and -OH had a greater effect on the CEC and AEC, while the minerals had a greater effect on that of MW-BCs. The measured CEC and AEC values had a strong positive correlation with the total amount of soluble cations and anions, respectively. Results indicated that biochar surface charges depend not only on the organic functional groups, but also on the minerals present and to some extent, minerals have more influences on the surface electrochemistry and ion exchange properties of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.
Iogenic Plasma and its Rotation-Driven Transport in Jupiter's Magnetosphere
NASA Technical Reports Server (NTRS)
Smyth, William H.
2001-01-01
Model calculations are reported for the Iogenic plasma source created by atomic oxygen and sulfur above Io's exobase in the corona and extended clouds (Outer Region). On a circumplanetary scale, two-dimensional distributions produced by integrating the proper three dimensional rate information for electron impact and charge exchange processes along the magnetic field lines are presented for the pickup ion rates, the net-mass and total-mass loading rates, the mass per unit magnetic flux rate, the pickup conductivity, the radial pickup current, and the net-energy loading rate for the plasma torus. All of the two-dimensional distributions are highly peaked at Io's location and hence highly asymmetric about Jupiter. The Iogenic plasma source is also calculated on a much smaller near-Io scale to investigate the structure of the highly peak rates centered about lo's instantaneous location. The Iogenic plasma source for the Inner Region (pickup rates produced below Io's exobase) is, however, expected to be the dominant source near lo for the formation of the plasma torus ribbon and to be a comparable source, if not a larger contributor, to the energy budget of the plasma torus, so as to provide the necessary power to sustain the plasma torus radiative loss rate.
Comparison of Bottomless Lift Nets and Breder Traps for Sampling Salt-Marsh Nekton
Data set contains: the length of mummichogs (Fundulus heteroclitus) caught on lift nets and Breder traps from May to September 2002; the sizes of green crabs caught in the lift nets and Breder traps during same time frame; the mean density and sample size data for each sampling time and each site (3 sites total) for total nekton sampled and total nekton minus shrimp.This dataset is associated with the following publication:Raposa, K., and M. Chintala. Comparison of Bottomless Lift Nets and Breder Traps for Sampling Salt-Marsh Nekton. TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY. American Fisheries Society, Bethesda, MD, USA, 145(1): 163-172, (2016).
S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels
Gonzalez, Carlos; Morera, Francisco J.; Rosenmann, Eduardo; Alvarez, Osvaldo; Latorre, Ramon
2005-01-01
In voltage-dependent channels, positive charges contained within the S4 domain are the voltage-sensing elements. The “voltage-sensor paddle” gating mechanism proposed for the KvAP K+ channel has been the subject of intense discussion regarding its general applicability to the family of voltage-gated channels. In this model, the voltage sensor composed of the S3b and the S4 segment shuttles across the lipid bilayer during channel activation. Guided by this mechanism, we assessed here the accessibility of residues in the S3 segment of the Shaker K+ channel by using cysteine-scanning mutagenesis. Mutants expressed robust K+ currents in Xenopus oocytes and reacted with methanethiosulfonate ethyltrimethylammonium in both closed and open conformations of the channel. Because Shaker has a long S3–S4 linker segment, we generated a deletion mutant with only three residues to emulate the KvAP structure. In this short linker mutant, all of the tested residues in the S3b were accessible to methanethiosulfonate ethyltrimethylammonium in both closed and open conformations. Because the S3b moves together with the S4 domain in the paddle model, we tested the effects of deleting two negative charges or adding a positive charge to this region of the channel. We found that altering the S3b net charge does not modify the total gating charge involved in channel activation. We conclude that the S3b segment is always exposed to the external milieu of the Shaker K+ channel. Our results are incompatible with any model involving a large membrane displacement of segment S3b. PMID:15774578
Mercury ion thruster research, 1977. [plasma acceleration
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1977-01-01
The measured ion beam divergence characteristics of two and three-grid, multiaperture accelerator systems are presented. The effects of perveance, geometry, net-to-total accelerating voltage, discharge voltage and propellant are examined. The applicability of a model describing doubly-charged ion densities in mercury thrusters is demonstrated for an 8-cm diameter thruster. The results of detailed Langmuir probing of the interior of an operating cathode are given and used to determine the ionization fraction as a function of position upstream of the cathode orifice. A mathematical model of discharge chamber electron diffusion and collection processes is presented along with scaling laws useful in estimating performance of large diameter and/or high specific impluse thrusters. A model describing the production of ionized molecular nitrogen in ion thrusters is included.
NASA Technical Reports Server (NTRS)
Chang, C. H.
1999-01-01
The relationship between Joule heating, diffusion fluxes, and friction forces has been studied for both total and electron thermal energy equations, using general expressions for multicomponent diffusion in two-temperature plasmas with the velocity dependent Lorentz force acting on charged species in a magnetic field. It is shown that the derivation of Joule heating terms requires both diffusion fluxes and friction between species which represents the resistance experienced by the species moving at different relative velocities. It is also shown that the familiar Joule heating term in the electron thermal energy equation includes artificial effects produced by switching the convective velocity from the species velocity to the mass-weighted velocity, and thus should not be ignored even when there is no net energy dissipation.
A techno-economic analysis of aquaculture business in Ogun State, Nigeria
NASA Astrophysics Data System (ADS)
Kareem, R. O.; Williams, S. B.
2009-05-01
Fish supplies 25% of the total protein source in developing countries. A techno-economic analysis was performed for developing a good business proposal for aquaculture loans to enhance aquaculture development in Nigeria. A case study of catfish Clarias gariepinus framing was conducted in Abeokuta North Local Government of Ogun State, Nigeria. The results show that the fixed cost is N18 338 per year, and the variable cost is N459 700 per year, accounting for the largest amount of the total; therefore, a profit of N43 289 per month can be made. Sensitivity analysis was performed to assess any risk(s) that associated with unfavorable changes in government policy with particular reference to monetary policy. Positive net present value shows that the investment in fish farm is economically feasible and the net investment ratio is 3.52. Also, the benefit-cost ratio is 2.17. The internal rate of return (IRR) is 21% showing that the enterprise is able to offset the interest being charged on the loan. It is therefore worthwhile to invest into fish farm business in the study area. The study suggests that to better sustain the local aquaculture business, the government should create a good conducive environment to foster development of the fish farming. Government intervention is urgently needed to solve problems such as in traditional land tenure, grant credit facilities and subsidies, to enhance the aquacultural development in the country.
Optimal deployment of thermal energy storage under diverse economic and climate conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeForest, Nicholas; Mendes, Gonçalo; Stadler, Michael
2014-04-01
This paper presents an investigation of the economic benefit of thermal energy storage (TES) for cooling, across a range of economic and climate conditions. Chilled water TES systems are simulated for a large office building in four distinct locations, Miami in the U.S.; Lisbon, Portugal; Shanghai, China; and Mumbai, India. Optimal system size and operating schedules are determined using the optimization model DER-CAM, such that total cost, including electricity and amortized capital costs are minimized. The economic impacts of each optimized TES system is then compared to systems sized using a simple heuristic method, which bases system size as fractionmore » (50percent and 100percent) of total on-peak summer cooling loads. Results indicate that TES systems of all sizes can be effective in reducing annual electricity costs (5percent-15percent) and peak electricity consumption (13percent-33percent). The investigation also indentifies a number of criteria which drive TES investment, including low capital costs, electricity tariffs with high power demand charges and prolonged cooling seasons. In locations where these drivers clearly exist, the heuristically sized systems capture much of the value of optimally sized systems; between 60percent and 100percent in terms of net present value. However, in instances where these drivers are less pronounced, the heuristic tends to oversize systems, and optimization becomes crucial to ensure economically beneficial deployment of TES, increasing the net present value of heuristically sized systems by as much as 10 times in some instances.« less
New instrument for tribocharge measurement due to single particle impacts.
Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G
2007-02-01
During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as approximately 100 microm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.
New instrument for tribocharge measurement due to single particle impacts
NASA Astrophysics Data System (ADS)
Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Long Ding, Yu; Pitt, Kendal G.
2007-02-01
During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ˜100μm impacting on the target at different incident angles with a velocity up to about 80m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.
Simulation of diffuse-charge capacitance in electric double layer capacitors
NASA Astrophysics Data System (ADS)
Sun, Ning; Gersappe, Dilip
2017-01-01
We use a Lattice Boltzmann Model (LBM) in order to simulate diffuse-charge dynamics in Electric Double Layer Capacitors (EDLCs). Simulations are carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). The steric effect of concentrated solutions is considered by using a Modified Poisson-Nernst-Planck (MPNP) equations and compared with regular Poisson-Nernst-Planck (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. Our studies show how electrode morphology can be used to tailor the properties of supercapacitors.
Causal Diffusion and the Survival of Charge Fluctuations
NASA Astrophysics Data System (ADS)
Abdel-Aziz, Mohamed; Gavin, Sean
2004-10-01
Diffusion may obliterate fluctuation signals of the QCD phase transition in nuclear collisions at SPS and RHIC energies. We propose a hyperbolic diffusion equation to study the dissipation of net charge fluctuations [1]. This equation is needed in a relativistic context, because the classic parabolic diffusion equation violates causality. We find that causality substantially limits the extent to which diffusion can dissipate these fluctuations. [1] M. Abdel-Aziz and S. Gavin, nucl-th/0404058
Khot, Umesh N; Johnson-Wood, Michele L; Geddes, Jason B; Ramsey, Curtis; Khot, Monica B; Taillon, Heather; Todd, Randall; Shaikh, Saeed R; Berg, William J
2009-07-26
The impact of reducing door-to-balloon time on hospital revenues, costs, and net income is unknown. We prospectively determined the impact on hospital finances of (1) emergency department physician activation of the catheterization lab and (2) immediate transfer of the patient to an immediately available catheterization lab by an in-house transfer team consisting of an emergency department nurse, a critical care unit nurse, and a chest pain unit nurse. We collected financial data for 52 consecutive ST-elevation myocardial infarction patients undergoing emergency percutaneous intervention from October 1, 2004-August 31, 2005 and compared this group to 80 consecutive ST-elevation myocardial infarction patients from September 1, 2005-June 26, 2006 after protocol implementation. Per hospital admission, insurance payments (hospital revenue) decreased ($35,043 +/- $36,670 vs. $25,329 +/- $16,185, P = 0.039) along with total hospital costs ($28,082 +/- $31,453 vs. $18,195 +/- $9,242, P = 0.009). Hospital net income per admission was unchanged ($6962 vs. $7134, P = 0.95) as the drop in hospital revenue equaled the drop in costs. For every $1000 reduction in total hospital costs, insurance payments (hospital revenue) dropped $1077 for private payers and $1199 for Medicare/Medicaid. A decrease in hospital charges ($70,430 +/- $74,033 vs. $53,514 +/- $23,378, P = 0.059), diagnosis related group relative weight (3.7479 +/- 2.6731 vs. 2.9729 +/- 0.8545, P = 0.017) and outlier payments with hospital revenue>$100,000 (7.7% vs. 0%, P = 0.022) all contributed to decreasing ST-elevation myocardial infarction hospitalization revenue. One-year post-discharge financial follow-up revealed similar results: Insurance payments: $49,959 +/- $53,741 vs. $35,937 +/- $23,125, P = 0.044; Total hospital costs: $39,974 +/- $37,434 vs. $26,778 +/- $15,561, P = 0.007; Net Income: $9984 vs. $9159, P = 0.855. All of the financial benefits of reducing door-to-balloon time in ST-elevation myocardial infarction go to payers both during initial hospitalization and after one-year follow-up. ClinicalTrials.gov ID: NCT00800163.
Ion extraction capabilities of closely spaced grids
NASA Technical Reports Server (NTRS)
Rovang, D. C.; Wilbur, P. J.
1982-01-01
The ion extraction capabilities of accelerator systems with small screen hole diameters (less than 2.0 mm) are investigated at net-accelerating voltages of 100, 300, and 500 V. Results show that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 1.0 mm, but impingement-limited performance was found to be dependent on the grid separation distance, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained using small hole diameters and closely spaced grids indicate a new mode of grid operation where high current density operation can be achieved with a specified net acceleration voltage by operating the grids at a high rather than low net-to-total acceleration voltage. Beam current densities as high as 25 mA/sq cm were obtained using grids with 1.0 mm diameter holes operating at a net accelerating voltage of 500 V.
Damjanović, Ana; Brooks, Bernard R; García-Moreno, Bertrand
2011-04-28
Molecular dynamics simulations were used to examine the effects of ionization of internal groups on the structures of eighteen variants of staphylococcal nuclease (SNase) with internal Lys, Asp, or Glu. In most cases the RMSD values of internal ionizable side chains were larger when the ionizable moieties were charged than when they were neutral. Calculations of solvent-accessible surface area showed that the internal ionizable side chains were buried in the protein interior when they were neutral and moved toward crevices and toward the protein-water interface when they were charged. The only exceptions are Lys-36, Lys-62, and Lys-103, which remained buried even after charging. With the exception of Lys-38, the number of internal water molecules surrounding the ionizable group increased upon charging: the average number of water oxygen atoms within the first hydration shell increased by 1.7 for Lys residues, by 5.2 for Asp residues, and by 3.2 for Glu residues. The polarity of the microenvironment of the ionizable group also increased when the groups were charged: the average number of polar atoms of any kind within the first hydration shell increased by 2.7 for Lys residues, by 4.8 for Asp residues, and by 4.0 for Glu residues. An unexpected correlation was observed between the absolute value of the shifts in pK(a) values measured experimentally, and several parameters of structural relaxation: the net difference in the polarity of the microenvironment of the charged and neutral forms of the ionizable groups, the net difference in hydration of the charged and neutral forms of the ionizable groups, and the difference in RMSD values of the charged and neutral forms of the ionizable groups. The effects of ionization of internal groups on the conformation of the backbone were noticeable but mostly small and localized to the area immediately next to the internal ionizable moiety. Some variants did exhibit local unfolding.
40 CFR 1065.190 - PM-stabilization and weighing environments for gravimetric analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... neutralizer manufacturer. (ii) You may use other neutralizers, such as corona-discharge ionizers. If you use a corona-discharge ionizer, we recommend that you monitor it for neutral net charge according to the...
40 CFR 1065.190 - PM-stabilization and weighing environments for gravimetric analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... recommended by the neutralizer manufacturer. (ii) You may use other neutralizers, such as corona-discharge ionizers. If you use a corona-discharge ionizer, we recommend that you monitor it for neutral net charge...
40 CFR 1065.190 - PM-stabilization and weighing environments for gravimetric analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... neutralizer manufacturer. (ii) You may use other neutralizers, such as corona-discharge ionizers. If you use a corona-discharge ionizer, we recommend that you monitor it for neutral net charge according to the...
40 CFR 1065.190 - PM-stabilization and weighing environments for gravimetric analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... neutralizer manufacturer. (ii) You may use other neutralizers, such as corona-discharge ionizers. If you use a corona-discharge ionizer, we recommend that you monitor it for neutral net charge according to the...
40 CFR 1065.190 - PM-stabilization and weighing environments for gravimetric analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... recommended by the neutralizer manufacturer. (ii) You may use other neutralizers, such as corona-discharge ionizers. If you use a corona-discharge ionizer, we recommend that you monitor it for neutral net charge...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Lori; Davidson, Carolyn; McLaren, Joyce
With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset,more » on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.« less
NASA Astrophysics Data System (ADS)
Amyx, K.; Sternovsky, Z.; Knappmiller, S.; Robertson, S.; Horanyi, M.; Gumbel, J.
2008-01-01
The MAGIC sounding rocket, launched in January 2005 into the polar mesosphere, carried two detectors for charged aerosol particles. The detectors are graphite patch collectors mounted flush with the skin of the payload and are connected to sensitive electrometers. The measured signal is the net current deposited on the detectors by heavy aerosol particles. The collection of electrons and ions is prevented by magnetic shielding and a small positive bias, respectively. Both instruments detected a layer of heavy aerosol particles between 80 and 85 km with a number density approximately 103 cm-3. Aerodynamic flow simulations imply that the collected particles are larger than ˜1 nm in radius. The particles are detected as a net positive charge deposited on the graphite collectors. It is suggested that the measured positive polarity is due to the electrification of the smoke particles upon impact on the graphite collectors.
Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports
NASA Astrophysics Data System (ADS)
Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl
2016-10-01
Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.
NASA Technical Reports Server (NTRS)
Mach, D. M.; Koshak, W. J.
2007-01-01
A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).
Possible charge analogues of spin transfer torques in bulk superconductors
NASA Astrophysics Data System (ADS)
Garate, Ion
2014-03-01
Spin transfer torques (STT) occur when electric currents travel through inhomogeneously magnetized systems and are important for the motion of magnetic textures such as domain walls. Since superconductors are easy-plane ferromagnets in particle-hole (charge) space, it is natural to ask whether any charge duals of STT phenomena exist therein. We find that the superconducting analogue of the adiabatic STT vanishes in a bulk superconductor with a momentum-independent order parameter, while the superconducting counterpart of the nonadiabatic STT does not vanish. This nonvanishing superconducting torque is induced by heat (rather than charge) currents and acts on the charge (rather than spin) degree of freedom. It can become significant in the vicinity of the superconducting transition temperature, where it generates a net quasiparticle charge and alters the dispersion and linewidth of low-frequency collective modes. This work has been financially supported by Canada's NSERC.
Zhu, Kewu; Ng, Wai Kiong; Shen, Shoucang; Tan, Reginald B H; Heng, Paul W S
2008-11-01
To develop a device for simultaneous measurement of particle aerodynamic diameter and electrostatic charge of inhalation aerosols. An integrated system consisting of an add-on charge measurement device and a liquid impinger was developed to simultaneously determine particle aerodynamic diameter and electrostatic charge. The accuracy in charge measurement and fine particle fraction characterization of the new system was evaluated. The integrated system was then applied to analyze the electrostatic charges of a DPI formulation composed of salbutamol sulphate-Inhalac 230 dispersed using a Rotahaler. The charge measurement accuracy was comparable with the Faraday cage method, and incorporation of the charge measurement module had no effect on the performance of the liquid impinger. Salbutamol sulphate carried negative charges while the net charge of Inhalac 230 and un-dispersed salbutamol sulphate was found to be positive after being aerosolized from the inhaler. The instantaneous current signal was strong with small noise to signal ratio, and good reproducibility of charge to mass ratio was obtained for the DPI system investigated. A system for simultaneously measuring particle aerodynamic diameter and aerosol electrostatic charges has been developed, and the system provides a non-intrusive and reliable electrostatic charge characterization method for inhalation dosage forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, Matthew A.; Gupta, Geetak; Wienecke, Steven
Al{sub x}In{sub y}Ga{sub (1-x-y)}N materials show promise for use in GaN-based heterojunction devices. The growth of these materials has developed to the point where they are beginning to see implementation in high electron mobility transistors (HEMTs) and light emitting diodes. However, the electrical properties of these materials are still poorly understood, especially as related to the net polarization charge at the AlInGaN/GaN interface (Q{sub π}(net)). All theoretical calculations of Q{sub π}(net) share the same weakness: dependence upon polarization bowing parameters, which describe the deviation in Q{sub π}(net) from Vegard's law. In this study, direct analysis of Q{sub π}(net) for Al{submore » 0.54}In{sub 0.12}Ga{sub 0.34}N/GaN HEMTs is reported as extracted from C-V, I-V, and Hall measurements performed on samples grown by metalorganic chemical vapor deposition. An average value for Q{sub π}(net) is calculated to be 2.015 × 10{sup −6} C/cm{sup 2}, with just 6.5% variation between measurement techniques.« less
NASA Astrophysics Data System (ADS)
Ando, Yasunobu; Otani, Minoru
MXenes are a new, large family of layered materials synthesized from MAX phases by simple chemical treatments. Due to their enormous variations, MXenes have attracted great attention as promising candidates as anode materials for next-generation secondary batteries. Unfortunately, the specific capacitance of MXenes supercapacitors is lower than that of active-carbon ones. Theoretical investigation of the electric-double layer (EDL) at electrode interfaces is necessary to improve their capacitance. First-principles molecular dynamics (FPMD) simulation based on the density functional theory (DFT) is performed to estimate the EDL capacitance from a potential profile V(z) and a charge distribution q(z) induced by the ions at water-Ti2CTx (T =O, F) interfaces. Potential profiles V(z) of both Ti2CO2 and Ti2CF2 decrease about 1.0 eV steeply in a region of only 3 Å from a Ti layer, which is the same profile at the platinum interfaces. On the other hand, induced charge distribution q(z) depends on the species of surface termination. Induced electrons are introduced at Ti layers in the case of O surface termination. However, Ti2CF2 is not capable to store electrons at Ti layers because it is mono-valence anions. It indicates that effective surface-position of MXenes depends on the surface terminations. Our results are revealed that small induced charge leads the low EDL capacitance at MXene interfaces. This is because interface polarization due to strong interaction between water and Ti2CTx induces net charge. The surface net charge hinders the introduction of ion-induced charges.
16 CFR 801.11 - Annual net sales and total assets.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Annual net sales and total assets. 801.11 Section 801.11 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND... person; and (2) The total assets of a person shall be as stated on the last regularly prepared balance...
Evaporation-Driven Charge Redistribution and Current Generation for Energy Harvesting Applications
2008-12-01
has occurred and the system has a net positive energy gain, ∆Ecycle, as given by equation (5). 2 2 1 outstorecycle VCE =∆ (5) 5.5 Voltage...then the energy gained using the constant charge model can be represented by equation ( 2 ). minmaxminmax )( 2 1 VVCCE −=∆ ( 2 ) 3. DEVICE...evaporation. Evaporation can be the caused by changes in multiple environmental conditions such as: ( 1 ) percent relative humidity, ( 2 ) temperature, (3
Liming effects on cadmium stabilization in upland soil affected by gold mining activity.
Hong, Chang Oh; Lee, Do Kyoung; Chung, Doug Young; Kim, Pil Joo
2007-05-01
To reduce cadmium (Cd) uptake of plants cultivated in heavy metal-contaminated soil, the best liming material was selected in the incubation test. The effect of the selected material was evaluated in the field. In the incubation experimentation, CaCO(3), Ca(OH)(2), CaSO(4).2H(2)O, and oyster shell meal were mixed with soil at rates corresponding to 0, 400, 800, 1600, 3200 mg Ca kg(-1). The limed soil was moistened to 70% of field moisture capacity, and incubated at 25 degrees C for 4 weeks. Ca(OH)(2) was found to be more efficient on reducing soil NH(4)OAc extractable Cd concentration, due to pH increase induced net negative charge. The selected Ca(OH)(2) was applied at rates 0, 2, 4, 8 Mg ha(-1) and then cultivated radish (Raphanus sativa L.) in the field. NH(4)OAc extractable Cd concentration of soil and plant Cd concentration decreased significantly with increasing Ca(OH)(2) rate, since alkaline-liming material markedly increased net negative charge of soil induced by pH increase, and decreased bioavailable Cd fractions (exchangeable + acidic and reducible Cd fraction) during radish cultivation. Cadmium uptake of radish could be reduced by about 50% by amending with about 5 Mg ha(-1) Ca(OH)(2) without adverse effect on radish yield and growth. The increase of net negative charge of soil by Ca(OH)(2) application may suppress Cd uptake and the competition between Ca(2+) and Cd(2+) may additionally affect the suppression of Cd uptake.
Usrey, Monica L; Nair, Nitish; Agnew, Daniel E; Pina, Cesar F; Strano, Michael S
2007-07-03
The electrophoretic mobilities of single-walled carbon nanotubes (SWNTs) in agarose gels subjected to negatively charged covalent functionalization and noncovalent anionic surfactant adsorption are compared using a simplified hydrodynamic model. Net charges are calculated on the basis of estimated friction coefficients for cylindrical rodlike particles. The effects of functionalization with negatively charged 4-hydroxybenzene diazonium and anionic sodium cholate are quantified and compared with model predictions. The adsorption of Na+ counterions into the nonionic surfactant layer adsorbed on SWNTs (Triton-X-405) is shown to induce a positive charge and reverse the mobility under select conditions. This effect has not been identified or quantified for nanoparticle systems and may be important in the processing of these systems.
NASA Astrophysics Data System (ADS)
Tran, Phong A.; Nguyen, Hiep T.; Fox, Kate; Tran, Nhiem
2018-03-01
Iron oxide magnetic nanoparticles have significant potential in biomedical applications such as in diagnosis, imaging and therapeutic agent delivery. The choice of stabilizers and surface functionalization is important as it is known to strongly influence the cytotoxicity of the nanoparticles. The present study aimed at investigating the effects of surface charges on the cytotoxicity of iron oxide nanoparticles. We used a co-precipitation method to synthesize iron oxide nanoparticles which were then stabilized with either chitosan (CS) or polyvinyl alcohol (PVA) which have net positive charge and zero charge at physiological pH, respectively. The nanoparticles were characterized in terms of size, charges and chemical oxidation state. Cytotoxicity of the nanoparticles was assessed using mouse fibroblast cells and was correlated with surface charges of the nanoparticles and their aggregation.
Charge-coupled-device X-ray detector performance model
NASA Technical Reports Server (NTRS)
Bautz, M. W.; Berman, G. E.; Doty, J. P.; Ricker, G. R.
1987-01-01
A model that predicts the performance characteristics of CCD detectors being developed for use in X-ray imaging is presented. The model accounts for the interactions of both X-rays and charged particles with the CCD and simulates the transport and loss of charge in the detector. Predicted performance parameters include detective and net quantum efficiencies, split-event probability, and a parameter characterizing the effective thickness presented by the detector to cosmic-ray protons. The predicted performance of two CCDs of different epitaxial layer thicknesses is compared. The model predicts that in each device incomplete recovery of the charge liberated by a photon of energy between 0.1 and 10 keV is very likely to be accompanied by charge splitting between adjacent pixels. The implications of the model predictions for CCD data processing algorithms are briefly discussed.
Boncina, Matjaz; Rescic, Jurij; Vlachy, Vojko
2008-08-01
The solubility of aqueous solutions of lysozyme in the presence of polyethylene glycol and various alkaline salts was studied experimentally. The protein-electrolyte mixture was titrated with polyethylene glycol, and when precipitation of the protein occurred, a strong increase of the absorbance at 340 nm was observed. The solubility data were obtained as a function of experimental variables such as protein and electrolyte concentrations, electrolyte type, degree of polymerization of polyethylene glycol, and pH of the solution; the last defines the net charge of the lysozyme. The results indicate that the solubility of lysozyme decreases with the addition of polyethylene glycol; the solubility is lower for a polyethylene glycol with a higher degree of polymerization. Further, the logarithm of the protein solubility is a linear function of the polyethylene glycol concentration. The process is reversible and the protein remains in its native form. An increase of the electrolyte (NaCl) concentration decreases the solubility of lysozyme in the presence and absence of polyethylene glycol. The effect can be explained by the screening of the charged amino residues of the protein. The solubility experiments were performed at two different pH values (pH = 4.0 and 6.0), where the lysozyme net charge was +11 and +8, respectively. Ion-specific effects were systematically investigated. Anions such as Br(-), Cl(-), F(-), and H(2)PO(4)(-) (all in combination with Na(+)), when acting as counterions to a protein with positive net charge, exhibit a strong effect on the lysozyme solubility. The differences in protein solubility for chloride solutions with different cations Cs(+), K(+), and Na(+) (coions) were much smaller. The results at pH = 4.0 show that anions decrease the lysozyme solubility in the order F(-) < H(2)PO(4)(-) < Cl(-) < Br(-) (the inverse Hofmeister series), whereas cations follow the direct Hofmeister series (Cs(+) < K(+) < Na(+)) in this situation.
