Sample records for total non methane

  1. 40 CFR 86.1342-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., if appropriate, the weighted mass total hydrocarbon equivalent, formaldehyde, or non-methane... see § 86.1342-90. (b)(8) Non-methane hydrocarbon mass: NMHCmass = Vmix × DensityNMHC × (NMHCconc/1,000... non-methane hydrocarbon, is 1.1771(12.011 + H/C (1.008)) g/ft3-carbon atom (0.04157(12.011 + H/C (1...

  2. 40 CFR 86.1804-01 - Acronyms and abbreviations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...—Nonmethane Hydrocarbons. NMHCE—Non-Methane Hydrocarbon Equivalent. NMOG—Non-methane organic gases. NO—nitric....—Degree(s). DNPH—2,4-dinitrophenylhydrazine. EDV—Emission Data Vehicle. EP—End point. ETW—Equivalent test...—dispensed fuel temperature. THC—Total Hydrocarbons. THCE—Total Hydrocarbon Equivalent. TLEV—Transitional Low...

  3. 40 CFR 86.1804-01 - Acronyms and abbreviations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...—Nonmethane Hydrocarbons. NMHCE—Non-Methane Hydrocarbon Equivalent. NMOG—Non-methane organic gases. NO—nitric....—Degree(s). DNPH—2,4-dinitrophenylhydrazine. EDV—Emission Data Vehicle. EP—End point. ETW—Equivalent test...—dispensed fuel temperature. THC—Total Hydrocarbons. THCE—Total Hydrocarbon Equivalent. TLEV—Transitional Low...

  4. 40 CFR 86.1342-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., if appropriate, the weighted mass total hydrocarbon equivalent, formaldehyde, or non-methane... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED... see § 86.1342-90. (b)(8) Non-methane hydrocarbon mass: NMHCmass = Vmix × DensityNMHC × (NMHCconc/1,000...

  5. 40 CFR 86.1342-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., if appropriate, the weighted mass total hydrocarbon equivalent, formaldehyde, or non-methane... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED... see § 86.1342-90. (b)(8) Non-methane hydrocarbon mass: NMHCmass = Vmix × DensityNMHC × (NMHCconc/1,000...

  6. 40 CFR 86.1342-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., if appropriate, the weighted mass total hydrocarbon equivalent, formaldehyde, or non-methane... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED... see § 86.1342-90. (b)(8) Non-methane hydrocarbon mass: NMHCmass = Vmix × DensityNMHC × (NMHCconc/1,000...

  7. GREENOUSE GASES FROM SMALL-SCALE COMBUSTION DEVICES IN DEVELOPING COUNTRIES, PHASE IIA. HOUSEHOLD STOVES IN INDIA

    EPA Science Inventory

    The report contains a systematic set of measurements of carbon dioxide (CO2), carbon monoxide, methane, total non-methane organic compounds, nitrous oxide, sulfur dioxide, nitrogen dioxide, and total suspended particulate emissions from the commonest combustion devices in the wor...

  8. Methane-oxidizing seawater microbial communities from an Arctic shelf

    NASA Astrophysics Data System (ADS)

    Uhlig, Christiane; Kirkpatrick, John B.; D'Hondt, Steven; Loose, Brice

    2018-06-01

    Marine microbial communities can consume dissolved methane before it can escape to the atmosphere and contribute to global warming. Seawater over the shallow Arctic shelf is characterized by excess methane compared to atmospheric equilibrium. This methane originates in sediment, permafrost, and hydrate. Particularly high concentrations are found beneath sea ice. We studied the structure and methane oxidation potential of the microbial communities from seawater collected close to Utqiagvik, Alaska, in April 2016. The in situ methane concentrations were 16.3 ± 7.2 nmol L-1, approximately 4.8 times oversaturated relative to atmospheric equilibrium. The group of methane-oxidizing bacteria (MOB) in the natural seawater and incubated seawater was > 97 % dominated by Methylococcales (γ-Proteobacteria). Incubations of seawater under a range of methane concentrations led to loss of diversity in the bacterial community. The abundance of MOB was low with maximal fractions of 2.5 % at 200 times elevated methane concentration, while sequence reads of non-MOB methylotrophs were 4 times more abundant than MOB in most incubations. The abundances of MOB as well as non-MOB methylotroph sequences correlated tightly with the rate constant (kox) for methane oxidation, indicating that non-MOB methylotrophs might be coupled to MOB and involved in community methane oxidation. In sea ice, where methane concentrations of 82 ± 35.8 nmol kg-1 were found, Methylobacterium (α-Proteobacteria) was the dominant MOB with a relative abundance of 80 %. Total MOB abundances were very low in sea ice, with maximal fractions found at the ice-snow interface (0.1 %), while non-MOB methylotrophs were present in abundances similar to natural seawater communities. The dissimilarities in MOB taxa, methane concentrations, and stable isotope ratios between the sea ice and water column point toward different methane dynamics in the two environments.

  9. Field studies: Test method for on-line continuous measurement of total hydrocarbons (THC) and non-methane hydrocarbons (NMHC) in stack gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, H.H.; Lai, C.C.; Chu, H.W.

    A new method for on-line monitoring of total hydrocarbons and non-methane hydrocarbons in stack gas simultaneously was developed in this study. Based on the principle of on-line GC/FID, the method was developed and can be considered as a new modification of the Method 25 and 25A of US EPA. Major advantages of the method included (1) capability of distinguishing methane as Method 25; (2) near-real-time results; (3) broad species coverage; (4) monitoring methane in straightforward manner; (5) low operation and maintenance costs. In the proposed method, test samples were continuously pumped from detection sources and loaded with a two-loop samplingmore » valve. The samples were then injected into two GC columns-empty and molecular sieve columns. The empty column was used for detection of THC, and the molecular sieve column was for methane. The detector in this GC was FID. NMHC concentration was obtained by subtracting methane from THC. The tests were carried out to measure the THC and methane in waste gas in various industries, including surface coating, semiconductor manufacturing, synthetic leather industries. Recovery rates of THC in the samples were between 86% to 114% for about 100 m of transfer line of samples. For the standard gas, the recovery rate was about 101%, 6.6 % of measurement precision, and 88%--114% of accuracy. The results showed the promising and reliable measurement of the test method for THC and methane in waste gas.« less

  10. Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, X.; Cemagref, UR-HBAN, Parc de Tourvoie, Antony cedex F-92163; Vavilin, V.A.

    Utilizing stable carbon isotope data to account for aceticlastic and non-aceticlastic pathways of methane generation, a model was created to describe laboratory batch anaerobic decomposition of cellulosic materials (office paper and cardboard). The total organic and inorganic carbon concentrations, methane production volume, and methane and CO{sub 2} partial pressure values were used for the model calibration and validation. According to the fluorescent in situ hybridization observations, three groups of methanogens including strictly hydrogenotrophic methanogens, strictly aceticlastic methanogens (Methanosaeta sp.) and Methanosarcina sp., consuming both acetate and H{sub 2}/H{sub 2}CO{sub 3} as well as acetate-oxidizing syntrophs, were considered. It was shownmore » that temporary inhibition of aceticlastic methanogens by non-ionized volatile fatty acids or acidic pH was responsible for two-step methane production from office paper at 35 {sup o}C where during the first and second steps methane was generated mostly from H{sub 2}/H{sub 2}CO{sub 3} and acetate, respectively. Water saturated and unsaturated cases were tested. According to the model, at the intermediate moisture (150%), much lower methane production occurred because of full-time inhibition of aceticlastic methanogens. At the lowest moisture, methane production was very low because most likely hydrolysis was seriously inhibited. Simulations showed that during cardboard and office paper biodegradation at 55 {sup o}C, non-aceticlastic syntrophic oxidation by acetate-oxidizing syntrophs and hydrogenotrophic methanogens were the dominant methanogenic pathways.« less

  11. Nutrient and acetate amendment leads to acetoclastic methane production and microbial community change in a non-producing Australian coal well.

    PubMed

    In 't Zandt, Michiel H; Beckmann, Sabrina; Rijkers, Ruud; Jetten, Mike S M; Manefield, Mike; Welte, Cornelia U

    2017-09-19

    Coal mining is responsible for 11% of total anthropogenic methane emission thereby contributing considerably to climate change. Attempts to harvest coalbed methane for energy production are challenged by relatively low methane concentrations. In this study, we investigated whether nutrient and acetate amendment of a non-producing sub-bituminous coal well could transform the system to a methane source. We tracked cell counts, methane production, acetate concentration and geochemical parameters for 25 months in one amended and one unamended coal well in Australia. Additionally, the microbial community was analysed with 16S rRNA gene amplicon sequencing at 17 and 25 months after amendment and complemented by metagenome sequencing at 25 months. We found that cell numbers increased rapidly from 3.0 × 10 4 cells ml -1 to 9.9 × 10 7 in the first 7 months after amendment. However, acetate depletion with concomitant methane production started only after 12-19 months. The microbial community was dominated by complex organic compound degraders (Anaerolineaceae, Rhodocyclaceae and Geobacter spp.), acetoclastic methanogens (Methanothrix spp.) and fungi (Agaricomycetes). Even though the microbial community had the functional potential to convert coal to methane, we observed no indication that coal was actually converted within the time frame of the study. Our results suggest that even though nutrient and acetate amendment stimulated relevant microbial species, it is not a sustainable way to transform non-producing coal wells into bioenergy factories. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. 40 CFR 92.123 - Test procedure; general requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designed to determine the brake specific emissions of hydrocarbons (HC, total or non-methane as applicable... of calculating brake specific emissions. (v) The engine may be equipped with a production type...

  13. 40 CFR 92.123 - Test procedure; general requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... designed to determine the brake specific emissions of hydrocarbons (HC, total or non-methane as applicable... of calculating brake specific emissions. (v) The engine may be equipped with a production type...

  14. 40 CFR 92.123 - Test procedure; general requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... designed to determine the brake specific emissions of hydrocarbons (HC, total or non-methane as applicable... of calculating brake specific emissions. (v) The engine may be equipped with a production type...

  15. 40 CFR 92.123 - Test procedure; general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... designed to determine the brake specific emissions of hydrocarbons (HC, total or non-methane as applicable... of calculating brake specific emissions. (v) The engine may be equipped with a production type...

  16. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrocarbons shall mean total hydrocarbon equivalents and references to non-methane hydrocarbons shall mean non... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  17. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrocarbons shall mean total hydrocarbon equivalents and references to non-methane hydrocarbons shall mean non... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  18. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrocarbons shall mean total hydrocarbon equivalents and references to non-methane hydrocarbons shall mean non... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  19. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons shall mean total hydrocarbon equivalents and references to non-methane hydrocarbons shall mean non... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  20. Investigation on combustion characteristics and NO formation of methane with swirling and non-swirling high temperature air

    NASA Astrophysics Data System (ADS)

    Li, Xing; Jia, Li

    2014-10-01

    Combustion characteristics of methane jet flames in an industrial burner working in high temperature combustion regime were investigated experimentally and numerically to clarify the effects of swirling high temperature air on combustion. Speziale-Sarkar-Gatski (SSG) Reynolds stress model, Eddy-Dissipation Model (EDM), Discrete Ordinates Method (DTM) combined with Weighted-Sum-of-Grey Gases Model (WSGG) were employed for the numerical simulation. Both Thermal-NO and Prompt-NO mechanism were considered to evaluate the NO formation. Temperature distribution, NO emissions by experiment and computation in swirling and non-swirling patterns show combustion characteristics of methane jet flames are totally different. Non-swirling high temperature air made high NO formation while significant NO prohibition were achieved by swirling high temperature air. Furthermore, velocity fields, dimensionless major species mole fraction distributions and Thermal-NO molar reaction rate profiles by computation interpret an inner exhaust gas recirculation formed in the combustion zone in swirling case.

  1. Effect of humic acid in leachate on specific methanogenic activity of anaerobic granular sludge.

    PubMed

    Guo, Mengfei; Xian, Ping; Yang, Longhui; Liu, Xi; Zhan, Longhui; Bu, Guanghui

    2015-01-01

    In order to find out the effects of humic acid (HA) in anaerobic-treated landfill leachate on granular sludge, the anaerobic biodegradability of HA as well as the influences of HA on the total cumulative methane production, the anaerobic methanization process and the specific methanogenic activity (SMA) of granular sludge are studied in this paper. Experimental results show that as a non-biodegradable organic pollutant, HA is also difficult to be decomposed by microbes in the anaerobic reaction process. Presence of HA and changes in the concentration have no significant influences on the total cumulative methane production and the anaerobic methanization process of granular sludge. Besides, the total cumulative methane production cannot reflect the inhibition of toxics on the methanogenic activity of granular sludge on the premise of sufficient reaction time. Results also show that HA plays a promoting role on SMA of granular sludge. Without buffering agent the SMA value increased by 19.2% on average due to the buffering and regulating ability of HA, while with buffering agent the SMA value increased by 5.4% on average due to the retaining effect of HA on the morphology of the sludge particles. However, in the presence of leachate the SMA value decreased by 27.6% on average, because the toxic effect of the toxics in the leachate on granular sludge is much larger than the promoting effect of HA.

  2. Estimating Global Seafloor Total Organic Carbon Using a Machine Learning Technique and Its Relevance to Methane Hydrates

    NASA Astrophysics Data System (ADS)

    Lee, T. R.; Wood, W. T.; Dale, J.

    2017-12-01

    Empirical and theoretical models of sub-seafloor organic matter transformation, degradation and methanogenesis require estimates of initial seafloor total organic carbon (TOC). This subsurface methane, under the appropriate geophysical and geochemical conditions may manifest as methane hydrate deposits. Despite the importance of seafloor TOC, actual observations of TOC in the world's oceans are sparse and large regions of the seafloor yet remain unmeasured. To provide an estimate in areas where observations are limited or non-existent, we have implemented interpolation techniques that rely on existing data sets. Recent geospatial analyses have provided accurate accounts of global geophysical and geochemical properties (e.g. crustal heat flow, seafloor biomass, porosity) through machine learning interpolation techniques. These techniques find correlations between the desired quantity (in this case TOC) and other quantities (predictors, e.g. bathymetry, distance from coast, etc.) that are more widely known. Predictions (with uncertainties) of seafloor TOC in regions lacking direct observations are made based on the correlations. Global distribution of seafloor TOC at 1 x 1 arc-degree resolution was estimated from a dataset of seafloor TOC compiled by Seiter et al. [2004] and a non-parametric (i.e. data-driven) machine learning algorithm, specifically k-nearest neighbors (KNN). Built-in predictor selection and a ten-fold validation technique generated statistically optimal estimates of seafloor TOC and uncertainties. In addition, inexperience was estimated. Inexperience is effectively the distance in parameter space to the single nearest neighbor, and it indicates geographic locations where future data collection would most benefit prediction accuracy. These improved geospatial estimates of TOC in data deficient areas will provide new constraints on methane production and subsequent methane hydrate accumulation.

  3. Methane emissions measurements of natural gas components using a utility terrain vehicle and portable methane quantification system

    NASA Astrophysics Data System (ADS)

    Johnson, Derek; Heltzel, Robert

    2016-11-01

    Greenhouse Gas (GHG) emissions are a growing problem in the United States (US). Methane (CH4) is a potent GHG produced by several stages of the natural gas sector. Current scrutiny focuses on the natural gas boom associated with unconventional shale gas; however, focus should still be given to conventional wells and outdated equipment. In an attempt to quantify these emissions, researchers modified an off-road utility terrain vehicle (UTV) to include a Full Flow Sampling system (FFS) for methane quantification. GHG emissions were measured from non-producing and remote low throughput natural gas components in the Marcellus region. Site audits were conducted at eleven locations and leaks were identified and quantified at seven locations including at a low throughput conventional gas and oil well, two out-of-service gathering compressors, a conventional natural gas well, a coalbed methane well, and two conventional and operating gathering compressors. No leaks were detected at the four remaining sites, all of which were coal bed methane wells. The total methane emissions rate from all sources measured was 5.3 ± 0.23 kg/hr, at a minimum.

  4. 40 CFR 88.103-94 - Abbreviations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Vehicle LDT—Light-Duty Truck LDV—Light-Duty Vehicle NMHC—Non-Methane Hydrocarbon NMHCE—Non-Methane Hydrocarbon Equivalent NMOG—Non-Methane Organic Gas NOx—Nitrogen Oxides PM—Particulate Matter GVWR—Gross...

  5. 40 CFR 88.103-94 - Abbreviations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Vehicle LDT—Light-Duty Truck LDV—Light-Duty Vehicle NMHC—Non-Methane Hydrocarbon NMHCE—Non-Methane Hydrocarbon Equivalent NMOG—Non-Methane Organic Gas NOx—Nitrogen Oxides PM—Particulate Matter GVWR—Gross...

  6. 40 CFR 88.103-94 - Abbreviations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle LDT—Light-Duty Truck LDV—Light-Duty Vehicle NMHC—Non-Methane Hydrocarbon NMHCE—Non-Methane Hydrocarbon Equivalent NMOG—Non-Methane Organic Gas NOx—Nitrogen Oxides PM—Particulate Matter GVWR—Gross...

  7. 40 CFR 88.103-94 - Abbreviations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle LDT—Light-Duty Truck LDV—Light-Duty Vehicle NMHC—Non-Methane Hydrocarbon NMHCE—Non-Methane Hydrocarbon Equivalent NMOG—Non-Methane Organic Gas NOx—Nitrogen Oxides PM—Particulate Matter GVWR—Gross...

  8. 40 CFR 88.103-94 - Abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Vehicle LDT—Light-Duty Truck LDV—Light-Duty Vehicle NMHC—Non-Methane Hydrocarbon NMHCE—Non-Methane Hydrocarbon Equivalent NMOG—Non-Methane Organic Gas NOx—Nitrogen Oxides PM—Particulate Matter GVWR—Gross...

  9. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  10. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  11. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  12. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  13. Association between Symptoms of Irritable Bowel Syndrome and Methane and Hydrogen on Lactulose Breath Test

    PubMed Central

    Lee, Kang Nyeong; Koh, Dong Hee; Sohn, Won; Lee, Sang Pyo; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon; Hahm, Joon Soo

    2013-01-01

    Whether hydrogen and methane gas produced during lactulose breath test (LBT) are associated with symptoms of irritable bowel syndrome (IBS) is not determined. We aimed to investigate whether hydrogen and methane on LBT are associated with IBS symptoms. Sixty-eight IBS patients meeting the Rome III criteria for IBS, and 55 healthy controls, underwent LBT. The IBS subjects recorded their customary gastrointestinal symptoms on a questionnaire using visual analogue scales. LBT positivity was defined to be above 20 ppm rise of hydrogen or 10 ppm rise of methane within 90 min. Gas amounts produced during LBT were determined by calculating area under the curve of hydrogen and methane excretion. Symptom severity scores were not different between the LBT (+) IBS and LBT (-) IBS subjects and also between methane producers and non-methane producers. Gas amounts produced during LBT were not associated with IBS symptoms, except a weak correlation between total gas amounts and a few IBS symptoms such as bloating (r = 0.324, P = 0.039), flatulence (r = 0.314, P = 0.046) and abdominal pain (r = 0.364, P = 0.018) only in LBT (+) IBS. In conclusion, hydrogen and methane gas on LBT are not useful for predicting the customary symptoms and subtypes of IBS. PMID:23772156

  14. The Boston Methane Project: Mapping Surface Emissions to Inform Atmospheric Estimation of Urban Methane Flux

    NASA Astrophysics Data System (ADS)

    Phillips, N.; Crosson, E.; Down, A.; Hutyra, L.; Jackson, R. B.; McKain, K.; Rella, C.; Raciti, S. M.; Wofsy, S. C.