Löfgren, Stefan; Gustafsson, Jon Petter; Bringmark, Lage
2010-12-01
Numerous studies report increased concentrations of dissolved organic carbon (DOC) during the last two decades in boreal lakes and streams in Europe and North America. Recently, a hypothesis was presented on how various spatial and temporal factors affect the DOC dynamics. It was concluded that declining sulphur deposition and thereby increased DOC solubility, is the most important driver for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength declines due to the reduced input of SO(4)(2-) ions. In this project a geochemical model was set up to calculate the net humic charge and DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm Humic Model was used to investigate whether the observed DOC solubility is related to the humic charge and to examine how pH and ionic strength influence it. Soil water data from recharge and discharge areas, covering both podzols and riparian soils, were used. The model exercise showed that the increased net charge following the pH increase was in many cases counteracted by a decreased ionic strength, which acted to decrease the net charge and hence the DOC solubility. Thus, the recovery from acidification does not necessarily have to generate increasing DOC trends in soil solution. Depending on changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or indifferent. Due to the high hydraulic connectivity with the streams, the explanations to the DOC trends in surface waters should be searched for in discharge areas and peat lands. Copyright © 2010 Elsevier B.V. All rights reserved.
Srikantha, Nishanthan; Mourad, Fatma; Suhling, Klaus; Elsaid, Naba; Levitt, James; Chung, Pei Hua; Somavarapu, Satyanarayana; Jackson, Timothy L
2012-09-01
The purpose of this study was to investigate the influence of molecular shape, conformability, net surface charge and tissue interaction on transscleral diffusion. Unfixed, porcine sclera was clamped in an Ussing chamber. Fluorophore-labelled neutral albumin, neutral dextran, or neutral ficoll were placed in one hemi-chamber and the rate of transscleral diffusion was measured over 24 h using a spectrophotometer. Experiments were repeated using dextrans and ficoll with positive or negative net surface charges. Fluorescence recovery after photobleaching (FRAP) was undertaken to compare transscleral diffusion with diffusion through a solution. All molecules were 70 kDa. With FRAP, the diffusion coefficient (D) of neutral molecules was highest for albumin, followed by ficoll, then dextran (p < 0.0001). Positive dextrans diffused fastest, followed by negative, then neutral dextrans (p = 0.0004). Neutral ficoll diffused the fastest, followed by positive then negative ficoll (p = 0.5865). For the neutral molecules, transscleral D was highest for albumin, followed by dextran, then ficoll (p < 0.0001). D was highest for negative ficoll, followed by neutral, then positive ficoll (p < 0.0001). By contrast, D was highest for positive dextran, followed by neutral, then negative dextran (p = 0.0021). In conclusion, diffusion in free solution does not predict transscleral diffusion and the molecular-tissue interaction is important. Molecular size, shape, and charge may all markedly influence transscleral diffusion, as may conformability to a lesser degree, but their effects may be diametrically opposed in different molecules, and their influence on diffusion is more complex than previously thought. Each variable cannot be considered in isolation, and the interplay of all these variables needs to be tested, when selecting or designing drugs for transscleral delivery. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dekan, G.; Farquhar, M.G.; Gabel, C.
Podocalyxin is the major sialoprotein of the rat glomerulus. Its function is to maintain the filtration slits of the glomerular epithelium open by virtue of its high net negative charge. The authors have used biosynthetic labeling and oligosaccharide analysis to characterize the anionic-charge-carrying moieties on this protein. Kidney slices from 2-day-old rats were biosynthetically labeled with ({sup 35}S)Cys, ({sup 3}H)Man, ({sup 3}H)GlcN, and {sup 35}SO{sub 4}, after which podocalyxin was immunoprecipitated and purified by SDS/PAGE. All these labels were incorporated into podocalyxin. Immunoprecipitates were subjected to digestion with specific glycosidases or digested with Pronase followed by chromatographic analysis of themore » released glycopeptides. Analysis of the {sup 35}SO{sub 4}-labeled glycopeptides indicated that both the N- and O-linked structures were sulfated. They conclude that in newborn rat kidney (i) podocalyxin contains both O- and N-linked oligosaccharides (ii) podocalyxin is sulfated, and (iii) sulfate is located on both O-linked oligosaccharides and on glycopeptides carrying tri- or tetrantennary N-linked structures. These results indicate that the net negative charge of podocalyxin is most likely derived from sulfate as well as from sialic acid residues.« less
Net air emissions from electric vehicles: the effect of carbon price and charging strategies.
Peterson, Scott B; Whitacre, J F; Apt, Jay
2011-03-01
Plug-in hybrid electric vehicles (PHEVs) may become part of the transportation fleet on time scales of a decade or two. We calculate the electric grid load increase and emissions due to vehicle battery charging in PJM and NYISO with the current generation mix, the current mix with a $50/tonne CO(2) price, and this case but with existing coal generators retrofitted with 80% CO(2) capture. We also examine all new generation being natural gas or wind+gas. PHEV fleet percentages between 0.4 and 50% are examined. Vehicles with small (4 kWh) and large (16 kWh) batteries are modeled with driving patterns from the National Household Transportation Survey. Three charging strategies and three scenarios for future electric generation are considered. When compared to 2020 CAFE standards, net CO(2) emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows somewhat smaller benefits unless coal units are fitted with CCS or replaced with lower CO(2) generation. NO(X) is reduced in both RTOs, but there is upward pressure on SO(2) emissions or allowance prices under a cap.
Mechanism of the free charge carrier generation in the dielectric breakdown
NASA Astrophysics Data System (ADS)
Rahim, N. A. A.; Ranom, R.; Zainuddin, H.
2017-12-01
Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.
Fahy, Brenda G; Ketzler, Jonathan T
2007-01-01
Coding and billing are time consuming and important considerations for critical care practitioners. A 1-year prospective, observational study incorporated the use of a personal digital assistant and MDeverywhere software (Hauppauge, New York) for patient coding and billing. Twelve months of data were examined before electronic implementation (pre-elec) and compared with a 12-month period after implementation (post-elec) by using an unpaired t test or z test with P < .05 considered significant. The total number of charges was 2479 pre-elec and 2243 post-elec. The days from date of service to billing for services significantly decreased from 37.8 pre-elec to 12.4 post-elec (P < .001); days in accounts receivable significantly decreased from 92.0 to 73.0 (P < .001). The net collection rate increased from 44.7% pre-elec to 49.3% post-elec (P < .001). Duplicate charges significantly decreased from 5.0% pre-elec to 1.4% post-elec ( P < .001). The return on investment was 1.97-fold (197%). The initiation of personal digital assistant technology to facilitate billing and coding resulted in significant improvements.
5 CFR 1645.3 - Calculation of total net earnings for each TSP Fund.
Code of Federal Regulations, 2010 CFR
2010-01-01
... BOARD CALCULATION OF SHARE PRICES § 1645.3 Calculation of total net earnings for each TSP Fund. (a) Each... be used to calculate the share price for that business day. [70 FR 32214, June 1, 2005] ...
42 CFR 414.804 - Basis of payment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accurately the net total sales amount for the quarter to the nearest whole dollar.) The result of this... Drug Code 12345-6789-01 subject to the ASP reporting requirement equal $200,000, and the total in... for this National Drug Code for this quarter is: $50,000−(0.33333 × $50,000) = $33,334 (net total...
42 CFR 414.804 - Basis of payment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accurately the net total sales amount for the quarter to the nearest whole dollar.) The result of this... Drug Code 12345-6789-01 subject to the ASP reporting requirement equal $200,000, and the total in... for this National Drug Code for this quarter is: $50,000−(0.33333 × $50,000) = $33,334 (net total...
42 CFR 414.804 - Basis of payment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... calculation of the price concessions percentage in order to round accurately the net total sales amount for... the ASP reporting requirement equal $200,000, and the total in dollars for the sales subject to the... for this quarter is: $50,000−(0.33333 × $50,000) = $33,334 (net total sales amount); $33,334/10,000...
42 CFR 414.804 - Basis of payment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... calculation of the price concessions percentage in order to round accurately the net total sales amount for... the ASP reporting requirement equal $200,000, and the total in dollars for the sales subject to the... for this quarter is: $50,000−(0.33333 × $50,000) = $33,334 (net total sales amount); $33,334/10,000...
42 CFR 414.804 - Basis of payment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accurately the net total sales amount for the quarter to the nearest whole dollar.) The result of this... Drug Code 12345-6789-01 subject to the ASP reporting requirement equal $200,000, and the total in... for this National Drug Code for this quarter is: $50,000−(0.33333 × $50,000) = $33,334 (net total...
The Charging Events in Contact-Separation Electrification.
Musa, Umar G; Cezan, S Doruk; Baytekin, Bilge; Baytekin, H Tarik
2018-02-06
Contact electrification (CE)-charging of surfaces that are contacted and separated, is a common phenomenon, however it is not completely understood yet. Recent studies using surface imaging techniques and chemical analysis revealed a 'spatial' bipolar distribution of charges at the nano dimension, which made a paradigm shift in the field. However, such analyses can only provide information about the charges that remained on the surface after the separation, providing limited information about the actual course of the CE event. Tapping common polymers and metal surfaces to each other and detecting the electrical potential produced on these surfaces 'in-situ' in individual events of contact and separation, we show that, charges are generated and transferred between the surfaces in both events; the measured potential is bipolar in contact and unipolar in separation. We show, the 'contact-charges' on the surfaces are indeed the net charges that results after the separation process, and a large contribution to tribocharge harvesting comes, in fact, from the electrostatic induction resulting from the generated CE charges. Our results refine the mechanism of CE providing information for rethinking the conventional ranking of materials' charging abilities, charge harvesting, and charge prevention.
The Calibration Units of the KM3NeT neutrino telescope
NASA Astrophysics Data System (ADS)
Baret, B.; Keller, P.; Clark, M. Lindsey
2016-04-01
KM3NeT is a network of deep-sea neutrino telescopes to be deployed in the Mediterranean Sea that will perform neutrino astronomy and oscillation studies. It consists of three-dimensional arrays of thousands of optical modules that detect the Cherenkov light induced by charged particles resulting from the interaction of a neutrino with the surrounding medium. The performance of the neutrino telescope relies on the precise timing and positioning calibration of the detector elements. Other environmental conditions which may affect light and sound transmission, such as water temperature and salinity, must also be continuously monitored. This contribution describes the technical design of the first Calibration Unit, to be deployed on the French site as part of KM3NeT Phase 1.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES... access elements net investment as defined in § 69.2 (z) shall be apportioned among the interexchange category, the billing and collection category and access elements as provided in this subpart. For purposes...
Adsorption and Dissociation of Water on the (0001) Surface of DHCP Americium
NASA Astrophysics Data System (ADS)
Dholabhai, Pratik; Ray, Asok
2009-03-01
Ab initio total energy calculations within the framework of density functional theory have been performed for water molecule adsorption on the (0001) surface of double hexagonal closed packed americium. Subsequent partial dissociation (OH+H) and complete dissociation (H+O+H) of the water molecule have been examined. The completely dissociated configuration exhibits the strongest binding with the surface followed by partially dissociated species, with all molecular H2O configurations showing weak physisorption. The change in work functions and net magnetic moments before and after adsorption will be presented for all the cases studied. The adsorbate-substrate interactions will be elaborated using the difference charge density distributions and the local density of states. The effects of adsorption on Am 5f electron localization-delocalization in the vicinity of the Fermi level will be discussed.
ERIC Educational Resources Information Center
Sims, Paul A.
2010-01-01
An approach is presented that utilizes a spreadsheet to allow students to explore different means of calculating and visualizing how the charge on peptides and proteins varies as a function of pH. In particular, the concept of isoelectric point is developed to allow students to compare the results of their spreadsheet calculations with those of…
Neill, Christopher; Piccolo, Marisa C; Cerri, Carlos C; Steudler, Paul A; Melillo, Jerry M; Brito, Marciano
1997-04-01
Previous studies of the effect of tropical forest conversion to cattle pasture on soil N dynamics showed that rates of net N mineralization and net nitrification were lower in pastures compared with the original forest. In this study, we sought to determine the generality of these patterns by examining soil inorganic N concentrations, net mineralization and nitrification rates in 6 forests and 11 pastures 3 years old or older on ultisols and oxisols that encompassed a wide variety of soil textures and spanned a 700-km geographical range in the southwestern Brazilian Amazon Basin state of Rondônia. We sampled each site during October-November and April-May. Forest soils had higher extractable NO 3 - -N and total inorganic N concentrations than pasture soils, but substantial NO 3 - -N occurred in both forest and pasture soils. Rates of net N mineralization and net nitrification were higher in forest soils. Greater concentrations of soil organic matter in finer textured soils were associated with greater rates of net N mineralization and net nitrification, but this relationship was true only under native forest vegetation; rates were uniformly low in pastures, regardless of soil type or texture. Net N mineralization and net nitrification rates per unit of total soil organic matter showed no pattern across the different forest sites, suggesting that controls of net N mineralization may be broadly similar across a wide range of soil types. Similar reductions in rates of net N transformations in pastures 3 years old or older across a range of textures on these soils suggest that changes to soil N cycling caused by deforestation for pasture may be Basin-wide in extent. Lower net N mineralization and net nitrification rates in established pastures suggest that annual N losses from largely deforested landscapes may be lower than losses from the original forest. Total ecosystem N losses since deforestation are likely to depend on the balance between lower N loss rates from established pastures and the magnitude and duration of N losses that occur in the years immediately following forest clearing.
Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng
2018-04-01
Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy soil fertility.
47 CFR 54.301 - Local switching support.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Deferred Maintenance and Retirements Included in Account 1438 Deferred Charges Included in Account 1438... 4300); and Deferred Maintenance and Retirements (Included in Account 1438) shall be allocated according... Amortization Included in Accounts 2005, 2680, 2690, 3410 Net Deferred Operating Income Taxes Accounts 4100...
Analysis of Stationary, Photovoltaic-based Surface Power System Designs at the Lunar South Pole
NASA Technical Reports Server (NTRS)
Freeh, Joshua E.
2009-01-01
Combinations of solar arrays and either batteries or regenerative fuel cells are analyzed for a surface power system module at the lunar south pole. The systems are required to produce 5 kW of net electrical power in sunlight and 2 kW of net electrical power during lunar night periods for a 10-year period between 2020 and 2030. Systems-level models for energy conservation, performance, degradation, and mass are used to compare to various systems. The sensitivities of important and/or uncertain variables including battery specific energy, fuel cell operating voltage, and DC-DC converter efficiency are compared to better understand the system. Switching unit efficiency, battery specific energy, and fuel cell operating voltage appear to be important system-level variables for this system. With reasonably sized solar arrays, the regenerative fuel cell system has significantly lower mass than the battery system based on the requirements and assumptions made herein. The total operational time is estimated at about 10,000 hours in battery discharge/fuel cell mode and about 4,000 and 8,000 hours for the battery charge and electrolyzer modes, respectively. The estimated number of significant depth-of-discharge cycles for either energy storage system is less than 100 for the 10-year period.
Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin.
Ribeiro, Aurislaine S; Ribeiro, Mariana S; Bertolucci, Suzan K V; Bittencourt, Wanderley J M; Carvalho, Alexandre A DE; Tostes, Wesley N; Alves, Eduardo; Pinto, José E B P
2018-04-16
The purpose of this investigation was to determine the influence of colored shade nets on the growth, anatomy and essential oil content, yield and chemical composition of Pogostemon cablin. The plants were cultivated under full sunlight, black, blue and red nets. The harvesting was performed 5 months after planting and it was followed by the analysis of plant growth parameters, leaf anatomy, essential oil content, yield and chemical composition. The plants grown under red net have produced more leaf, shoot, total dry weight and leaf area. Plants cultivated under colored nets showed differences in morphological features. Plants maintained under red net had a higher leaf blade thickness and polar and equatorial diameter of the stomata ratio. Additionally, higher yield of essential oil in the leaves was observed under red and blue colored shade net. The essential oil of the plants grown under red net showed the highest relative percentage of patchoulol (66.84%). Therefore, it is possible using colored shade nets to manipulate P. cablin growth, as well as its essential oil production with several chemical compositions. The analyses of principal components allowed observing that pogostol has negative correlation with α-guaiene and α-bulnesene. There was difference in total dry weight and patchoulol content when the patchouli is cultured under the red colored shade nets.
Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas
NASA Astrophysics Data System (ADS)
Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene
2016-10-01
Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.
Soil pH on mobility of imazaquin in oxisols with positive balance of charges.
Regitano, Jussara B; da Rocha, Wadson S D; Alleoni, Luís R F
2005-05-18
The influence of soil pH on the leaching potential of the ionizable herbicide imazaquin was assessed on the profile of two highly weathered soils having a net positive charge in the B horizon, in contrast to a soil having a net negative charge in the whole profile, using packed soil column experiments. Imazaquin leached to a large extent and faster at Kd values lower than 1.0 L kg(-1), a much more lenient limit than usually proposed for pesticides in the literature (Kd < 5.0 L kg(-1)). The amount of imazaquin leached increased with soil pH. As the soil pH increased, the percentage of imazaquin in the anionic forms, the negative surface potential of the soils, as well as imazaquin water solubility also increased, thus reducing sorption because of repulsive electrostatic forces (hydrophilic interactions). For all surface samples (0-0.2 m), imazaquin did not leach at soil pH values lower than pKa (3.8) and more than 80% of the applied amount was leached at pH values higher than 5.5. For subsurface samples from the acric soils, imazaquin only began to leach at soil pH values > zero point of salt effects (ZPSE > 5.7). In conclusion, the use of surface K(oc) values to predict the amount of imazaquin leached within soil profiles having a positive balance of charges may greatly overestimate its actual leaching potential.
Maeshima, Kazuhiro; Matsuda, Tomoki; Shindo, Yutaka; Imamura, Hiromi; Tamura, Sachiko; Imai, Ryosuke; Kawakami, Syoji; Nagashima, Ryosuke; Soga, Tomoyoshi; Noji, Hiroyuki; Oka, Kotaro; Nagai, Takeharu
2018-02-05
For cell division, negatively charged chromatin, in which nucleosome fibers (10 nm fibers) are irregularly folded [1-5], must be condensed into chromosomes and segregated. While condensin and other proteins are critical for organizing chromatin into the appropriate chromosome shape [6-17], free divalent cations such as Mg 2+ and Ca 2+ , which condense chromatin or chromosomes in vitro [18-28], have long been considered important, especially for local condensation, because the nucleosome fiber has a net negative charge and is by itself stretched like "beads on a string" by electrostatic repulsion. For further folding, other positively charged factors are required to decrease the charge and repulsion [29]. However, technical limitations to measure intracellular free divalent cations, but not total cations [30], especially Mg 2+ , have prevented us from elucidating their function. Here, we developed a Förster resonance energy transfer (FRET)-based Mg 2+ indicator that monitors free Mg 2+ dynamics throughout the cell cycle. By combining this indicator with Ca 2+ [31] and adenosine triphosphate (ATP) [32] indicators, we demonstrate that the levels of free Mg 2+ , but not Ca 2+ , increase during mitosis. The Mg 2+ increase is coupled with a decrease in ATP, which is normally bound to Mg 2+ in the cell [33]. ATP inhibited Mg 2+ -dependent chromatin condensation in vitro. Chelating Mg 2+ induced mitotic cell arrest and chromosome decondensation, while ATP reduction had the opposite effect. Our results suggest that ATP-bound Mg 2+ is released by ATP hydrolysis and contributes to mitotic chromosome condensation with increased rigidity, suggesting a novel regulatory mechanism for higher-order chromatin organization by the intracellular Mg 2+ -ATP balance. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan
2012-04-24
Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.
A compact submicrosecond, high current generator
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.
2009-08-01
Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.
Divertor power and particle fluxes between and during type-I ELMs in the ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Dux, R.; Eich, T.; Fischer, R.; Giannone, L.; Harhausen, J.; Herrmann, A.; Müller, H. W.; Pautasso, G.; Wischmeier, M.; ASDEX Upgrade Team
2008-08-01
Particle, electric charge and power fluxes for type-I ELMy H-modes are measured in the divertor of the ASDEX Upgrade tokamak by triple Langmuir probes, shunts, infrared (IR) thermography and spectroscopy. The discharges are in the medium to high density range, resulting in predominantly convective edge localized modes (ELMs) with moderate fractional stored energy losses of 2% or below. Time resolved data over ELM cycles are obtained by coherent averaging of typically one hundred similar ELMs, spatial profiles from the flush-mounted Langmuir probes are obtained by strike point sweeps. The application of simple physics models is used to compare different diagnostics and to make consistency checks, e.g. the standard sheath model applied to the Langmuir probes yields power fluxes which are compared with the thermographic measurements. In between ELMs, Langmuir probe and thermography power loads appear consistent in the outer divertor, taking into account additional load due to radiation and charge exchange neutrals measured by thermography. The inner divertor is completely detached and no significant power flow by charged particles is measured. During ELMs, quite similar power flux profiles are found in the outer divertor by thermography and probes, albeit larger uncertainties in Langmuir probe evaluation during ELMs have to be taken into account. In the inner divertor, ELM power fluxes from thermography are a factor 10 larger than those derived from probes using the standard sheath model. This deviation is too large to be caused by deficiencies of probe analysis. The total ELM energy deposition from IR is about a factor 2 higher in the inner divertor compared with the outer divertor. Spectroscopic measurements suggest a quite moderate contribution of radiation to the target power load. Shunt measurements reveal a significant positive charge flow into the inner target during ELMs. The net number of elementary charges correlates well with the total core particle loss obtained from highly resolved density profiles. As a consequence, the discrepancy between probe and IR measurements is attributed to the ion power channel via a high mean impact energy of the ions at the inner target. The dominant contributing mechanism is proposed to be the directed loss of ions from the pedestal region into the inner divertor.
NASA Astrophysics Data System (ADS)
KoleŻyński, Andrzej; Szczypka, Wojciech
2016-03-01
Results from theoretical analysis of the crystal structure, electronic structure, and bonding properties of C46 and B6C40 carbon clathrates doped with selected alkali and alkaline earth metals cations (Li, Na, Mg, Ca) are presented. The ab initio calculations were performed by means of the WIEN2k package (full potential linearized augmented plane wave method (FP-LAPW) within density functional theory (DFT)) with PBESol and modified Becke-Johnson exchange-correlation potentials used in geometry optimization and electronic structure calculations, respectively. The bonding properties were analyzed by applying Bader's quantum theory of atoms in molecules formalism to the topological properties of total electron density obtained from ab initio calculations. Analysis of the results obtained (i.a. equilibrium geometry, equation of state, cohesive energy, band structure, density of states—both total and projected on to particular atoms, and topological properties of bond critical points and net charges of topological atoms) is presented in detail.
Bauer, Brad A.; Zhong, Yang; Meninger, David J.; Davis, Joseph E.; Patel, Sandeep
2010-01-01
We study the water-hexane interface using molecular dynamics (MD) and polarizable charge equilibration (CHEQ) force fields. Bulk densities for TIP4P-FQ water and hexane, 1.0086±0.0002 g/cm3 and 0.6378±0.0001 g/cm3, demonstrate excellent agreement with experiment. Interfacial width and interfacial tension are consistent with previously reported values. The in-plane component of the dielectric permittivity (ε∥) for water is shown to decrease from 81.7±0.04 to unity, transitioning longitudinally from bulk water to bulk hexane. ε∥ for hexane reaches a maximum in the interface, but this term represents only a small contribution to the total dielectric constant (as expected for a non-polar species). Structurally, net orientations of the molecules arise in the interfacial region such that hexane lies slightly parallel to the interface and water reorients to maximize hydrogen bonding. Interfacial potentials due to contributions of the water and hexane are calculated to be -567.9±0.13mV and 198.7±0.01mV, respectively, giving rise to a total potential in agreement with the range of values reported from previous simulations of similar systems. Potentials of mean force (PMF) calculated for methanol, ethanol, and 1-propanol for the transfer from water to hexane indicate an interfacial free energy minimum, corresponding to the amphiphilic nature of the molecules. The magnitudes of transfer free energies were further characterized from the solvation free energies of alcohols in water and hexane using thermodynamic integration. This analysis shows that solvation free energies for alcohols in hexane are 0.2-0.3 kcal/mol too unfavorable, whereas solvation of alcohols in water is approximately 1 kcal/mol too favorable. For the pure hexane-water interfacial simulations, we observe a monotonic decrease of the water dipole moment to near-vacuum values. This suggests that the electrostatic component of the desolvation free energy is not as severe for polarizable models than for fixed-charge force fields. The implications of such behavior pertain to the modeling of polar and charged solutes in lipidic environments. PMID:21414823
Ulvatne, H; Haukland, H H; Olsvik, O; Vorland, L H
2001-03-09
Antimicrobial peptides have been extensively studied in order to elucidate their mode of action. Most of these peptides have been shown to exert a bactericidal effect on the cytoplasmic membrane of bacteria. Lactoferricin is an antimicrobial peptide with a net positive charge and an amphipatic structure. In this study we examine the effect of bovine lactoferricin (lactoferricin B; Lfcin B) on bacterial membranes. We show that Lfcin B neither lyses bacteria, nor causes a major leakage from liposomes. Lfcin B depolarizes the membrane of susceptible bacteria, and induces fusion of negatively charged liposomes. Hence, Lfcin B may have additional targets responsible for the antibacterial effect.
17 CFR 229.1100 - (Item 1100) General.
Code of Federal Regulations, 2014 CFR
2014-04-01
... aggregate asset pool. (3) Present loss and cumulative loss information, as applicable, regarding charge-offs... assets that have experienced a net loss. (4) Categorize all delinquency and loss information by pool... any other material information regarding delinquencies and losses particular to the pool asset type(s...
17 CFR 229.1100 - (Item 1100) General.
Code of Federal Regulations, 2011 CFR
2011-04-01
... aggregate asset pool. (3) Present loss and cumulative loss information, as applicable, regarding charge-offs... assets that have experienced a net loss. (4) Categorize all delinquency and loss information by pool... any other material information regarding delinquencies and losses particular to the pool asset type(s...
17 CFR 229.1100 - (Item 1100) General.
Code of Federal Regulations, 2013 CFR
2013-04-01
... aggregate asset pool. (3) Present loss and cumulative loss information, as applicable, regarding charge-offs... assets that have experienced a net loss. (4) Categorize all delinquency and loss information by pool... any other material information regarding delinquencies and losses particular to the pool asset type(s...
17 CFR 229.1100 - (Item 1100) General.
Code of Federal Regulations, 2012 CFR
2012-04-01
... aggregate asset pool. (3) Present loss and cumulative loss information, as applicable, regarding charge-offs... assets that have experienced a net loss. (4) Categorize all delinquency and loss information by pool... any other material information regarding delinquencies and losses particular to the pool asset type(s...
Status of Net Metering: Assessing the Potential to Reach Program Caps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, J.; Gelman, R.; Bird, L.
2014-09-01
Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.
Characterizing the surface charge of synthetic nanomembranes by the streaming potential method
Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo
2010-01-01
The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592
Critical point in the phase diagram of primordial quark-gluon matter from black hole physics
NASA Astrophysics Data System (ADS)
Critelli, Renato; Noronha, Jorge; Noronha-Hostler, Jacquelyn; Portillo, Israel; Ratti, Claudia; Rougemont, Romulo
2017-11-01
Strongly interacting matter undergoes a crossover phase transition at high temperatures T ˜1012 K and zero net-baryon density. A fundamental question in the theory of strong interactions, QCD, is whether a hot and dense system of quarks and gluons displays critical phenomena when doped with more quarks than antiquarks, where net-baryon number fluctuations diverge. Recent lattice QCD work indicates that such a critical point can only occur in the baryon dense regime of the theory, which defies a description from first principles calculations. Here we use the holographic gauge/gravity correspondence to map the fluctuations of baryon charge in the dense quark-gluon liquid onto a numerically tractable gravitational problem involving the charge fluctuations of holographic black holes. This approach quantitatively reproduces ab initio results for the lowest order moments of the baryon fluctuations and makes predictions for the higher-order baryon susceptibilities and also for the location of the critical point, which is found to be within the reach of heavy-ion collision experiments.
Direct Effects on the Membrane Potential due to "Pumps" that Transfer No Net Charge
Schwartz, Tobias L.
1971-01-01
The effects of active ionic transport are included in the derivation of a general expression for the zero current membrane potential. It is demonstrated that an active transport system that transfers no net charge (nonrheogenic) may, nevertheless, directly alter the membrane potential. This effect depends upon the exchange of matter within the membrane between the active and passive diffusion regimes. Furthermore, in the presence of such exchange, the transmembrane active fluxes measured by the usual techniques and the local pumped fluxes are not identical. Several common uses of the term “electrogenic pump” are thus shown to be inconsistent with each other. These inconsistencies persist when the derivation is extended to produce a Goldman equation modified to account for active transport; however, that equation is shown to be limited by less narrow constraints on membrane heterogeneity and internal electric field than those previously required. In particular, it is applicable to idealized mosaic membranes limited by these requirements. PMID:5113004
General Matrix Inversion for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms
NASA Technical Reports Server (NTRS)
Mach, D. M.; Koshak, W. J.
2006-01-01
We have developed a matrix calibration procedure that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. Our calibration method is being used with all of our aircraft/electric field sensing combinations and can be generalized to any reasonable combination of electric field measurements and aircraft. We determine a calibration matrix that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or de-emphasized (for example, due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate our calibration technique, we present data from several of our aircraft programs (ER-2, DC-8, Altus, Citation).
Spatial Extent of Charge Repulsion Regulates Assembly Pathways for Lysozyme Amyloid Fibrils
Hill, Shannon E.; Miti, Tatiana; Richmond, Tyson; Muschol, Martin
2011-01-01
Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path. PMID:21483680
Does the cost of robotic cholecystectomy translate to a financial burden?
Rosemurgy, Alexander; Ryan, Carrie; Klein, Richard; Sukharamwala, Prashant; Wood, Thomas; Ross, Sharona
2015-08-01
Robotic application to cholecystectomy has dramatically increased, though its impact on cost of care and reimbursement has not been elucidated. We undertook this study to evaluate and compare cost of care and reimbursement with robotic versus laparoscopic cholecystectomy. The charges and reimbursement of all robotic and laparoscopic cholecystectomies at one hospital undertaken from June 2012 to June 2013 were determined. Operative duration is defined as time into and time out of the operating room. Data are presented as median data. Comparisons were undertaken using the Mann-Whitney U-test with significance accepted at p ≤ 0.05. Robotic cholecystectomy took longer (47 min longer) and had greater charges ($8,182.57 greater) than laparoscopic cholecystectomy (p < 0.05 for each). However, revenue, earnings before depreciation, interest, and taxes (EBDIT), and Net Income were not impacted by approach. Relative to laparoscopic cholecystectomy, robotic cholecystectomy takes longer and has greater charges. Revenue, EBDIT, and Net Income are similar after either approach; this indicates that costs with either approach are similar. Notably, this is possible because much of hospital-based costs are determined by cost allocation and not cost accounting. Thus, the cost of longer operations and costs inherent to the robotic approach for cholecystectomy do not translate to a perceived financial burden.
Conserved charge fluctuations using the D measure in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Netrakanti, P. K.; Garg, P.
2017-05-01
We study the net-charge fluctuation D -measure variable, in high-energy heavy-ion collisions in heavy-ion jet interaction generator (HIJING), ultrarelativistic quantum molecular dynamics (UrQMD), and hadron resonance gas (HRG) models for various center-of-mass energies (√{sNN}). The effects of kinematic acceptance and resonance decay, in the pseudorapidity acceptance interval (Δ η ) and lower transverse momentum (pTmin) threshold, on fluctuation measures are discussed. A strong dependence of D with the Δ η in HIJING and UrQMD models is observed as opposed to results obtained from the HRG model. The dissipation of fluctuation signal is estimated by fitting the D measure as a function of the Δ η . An extrapolated function for higher Δ η values at lower √{sNN} is different from the results obtained from models. Particle species dependence of D and the effect of the pTmin selection threshold are discussed in HIJING and HRG models. The comparison of D , at midrapidity, of net-charge fluctuations at various √{sNN} obtained from the models with the data from the A Large Ion Collider Experiment (ALICE) experiment is discussed. The results from the present paper as a function of Δ η and √{sNN} will provide a baseline for comparison to experimental measurements.
Vega, Juan F.; Vicente-Alique, Ernesto; Núñez-Ramírez, Rafael; Wang, Yang; Martínez-Salazar, Javier
2016-01-01
The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development. PMID:26885635
Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics
NASA Astrophysics Data System (ADS)
Scully, Shawn Ryan
Organic photovoltaics have attracted significant interest over the last decade due to their promise as clean low-cost alternatives to large-scale electric power generation such as coal-fired power, natural gas, and nuclear power. Many believe power conversion efficiency targets of 10-15% must be reached before commercialization is possible. Consequently, understanding the loss mechanisms which currently limit efficiencies to 4-5% is crucial to identify paths to reach higher efficiencies. In this work, we investigate the dominant loss mechanisms in some of the leading organic photovoltaic architectures. In the first class of architectures, which include planar heterojunctions and bulk heterojunctions with large domains, efficiencies are primarily limited by the distance photogenerated excitations (excitons) can be transported (termed the exciton diffusion length) to a heterojunction where the excitons may dissociate. We will discuss how to properly measure the exciton diffusion length focusing on the effects of optical interference and of energy transfer when using fullerenes as quenching layers and show how this explains the variety of diffusion lengths reported for the same material. After understanding that disorder and defects limit exciton diffusion lengths, we suggest some approaches to overcome this. We then extensively investigate the use of long-range resonant energy transfer to increase exciton harvesting. Using simulations and experiments as support, we discuss how energy transfer can be engineered into architectures to increase the distance excitons can be harvested. In an experimental model system, DOW Red/PTPTB, we will show how the distance excitons are harvested can be increased by almost an order of magnitude up to 27 nm from a heterojunction and give design rules and extensions of this concept for future architectures. After understanding exciton harvesting limitations we will look at other losses that are present in planar heterojunctions. One of the primary losses that puts stringent requirements on the charge carrier mobilities in these cells is the recombination losses due to space charge build up at the heterojunction. Because electrons are confined to the acceptor and holes to the donor, net charge density always exists even when mobilities are matched, in contrast to bulk heterojunctions wherein matched mobilities lead to zero net charge. This net charge creates an electric field which opposes the built-in field and limits the current that can be carried away from this heterojunction. Using simulations we show that for relevant current densities charge carrier mobilities must be higher than 10-4 cm2/V.s to avoid significant losses due to space charge formation. In the last part of this work, we will focus on the second class of architectures in which exciton harvesting is efficient. We will present a systematic analysis of one of the leading polymer:fullerene bulk heterojunction cells to show that losses in this architecture are due to charge recombination. Using optical measurements and simulations, exciton harvesting measurements, and device characteristics we will show that the dominant loss is likely due to field-dependent geminate recombination of the electron and hole pair created immediately following exciton dissociation. No losses in this system are seen due to bimolecular recombination or space charge which provides information on charge-carrier mobility targets necessary for the future design of high efficiency organic photovoltaics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, J.; Bird, L.; Gelman, R.
Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.
Timber resource statistics for the Yakataga inventory unit, Alaska, 1976.
Willem W.S. van Hees
1985-01-01
Statistics on forest area, total gross and net timber volumes, and annual net growth and mortality are presented from the 1976 timber inventory of the Yakataga unit, Alaska. Timberland area is estimated at 209.3 thousand acres (84.7 thousand ha), net growing stock volume at 917.1 million cubic feet (26.0 million m3), and annual net growth and...
Timber resource statistics for the Ketchikan inventory unit, Alaska, 1974.
Willem W.S. van Hees
1984-01-01
Statistics on forest area, total gross and net timber volumes, and annual net growth and mortality are presented from the 1974 timber inventory of the Ketchikan. unit, Alaska. Timberland area is estimated at 1.16 million acres (470 040 ha), net growing stock volume at 6.39 billion cubic feet (181.04 million m3), and annual net growth and...
Novel technique to ensure battery reliability in 42-V PowerNets for new-generation automobiles
NASA Astrophysics Data System (ADS)
Lam, L. T.; Haigh, N. P.; Phyland, C. G.; Huynh, T. D.
The proposed 42-V PowerNet in automobiles requires the battery to provide a large number of shallow discharge-charge cycles at a high rate. High-rate discharge is necessary for engine cranking, while high-rate charge is associated with regenerative braking. The battery will therefore operate at these high rates in a partial-state-of-charge condition — 'HRPSoC duty'. Under simulated HRPSoC duty, it is found that the valve-regulated lead-acid (VRLA) battery fails prematurely due to the progressive accumulation of lead sulfate mainly on the surfaces of the negative plates. This is because the lead sulfate layer cannot be converted efficiently back to sponge lead during charging either from the engine or from the regenerative braking. Eventually, this layer of lead sulfate develops to such extent that the effective surface area of the plate is reduced markedly and the plate can no longer deliver the high-cranking current demanded by the automobile. The objective of this study is to develop and optimize a pulse-generation technique to minimize the development of lead sulfate layers on negative plates of VRLA batteries subjected to HRPSoC duty. The technique involves the application of sets of charging pulses of different frequency. It is found that the cycle-life performance of VRLA batteries is enhanced markedly when d.c. pulses of high frequency are used. For example, battery durability is raised from ˜10 600 cycles (no pulses) to 32 000 cycles with pulses of high frequency. Two key factors contribute to this improvement. The first factor is localization of the charging current on the surfaces of the plates — the higher the frequency, the greater is the amount of current concentrated on the plate surface. This phenomenon is known as the 'skin effect' as only the outer 'skin' of the plate is effectively carrying the current. The second factor is delivery of sufficient charge to the Faradaic resistance of the plate to compensate for the energy loss to inductance and double-layer capacitance effects. The Faradaic resistance represents the electrochemical reaction, i.e., conversion of lead sulfate to lead. The inductance simply results from the connection either between the cables and the terminals of the battery or between the terminals, bus-bars, and the lugs of the plates. The capacitance arises from the double layer which exists at the interface between the plate and the electrolyte solution. These findings have provided a demonstration and a scientific explanation of the benefit of superimposed pulsed current charging in suppressing the sulfation of negative plates in VRLA batteries operated under 42-V PowerNet and hybrid electric vehicle duties. A Novel Pulse™ device has been developed by the CSIRO. This device has the capability to be programmable to suite various applications and can be miniaturized to be encapsulated in the battery cover.
47 CFR 69.304 - Subscriber line cable and wire facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Subscriber line cable and wire facilities. 69.304 Section 69.304 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Apportionment of Net Investment § 69.304 Subscriber line cable and wire...
47 CFR 69.305 - Carrier cable and wire facilities (C&WF).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Carrier cable and wire facilities (C&WF). 69.305 Section 69.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Apportionment of Net Investment § 69.305 Carrier cable and wire...
47 CFR 69.304 - Subscriber line cable and wire facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 3 2011-10-01 2011-10-01 false Subscriber line cable and wire facilities. 69.304 Section 69.304 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Apportionment of Net Investment § 69.304 Subscriber line cable and wire...
47 CFR 69.305 - Carrier cable and wire facilities (C&WF).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 3 2011-10-01 2011-10-01 false Carrier cable and wire facilities (C&WF). 69.305 Section 69.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Apportionment of Net Investment § 69.305 Carrier cable and wire...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., maintenance, and administrative. These charges may be expressed as a percentage of the net pole investment... state court that determines the treatment of accumulated deferred taxes if it is at issue in the... deferred taxes. (x) The rate of return authorized for the utility for intrastate service. With its pleading...
Goldschmidt, Y; Gafni, A
1991-01-01
The economic aspect of depreciation and interest on capital are incorporated within a managerial accounting framework by treating both items as imputed charges to be debited to the users of the assets' services. The costs of these services is examined for individual assets that provide either uniform or declining service over the expected life, and for a stock of assets where the character of the individual assets is ignored. By using imputed charges, the hospital's net income is allocated to its sources.
Khatib, Tala O.; Stevenson, Heather; Yeaman, Michael R.; Bayer, Arnold S.
2016-01-01
The cytoplasmic membrane of Staphylococcus aureus contains ∼20 mol% of the net cationic lipid lysyl-phosphatidylglycerol (LPG). Elevated fractions of LPG are associated with increased resistance to cationic antibiotics, including the lipopeptide daptomycin (DAP). Although the surface charge of the bacterial cytoplasmic membrane is altered by LPG, surface binding of DAP was found to be only moderately affected in anionic vesicles containing 20 mol% LPG. These results suggest that charge repulsion cannot fully explain LPG-mediated resistance to cationic peptides. PMID:27216066
A gel as an array of channels.
Zimm, B H
1996-06-01
We consider the theory of charged point molecules ('probes') being pulled by an electric field through a two-dimensional net of channels that represents a piece of gel. Associated with the position in the net is a free energy of interaction between the probe and the net; this free energy fluctuates randomly with the position of the probe in the net. The free energy is intended to represent weak interactions between the probe and the gel, such as entropy associated with the restriction of the freedom of motion of the probe by the gel, or electrostatic interactions between the probe and charges fixed to the gel. The free energy can be thought of as a surface with the appearance of a rough, hilly landscape spread over the net; the roughness is measured by the standard deviation of the free-energy distribution. Two variations of the model are examined: (1) the net is assumed to have all channels open, or (2) only channels parallel to the electric field are open and all the cross-connecting channels are closed. Model (1) is more realistic but presents a two-dimensional mathematical problem which can only be solved by slow iteration methods, while model (2) is less realistic but presents a one-dimensional problem that can be reduced to simple quadratures and is easy to solve by numerical integration. In both models the mobility of the probe decreases as the roughness parameter is increased, but the effect is larger in the less realistic model (2) if the same free-energy surface is used in both. The mobility in model (2) is reduced both by high points in the rough surface ('bumps') and by low points ('traps'), while in model (1) only the traps are effective, since the probes can flow around the bumps through the cross channels. The mobility in model (2) can be made to agree with model (1) simply by cutting off the bumps of the surface. Thus the simple model (2) can be used in place of the more realistic model (1) that is more difficult to compute.
Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z
2012-12-07
We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.
NASA Astrophysics Data System (ADS)
Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.
2017-11-01
Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.
Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress
NASA Astrophysics Data System (ADS)
Boukhari, Hamed; Rogti, Fatiha
2016-10-01
The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.
ERIC Educational Resources Information Center
Advisory Committee on Student Financial Assistance, 2012
2012-01-01
A review of net price calculators--a financial aid tool mandated by the "Higher Education Opportunity Act" of 2008--reveals that students from low-, moderate-, and middle-income families face record-level net prices at 4-year public colleges today. These net prices will translate into levels of average total loan burden far in excess of…
Timber resource statistics for the Petersburg/Wrangell inventory unit, Alaska, 1972.
Willem W.S. Van Hees; Vernon J. LaBau
1983-01-01
Statistics on forest area, total gross and net timber volumes, and annual net growth and mortality are presented from the 1972 timber inventory of the Petersburg/Wrangell unit, Alaska. Timberland area is estimated at 1.3 million acres (520 770 ha), net growing stock volume at 7.1 billion cubic feet (200.2 million m3), and annual net growth and...
Timber resource statistics for the Prince of Wales inventory unit, Alaska, 1973.
Willem W.S. Van Hees; Vernon J. LaBau
1983-01-01
Statistics on forest area, total gross and net timber volumes, and annual net growth and mortality are presented from the 1973 timber inventory of the Prince of Wales unit, Alaska. Timberland area is estimated at 1.38 million acres (557 593 ha), net growing stock volume at 7.56 billion cubic feet (214 million m3), and annual net growth and...
Timber resource statistics for the Yakutat inventory unit, Alaska, 1975.
Willem W.S. Van Hees; Vernon J. LaBau
1984-01-01
Statistics on forest area, total gross and net,timber volumes, and annual net growth and mortality are presented from the 1975 timber inventory of the Yakutat unit, Alaska. Area of timberland is estimated at 236.3 thousand acres (95.6 thousand ha), net volume of growing stock at 1.1 billion cubic feet (29.9 million m3), and annual net growth and...
Three-year financial analysis of pharmacy services at an independent community pharmacy.
Doucette, William R; McDonough, Randal P; Mormann, Megan M; Vaschevici, Renata; Urmie, Julie M; Patterson, Brandon J
2012-01-01
To assess the financial performance of pharmacy services including vaccinations, cholesterol screenings, medication therapy management (MTM), adherence management services, employee health fairs, and compounding services provided by an independent community pharmacy. Three years (2008-10) of pharmacy records were examined to determine the total revenue and costs of each service. Costs included products, materials, labor, marketing, overhead, equipment, reference materials, and fax/phone usage. Costs were allocated to each service using accepted principles (e.g., time for labor). Depending on the service, the total revenue was calculated by multiplying the frequency of the service by the revenue per patient or by adding the total revenue received. A sensitivity analysis was conducted for the adherence management services to account for average dispensing net profit. 7 of 11 pharmacy services showed a net profit each year. Those services include influenza and herpes zoster immunization services, MTM, two adherence management services, employee health fairs, and prescription compounding services. The services that realized a net loss included the pneumococcal immunization service, cholesterol screenings, and two adherence management services. The sensitivity analysis showed that all adherence services had a net gain when average dispensing net profit was included. Most of the pharmacist services had an annual positive net gain. It seems likely that these services can be sustained. Further cost management, such as reducing labor costs, could improve the viability of services with net losses. However, even with greater efficiency, external factors such as competition and reimbursement challenge the sustainability of these services.
Sakyo, Yumi; Nakayama, Kazuhiro; Komatsu, Hiroko; Setoyama, Yoko
2009-01-01
People are required to take in and comprehend a massive amount of health information and in turn make some serious decisions based on that information. We, at St. Luke's College of Nursing, provide a rich selection of high-quality health information, and have set up Nursing Net (The Kango Net:Kango is Nursing in Japanese). This website provides information for consumers as well as people interested in the nursing profession. In an attempt to identify the needs of users, this study conducted an analysis of the contents on the total consultation page. Many readers voted that responses to nursing techniques and symptoms questions proved instrumental in their queries. Based on the results of this study, we can conclude that this is an easy-to-access, convenient site for getting health information about physical symptoms and nursing techniques.
Chihib, N E; Tholozan, J L
1999-06-01
Pectinatus frisingensis is a strictly anaerobic mesophilic bacterium involved in bottled beer spoilage. Cellular volume, adenylate energy charge, intracellular pH and intracellular potassium concentration measurements were performed in late exponential-phase cell suspensions placed in different physiological conditions, to evaluate the capability of this bacterium to maintain cellular homeostasis. The intracellular pH was calculated from the intracellular accumulation of a [carboxyl-14C]benzoic acid. Optimum physiological conditions were the presence of a carbon source and pH of 6.2, hostile conditions were a pH 4.5, absence of a carbon source, and rapid cooling treatment. The cell was able to maintain a higher intracellular pH than the external pH under all conditions. Intracellular volume was lower at pH 4.5 than at pH 6.2. A low net potassium efflux rate was routinely measured in starving cells, while glucose addition promoted immediate net potassium uptake from the medium. Cooling treatment resulted in sudden net potassium efflux from the cell, a decrease of the intracellular pH, and low modifications of the adenylate energy charge in metabolizing-glucose cell suspensions. Thus, cold treatment perturbs the P. frisingensis homeostasis but the bacteria were able to restore their homeostasis in the presence of a carbon source, and under warm conditions.
Where are lengths of stay longer and total charges higher for pediatric burn patients?
Myers, John; Lehna, Carlee
2014-01-01
Treatment of pediatric burn patients is costly and may require long length of stay in the hospital (LOS). Establishing where these LOS and charges are highest is warranted. The current study investigated whether pediatric burn patients had higher total charges and longer LOS when seen at teaching hospitals, when compared with nonteaching hospitals. The study reviewed inpatient admissions for pediatric burn patients in 2003, 2006, and 2009 by using the Kids' Inpatient Database, which is part of the Healthcare Cost and Utilization Project. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes 940-947 were used to define burn injury, LOS, total charges, and type of hospital. The authors tested for differences between the LOS and total charges between children seen at three types of hospitals (pediatric, nonpediatric/teaching, nonpediatric/nonteaching) while adjusting for traditional risk factors (eg age, total burn surface area) by using generalized linear mixed-effects modeling. A total of N=28,777 children had burn injuries (n=16,115, 56.0% seen at pediatric hospitals; n=9353, 32.5% seen at nonpediatric/teaching hospitals; and n=3309, 11.5% seen at nonpediatric/nonteaching hospitals). Pediatric burn patients seen at pediatric hospitals, unadjusted, have significantly longer LOS (5.54 days vs 4.25 days and 4.00 days, P<.001) and more total charges in 2009 dollars ($31,319 vs $24,413 and $21,499, P<.001). In addition, patients seen at pediatric hospitals had significantly more total burn surface area (P<.001), more comorbidities (P=.021), and were younger (P<.001). After adjusting for total burn surface area, number of comorbidities, and age, no differences existed between teaching and nonteaching hospitals for LOS (P=.481) or total charges (P=.758). Although pediatric burn patients may have increased LOS and total charges when seen at teaching hospitals, when taking an unadjusted perspective, this may be an artifact that teaching hospitals see pediatric burn patients who are younger, have more comorbidities, and have more total burn surface area. As such, after adjustment, type of hospital may have no influence on LOS and total charges.
Ions in motor vehicle exhaust and their dispersion near busy roads
NASA Astrophysics Data System (ADS)
Jayaratne, E. R.; Ling, X.; Morawska, L.
2010-09-01
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm -3) was about one-half of that near motorways (1211 cm -3) and about twice as high as that in the urban background (269 cm -3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density ( R2 = 0.3 at p < 0.05) and correlated well with each other in real time ( R2 = 0.87 at p < 0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2 m to 5 m of the kerb. Measured concentrations decreased to background at about 15 m from the kerb when the wind speed was 1.3 m s -1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.
Code of Federal Regulations, 2011 CFR
2011-04-01
... apply as appropriate to programs under titles I, II, and III of the Act: Accrued expenditures means charges made to the JTPA program. Expenditures are the sum of actual cash disbursements, the amount of indirect expense incurred, and the net increase (or decrease) in the amounts owed by the recipient for the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... apply as appropriate to programs under titles I, II, and III of the Act: Accrued expenditures means charges made to the JTPA program. Expenditures are the sum of actual cash disbursements, the amount of indirect expense incurred, and the net increase (or decrease) in the amounts owed by the recipient for the...
Code of Federal Regulations, 2012 CFR
2012-04-01
... apply as appropriate to programs under titles I, II, and III of the Act: Accrued expenditures means charges made to the JTPA program. Expenditures are the sum of actual cash disbursements, the amount of indirect expense incurred, and the net increase (or decrease) in the amounts owed by the recipient for the...
17 CFR 31.15 - Reporting to leverage customers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... short leverage contract. (3) The net ledger balance carried in the leverage customer's account as of the... customer; (4) A detailed accounting of all financial charges and credits to the previous ledger balance...-point type: IF YOU BELIEVE YOUR MONTHLY STATEMENT IS INACCURATE YOU SHOULD PROMPTLY CONTACT (name of LTM...
The Redox Chemistry of Metallophthalocyanines in Solution
1992-05-19
role if they have donor characteristics. Thus the perchlorate and hexafluorophosphate ions are usually regarded as nondonor species, although this may...Table 2) (and also in the lithium salt, see the following) and is more difficult to reduce because of the net negtive charge [41- --4/9/92 --pcrev
26 CFR 1.7702-0 - Table of contents.
Code of Federal Regulations, 2011 CFR
2011-04-01
... accelerated death benefit. (1) In general. (2) Determination of present value of the reduction in death...) For purposes of section 7702(f)(7). (i) Net surrender value. (j) Effective date and special rules. (1... last-to-die basis. (1) In general. (2) Modifications to cash value and future mortality charges upon...
26 CFR 1.7702-0 - Table of contents.
Code of Federal Regulations, 2013 CFR
2013-04-01
... accelerated death benefit. (1) In general. (2) Determination of present value of the reduction in death...) For purposes of section 7702(f)(7). (i) Net surrender value. (j) Effective date and special rules. (1... last-to-die basis. (1) In general. (2) Modifications to cash value and future mortality charges upon...
26 CFR 1.7702-0 - Table of contents.
Code of Federal Regulations, 2012 CFR
2012-04-01
... accelerated death benefit. (1) In general. (2) Determination of present value of the reduction in death...) For purposes of section 7702(f)(7). (i) Net surrender value. (j) Effective date and special rules. (1... last-to-die basis. (1) In general. (2) Modifications to cash value and future mortality charges upon...
26 CFR 1.7702-0 - Table of contents.
Code of Federal Regulations, 2014 CFR
2014-04-01
... accelerated death benefit. (1) In general. (2) Determination of present value of the reduction in death...) For purposes of section 7702(f)(7). (i) Net surrender value. (j) Effective date and special rules. (1... last-to-die basis. (1) In general. (2) Modifications to cash value and future mortality charges upon...