    2012-12-01

    Lost and unaccounted natural gas can amount to over 6% of Massachusetts' total annual greenhouse gas inventory (expressed as equivalent CO2 tonnage). An unknown portion of this loss is due to natural gas leaks in pipeline distribution systems. The objective of the Boston Methane Project is to estimate the overall leak rate from natural gas systems in metropolitan Boston, and to compare this flux with fluxes from the other primary methane emissions sources. Companion talks at this meeting describe the atmospheric measurement and modeling framework, and chemical and isotopic tracers that can partition total atmospheric methane flux into natural gas and non-natural gas components. This talk focuses on estimation of surface emissions that inform the atmospheric modeling and partitioning. These surface emissions include over 3,300 pipeline natural gas leaks in Boston. For the state of Massachusetts as a whole, the amount of natural gas reported as lost and unaccounted for by utility companies was greater than estimated landfill emissions by an order of magnitude. Moreover, these landfill emissions were overwhelmingly located outside of metro Boston, while gas leaks are concentrated in exactly the opposite pattern, increasing from suburban Boston toward the urban core. Work is in progress to estimate spatial distribution of methane emissions from wetlands and sewer systems. We conclude with a description of how these spatial data sets will be combined and represented for application in atmospheric modeling.

  15. 40 CFR 88.102-94 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standard. Non-methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated non-methane hydrocarbons plus the carbon mass emissions of alcohols, aldehydes, or other organic..., expressed as gasoline-fueled vehicle non-methane hydrocarbons. In the case of exhaust emissions, the...

  16. 40 CFR 88.102-94 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard. Non-methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated non-methane hydrocarbons plus the carbon mass emissions of alcohols, aldehydes, or other organic..., expressed as gasoline-fueled vehicle non-methane hydrocarbons. In the case of exhaust emissions, the...

  17. 40 CFR 88.102-94 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard. Non-methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated non-methane hydrocarbons plus the carbon mass emissions of alcohols, aldehydes, or other organic..., expressed as gasoline-fueled vehicle non-methane hydrocarbons. In the case of exhaust emissions, the...

  18. 40 CFR 88.102-94 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard. Non-methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated non-methane hydrocarbons plus the carbon mass emissions of alcohols, aldehydes, or other organic..., expressed as gasoline-fueled vehicle non-methane hydrocarbons. In the case of exhaust emissions, the...

  19. Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues

    NASA Astrophysics Data System (ADS)

    Douglas, P. M. J.; Stolper, D. A.; Smith, D. A.; Walter Anthony, K. M.; Paull, C. K.; Dallimore, S.; Wik, M.; Crill, P. M.; Winterdahl, M.; Eiler, J. M.; Sessions, A. L.

    2016-09-01

    Methane is a potent greenhouse gas, and there are concerns that its natural emissions from the Arctic could act as a substantial positive feedback to anthropogenic global warming. Determining the sources of methane emissions and the biogeochemical processes controlling them is important for understanding present and future Arctic contributions to atmospheric methane budgets. Here we apply measurements of multiply-substituted isotopologues, or clumped isotopes, of methane as a new tool to identify the origins of ebullitive fluxes in Alaska, Sweden and the Arctic Ocean. When methane forms in isotopic equilibrium, clumped isotope measurements indicate the formation temperature. In some microbial methane, however, non-equilibrium isotope effects, probably related to the kinetics of methanogenesis, lead to low clumped isotope values. We identify four categories of emissions in the studied samples: thermogenic methane, deep subsurface or marine microbial methane formed in isotopic equilibrium, freshwater microbial methane with non-equilibrium clumped isotope values, and mixtures of deep and shallow methane (i.e., combinations of the first three end members). Mixing between deep and shallow methane sources produces a non-linear variation in clumped isotope values with mixing proportion that provides new constraints for the formation environment of the mixing end-members. Analyses of microbial methane emitted from lakes, as well as a methanol-consuming methanogen pure culture, support the hypothesis that non-equilibrium clumped isotope values are controlled, in part, by kinetic isotope effects induced during enzymatic reactions involved in methanogenesis. Our results indicate that these kinetic isotope effects vary widely in microbial methane produced in Arctic lake sediments, with non-equilibrium Δ18 values spanning a range of more than 5‰.

  20. Generation of methane from paddy fields and cattle in India, and its reduction at source

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, T. K.; Goyal, P.; Singh, M. P.

    Methane (CH4) is a saturated organic gas. About 500 Tg yr -1 methane is generated globally. It is evident that 70% of the total emission have anthropogenic sources. The paddy fields contribute a significant portion of the total methane generated. About 20% of the total methane is generated from the paddy fields. In India, methane efflux rate is negative to 49 mg m -2 hr -1. The mean CH4 flux from Indian paddy fields is calculated to be 4.0 Tgyr -1. Livestock, and in particular ruminants are one of the important sources of methane emission on a global scale. There are two sources of methane emission from live stock: (1) from digestive process of ruminants, (2) from animal wastes. The estimated value of methane emission from digestive process of ruminants in India accounts for 6.47 Tgyr -1, and animal wastes accounts for 1.60 Tgyr -1. Total generation of methane from animals in India is about 8.0 Tg yr -1 . In paddy fields the key of controlling methane emission lies in the control of irrigation water. The methane emission can be decreased drastically if the field is under dry conditions for a few days at the end of tillering. In the case of livestock, reduction of methane emission can be done by (1) increasing the intake of the animal, (2) modifying the composition of the diet, (3) eliminating protozoa in rumen, (4) improving fibre digestion efficiency and (5) inhibiting activity of methanogenic bacteria.

  1. A Non-Steady-State Condition in Sediments at the Gashydrate Stability Boundary off West Spitsbergen: Evidence for Gashydrate Dissociation or Just Dynamic Methane Transport?

    NASA Astrophysics Data System (ADS)

    Treude, T.; Krause, S.; Bertics, V. J.; Steinle, L.; Niemann, H.; Liebetrau, V.; Feseker, T.; Burwicz, E.; Krastel, S.; Berndt, C.

    2014-12-01

    In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009, GRL 36, doi:10.1029/2009GL039191). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014, Science 343: 284-287). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. δ18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity, and sediment surface concentrations of CH4, SO4, DIC, and POC) were able to show that the observed twin sulfate-methane transition zones are an ephemeral phenomenon occurring during increase of methane production in the sediment, which can be introduced by, e.g., gas hydrate dissociation.

  2. 75 FR 75498 - Petitions for Modification of Existing Mandatory Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... 75.151 will continuously monitor for methane immediately before and during the use of non... if methane is detected in concentrations at or above 1.0 percent methane; (4) when 1.0 percent or more of methane is detected while the non-permissible electronic equipment is being used, the equipment...

  3. 76 FR 68381 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Pennsylvania Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... period within which vehicle manufacturers could comply with the program's fleet average non-methane... year meets the specified phase-in requirements according to the fleet average non- methane hydrocarbon requirement for that year. The fleet average non- methane hydrocarbon emission limits become progressively...

  4. Seasonal variability of stratospheric methane: implications for constraining tropospheric methane budgets using total column observations

    NASA Astrophysics Data System (ADS)

    Saad, Katherine M.; Wunch, Debra; Deutscher, Nicholas M.; Griffith, David W. T.; Hase, Frank; De Mazière, Martine; Notholt, Justus; Pollard, David F.; Roehl, Coleen M.; Schneider, Matthias; Sussmann, Ralf; Warneke, Thorsten; Wennberg, Paul O.

    2016-11-01

    Global and regional methane budgets are markedly uncertain. Conventionally, estimates of methane sources are derived by bridging emissions inventories with atmospheric observations employing chemical transport models. The accuracy of this approach requires correctly simulating advection and chemical loss such that modeled methane concentrations scale with surface fluxes. When total column measurements are assimilated into this framework, modeled stratospheric methane introduces additional potential for error. To evaluate the impact of such errors, we compare Total Carbon Column Observing Network (TCCON) and GEOS-Chem total and tropospheric column-averaged dry-air mole fractions of methane. We find that the model's stratospheric contribution to the total column is insensitive to perturbations to the seasonality or distribution of tropospheric emissions or loss. In the Northern Hemisphere, we identify disagreement between the measured and modeled stratospheric contribution, which increases as the tropopause altitude decreases, and a temporal phase lag in the model's tropospheric seasonality driven by transport errors. Within the context of GEOS-Chem, we find that the errors in tropospheric advection partially compensate for the stratospheric methane errors, masking inconsistencies between the modeled and measured tropospheric methane. These seasonally varying errors alias into source attributions resulting from model inversions. In particular, we suggest that the tropospheric phase lag error leads to large misdiagnoses of wetland emissions in the high latitudes of the Northern Hemisphere.

  5. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds

    USGS Publications Warehouse

    Kolak, J.J.; Burruss, R.C.

    2006-01-01

    Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.

  6. Quantifying a Total Non-Methane Hydrocarbon Signal using Low-Cost VOC Sensors in an Effort to Help Communities Learn More About their Air Quality

    NASA Astrophysics Data System (ADS)

    Collier, A. M.; Hannigan, M.; Piedrahita, R.; Casey, J. G.; Johnston, J.; Chiang, S.

    2016-12-01

    The growing accessibility of low-cost air quality monitoring technologies has led to their increased usage among community-based organizations, particularly for the monitoring of pollutants dangerous to human health (e.g., hazardous air pollutants or HAPS). However, often these low-cost sensors are `off-the-shelf' and are being utilized in a manner that differs from their intended purpose - necessitating high quality calibrations. For example, VOC sensors intended for the detection of high levels of a particular compound in an industrial setting may instead be used for ambient monitoring of a group of VOCs. Academic/community partnerships can be an ideal way to improve this type of sensor quantification while providing a community with not only the opportunity to use these technologies with additional support around data quality, but also the opportunity for education around the abilities and applications of low-cost sensors. In the spring of 2016, our lab at the University of Colorado, Boulder partnered with communities in Los Angeles and Kern County to deploy low-cost air quality monitors for the purpose of quantifying methane and non-methane hydrocarbon signals in an effort to learn more about potential impacts from local sources (e.g., nearby highways and oil & gas development). The monitoring platform was developed in our lab and is capable of logging multiple gas phase species as well as some environmental parameters. The monitors include two different metal oxide VOC sensors - each with slightly different sensing capabilities. Calibration was achieved using a pre- and post-deployment field normalization to reference monitoring equipment maintained by the South Coast Air Quality Management District. Monitors were then deployed at locations throughout the community. We will present results on our efforts to quantify a total non-methane hydrocarbon signal, observations from the field data, and recommendations for academic/community partnerships formed around air quality monitoring.

  7. 40 CFR 92.3 - Abbreviations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR...—millivolt(s) N2—nitrogen NDIR—Nondispersive infrared NMHC—Non-methane hydrocarbons NO—nitric oxide NO2...—International system of units (i.e., metric) THCE—Total hydrocarbon equivalent U.S.—United States V—volt(s) vs...

  8. 40 CFR 92.3 - Abbreviations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR...—millivolt(s) N2—nitrogen NDIR—Nondispersive infrared NMHC—Non-methane hydrocarbons NO—nitric oxide NO2...—International system of units (i.e., metric) THCE—Total hydrocarbon equivalent U.S.—United States V—volt(s) vs...

  9. 40 CFR 92.3 - Abbreviations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR...—millivolt(s) N2—nitrogen NDIR—Nondispersive infrared NMHC—Non-methane hydrocarbons NO—nitric oxide NO2...—International system of units (i.e., metric) THCE—Total hydrocarbon equivalent U.S.—United States V—volt(s) vs...

  10. 40 CFR 92.3 - Abbreviations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR...—millivolt(s) N2—nitrogen NDIR—Nondispersive infrared NMHC—Non-methane hydrocarbons NO—nitric oxide NO2...—International system of units (i.e., metric) THCE—Total hydrocarbon equivalent U.S.—United States V—volt(s) vs...

  11. 40 CFR 92.3 - Abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR...—millivolt(s) N2—nitrogen NDIR—Nondispersive infrared NMHC—Non-methane hydrocarbons NO—nitric oxide NO2...—International system of units (i.e., metric) THCE—Total hydrocarbon equivalent U.S.—United States V—volt(s) vs...

  12. Methane Clathrate Hydrate Prospecting

    NASA Technical Reports Server (NTRS)

    Duxbury, N.; Romanovsky, V.

    2003-01-01

    A method of prospecting for methane has been devised. The impetus for this method lies in the abundance of CH4 and the growing shortages of other fuels. The method is intended especially to enable identification of subpermafrost locations where significant amounts of methane are trapped in the form of methane gas hydrate (CH4(raised dot)6H2O). It has been estimated by the U.S. Geological Survey that the total CH4 resource in CH4(raised dot) 6H2O exceeds the energy content of all other fossil fuels (oil, coal, and natural gas from non-hydrate sources). Also, CH4(raised dot)6H2O is among the cleanest-burning fuels, and CH4 is the most efficient fuel because the carbon in CH4 is in its most reduced state. The method involves looking for a proxy for methane gas hydrate, by means of the combination of a thermal-analysis submethod and a field submethod that does not involve drilling. The absence of drilling makes this method easier and less expensive, in comparison with prior methods of prospecting for oil and natural gas. The proposed method would include thermoprospecting in combination with one more of the other non-drilling measurement techniques, which could include magneto-telluric sounding and/or a subsurface-electrical-resistivity technique. The method would exploit the fact that the electrical conductivity in the underlying thawed region is greater than that in the overlying permafrost.

  13. Inter-comparison of network measurements of non-methane organic compounds with model simulations

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Po; Su, Yuan-Chang; Chiu, Ching-Jui; Lin, Ching-Ho; Chang, Julius S.; Chang, Chih-Chung; Wang, Jia-Lin

    2015-12-01

    Ambient levels of total non-methane organic carbons (NMOCs) at air quality stations (AQSs, called AQS NMOCs) are compared with the summed concentrations of 56 NMHCs obtained from the Photochemical Assessment Monitoring Stations (called total PAMS). For mutual validation of the two networks, the total PAMS were compared with the AQS NMOCs at four sites on the island of Taiwan for the period 2007-2012. The inter-comparison of total PAMS and AQS NMOCs has been discussed previously, which reported that the total PAMS accounted for approximately 30% of the AQS NMOCs on average (Chen et al., 2014b). In this study, both the observed total PAMS and AQS NMOCs were further compared with the emissions and model simulations for mutual validation. A three-dimensional Eulerian air quality model was used to simulate total PAMS and total VOCs, which were then inter-compared with the observed total PAMS and AQS NMOCs, respectively. We found closely agreeing results between the observed and simulated total PAMS, affirming that the treatment of meteorology and VOC emissions in the model was sufficiently robust. Further, although the modeled VOC data agreed with the AQS NMOC observations for the sites in urban settings, a significant discrepancy existed for the industrial sites, particularly at the concentration spikes. Such a discrepancy was presumably attributed to high emissions of OVOCs from industrial complexes compounded by the lower sensitivity of AQS measurements for OVOCs compared with hydrocarbons. Consequently, using AQS NMOCs to represent ambient VOC levels should be limited to environments where the amounts of OVOCs are relatively small relative to total VOCs.

  14. Upward revision of global fossil fuel methane emissions based on isotope database.

    PubMed

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  15. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

    DOE PAGES

    Hong, Wei-Li; Torres, Marta E.; Kim, Ji-Hoon; ...

    2014-09-01

    We present a kinetic model based upon pore water data collected from eight sites drilled during the second Ulleung Basin gas hydrate drilling expedition (UBGH2) in 2010. Three sites were drilled at locations where acoustic chimneys were identified in seismic data, and the rest were drilled on non-chimney (i.e. background) environments. Our model, coupled a comprehensive compositional and isotopic data set, is used to illustrate the different biogeochemical processes at play in those two environments, in terms of reactions around the sulfate-methane-transition-zone (SMTZ). Organic matter decomposition is an important process for production of methane, dissolved inorganic carbon (DIC) and consumptionmore » of sulfate in the non-chimney sites, whereas anaerobic oxidation of methane (AOM) dominates both carbon and sulfur cycles in the chimney environment. Different sources of methane mediate AOM in the two settings. Internally produced methane through CO₂ reduction (CR) and methanogenesis fuels AOM in the non-chimney sites, whereas AOM is sustained by methane from external sources in the chimney sites. We also simulate the system evolution from non-chimney to chimney conditions by increasing the bottom methane supply to a non-chimney setting. We show that the higher CH₄ flux leads to a higher microbial activity of AOM, and more organic matter decomposition through methanogenesis. A higher methanogenesis rate and a smaller CR contribution relative to AOM in the chimney sites is responsible for the isotopically light DIC and heavy methane in this environment, relative to the non-chimney sites.« less

  16. Nitrous oxide and methane emissions during storage of dewatered digested sewage sludge.

    PubMed

    Willén, Agnes; Rodhe, Lena; Pell, Mikael; Jönsson, Håkan

    2016-12-15

    This study investigated the effect on greenhouse gas emissions during storage of digested sewage sludge by using a cover during storage or applying sanitisation measures such as thermophilic digestion or ammonia addition. In a pilot-scale storage facility, nitrous oxide and methane emissions were measured on average twice monthly for a year, using a closed chamber technique. The thermophilically digested sewage sludge (TC) had the highest cumulative emissions of nitrous oxide (1.30% of initial total N) followed by mesophilically digested sewage sludge stored without a cover (M) (0.34%) and mesophilically digested sewage sludge stored with a cover (MC) (0.19%). The mesophilically digested sewage sludge sanitised with ammonia and stored with a cover (MAC) showed negligible cumulative emissions of nitrous oxide. Emissions of methane were much lower from TC and MAC than from M and MC. These results indicate that sanitisation by ammonia treatment eliminates the production of nitrous oxide and reduces methane emissions from stored sewage sludge, and that thermophilic digestion has the potential to reduce the production of methane during storage compared with mesophilic digestion. The results also indicate a tendency for lower emissions of nitrous oxide and higher emissions of methane from covered sewage sludge compared with non-covered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biogenic Methane Generation Potential in the Eastern Nankai Trough, Japan: Effect of Reaction Temperature and Total Organic Carbon

    NASA Astrophysics Data System (ADS)

    Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.