17 CFR 1.33 - Monthly and confirmation statements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... customer— (i) The open contracts with prices at which acquired; (ii) The net unrealized profits or losses... transactions received from or disbursed to such customer, premiums charged and received, and realized profits... of the premium, as well as each mark-up thereon, if applicable, and all other commissions, costs...
Investigation of Electrobiological Properties of Bioaerosols
NASA Astrophysics Data System (ADS)
Mainelis, G.; Yao, M.; An, H. R.
2004-05-01
Exposure to bioaerosols, especially to pathogenic or allergenic microorganisms, may cause a wide range of respiratory and other health disorders in occupational and general populations. One of bioaerosol characteristics - electric charge - can greatly influence their deposition in sampling lines and collection devices. The magnitude of electric charge carried by inhaled particles can have a significant effect on their deposition in the lung. In addition, electric charge may affect role of bioaerosols as ice and cloud condensation nuclei; charge (or electrical mobility) can control bioaerosol movement in electrical fields, such as created by power lines. Electrical charge is also important for the development of bioaerosol samplers that utilize electrostatics for particle collection - this technique has been shown to be more "gentle" collection method than traditionally used impactors and impingers. Our previous studies have shown that airborne environmental bacteria, such as Pseudomonas fluorescens and B. subtilis var. niger, have a net negative charge, with individual cells carrying as many as 10,000 elementary charge units, which sharply contrasted with low electrical charges carried by non-biological test particles. We have also found that magnitude and polarity of electrical charge can significantly affect viability of sensitive bacteria, such as P. fluorescens. In our continuing exploration of electrobiological properties of bioaerosols, we investigated application of electrostatic collection method for concurrent determination of total and viable bioaerosols, and also analyzed the effect of electrical fields on microbial viability. In our new bioaerosol collector, the biological particles are drawn into the sampler's electrical field and are concurrently deposited on an agar plate for determining viable microorganisms, and into a ELISA plate for determining total collected microorganisms. Experiments with B. subtilis var. niger and P. fluorescens vegetative cells have shown that on average 80 percent of airborne bacteria entering the sampler were removed from the air onto the plates when the sampler operated at 8 L/min and used collection voltage of -1,500V. From 15 to 25 percent of all bacteria entering the sampler were enumerated by the culture technique. Use of electrostatic analysis techniques may require application of strong electrical fields which could be damaging to biological particles. In our experiments, the airborne P. fluorescens bacteria were exposed to electric fields of 10kV/cm for 30 seconds, which did not result in viability reduction. In contrast, more than 90 percent of the P. fluorescens cells have been killed when the microorganisms were first deposited on filters and then exposed to positive electrical field of 15 kV/cm for at least 15 minutes. Electrical fields of 5 and 10 kV/cm also achieved similar effect when bacteria were exposed for 120 min. The exposure of bacteria to negative electrical fields resulted in even higher rates of inactivation. The B. subtilis var. niger bacteria proved to be hardier and 10 percent viability reduction was achieved with the use of 15kV/min for 2 hours. The obtained results demonstrate the importance of electrical charges and fields in behavior, collection and control of bioaerosols. The field studies will have to be performed to confirm laboratory findings.
Energy loss of ions by electric-field fluctuations in a magnetized plasma.
Nersisyan, Hrachya B; Deutsch, Claude
2011-06-01
The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.
Retention of membrane charge attributes by cryopreserved-thawed sperm and zeta selection.
Kam, Tricia L; Jacobson, John D; Patton, William C; Corselli, Johannah U; Chan, Philip J
2007-09-01
Mature sperm can be selected based on their negative zeta electrokinetic potential. The zeta selection of cryopreserved sperm is unknown. The objective was to study the effect of zeta processing on the morphology and kinematic parameters of cryopreserved-thawed sperm. Colloid-washed sperm (N = 9 cases) were cryopreserved for 24 h, thawed and diluted in serum-free medium in positive-charged tubes. After centrifugation, the tubes were decanted, serum-supplemented medium was added and the resuspended sperm were analyzed. Untreated sperm and fresh sperm served as the controls. There were improvements in strict normal morphology in fresh (11.8 +/- 0.3 versus control 8.8 +/- 0.3 %, mean +/- SEM) and thawed (8.7 +/- 0.2 versus control 5.4 +/- 0.2%) sperm after zeta processing. Percent sperm necrosis was reduced after zeta processing (66.0 +/- 0.6 versus unprocessed 74.6 +/- 0.3%). Progression decreased by 50% but not total motility after zeta processing of thawed sperm. The results suggested that the cryopreservation process did not impact the sperm membrane net zeta potential and higher percentages of sperm with normal strict morphology, acrosome integrity and reduced necrosis were recovered. The zeta method was simple and improved the selection of quality sperm after cryopreservation but more studies would be needed before routine clinical application.
Andrews, W.H. Jr.
1984-08-01
A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.
NASA Astrophysics Data System (ADS)
Kitazawa, Masakiyo; Asakawa, Masayuki; Ono, Hirosato
2014-01-01
We investigate the time evolution of higher order cumulants of conserved charges in a volume with the diffusion master equation. Applying the result to the diffusion of non-Gaussian fluctuations in the hadronic stage of relativistic heavy ion collisions, we show that the fourth-order cumulant of net-electric charge at LHC energy is suppressed compared with the recently observed second-order cumulant at ALICE, if the higher order cumulants at hadronization are suppressed compared with their values in the hadron phase in equilibrium. The significance of the experimental information on the rapidity window dependence of various cumulants in investigating the history of the dynamical evolution of the hot medium created in relativistic heavy ion collisions is emphasized.
Electrostatically driven fog collection using space charge injection
Damak, Maher; Varanasi, Kripa K.
2018-01-01
Fog collection can be a sustainable solution to water scarcity in many regions around the world. Most proposed collectors are meshes that rely on inertial collision for droplet capture and are inherently limited by aerodynamics. We propose a new approach in which we introduce electrical forces that can overcome aerodynamic drag forces. Using an ion emitter, we introduce a space charge into the fog to impart a net charge to the incoming fog droplets and direct them toward a collector using an imposed electric field. We experimentally measure the collection efficiency on single wires, two-wire systems, and meshes and propose a physical model to quantify it. We identify the regimes of optimal collection and provide insights into designing effective fog harvesting systems. PMID:29888324
40 CFR 98.476 - Data reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) of this section. (c) If you use more than one receiving flow meter, report the net total mass of CO2... section. (a) If you receive CO2 by pipeline, report the following for each receiving flow meter: (1) The total net mass of CO2 received (metric tons) annually. (2) If a volumetric flow meter is used to receive...
40 CFR 98.476 - Data reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) of this section. (c) If you use more than one receiving flow meter, report the net total mass of CO2... section. (a) If you receive CO2 by pipeline, report the following for each receiving flow meter: (1) The total net mass of CO2 received (metric tons) annually. (2) If a volumetric flow meter is used to receive...
Higashi, Hidenori; Tokumi, Takuya; Hogan, Christopher J; Suda, Hiroshi; Seto, Takafumi; Otani, Yoshio
2015-06-28
We use a combination of tandem ion mobility spectrometry (IMS-IMS, with differential mobility analyzers), molecular dynamics (MD) simulations, and analytical models to examine both neutral solvent (H2O) and ion (solvated Na(+)) evaporation from aqueous sodium chloride nanodrops. For experiments, nanodrops were produced via electrospray ionization (ESI) of an aqueous sodium chloride solution. Two nanodrops were examined in MD simulations: a 2500 water molecule nanodrop with 68 Na(+) and 60 Cl(-) ions (an initial net charge of z = +8), and (2) a 1000 water molecule nanodrop with 65 Na(+) and 60 Cl(-) ions (an initial net charge of z = +5). Specifically, we used MD simulations to examine the validity of a model for the neutral evaporation rate incorporating both the Kelvin (surface curvature) and Thomson (electrostatic) influences, while both MD simulations and experimental measurements were compared to predictions of the ion evaporation rate equation of Labowsky et al. [Anal. Chim. Acta, 2000, 406, 105-118]. Within a single fit parameter, we find excellent agreement between simulated and modeled neutral evaporation rates for nanodrops with solute volume fractions below 0.30. Similarly, MD simulation inferred ion evaporation rates are in excellent agreement with predictions based on the Labowsky et al. equation. Measurements of the sizes and charge states of ESI generated NaCl clusters suggest that the charge states of these clusters are governed by ion evaporation, however, ion evaporation appears to have occurred with lower activation energies in experiments than was anticipated based on analytical calculations as well as MD simulations. Several possible reasons for this discrepancy are discussed.
Freeze-out conditions in heavy ion collisions from QCD thermodynamics.
Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Mukherjee, Swagato; Petreczky, P; Schmidt, C; Smith, D; Soeldner, W; Wagner, M
2012-11-09
We present a determination of freeze-out conditions in heavy ion collisions based on ratios of cumulants of net electric charge fluctuations. These ratios can reliably be calculated in lattice QCD for a wide range of chemical potential values by using a next-to-leading order Taylor series expansion around the limit of vanishing baryon, electric charge and strangeness chemical potentials. From a computation of up to fourth order cumulants and charge correlations we first determine the strangeness and electric charge chemical potentials that characterize freeze-out conditions in a heavy ion collision and confirm that in the temperature range 150 MeV ≤ T ≤ 170 MeV the hadron resonance gas model provides good approximations for these parameters that agree with QCD calculations on the 5%-15% level. We then show that a comparison of lattice QCD results for ratios of up to third order cumulants of electric charge fluctuations with experimental results allows us to extract the freeze-out baryon chemical potential and the freeze-out temperature.
Equilibrium polyelectrolyte bundles with different multivalent counterion concentrations
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Holm, Christian
2010-09-01
We present the results of molecular-dynamics simulations on the salt concentration dependence of the formation of polyelectrolyte bundles in thermodynamic equilibrium. Extending our results on salt-free systems we investigate here deficiency or excess of trivalent counterions in solution. Our results reveal that the trivalent counterion concentration significantly alters the bundle size and size distribution. The onset of bundle formation takes place at earlier Bjerrum length values with increasing trivalent counterion concentration. For the cases of 80%, 95%, and 100% charge compensation via trivalent counterions, the net charge of the bundles decreases with increasing size. We suggest that competition among two different mechanisms, counterion condensation and merger of bundles, leads to a nonmonotonic change in line-charge density with increasing Bjerrum length. The investigated case of having an abundance of trivalent counterions by 200% prohibits such a behavior. In this case, we find that the difference in effective line-charge density of different size bundles diminishes. In fact, the system displays an isoelectric point, where all bundles become charge neutral.
A battery power model for the EUVE spacecraft
NASA Technical Reports Server (NTRS)
Yen, Wen L.; Littlefield, Ronald G.; Mclean, David R.; Tuchman, Alan; Broseghini, Todd A.; Page, Brenda J.
1993-01-01
This paper describes a battery power model that has been developed to simulate and predict the behavior of the 50 ampere-hour nickel-cadmium battery that supports the Extreme Ultraviolet Explorer (EUVE) spacecraft in its low Earth orbit. First, for given orbit, attitude, solar array panel and spacecraft load data, the model calculates minute-by-minute values for the net power available for charging the battery for a user-specified time period (usually about two weeks). Next, the model is used to calculate minute-by-minute values for the battery voltage, current and state-of-charge for the time period. The model's calculations are explained for its three phases: sunrise charging phase, constant voltage phase, and discharge phase. A comparison of predicted model values for voltage, current and state-of-charge with telemetry data for a complete charge-discharge cycle shows good correlation. This C-based computer model will be used by the EUVE Flight Operations Team for various 'what-if' scheduling analyses.
Grohe, Bernd; Taller, Adam; Vincent, Peter L; Tieu, Long D; Rogers, Kem A; Heiss, Alexander; Sørensen, Esben S; Mittler, Silvia; Goldberg, Harvey A; Hunter, Graeme K
2009-10-06
To gain more insight into protein structure-function relationships that govern ectopic biomineralization processes in kidney stone formation, we have studied the ability of urinary proteins (Tamm-Horsfall protein, osteopontin (OPN), prothrombin fragment 1 (PTF1), bikunin, lysozyme, albumin, fetuin-A), and model compounds (a bikunin fragment, recombinant-, milk-, bone osteopontin, poly-L-aspartic acid (poly asp), poly-L-glutamic acid (poly glu)) in modulating precipitation reactions of kidney stone-related calcium oxalate mono- and dihydrates (COM, COD). Combining scanning confocal microscopy and fluorescence imaging, we determined the crystal faces of COM with which these polypeptides interact; using scanning electron microscopy, we characterized their effects on crystal habits and precipitated volumes. Our findings demonstrate that polypeptide adsorption to COM crystals is dictated first by the polypeptide's affinity for the crystal followed by its preference for a crystal face: basic and relatively hydrophobic macromolecules show no adsorption, while acidic and more hydrophilic polypeptides adsorb either nonspecifically to all faces of COM or preferentially to {100}/{121} edges and {100} faces. However, investigating calcium oxalates grown in the presence of these polypeptides showed that some acidic proteins that adsorb to crystals do not affect crystallization, even if present in excess of physiological concentrations. These proteins (albumin, bikunin, PTF1, recombinant OPN) have estimated total hydrophilicities from 200 to 850 kJ/mol and net negative charges from -9 to -35, perhaps representing a "window" in which proteins adsorb and coat urinary crystals (support of excretion) without affecting crystallization. Strongest effects on crystallization were observed for polypeptides that are either highly hydrophilic (>950 kJ/mol) and highly carboxylated (poly asp, poly glu), or else highly hydrophilic and highly phosphorylated (native OPN isoforms), suggesting that highly hydrophilic proteins strongly affect precipitation processes in the urinary tract. Therefore, the level of hydrophilicity and net charge is a critical factor in the ability of polypeptides to affect crystallization and to regulate biomineralization processes.
31 CFR 356.13 - When must I report my net long position and how do I calculate it?
Code of Federal Regulations, 2010 CFR
2010-07-01
... auctioned you must report a zero. (iii) the total of your bids and your net long position in the security... blank) or report your net long position. (2) Also, if you have more than one bid in an auction and you must report either your net long position or a zero, you must report that figure only once. Finally, if...
Timber resource statistics for the Chatham area of the Tongass National Forest, Alaska, 1982.
George Rogers; Willern W.S. van Hees
1991-01-01
Statistics on forest area, total gross and net volumes, and annual net growth and mortality are presented from the 1980-82 timber inventory of the Chatham Area, Tongass National Forest, Alaska. Available timberland area is estimated at 1.4 million acres, net growing stock volume at 7.2 billion cubic feet, and annual net growth and mortality at 35.9 and 54.8 million...
Timber resource statistics for the Stikine area of the Tongass National Forest, Alaska, 1984.
George Rogers; Wlllem W.S. van Hees
1991-01-01
Statistics on forest area, total gross and net timber volumes, and annual net growth and mortality are presented from the 1983-84 timber inventory of the Stikine Area, Tongass National Forest, Alaska. Available timberland area is estimated at 1.2 million acres, net growing stock volume at 7.2 billion cubic feet, and annual net growth and mortality at 18.8 and 57.0...
Timber resource statistics for the Ketchikan area of the Tongass National Forest, Alaska, 1985.
George Rogers; Willem W.S. van Hees
1991-01-01
Statistics on forest area, total gross and net volumes, and annual net growth and mortality are presented from the 1984-85 timber inventory of the Ketchikan Area, Tongass National Forest, Alaska. Available timberland area is estimated at 1.5 million acres, net growing stock volume at 8.2 billion cubic feet, and annual net growth and mortality at 24.8 and 65.6 million...
Waterscape determinants of net mercury methylation in a tropical wetland.
Lázaro, Wilkinson L; Díez, Sergi; da Silva, Carolina J; Ignácio, Áurea R A; Guimarães, Jean R D
2016-10-01
The periphyton associated with freshwater macrophyte roots is the main site of Hg methylation in different wetland environments in the world. The aim of this study was to test the use of connectivity metrics of water bodies, in the context of patches, in a tropical waterscape wetland (Guapore River, Amazonia, Brazil) as a predictor of potential net methylmercury (MeHg) production by periphyton communities. We sampled 15 lakes with different patterns of lateral connectivity with the main river channel, performing net mercury methylation potential tests in incubations with local water and Eichhornia crassipes root-periphyton samples, using (203)HgCl2 as a tracer. Physico-chemical variables, landscape data (morphological characteristics, land use, and lateral connection type of water bodies) using GIS resources and field data were analyzed with Generalized Additive Models (GAM). The net Me(203)Hg production (as % of total added (203)Hg) was expressive (6.2-25.6%) showing that periphyton is an important matrix in MeHg production. The model that best explained the variation in the net Me(203)Hg production (76%) was built by the variables: connection type, total phosphorus and dissolved organic carbon (DOC) in water (AICc=48.324, p=0.001). Connection type factor was the best factor to model fit (r(2)=0.32; p=0.008) and temporarily connected lakes had higher rates of net mercury methylation. Both DOC and total phosphorus showed positive significant covariation with the net methylation rates (r(2)=0.26; p=0.008 and r(2)=0.21; p=0.012 respectively). Our study suggests a strong relationship between rates of net MeHg production in this tropical area and the type of water body and its hydrological connectivity within the waterscape. Copyright © 2016 Elsevier Inc. All rights reserved.
Study of Velocity and Materials on Tribocharging of Polymer Powders for Powder Coating Applications
NASA Technical Reports Server (NTRS)
Biris, Alex S.; Trigwell, Steve; Sims, Robert A.; Mazumder, Malay K.
2005-01-01
Electrostatic powder deposition is widely used in a plethora of industrial-applications ranging from the pharmaceutical and food.industries, to farm equipment and automotive applications. The disadvantages of this technique are possible back corona (pin-like formations) onset and the Faraday penetration limitation (when the powder does not penetrate in some recessed areas). A possible solution to overcome these problems is to use tribochargers to electrostatically charge the powder. Tribocharging, or contact charging while two materials are in contact, is related to the work function difference between the contacting materials and generates bipolarly charged particles. The generation of an ion-free powder cloud by tribocharging with high bipolar charge and an overall charge density of almost zero, provides a better coverage of the recessed areas. In this study, acrylic and epoxy powders were fluidized and charged by passing through stainless steel, copper, aluminum, and polycarbonate static mixers, respectively. The particle velocity was varied to determine its effect on the net charge-to-mass ratio (QIM) acquired by the powders. In general, the Q/M increases rapidly when the velocity was increased from 1.5 to 2.5 m/s, remaining almost constant for higher velocities. Charge separation experiments showed bipolar charging for all chargers.
Computer simulations of dendrimer-polyelectrolyte complexes.
Pandav, Gunja; Ganesan, Venkat
2014-08-28
We carry out a systematic analysis of static properties of the clusters formed by complexation between charged dendrimers and linear polyelectrolyte (LPE) chains in a dilute solution under good solvent conditions. We use single chain in mean-field simulations and analyze the structure of the clusters through radial distribution functions of the dendrimer, cluster size, and charge distributions. The effects of LPE length, charge ratio between LPE and dendrimer, the influence of salt concentration, and the dendrimer generation number are examined. Systems with short LPEs showed a reduced propensity for aggregation with dendrimers, leading to formation of smaller clusters. In contrast, larger dendrimers and longer LPEs lead to larger clusters with significant bridging. Increasing salt concentration was seen to reduce aggregation between dendrimers as a result of screening of electrostatic interactions. Generally, maximum complexation was observed in systems with an equal amount of net dendrimer and LPE charges, whereas either excess LPE or dendrimer concentrations resulted in reduced clustering between dendrimers.
Electrical activity during the 2006 Mount St. Augustine volcanic eruptions
Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.
2007-01-01
By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.
Is the ;Earth-ionosphere capacitor; a valid component in the atmospheric global electric circuit?
NASA Astrophysics Data System (ADS)
Haldoupis, Christos; Rycroft, Michael; Williams, Earle; Price, Colin
2017-11-01
This paper examines whether the Earth-ionosphere capacitor (EIC) model is correct, by comparing observed atmospheric electrical properties with those expected for a spherical capacitor, as defined in electrostatics. The comparisons suggest that the EIC concept cannot be reconciled with, and hence cannot account for, the observations, particularly the rapid reduction of the atmospheric electric field with height that is measured. This means that the spherical EIC concept is incorrect by being too simplistic; it is thus misleading. The reason for this flawed concept is simple: the model disregards the non-uniform conductivity of the atmosphere which requires the presence of a net positive charge in the lower atmosphere that equals in magnitude the Earth's negative charge. This positive charge shields the action of the Earth's negative charge from polarizing the ionosphere positively. Thus, the lower D region ionosphere remains electrically neutral, which makes the EIC concept inappropriate.
Staged Z-pinch for the production of high-flux neutrons and net energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessel, Frank J.; Rahman, Hafiz Ur; Rostoker, Norman
A fusible target is embedded in a high Z liner, ohmically heated and then shock wave heated by implosion of an enveloping high Z liner. The target is adiabatically heated by compression, fusibly ignited and charged-particle heated as it is being ignited. A shock front forms as the liner implodes which shock front detaches from the more slowly moving liner, collides with the outer surface of the target, accelerates inward, rapidly heating the target, adiabatically compressing the target and liner and amplifying the current to converge the liner mass toward a central axis thereby compressing the target to a fusionmore » condition when it begins to ignite and produce charged particles. The charged particles are trapped in a large magnetic field surrounding the target. The energy of the charged particles is deposited into the target to further heat the target to produce an energy gain.« less
Cheshire charge in (3+1)-dimensional topological phases
NASA Astrophysics Data System (ADS)
Else, Dominic V.; Nayak, Chetan
2017-07-01
We show that (3 +1 ) -dimensional topological phases of matter generically support loop excitations with topological degeneracy. The loops carry "Cheshire charge": topological charge that is not the integral of a locally defined topological charge density. Cheshire charge has previously been discussed in non-Abelian gauge theories, but we show that it is a generic feature of all (3+1)-D topological phases (even those constructed from an Abelian gauge group). Indeed, Cheshire charge is closely related to nontrivial three-loop braiding. We use a dimensional reduction argument to compute the topological degeneracy of loop excitations in the (3 +1 ) -dimensional topological phases associated with Dijkgraaf-Witten gauge theories. We explicitly construct membrane operators associated with such excitations in soluble microscopic lattice models in Z2×Z2 Dijkgraaf-Witten phases and generalize this construction to arbitrary membrane-net models. We explain why these loop excitations are the objects in the braided fusion 2-category Z (2 VectGω) , thereby supporting the hypothesis that 2-categories are the correct mathematical framework for (3 +1 ) -dimensional topological phases.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636
Kateera, Fredrick; Ingabire, Chantal M; Hakizimana, Emmanuel; Rulisa, Alexis; Karinda, Parfait; Grobusch, Martin P; Mutesa, Leon; van Vugt, Michèle; Mens, Petra F
2015-10-06
Universal long-lasting insecticidal net (LLIN) coverage (ULC) has reduced malaria morbidity and mortality across Africa. Although information is available on bed net use in specific groups, such as pregnant women and children under 5 years, there is paucity of data on their use among the general population. Bed net source, ownership and determinants of use among individuals from households in an eastern Rwanda community 8 months after a ULC were characterized. Using household-based, interviewer-administered questionnaires and interviewer-direct observations, data on bed net source, ownership and key determinants of net use, including demographics, socio-economic status indicators, house structure characteristics, as well as of bed net quantity, type and integrity, were collected from 1400 randomly selected households. Univariate and mixed effects logistic regression modelling was done to assess for determinants of bed net use. A total of 1410 households and 6598 individuals were included in the study. Overall, the proportion of households with at least one net was 92 % while bed net usage was reported among 72 % of household members. Of the households surveyed, a total ownership of 2768 nets was reported, of which about 96 % were reportedly LLINs received from the ULC. By interviewer-physical observation, 88 % of the nets owned were of the LLIN type with the remaining 12 % did not carry any mark to enable type recognition. The odds of bed net use were significantly lower among males and individuals: from households of low socio-economic status, from households with
Markets, voucher subsidies and free nets combine to achieve high bed net coverage in rural Tanzania.
Khatib, Rashid A; Killeen, Gerry F; Abdulla, Salim M K; Kahigwa, Elizeus; McElroy, Peter D; Gerrets, Rene P M; Mshinda, Hassan; Mwita, Alex; Kachur, S Patrick
2008-06-02
Tanzania has a well-developed network of commercial ITN retailers. In 2004, the government introduced a voucher subsidy for pregnant women and, in mid 2005, helped distribute free nets to under-fives in small number of districts, including Rufiji on the southern coast, during a child health campaign. Contributions of these multiple insecticide-treated net delivery strategies existing at the same time and place to coverage in a poor rural community were assessed. Cross-sectional household survey in 6,331 members of randomly selected 1,752 households of 31 rural villages of Demographic Surveillance System in Rufiji district, Southern Tanzania was conducted in 2006. A questionnaire was administered to every consenting respondent about net use, treatment status and delivery mechanism. Net use was 62.7% overall, 87.2% amongst infants (0 to 1 year), 81.8% amongst young children (>1 to 5 years), 54.5% amongst older children (6 to 15 years) and 59.6% amongst adults (>15 years). 30.2% of all nets had been treated six months prior to interview. The biggest source of nets used by infants was purchase from the private sector with a voucher subsidy (41.8%). Half of nets used by young children (50.0%) and over a third of those used by older children (37.2%) were obtained free of charge through the vaccination campaign. The largest source of nets amongst the population overall was commercial purchase (45.1% use) and was the primary means for protecting adults (60.2% use). All delivery mechanisms, especially sale of nets at full market price, under-served the poorest but no difference in equity was observed between voucher-subsidized and freely distributed nets. All three delivery strategies enabled a poor rural community to achieve net coverage high enough to yield both personal and community level protection for the entire population. Each of them reached their relevant target group and free nets only temporarily suppressed the net market, illustrating that in this setting that these are complementary rather than mutually exclusive approaches.
The comparative economic performance of investor-owned chain and not-for-profit hospitals.
Watt, J M; Derzon, R A; Renn, S C; Schramm, C J; Hahn, J S; Pillari, G D
1986-01-09
We examined the differences in the economic performance of 80 matched pairs of investor-owned chain and not-for-profit hospitals in eight states during 1978 and 1980, and considered how their operating strategies might affect their relative success in a more price-conscious market. We found that total charges (adjusted for case mix) and net revenues per case were both significantly higher in the investor-owned chain hospitals, mainly because of higher charges for ancillary services; there were no significant differences between the two groups of hospitals in regard to patient-care costs per case (adjusted for case mix), but the investor-owned hospitals had significantly higher administrative overhead costs; investor-owned hospitals were more profitable; investor-owned hospitals had fewer employees per occupied bed but paid more per employee; investor-owned hospitals had funded more of their capital through debt and had significantly higher capital costs in proportion to their operating costs; and the two groups did not differ in patient mix, as measured by their Medicare case-mix indexes or the proportions of their patients covered by Medicare or Medicaid. We conclude that investor-owned chain hospitals generated higher profits through more aggressive pricing practices rather than operating efficiencies - a result not unexpected in view of past cost-based reimbursement policies. Recent changes in these policies are creating new pressures for cost control and moderation in charges, to which both types of hospitals must adapt. Neither type has a clear-cut advantage in the ability to make the necessary changes.
39 CFR 3060. 30 - Statement of allocated assets and liabilities for competitive products.
Code of Federal Regulations, 2012 CFR
2012-07-01
... on basis of: Total net assets Cash and Cash Equivalents $x,xxx $x,xxx $x,xxx Net Accounts Receivable x,xxx x,xxx x,xxx Supplies, Advances and Prepayments x,xxx x,xxx x,xxx Appropriations Receivable—Revenue Forgone x,xxx x,xxx x,xxx Total Current Assets x,xxx x,xxx x,xxx Property and Equipment: Buildings...
39 CFR 3060. 30 - Statement of allocated assets and liabilities for competitive products.
Code of Federal Regulations, 2013 CFR
2013-07-01
... on basis of: Total net assets Cash and Cash Equivalents $x,xxx $x,xxx $x,xxx Net Accounts Receivable x,xxx x,xxx x,xxx Supplies, Advances and Prepayments x,xxx x,xxx x,xxx Appropriations Receivable—Revenue Forgone x,xxx x,xxx x,xxx Total Current Assets x,xxx x,xxx x,xxx Property and Equipment: Buildings...
39 CFR 3060. 30 - Statement of allocated assets and liabilities for competitive products.
Code of Federal Regulations, 2014 CFR
2014-07-01
... on basis of: Total net assets Cash and Cash Equivalents $x,xxx $x,xxx $x,xxx Net Accounts Receivable x,xxx x,xxx x,xxx Supplies, Advances and Prepayments x,xxx x,xxx x,xxx Appropriations Receivable—Revenue Forgone x,xxx x,xxx x,xxx Total Current Assets x,xxx x,xxx x,xxx Property and Equipment: Buildings...
39 CFR 3060. 30 - Statement of allocated assets and liabilities for competitive products.
Code of Federal Regulations, 2011 CFR
2011-07-01
... on basis of: Total net assets Cash and Cash Equivalents $x,xxx $x,xxx $x,xxx Net Accounts Receivable x,xxx x,xxx x,xxx Supplies, Advances and Prepayments x,xxx x,xxx x,xxx Appropriations Receivable—Revenue Forgone x,xxx x,xxx x,xxx Total Current Assets x,xxx x,xxx x,xxx Property and Equipment: Buildings...
39 CFR 3060. 30 - Statement of allocated assets and liabilities for competitive products.
Code of Federal Regulations, 2010 CFR
2010-07-01
... on basis of: Total net assets Cash and Cash Equivalents $x,xxx $x,xxx $x,xxx Net Accounts Receivable x,xxx x,xxx x,xxx Supplies, Advances and Prepayments x,xxx x,xxx x,xxx Appropriations Receivable—Revenue Forgone x,xxx x,xxx x,xxx Total Current Assets x,xxx x,xxx x,xxx Property and Equipment: Buildings...
Like-charged protein-polyelectrolyte complexation driven by charge patches
NASA Astrophysics Data System (ADS)
Yigit, Cemil; Heyda, Jan; Ballauff, Matthias; Dzubiella, Joachim
2015-08-01
We study the pair complexation of a single, highly charged polyelectrolyte (PE) chain (of 25 or 50 monomers) with like-charged patchy protein models (CPPMs) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size with mono- and multipole moments comparable to those of globular proteins with similar size. We observe large binding affinities between the CPPM and the like-charged PE in the tens of the thermal energy, kBT, that are favored by decreasing salt concentration and increasing charge of the patch(es). Our systematic analysis shows a clear correlation between the distance-resolved potentials of mean force, the number of ions released from the PE, and CPPM orientation effects. In particular, we find a novel two-site binding behavior for PEs in the case of two-patched CPPMs, where intermediate metastable complex structures are formed. In order to describe the salt-dependence of the binding affinity for mainly dipolar (one-patched) CPPMs, we introduce a combined counterion-release/Debye-Hückel model that quantitatively captures the essential physics of electrostatic complexation in our systems.
Orozco-Valencia, Ulises; Gázquez, José L; Vela, Alberto
2017-07-01
The net charge transfer process that occurs between two species, A and B, interacting with each other, may be decomposed into two processes: one in which A receives charge from B, which can be identified as the electrophilic channel for A or the nucleophilic channel for B, and a second in which A donates charge to B, which can be identified as the nucleophilic channel for A or the electrophilic channel for B. By determining the amount of charge associated with both processes through the minimization of the interaction energy associated with each case, the expressions for the amount of charge involved in each case can be expressed in terms of the directional chemical potentials and the hardnesses of the interacting species. The correlation between the charges obtained for the interaction between phosphine ligands of the type PRR'R'' and Ni, and the A 1 carbonyl stretching frequency provides support for their interpretation as measures of the electrophilicity and nucleophilicity of a chemical species, and, at the same time, allows one to describe the donation and back-donation processes in terms of the density functional theory of chemical reactivity.
Mullett, Mark; Fornarelli, Roberta; Ralph, David
2014-01-01
Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met. PMID:24957170
Design and engineering of a man-made diffusive electron-transport protein
Fry, Bryan A.; Solomon, Lee A.; Dutton, P. Leslie
2016-01-01
Maquettes are man-made cofactor-binding oxidoreductases designed from first principles with minimal reference to natural protein sequences. Here we focus on water-soluble maquettes designed and engineered to perform diffusive electron transport of the kind typically carried out by cytochromes, ferredoxins and flavodoxins and other small proteins in photosynthetic and respiratory energy conversion and oxido-reductive metabolism. Our designs were tested by analysis of electron transfer between heme maquettes and the well-known natural electron transporter, cytochrome c. Electron-transfer kinetics were measured from seconds to milliseconds by stopped-flow, while sub-millisecond resolution was achieved through laser photolysis of the carbon monoxide maquette heme complex. These measurements demonstrate electron transfer from the maquette to cytochrome c, reproducing the timescales and charge complementarity modulation observed in natural systems. The ionic strength dependence of inter-protein electron transfer from 9.7 × 106 M−1s−1 to 1.2 × 109 M−1s−1 follows a simple Debye-Hückel model for attraction between +8 net charged oxidized cytochrome c and −19 net charged heme maquette, with no indication of significant protein dipole moment steering. Successfully recreating essential components of energy conversion and downstream metabolism in man-made proteins holds promise for in vivo clinical intervention and for the production of fuel or other industrial products. PMID:26423266
Protein particulates: another generic form of protein aggregation?
Krebs, Mark R H; Devlin, Glyn L; Donald, A M
2007-02-15
Protein aggregation is a problem with a multitude of consequences, ranging from affecting protein expression to its implication in many diseases. Of recent interest is the specific form of aggregation leading to the formation of amyloid fibrils, structures associated with diseases such as Alzheimer's disease. The ability to form amyloid fibrils is now regarded as a property generic to all polypeptide chains. Here we show that around the isoelectric point a different generic form of aggregation can also occur by studying seven widely different, nonrelated proteins that are also all known to form amyloid fibrils. Under these conditions gels consisting of relatively monodisperse spherical particulates are formed. Although these gels have been described before for beta-lactoglobulin, our results suggest that the formation of particulates in the regime where charge on the molecules is minimal is a common property of all proteins. Because the proteins used here also form amyloid fibrils, we further propose that protein misfolding into clearly defined aggregates is a generic process whose outcome depends solely on the general properties of the state the protein is in when aggregation occurs, rather than the specific amino acid sequence. Thus under conditions of high net charge, amyloid fibrils form, whereas under conditions of low net charge, particulates form. This observation furthermore suggests that the rules of soft matter physics apply to these systems.
Rose, Darya B; Nellesen, Dave; Neary, Maureen P; Cai, Beilei
2017-04-01
Advanced neuroendocrine tumors (NETs) are a rare malignancy with considerable need for effective therapies. Everolimus is a mammalian target of rapamycin (mTOR) inhibitor approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2016 for treatment of adults with progressive, well-differentiated, non-functional NETs of gastrointestinal (GI) or lung origin that are unresectable, locally advanced, or metastatic. To assess the 3-year budget impact for a typical US health plan following availability of everolimus for treatment of GI and lung NETs. Methods An economic model was developed that considered two perspectives: an entire health plan and a pharmacy budget. The total budget impact included costs of drug therapies, administration, hospitalizations, physician visits, monitoring, and adverse events (AEs). The pharmacy model only considered drug costs. In a US health plan with 1 million members, the model estimated 66 patients with well-differentiated, non-functional, and advanced or metastatic GI NETs and 20 with lung NETs undergoing treatment each year. Total budget impact in the first through third year after FDA approval ranged from $0.0568-$0.1443 per member per month (PMPM) for GI NETs and from $0.0181-$0.0355 PMPM for lung NETs. The total budget impact was lower than the pharmacy budget impact because it included cost offsets from administration and AE management for everolimus compared with alternative therapies (e.g. chemotherapies). Because GI and lung NETs are rare diseases with limited published data, several assumptions were made that may influence interpretation of results. The budget impact for everolimus was minimal in this rare disease area with a high unmet need, largely due to low disease prevalence. These results should be considered in the context of significant clinical benefits potentially provided by everolimus, including significantly longer progression-free survival (PFS) for advanced GI and lung NET patients.
Minimization of power consumption during charging of superconducting accelerating cavities
NASA Astrophysics Data System (ADS)
Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy
2015-11-01
The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.
Pan, Timothy; Tzeng, Huey-Fen
2017-01-01
Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification. PMID:28328957
Hong, Zhi-Wei; Yang, Yu-Chi; Pan, Timothy; Tzeng, Huey-Fen; Fu, Hua-Wen
2017-01-01
Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification.
NASA Astrophysics Data System (ADS)
Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Baba, P. V.; Badyal, S. K.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, R. C.; Cence, R.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; de Prospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Fretter, W. B.; Gupta, V. K.; Guy, J.; Hanlon, J.; Harigel, G.; Harris, F.; Jabiol, M. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Jones, R. W.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kasper, P.; Kaul, G. L.; Kaur, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J.; Mann, W. A.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Saitta, B.; Schmid, P.; Schmitz, N.; Schneps, J.; Sekulin, R.; Sewell, S.; Singh, J. B.; Sood, P. M.; Smart, W.; Stamer, P.; Varvell, K. E.; Venus, W.; Verluyten, L.; Voyvodic, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Wittek, W.; Yost (E632 Collaboration), G. P.
1989-11-01
Coherent single-pion production on neon nuclei is studied using the Fermilab 15-ft bubble chamber filled with a heavy Ne-H2 mixture and exposed to the Tevatron neutrino beam. In the neutrino energy range 40-300 GeV, the net signal is 20+/-6 events, giving a corrected rate per charged-current event of (0.26+/-0.10)%. The cross section and kinematic distributions agree with the predictions of a model based on partial conservation of axial-vector current and meson dominance.
Diffusion of non-Gaussianity in heavy ion collisions
NASA Astrophysics Data System (ADS)
Kitazawa, Masakiyo; Asakawa, Masayuki; Ono, Hirosato
2014-05-01
We investigate the time evolution of higher order cumulants of bulk fluctuations of conserved charges in the hadronic stage in relativistic heavy ion collisions. The dynamical evolution of non-Gaussian fluctuations is modeled by the diffusion master equation. Using this model we predict that the fourth-order cumulant of net-electric charge is suppressed compared with the recently observed second-order one at ALICE for a reasonable parameter range. Significance of the measurements of various cumulants as functions of rapidity window to probe dynamical history of the hot medium created by heavy ion collisions is emphasized.
Saleh, Shadi; Mourad, Yara; Dimassi, Hani; Hitti, Eveline
2016-03-18
As health care costs continue to increase worldwide, health care systems, and more specifically hospitals are facing continuous pressure to operate more efficiently. One service within the hospital sector whose cost structure has been modestly investigated is the Emergency Department (ED). The study aims to report on the distribution of ED resource use, as expressed in charges, and to determine predictors of/contributors to total ED charges at a major tertiary hospital in Lebanon. The study used data extracted from the ED discharge database for visits between July 31, 2012 and July 31, 2014. Patient visit bills were reported under six major categories: solutions, pharmacy, laboratory, physicians, facility, and radiology. Characteristics of ED visits were summarized according to patient gender, age, acuity score, and disposition. Univariate and multivariate analyses were conducted with total charges as the dependent variable. Findings revealed that the professional fee (40.9 %) followed by facility fee (26.1 %) accounted for the majority of the ED charges. While greater than 80 % of visit charges went to physician and facility fee for low acuity cases, these contributed to only 52 and 54 % of the high acuity presentations where ancillary services and solutions' contribution to the total charges increased. The total charges for males were $14 higher than females; age was a predictor of higher charges with total charges of patients greater than 60 years of age being around $113 higher than ages 0-18 after controlling for all other variables. Understanding the components and determinants of ED charges is essential to developing cost-containment interventions. Institutional modeling of charging patterns can be used to offer price estimates to ED patients who request this information and ultimately help create market competition to drive down costs.
12 CFR 621.6 - Performance categories and other property owned.
Code of Federal Regulations, 2014 CFR
2014-01-01
... loan is considered formally restructured if it meets the “troubled debt restructuring” definition set... charged off, except in cases where the prior chargeoff was taken as part of a formal restructuring of the... property having a net realizable value sufficient to discharge the debt in full; or (B) It is guaranteed by...
12 CFR 621.6 - Performance categories and other property owned.
Code of Federal Regulations, 2012 CFR
2012-01-01
... loan is considered formally restructured if it meets the “troubled debt restructuring” definition set... charged off, except in cases where the prior chargeoff was taken as part of a formal restructuring of the... property having a net realizable value sufficient to discharge the debt in full; or (B) It is guaranteed by...
12 CFR 621.6 - Performance categories and other property owned.
Code of Federal Regulations, 2013 CFR
2013-01-01
... loan is considered formally restructured if it meets the “troubled debt restructuring” definition set... charged off, except in cases where the prior chargeoff was taken as part of a formal restructuring of the... property having a net realizable value sufficient to discharge the debt in full; or (B) It is guaranteed by...
12 CFR 621.6 - Performance categories and other property owned.
Code of Federal Regulations, 2011 CFR
2011-01-01
... loan is considered formally restructured if it meets the “troubled debt restructuring” definition set... charged off, except in cases where the prior chargeoff was taken as part of a formal restructuring of the... property having a net realizable value sufficient to discharge the debt in full; or (B) It is guaranteed by...
7 CFR Appendix A to Part 3015 - Definitions
Code of Federal Regulations, 2010 CFR
2010-01-01
.... “Acquisition cost” of an item of purchased equipment means the net invoice price of the equipment. It includes... equipment useable for the purpose for which it was acquired. Other charges, such as the cost of installation... equipment. If an item of equipment is acquired by trading in another item and paying an additional amount...
46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and halon portable fire extinguishers must be refilled when the weight loss of net content exceeds... weight loss exceeds 10% of weight of charge. Test time delays, alarms, and ventilation shutdowns with.... Inspect hoses and nozzles to be sure they are clean. Halon Weigh cylinders. Recharge if weight loss...
46 CFR 132.350 - Tests and inspections of fire-extinguishing equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and halon portable fire extinguishers must be refilled when the weight loss of net content exceeds... weight loss exceeds 10% of weight of charge. Test time delays, alarms, and ventilation shutdowns with.... Inspect hoses and nozzles to be sure they are clean. Halon Weigh cylinders. Recharge if weight loss...
Wennhall, Inger; Norlund, Anders; Matsson, Lars; Twetman, Svante
2010-01-01
The aim was to calculate the total and the net costs per child included in a 3-year caries preventive program for preschool children and to make estimates of expected lowest and highest costs in a sensitivity analysis. The direct costs for prevention and dental care were applied retrospectively to a comprehensive oral health outreach project for preschool children conducted in a low-socioeconomic multi-cultural urban area. The outcome was compared with historical controls from the same area with conventional dental care. The cost per minute for the various dental professions was added to the cost of materials, rental facilities and equipment based on accounting data. The cost for fillings was extracted from a specified per diem list. Overhead costs were assumed to correspond to 50% of salaries and all costs were calculated as net present value per participating child in the program and expressed in Euro. The results revealed an estimated total cost of 310 Euro per included child (net present value) in the 3-year program. Half of the costs were attributed to the first year of the program and the costs of manpower constituted 45% of the total costs. When the total cost was reduced with the cost of conventional care and the revenue of avoided fillings, the net cost was estimated to 30 Euro. A sensitivity analysis displayed that a net gain could be possible with a maximal outcome of the program. In conclusion, the estimated net costs were displayed and available to those considering implementation of a similar population-based preventive program in areas where preschool children are at high caries risk.
NASA Astrophysics Data System (ADS)
Wang, Zhenzhen; Ying, Ye; Li, Li; Xu, Ting; Wu, Yiping; Guo, Xiaoyu; Wang, Feng; Shen, Haojie; Wen, Ying; Yang, Haifeng
2017-02-01
A net-bracket built out from the core@shell structure of chemically oxidized polypyrrole (PPy) coated electrospun polycaprolactone (PCL) nanofibers, and the following surface modification of a thin layer of positively charged poly(dimethyl diallyl ammonium chloride) (PDDA) has been applied for stretching the reduced graphene oxide (RGO) sheets to some extent with the electrochemical deposition method. The as-formed RGO/PDDA/PCL@PPy nanocomposites were investigated by using scanning electron microscopy, transmission electron microscope, X-ray diffraction and Raman spectroscopy. The graphene tented by the net-bracket showed remarkable electrocatalytic properties in detecting the neurotransmitter dopamine (DA). Low detection limit of 0.34 μM (S/N = 3) with the wide linear detection range from 4 μM to 690 μM was obtained. The successful determination of DA in real urine samples and DA injection were achieved. Such attractive fabrication strategy can be extended to make other graphene sheet-based sensors.
Selahle, Maphoko Kamogelo; Sivakumar, Dharini; Soundy, Puffy
2014-08-01
Photo-selective coloured netting is referred to as a 'new agro-technological' concept adopted to manipulate light quality changes that can induce favourable responses in plants. Tomato (Solanum lycopersicum L.) cultivars AlvaV, Irit and SCX 248 grown under the black net (commercial net, 25% shading) showed higher weight loss, loss of firmness, ascorbic acid content and decline in the ratio of soluble solids content/titrable acidity during post-harvest storage (low-temperature storage at 10°C and 90% relative humidity for 21 days followed by market shelf conditions at 25°C for 2 days). During post-harvest storage, lycopene, β-carotene, total phenolic content and antioxidant scavenging activity were higher in cvs AlfaV and Irit grown under the black or pearl nets. However, the β-carotene, total phenolic content and antioxidant scavenging activity were higher in SCX 248 grown under the red net during post-harvest storage. Cultivar AlfaV grown under the red and pearl nets had a higher number of odour active aroma compounds during post-harvest storage. Panellists preferred cv. AlfaV grown under the pearl nets after storage based on taste, overall appearance and firm textured fruits. Pearl photo-selective nets retained the overall fruit quality and bioactive components in cvs AlfaV and Irit during post-harvest storage. Red photo-selective nets, however, showed greater influence on retention of overall fruit quality and bioactive compounds in cv. SCX 248 during post-harvest storage. © 2013 Society of Chemical Industry.
Design of spin-Seebeck diode with spin semiconductors.
Zhang, Zhao-Qian; Yang, Yu-Rong; Fu, Hua-Hua; Wu, Ruqian
2016-12-16
We report a new design of spin-Seebeck diode using two-dimensional spin semiconductors such as sawtooth-like (ST) silicence nanoribbons (SiNRs), to generate unidirectional spin currents with a temperature gradient. ST SiNRs have subbands with opposite spins across the Fermi level and hence the flow of thermally excited carriers may produce a net spin current but not charge current. Moreover, we found that even-width ST SiNRs display a remarkable negative differential thermoelectric resistance due to a charge-current compensation mechanism. In contrast, odd-width ST SiNRs manifest features of a thermoelectric diode and can be used to produce both charge and spin currents with temperature gradient. These findings can be extended to other spin semiconductors and open the door for designs of new materials and spin caloritronic devices.
Composition of Plasma Formed from Hypervelocity Dust Impacts
NASA Astrophysics Data System (ADS)
Lee, N.; Close, S.; Rymer, A. M.; Mocker, A.
2012-12-01
Dust impacts can occur on all solar system bodies but are especially prevalent in the case of the Saturnian moons that are near or within the dust torus produced by Enceladus's plumes. Depending on the mass and charge on these plume particles, they will be influenced by both gravitational and electrodynamic forces, resulting in a range of possible impact speeds on the moons. The plasma formed upon impact can have very different characteristics depending on impact speed and on the electric field due to surface charging at the impact point. Through recent tests conducted at the Max Planck Institute for Nuclear Physics using a Van de Graaff dust accelerator, iron dust particles were electrostatically accelerated to speeds of 3-65 km/s and impacted on a variety of target materials including metallic and glassy surfaces. The target surfaces were connected to a biasing supply to represent surface charging effects. Because of the high specific kinetic energy of the dust particles, upon impact they vaporize along with part of the target surface and a fraction of this material is ionized forming a dense plasma. The impacts produced both positive and negative ions. We made measurements of the net current imparted by this expanding plasma at a distance of several centimeters from the impact point. By setting the bias of the target, we impose an electric field on the charge population, allowing a measurement of plasma composition through time of flight analysis. The figure shows representative measurements of the net current measured by a retarding potential analyzer (RPA) from separate 18 and 19 km/s impacts of 7 fg particles on a glassy surface that was negatively and positively biased, respectively. This target was an optical solar reflector donated by J. Likar of Lockheed Martin for these experiments. These results show that ions of both positive and negative charge can be formed through the mechanism of dust impacts, and has implications on the surface plasma environment at Enceladus and other airless bodies in the solar system. Measurements of net current from impact plasmas. The horizontal axis is normalized to particle mass based on time of flight. The red trace is from an impact on a positively biased surface, ejecting positive ions toward the sensor. The blue trace is from an impact on a negatively biased surface, ejecting electrons and negative ions toward the sensor. The first positive peak is from electrons causing secondary emission off the sensor. The subsequent negative peaks are from negative ions.
Campos Pereira, Hugo; Ullberg, Malin; Kleja, Dan Berggren; Gustafsson, Jon Petter; Ahrens, Lutz
2018-09-01
Accurate prediction of the sorption of perfluoroalkyl substances (PFASs) in soils is essential for environmental risk assessment. We investigated the effect of solution pH and calculated soil organic matter (SOM) net charge on the sorption of 14 PFASs onto an organic soil as a function of pH and added concentrations of Al 3+ , Ca 2+ and Na + . Often, the organic C-normalized partitioning coefficients (K OC ) showed a negative relationship to both pH (Δlog K OC /ΔpH = -0.32 ± 0.11 log units) and the SOM bulk net negative charge (Δlog K OC = -1.41 ± 0.40 per log unit mol c g -1 ). Moreover, perfluorosulfonic acids (PFSAs) sorbed more strongly than perfluorocarboxylic acids (PFCAs) and the PFAS sorption increased with increasing perfluorocarbon chain length with 0.60 and 0.83 log K OC units per CF 2 moiety for C 3 -C 10 PFCAs and C 4 , C 6 , and C 8 PFSAs, respectively. The effects of cation treatment and SOM bulk net charge were evident for many PFASs with low to moderate sorption (C 5 -C 8 PFCAs and C 6 PFSA). However for the most strongly sorbing and most long-chained PFASs (C 9 -C 11 and C 13 PFCAs, C 8 PFSA and perfluorooctane sulfonamide (FOSA)), smaller effects of cations were seen, and instead sorption was more strongly related to the pH value. This suggests that the most long-chained PFASs, similar to other hydrophobic organic compounds, are preferentially sorbed to the highly condensed domains of the humin fraction, while shorter-chained PFASs are bound to a larger extent to humic and fulvic acid, where cation effects are significant. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mortality and Financial Burden of Periprosthetic Fractures of the Femur.
Shields, Edward; Behrend, Caleb; Bair, Jeff; Cram, Peter; Kates, Stephen
2014-12-01
This study examines patient factors to identify risks of 12-month mortality following periprosthetic femur fractures. Hospital charges were analyzed to quantify the financial burden for treatment modalities. Data were retrospectively analyzed from a prospective database at a university hospital setting. One-hundred and thirteen patients with a periprosthetic fracture of the proximal or distal femur were identified. Risk factors for 12-month mortality were analyzed, and financial data were compared between the various treatment modalities. In all, 14% of patients died (16 of 113) within 3 months and the 1-year mortality was 17.7% (20 of 113). Patients who died within 1 year had higher hospital charges (US$33 880 ± 25 051 vs US$22 886 ± 16 841; P = .01) and were older (87.6 ± 8.5 vs 81.5 ± 8.6; P = .004). Logistic regression analysis revealed age was the only significant predictor of 1-year mortality (P = .029, odds ratio 1.1). Analysis of financial data revealed 4 distinct groups (P < .05 between groups). Distal femoral revision arthroplasty (RA-DF) generated the highest hospital charges of US$91 035 ± 25 579 (n = 3). The second most highly charged group included proximal femoral fractures treated with revision arthroplasty (US$34 078 ± 17 832; n = 20) and hemi/total hip arthroplasty (THA; US$41 556 ± 23 651; n = 8). The third most charged group underwent open reduction internal fixation of the proximal (US$18 706 ± 6829; n = 35) and distal (US$22 381 ± 10 835; n = 35) femur. Nonoperative treatment generated the lowest charges (US$6426 ± 2899; n = 11). On average, the hospital lost money treating patients with RA-DF (US$-19 080 ± 2022 per patient) and hemi/THA (US$-6594 ± 9305 per patient), while all other treatment groups were profitable. One-year mortality after periprosthetic femur fractures was 17.7%, is mostly influenced by age, and 80% of deaths occur within 3 months. Patients treated with primary/revision arthroplasty generate more hospital charges than internal fixation. The average patient treated with revision arthroplasty of the distal femur or hemi/THA for a periprosthetic femur fractures resulted in net financial losses for the hospital.
NASA Astrophysics Data System (ADS)
Jhingree, Jacquelyn R.; Bellina, Bruno; Pacholarz, Kamila J.; Barran, Perdita E.
2017-07-01
Charge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9-28), and intermediate charge states (13-18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge.
Timber resource statistics for the Wood-Salcha Block, Tanana inventory unit, Alaska, 1975.
Kenneth C. Winterberger
1983-01-01
This statistical report on timber resources of the 4.1-million-acre Wood-Salcha block is the last of four reports on the 14-million-acre Tanana Valley inventory unit. Tables are provided for commercial and operable noncommercial forest land, total gross and net volumes, and annual net growth and mortality. Estimates for commercial forest land total 626,300 acres with...