    2017-12-01

    Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost same for all models.

  18. 40 CFR 63.496 - Back-end process provisions-procedures to determine compliance using control or recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... total organic HAP (or TOC, minus methane and ethane) emissions in all process vent streams and primary... TOC (minus methane and ethane) may be measured instead of total organic HAP. (C) The mass rates shall... and outlet of the control device shall be the sum of all total organic HAP (or TOC, minus methane and...

  19. Methane production from bicarbonate and acetate in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Crill, P. M.; Martens, C. S.

    1986-01-01

    Methane production from C-14 labeled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80 percent of the total production rate and sediment-water flux. Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29 percent of the measured methane production integrated over the top 30 cm of the sediments.

  20. A synthesis of growing-season, non-growing season, and annual methane emission measurements among temperate, boreal, and tundra wetlands and uplands

    NASA Astrophysics Data System (ADS)

    Treat, C. C.; Bloom, A. A.; Marushchak, M. E.

    2017-12-01

    Wetlands are the largest natural source of methane to the atmosphere, while upland soils are a consistent sink of atmospheric methane. Wetland methane emissions are highly variable among sites, years, and temporal scales due to differences in production, oxidation, and transport pathways. Currently, process model predictions of methane emissions from wetlands remain challenging due to uncertain parameterizations of net methane production and emission processes. Here, we synthesize growing season, non-growing season, and annual methane emissions from chamber and eddy-covariance measurements for more than 150 sites in undisturbed temperate, boreal, and tundra wetlands and uplands. We compare the magnitude of fluxes among regions, wetland classifications, vegetation classifications, and environmental variables. Growing season measurements were most abundant in bogs, fens, and tundra sites, while marshes and swamps were relatively undersampled. Annual methane emissions were largest from marshes and lowest from upland mineral soils. Non-growing season emissions accounted for large fraction of annual methane emissions, especially in tundra sites. These results provide constraints for methane emissions from temporal, boreal, and arctic wetlands utilizing the numerous flux measurements conducted over the past 25 years. We find that state-of-the-art model ensembles are seasonally biased; in particular, the vast majority of models overestimate predictions of the growing season to annual wetland methane emission ratio across all biomes.

  1. Effect of cobalt supplementation and fractionation on the biological response in the biomethanization of Olive Mill Solid Waste.

    PubMed

    Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G

    2016-07-01

    Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Emissions of Methane and Other Hydrocarbons Due to Wellbore Leaks

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; Mansfield, M. L.

    2013-12-01

    The explosive growth of oil and gas production in the United States has focused public and regulatory attention on environmental impacts of hydrocarbon extraction, including air quality and climate impacts. However, EPA and others have acknowledged that current air emissions factors and inventories for many oil and gas-related source categories are inadequate or lacking entirely. One potentially important emissions source is leakage of natural gas from wellbores. This phenomenon has long been recognized to occur, but no attempt has been made to quantify emission rates of gas leaked from wellbores to the atmosphere. Soil gas measurements carried out by USGS over the last several years in Utah's oil and gas fields have shown that, while concentrations of methane in soils near many wells are low, soil gas near some wells can contain more than 10% methane, indicating that underground leakage is occurring. In summer 2013 we carried out a campaign to measure the emission rate of methane and other hydrocarbons from soils near wells in two oil and gas fields in Utah. We measured emissions from several locations on some well pads to determine the change in emission rate with distance from well heads, and we measured at non-well sites in the same fields to determine background emission rates. Methane emission rates at some wells exceeded 3 g m-2 h-1, while emission rates at other wells were similar to background levels, and a correlation was observed between soil gas methane concentrations and methane emission rates from the soil. We used these data to estimate total methane and hydrocarbon emission rates from these two fields.

  3. Emissions of organic compounds from produced water ponds I: Characteristics and speciation.

    PubMed

    Lyman, Seth N; Mansfield, Marc L; Tran, Huy N Q; Evans, Jordan D; Jones, Colleen; O'Neil, Trevor; Bowers, Ric; Smith, Ann; Keslar, Cara

    2018-04-01

    We measured fluxes of methane, a suite of non-methane hydrocarbons (C2-C11), light alcohols, and carbon dioxide from oil and gas produced water storage and disposal ponds in Utah (Uinta Basin) and Wyoming (Upper Green River Basin) United States during 2013-2016. In this paper, we discuss the characteristics of produced water composition and air-water fluxes, with a focus on flux chamber measurements. In companion papers, we will (1) report on inverse modeling methods used to estimate emissions from produced water ponds, including comparisons with flux chamber measurements, and (2) discuss the development of mass transfer coefficients to estimate emissions and place emissions from produced water ponds in the context of all regional oil and gas-related emissions. Alcohols (made up mostly of methanol) were the most abundant organic compound group in produced water (91% of total volatile organic concentration, with upper and lower 95% confidence levels of 89 and 93%) but accounted for only 34% (28 to 41%) of total organic compound fluxes from produced water ponds. Non-methane hydrocarbons, which are much less water-soluble than methanol and less abundant in produced water, accounted for the majority of emitted organics. C6-C9 alkanes and aromatics dominated hydrocarbon fluxes, perhaps because lighter hydrocarbons had already volatilized from produced water prior to its arrival in storage or disposal ponds, while heavier hydrocarbons are less water soluble and less volatile. Fluxes of formaldehyde and other carbonyls were low (1% (1 to 2%) of total organic compound flux). The speciation and magnitude of fluxes varied strongly across the facilities measured and with the amount of time water had been exposed to the atmosphere. The presence or absence of ice also impacted fluxes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental data presented in the two-dimensional plot of hydrogen versus carbon stable isotope signatures.

  5. 77 FR 959 - National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries; National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... million by volume (ppmv) total strippable hydrocarbons (as methane) in the stripping gas collected via the... methane) collected via the Modified El Paso Method. We are also proposing to include alternative leak.... The delay of repair action level would be either 62 ppmv total strippable hydrocarbons (as methane...

  6. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    PubMed

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  7. MethaneSat: Detecting Methane Emissions in the Barnett Shale Region

    NASA Astrophysics Data System (ADS)

    Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.

  8. 77 FR 14430 - Petitions for Modification of Application of Existing Mandatory Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ....151 will continuously monitor for methane immediately before and during the use of non-permissible... used if methane is detected in concentrations at or above one percent for the area being surveyed. When methane is detected at such levels while the non- permissible surveying equipment is being used, the...

  9. Emissions of methane in Europe inferred by total column measurements

    NASA Astrophysics Data System (ADS)

    Wunch, D.; Deutscher, N. M.; Hase, F.; Notholt, J.; Sussmann, R.; Toon, G. C.; Warneke, T.

    2017-12-01

    Atmospheric total column measurements have been used to infer emissions of methane in urban centres around the world. These measurements have been shown to be useful for verifying city-scale bottom-up inventories, and they can provide both timely and sub-annual emission information. We will present our analysis of atmospheric total column measurements of methane and carbon monoxide to infer annual and seasonal regional emissions of methane within Europe using five long-running atmospheric observatories. These observatories are part of the Total Carbon Column Observing Network, part of a global network that has been carefully designed to measure these gases on a consistent scale. Our inferred emissions will then be used to evaluate gridded emissions inventories in the region.

  10. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    PubMed Central

    Callaghan, Amy V.

    2013-01-01

    Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria (SRB) via “reverse methanogenesis” and is catalyzed by a homolog of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and SRB, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, “intra-aerobic” pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appear to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase). Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an “intra-aerobic” denitrification pathway similar to that described for ‘Methylomirabilis oxyfera.’ PMID:23717304

  11. Non-Destructive X-ray Computed Tomography (XCT) of Gas Hydrate Bearing Fractures in Marine Sediment

    NASA Astrophysics Data System (ADS)

    Oti, E.; Buchwalter, E.; Cook, A.; Crandall, D.

    2017-12-01

    Hydrate-filled fractures are found in many environments, both related to methane vents and constrained to lithologic layers; how hydrate filled fractures form in layered environments is not well understood. We focus on understanding hydrate origins and fracture formation by examining hydrate-bearing fractures in conventional cores taken from Gulf of Mexico sites from JIP Leg 1 and UT-GOM, Keathley Canyon 151. There are two main methane sources available for hydrate formation. The first is the hydrocarbon reservoir underlying the Gulf sediments. This reservoir formed when deeply buried organic matter of high molecular weight was exposed to high temperature and pressures and degraded. A second source is the biogenesis of organic material, which occurs when microbial activity breaks down organic materials. Biogenic methane is more enriched in lighter carbon isotopes as the reduction or fermentation reactions preferentially consume lighter carbon isotopes. As a result, we hypothesize that sediment surrounding biogenically derived methane will have heavier carbon isotopes when compared to non-host sediment, due to the consumption of the lighter carbon isotopes during methanogenesis. We use non-destructive X-ray Computed Tomography (XCT) scanning to visualize and identify hydrate-bearing fractures. The presence of hydrate fractures is further confirmed with a salinity analysis, as hydrate dissociation freshens the pore water and lowers the salinity. After hydrate fracture location is inferred, carbon isotope analysis is used to identify hydrocarbon source. XCT scans of Keathley Canyon core JIP-1 17H-4 revealed 10 total fractures, five of which XCT and salinity analysis indicated as formerly containing hydrate. All ten fractures, in addition to background sediment, underwent a carbon isotope analysis in which organic isotopes were measured. In the background sediment and the non hydrate-bearing fractures, DOC values were relatively light, with dC13 percentages ranging from -27.8% to -30.8%. In the five hydrate fracture regions, DOC was comparatively heavy, with DOC dC13 values ranging from -23.2% to -30.3%. These values suggest that biogenic methane was formed adjacent to the fracture and likely migrated into the hydrate filled fracture.

  12. Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans.

    PubMed

    El Oufir, L; Flourié, B; Bruley des Varannes, S; Barry, J L; Cloarec, D; Bornet, F; Galmiche, J P

    1996-06-01

    To investigate whether transit time could influence H2 consuming flora and certain indices of colonic bacterial fermentation. Eight healthy volunteers (four methane excretors and four non-methane excretors) were studied for three, three week periods during which they received a controlled diet alone (control period), and then the same diet with cisapride or loperamide. At the end of each period, mean transit time (MTT) was estimated, an H2 lactulose breath test was performed, and stools were analysed. In the control period, transit time was inversely related to faecal weight, sulphate reducing bacteria counts, concentrations of total short chain fatty acids (SCFAs), propionic and butyric acids, and H2 excreted in breath after lactulose ingestion. Conversely, transit time was positively related to faecal pH and tended to be related to methanogen counts. Methanogenic bacteria counts were inversely related to those of sulphate reducing bacteria and methane excretors had slower MTT and lower sulphate reducing bacteria counts than non-methane excretors. Compared with the control period, MTT was significantly shortened (p < 0.05) by cisapride and prolonged (p < 0.05) by loperamide (73 (11) hours, 47 (5) hours and 147 (12) hours for control, cisapride, and loperamide, respectively, mean (SD)). Cisapride reduced transit time was associated with (a) a significant rise in faecal weight, sulphate reducing bacteria, concentrations of total SCFAs, and propionic and butyric acids and breath H2 as well as (b) a significant fall in faecal pH and breath CH4 excretion, and (c) a non-significant decrease in the counts of methanogenic bacteria. Reverse relations were roughly the same during the loperamide period including a significant rise in the counts of methanogenic bacteria and a significant fall in those of sulphate reducing bacteria. Transit time differences between healthy volunteers are associated with differences in H2 consuming flora and certain indices of colonic fermentation. Considering the effects of some fermentation products on intestinal morphology and function, these variations may be relevant to the pathogenesis of colorectal diseases.

  13. Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans.

    PubMed Central

    El Oufir, L; Flourié, B; Bruley des Varannes, S; Barry, J L; Cloarec, D; Bornet, F; Galmiche, J P

    1996-01-01

    BACKGROUND/AIMS: To investigate whether transit time could influence H2 consuming flora and certain indices of colonic bacterial fermentation. METHODS: Eight healthy volunteers (four methane excretors and four non-methane excretors) were studied for three, three week periods during which they received a controlled diet alone (control period), and then the same diet with cisapride or loperamide. At the end of each period, mean transit time (MTT) was estimated, an H2 lactulose breath test was performed, and stools were analysed. RESULTS: In the control period, transit time was inversely related to faecal weight, sulphate reducing bacteria counts, concentrations of total short chain fatty acids (SCFAs), propionic and butyric acids, and H2 excreted in breath after lactulose ingestion. Conversely, transit time was positively related to faecal pH and tended to be related to methanogen counts. Methanogenic bacteria counts were inversely related to those of sulphate reducing bacteria and methane excretors had slower MTT and lower sulphate reducing bacteria counts than non-methane excretors. Compared with the control period, MTT was significantly shortened (p < 0.05) by cisapride and prolonged (p < 0.05) by loperamide (73 (11) hours, 47 (5) hours and 147 (12) hours for control, cisapride, and loperamide, respectively, mean (SD)). Cisapride reduced transit time was associated with (a) a significant rise in faecal weight, sulphate reducing bacteria, concentrations of total SCFAs, and propionic and butyric acids and breath H2 as well as (b) a significant fall in faecal pH and breath CH4 excretion, and (c) a non-significant decrease in the counts of methanogenic bacteria. Reverse relations were roughly the same during the loperamide period including a significant rise in the counts of methanogenic bacteria and a significant fall in those of sulphate reducing bacteria. CONCLUSIONS: Transit time differences between healthy volunteers are associated with differences in H2 consuming flora and certain indices of colonic fermentation. Considering the effects of some fermentation products on intestinal morphology and function, these variations may be relevant to the pathogenesis of colorectal diseases. PMID:8984026

  14. Enhanced coproduction of hydrogen and methane from cornstalks by a three-stage anaerobic fermentation process integrated with alkaline hydrolysis.

    PubMed

    Cheng, Xi-Yu; Liu, Chun-Zhao

    2012-01-01

    A three-stage anaerobic fermentation process including H(2) fermentation I, H(2) fermentation II, methane fermentation was developed for the coproduction of hydrogen and methane from cornstalks. Hydrogen production from cornstalks using direct microbial conversion by Clostridium thermocellum 7072 was markedly enhanced in the two-stage thermophilic hydrogen fermentation process integrated with alkaline treatment. The highest total hydrogen yield from cornstalks in the two-stage fermentation process reached 74.4 mL/g-cornstalk. The hydrogen fermentation effluents and alkaline hydrolyzate were further used for methane fermentation by anaerobic granular sludge, and the total methane yield reached 205.8 mL/g-cornstalk. The total energy recovery in the three-stage anaerobic fermentation process integrated with alkaline hydrolysis reached 70.0%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In ordermore » to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.« less

  16. Assessment of methane generation, oxidation, and emission in a subtropical landfill test cell.

    PubMed

    Moreira, João M L; Candiani, Giovano

    2016-08-01

    This paper presents results of a methane balance assessment in a test cell built in a region with a subtropical climate near São Paulo, Brazil. Measurements and calculations were carried out to obtain the total methane emission to the atmosphere, the methane oxidation rate in the cover, and the total methane generation rate in the test cell. The oxidation rate was obtained through a calculation scheme based on a vertical one-dimensional methane transport in the cover region. The measured maximum and mean methane fluxes to the atmosphere were 124.4 and 15.87 g m(-2) d(-1), respectively. The total methane generation rate obtained for the test cell was 0.0380 ± 0.0075 mol s(-1). The results yielded that 69 % of the emitted methane occurred through the central well and 31 % through the cover interface with the atmosphere. The evaluations of the methane oxidation fraction for localized conditions in the lateral embankment of the test cell yielded 0.36 ± 0.11, while for the whole test cell yielded 0.15 ± 0.10. These results conciliate localized and overall evaluations reported in the literature. The specific methane generation rate obtained for the municipal solid waste with an age of 410 days was 317 ± 62 mol year(-1) ton(-1). This result from the subtropical São Paulo region is lower than reported figures for tropical climates and higher than reported figures for temperate climates.

  17. Amplitude versus offset analysis to marine seismic data acquired in Nankai Trough, offshore Japan where methane hydrate exists

    NASA Astrophysics Data System (ADS)

    Hato, M.; Inamori, T.; Matsuoka, T.; Shimizu, S.

    2003-04-01

    Occurrence of methane hydrates in the Nankai Trough, located off the south-eastern coast of Japan, was confirmed by the exploratory test well drilling conducted by Japan’s Ministry of International Trade and Industry in 1999. Confirmation of methane hydrate has given so big impact to the Japan's future energy strategy and scientific and technological interest was derived from the information of the coring and logging results at the well. Following the above results, Japan National Oil Corporation (JNOC) launched the national project, named as MH21, for establishing the technology of methane hydrate exploration and related technologies such as production and development. As one of the research project for evaluating the total amount of the methane hydrate, Amplitude versus Offset (AVO) was applied to the seismic data acquired in the Nankai Trough area. The main purpose of the AVO application is to evaluate the validity of delineation of methane hydrate-bearing zones. Since methane hydrate is thought to accompany with free-gas in general just below the methane hydrate-bearing zones, the AVO has a possibility of describing the presence of free-gas. The free-gas is thought to be located just below the base of methane hydrate stability zone which is characterized by the Bottom Simulating Reflectors (BSRs) on the seismic section. In this sense, AVO technology, which was developed as gas delineation tools, can be utilized for methane hydrate exploration. The result of AVO analysis clearly shows gas-related anomaly below the BSRs. Appearance of the AVO anomaly has so wide variety. Some of the anomalies might not correspond to the free-gas existence, however, some of them may show free-gas. We are now going to develop methodology to clearly discriminate free-gas from non-gas zone by integrating various types of seismic methods such as seismic inversion and seismic attribute analysis.

  18. The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005

    DOE PAGES

    Bader, Whitney; Bovy, Benoît; Conway, Stephanie; ...