Net mineral requirements of dairy goats during pregnancy.
Härter, C J; Lima, L D; Castagnino, D S; Silva, H O; Figueiredo, F O M; St-Pierre, N R; Resende, K T; Teixeira, I A M A
2017-09-01
Mineral requirements of pregnant dairy goats are still not well defined; therefore, we investigated the net Ca, P, Mg, Na and K requirements for pregnancy and for maintenance during pregnancy in two separate experiments. Experiment 1 was performed to estimate the net Ca, P, Mg, Na and K requirements in goats carrying single or twin fetuses from 50 to 140 days of pregnancy (DOP). The net mineral requirements for pregnancy were determined by measuring mineral deposition in gravid uterus and mammary gland after comparative slaughter. In total, 57 dairy goats of two breeds (Oberhasli or Saanen), in their third or fourth parturition, were randomly assigned to groups based on litter size (single or twin) and day of slaughter (50, 80, 110 and 140 DOP) in a fully factorial design. Net mineral accretion for pregnancy did not differ by goat breed. The total daily Ca, P, Mg, Na and K requirements for pregnancy were greatest in goats carrying twins (P<0.05), and the requirements increased as pregnancy progressed. Experiment 2 was performed to estimate net Ca, P, Mg, Na and K requirements for dairy goat maintenance during pregnancy. In total, 58 dairy goats (Oberhasli and Saanen) carrying twin fetuses were assigned to groups based on slaughter day (80, 110 and 140 DOP) and feed restriction (ad libitum, 20% and 40% feed restriction) in a randomized block design. The net Ca, P and Mg requirements for maintenance did not vary by breed or over the course of pregnancy. The daily net requirements of Ca, P and Mg for maintenance were 60.4, 31.1 and 2.42 mg/kg live BW (LBW), respectively. The daily net Na requirement for maintenance was greater in Saanen goats (11.8 mg/kg LBW) than in Oberhasli goats (8.96 mg/kg LBW; P<0.05). Daily net K requirements increased as pregnancy progressed from 8.73 to 15.4 mg/kg LBW (P<0.01). The findings of this study will guide design of diets with adequate mineral content for pregnant goats throughout their pregnancy.
Mesh-size effects on drift sample composition as determined with a triple net sampler
Slack, K.V.; Tilley, L.J.; Kennelly, S.S.
1991-01-01
Nested nets of three different mesh apertures were used to study mesh-size effects on drift collected in a small mountain stream. The innermost, middle, and outermost nets had, respectively, 425 ??m, 209 ??m and 106 ??m openings, a design that reduced clogging while partitioning collections into three size groups. The open area of mesh in each net, from largest to smallest mesh opening, was 3.7, 5.7 and 8.0 times the area of the net mouth. Volumes of filtered water were determined with a flowmeter. The results are expressed as (1) drift retained by each net, (2) drift that would have been collected by a single net of given mesh size, and (3) the percentage of total drift (the sum of the catches from all three nets) that passed through the 425 ??m and 209 ??m nets. During a two day period in August 1986, Chironomidae larvae were dominant numerically in all 209 ??m and 106 ??m samples and midday 425 ??m samples. Large drifters (Ephemerellidae) occurred only in 425 ??m or 209 ??m nets, but the general pattern was an increase in abundance and number of taxa with decreasing mesh size. Relatively more individuals occurred in the larger mesh nets at night than during the day. The two larger mesh sizes retained 70% of the total sediment/detritus in the drift collections, and this decreased the rate of clogging of the 106 ??m net. If an objective of a sampling program is to compare drift density or drift rate between areas or sampling dates, the same mesh size should be used for all sample collection and processing. The mesh aperture used for drift collection should retain all species and life stages of significance in a study. The nested net design enables an investigator to test the adequacy of drift samples. ?? 1991 Kluwer Academic Publishers.
Economic Analysis Case Studies of Battery Energy Storage with SAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiOrio, Nicholas; Dobos, Aron; Janzou, Steven
2015-11-01
Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. Themore » analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.« less
Ghosh, Uddipta; Chakraborty, Suman
2012-04-01
In the present study, we focus on alterations in flow physics as a consequence of interactions between patterned-wettability gradients on microfluidic substrates with modulated surface charge distributions, giving rise to an intricate electrohydrodynamic coupling over small scales. We demonstrate that by exploiting such intricate coupling, it may be possible to pattern vortices occurring in the fluidic confinement by exploiting an interplay between the Navier slip and electro-osmotic transport. Our studies do reveal that the resultant flow structure originating out of the spatially periodic variations in the surface charge and surface wettability may depend critically on several independently tunable controlling parameters, such as the amplitudes and frequencies of the respective patterning functions, the phase shift between the two, an asymmetry factor, and the channel height to Debye length ratio. We show that judicious choices with regard to the combinations of these parameters may result in significant augmentations in the corresponding mixing efficiency without any appreciable compromise in the net microfluidic throughput. Furthermore, our studies reveal an optimum patterning frequency, which results in the most efficient microfluidic mixing within the constraints of achieving a desired volumetric flow rate. Our results also demonstrate that the net flow rate is maximized when the surface wettability variation functions and surface charge-density functions are in phase, whereas mixing is best facilitated when they are in opposite phase. In practice, therefore, one may select an intermediate value of the phase angle depending on the extent of compromise necessary between flow rate and mixing characteristics, yielding far-ranging scientific and technological advances toward an improved design of miniaturized fluidic devices of practical relevance.
Rapuano, Bruce E.; MacDonald, Daniel E.
2010-01-01
In the current study, we have altered the surface oxide properties of a Ti6Al4V alloy using heat treatment or radiofrequency glow discharge (RFGD) in order to evaluate the relationship between the physico-chemical and biological properties of the alloy's surface oxide. The effects of surface pretreatments on the attachment of cells from two osteogenic cell lines (MG63 and MC3T3) and a mesenchymal stem cell line (C3H10T1/2) to fibronectin adsorbed to the alloy were measured. Both heat and RFGD pretreatments produced a several-fold increase in the number of cells that attached to fibronectin adsorbed to the alloy (0.001 and 10 nM FN) for each cell line tested. An antibody (HFN7.1) directed against the central integrin binding domain of fibronectin produced a 65-70% inhibition of cell attachment to fibronectin-coated disks, incdicating that cell attachment to the metal discs was dependent on fibronectin binding to cell integrin receptors. Both treatments also accelerated the cell spreading response manifested by extensive flattening and an increase in mean cellular area. The treatment-induced increases in the cell attachment activity of adsorbed fibronectin were correlated with previously demonstrated increases in Ti6Al4V oxide negative net surface charge at physiological pH produced by both heat and RFGD pretreatments. Since neither treatment increased the adsorption mass of fibronectin, these findings suggest that negatively charged surface oxide functional groups in Ti6Al4V can modulate fibronectin's integrin receptor activity by altering the adsorbed protein's conformation. Our results further suggest that negatively charged functional groups in the surface oxide can play a prominent role in the osseointegration of metallic implant materials. PMID:20884181
Zobi, Fabio
2010-11-15
The electronic description of octahedral (fac-[M(CO)(3)L(3)](n), with M = Re, Ru, and Mn, and [Cr(CO)(5)L](n)), square-planar (cis-[Pt(CO)(2)L(2)](n)), and tetrahedral ([Ni(CO)(3)L](n)) carbonyl complexes (where L = monodentate ligand) was obtained via density functional theory and natural population analyses in order to understand what effects are probed in these species by vibrational spectroscopy and electrochemistry as a function of the ligand electronic parameter of the associated L. The analysis indicates that while ligand electronic parameters may be considered as a measure of the net donor power of the ligand, the net transfer of the electron density (or charge) does not occur from the ligand to the metal ion. In [M(CO)(x)L(y)](n) carbonyl species, the charge transfer occurs from the ligand L to the oxygen atom of the bound carbon monoxides. This charge transfer translates into changes of the polarization (or permanent dipole) and the covalency of the C≡O bonds, and it is this effect that is probed in IR spectroscopy. As the analysis shifts from IR radiations to electrochemical potentials, the parameters best describe the relative thermodynamic stability of the oxidized and reduced [M(CO)(x)L(y)](n/n+1) species. No relationship is found between the metal natural charge of the [M(CO)(x)L(y)](n) fragments analyzed and the parameters. Brief considerations are given on the possible design of CO-releasing molecules.
Scharner, Juergen; Lu, Hui-Chun; Fraternali, Franca; Ellis, Juliet A; Zammit, Peter S
2014-06-01
Mutations in A-type nuclear lamins cause laminopathies. However, genotype-phenotype correlations using the 340 missense mutations within the LMNA gene are unclear: partially due to the limited availability of three-dimensional structure. The immunoglobulin (Ig)-like fold domain has been solved, and using bioinformatics tools (including Polyphen-2, Fold X, Parameter OPtimized Surfaces, and PocketPicker) we characterized 56 missense mutations for position, surface exposure, change in charge and effect on Ig-like fold stability. We find that 21 of the 27 mutations associated with a skeletal muscle phenotype are distributed throughout the Ig-like fold, are nonsurface exposed and predicted to disrupt overall stability of the Ig-like fold domain. Intriguingly, the remaining 6 mutations clustered, had higher surface exposure, and did not affect stability. The majority of 9 lipodystrophy or 10 premature aging syndrome mutations also did not disrupt Ig-like fold domain stability and were surface exposed and clustered in distinct regions that overlap predicted binding pockets. Although buried, the 10 cardiac mutations had no other consistent properties. Finally, most lipodystrophy and premature aging mutations resulted in a -1 net charge change, whereas skeletal muscle mutations caused no consistent net charge changes. Since premature aging, lipodystrophy and the subset of 6 skeletal muscle mutations cluster tightly in distinct, charged regions, they likely affect lamin A/C -protein/DNA/RNA interactions: providing a consistent genotype-phenotype relationship for mutations in this domain. Thus, this subgroup of skeletal muscle laminopathies that we term the 'Skeletal muscle cluster', may have a distinct pathological mechanism. These novel associations refine the ability to predict clinical features caused by certain LMNA missense mutations. © 2013 Wiley Periodicals, Inc.
2013-01-01
Background Since 2004, the Tanzanian National Voucher Scheme has increased availability and accessibility of insecticide-treated nets (ITNs) to pregnant women and infants by subsidizing the cost of nets purchased. From 2008 to 2010, a mass distribution campaign delivered nine million long-lasting insecticidal nets (LLINs) free-of-charge to children under-five years of age in Tanzania mainland. In 2010 and 2011, a Universal Coverage Campaign (UCC) led by the Ministry of Health and Social Welfare (MoHSW) was implemented to cover all sleeping spaces not yet reached through previous initiatives. Methods The UCC was coordinated through a unit within the National Malaria Control Programme. Partners were contracted by the MoHSW to implement different activities in collaboration with local government authorities. Volunteers registered the number of uncovered sleeping spaces in every household in the country. On this basis, LLINs were ordered and delivered to village level, where they were issued over a three-day period in each zone (three regions). Household surveys were conducted in seven districts immediately after the campaign to assess net ownership and use. Results The UCC was chiefly financed by the Global Fund to Fight AIDS, Tuberculosis and Malaria with important contributions from the US President’s Malaria Initiative. A total of 18.2 million LLINs were delivered at an average cost of USD 5.30 per LLIN. Overall, 83% of the expenses were used for LLIN procurement and delivery and 17% for campaign associated activities. Preliminary results of the latest Tanzania HIV Malaria Indicator Survey (2011–12) show that household ownership of at least one ITN increased to 91.5%. ITN use, among children under-five years of age, improved to 72.7% after the campaign. ITN ownership and use data post-campaign indicated high equity across wealth quintiles. Conclusion Close collaboration among the MoHSW, donors, contracted partners, local government authorities and volunteers made it possible to carry out one of the largest LLIN distribution campaigns conducted in Africa to date. Through the strong increase of ITN use, the recent activities of the national ITN programme will likely result in further decline in child mortality rates in Tanzania, helping to achieve Millennium Development Goals 4 and 6. PMID:23496881
Rouster, Paul; Pavlovic, Marko; Horváth, Endre; Forró, László; Dey, Sandwip K; Szilagyi, Istvan
2017-09-26
The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.
Continuous stand-alone controllable aerosol/cloud droplet dryer for atmospheric sampling
NASA Astrophysics Data System (ADS)
Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.
2013-02-01
We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry cloud droplets (maximum diameter approximately 25 μm, highly charged, up to 5 × 102 charges). One criterion is to minimise losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry, closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to be 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory (temperature 294 K) and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was >94% during these five months.
A method of studying wild bird populations by mist-netting and banding
Stamm, D.D.; Davis, D.E.; Robbins, C.S.
1960-01-01
1. Progress is reported toward development of a method of bird-population study based on mist-netting and banding. A definite pattern of arrangement and schedule of operation are presented. 2. Nets were operated for a total of 4200 net-hours during which 966 captures were made (23.0 birds per 100 net-hours). A total of 431 adult breeding birds were banded and 38 per cent of them were recaptured. 3. A breeding bird census was made simultaneously in the same area by the Williams spot-mapping technique. 4. Estimates of population by recapture agreed closely with the spot-mappmg census. 5. Some birds are demonstrated to have overlapping home-ranges much larger than their singing territories. 6. Recruitment and net-shyness distort recapture estimates of population .but the method allows detection and assessment of their influence in the population dealt with here. 7. The method produced integrated information on population density and dynamics, movement and behavior. 8. The procedure is especially well adapted to studies of disease agents in bird populations. 9. A simple scheme for description of the habitat in terms of relative abundance and frequency of occurrence of tree species was used.
Impact of Tranexamic Acid in Total Knee and Total Hip Replacement.
Boyle, Jaclyn A; Soric, Mate M
2017-02-01
To evaluate the net clinical benefit of tranexamic acid use in patients undergoing total knee or total hip replacement. This is a retrospective study of patients undergoing total knee or total hip replacement. The primary outcome was the net clinical benefit of tranexamic acid use. Secondary outcomes included length of stay, incidence of venous thromboembolism, change in hemoglobin, and number of units of blood transfused. Four hundred and six patients were screened for inclusion and 327 patients met inclusion criteria; 174 patients received tranexamic acid versus 153 patients who received usual care. Tranexamic acid demonstrated a positive net clinical benefit versus usual care (40.8% vs 13.7%, P < .01) but did not affect length of stay (3.39 vs 3.37 days, respectively, P = .76). Venous thromboembolism was comparable between groups (2.3% vs 0.7%, P = .38). Average change in hemoglobin and need for transfusion were lower in the treatment group versus the usual care group, respectively (3.46 vs 4.26 mg/dL, P < .01). Tranexamic acid demonstrated a significant benefit in decreasing change in hemoglobin as well as the need for blood transfusion with no increase in the risk of venous thromboembolism in patients undergoing total knee or total hip replacement.
Awad, Nadia; Caputo, Francis J; Carpenter, Jeffrey P; Alexander, James B; Trani, José L; Lombardi, Joseph V
2017-02-01
Given the increased pressure from governmental programs to restructure reimbursements to reflect quality metrics achieved by physicians, review of current reimbursement schemes is necessary to ensure sustainability of the physician's performance while maintaining and ultimately improving patient outcomes. This study reviewed the impact of reimbursement incentives on evidence-based care outcomes within a vascular surgical program at an academic tertiary care center. Data for patients with a confirmed 30-day follow-up for the vascular surgery subset of our institution's National Surgical Quality Improvement Program submission for the years 2013 and 2014 were reviewed. The outcomes reviewed included 30-day mortality, readmission, unplanned returns to the operating room, and all major morbidities. A comparison of both total charges and work relative value units (RVUs) generated was performed before and after changes were made from a salary-based to a productivity-based compensation model. P value analysis was used to determine if there were any statistically significant differences in patient outcomes between the two study years. No statistically significant difference in outcomes of the core measures studied was identified between the two periods. There was a trend toward a lower incidence of respiratory complications, largely driven by a lower incidence in pneumonia between 2013 and 2014. The vascular division had a net increase of 8.2% in total charges and 5.7% in work RVUs after the RVU-based incentivization program was instituted. Revenue-improving measures can improve sustainability of a vascular program without negatively affecting patient care as evidenced by the lack of difference in evidence-based core outcome measures in our study period. Further studies are needed to elucidate the long-term effects of incentivization programs on both patient care and program viability. Copyright © 2016. Published by Elsevier Inc.
A Fieldmill for Measuring Atmospheric Electricity
ERIC Educational Resources Information Center
Thompson, Frank
2018-01-01
It is a well known fact that the Earth carries a net negative charge that produces a downward electrostatic field. The present experiment shows how this field can be measured with a Field Mill which has been constructed from components readily available in the Laboratory. In fine weather conditions a value of 120 (±10) V m[superscript -1] was…
Technology: Mentors on the Net: Extending Learning through Telementoring
ERIC Educational Resources Information Center
Siegle, Del
2003-01-01
Parents, classroom teachers, and teachers of the gifted cannot be all things to the young people in their charge. The nature and diversity of gifted students' interests demand resources beyond the confines of the school and sometimes beyond the confines of the community. These demands demonstrate the need for mentors and other resources. One of…
34 CFR 668.28 - Non-title IV revenue (90/10).
Code of Federal Regulations, 2013 CFR
2013-07-01
... amount as tuition, fees, or other institutional charges. (b) Net present value (NPV). (1) As illustrated in appendix C of this subpart, an institution calculates the NPV of the loans it made under paragraph (a)(5)(i) of this section by— (i) Using the formula, NPV = sum of the discounted cash flows R t/(1+i...
34 CFR 668.28 - Non-title IV revenue (90/10).
Code of Federal Regulations, 2014 CFR
2014-07-01
... amount as tuition, fees, or other institutional charges. (b) Net present value (NPV). (1) As illustrated in appendix C of this subpart, an institution calculates the NPV of the loans it made under paragraph (a)(5)(i) of this section by— (i) Using the formula, NPV = sum of the discounted cash flows R t/(1+i...
34 CFR 668.28 - Non-title IV revenue (90/10).
Code of Federal Regulations, 2012 CFR
2012-07-01
... amount as tuition, fees, or other institutional charges. (b) Net present value (NPV). (1) As illustrated in appendix C of this subpart, an institution calculates the NPV of the loans it made under paragraph (a)(5)(i) of this section by— (i) Using the formula, NPV = sum of the discounted cash flows R t/(1+i...
34 CFR 668.28 - Non-title IV revenue (90/10).
Code of Federal Regulations, 2011 CFR
2011-07-01
... amount as tuition, fees, or other institutional charges. (b) Net present value (NPV). (1) As illustrated in appendix C of this subpart, an institution calculates the NPV of the loans it made under paragraph (a)(5)(i) of this section by— (i) Using the formula, NPV = sum of the discounted cash flows R t/(1+i...
12 CFR Appendix B to Part 3 - Risk-Based Capital Guidelines; Market Risk Adjustment
Code of Federal Regulations, 2012 CFR
2012-01-01
...-zero specific risk capital charge. (A) For covered debt positions that are derivatives, a bank must... (including derivatives) in identical debt issues or indices. (iii) A bank must multiply the absolute value of... multiply the absolute value of the current market value of each net long or short covered equity position...
75 FR 76262 - Source of Income From Qualified Fails Charges
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... taxation of foreign persons not otherwise subject to U.S. net-basis taxation and the withholding of such...-basis taxation at a rate of 30 percent on certain U.S. source income of foreign persons that is not..., 2010 is not subject to U.S. gross-basis taxation. Notice 2009-61 further announced that the Treasury...
USDA-ARS?s Scientific Manuscript database
Undesirable aggregation of nanoparticles stabilized by proteins may may occur at the protein’s isoelectric point when the particle has zero net charge. Aggregation may be reduced bychanging the isoelectric point by conjugation of free amino groups with reducing sugars (Maillard reaction). Alternativ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... include a statement showing the amount which licensee estimates would be payable if the project were to be... Federal Power Act. This statement shall include estimates of: (1) Fair value; (2) net investment; and (3... rates charged its customers, the licensee's financial condition, and taxes collected by local, State...
A charged anisotropic well-behaved Adler-Finch-Skea solution satisfying Karmarkar condition
NASA Astrophysics Data System (ADS)
Bhar, Piyali; Singh, Ksh. Newton; Rahaman, Farook; Pant, Neeraj; Banerjee, Sumita
In the present paper, we discover a new well-behaved charged anisotropic solution of Einstein-Maxwell’s field equations. We ansatz the metric potential g00 of the form given by Maurya et al. (Eur. Phys. J. C 76(12) (2016) 693) with n = 2. In their paper, it is mentioned that for n = 2, the solution is not well-behaved for neutral configuration as the speed of sound is nondecreasing radially outward. However, the solution can represent a physically possible configuration with the inclusion of some net electric charge, i.e. the solution can become a well-behaved solution with decreasing sound speed radially outward for a charged configuration. Due to the inclusion of electric charge, the solution leads to a very stiff equation-of-state (EoS) with the velocity of sound at the center vr02 = 0.819, vt02 = 0.923 and the compactness parameter u = 0.823 is close to the Buchdahl limit 0.889. This stiff EoS support a compact star configuration of mass 5.418M⊙ and radius of 10.1km.
Electronic and magnetic properties of transition metal doped graphyne
NASA Astrophysics Data System (ADS)
Gangan, Abhijeet Sadashiv; Yadav, Asha S.; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2017-05-01
We have theoretically investigated the interaction of few 3d (V,Mn) and 4d (Y,Zr) transition metals with the γ-graphyne structure using the spin-polarized density functional theory for its potentials application in Hydrogen storage, spintronics and nano-electronics. By doping different TMs we have observed that the system can be either metallic(Y), semi-conducting or half metallic. The system for Y and Zr doped graphyne becomes non-magnetic while V and Mn doped graphyne have a magnetic moments of l μB and 3 μB respectively From bader charge analysis it is seen that there is a charge transfer from the TM atom to the graphyne. Zr and Y have a net charge transfer of 2.15e and 1.73e respectively. Charge density analysis also shows the polarization on the carbon skeleton which becomes larger as the charge transfer for the TM atom increases. Thus we see Y and Zr are better candidates for hydrogen storage devices since they are non-magnetic and have less d electrons which is ideal for kubas-type interactions between hydrogen molecule and TM.
Numerical Simulations of Flow Separation Control in Low-Pressure Turbines using Plasma Actuators
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.
2007-01-01
A recently introduced phenomenological model to simulate flow control applications using plasma actuators has been further developed and improved in order to expand its use to complicated actuator geometries. The new modeling approach eliminates the requirement of an empirical charge density distribution shape by using the embedded electrode as a source for the charge density. The resulting model is validated against a flat plate experiment with quiescent environment. The modeling approach incorporates the effect of the plasma actuators on the external flow into Navier Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. The model solves the Maxwell equation to obtain the electric field due to the applied AC voltage at the electrodes and an additional equation for the charge density distribution representing the plasma density. The new modeling approach solves the charge density equation in the computational domain assuming the embedded electrode as a source therefore automatically generating a charge density distribution on the surface exposed to the flow similar to that observed in the experiments without explicitly specifying an empirical distribution. The model is validated against a flat plate experiment with quiescent environment.
A thundercloud electric field sounding - Charge distribution and lightning
NASA Technical Reports Server (NTRS)
Weber, M. E.; Few, A. A.; Stewart, M. F.; Christian, H. J.
1982-01-01
An instrumented free balloon measured electric fields and field changes as it rose through a thundercloud above Langmuir Laboratory, New Mexico. The variation of the electric field with altitude implied that the cloud contained negative space charge of density -0.6 to -4 nC/cu m between 5.5 and 8.0 km MSL. The environmental temperature at these levels ranged from -5 to -20 C. The measurements imply that the areal extent of this negative charge center was significantly greater than that of the cloud's intense precipitation shafts. At altitudes greater than 8 km, the instrument ascended past net positive charge. In addition, positive space charge adjacent to the earth's surface (concentration 0.6 nC/cu m and in the lowest portion of the cloud (1.0 nC/cu m) is inferred from the measurements. Electric field changes from intracloud lightning were interpreted by using a simple model for the developing streamer of the initial phase. Thunder source reconstructions provided estimates for the orientation of lightning channels. Seven 'streamers' so analyzed propagated on the average, at 50,000 m/s and carried a current of 390 A. The mean charge dissipated during a flash was 30 C.
Taking the metabolic pulse of the world's coral reefs.
Cyronak, Tyler; Andersson, Andreas J; Langdon, Chris; Albright, Rebecca; Bates, Nicholas R; Caldeira, Ken; Carlton, Renee; Corredor, Jorge E; Dunbar, Rob B; Enochs, Ian; Erez, Jonathan; Eyre, Bradley D; Gattuso, Jean-Pierre; Gledhill, Dwight; Kayanne, Hajime; Kline, David I; Koweek, David A; Lantz, Coulson; Lazar, Boaz; Manzello, Derek; McMahon, Ashly; Meléndez, Melissa; Page, Heather N; Santos, Isaac R; Schulz, Kai G; Shaw, Emily; Silverman, Jacob; Suzuki, Atsushi; Teneva, Lida; Watanabe, Atsushi; Yamamoto, Shoji
2018-01-01
Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.
Taking the metabolic pulse of the world’s coral reefs
Andersson, Andreas J.; Langdon, Chris; Albright, Rebecca; Bates, Nicholas R.; Caldeira, Ken; Carlton, Renee; Corredor, Jorge E.; Dunbar, Rob B.; Enochs, Ian; Erez, Jonathan; Eyre, Bradley D.; Gattuso, Jean-Pierre; Gledhill, Dwight; Kayanne, Hajime; Kline, David I.; Koweek, David A.; Lantz, Coulson; Lazar, Boaz; Manzello, Derek; McMahon, Ashly; Meléndez, Melissa; Page, Heather N.; Santos, Isaac R.; Schulz, Kai G.; Shaw, Emily; Silverman, Jacob; Suzuki, Atsushi; Teneva, Lida; Watanabe, Atsushi; Yamamoto, Shoji
2018-01-01
Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems. PMID:29315312
Proto-experiences and subjective experiences: classical and quantum concepts.
Vimal, Ram Lakhan Pandey
2008-03-01
Deterministic reductive monism and non-reductive substance dualism are two opposite views for consciousness, and both have serious problems. An alternative view is needed. For this, we hypothesize that strings or elementary particles (fermions and bosons) have two aspects: (i) elemental proto-experiences (PEs) as phenomenal aspect, and (ii) mass, charge, and spin as material aspect. Elemental PEs are hypothesized to be the properties of elementary particles and their interactions, which are composed of irreducible fundamental subjective experiences (SEs)/PEs that are in superimposed form in elementary particles and in their interactions. Since SEs/PEs are superimposed, elementary particles are not specific to any SE/PE; they (and all inert matter) are carriers of SEs/PEs, and hence, appear as non-experiential material entities. Furthermore, our hypothesis is that matter and associated elemental PEs co-evolved and co-developed into neural-nets and associated neural-net PEs (neural Darminism), respectively. The signals related to neural PEs interact in a neural-net and neural-net PEs emerges from random process of self-organization. The neural-net PEs are a set of SEs embedded in the neural-net by a non-computational or non-algorithmic process. The non-specificity of elementary particles is transformed into the specificity of neural-nets by neural Darwinism. The specificity of SEs emerges when feedforward and feedback signal interacts in the neuropil and are dependent on wakefulness (i.e., activation) attention, re-entry between neural populations, working memory, stimulus at above threshold, and neural net PE signals. This PE-SE framework integrates reductive and non-reductive views, complements the existing models, bridges the explanatory gaps, and minimizes the problem of causation.
Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.
Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E
2012-05-15
Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.
Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery.
Lip Kwok, Philip Chi
2015-01-01
This paper provides a review on key research findings in the rapidly developing area of pharmaceutical aerosol electrostatics. Solids and liquids can become charged without electric fields, the former by contact or friction and the latter by flowing or spraying. Therefore, charged particles and droplets carrying net charges are produced from pharmaceutical inhalers (e.g. dry powder inhalers, metered dose inhalers, and nebulisers) due to the mechanical processes involved in aerosolisation. The charging depends on many physicochemical factors, such as formulation composition, solid state properties, inhaler material and design, and relative humidity. In silico, in vitro, and limited in vivo studies have shown that electrostatic charges may potentially influence particle deposition in the airways. However, the evidence is not yet conclusive. Furthermore, there are currently no regulatory requirements on the characterisation and control of the electrostatic properties of inhaled formulations. Besides the need for further investigations on the relationship between physicochemical factors and charging characteristics of the aerosols, controlled and detailed in vivo studies are also required to confirm whether charges can affect particle deposition in the airways. Since pharmaceutical aerosol electrostatics is a relatively new research area, much remains to be explored. Thus there is certainly potential for development. New findings in the future may contribute to the advancement of pharmaceutical aerosol formulations and respiratory drug delivery.
Impact of Electrodes on Recombination in Bulk Heterojunction Organic Solar Cells
2018-01-01
In recent years, the efficiency of organic solar cells (OSCs) has increased to more than 13%, although different barriers are on the way for reaching higher efficiencies. One crucial barrier is the recombination of charge carriers, which can either occur as the bulk recombination of photogenerated charges or the recombination of photogenerated charges and electrodic induced charges (EICs). This work studies the impact of EICs on the recombination lifetime in OSCs. To this end, the net recombination lifetime of photogenerated charge carriers in the presence of EICs is measured by means of conventional and newly developed transient photovoltage techniques. Moreover, a new approach has been introduced to exclusively measure the bulk recombination lifetime, i.e., in the absence of EICs; this approach was conducted by depositing transparent insulating layers on both sides of the OSC active layer. An examination of these approaches on OSCs with different active layer materials, thicknesses, and varying light intensities determined that the EICs can only reduce the recombination lifetime of the photogenerated charges in OSCs with very weak recombination strength. This work supports that for OSCs with highly reduced recombination strength, eliminating the recombination of photogenerated charges and EICs is critical for achieving better performance. Therefore, the use of a proper blocking layer suppresses EIC recombination in systems with very weak recombination. PMID:29546982
NASA Astrophysics Data System (ADS)
Li, Weifeng; Mu, Yuguang
2012-02-01
It has been a long history that urea and guanidinium chloride (GdmCl) are used as agents for denaturing proteins. The underlying mechanism has been extensively studied in the past several decades. However, the question regarding why GdmCl is much stronger than urea has seldom been touched. Here, through molecular dynamics simulations, we show that a 4 M GdmCl solution is more able than 7 M urea solution to dissociate both hydrophobic and charged nano-particles (NP). Both urea and GdmCl affect the NPs' aggregation through direct binding to the NP surface. The advantages of GdmCl originate from the net charge of bound guanidinium ions which can generate a local positively charged environment around hydrophobic and negatively charged NPs. This effective coating can introduce Coulombic repulsion between all the NPs. Urea shows certain ability to dissociate hydrophobic NPs. However, in the case of charged NPs, urea molecules located between two opposite-charged NPs will form ordered hydrogen bonds, acting like ``glue'' which prevents separation of the NPs. Although urea can form hydrogen bonds with either hydrophilic amino acids or the protein backbone, which are believed to contribute to protein denaturation, our findings strongly suggest that this property does not always contribute positively to urea's denaturation power.
NASA Astrophysics Data System (ADS)
Teyssedre, G.; Vu, T. T. N.; Laurent, C.
2015-12-01
Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.
Complex coacervation of supercharged proteins with polyelectrolytes.
Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D
2016-04-21
Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.
Quality improvement in hospitals: how much does it reduce healthcare costs?
Jones, S B
1995-01-01
The philosophy of W.E. Deming suggests that continuous quality improvement efforts, when properly applied, ultimately will lead to financial dividends and will help ensure business longevity. Reducing hospital charges can be exciting for the participants and can provide an impetus for expanding quality improvement efforts. Americans, however, tend to demand almost instant gratification and have limited patience for longer-term results. This factor, coupled with minimal knowledge of actual operational costs and inaccurate charge accounting systems, may lead hospital managers to misinterpret the potential net long-term effects of their quality improvement efforts. In the approaching environment of capitated reimbursement, such mistakes may have serious consequences.
Charging a capacitor from an external fluctuating potential using a single conical nanopore.
Gomez, Vicente; Ramirez, Patricio; Cervera, Javier; Nasir, Saima; Ali, Mubarak; Ensinger, Wolfgang; Mafe, Salvador
2015-04-01
We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5-3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes.
Nonequilibrium Tuning of the Thermal Casimir Effect.
Dean, David S; Lu, Bing-Sui; Maggs, A C; Podgornik, Rudolf
2016-06-17
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
Lentil and chickpea protein-stabilized emulsions: optimization of emulsion formulation.
Can Karaca, Asli; Nickerson, Michael T; Low, Nicholas H
2011-12-28
Chickpea and lentil protein-stabilized emulsions were optimized with regard to pH (3.0-8.0), protein concentration (1.1-4.1% w/w), and oil content (20-40%) for their ability to form and stabilize oil-in-water emulsions using response surface methodology. Specifically, creaming stability, droplet size, and droplet charge were assessed. Optimum conditions for minimal creaming (no serum separation after 24 h), small droplet size (<2 μm), and high net droplet charge (absolute value of ZP > 40 mV) were identified as 4.1% protein, 40% oil, and pH 3.0 or 8.0, regardless of the plant protein used for emulsion preparation.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2006-10-17
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2003-07-22
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore
Gomez, Vicente; Ramirez, Patricio; Cervera, Javier; Nasir, Saima; Ali, Mubarak; Ensinger, Wolfgang; Mafe, Salvador
2015-01-01
We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5–3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes. PMID:25830563
S-matrix analysis of the baryon electric charge correlation
NASA Astrophysics Data System (ADS)
Lo, Pok Man; Friman, Bengt; Redlich, Krzysztof; Sasaki, Chihiro
2018-03-01
We compute the correlation of the net baryon number with the electric charge (χBQ) for an interacting hadron gas using the S-matrix formulation of statistical mechanics. The observable χBQ is particularly sensitive to the details of the pion-nucleon interaction, which are consistently incorporated in the current scheme via the empirical scattering phase shifts. Comparing to the recent lattice QCD studies in the (2 + 1)-flavor system, we find that the natural implementation of interactions and the proper treatment of resonances in the S-matrix approach lead to an improved description of the lattice data over that obtained in the hadron resonance gas model.
Charge of the right brigade? Communities, coverage, and care for the uninsured.
Brown, Lawrence D; Stevens, Beth
2006-01-01
The Robert Wood Johnson Foundation's Communities in Charge (CIC) program funded projects in fourteen communities that aimed to expand health insurance coverage and improve care for their uninsured residents. Our examination of seven program sites suggests that despite solid community leadership and carefully crafted plans, political, economic, and organizational obstacles precluded much expansion of coverage and constrained reforms. Redistribution of financial and organizational resources among both mainstream and safety-net institutions in these communities was hard to achieve. CIC's record offers little evidence that communities are better equipped than are other sectors of U.S. society to solve the problem of uninsurance.
Snow, R W; McCabe, E; Mbogo, C N; Molyneux, C S; Some, E S; Mung'ala, V O; Nevill, C G
1999-03-01
The results of recently completed trials in Africa of insecticide-treated bed nets (ITBN) offer new possibilities for malaria control. These experimental trials aimed for high ITBN coverage combined with high re-treatment rates. Whilst necessary to understand protective efficacy, the approaches used to deliver the intervention provide few indications of what coverage of net re-treatment would be under operational conditions. Varied delivery and financing strategies have been proposed for the sustainable delivery of ITBNs and re-treatment programmes. Following the completion of a randomized, controlled trial on the Kenyan coast, a series of suitable delivery strategies were used to continue net re-treatment in the area. The trial adopted a bi-annual, house-to-house re-treatment schedule free of charge using research project staff and resulted in over 95% coverage of nets issued to children. During the year following the trial, sentinel dipping stations were situated throughout the community and household members informed of their position and opening times. This free re-treatment service achieved between 61-67% coverage of nets used by children for three years. In 1997 a social marketing approach, that introduced cost-retrieval, was used to deliver the net re-treatment services. The immediate result of this transition was that significantly fewer of the mothers who had used the previous re-treatment services adopted this revised approach and coverage declined to 7%. The future of new delivery services and their financing are discussed in the context of their likely impact upon previously defined protective efficacy and cost-effectiveness estimates.
Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Chakraborty, Suman
2015-06-01
In the present work, we attempt to analyze the electroosmotic flow of a viscoelastic fluid, following quasi-linear constitutive behavior, over charge modulated surfaces in narrow confinements. We obtain analytical solutions for the flow field for thin electrical double layer (EDL) limit through asymptotic analysis for small Deborah numbers. We show that a combination of matched and regular asymptotic expansion is needed for the thin EDL limit. We subsequently determine the modified Smoluchowski slip velocity for viscoelastic fluids and show that the quasi-linear nature of the constitutive behavior adds to the periodicity of the flow. We also obtain the net throughput in the channel and demonstrate its relative decrement as compared to that of a Newtonian fluid. Our results may have potential implications towards augmenting microfluidic mixing by exploiting electrokinetic transport of viscoelastic fluids over charge modulated surfaces.
Carbon sequestration in harvested wood products.
K. Skog
2011-01-01
This section quantifies the net changes in C stocks in the five forest C pools and two harvested wood pools. The net change in stocks for each pool is estimated, and then the changes in stocks are summed over all pools to estimate total net flux. The focus on C implies that all C-based greenhouse gases are included, and the focus on stock change suggests that specific...
Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.
Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D
2016-07-07
The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements.
Sugioka, Hideyuki
2011-05-01
Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process. © 2011 American Physical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.
2014-09-14
Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from E C-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement betweenmore » experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about E C-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.« less
McDonough, Randal P; Harthan, Aaron A; McLeese, Kelly E; Doucette, William R
2010-01-01
To determine the net financial gain or loss for medication therapy management (MTM) services provided to patients by an independent community pharmacy during 16 months of operation. Retrospective study. Independent community pharmacy in Iowa City, IA, from September 1, 2006, to December 31, 2007. Patients receiving MTM services during the specified period who had proper documentation of reimbursement for the services. MTM services were provided to the patient and documented by the pharmacist or student pharmacist. Net financial gains or losses for providing MTM services. Sensitivity analyses included costs that might be incurred under various conditions of operation. 103 initial and 88 follow-up MTM visits were conducted during a 16-month time period. The total cost for these services to the pharmacy was $11,191.72. Total revenue from these services was $11,195.00; therefore, the pharmacy experienced a net financial gain of $3.28. Sensitivity analyses were conducted, revealing the net gain/loss to the pharmacy if a student pharmacist was used and the net gain/loss if the pharmacist needed extra training to provide the services. Using a student pharmacist resulted in a net gain of $6,308.48, while extra training for the pharmacist resulted in a net loss of $1,602.72. The MTM service programs showed a positive financial gain after 16 months of operation, which should encourage pharmacists to incorporate these services into their practice.
Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Rovang, D. C.; Wilbur, P. J.
1984-01-01
An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.
Varieties of charge distributions in coat proteins of ssRNA+ viruses
NASA Astrophysics Data System (ADS)
Lošdorfer Božič, Anže; Podgornik, Rudolf
2018-01-01
A major part of the interactions involved in the assembly and stability of icosahedral, positive-sense single-stranded RNA (ssRNA+) viruses is electrostatic in nature, as can be inferred from the strong pH- and salt-dependence of their assembly phase diagrams. Electrostatic interactions do not act only between the capsid coat proteins (CPs), but just as often provide a significant contribution to the interactions of the CPs with the genomic RNA, mediated to a large extent by positively charged, flexible N-terminal tails of the CPs. In this work, we provide two clear and complementary definitions of an N-terminal tail of a protein, and use them to extract the tail sequences of a large number of CPs of ssRNA+ viruses. We examine the pH-dependent interplay of charge on both tails and CPs alike, and show that—in contrast to the charge on the CPs—the net positive charge on the N-tails persists even to very basic pH values. In addition, we note a limit to the length of the wild-type genomes of those viruses which utilize positively charged tails, when compared to viruses without charged tails and similar capsid size. At the same time, we observe no clear connection between the charge on the N-tails and the genome lengths of the viruses included in our study.
Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking
2012-01-01
A key metric to assess molecular docking remains ligand enrichment against challenging decoys. Whereas the directory of useful decoys (DUD) has been widely used, clear areas for optimization have emerged. Here we describe an improved benchmarking set that includes more diverse targets such as GPCRs and ion channels, totaling 102 proteins with 22886 clustered ligands drawn from ChEMBL, each with 50 property-matched decoys drawn from ZINC. To ensure chemotype diversity, we cluster each target’s ligands by their Bemis–Murcko atomic frameworks. We add net charge to the matched physicochemical properties and include only the most dissimilar decoys, by topology, from the ligands. An online automated tool (http://decoys.docking.org) generates these improved matched decoys for user-supplied ligands. We test this data set by docking all 102 targets, using the results to improve the balance between ligand desolvation and electrostatics in DOCK 3.6. The complete DUD-E benchmarking set is freely available at http://dude.docking.org. PMID:22716043
NASA Astrophysics Data System (ADS)
Sukhishvili, Svetlana A.; Granick, Steve
1999-05-01
We contrast the adsorption of human serum albumin (HSA) onto two solid substrates previously primed with the same polyelectrolyte of net opposite charge to form one of two alternative structures: randomly adsorbed polymer and the "brush" configuration. These structures were formed either by the adsorption of quaternized poly-4-vinylpyridine (QPVP) or by end-grafting QPVP chains of the same chemical makeup and the same molecular weight to surfaces onto which QPVP segments did not adsorb. The adsorption of HSA was quantified by using Fourier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR). The two substrates showed striking differences with regard to HSA adsorption. First, the brush substrate induced lesser perturbations in the secondary structure of the adsorbed HSA, reflecting easier conformational adjustment for longer free segments of polyelectrolyte upon binding with the protein. Second, the penetration of HSA into the brush substrate was kinetically retarded relative to the randomly adsorbed polymer, probably due to both pore size restriction and electrostatic sticking between charged groups of HSA and QPVP molecules. Third, release of HSA from the adsorbed layer, as the ionic strength was increased from a low level up to the high level of 1 M NaCl, was largely inhibited for the brush substrate, but occurred easily and rapidly for the substrate with statistically adsorbed QPVP chains. Finally, even after addition of a strong polymeric adsorption competitor (sodium polystyrene sulfonate), HSA remained trapped within a brush substrate though it desorbed slowly from the preadsorbed QPVP layer. This method to produce irreversible trapping of the protein within a brush substrate without major conformational change may find application in biosensor design.
Mitchell, J M; Scott, E
1992-10-21
To evaluate the effects of physician ownership of freestanding physical therapy and rehabilitation facilities on utilization, charges, profits, and three measures of service characteristics for physical therapy treatments. Statistical comparison by physician joint venture ownership status of freestanding physical therapy and comprehensive rehabilitation facilities providing physical therapy treatments in Florida. A total of 118 outpatient physical therapy facilities and 63 outpatient comprehensive rehabilitation facilities providing services in Florida during 1989. The data from the facilities were collected under a legislative mandate. Visits per patient, average revenue per patient, percent operating income, percent markup, profits per patient, licensed therapist time per visit, and licensed and nonlicensed medical worker time per visit. Visits per patient were 39% to 45% higher in joint venture facilities. Both gross and net revenue per patient were 30% to 40% higher in facilities owned by referring physicians. Percent operating income and percent markup were significantly higher in joint venture physical therapy and rehabilitation facilities. Licensed physical therapists and licensed therapist assistants employed in non-joint venture facilities spend about 60% more time per visit treating physical therapy patients than licensed therapists and licensed therapist assistants working in joint venture facilities. Joint ventures also generate more of their revenues from patients with well-paying insurance. Our results indicate that utilization, charges per patient, and profits are higher when physical therapy and rehabilitation facilities are owned by referring physicians. With respect to service characteristics, joint venture firms employ proportionately fewer licensed therapists and licensed therapist assistants to perform physical therapy, so that licensed professionals employed in joint venture businesses spend significantly less time per visit treating patients. These results should be of interest to the medical profession, third-party payers, and policymakers, all of whom are concerned about the consequences of physician self-referral arrangements.
Postharvest responses of red and yellow sweet peppers grown under photo-selective nets.
Selahle, Kamogelo M; Sivakumar, Dharini; Jifon, John; Soundy, Puffy
2015-04-15
Postharvest responses of red ('HTSP-3') and yellow ('Celaya') sweet pepper fruit yield, quality parameters and bioactive compounds (to three types of photo-selective nets and a standard black net) were investigated in this study. Red and yellow peppers produced under the black net retained higher β-carotene, lower total phenolic contents and showed deep red and orange colour after storage. Both peppers produced under the pearl net retained a higher ascorbic content, antioxidant scavenging activity, fruit firmness and also reduced weight loss after storage. Red and yellow peppers grown under pearl and yellow nets resulted in a higher percentage of marketable fruit, after storage. Red pepper grown under the yellow net showed a higher number of odour active aroma compounds in the fruit, while black nets significantly affected the synthesis of odour active aroma compounds during storage. Sensory analysis indicated a preference for red pepper fruits after storage from plants grown under pearl nets. Copyright © 2014 Elsevier Ltd. All rights reserved.
SeaDataNet network services monitoring: Definition and Implementation of Service availability index
NASA Astrophysics Data System (ADS)
Lykiardopoulos, Angelos; Mpalopoulou, Stavroula; Vavilis, Panagiotis; Pantazi, Maria; Iona, Sissy
2014-05-01
SeaDataNet (SDN) is a standardized system for managing large and diverse data sets collected by the oceanographic fleets and the automatic observation systems. The SeaDataNet network is constituted of national oceanographic data centres of 35 countries, active in data collection. SeaDataNetII project's objective is to upgrade the present SeaDataNet infrastructure into an operationally robust and state-of-the-art infrastructure; therefore Network Monitoring is a step to this direction. The term Network Monitoring describes the use of system that constantly monitors a computer network for slow or failing components and that notifies the network administrator in case of outages. Network monitoring is crucial when implementing widely distributed systems over the Internet and in real-time systems as it detects malfunctions that may occur and notifies the system administrator who can immediately respond and correct the problem. In the framework of SeaDataNet II project a monitoring system was developed in order to monitor the SeaDataNet components. The core system is based on Nagios software. Some plug-ins were developed to support SeaDataNet modules. On the top of Nagios Engine a web portal was developed in order to give access to local administrators of SeaDataNet components, to view detailed logs of their own service(s). Currently the system monitors 35 SeaDataNet Download Managers, 9 SeaDataNet Services, 25 GeoSeas Download Managers and 23 UBSS Download Managers . Taking advantage of the continuous monitoring of SeaDataNet system components a total availability index will be implemented. The term availability can be defined as the ability of a functional unit to be in a state to perform a required function under given conditions at a given instant of time or over a given time interval, assuming that the required external resources are provided. Availability measures can be considered as a are very important benefit becauseT - The availability trends that can be extracted from the stored availability measurements will give an indication of the condition of the service modules. - Will help in planning upgrades planning - and the maintenance of the network service. - It is a prerequisite in case of signing a Service Level Agreement. To construct the service availability index, a method for measuring availability of SeaDataNet network is developed and a database is implemented to store the measured values. Although the measurements of availability of a single component in a network service can be considered as simple (is a percentage of time in a year that the service is available to the users), the ipmlementation of a method to measure the total availability of a composite system can be complicated and there is no a standardized method to deal with it. The method followed to calculate the total availability index in case of SeaDataNet can be described as follows: The whole system was divided in operational modules providing a single service in which the availability can be measured by monitoring portal. Next the dependences between these modules were defined in order to formulate the influence of availability of each module against the whole system. For each module a weight coefficient depending on module's involvement in total system productivity was defined. A mathematical formula was developed to measure the index.
NASA Astrophysics Data System (ADS)
Glassmeier, F.; Arnold, L.; Lohmann, U.; Dietlicher, R.; Paukert, M.
2016-12-01
Our current understanding of charge generation in thunderclouds is based on collisional charge transfer between graupel and ice crystals in the presence of liquid water droplets as dominant mechanism. The physical process of charge transfer and the sign of net charge generated on graupel and ice crystals under different cloud conditions is not yet understood. The Relative-Diffusional-Growth-Rate (RDGR) theory (Baker et al. 1987) suggests that the particle with the faster diffusional radius growth is charged positively. In this contribution, we use simulations of idealized thunderclouds with two-moment warm and cold cloud microphysics to generate realistic combinations of RDGR-parameters. We find that these realistic parameter combinations result in a relationship between sign of charge, cloud temperature and effective water content that deviates from previous theoretical and laboratory studies. This deviation indicates that the RDGR theory is sensitive to correlations between parameters that occur in clouds but are not captured in studies that vary temperature and water content while keeping other parameters at fixed values. In addition, our results suggest that diffusional growth from the riming-related local water vapor field, a key component of the RDGR theory, is negligible for realistic parameter combinations. Nevertheless, we confirm that the RDGR theory results in positive or negative charging of particles under different cloud conditions. Under specific conditions, charge generation via the RDGR theory alone might thus be sufficient to explain tripolar charge structures in thunderclouds. In general, however, additional charge generation mechanisms and adaptations to the RDGR theory that consider riming other than via local vapor deposition seem necessary.
2012-01-01
Background The paper presents evidence about the distribution of the benefits of public expenditures on a subset of priority public health services that are supposed to be provided free of charge in the public sector, using the framework of benefit incidence analysis. Methods The study took place in 2 rural and 2 urban Local Government Areas from Enugu and Anambra states, southeast Nigeria. A questionnaire was used to collect data on use of the priority public health services by all individuals in the households (n=22,169). The level of use was disaggregated by socio-economic status (SES), rural-urban location and gender. Benefits were valued using the cost of providing the service. Net benefit incidence was calculated by subtracting payments made for services from the value of benefits. Results The results showed that 3,281 (14.8%) individuals consumed wholly free services. There was a greater consumption of most free services by rural dwellers, females and those from poorer SES quintiles (but not for insecticide-treated nets and ante-natal care services). High levels of payment were observed for immunisation services, insecticide-treated nets, anti-malarial medicines, antenatal care and childbirth services, all of which are supposed to be provided for free. The net benefits were significantly higher for the rural residents, males and the poor compared to the urban residents, females and better-off quintiles. Conclusion It is concluded that coverage of all of these priority public health services fell well below target levels, but the poorer quintiles and rural residents that are in greater need received more benefits, although not so for females. Payments for services that are supposed to be delivered free of charge suggests that there may have been illegal payments which probably hindered access to the public health services. PMID:23158434
NASA Astrophysics Data System (ADS)
Heyns, Elodie; Froneman, William
2010-06-01
The spatial and temporal patterns in the hyperbenthic community structure (>500 μm) in the warm temperate, permanently open Kariega Estuary situated along the south-eastern coastline of South Africa was investigated monthly over a period of twelve months. Data were collected using a modified hyperbenthic sledge at six stations along the length of the estuary. Physico-chemical data indicate the presence of a constant reverse salinity gradient, with highest salinities measured in the upper reaches and lowest at the mouth of the estuary. Strong seasonal patterns in temperature, dissolved oxygen and total chlorophyll- a (chl- a) concentration were evident. Total average hyperbenthic densities ranged between 0.4 and 166 ind.m -3 in the lower net and between 0.2 and 225 ind.m -3 in the upper net. Hyperbenthic biomass values ranged between 0.02 and 11.9 mg.dry weight.m -3 in the lower net and between 0.02 and 17.4 mg.dry weight.m -3 in the upper net. Both the lower and upper nets were numerically dominated by decapods (mainly brachyuran crab zoea) with the exception of June and July 2008 when mysids (mainly Mesopodopsis wooldridgei) dominated, comprising up to 72.4 ± 58.14% of the total abundance in the lower net. A redundancy analysis (RDA) indicated that 99.2% of the variance in the hyperbenthic community structure could be explained by the first two canonical axes. Axis one, which accounted for 96.8% of the total variation detected in the ordination plot was highly correlated with sedimentary organic content and to a lesser extent the chl- a concentration within the Kariega Estuary. The correlations with the second canonical axis (2.4%) were less obvious, however, salinity and seston concentration were weakly correlated with this axis.
NASA Astrophysics Data System (ADS)
Krishnan, M.
2017-05-01
We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or rapid, reliable predictions are desired.