    2017-02-14

    Changes of atmospheric methane total columns (CH 4) since 2005 have been evaluated using Fourier transform infrared (FTIR) solar observations carried out at 10 ground-based sites, affiliated to the Network for Detection of Atmospheric Composition Change (NDACC). From this, we find an increase of atmospheric methane total columns of 0.31 ± 0.03 % year –1 (2 σ level of uncertainty) for the 2005–2014 period. Comparisons with in situ methane measurements at both local and global scales show good agreement. We used the GEOS-Chem chemical transport model tagged simulation, which accounts for the contribution of each emission source and one sinkmore » in the total methane, simulated over 2005–2012. After regridding according to NDACC vertical layering using a conservative regridding scheme and smoothing by convolving with respective FTIR seasonal averaging kernels, the GEOS-Chem simulation shows an increase of atmospheric methane total columns of 0.35 ± 0.03 % year –1 between 2005 and 2012, which is in agreement with NDACC measurements over the same time period (0.30 ± 0.04 % year –1, averaged over 10 stations). Analysis of the GEOS-Chem-tagged simulation allows us to quantify the contribution of each tracer to the global methane change since 2005. We find that natural sources such as wetlands and biomass burning contribute to the interannual variability of methane. However, anthropogenic emissions, such as coal mining, and gas and oil transport and exploration, which are mainly emitted in the Northern Hemisphere and act as secondary contributors to the global budget of methane, have played a major role in the increase of atmospheric methane observed since 2005. Furthermore based on the GEOS-Chem-tagged simulation, we discuss possible cause(s) for the increase of methane since 2005, which is still unexplained.« less

  19. The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, Whitney; Bovy, Benoît; Conway, Stephanie

    Changes of atmospheric methane total columns (CH 4) since 2005 have been evaluated using Fourier transform infrared (FTIR) solar observations carried out at 10 ground-based sites, affiliated to the Network for Detection of Atmospheric Composition Change (NDACC). From this, we find an increase of atmospheric methane total columns of 0.31 ± 0.03 % year –1 (2 σ level of uncertainty) for the 2005–2014 period. Comparisons with in situ methane measurements at both local and global scales show good agreement. We used the GEOS-Chem chemical transport model tagged simulation, which accounts for the contribution of each emission source and one sinkmore » in the total methane, simulated over 2005–2012. After regridding according to NDACC vertical layering using a conservative regridding scheme and smoothing by convolving with respective FTIR seasonal averaging kernels, the GEOS-Chem simulation shows an increase of atmospheric methane total columns of 0.35 ± 0.03 % year –1 between 2005 and 2012, which is in agreement with NDACC measurements over the same time period (0.30 ± 0.04 % year –1, averaged over 10 stations). Analysis of the GEOS-Chem-tagged simulation allows us to quantify the contribution of each tracer to the global methane change since 2005. We find that natural sources such as wetlands and biomass burning contribute to the interannual variability of methane. However, anthropogenic emissions, such as coal mining, and gas and oil transport and exploration, which are mainly emitted in the Northern Hemisphere and act as secondary contributors to the global budget of methane, have played a major role in the increase of atmospheric methane observed since 2005. Furthermore based on the GEOS-Chem-tagged simulation, we discuss possible cause(s) for the increase of methane since 2005, which is still unexplained.« less

  20. Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study

    NASA Astrophysics Data System (ADS)

    Pétron, Gabrielle; Frost, Gregory; Miller, Benjamin R.; Hirsch, Adam I.; Montzka, Stephen A.; Karion, Anna; Trainer, Michael; Sweeney, Colm; Andrews, Arlyn E.; Miller, Lloyd; Kofler, Jonathan; Bar-Ilan, Amnon; Dlugokencky, Ed J.; Patrick, Laura; Moore, Charles T., Jr.; Ryerson, Thomas B.; Siso, Carolina; Kolodzey, William; Lang, Patricia M.; Conway, Thomas; Novelli, Paul; Masarie, Kenneth; Hall, Bradley; Guenther, Douglas; Kitzis, Duane; Miller, John; Welsh, David; Wolfe, Dan; Neff, William; Tans, Pieter

    2012-02-01

    The multispecies analysis of daily air samples collected at the NOAA Boulder Atmospheric Observatory (BAO) in Weld County in northeastern Colorado since 2007 shows highly correlated alkane enhancements caused by a regionally distributed mix of sources in the Denver-Julesburg Basin. To further characterize the emissions of methane and non-methane hydrocarbons (propane, n-butane, i-pentane, n-pentane and benzene) around BAO, a pilot study involving automobile-based surveys was carried out during the summer of 2008. A mix of venting emissions (leaks) of raw natural gas and flashing emissions from condensate storage tanks can explain the alkane ratios we observe in air masses impacted by oil and gas operations in northeastern Colorado. Using the WRAP Phase III inventory of total volatile organic compound (VOC) emissions from oil and gas exploration, production and processing, together with flashing and venting emission speciation profiles provided by State agencies or the oil and gas industry, we derive a range of bottom-up speciated emissions for Weld County in 2008. We use the observed ambient molar ratios and flashing and venting emissions data to calculate top-down scenarios for the amount of natural gas leaked to the atmosphere and the associated methane and non-methane emissions. Our analysis suggests that the emissions of the species we measured are most likely underestimated in current inventories and that the uncertainties attached to these estimates can be as high as a factor of two.

  1. Atmospheric Impacts of Emissions from Oil and Gas Development in the Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Boylan, P. J.; Hueber, J.; Van Dam, B. A.; Mauldin, L.; Parrish, D. D.

    2012-12-01

    In the Uintah Basin in northeast Utah, USA, surface ozone levels during winter months have approached and on occasion exceeded the US National Ambient Air Quality Standard (NAAQS). Emissions from the extensive oil and gas exploration in this region are suspected to be the cause of these ozone episodes; however emission rates and photochemical processes are uncertain. During February 2012 continuous surface measurements and vertical profiling from a tethered balloon platform at the Horsepool site yielded high resolution boundary layer profile data on ozone and ozone precursor compounds, i.e. nitrogen oxides and volatile organic compounds as well as methane. Findings from this study were: 1. Surface ozone during the study period, which had no snow cover, did not exceed the NAAQS. 2. Nitrogen oxides varied from 1-50 ppbv pointing towards significant emission sources, likely from oil and gas operations. 3. Methane concentrations were elevated, reaching up to ~10 times its Northern Hemisphere (NH) atmospheric background. 3. Light non-methane hydrocarbons (NMHC) constituted the main fraction of volatile organic compounds. NMHC concentrations were highly elevated, exceeding levels seen in urban areas. 4. Ozone, methane, NOx and VOC showed distinct diurnal cycles, with large concentration increases seen at night, except for ozone, which showed the opposite behavior. 5. During nighttime concentrations of NOx, NMHC, and methane built up near the surface to levels that were much higher than their daytime concentrations. 6. Comparing NMHC to methane concentrations indicates a mass flux ratio of ~30% for total VOC/methane emissions for the Uintah Basin.

  2. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    PubMed

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.

  3. Bio-conversion of water hyacinths into methane gas, part 1

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Gordon, J.

    1974-01-01

    Bio-gas and methane production from the microbial anaerobic decomposition of water hyacinths (Eichhornia crassipes) (Mart) Solms was investigated. These experiments demonstrated the ability of water hyacinths to produce an average of 13.9 ml of methane gas per gram of wet plant weight. This study revealed that sample preparation had no significant effect on bio-gas and/or methane production. Pollution of water hyacinths by two toxic heavy materials, nickel and cadmium, increased the rate of methane production from 51.8 ml/day for non-contaminated plants incubated at 36 C to 81.0 ml/day for Ni-Cd contaminated plants incubated at the same temperature. The methane content of bio-gas evolved from the anaerobic decomposition of Ni-Cd contaminated plants was 91.1 percent as compared to 69.2 percent methane content of bio-gas collected from the fermentation of non-contaminated plants.

  4. Seasonal and Latitudinal Variations in Dissolved Methane from 42 Lakes along a North-South Transect in Alaska

    NASA Astrophysics Data System (ADS)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K. C.; Anthony, P.; Thalasso, F.

    2013-12-01

    Armando Sepulveda-Jauregui,* Katey M. Walter Anthony,* Karla Martinez-Cruz,* ** Peter Anthony,* and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Northern lakes are important reservoirs and sources to the atmosphere of methane (CH4), a potent greenhouse gas. It is estimated that northern lakes (> 55 °N) contribute about 20% of the total global lake methane emissions, and that emissions from these lakes will increase with climate warming. Temperature rise enhances methane production directly by providing the kinetic energy to methanogenesis, and indirectly by supplying organic matter from thawing permafrost. Warmer lakes also store less methane since methane's solubility is inversely related to temperature. Alaskan lakes are located in three well-differentiated permafrost classes: yedoma permafrost with high labile carbon stocks, non-yedoma permafrost with lower carbon stocks, and areas without permafrost, also with generally lower carbon stocks. We sampled dissolved methane from 42 Alaskan lakes located in these permafrost cover classes along a north-south Alaska transect from Prudhoe Bay to the Kenai Peninsula during open-water conditions in summer 2011. We sampled 26 of these lakes in April, toward the end of the winter ice-covered period. Our results indicated that the largest dissolved methane concentrations occurred in interior Alaska thermokarst lakes formed in yedoma-type permafrost during winter and summer, with maximal concentrations of 17.19 and 12.76 mg L-1 respectively. In these lakes, emission of dissolved gases as diffusion during summer and storage release in spring were 18.4% and 17.4% of the annual emission budget, while ebullition (64.2 %) comprised the rest. Dissolved oxygen was inversely correlated with dissolved methane concentrations in both seasons; the absence of O2 enhances methane production, while high concentration of O2 could favor methane oxidation. These relationships suggest that permafrost type, and specifically the availability of permafrost organic matter, influences methane cycling in Alaskan lakes.

  5. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater.

    PubMed

    Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan

    2010-10-15

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98. 2010 Elsevier B.V. All rights reserved.

  6. Methane Emissions from Upland Forests

    NASA Astrophysics Data System (ADS)

    Megonigal, Patrick; Pitz, Scott; Wang, Zhi-Ping

    2016-04-01

    Global budgets ascribe 4-10% of atmospheric methane sinks to upland soils and assume that soils are the sole surface for methane exchange between upland forests and the atmosphere. The dogma that upland forests are uniformly atmospheric methane sinks was challenged a decade ago by the discovery of abiotic methane production from plant tissue. Subsequently a variety of relatively cryptic microbial and non-microbial methane sources have been proposed that have the potential to emit methane in upland forests. Despite the accumulating evidence of potential methane sources, there are few data demonstrating actual emissions of methane from a plant surface in an upland forest. We report direct observations of methane emissions from upland tree stems in two temperate forests. Stem methane emissions were observed from several tree species that dominate a forest located on the mid-Atlantic coast of North America (Maryland, USA). Stem emissions occurred throughout the growing season while soils adjacent to the trees simultaneously consumed methane. Scaling fluxes by stem surface area suggested the forest was a net methane source during a wet period in June, and that stem emissions offset 5% of the soil methane sink on an annual basis. High frequency measurements revealed diurnal cycles in stem methane emission rates, pointing to soils as the methane source and transpiration as the most likely pathway for gas transport. Similar observations were made in an upland forest in Beijing, China. However, in this case the evidence suggested the methane was not produced in soils, but in the heartwood by microbial or non-microbial processes. These data challenge the concept that forests are uniform sinks of methane, and suggest that upland forests are smaller methane sinks than previously estimated due to stem emissions. Tree emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration.

  7. Fourier Transform Spectroscopy of two trace gases namely Methane and Carbon monoxide for planetary and atmospheric research application

    NASA Astrophysics Data System (ADS)

    Hashemi, R.; Dudaryonok, A. S.; Lavrentieva, N. N.; Vandaele, A. C.; Vander Auwera, J.; Tyuterev, AV Nikitin G., VI; Sung, K.; Smith, M. A. H.; Devi, V. M.; Predoi-Cross, A.

    2017-02-01

    Two atmospheric trace gases, namely methane and carbon monoxide have been considered in this study. Fourier transform absorption spectra of the 2-0 band of 12C16O mixed with CO2 have been recorded at total pressures from 156 to 1212 hPa and at 4 different temperatures between 240 K and 283 K. CO2 pressure-induced line broadening and line shift coefficients, and the associated temperature dependence have been measured in an multi-spectrum non-linear least squares analysis using Voigt profiles with an asymmetric profile due to line mixing. The measured CO2-broadening and CO2-shift parameters were compared with theoretical values, calculated by collaborators. In addition, the CO2-broadening and shift coefficients have been calculated for individual temperatures using the Exponential Power Gap (EPG) semi-empirical method. We also discuss the retrieved line shape parameters for Methane transitions in the spectral range known as the Methane Octad. We used high resolution spectra of pure methane and of dilute mixtures of methane in dry air, recorded with high signal to noise ratio at temperatures between 148 K and room temperature using the Bruker IFS 125 HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California. Theoretical calculations for line parameters have been performed and the results are compared with the previously published values and with the line parameters available in the GEISA2015 [1] and HITRAN2012 [2] databases.

  8. Economic development and multiple air pollutant emissions from the industrial sector.

    PubMed

    Fujii, Hidemichi; Managi, Shunsuke

    2016-02-01

    This study analyzed the relationship between economic growth and emissions of eight environmental air pollutants (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), nitrogen oxide (NOx), sulfur oxide (SOx), carbon monoxide (CO), non-methane volatile organic compound (NMVOC), and ammonia (NH3)) in 39 countries from 1995 to 2009. We tested an environmental Kuznets curve (EKC) hypothesis for 16 individual industry sectors and for the total industrial sector. The results clarified that at least ten individual industries do not have an EKC relationship in eight air pollutants even though this relationship was observed in the country and total industrial sector level data. We found that the key industries that dictated the EKC relationship in the country and the total industrial sector existed in CO2, N2O, CO, and NMVOC emissions. Finally, the EKC turning point and the relationship between economic development and trends of air pollutant emissions differ among industries according to the pollution substances. These results suggest inducing new environmental policy design such as the sectoral crediting mechanism, which focuses on the industrial characteristics of emissions.

  9. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review.

    PubMed

    Crone, Brian C; Garland, Jay L; Sorial, George A; Vane, Leland M

    2016-11-01

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10-30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11-100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Microporous membranes can recover up to 98.9% of dissolved methane in AnMBR effluents which have low COD and SS concentrations. Sequential Down-flow Hanging Sponge (DHS) reactors have been used to recover between 57 and 88% of dissolved methane from Upflow Anaerobic Sludge Blanket (UASB) reactor effluent at concentrations of greater than 30% and oxidize the rest for a 99% removal of total dissolved methane. They can also remove 90% of suspended solids and COD in UASB effluents and produce a high quality effluent. In situ degassing can increase process stability, COD removal, biomass retention, and headspace methane concentrations. A model for estimating energy consumption associated with membrane-based dissolved methane recovery predicts that recovered dissolved and headspace methane may provide all the energy required for operation of an anaerobic system treating DWW at psychrophilic temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Thermal and wind-driven water motions in vegetated waters and their role in greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2016-12-01

    The relative importance of different methane transport pathways in wetlands can impact total wetland methane fluxes. The transport of methane and other gases through the water column is affected by a variety of forces. We investigate the role of wind- and thermally-driven water motions in greenhouse gas fluxes in a freshwater marsh and a rice field using in situ velocity measurements in combination with gas transfer velocity models. We measure velocity using an Acoustic Doppler velocimeter, correcting for instrument generated velocities, and a Volumetric Particle Imager. These measurements indicate the presence of wind-driven motions in the wetland water column located below a dense 3-m emergent vegetation canopy. In the rice field's water column, velocity data suggest the occurrence of thermal convection. Results from these in-situ velocity measurements correspond with the non-negligible gas transfer velocities we predict via semi-empirical models. This underscores the importance of hydrodynamics to greenhouse gas fluxes even in shallow, vegetated inland waters.

  11. Promotional Effects of In on Non-Oxidative Methane Transformation Over Mo-ZSM-5

    DOE PAGES

    Zhang, Yang; Kidder, Michelle; Ruther, Rose E.; ...

    2016-08-16

    In this paper, we present a new class of catalysts, InMo-ZSM- 5, which can be prepared by indium impregnation of Mo-ZSM- 5. The incorporation of indium dramatically decreases coke formation during methane dehydroaromatization. The benzene and C 2 hydrocarbons selectivity among total hydrocarbons over InMo-ZSM- 5 remains comparable to that of Mo-ZSM- 5 despite reduced methane conversion due to decreased coke formation. We found 1 wt% indium to be optimal loading for reducing coke selectivity to half that of Mo-ZSM- 5. Characterization methods were not helpful in discerning the interaction of In with Mo but experiments with bimetallic 1In2Mo-ZSM- 5more » and mechanical mixture 1In+2Mo-ZSM- 5 suggest that In and Mo need to be in close proximity to suppress coke formation. Finally, this is supported by temperature programmed reduction experiments which show that In incorporation leads to lower Mo reduction temperature in In2Mo-ZMS- 5.« less

  12. Emissions from the Bena Landfill

    NASA Astrophysics Data System (ADS)

    Schafer, C.; Blake, D. R.; Hughes, S.

    2016-12-01

    In 2013, Americans generated 254 million tons of municipal solid waste (MSW). The gas generated from the decomposition of MSW is composed of approximately 50% methane, 50% carbon dioxide, and a small proportion of non-methane organic compounds (NMOCs). NMOCs constitute less than 1% of landfill emissions, but they can have a disproportionate environmental impact as they are highly reactive ozone precursors. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected at the Bena landfill outside of Bakersfield, CA and throughout Bakersfield and analyzed using gas chromatography in order to quantify NMOC emissions. This area was determined to have elevated concentrations of benzene, trichloroethylene, and tetrachloroethylene, all of which are categorized by the EPA as hazardous to human health. Benzene was found to have a concentration of 145 ± 4 pptv, four times higher than the background levels in Bakersfield (36 ± 1 pptv). Trichloroethylene and tetrachloroethylene had concentrations of 18 ± 1 pptv and 31 ± 1 pptv which were 18 and 10 times greater than background concentrations, respectively. In addition, hydroxyl radical reactivity (ROH) was calculated to determine the potential for tropospheric ozone formation. The total ROH of the landfill was 7.5 ± 0.2 s-1 compared to total background ROH of 1.0 ± 0.1 s-1 . NMOCs only made up 0.6% of total emissions, but accounted for 67% of total ROH.These results can help to shape future landfill emission policies by highlighting the importance of NMOCs in addition to methane. More research is needed to investigate the ozone forming potential of these compounds at landfills across the country.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.A.; Brasseur, G.P.; Zimmerman, P.R.

    Using the hydroxyl radical field calibrated to the methyl chloroform observations, the globally averaged release of methane and its spatial and temporal distribution were investigated. Two source function models of the spatial and temporal distribution of the flux of methane to the atmosphere were developed. The first model was based on the assumption that methane is emitted as a proportion of net primary productivity (NPP). With the average hydroxyl radical concentration fixed, the methane source term was computed as {approximately}623 Tg CH{sub 4}, giving an atmospheric lifetime for methane {approximately}8.3 years. The second model identified source regions for methane frommore » rice paddies, wetlands, enteric fermentation, termites, and biomass burning based on high-resolution land use data. This methane source distribution resulted in an estimate of the global total methane source of {approximately}611 Tg CH{sub 4}, giving an atmospheric lifetime for methane {approximately}8.5 years. The most significant difference between the two models were predictions of methane fluxes over China and South East Asia, the location of most of the world's rice paddies. Using a recent measurement of the reaction rate of hydroxyl radical and methane leads to estimates of the global total methane source for SF1 of {approximately}524 Tg CH{sub 4} giving an atmospheric lifetime of {approximately}10.0 years and for SF2{approximately}514 Tg CH{sub 4} yielding a lifetime of {approximately}10.2 years.« less

  14. In Situ Analyses of Methane Oxidation Associated with the Roots and Rhizomes of a Bur Reed, Sparganium Eurycarpum, in a Maine Wetland

    NASA Technical Reports Server (NTRS)

    King, Gary M.

    1996-01-01

    Methane oxidation associated with the belowground tissues of a common aquatic macrophyte, the burweed Sparganium euryearpum, was assayed in situ by a chamber technique with acetylene or methyl fluoride as a methanotrophic inhibitor at a headspace concentration of 3 to 4%. Acetylene and methyl fluoride inhibited both methane oxidation and peat methanogenesis. However, inhibition of methanogenesis resulted in no obvious short-term effect on methane fluxes. Since neither inhibitor adversely affected plant metabolism and both inhibited methanotrophy equally well, acetylene was employed for routine assays because of its low cost and ease of use. Root-associated methanotrophy consumed a variable but significant fraction of the total potential methane flux; values varied between 1 and 58% (mean +/- standard deviation, 27.0% +/- 6.0%), with no consistent temporal or spatial pattern during late summer. The absolute amount of methane oxidized was not correlated with the total potential methane flux; this suggested that parameters other than methane availability (e.g., oxygen availability) controlled the rates of methane oxidation. Estimates of diffusive methane flux and oxidation at the peat surface indicated that methane emission occurred primarily through aboveground plant tissues; the absolute magnitude of methane oxidation was also greater in association with roots than at the peat surface. However, the relative extent of oxidation was greater at the latter locus.

  15. Top-down constraints on methane and non-methane hydrocarbon emissions in the US Four Corners

    NASA Astrophysics Data System (ADS)

    Petron, G.; Miller, B. R.; Vaughn, B. H.; Kofler, J.; Mielke-Maday, I.; Sherwood, O.; Schwietzke, S.; Conley, S.; Sweeney, C.; Dlugokencky, E. J.; White, A. B.; Tans, P. P.; Schnell, R. C.

    2017-12-01

    A NASA and NOAA supported field campaign took place in the US Four Corners in April 2015 to further investigate a regional "methane hotspot" detected from space. The Four Corners region is home to the fossil fuel rich San Juan Basin, which extends between SE Colorado and NE New Mexico. The area has been extracting coal, oil and natural gas for decades. Degassing from the Fruitland coal outcrop on the Colorado side has also been reported. Instrumented aircraft, vans and ground based wind profilers were deployed for the campaign with the goal to quantify and attribute methane and non-methane hydrocarbon emissions in the region. A new comprehensive analysis of the campaign data sets will be presented and top-down emission estimates for methane and ozone precursors will be compared with available bottom-up estimates.

  16. Contributions of available substrates and activities of trophic microbial community to methanogenesis in vegetative and reproductive rice rhizospheric soil.

    PubMed

    Chawanakul, Sansanee; Chaiprasert, Pawinee; Towprayoon, Sirintornthep; Tanticharoen, Morakot

    2009-01-01

    Potential of methane production and trophic microbial activities at rhizospheric soil during rice cv. Supanbunri 1 cultivation were determined by laboratory anaerobic diluents vials. The methane production was higher from rhizospheric than non-rhizospheric soil, with the noticeable peaks during reproductive phase (RP) than vegetative phase (VP). Glucose, ethanol and acetate were the dominant available substrates found in rhizospheric soil during methane production at both phases. The predominance activities of trophic microbial consortium in methanogenesis, namely fermentative bacteria (FB), acetogenic bacteria (AGB), acetate utilizing bacteria (AB) and acetoclastic methanogens (AM) were also determined. At RP, these microbial groups were enhanced in the higher of methane production than VP. This correlates with our finding that methane production was greater at the rhizospheric soil with the noticeable peaks during RP (1,150 +/- 60 nmol g dw(-1) d(-1)) compared with VP (510 +/- 30 nmol g dw(-1) d(-1)). The high number of AM showed the abundant (1.1x10(4) cell g dw(-1)) with its high activity at RP, compared to the less activity with AM number at VP (9.8x10(2) cell g dw(-1)). Levels of AM are low in the total microbial population, being less than 1% of AB. These evidences revealed that the microbial consortium of these two phases were different.

  17. Effects of oral nitroethane administration on enteric methane emissions and ruminal fermentation in cattle

    USDA-ARS?s Scientific Manuscript database

    Methane is a potent greenhouse gas and its release to the atmosphere is considered to contribute to global warming. Ruminal enteric methane production represents a loss of 2% to 15% of the animal’s energy intake and contributes nearly 20% of the United States total methane emissions. Studies have ...

  18. Preliminary Evaluation of Method to Monitor Landfills Resilience against Methane Emission

    NASA Astrophysics Data System (ADS)

    Chusna, Noor Amalia; Maryono, Maryono

    2018-02-01

    Methane emission from landfill sites contribute to global warming and un-proper methane treatment can pose an explosion hazard. Stakeholder and government in the cities in Indonesia been found significant difficulties to monitor the resilience of landfill from methane emission. Moreover, the management of methane gas has always been a challenging issue for long waste management service and operations. Landfills are a significant contributor to anthropogenic methane emissions. This study conducted preliminary evaluation of method to manage methane gas emission by assessing LandGem and IPCC method. From the preliminary evaluation, this study found that the IPCC method is based on the availability of current and historical country specific data regarding the waste disposed of in landfills while from the LandGEM method is an automated tool for estimating emission rates for total landfill gas this method account total gas of methane, carbon dioxide and other. The method can be used either with specific data to estimate emissions in the site or default parameters if no site-specific data are available. Both of method could be utilize to monitor the methane emission from landfill site in cities of Central Java.

  19. Modeling methane emissions from Arctic lakes under warming conditions

    NASA Astrophysics Data System (ADS)

    Zhuang, Qianlai; Tan, Zeli

    2014-05-01

    To investigate the response of methane emissions from arctic lakes, a process-based climate-sensitive lake methane model is developed. The processes of methane production, oxidation and transport are modeled within a one-dimensional water and sediment column. Dynamics of point-source ebullition seeps are explicitly modeled. The model was calibrated and verified using observational data in the region. The model was further used to estimate the lake methane emissions from the Arctic from 2002 to 2004. We estimate that the total amount of methane emissions is 24.9 Tg CH4 yr-1, which is consistent with a recent estimation of 24±10 Tg CH4 yr-1 and two-fold of methane emissions from natural wetlands in the north of 60 oN. The methane emission rate of lakes spatially varies over high latitudes from 170.5 mg CH4 m-2 day-1 in northern Siberia to only 10.1 mg CH4 m-2 day-1 in northern Europe. A projection assuming 2-7.5oC warming and 15-25% expansion of lake coverage shows that the total amount of methane emitted from Arctic lakes will increase to 29.8-35.6 Tg CH4 yr-1.

  20. The Potential for Methane Isotopologue Channels in GOSAT-2

    NASA Astrophysics Data System (ADS)

    Malina, Edward; Yoshida, Yukio; Matsunaga, Tsuneo; Muller, Jan-Peter

    2017-04-01

    Of the major Greenhouse Gases (GHGs) currently considered as having a major impact on atmospheric chemistry, Methane is amongst the most important (IPCC, 2014). Methane concentration in the atmosphere has been documented to be rising steadily over the past century, aside from an unexplained short period in the middle of the last decade (Heimann., 2011), leading to renewed efforts to understand global atmospheric Methane. Atmospheric Methane is primarily composed of two key isotopologues, 12CH4 and 13CH4, which have a natural abundance of about 98% and 1.1% respectively. It is a well-established fact that different sources of Methane (i.e. biogenic sources such as methanogens, or non-biogenic such as industrial hydrocarbon burning) vary in the abundance of these isotopologues (Etiope, 2009). The global identification of the ratios of these isotopologues could vastly increase knowledge of global Methane sources, and shed some light on global Methane growth. GOSAT-2 due to be launched in 2018 is a follow on from the original GOSAT mission launched in 2009. GOSAT-2 aims to continue the legacy of GOSAT by providing global measurements of Methane and Carbon Dioxide on a global basis in order to monitor GHG emissions. GOSAT-2 in the context of this study has a significant advantage over GOSAT, which is the extension of the sensitivity of band 3 to 2330nm from 2080nm where significant numbers of Methane spectral lines are located. In this study we apply the well-established Information Content (IC) analysis techniques originally proposed by Rodgers (2000) to determine the potential benefit of retrieving total column Methane isotopologue concentrations assuming bands 2 and 3 of the GOSAT-2/TANSO-FTS-2 instrument. The value of such studies has been proven on multiple occasions and can provide guidance on appropriate potential retrieval setups. Due to the fact that there has been limited research in this area, no 'a priori' state vectors or Variance Covariance Matrices (VCMs) appropriate for isotopologues have been defined previously, we therefore test a number VCMs in order to explore the constraints on retrieving independent information in the total column based on the IC analysis. This analysis and VCM variations also provide the opportunity to explore the potential errors associated with retrievals of isotopologues. Based on this study we will comment on the feasibility of Methane isotopologues retrieval with GOSAT-2 under a range of atmospheric conditions, instrument geometry and VCM setups, as well as the errors associated with these conditions. References: Etiope, G. (2009) 'Natural emissions of methane from geological seepage in Europe', Atmospheric Environment, 43(7), pp. 1430-1443. doi: 10.1016/j.atmosenv.2008.03.014. Heimann, M. (2011) 'Atmospheric science: Enigma of the recent methane budget', Nature, 476(7359), pp. 157-158. doi: 10.1038/476157a. IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://ipcc-wg2.gov/AR5/report/ Rodgers, C.D. (2000) Inverse methods for atmospheric sounding: Theory and practice. Singapore, Singapore: World Scientific Publishing Company.

  1. Bio-conversion of water hyacinths into methane gas. Part 1. [Effects of cadmium and nickel pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, B.C.; Mcdonald, R.C.; Gordon, J.

    1974-07-01

    Bio-gas and methane production from the microbial anaerobic decomposition of water hyacinths (Eichhornia crassipes) (Mart) Solms was investigated. These experiments demonstrated the ability of water hyacinths to produce an average of 13.9 ml of methane gas per gram of wet plant weight. This study revealed that sample preparation had no significant effect on bio-gas and/or methane production. Pollution of water hyacinths by two toxic heavy materials, nickel and cadmium, increased the rate of methane production from 51.8 ml/day for non-contaminated plants incubated at 36 C to 81.0 ml/day for Ni-Cd contaminated plants incubated at the same temperature. The methane contentmore » of bio-gas evolved from the anaerobic decomposition of Ni-Cd contaminated plants was 91.1 percent as compared to 69.2 percent methane content of bio-gas collected from the fermentation of non-contaminated plants. (Author) (GRA)« less

  2. A non-steady-state condition in sediments at the gas hydrate stability boundary off West Spitsbergen: Evidence for gas hydrate dissociation or just dynamic methane transport

    NASA Astrophysics Data System (ADS)

    Treude, Tina; Krause, Stefan; Bertics, Victoria; Steinle, Lea; Niemann, Helge; Liebetrau, Volker; Feseker, Tomas; Burwicz, Ewa; Krastel, Sebastian; Berndt, Christian

    2015-04-01

    In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. d18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity, and sediment surface concentrations of CH4, SO4, DIC, and POC) were able to show that the observed twin sulfate-methane transition zones are an ephemeral phenomenon occurring during increase of methane production in the sediment, which can be introduced by, e.g., gas hydrate dissociation. References Berndt, C., T. Feseker, T. Treude, S. Krastel, V. Liebetrau, H. Niemann, V. J. Bertics, I. Dumke, K. Dunnbier, B. Ferre, C. Graves, F. Gross, K. Hissmann, V. Huhnerbach, S. Krause, K. Lieser, J. Schauer and L. Steinle (2014). "Temporal constraints on hydrate-controlled methane seepage off svalbard." Science 343: 284-287. Westbrook, G. K., K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoiselle, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt and A. Aquilina (2009). "Escape of methane gas from the seabed along the West Spitsbergen continental margin." Geophys. Res. Let. 36: doi:10.1029/2009GL039191.

  3. Comparative Analysis of the Methane Data Products from the Tropospheric Emission Spectrometer and the Atmospheric Infrared Sounder.

    NASA Astrophysics Data System (ADS)

    Pagano, T. J.; Worden, J. R.

    2016-12-01

    Methane is the second most powerful greenhouse gas with a highly positive radiative forcing of 0.48 W/m2 (IPCC 2013). Global concentrations of methane have been steadily increasing since 2007 (Bruhwiler 2014), raising concerns about methane's impact on the future global climate. For about the last decade, the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura spacecraft has been detecting several trace gas species in the troposphere including methane. The goal of this study is to compare TES methane products to that of the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua spacecraft so that scientific investigations may be transferred from TES to AIRS. The two instruments fly in the afternoon constellations (A-Train), providing numerous coincident measurements for comparison. In addition, they also have a similar spectral range, (3.3 to 15.4 µm) for TES (Beer, 2006) and (3.7 to 15.4 µm) for AIRS (Chahine, 2006), making both satellites sensitive to the mid and upper troposphere. This makes them ideal candidates to compare methane data products. In a previous study, total column methane was mapped and global zonal averages were compared. It was found that bias of the total column measurements between the two sounders was about constant over tropical and subtropical regions. However, because AIRS spectral resolution is lower than that of the TES, it is important to analyze the difference in vertical sensitivity. In this study, we will construct vertical profiles of methane concentration and compare them statistically through RMS difference and bias to better understand these differences. In addition, we will compare the error profile and total column errors of the TES and AIRS methane from the data to better understand error characteristics of the products.

  4. Nitrogen oxides and methane treatment by non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  5. Formation of Acetylene in the Reaction of Methane with Iron Carbide Cluster Anions FeC3- under High-Temperature Conditions.

    PubMed

    Li, Hai-Fang; Jiang, Li-Xue; Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Ting; He, Sheng-Gui

    2018-03-01

    The underlying mechanism for non-oxidative methane aromatization remains controversial owing to the lack of experimental evidence for the formation of the first C-C bond. For the first time, the elementary reaction of methane with atomic clusters (FeC 3 - ) under high-temperature conditions to produce C-C coupling products has been characterized by mass spectrometry. With the elevation of temperature from 300 K to 610 K, the production of acetylene, the important intermediate proposed in a monofunctional mechanism of methane aromatization, was significantly enhanced, which can be well-rationalized by quantum chemistry calculations. This study narrows the gap between gas-phase and condensed-phase studies on methane conversion and suggests that the monofunctional mechanism probably operates in non-oxidative methane aromatization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of silane concentration on the supersonic combustion of a silane/methane mixture

    NASA Technical Reports Server (NTRS)

    Northam, G. B.; Mclain, A. G.; Pellett, G. L.; Diskin, G. S.

    1986-01-01

    A series of direct connect combustor tests was conducted to determine the effect of silane concentration on the supersonic combustion characteristics of silane/methane mixtures. Shock tube ignition delay data indicated more than an order of magnitude reduction in ignition delay times for both 10 and 20 percent silane/methane mixtures as compared to methane. The ignition delay time of the 10 percent mixture was only a factor of 2.3 greater than that of the 20 percent mixture. Supersonic combustion tests were conducted with the fuel injected into a model scramjet combustor. The combustor was mounted at the exit of a Mach 2 nozzle and a hydrogen fired heater was used to provide a variation in test gas total temperature. Tests using the 20 percent silane/methane mixture indicated considerable combustion enhancement when compared to methane alone. This mixture had an autoignition total temperature of 1650 R. This autoignition temperature can be contrasted with 2330 R for hydrogen and 1350 R for a 20 percent silane/hydrogen mixture in similar hardware. Methane without the silane additive did not autoignite in this configuration at total temperatures as high as 3900 R, the maximum temperature at which tests were conducted. Supersonic combustion tests with the silane concentration reduced to 10 percent indicated little improvement in combustion performance over pure methane. The addition of 20 percent silane to methane resulted in a pyrophoric fuel with good supersonic combustion performance. Reducing the silane concentration below this level, however, yielded a less pyrophoric fuel that exhibited poor supersonic combustion performance.

  7. Evidence and biogeochemical implications for glacially-derived sediments in an active margin cold seep

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, Michael; Novosel, Ivana; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Coffin, Richard B.; Grabowski, Kenneth S.; Knies, David L.; Hyndman, Roy D.; Spence, George D.

    2011-01-01

    Delineating sediment organic matter origins and sediment accumulation rates at gas hydratebearing and hydrocarbon seeps is complicated by the microbial transfer of 13C-depleted and 14Cdepleted methane carbon into sedimentary pools. Sediment 13C and 14C measurements from four cores recovered at Bullseye vent on the northern Cascadia margin are used to identify methane carbon assimilation into different carbon pools. While the total organic carbon (TOC) is mostly unaltered and primarily terrigenous in origin, planktonic foraminifera and the bulk carbonate display evidence of methane overprinting. Mass balance models are applied to determine the extent to which methane overprinting increased the radiocarbon ages of the biogenic foraminifera. The corrected and calibrated foraminifera ages between sediment depths of 70 and 573 cm are from 14.9 to 15.9 ka BP, which coincides with the retreat of the late Quaternary Cordilleran Ice Sheet from Vancouver Island. Uniform TOC _13C values of -24.5 ± 0.5‰ from the upper 8 meters of sediment at Bullseye vent suggest all cored material is Pleistocene-derived glacimarine material deposited as the ice edge retreated landward. Bullseye vent is located within an uplifted sediment block isolated from turbidite deposition and has been a site of non-deposition since the ice sheet retreated from the shelf. Biogeochemical implications of seep sediments being dominated by aged, organic-poor (<0.4 wt% TOC) material are that methane is the primary energy source, and microbes directly and indirectly associated with the anaerobic oxidation of methane (AOM) will dominate the seep microbial community.

  8. 242-A Evaporator/plutonium uranium extraction (PUREX) effluent treatment facility (ETF) nonradioactive air emission test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, J.S., Westinghouse Hanford

    1996-05-10

    This report shows the methods used to test the stack gas outlet concentration and emission rate of Volatile Organic Compounds as Total Non-Methane Hydrocarbons in parts per million by volume,grams per dry standard cubic meter, and grams per minute from the PUREX ETF stream number G6 on the Hanford Site. Test results are shown in Appendix B.1.

  9. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes

    USGS Publications Warehouse

    Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.

    2009-01-01

    Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.

  10. Methane-Stimulated Benthic Marine Nitrogen Fixation at Deep-Sea Methane Seeps

    NASA Astrophysics Data System (ADS)

    Dekas, A. E.; Orphan, V.