The heating and acceleration actions of the solar plasma wave by QFT
NASA Astrophysics Data System (ADS)
Chen, Shao-Guang
I deduce the new gravitational formula from the variance in mass of QFT and GR (H05-0029-08, E15-0039 -08, E14-0032-08, D31-0054-10) in the partial differential: f (QFT) = f (GR) = delta∂ (m v)/delta∂ t = f _{P} + f _{C} , f _{P} = m delta∂ v / delta∂ t = - ( G m M /r (2) ) r / r, f _{C} = v delta∂ m / delta∂ t = - ( G mM / r (2) ) v / c (1), f (QFT) is the quasi-Casimir pressure of net virtual neutrinos nuν _{0} flux (after counteract contrary direction nuν _{0}). f (GR) is equivalent to Einstein’s equation as a new version of GR. GR can be inferred from Eq.(1) thereby from QFT, but QFT cannot be inferred from Eq.(1) or GR. f (QFT) is essential but f (GR) is phenomenological. Eq.(1) is obtained just by to absorb the essence of corpuscule collided gravitation origin ism proposed by Fatio in 1690 and 1920 Majorana’s experiment concept about gravitational shield effect again fuse with QFT. Its core content is that the gravity produced by particles collide cannot linear addition, i.e., Eq.(1) with the adding nonlinearity caused by the variable mass to replace the nonlinearity of Einstein’s equation and the nonlinear gravitation problems can be solved using the classical gradual approximation of alone f _{P} and alone f _{C}. Such as the calculation of advance of the perihelion of QFT, let the gravitational potential U = - G M /r which is just the distribution density of net nuν _{0} flux. From SR we again get Eq.(1): f (QFT) = f _{P} + f _{C}, f _{P} = - m ( delta∂ U / delta∂ r) r / r, f _{C} = - m ( delta∂U / delta∂ r) v / c , U = (1 - betaβ (2) )V, V is the Newtonian gravitational potential. f_{ P} correspond the change rate of three-dimensional momentum p, f_{C} correspond the change rate of fourth dimensional momentum i m c which show directly as a dissipative force of mass change. In my paper ‘To cross the great gap between the modern physics and classic physics, China Science &Technology Overview 129 85-91(2011)’ with the measuring value of one-way velocity of light (H05-0006-08) to replace the infinity value of light speed measured by Galileo in 1607, thereby the mass m in NM will become variable m. Or else, the energy of electron in accelerator should not larger than 0.51Mev which conflict with the experimental fact. According to the variable mass and the definition of force we again get Eq.(1) from NM without hypothesis, i.e., NM is generalized in which Galileo coordinates transformation and the action at a distance will be of no effect. Eq.(1) has more reliable experimental base and generalized NM may be applied to the high-speed and the microscopic conditions. Because of the result of a test of GR with use of a hydrogen-maser frequency standard in a spacecraft launched nearly vertically upward to 10000 km (R. F. C. Vessot et.al., Phys. Rev. Lett. 45, 2081 (1980)), the isotropy of one-way velocity of light had been validated at the 1*10 (-10) level (D2.4-0030-12, H0.1-0009-12, H0.2-0008-12). Again from the Lorentz transformation (H01-0006-08) and the uncertainty principle (H05-0036-10) deduced from the metrical results of Doppler effects, SR and QM, thereby QFT and GR, all become the inferential theorems from generalized NM. Eq.(1) is as a bridge to join the modern physics and classical physics. In my paper ‘Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction’ (D31-0054-10): According to QFT the gravitation is the statistic average pressure collided by net virtual neutrinos nuν _{0} flux, the net nuν _{0} flux can press a part freedom electrons in plasma of ionosphere into the surface of celestial bodies, the static electric force of redundant positive ions prevents electrons further falling and till reach the equilibrium of stable spatial charge distribution, which is just the cause of the geomagnetic field and the geo-electric field. In the solar surface plasma add the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of Sun and the center of Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the most net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge, at the same time, the solar surface remain a cavity as a sunspot whorl with the positive charge relative to around plasma. The whorl caused by that the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to small negative charge, the Jupiter at front had been produced a new cavity. Thereby we had observe the sunspot pair with different directions whorl and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, then Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. The negative electric solar plasma upwards eject into the positive electric ionosphere, the upwards force will decrease and the downwards net nuν_{0} flux pressure again to be large than the upwards force, it makes the solar plasma again downwards and ceaselessly up-down vibrating. At the same time, in the solar magnetic field the positive - negative charge of the outflow solar plasma will left-right separate by Lorentz force and by the feedback mechanism of Lorentz force the positive - negative charge will left-right vibrate. The plasma on the move will accompany with up-down and left-right vibrating and become the wave. Though the frequent of the plasma wave is not high, but its heating and acceleration actions will be not less then that of the microwave and laser because of its mass and energy far large then that of the microwave and laser.
Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.
Zhu, Zhen-Gang; Berakdar, Jamal
2009-04-08
We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.
Gresh, Nohad; El Hage, Krystel; Perahia, David; Piquemal, Jean-Philip; Berthomieu, Catherine; Berthomieu, Dorothée
2014-11-05
The existence of a network of structured waters in the vicinity of the bimetallic site of Cu/Zn-superoxide dismutase (SOD) has been inferred from high-resolution X-ray crystallography. Long-duration molecular dynamics (MD) simulations could enable to quantify the lifetimes and possible interchanges of these waters between themselves as well as with a ligand diffusing toward the bimetallic site. The presence of several charged or polar ligands makes it necessary to resort to second-generation polarizable potentials. As a first step toward such simulations, we benchmark in this article the accuracy of one such potential, sum of interactions between fragments Ab initio computed (SIBFA), by comparisons with quantum mechanics (QM) computations. We first consider the bimetallic binding site of a Cu/Zn-SOD, in which three histidines and a water molecule are bound to Cu(I) and three histidines and one aspartate are bound to Zn(II). The comparisons are made for different His6 complexes with either one or both cations, and either with or without Asp and water. The total net charges vary from zero to three. We subsequently perform preliminary short-duration MD simulations of 296 waters solvating Cu/Zn-SOD. Six representative geometries are selected and energy-minimized. Single-point SIBFA and QM computations are then performed in parallel on model binding sites extracted from these six structures, each of which totals 301 atoms including the closest 28 waters from the Cu metal site. The ranking of their relative stabilities as given by SIBFA is identical to the QM one, and the relative energy differences by both approaches are fully consistent. In addition, the lowest-energy structure, from SIBFA and QM, has a close overlap with the crystallographic one. The SIBFA calculations enable to quantify the impact of polarization and charge transfer in the ranking of the six structures. Five structural waters, which connect Arg141 and Glu131, are endowed with very high dipole moments (2.7-3.0 Debye), equal and larger than the one computed by SIBFA in ice-like arrangements (2.7 D). Copyright © 2014 Wiley Periodicals, Inc.
Rengasamy, Samy; Zhuang, Ziqing; Niezgoda, George; Walbert, Gary; Lawrence, Robert; Boutin, Brenda; Hudnall, Judith; Monaghan, William P; Bergman, Michael; Miller, Colleen; Harris, James; Coffey, Christopher
2018-05-21
The International Organization for Standardization (ISO) standard 16900-1:2014 specifies the use of sodium chloride (NaCl) and corn oil aerosols, and sulfur hexafluoride gas for measuring total inward leakage (TIL). However, a comparison of TIL between different agents is lacking. The objective of this study was to measure and compare TIL for respirators using corn oil and NaCl aerosols. TIL was measured with 10 subjects donning two models of filtering facepiece respirators (FFRs) including FFP1, N95, P100, and elastomeric half-mask respirators (ERs) in NaCl and corn oil aerosol test chambers, using continuous sampling methods. After fit testing with a PortaCount (TSI, St. Paul, MN) using the Occupational Safety and Health Administration (OSHA) protocol, five subjects were tested in the NaCl chamber first and then in the corn oil chamber, while other subjects tested in the reverse order. TIL was measured as a ratio of mass-based aerosol concentrations in-mask to the test chamber, while the subjects performed ISO 16900-1-defined exercises. The concentration of NaCl aerosol was measured using two flame photometers, and corn oil aerosol was measured with one light scattering photometer. The same instruments were used to measure filter penetration in both chambers using a Plexiglas® setup. The size distribution of aerosols was determined using a scanning mobility particle sizer and charge was measured with an electrometer. Filter efficiency was measured using an 8130 Automated Filter Tester (TSI). Results showed the geometric mean TIL for corn oil aerosol for one model each of all respirator categories, except P100, were significantly (p<0.05) greater than for NaCl aerosol. Filter penetration in the two test chambers showed a trend similar to TIL. The count median diameter was ∼82 nm for NaCl and ∼200 nm for corn oil aerosols. The net positive charge for NaCl aerosol was relatively larger. Both fit factor and filter efficiency influence TIL measurement. Overall, TIL determination with aerosols of different size distributions and charges using different methodologies may produce dissimilar results.
ERIC Educational Resources Information Center
Hill, Catharine; Winston, Gordon; Boyd, Stephanie
2004-01-01
College tuition is frequently compared, in press and politics, to the US median family income. That is, however, a highly misleading benchmark since schools with need-based financial aid rarely charge students from median income families the reported sticker price. Working from the financial aid records of individual students at twenty-eight…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adare, A.; Afanasiev, S.; Aidala, C.
Our report presents the measurement of cumulants (C n,n=1,...,4) of the net-charge distributions measured within pseudorapidity (|η|<0.35) in Au+Au collisions at √s NN=7.7–200GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C 1/C 2, C 3/C 1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do notmore » observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. These measured values of C 1/C 2 and C 3/C 1 can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy. Moreover, the extracted baryon chemical potentials are in excellent agreement with a thermal-statistical analysis model.« less
The effect of net charge on the solubility, activity, and stability of ribonuclease Sa.
Shaw, K L; Grimsley, G R; Yakovlev, G I; Makarov, A A; Pace, C N
2001-06-01
The net charge and isoelectric pH (pI) of a protein depend on the content of ionizable groups and their pK values. Ribonuclease Sa (RNase Sa) is an acidic protein with a pI = 3.5 that contains no Lys residues. By replacing Asp and Glu residues on the surface of RNase Sa with Lys residues, we have created a 3K variant (D1K, D17K, E41K) with a pI = 6.4 and a 5K variant (3K + D25K, E74K) with a pI = 10.2. We show that pI values estimated using pK values based on model compound data can be in error by >1 pH unit, and suggest how the estimation can be improved. For RNase Sa and the 3K and 5K variants, the solubility, activity, and stability have been measured as a function of pH. We find that the pH of minimum solubility varies with the pI of the protein, but that the pH of maximum activity and the pH of maximum stability do not.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Brooks, J. N.; Elder, J. D.
2015-03-29
We analyze a DIII-D tokamak experiment where two tungsten spots on the removable DiMES divertor probe were exposed to 12 s of attached plasma conditions, with moderate strike point temperature and density (~20 eV, ~4.5 × 10 19 m –3), and 3% carbon impurity content. Both very small (1 mm diameter) and small (1 cm diameter) deposited samples were used for assessing gross and net tungsten sputtering erosion. The analysis uses a 3-D erosion/redeposition code package (REDEP/WBC), with input from a diagnostic-calibrated near-surface plasma code (OEDGE), and with focus on charge state resolved impinging carbon ion flux and energy. Themore » tungsten surfaces are primarily sputtered by the carbon, in charge states +1 to +4. We predict high redeposition (~75%) of sputtered tungsten on the 1 cm spot—with consequent reduced net erosion—and this agrees well with post-exposure DiMES probe RBS analysis data. As a result, this study and recent related work is encouraging for erosion lifetime and non-contamination performance of tokamak reactor high-Z plasma facing components.« less
NASA Astrophysics Data System (ADS)
Mey, Antonia S. J. S.; Jiménez, Jordi Juárez; Michel, Julien
2018-01-01
The Drug Design Data Resource (D3R) consortium organises blinded challenges to address the latest advances in computational methods for ligand pose prediction, affinity ranking, and free energy calculations. Within the context of the second D3R Grand Challenge several blinded binding free energies predictions were made for two congeneric series of Farsenoid X Receptor (FXR) inhibitors with a semi-automated alchemical free energy calculation workflow featuring FESetup and SOMD software tools. Reasonable performance was observed in retrospective analyses of literature datasets. Nevertheless, blinded predictions on the full D3R datasets were poor due to difficulties encountered with the ranking of compounds that vary in their net-charge. Performance increased for predictions that were restricted to subsets of compounds carrying the same net-charge. Disclosure of X-ray crystallography derived binding modes maintained or improved the correlation with experiment in a subsequent rounds of predictions. The best performing protocols on D3R set1 and set2 were comparable or superior to predictions made on the basis of analysis of literature structure activity relationships (SAR)s only, and comparable or slightly inferior, to the best submissions from other groups.
Faria-Pinto, P; Meirelles, M N L; Lenzi, H L; Mota, E M; Penido, M L O; Coelho, P M Z; Vasconcelos, E G
2004-07-01
The fact that the Schistosoma mansoni egg has two ATP diphosphohydrolase (EC 3.6.1.5) isoforms with different net charges and an identical molecular weight of 63,000, identified by non-denaturing polyacrylamide gel electrophoresis and immunological cross-reactivity with potato apyrase antibodies, is shown. In soluble egg antigen (SEA), only the isoform with the lower net negative charge was detected and seemed to be the predominant species in this preparation. By confocal fluorescence microscopy, using anti-potato apyrase antibodies, the S. mansoni egg ATP diphosphohydrolase was detected on the external surface of miracidium and in von Lichtenberg's envelope. Intense fluorescence was also seen in the outer side of the egg-shell, entrapped by the surface microspines, suggesting that a soluble isoform is secreted. ATP diphosphohydrolase antigenicity was tested using the vegetable protein as antigen. The purified potato apyrase was recognized in Western blots by antibodies present in sera from experimentally S. mansoni-infected mice. In addition, high levels of IgG anti-ATP diphosphohydrolase antibodies were detected by ELISA in the same sera. This work represents the first demonstration of antigenic properties of S. mansoni ATP diphosphohydrolase and immunological cross-reactivity between potato apyrase and sera from infected individuals.
Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei
2015-10-09
Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl(-), SO4(2-) and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type.
Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei
2015-01-01
Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl−, SO42− and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type. PMID:26450811
Panji, Sumir; Fernandes, Pedro L.; Judge, David P.; Ghouila, Amel; Salifu, Samson P.; Ahmed, Rehab; Kayondo, Jonathan; Ssemwanga, Deogratius
2017-01-01
Africa is not unique in its need for basic bioinformatics training for individuals from a diverse range of academic backgrounds. However, particular logistical challenges in Africa, most notably access to bioinformatics expertise and internet stability, must be addressed in order to meet this need on the continent. H3ABioNet (www.h3abionet.org), the Pan African Bioinformatics Network for H3Africa, has therefore developed an innovative, free-of-charge “Introduction to Bioinformatics” course, taking these challenges into account as part of its educational efforts to provide on-site training and develop local expertise inside its network. A multiple-delivery–mode learning model was selected for this 3-month course in order to increase access to (mostly) African, expert bioinformatics trainers. The content of the course was developed to include a range of fundamental bioinformatics topics at the introductory level. For the first iteration of the course (2016), classrooms with a total of 364 enrolled participants were hosted at 20 institutions across 10 African countries. To ensure that classroom success did not depend on stable internet, trainers pre-recorded their lectures, and classrooms downloaded and watched these locally during biweekly contact sessions. The trainers were available via video conferencing to take questions during contact sessions, as well as via online “question and discussion” forums outside of contact session time. This learning model, developed for a resource-limited setting, could easily be adapted to other settings. PMID:28981516
NASA Astrophysics Data System (ADS)
Liu, L.; Dong, Y.; Bao, G.; Ni, W.-T.; Shaul, D. N. A.
2010-01-01
As ASTROD I travels through space, its test mass will accrue charge due to exposure of the spacecraft to high-energy particles. This test mass charge will result in Coulomb forces between the test mass and the surrounding electrodes. In earlier work, we have used the GEANT 4 toolkit to simulate charging of the ASTROD test mass due to cosmic-ray protons of energies between 0.1 and 1000 GeV at solar maximum and at solar minimum. Here we use GEANT 4 to simulate the charging process due to solar energetic particle events and interplanetary electrons. We then estimate the test mass acceleration noise due to these fluxes. The predicted charging rates range from 2247 e+/s to 47,055 e+/s, at peak intensity, for the four largest SEP events in September and October 1989. Although the noise due to charging exceeds the ASTROD I budget for the two larger events, it can be suppressed through continuous discharging. The acceleration noise during the two small events is well below the design target. The charging rate of the ASTROD I test mass due to interplanetary electrons in this simulation is about -11% of the cosmic-ray protons at solar minimum, and over -37% at solar maximum. In addition to the Monte Carlo uncertainty, an error of ±30% in the net charging rates should be added to account for uncertainties in the spectra, physics models and geometry implementations.
NASA Astrophysics Data System (ADS)
Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Wu, Qisheng
2018-05-01
Since its first proposition at the end of the last century (Schasfoort et al 1999 Science 286 942-5), field-effect flow control at micrometer dimensions has attracted tremendous attention from the microfluidic community. Most previous research on this subject has mainly focused on enhancing the electroosmotic pump flow rate by introducing an additional in-phase counterionic charge across the diffusing screening cloud with external gate electrodes of static DC voltages. However, there is a flaw, namely that AC fields, which suppress undesirable electrochemical reactions, result in zero time-averaged flow. Starting from this point, we present herein a brand new approach to traveling-wave field-effect electroosmosis control from a theoretical point of view, in the context of a smart manipulation tool for the stratified liquid content of miniaturization systems. In the configuration of a traveling-wave flow field-effect transistor (TW-FFET), the field-induced out-of-phase Debye screening charge within the thin double layer originates from the forward propagation of a traveling potential wave along a discrete arrangement of external gating electrode arrays, which interacts actively with the horizontal standing-wave electric field imposed across the source-drain terminal. Since the voltage waves and induced free charge are all sinusoidal functions of the observation time, the net ICEO flow component can survive in a broad frequency range. Due to the action of the background AC electric field on the inhomogeneous counterionic charge induced at the solution/sidewall interface, asymmetric ICEO vortex patterns appear above the traveling-wave gate arrays, giving rise to simultaneous induced-charge electroosmotic pumping and mixing of fluidic samples. A mathematical model is then developed to numerically investigate the feasibility of TW-FFETs in electrokinetic microflow manipulation. A prototyping paradigm of fully electrokinetics-driven microfabricated fluidic networks in a cross shape is theoretically erected, with four sets of gating traveling-fields in perpendicular orientations, from which the resulting liquid mixture is obtainable at any one of the three outlet ports. Supported by mathematical analysis, our physical demonstration of the TW-FFET shows it has great potential to advance fully automated electroconvective sample treatment in modern micro total analytical systems.
Gresenz, Carole Roan; Rogowski, Jeannette; Escarce, José J
2006-03-01
Despite concerted policy efforts, a sizeable percentage of children lack health insurance coverage. This article examines the impact of the health care safety net and health care market structure on the use of health care by uninsured children. We used the Medical Expenditure Panel Survey linked with data from multiple sources to analyze health care utilization among uninsured children. We ran analyses separately for children who lived in rural and urban areas and assessed the effects on utilization of the availability of safety net providers, safety net funding, supply of primary care physicians, health maintenance organization penetration, and the percentage of people who are uninsured, controlling for other factors that influence use. Fewer than half of uninsured children had office-based visits to health care providers during the year, 8% of rural and 10% of urban children visited the emergency department at least once, and just over half of children had medical expenditures or charges during the year. Among uninsured children in rural areas, living closer to a safety net provider and living in an area with a higher supply of primary care physicians were positively associated with higher use and medical expenditures. In urban areas, the supply of primary care physicians and the level of safety net funding were positively associated with uninsured children's medical expenditures, whereas the percentage of the population that was uninsured was negatively associated with use of the emergency department. Uninsured children had low levels of utilization over a range of different health care provider types and settings. The availability of safety net providers in the local area and the safety net's capacity to serve the uninsured influence access to care among children. Possible measures for ensuring access to health care among uninsured children include increasing the density of safety net providers in rural areas, enhancing funding for the safety net, and policies to increase primary care physician supply.
Sutherland, E Rand; Busse, William W
2014-01-01
In 2008, the National Heart, Lung, and Blood Institute announced its intent to support a new asthma network known as AsthmaNet. This clinical trials consortium, now in its fifth year, has been charged with developing and executing clinical trials to address the most important asthma management questions and identify new treatment approaches in pediatric and adult patients. This review will discuss the organization of AsthmaNet and the scientific context in which the network was developed and began its work, report the results of an internal priority-setting exercise designed to guide the network's scientific strategy, and highlight the portfolio of clinical trials, proof-of-concept studies, and mechanistic studies planned for the 7-year period of the network to update the global asthma community regarding the progress and processes of the network. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Comparison of fish catches with buoyant pop nets and seines in vegetated and nonvegetated habitats
Dewey, M.R.; Holland-Bartels, L. E.; Zigler, S.J.
1989-01-01
Two models of pop nets were developed to sample fish in shallow riverine waters, one for use in vegetated areas and the other for nonvegetated areas. Both nets have a mechanical release mechanism that can be tripped from the water surface. Replicated field tests were conducted to compare pop-net catches with bag-seine collections every 2 weeks from May through mid-October. Overall, total catch per effort did not vary significantly (P 2) was smaller than the area swept by the average seine haul (70-140 m2). The pop net effectively sampled fish in shallow nonvegetated habitats and was useful in heavily vegetated areas where seining or electroshocking was difficult.
NASA Astrophysics Data System (ADS)
Sarafopoulos, D. V.
2010-02-01
For the first time we identify a bi-layer structure of energetic electron fluxes in the Earth's magnetotail and establish (using datasets mainly obtained by the Geotail Energetic Particles and Ion Composition (EPIC/ICS) instrument) that it actually provides strong evidence for a purely spatial structure. Each bi-layer event is composed of two distinct layers with counterstreaming energetic electron fluxes, parallel and antiparallel to the local ambient magnetic field lines; in particular, the tailward directed fluxes always occur in a region adjacent to the lobes. Adopting the X-line as a standard reconnection model, we determine the occurrence of bi-layer events relatively to the neutral point, in the substorm frame; four (out of the shown seven) events are observed earthward and three tailward, a result implying that four events probably occurred with the substorm's local recovery phase. We discuss the bi-layer events in terms of the X-line model; they add more constraints for any candidate electron acceleration mechanism. It should be stressed that until this time, none proposed electron acceleration mechanism has discussed or predicted these layered structures with all their properties. Then we discuss the bi-layer events in terms of the much promising "akis model", as introduced by Sarafopoulos (2008). The akis magnetic field topology is embedded in a thinned plasma sheet and is potentially causing charge separation. We assume that as the Rc curvature radius of the magnetic field line tends to become equal to the ion gyroradius rg, then the ions become non-adiabatic. At the limit Rc=rg the demagnetization process is also under way and the frozen-in magnetic field condition is violated by strong wave turbulence; hence, the ion particles in this geometry are stochastically scattered. In addition, ion diffusion probably takes place across the magnetic field, since an intense pressure gradient is directed earthward; hence, ions are ejected tailward of akis. This way, in front of akis an "ion capsule region" is formed with net positive charge. In between them a distinct region with an electric field E⊥ orthogonal to the magnetic field is emerged; E⊥ in front of akis is directed earthward. The field-aligned and highly anisotropic energetic electron populations have probably resulted via spatially separated antiparallel and field-aligned electric fields being the very heart of the acceleration source. We assume that the ultimate cause for the field-aligned electric fields are the net positive capsule charge and the net negative charge trapped at the tip of akis; both charges will be eventually neutralized through field aligned currents, but they remain unshielded for sufficient time to produce the observed events.
Kim, Myung-Sun; Kang, Bit-Na; Lim, Jae Young
2016-01-01
Decision-making is the process of forming preferences for possible options, selecting and executing actions, and evaluating the outcome. This study used the Iowa Gambling Task (IGT) and the Prospect Valence Learning (PVL) model to investigate deficits in risk-reward related decision-making in patients with chronic schizophrenia, and to identify decision-making processes that contribute to poor IGT performance in these patients. Thirty-nine patients with schizophrenia and 31 healthy controls participated. Decision-making was measured by total net score, block net scores, and the total number of cards selected from each deck of the IGT. PVL parameters were estimated with the Markov chain Monte Carlo sampling scheme in OpenBugs and BRugs, its interface to R, and the estimated parameters were analyzed with the Mann-Whitney U-test. The schizophrenia group received significantly lower total net scores compared to the control group. In terms of block net scores, an interaction effect of group × block was observed. The block net scores of the schizophrenia group did not differ across the five blocks, whereas those of the control group increased as the blocks progressed. The schizophrenia group obtained significantly lower block net scores in the fourth and fifth blocks of the IGT and selected cards from deck D (advantageous) less frequently than the control group. Additionally, the schizophrenia group had significantly lower values on the utility-shape, loss-aversion, recency, and consistency parameters of the PVL model. These results indicate that patients with schizophrenia experience deficits in decision-making, possibly due to failure in learning the expected value of each deck, and incorporating outcome experiences of previous trials into expectancies about options in the present trial.
Truzzolillo, D; Bordi, F; Sciortino, F; Sennato, S
2010-07-14
We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.
McAllister, Robert G; Metwally, Haidy; Sun, Yu; Konermann, Lars
2015-10-07
The mechanism whereby gaseous protein ions are released from charged solvent droplets during electrospray ionization (ESI) remains a matter of debate. Also, it is unclear to what extent electrosprayed proteins retain their solution structure. Molecular dynamics (MD) simulations offer insights into the temporal evolution of protein systems. Surprisingly, there have been no all-atom simulations of the protein ESI process to date. The current work closes this gap by investigating the behavior of protein-containing aqueous nanodroplets that carry excess positive charge. We focus on "native ESI", where proteins initially adopt their biologically active solution structures. ESI proceeds while the protein remains entrapped within the droplet. Protein release into the gas phase occurs upon solvent evaporation to dryness. Droplet shrinkage is accompanied by ejection of charge carriers (Na(+) for the conditions chosen here), keeping the droplet at ∼85% of the Rayleigh limit throughout its life cycle. Any remaining charge carriers bind to the protein as the final solvent molecules evaporate. The outcome of these events is largely independent of the initial protein charge and the mode of charge carrier binding. ESI charge states and collision cross sections of the MD structures agree with experimental data. Our results confirm the Rayleigh/charged residue model (CRM). Field emission of excess Na(+) plays an ancillary role by governing the net charge of the shrinking droplet. Models that envision protein ejection from the droplet are not supported. Most nascent CRM ions retain native-like conformations. For unfolded proteins ESI likely proceeds along routes that are different from the native state mechanism explored here.
Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2014-05-01
To investigate the influence of different actuator materials and nozzle designs on the electrostatic charge properties of a series of solution metered dose inhaler (pMDI) aerosols. Actuators were manufactured with flat and cone nozzle designs using five different materials from the triboelectric series (Nylon, Polyethylene terephthalate, Polyethylene-High density, Polypropylene copolymer and Polytetrafluoroethylene). The electrostatic charge profiles of pMDI containing beclomethasone dipropionate (BDP) as model drug in HFA-134a propellant, with different concentrations of ethanol were studied. Electrostatic measurements were taken using a modified electrical low-pressure impactor (ELPI) and the deposited drug mass assayed chemically using HPLC. The charge profiles of HFA 134a alone have shown strong electronegativity with all actuator materials and nozzle designs, at an average of -1531.34 pC ± 377.34. The presence of co-solvent ethanol significantly reduced the negative charge magnitude. BDP reduced the suppressing effect of ethanol on the negative charging of the propellant. For all tested formulations, the flat nozzle design showed no significant differences in net charge between different actuator materials, whereas the charge profiles of cone designs followed the triboelectric series. The electrostatic charging profiles from a solution pMDI containing BDP and ethanol can be significantly influenced by the actuator material, nozzle design and formulation components. Ethanol concentration appears to have the most significant impact. Furthermore, BDP interactions with ethanol and HFA have an influence on the electrostatic charge of aerosols. By choosing different combinations of actuator materials and orifice design, the fine particle fractions of formulations can be altered.