    2011-12-01

    Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. Although current measurements of N2 production and consumption in the oceans indicate that the nitrogen cycle is not balanced, recent findings on the limits of nitrogen fixation suggest that the perceived imbalance is an artifact of an incomplete assessment of marine diazotrophy. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. In the present study we investigate the distribution and magnitude of benthic marine diazotrophy at several active deep-sea methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). Using 15N2 and 15NH4 sediment incubation experiments followed by single-cell (FISH-NanoSIMS) and bulk isotopic analysis (EA-IRMS), we observed total protein synthesis (15N uptake from 15NH4) and nitrogen fixation (15N update from 15N2). The highest rates of nitrogen fixation observed in the methane seep sediment incubation experiments were over an order of magnitude greater than those previously published from non-seep deep-sea sediments (Hartwig and Stanley, Deep-Sea Research, 1978, 25:411-417). However, methane seep diazotrophy appears to be highly spatially variable, with sediments exhibiting no nitrogen fixation originating only centimeters away from sediments actively incorporating 15N from 15N2. The greatest spatial variability in diazotrophy was observed with depth in the sediment, and corresponded to steep gradients in sulfate and methane. The maximum rates of nitrogen fixation were observed within the methane-sulfate transition zone, where organisms mediating the anaerobic oxidation of methane are typically in high abundance. Additionally, incubation experiments without added methane were observed to have little to no nitrogen fixation activity. In previous work, we demonstrated the capability of uncultured methanotrophic archaea (ANME-2) to fix nitrogen when associated with sulfate reducing bacterial symbionts. These new results suggest that these microbes may be the dominant nitrogen-fixing organisms in methane seep sediment. Intriguingly, characterization of the diversity of nifH genes from our sediment incubations as well as published nifH sequences reported from other seep habitats suggest the potential for other diazotrophic microorganisms in addition to the ANME-2 archaea. To further explore this possibility, FISH-NanoSIMS analyses were conducted on two dominant free-living sulfate-reducing lineages from seep incubations demonstrating nitrogen fixation activity. Preliminary results from this analysis suggest that single cells belonging to the Desulfobulbaceae may also be involved in nitrogen fixation in methane seeps. Despite this demonstrated potential, the extent of methane-independent diazotrophy by non-ANME diazotrophs appears to be low within the methane seep environment. Further studies are necessary to assess the greater diversity and activity of diazotrophs in other deep-sea sedimentary habitats.

  11. Modeling natural wetlands: A new global framework built on wetland observations

    NASA Astrophysics Data System (ADS)

    Matthews, E.; Romanski, J.; Olefeldt, D.

    2015-12-01

    Natural wetlands are the world's largest methane (CH4) source, and their distribution and CH4 fluxes are sensitive to interannual and longer-term climate variations. Wetland distributions used in wetland-CH4 models diverge widely, and these geographic differences contribute substantially to large variations in magnitude, seasonality and distribution of modeled methane fluxes. Modeling wetland type and distribution—closely tied to simulating CH4 emissions—is a high priority, particularly for studies of wetlands and CH4 dynamics under past and future climates. Methane-wetland models either prescribe or simulate methane-producing areas (aka wetlands) and both approaches result in predictable over- and under-estimates. 1) Monthly satellite-derived inundation data include flooded areas that are not wetlands (e.g., lakes, reservoirs, and rivers), and do not identify non-flooded wetlands. 2) Models simulating methane-producing areas overwhelmingly rely on modeled soil moisture, systematically over-estimating total global area, with regional over- and under-estimates, while schemes to model soil-moisture typically cannot account for positive water tables (i.e., flooding). Interestingly, while these distinct hydrological approaches to identify wetlands are complementary, merging them does not provide critical data needed to model wetlands for methane studies. We present a new integrated framework for modeling wetlands, and ultimately their methane emissions, that exploits the extensive body of data and information on wetlands. The foundation of the approach is an existing global gridded data set comprising all and only wetlands, including vegetation information. This data set is augmented with data inter alia on climate, inundation dynamics, soil type and soil carbon, permafrost, active-layer depth, growth form, and species composition. We investigate this enhanced wetland data set to identify which variables best explain occurrence and characteristics of observed wetland ecosystems. The novelty of the new approach is that it starts from what we know about wetlands, builds ecosystem-specific models from these observations, and avoids known biases in current hydrology-based approaches to wetland definition in methane models.

  12. 40 CFR 86.094-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... methane. Non-Methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Loaded Vehicle Weight means the numerical average of vehicle curb weight and GVWR. Bi-directional control...

  13. 40 CFR 86.094-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... methane. Non-Methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Loaded Vehicle Weight means the numerical average of vehicle curb weight and GVWR. Bi-directional control...

  14. 40 CFR 86.094-2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... methane. Non-Methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Loaded Vehicle Weight means the numerical average of vehicle curb weight and GVWR. Bi-directional control...

  15. 40 CFR 86.094-2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... methane. Non-Methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Loaded Vehicle Weight means the numerical average of vehicle curb weight and GVWR. Bi-directional control...

  16. 40 CFR 86.094-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... methane. Non-Methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Loaded Vehicle Weight means the numerical average of vehicle curb weight and GVWR. Bi-directional control...

  17. Potential Cost-Effective Opportunities for Methane Emission Abatement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Ethan; Steinberg, Daniel; Hodson, Elke

    2015-08-01

    The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO 2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO 2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted tomore » quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO 2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain segments provide the greatest opportunities for low cost abatement.« less

  18. Ultrasound assisted biogas production from landfill leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions formore » solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.« less

  19. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania

    PubMed Central

    Kang, Mary; Kanno, Cynthia M.; Reid, Matthew C.; Zhang, Xin; Mauzerall, Denise L.; Celia, Michael A.; Chen, Yuheng; Onstott, Tullis C.

    2014-01-01

    Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells (“controls”) in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10−6 kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10−3 kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4–7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories. PMID:25489074

  20. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    NASA Astrophysics Data System (ADS)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of <30 ppb and <10 ppb, respectively at <1 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10 ppm in a single measurement. Furthermore, a high precision methane only mode is available for surveying and locating leakage with a 1-σ precision of <3 ppb. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS in order to visualize horizontal plane gas propagation.

  1. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania.

    PubMed

    Kang, Mary; Kanno, Cynthia M; Reid, Matthew C; Zhang, Xin; Mauzerall, Denise L; Celia, Michael A; Chen, Yuheng; Onstott, Tullis C

    2014-12-23

    Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells ("controls") in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10(-6) kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10(-3) kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4-7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories.

  2. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste.

    PubMed

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco; Pontoni, Ludovico

    2014-10-01

    This work investigates the role of the moisture content on anaerobic digestion of food waste, as representative of rapidly biodegradable substrates, analysing the role of volatile fatty acid production on process kinetics. A range of total solids from 4.5% to 19.2% is considered in order to compare methane yields and kinetics of reactors operated under wet to dry conditions. The experimental results show a reduction of the specific final methane yield of 4.3% and 40.8% in semi-dry and dry conditions compared with wet conditions. A decreasing trend of the specific initial methane production rate is observed when increasing the total solids concentration. Because of lack of water, volatile fatty acids accumulation occurs during the first step of the process at semi-dry and dry conditions, which is considered to be responsible for the reduction of process kinetic rates. The total volatile fatty acids concentration and speciation are proposed as indicators of process development at different total solids content. © The Author(s) 2014.

  3. Coal-Packed Methane Biofilter for Mitigation of Green House Gas Emissions from Coal Mine Ventilation Air

    PubMed Central

    Limbri, Hendy; Gunawan, Cindy; Thomas, Torsten; Smith, Andrew; Scott, Jason; Rosche, Bettina

    2014-01-01

    Methane emitted by coal mine ventilation air (MVA) is a significant greenhouse gas. A mitigation strategy is the oxidation of methane to carbon dioxide, which is approximately twenty-one times less effective at global warming than methane on a mass-basis. The low non-combustible methane concentrations at high MVA flow rates call for a catalytic strategy of oxidation. A laboratory-scale coal-packed biofilter was designed and partially removed methane from humidified air at flow rates between 0.2 and 2.4 L min−1 at 30°C with nutrient solution added every three days. Methane oxidation was catalysed by a complex community of naturally-occurring microorganisms, with the most abundant member being identified by 16S rRNA gene sequence as belonging to the methanotrophic genus Methylocystis. Additional inoculation with a laboratory-grown culture of Methylosinus sporium, as investigated in a parallel run, only enhanced methane consumption during the initial 12 weeks. The greatest level of methane removal of 27.2±0.66 g methane m−3 empty bed h−1 was attained for the non-inoculated system, which was equivalent to removing 19.7±2.9% methane from an inlet concentration of 1% v/v at an inlet gas flow rate of 1.6 L min−1 (2.4 min empty bed residence time). These results show that low-cost coal packing holds promising potential as a suitable growth surface and contains methanotrophic microorganisms for the catalytic oxidative removal of methane. PMID:24743729

  4. Hydrogen stable isotopic constraints on methane emissions from oil and gas extraction in the Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Botner, E. C.; Jimenez, K.; Blake, N. J.; Schroeder, J.; Meinardi, S.; Barletta, B.; Simpson, I. J.; Blake, D. R.; Flocke, F. M.; Pfister, G.; Bon, D.; Crawford, J. H.

    2015-12-01

    The climatic implications of a shift from oil and coal to natural gas depend on the magnitude of fugitive emissions of methane from the natural gas supply chain. Attempts to constrain methane emissions from natural gas production regions can be confounded by other sources of methane. Here we demonstrate the utility of stable isotopes, particularly hydrogen isotopes, for source apportionment of methane emissions. The Denver, Colorado area is home to a large oil and gas field with both conventional oil and gas wells and newer hydraulic fracturing wells. The region also has a large metropolitan area with several landfills and a sizable cattle population. As part of the DISCOVER-AQ and FRAPPE field campaigns in summer 2014, we collected three types of canister samples for analysis of stable isotopic composition of methane: 1), samples from methane sources; 2), samples from two stationary ground sites, one in the Denver foothills, and one in an oil and gas field; and 3), from the NCAR C-130 aircraft in samples upwind and downwind of the region. Our results indicate that hydrogen isotope ratios are excellent tracers of sources of methane in the region, as we have shown previously in California and Texas. Use of carbon isotope ratios is complicated by the similarity of natural gas isotope ratios to that of background methane. Our results indicate that, despite the large amount of natural gas production in the region, biological sources such as cattle feedlots and landfills account for at least 50% of total methane emissions in the Front Range. Future work includes comparison of isotopes and alkane ratios as tracers of methane sources, and calculation of total methane fluxes in the region using continuous measurements of methane concentrations during aircraft flights.

  5. 40 CFR 86.004-2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... production means the engines and/or vehicles (as applicable) produced by a manufacturer for which the...-duty diesel engines, for carbon monoxide, particulate, and oxides of nitrogen plus non-methane... non-methane hydrocarbons emission standards, a period of use of 10 years or 185,000 miles, whichever...

  6. 40 CFR 86.004-2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production means the engines and/or vehicles (as applicable) produced by a manufacturer for which the...-duty diesel engines, for carbon monoxide, particulate, and oxides of nitrogen plus non-methane... non-methane hydrocarbons emission standards, a period of use of 10 years or 185,000 miles, whichever...

  7. NATURAL EMISSIONS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS, CARBON MONOXIDE, AND OXIDES OF NITROGEN FROM NORTH AMERICA

    EPA Science Inventory

    The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...

  8. Methane Gas Emissions - is Older Infrastructure Leakier?

    NASA Astrophysics Data System (ADS)

    Wendt, L. P.; Caulton, D.; Zondlo, M. A.; Lane, H.; Lu, J.; Golston, L.; Pan, D.

    2015-12-01

    Large gains in natural gas production from hydraulic fracturing is reinvigorating the US energy economy. It is a clean burning fuel with lower emissions than that of coal or oil. Studies show that methane (CH4) leaks from natural gas infrastructure vary widely. A broader question is whether leak rates of methane might offset the benefits of combustion of natural gas. Excess methane (CH4) is a major greenhouse gas with a radiative forcing constant of 25 times that of CO2 when projected over a 100-year period. An extensive field study of 250 wells in the Marcellus Shale conducted in July 2015 examined the emission rates of this region and identifed super-emitters. Spud production data will provide information as to whether older infrastructure is responsible for more of the emissions. Quantifying the emission rate was determined by extrapolating methane releases at a distance from private well pads using an inverse Gaussian plume model. Wells studied were selected by prevailing winds, distance from public roads, and topographical information using commercial (ARCGIS and Google Earth), non-profit (drillinginfo), and government (State of PA) databases. Data were collected from the mobile sensing lab (CH4, CO2 and H2O sensors), as well as from a stationary tower. Emission rates from well pads will be compared to their original production (spud dates) to evaluate whether infrastructure age and total production correlates with the observed leak rates. Very preliminary results show no statistical correlation between well pad production rates and observed leak rates.

  9. Temperature regulates methane production through the function centralization of microbial community in anaerobic digestion.

    PubMed

    Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao

    2016-09-01

    Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant.

    PubMed

    Masuda, Shuhei; Suzuki, Shunsuke; Sano, Itsumi; Li, Yu-You; Nishimura, Osamu

    2015-12-01

    The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2m(-3). The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3°C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Characterization of methane emissions in Los Angeles with airborne hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Saad, K.; Tratt, D. M.; Buckland, K. N.; Roehl, C. M.; Wennberg, P. O.; Wunch, D.

    2017-12-01

    As urban areas develop regulations to limit atmospheric methane (CH4), accurate quantification of anthropogenic emissions will be critical for program development and evaluation. However, relating emissions derived from process-level metadata to those determined from assimilating atmospheric observations of CH4 concentrations into models is particularly difficult. Non-methane hydrocarbons (NMHCs) can help differentiate between thermogenic and biogenic CH4 emissions, as they are primarily co-emitted with the former; however, these trace gases are subject to the same limitations as CH4. Remotely-sensed hyperspectral imaging bridges these approaches by measuring emissions plumes directly with spatial coverage on the order of 10 km2 min-1. We identify the sources of and evaluate emissions plumes measured by airborne infrared hyperspectral imagers flown over the Los Angeles (LA) metropolitan area, which encompasses various CH4 sources, including petroleum and natural gas wells and facilities. We quantify total CH4 and NMHC emissions, as well as their relative column densities, at the point-source level to create fingerprints of source types. We aggregate these analyses to estimate the range of variability in chemical composition across source types. These CH4 and NMHC emissions factors are additionally compared to their tropospheric column abundances measured by the Total Carbon Column Observing Network (TCCON) Pasadena Fourier transform infrared spectrometer, which provides a footprint for the LA basin.

  12. 40 CFR 63.1426 - Process vent requirements for determining organic HAP concentration, control efficiency, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent reduction may be measured as total epoxide, total organic HAP, or as TOC minus methane and ethane... TOC (minus methane and ethane) concentrations in all process vent streams and primary and secondary... million by volume total epoxide or TOC limit in § 63.1425(b)(1)(ii) or (b)(2)(iii), the sampling site...

  13. A new approach to evaluate regional methane emission from irrigated rice paddies: Combining process study, modeling and remote sensing into GIS

    NASA Astrophysics Data System (ADS)

    Ding, Aiju

    2000-10-01

    A large seasonal variation in methane emission from Texas rice fields was observed in most of the growing seasons from 1989 through 1997. In general, the pattern showed small fluxes in the early season of cultivation and reached maximum at post-heading time, then declined and stopped after fields were drained. The amount of methane emission positively relates to the aboveground biomass, the number of effective stems and tillers, and nitrogen addition. The day-to-day pattern of methane emissions was similar among all cultivars. The seasonal total methane emission shows a significant positive correlation with post-heading plant height. The total methane emission from Texas rice fields was estimated as 33.25 × 109 g in 1993, ranging from 25.85 × 109 g/yr to 40.65 × 109 g/yr. A mitigation technique was developed to obtain both high yield and less methane emission from Texas rice fields. A new approach was also developed to evaluate regional to large-scale methane emission from irrigated rice paddies. By combining modeling, ground truth information and remote sensing into a Geographic Information System (GIS)-a computer based system, the seasonal methane emission from a large area can be calculated efficiently and more accurately. The methodology was tested at the Richmond Irrigation District (RID) site in Texas. The average daily methane emission varied from field to field and even within a single field. The calculated seasonal total methane emission from RID rice fields was as low as 3.34 × 108 g CH4 in 1996 and as high as 7.80 × 108 g CH4 in 1998. To support the application of the estimation method in a worldwide study, an algorithm describing the mapping of irrigated rice paddies from Landsat TM data was demonstrated. The accuracy in 1998- supervised classification approached 95% when cloud cover was taken into account. Model uncertainty and data availability are the two major potential problems in worldwide application of the new approach. A potential alternative model is proposed which allows estimation of regional methane emission from rice plant height.

  14. 75 FR 34486 - Petitions for Modification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... while continuously monitoring for methane levels. Immediately prior to the use of the non-permissible equipment, the mine atmosphere will be tested for methane within 6 inches, and would be continuously monitored with an approved instrument capable of providing both visual and audible alarms. Methane levels...

  15. Lactulose Breath Test Gas Production in Childhood IBS Is Associated With Intestinal Transit and Bowel Movement Frequency.

    PubMed

    Chumpitazi, Bruno P; Weidler, Erica M; Shulman, Robert J

    2017-04-01

    In adults with irritable bowel syndrome (IBS), bacterial gas production (colonic fermentation) is related to both symptom generation and intestinal transit. Whether gas production affects symptom generation, psychosocial distress, or intestinal transit in childhood IBS is unknown. Children (ages 7-17 years) with pediatric Rome III IBS completed validated psychosocial questionnaires and a 2-week daily diary capturing pain and stooling characteristics. Stool form determined IBS subtype. Subjects then completed a 3-hour lactulose breath test for measurement of total breath hydrogen and methane production. Carmine red was used to determine whole intestinal transit time. A total of 87 children (mean age 13 ± 2.6 [standard deviation] years) were enrolled, of whom 50 (57.5%) were girls. All children produced hydrogen and 51 (58.6%) produced methane. Hydrogen and methane production did not correlate with either abdominal pain frequency/severity or psychosocial distress. Hydrogen and methane production did not differ significantly by IBS subtype. Methane production correlated positively with whole intestinal transit time (r = 0.31, P < 0.005) and inversely with bowel movement frequency (r = -0.245, P < 0.05). Methane production (threshold 3 ppm) as a marker for identifying IBS-C had a sensitivity of 60% and specificity of 42.9%. Lactulose breath test total methane production may serve as a biomarker of whole intestinal transit time and bowel movement frequency in children with IBS. In children with IBS, lactulose breath test hydrogen and methane production did not, however, correlate with abdominal pain, IBS subtype, or psychosocial distress.

  16. Methane Sensitivity to Perturbations in Tropospheric Oxidizing Capacity

    NASA Technical Reports Server (NTRS)

    Yegorova, Elena; Duncan, Bryan

    2011-01-01

    Methane is an important greenhouse gas and has a 25 times greater global warming potential than CO2 on a century timescale. Yet there are considerable uncertainties in the magnitude and variability of its sources and sinks. The response of the coupled non-linear methane-carbon monoxide-hydroxyl radical (OH) system is important in determining the tropospheric oxidizing capacity. Using the NASA Goddard Earth Observing System, Version 5 (GEOS-5) chemistry climate model, we study the response of methane to perturbations of OH and wetland emissions. We use a computationally-efficient option of the GEOS-5 CCM that includes an OH parameterization that accurately represents OH predicted by a full chemical mechanism. The OH parameterization allows for studying non-linear CH4-CO-OH feedbacks in computationally fast sensitivity experiments. We compare our results with surface observations (GMD) and discuss the range of uncertainty in OH and wetland emissions required to bring modeling results in better agreement with surface observations. Our results can be used to improve projections of methane emissions and methane growth.

  17. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network.

    PubMed

    Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi

    2017-03-01

    Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R 2 ) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Produced water ponds are an important source of aromatics and alcohols in Rocky Mountain oil and gas basins

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.

    2017-12-01

    Most of the water extracted with oil and natural gas (i.e., produced water) is disposed of by injection into the subsurface. In the arid western United States, however, a significant portion of produced water is discharged in ponds for evaporative disposal, and produced water is often stored in open ponds prior to subsurface injection. Even though they are common in the West (Utah's Uinta Basin has almost 200 ha), produced water ponds have been excluded from oil and gas emissions inventories because little information about their emission rates and speciation is available. We used flux chambers and inverse plume modeling to measure emissions of methane, C2-C11 hydrocarbons, light alcohols, carbonyls, and carbon dioxide from oil and gas produced water storage and disposal ponds in the Uinta Basin and the Upper Green River Basin, Wyoming, during 2013-2017. Methanol was the most abundant organic compound in produced water (91 ± 2% of the total volatile organic concentration; mean ± 95% confidence interval) but accounted for only 25 ± 30% of total organic compound emissions from produced water ponds. Non-methane hydrocarbons, especially C6-C9 alkanes and aromatics, accounted for the majority of emitted organics. We were able to predict emissions of individual compounds based on water concentrations, but only to within an order of magnitude. The speciation and magnitude of emissions varied strongly across facilities and was influenced by water age, the presence or absence of oil sheens, and with meteorological conditions (especially ice cover). Flux chamber measurements were lower than estimates from inverse modeling techniques.Based on our flux chamber measurements, we estimate that produced water ponds are responsible for between 3 and 9% of all non-methane organic compound emissions in the Uinta Basin (or as much as 18% if we rely on our inverse modeling results). Emissions from produced water ponds contain little methane and are more reactive (i.e., they have higher maximum incremental reactivity) than typical oil and gas-related emissions. Produced water ponds emit about 11% and 28%, respectively, of all aromatics and alcohols from the Uinta Basin oil and gas industry.

  19. Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle.

    PubMed

    Hayes, B J; Donoghue, K A; Reich, C M; Mason, B A; Bird-Gardiner, T; Herd, R M; Arthur, P F

    2016-03-01

    Enteric methane emissions from beef cattle are a significant component of total greenhouse gas emissions from agriculture. The variation between beef cattle in methane emissions is partly genetic, whether measured as methane production, methane yield (methane production/DMI), or residual methane production (observed methane production - expected methane production), with heritabilities ranging from 0.19 to 0.29. This suggests methane emissions could be reduced by selection. Given the high cost of measuring methane production from individual beef cattle, genomic selection is the most feasible approach to achieve this reduction in emissions. We derived genomic EBV (GEBV) for methane traits from a reference set of 747 Angus animals phenotyped for methane traits and genotyped for 630,000 SNP. The accuracy of GEBV was tested in a validation set of 273 Angus animals phenotyped for the same traits. Accuracies of GEBV ranged from 0.29 ± 0.06 for methane yield and 0.35 ± 0.06 for residual methane production. Selection on GEBV using the genomic prediction equations derived here could reduce emissions for Angus cattle by roughly 5% over 10 yr.

  20. 40 CFR 86.004-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (3) The AECD does not go beyond the requirements of engine starting. U.S.-directed production means...-duty diesel engines, for carbon monoxide, particulate, and oxides of nitrogen plus non-methane... non-methane hydrocarbons emission standards, a period of use of 10 years or 185,000 miles, whichever...

  1. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid.

    PubMed

    Poulsen, Morten; Jensen, Bent Borg; Engberg, Ricarda M

    2012-02-01

    Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P < 0.001) and vice versa for butyric acid production from pectin and inulin (P < 0.001). Total propionic acid production was unaffected by the carbohydrate source (P = 0.791). Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P < 0.001). Principle component analysis of T-RFLP patterns revealed that both pectin and pH 5.5 resulted in pronounced changes in the microbial community composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Steps toward identifying a biogeochemical signal in non-equilibrium methane clumped isotope measurements

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Eiler, J. M.; Sessions, A. L.; Dawson, K.; Walter Anthony, K. M.; Smith, D. A.; Lloyd, M. K.; Yanay, E.

    2016-12-01

    Microbially produced methane is a globally important greenhouse gas, energy source, and biological substrate. Methane clumped isotope measurements have recently been developed as a new analytical tool for understanding the source of methane in different environments. When methane forms in isotopic equilibrium clumped isotope values are determined by formation temperature, but in many cases microbial methane clumped isotope values deviate strongly from expected equilibrium values. Indeed, we observe a very wide range of clumped isotope values in microbial methane, which are likely strongly influenced by kinetic isotope effects, but thus far the biological and environmental parameters controlling this variability are not understood. We will present data from both culture experiments and natural environments to explore patterns of variability in non-equilibrium clumped isotope values on temporal and spatial scales. In methanogen batch cultures sampled at different time points along a growth curve we observe significant variability in clumped isotope values, with values decreasing from early to late exponential growth. Clumped isotope values then increase during stationary growth. This result is consistent with previous work suggesting that differences in the reversibility of methanogenesis related to metabolic rates control non-equilibrium clumped isotope values. Within single lakes in Alaska and Sweden we observe substantial variability in clumped isotope values on the order of 5‰. Lower clumped isotope values are associated with larger 2H isotopic fractionation between water and methane, which is also consistent with a kinetic isotope effect determined by the reversibility of methanogenesis. Finally, we analyzed a time-series clumped isotope compositions of methane emitted from two seeps in an Alaskan lake over several months. Temporal variability in these seeps is on the order of 2‰, which is much less than the observed spatial variability within the lake. Comparing carbon isotope fractionation between CO2 and CH4 with clumped isotope data suggests the temporal variability may result from changes in methane oxidation.

  3. A new method to study simultaneous methane oxidation and methane production in soils

    NASA Astrophysics Data System (ADS)

    Andersen, B. L.; Bidoglio, G.; Leip, A.; Rembges, D.

    1998-12-01

    Results of laboratory experiments show that 14C-labeled methane added to soil was consumed faster than atmospheric 12C methane. This implies a source of methane, presumably through methanogenesis, in a soil that is a net consumer of atmospheric methane. The soil was well-drained forest soil from Ispra, Italy. An undisturbed sample was taken with a steel corer and incubated under oxic conditions in a jar. Headspace samples were taken at time intervals and analyzed for total methane by gas chromatography and analyzed for 14C methane by liquid scintillation counting. Fluxes calculated from the decreasing headspace mixing ratios were, for example, -6.5 and -7.1 μmol m-2 hr-1 for 12C methane and 14C methane, respectively. A simple model is considered which reproduces reasonably well the observed mixing ratios as function of time.

  4. Methane emissions from different coastal wetlands in New England, US

    NASA Astrophysics Data System (ADS)

    Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.

  5. The impact of compaction and leachate recirculation on waste degradation in simulated landfills.

    PubMed

    Ko, Jae Hac; Yang, Fan; Xu, Qiyong

    2016-07-01

    This study investigated the impact of compaction and leachate recirculation on anaerobic degradation of municipal solid waste (MSW) at different methane formation phases. Two stainless steel lysimeters, C1 and C2, were constructed by equipping a hydraulic cylinder to apply pressure load (42kPs) on the MSW. When MSW started to produce methane, C1 was compacted, but C2 was compacted when the methane production rate declined from the peak generation rate. Methane production of C1was inhibited by the compaction and resulted in producing a total of 106L methane (44L/kgVS). However, the compaction in C2 promoted MSW degradation resulting in producing a total of 298L methane (125L/kgVS). The concentrations of volatile fatty acids and chemical oxygen demand showed temporary increases, when pressure load was applied. It was considered that the increased substrate accessibility within MSW by compaction could cause either the inhibition or the enhancement of methane production, depending the tolerability of methanogens on the acidic inhibition. Leachate recirculation also gave positive effects on methane generation from wet waste in the decelerated methanogenic phase by increasing mass transfer and the concentrations of volatile fatty acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Continuous, Pulsed Export of Methane-Supersaturated Meltwaters from the Bed of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Lamarche-Gagnon, G.; Wadham, J.; Beaton, A.; Fietzek, P.; Stanley, K. M.; Tedstone, A.; Sherwood Lollar, B.; Lacrampe Couloume, G.; Telling, J.; Liz, B.; Hawkings, J.; Kohler, T. J.; Zarsky, J. D.; Stibal, M.; Mowlem, M. C.

    2016-12-01

    Both past and present ice sheets have been proposed to cap large quantities of methane (CH4), on orders of magnitude significant enough to impact global greenhouse gas concentrations during periods of rapid ice retreat. However, to date most evidence for sub-ice sheet methane has been indirect, derived from calculations of the methanogenic potential of basal-ice microbial communities and biogeochemical models; field-based empirical measurements are lacking from large ice sheet catchments. Here, we present the first continuous, in situ record of dissolved methane export from a large catchment of the Greenland Ice Sheet (GrIS) in South West Greenland from May-July 2015. Our results indicate that glacial runoff was continuously supersaturated with methane over the observation period (dissolved CH4 concentrations of 30-700 nM), with total methane flux rising as subglacial discharge increased. Periodic subglacial drainage events, characterised by rapid changes (i.e. pulses) in meltwater hydrochemistry, also coincided with a rise in methane concentrations. We argue that these are likely indicative of the flushing of subglacial reservoirs of CH4 beneath the ice sheet. Total methane export was relatively modest when compared to global methane budgets, but too high to be explained by previously determined methanogenic rates from Greenland basal ice. Discrepancies between estimated Greenland methane reserves and observed fluxes stress the need to further investigate GrIS methane fluxes and sources, and suggest a more biogeochemically active subglacial environment than previously considered. Results indicate that future warming, and a coincident increase in ice melt rates, would likely make the GrIS, and by extension the Antarctic Ice Sheet, more significant sources of atmospheric methane, consequently acting as a positive feedback to a warming climate.

  7. Microbial diversity and dynamics during methane production from municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu; Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706; Wolfe, Georgia L., E-mail: gwolfe@wisc.edu

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing ofmore » 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.« less

  8. 40 CFR 63.7941 - How do I conduct a performance test, design evaluation, or other type of initial compliance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vent; Ei, Eo = Mass rate of total organic compounds (TOC) (minus methane and ethane) or total HAP, from... reduction for all affected process vents, percent Ei = Mass rate of TOC (minus methane and ethane) or total... uncontrolled vents, as calculated in this section, kilograms TOC per hour or kilograms HAP per hour; Eo = Mass...

  9. 40 CFR 86.1815-01 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  10. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a) Exhaust emission... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  11. 40 CFR 86.1813-01 - Emission standards for light-duty trucks 2.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  12. 40 CFR 86.1812-01 - Emission standards for light-duty trucks 1.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  13. 40 CFR 86.1815-02 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  14. 40 CFR 86.1813-01 - Emission standards for light-duty trucks 2.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  15. 40 CFR 86.1814-01 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  16. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  17. 40 CFR 86.1814-02 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  18. 40 CFR 86.1812-01 - Emission standards for light-duty trucks 1.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  19. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a) Exhaust emission... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  20. 40 CFR 86.1815-01 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  1. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrocarbon equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  2. 40 CFR 86.1815-01 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  3. 40 CFR 86.1814-01 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  4. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a) Exhaust emission... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  5. 40 CFR 86.1813-01 - Emission standards for light-duty trucks 2.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  6. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  7. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a) Exhaust emission... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  8. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  9. 40 CFR 86.1814-01 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  10. 40 CFR 86.1814-02 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  11. 40 CFR 86.1812-01 - Emission standards for light-duty trucks 1.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  12. 40 CFR 86.1815-02 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  13. 40 CFR 86.1814-02 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  14. 40 CFR 86.1814-01 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  15. 40 CFR 86.1812-01 - Emission standards for light-duty trucks 1.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  16. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a) Exhaust emission... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light...

  17. 40 CFR 86.1813-01 - Emission standards for light-duty trucks 2.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  18. 40 CFR 86.1815-02 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  19. 40 CFR 86.1814-02 - Emission standards for light-duty trucks 3.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  20. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  1. 40 CFR 86.1815-02 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. This... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  2. 40 CFR 86.1815-01 - Emission standards for light-duty trucks 4.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalents and references to non-methane hydrocarbons shall mean non-methane hydrocarbon equivalents. (a... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty...

  3. 40 CFR 86.004-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or a fire truck. Fire truck has the meaning given in § 86.1803. U.S.-directed production means the...-duty diesel engines, for carbon monoxide, particulate, and oxides of nitrogen plus non-methane... non-methane hydrocarbons emission standards, a period of use of 10 years or 185,000 miles, whichever...

  4. 40 CFR 86.004-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or a fire truck. Fire truck has the meaning given in § 86.1803. U.S.-directed production means the...-duty diesel engines, for carbon monoxide, particulate, and oxides of nitrogen plus non-methane... non-methane hydrocarbons emission standards, a period of use of 10 years or 185,000 miles, whichever...

  5. NATURAL EMISSIONS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS, CARBON MONOXIDE, AND OXIDES OF NITROGEN FROM NORTH AMERICA. (R825259)

    EPA Science Inventory

    Abstract

    The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are responsible for a major portion of the compounds, including non-methane volatile o...

  6. 40 CFR 86.1804-01 - Acronyms and abbreviations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...—Nonmethane Hydrocarbons. NMHCE—Non-Methane Hydrocarbon Equivalent. NMOG—Non-methane organic gases. NO—nitric... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  7. 40 CFR 86.1804-01 - Acronyms and abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...—Nonmethane Hydrocarbons. NMHCE—Non-Methane Hydrocarbon Equivalent. NMOG—Non-methane organic gases. NO—nitric... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  8. 40 CFR 86.1804-01 - Acronyms and abbreviations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...—Nonmethane Hydrocarbons. NMHCE—Non-Methane Hydrocarbon Equivalent. NMOG—Non-methane organic gases. NO—nitric... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  9. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2015-07-07

    As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.

  10. Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments

    NASA Astrophysics Data System (ADS)

    Sawicka, Joanna E.; Brüchert, Volker

    2017-01-01

    Marine methane emissions originate largely from near-shore coastal systems, but emission estimates are often not based on temporally well-resolved data or sufficient understanding of the variability of methane consumption and production processes in the underlying sediment. The objectives of our investigation were to explore the effects of seasonal temperature, changes in benthic oxygen concentration, and historical eutrophication on sediment methane concentrations and benthic fluxes at two type localities for open-water coastal versus eutrophic, estuarine sediment in the Baltic Sea. Benthic fluxes of methane and oxygen and sediment pore-water concentrations of dissolved sulfate, methane, and 35S-sulfate reduction rates were obtained over a 12-month period from April 2012 to April 2013. Benthic methane fluxes varied by factors of 5 and 12 at the offshore coastal site and the eutrophic estuarine station, respectively, ranging from 0.1 mmol m-2 d-1 in winter at an open coastal site to 2.6 mmol m-2 d-1 in late summer in the inner eutrophic estuary. Total oxygen uptake (TOU) and 35S-sulfate reduction rates (SRRs) correlated with methane fluxes showing low rates in the winter and high rates in the summer. The highest pore-water methane concentrations also varied by factors of 6 and 10 over the sampling period with the lowest values in the winter and highest values in late summer-early autumn. The highest pore-water methane concentrations were 5.7 mM a few centimeters below the sediment surface, but they never exceeded the in situ saturation concentration. Of the total sulfate reduction, 21-24 % was coupled to anaerobic methane oxidation, lowering methane concentrations below the sediment surface far below the saturation concentration. The data imply that bubble emission likely plays no or only a minor role in methane emissions in these sediments. The changes in pore-water methane concentrations over the observation period were too large to be explained by temporal changes in methane formation and methane oxidation rates due to temperature alone. Additional factors such as regional and local hydrostatic pressure changes and coastal submarine groundwater flow may also affect the vertical and lateral transport of methane.

  11. Role Of Fires On The Global Methane Budget And Atmospheric Methane Increase Since 2006

    NASA Astrophysics Data System (ADS)

    Worden, J.; Bloom, A. A.; Jiang, Z.; Pandey, S.; Walker, T. W.; Worden, H. M.

    2016-12-01

    Since 2006, Methane has increased at an average rate of 7 ppb/year. Satellite based measurements of total column CH4 suggest that 70% of this increase is from N. American (likely fossil fuel) sources whereas surface isotope data attribute the increase almost entirely to emissions from tropical wetlands or agriculture. However, large uncertainties in all components of the methane budget suggest any one source could substantially affect the growth rate of atmospheric methane. Here we examine the role of fires on the recent changes in atmospheric methane. We use satellite measurements of CH4 and CO to show that total land-use related CH4 fire emissions have decreased from 14+/-4 Tg during the 2001-2006 time period to 11+/- 4 Tg for the 2007-2015 time period, consistent with bottom-up estimates. Largest reductions are over S. America and Indonesia, likely as a result of increased rainfall during this time period. Fire emissions of methane are isotopically enhanced relative to fossil fuels and wetlands. Including the effects of fires in a global isotopic box model indicates that fossil fuels can account for 1/3 of the recent increase with the remaining due to biogenic sources.

  12. Seasonal and inter-annual variation in ecosystem scale methane emission from a boreal fen

    NASA Astrophysics Data System (ADS)

    Rinne, Janne; Li, Xuefei; Raivonen, Maarit; Peltola, Olli; Sallantaus, Tapani; Haapanala, Sami; Smolander, Sampo; Alekseychik, Pavel; Aurela, Mika; Korrensalo, Aino; Mammarella, Ivan; Tuittila, Eeva-Stiina; Vesala, Timo

    2016-04-01

    Northern wetlands are one of the major sources of atmospheric methane. We have measured ecosystem scale methane emissions from a boreal fen continuously since 2005. The site is an oligotrophic fen in boreal vegetation zone situated in Siikaneva wetland complex in Southern Finland. The mean annual temperature in the area is 3.3°C and total annual precipitation 710 mm. We have conducted the methane emission measurements by the eddy covariance method. Additionally we have measured fluxes of carbon dioxide, water vapor, and sensible heat together with a suite of other environmental parameters. We have analyzed this data alongside with a model run with University of Helsinki methane model. The measured fluxes show generally highest methane emission in late summers coinciding with the highest temperatures in saturated peat zone. During winters the fluxes show small but detectable emission despite the snow and ice cover on the fen. More than 90% of the annual methane emission occurs in snow-free period. The methane emission and peat temperature are connected in exponential manner in seasonal scales, but methane emission does not show the expected behavior with water table. The lack of water table position dependence also contrasts with the spatial variation across microtopography. There is no systematic variation in sub-diurnal time scale. The general seasonal cycle in methane emission is captured well with the methane model. We will show how well the model reproduces the temperature and water table position dependencies observed. The annual methane emission is typically around 10 gC m-2. This is a significant part of the total carbon exchange between the fen and the atmosphere and about twice the estimated carbon loss by leaching from the fen area. The inter-annual variability in the methane emission is modest. The June-September methane emissions from different years, comprising most of the annual emission, correlates positively with peat temperature, but not with water table position.

  13. H20 and CH4 abundances under non-LTE conditions from MIPAS upper atmosphere measurements.

    NASA Astrophysics Data System (ADS)

    Koukouli, M. E.; Imk-Iaa Mipas/Envisat Team

    Vertical profiles of water vapour and methane have been retrieved from measurements of the Earth's Upper Atmosphere made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the polar orbiting ENVISAT satellite. The spectral range targeted is 685-2410 cm-1 (4.1-14.6 μm) and the retrieval altitude range is ˜25-80 km. The Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA), jointly developed by IAA and IMK, has been used to analyse two days' worth of upper atmosphere orbits, from July 2002 and June 2003. The vertical profiles retrieved are compared and calibrated against other known water vapour experiments (e.g. HALOE) in the corresponding vertical and spacial co-locations. Global three-dimensional maps are also presented and validated against modelling results (e.g. Garcia and Solomon). The total hydrogen content of the Earth's middle atmosphere will also be investigated as means of identifying possible sinks or sources in the water vapour and methane day-night variability. A comprehensive systematic error analysis will complement the presentation of the results.

  14. 40 CFR 63.1426 - Process vent requirements for determining organic HAP concentration, control efficiency, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Emission Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63... percent reduction may be measured as total epoxide, total organic HAP, or as TOC minus methane and ethane... TOC (minus methane and ethane) concentrations in all process vent streams and primary and secondary...

  15. 40 CFR 63.1426 - Process vent requirements for determining organic HAP concentration, control efficiency, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Emission Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63... percent reduction may be measured as total epoxide, total organic HAP, or as TOC minus methane and ethane... TOC (minus methane and ethane) concentrations in all process vent streams and primary and secondary...

  16. Effects of zilpaterol hydrochloride on methane production, total body oxygen consumption, and blood metabolites in finishing beef steers

    USDA-ARS?s Scientific Manuscript database

    An indirect calorimetry experiment was conducted to determine the effects of feeding zilpaterol hydrochloride (ZH) for 20 d on total body oxygen consumption, respiratory quotient, methane production, and blood metabolites in finishing beef steers. Sixteen Angus steers (initial BW = 555 ± 12.7 kg) w...

  17. Noteworthy Facts about a Methane-Producing Microbial Community Processing Acidic Effluent from Sugar Beet Molasses Fermentation.

    PubMed

    Chojnacka, Aleksandra; Szczęsny, Paweł; Błaszczyk, Mieczysław K; Zielenkiewicz, Urszula; Detman, Anna; Salamon, Agnieszka; Sikora, Anna

    2015-01-01

    Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic pathways. A rough functional analysis from shotgun data of the metagenome demonstrated that our knowledge of methanogenesis is poor and/or the enzymes responsible for methane production are highly effective, since despite reasonably good sequencing coverage, the details of the functional potential of the microbial community appeared to be incomplete.

  18. Noteworthy Facts about a Methane-Producing Microbial Community Processing Acidic Effluent from Sugar Beet Molasses Fermentation

    PubMed Central

    Chojnacka, Aleksandra; Szczęsny, Paweł; Błaszczyk, Mieczysław K.; Zielenkiewicz, Urszula; Detman, Anna; Salamon, Agnieszka; Sikora, Anna

    2015-01-01

    Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic pathways. A rough functional analysis from shotgun data of the metagenome demonstrated that our knowledge of methanogenesis is poor and/or the enzymes responsible for methane production are highly effective, since despite reasonably good sequencing coverage, the details of the functional potential of the microbial community appeared to be incomplete. PMID:26000448

  19. Methane emissions from MBT landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance atmore » MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.« less

  20. Observations on the methane oxidation capacity of landfill soils

    USDA-ARS?s Scientific Manuscript database

    Field data and two independent models indicate that landfill cover methane (CH4) oxidation should not be considered as a constant 10% or any other single value. Percent oxidation is a decreasing exponential function of the total methane flux rate into the cover and is also dependent on climate and c...

  1. Investigation of Methane and Soil Carbon Dynamics Using Near Surface Geophysical Methods at the Tanoma Educational Wetland Site, Tanoma, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Seidel, A. D.; Mount, G.

    2017-12-01

    Studies to constrain methane budgets of Pennsylvania have sought to quantify the amount and rate of fugitive methane released during industrial natural gas development. However, contributions from other environmental systems such as artificial wetlands used to treat part of the 300 million gallons per day of acid mine drainage (AMD) are often not understated or not considered. The artificial wetlands are sources of both biogenic and thermogenic methane and are used to treat AMD which would otherwise flow untreated into Pennsylvania surface waters. Our research utilizes a combination of indirect non-invasive geophysical methods (ground penetrating radar, GPR) and the complex refractive index model, aerial imagery, and direct measurements (coring and gas traps) to estimate the contribution of biogenic methane from wetlands and legacy thermogenic methane from acid mine drainage from a flooded coal mine at an artificial wetland designed to treat these polluted waters at Tanoma, Pennsylvania. Our approach uses (3D) GPR surveys to define the thickness of the soil from the surface to the regolith-bedrock interface to create a volume model of potential biogenic gas stores. Velocity data derived from the GPR is then used to calculate the dielectric permittivity of the soil and then modeled for gas content when considering the saturation, porosity and amount of soil present. Depth-profile cores are extracted to confirm soil column interfaces and determine changes in soil carbon content. Comparisons of gas content are made with gas traps placed across the wetlands that measure the variability of gaseous methane released. In addition, methane dissolved in the waters from biogenic processes in the wetland and thermogenic processes underground are analyzed by a gas chromatograph to quantify those additions. In sum, these values can then be extrapolated to estimate carbon stocks in AMD areas such as those with similar water quality and vegetation types in the Appalachian region. This research demonstrates the ability of indirect geophysical methods and the CRIM petrophysical model to estimate methane gas fluxes and total carbon stocks within wetlands. This will be of assistance to understand the impact of methane released from naturally occurring sources and legacy coal mines, not only commercial extraction and distribution.

  2. Process for separating nitrogen from methane using microchannel process technology

    DOEpatents

    Tonkovich, Anna Lee [Marysville, OH; Qiu, Dongming [Dublin, OH; Dritz, Terence Andrew [Worthington, OH; Neagle, Paul [Westerville, OH; Litt, Robert Dwayne [Westerville, OH; Arora, Ravi [Dublin, OH; Lamont, Michael Jay [Hilliard, OH; Pagnotto, Kristina M [Cincinnati, OH

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  3. Effect of Propellant Flowrate and Purity on Carbon Deposition in LO2/Methane Gas Generators

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Burkhardt, W. M.; Niiya, K. Y.; Braam, F.

    1989-01-01

    The generation and deposition of carbon was studied in the Carbon Deposition Program using subscale hardware with LO2/Liquid Natural Gas (LNG) and LO2/Methane propellants at low mixture ratios. The purpose of the testing was to evaluate the effect of methane purity and full scale injection density on carbon deposition. The LO2/LNG gas generator/preburner testing was performed at mixture ratios between 0.24 and 0.58 and chamber pressures from 5.8 to 9.4 MPa (840 to 1370 psia). A total of seven 200 second duration tests were performed. The LNG testing occurred at low injection densities, similar to the previous LO2/RP-1, LO2/propane, and LO2/methane testing performed on the carbon deposition program. The current LO2/methane test series occurred at an injection density factor of approximately 10 times higher than the previous testing. The high injection density LO2/methane testing was performed at mixture ratios between from 0.23 to 0.81 and chamber pressures from 6.4 to 15.2 MPa (925 to 2210 psia). A total of nine high injection density tests were performed. The testing performed demonstrated that low purity methane (LNG) did not produce any detectable change in carbon deposition when compared to pure methane. In addition, the C* performance and the combustion gas temperatures measured were similar to those obtained for pure methane. Similar results were obtained testing pure methane at higher propellant injection densities with coarse injector elements.

  4. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    USGS Publications Warehouse

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  5. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    NASA Astrophysics Data System (ADS)

    Weinstein, Alexander; Navarrete, Luis; Ruppel, Carolyn; Weber, Thomas C.; Leonte, Mihai; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Scranton, Mary I.; Kessler, John D.

    2016-10-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern U.S. Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6-24 kmol methane per day). These analyses suggest that the emitted methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH.

  6. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions.

    PubMed

    Rafieenia, Razieh; Girotto, Francesca; Peng, Wei; Cossu, Raffaello; Pivato, Alberto; Raga, Roberto; Lavagnolo, Maria Cristina

    2017-01-01

    Aerobic pre-treatment was applied prior to two-stage anaerobic digestion process. Three different food wastes samples, namely carbohydrate rich, protein rich and lipid rich, were prepared as substrates. Effect of aerobic pre-treatment on hydrogen and methane production was studied. Pre-aeration of substrates showed no positive impact on hydrogen production in the first stage. All three categories of pre-aerated food wastes produced less hydrogen compared to samples without pre-aeration. In the second stage, methane production increased for aerated protein rich and carbohydrate rich samples. In addition, the lag phase for carbohydrate rich substrate was shorter for aerated samples. Aerated protein rich substrate yielded the best results among substrates for methane production, with a cumulative production of approximately 351ml/gVS. With regard to non-aerated substrates, lipid rich was the best substrate for CH 4 production (263ml/gVS). Pre-aerated P substrate was the best in terms of total energy generation which amounted to 9.64kJ/gVS. This study revealed aerobic pre-treatment to be a promising option for use in achieving enhanced substrate conversion efficiencies and CH 4 production in a two-stage AD process, particularly when the substrate contains high amounts of proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK.

    PubMed

    Frank, R R; Cipullo, S; Garcia, J; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2017-05-01

    The aim of this study was to evaluate the spatial distribution of the paper and fines across seven landfill sites (LFS) and assess the relationship between waste physicochemical properties and biogas production. Physicochemical analysis of the waste samples demonstrated that there were no clear trends in the spatial distribution of total solids (TS), moisture content (MC) and waste organic strength (VS) across all LFS. There was however noticeable difference between samples from the same landfill site. The effect of landfill age on waste physicochemical properties showed no clear relationship, thus, providing evidence that waste remains dormant and non-degraded for long periods of time. Landfill age was however directly correlated with the biochemical methane potential (BMP) of waste; with the highest BMP obtained from the most recent LFS. BMP was also correlated with depth as the average methane production decreased linearly with increasing depth. There was also a high degree of correlation between the Enzymatic Hydrolysis Test (EHT) and BMP test results, which motivates its potential use as an alternative to the BMP test method. Further to this, there were also positive correlations between MC and VS, VS and biogas volume and biogas volume and CH 4 content. Outcomes of this work can be used to inform waste degradation and methane enhancement strategies for improving recovery of methane from landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bloom of a denitrifying methanotroph, "Candidatus Methylomirabilis limnetica", in a deep stratified lake.

    PubMed

    Graf, Jon S; Mayr, Magdalena J; Marchant, Hannah K; Tienken, Daniela; Hach, Philipp F; Brand, Andreas; Schubert, Carsten J; Kuypers, Marcel M M; Milucka, Jana

    2018-05-28

    Methanotrophic bacteria represent an important biological filter regulating methane emissions into the atmosphere. Planktonic methanotrophic communities in freshwater lakes are typically dominated by aerobic gamma-proteobacteria, with a contribution from alpha-proteobacterial methanotrophs and the NC10 bacteria. The NC10 clade encompasses methanotrophs related to "Candidatus Methylomirabilis oxyfera", which oxidize methane using a unique pathway of denitrification that tentatively produces N 2 and O 2 from nitric oxide (NO). Here we describe a new species of the NC10 clade, "Ca. Methylomirabilis limnetica", which dominated the planktonic microbial community in the anoxic depths of the deep stratified Lake Zug in two consecutive years, comprising up to 27% of the total bacterial population. Gene transcripts assigned to "Ca. M. limnetica" constituted up to one third of all metatranscriptomic sequences in situ. The reconstructed genome encoded a complete pathway for methane oxidation, and an incomplete denitrification pathway, including two putative nitric oxide dismutase genes. The genome of "Ca. M. limnetica" exhibited features possibly related to genome streamlining (i.e. less redundancy of key metabolic genes) and adaptation to its planktonic habitat (i.e. gas vesicle genes). We speculate that "Ca. M. limnetica" temporarily bloomed in the lake during non-steady-state conditions suggesting a niche for NC10 in the lacustrine methane and nitrogen cycle. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. [Progress in Raman spectroscopic measurement of methane hydrate].

    PubMed

    Xu, Feng; Zhu, Li-hua; Wu, Qiang; Xu, Long-jun

    2009-09-01

    Complex thermodynamics and kinetics problems are involved in the methane hydrate formation and decomposition, and these problems are crucial to understanding the mechanisms of hydrate formation and hydrate decomposition. However, it was difficult to accurately obtain such information due to the difficulty of measurement since methane hydrate is only stable under low temperature and high pressure condition, and until recent years, methane hydrate has been measured in situ using Raman spectroscopy. Raman spectroscopy, a non-destructive and non-invasive technique, is used to study vibrational modes of molecules. Studies of methane hydrate using Raman spectroscopy have been developed over the last decade. The Raman spectra of CH4 in vapor phase and in hydrate phase are presented in this paper. The progress in the research on methane hydrate formation thermodynamics, formation kinetics, decomposition kinetics and decomposition mechanism based on Raman spectroscopic measurements in the laboratory and deep sea are reviewed. Formation thermodynamic studies, including in situ observation of formation condition of methane hydrate, analysis of structure, and determination of hydrate cage occupancy and hydration numbers by using Raman spectroscopy, are emphasized. In the aspect of formation kinetics, research on variation in hydrate cage amount and methane concentration in water during the growth of hydrate using Raman spectroscopy is also introduced. For the methane hydrate decomposition, the investigation associated with decomposition mechanism, the mutative law of cage occupancy ratio and the formulation of decomposition rate in porous media are described. The important aspects for future hydrate research based on Raman spectroscopy are discussed.

  10. Environmental impacts on the diversity of methane-cycling microbes and their resultant function

    PubMed Central

    Aronson, Emma L.; Allison, Steven D.; Helliker, Brent R.

    2013-01-01

    Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5–15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and calls for novel approaches in order to predict future atmospheric methane trends. This review synthesizes the environmental and climatic factors influencing the consumption of methane from the atmosphere by non-wetland, terrestrial soil microorganisms. In particular, we focus on published efforts to connect community composition and diversity of methane-cycling microbial communities to observed rates of methane flux. We find abundant evidence for direct connections between shifts in the methane-cycling microbial community, due to climate and environmental changes, and observed methane flux levels. These responses vary by ecosystem and associated vegetation type. This information will be useful in process-based models of ecosystem methane flux responses to shifts in environmental and climatic parameters. PMID:23966984

  11. Methane and nitrous oxide emissions from three paddy rice based cultivation systems in Southwest China

    NASA Astrophysics Data System (ADS)

    Jiang, Changsheng; Wang, Yuesi; Zheng, Xunhua; Zhu, Bo; Huang, Yao; Hao, Qingju

    2006-05-01

    To understand methane (CH4) and nitrous oxide (N2O) emissions from permanently flooded rice paddy fields and to develop mitigation options, a field experiment was conducted in situ for two years (from late 2002 to early 2005) in three rice-based cultivation systems, which are a permanently flooded rice field cultivated with a single time and followed by a non-rice season (PF), a rice-wheat rotation system (RW) and a rice-rapeseed rotation system (RR) in a hilly area in Southwest China. The results showed that the total CH4 emissions from PF were 646.3±52.1 and 215.0±45.4 kg CH4 hm-2 during the rice-growing period and non-rice period, respectively. Both values were much lower than many previous reports from similar regions in Southwest China. The CH4 emissions in the rice-growing season were more intensive in PF, as compared to RW and RR. Only 33% of the total annual CH4 emission in PF occurred in the non-rice season, though the duration of this season is two times longer than the rice season. The annual mean N2O flux in PF was 4.5±0.6 kg N2O hm-2 yr-1. The N2O emission in the rice-growing season was also more intensive than in the non-rice season, with only 16% of the total annual emission occurring in the non-rice season. The amounts of N2O emission in PF were ignorable compared to the CH4 emission in terms of the global warming potential (GWP). Changing PF to RW or RR not only eliminated CH4 emissions in the non-rice season, but also substantially reduced the CH4 emission during the following rice-growing period (ca. 58%, P<0.05). However, this change in cultivation system substantially increased N2O emissions, especially in the non-rice season, by a factor of 3.7 to 4.5. On the 100-year horizon, the integrated GWP of total annual CH4 and N2O emissions satisfies PF≫RR≈RW. The GWP of PF is higher than that of RW and RR by a factor of 2.6 and 2.7, respectively. Of the total GWP of CH4 and N2O emissions, CH4 emission contributed to 93%, 65% and 59% in PF, RW and RR, respectively. These results suggest that changing PF to RW and RR can substantially reduce not only CH4 emission but also the total GWP of the CH4 and N2O emissions.

  12. Microwave-assisted direct synthesis of butene from high-selectivity methane

    NASA Astrophysics Data System (ADS)

    Lu, Yi-heng; Li, Kang; Lu, Yu-wei

    2017-12-01

    Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1-0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx-MoOy/SiO2 are used as the catalyst, the methane-hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0-3.0 wt%.

  13. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico

    USGS Publications Warehouse

    Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-01-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  14. Influence of cattle wastes on nitrous oxide and methane fluxes in pasture land

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flessa, H.; Doersch, P.; Beese, F.

    1996-11-01

    Agricultural practices are assumed to contribute significantly to the increase in atmospheric N{sub 2}O concentrations observed in the last decades, and they might influence the consumption of atmospheric CH{sub 4}. We report on measurements of N{sub 2}O and CH{sub 4} exchange of a pasture soil, as influenced by droppings of a grazing cattle (Bos taurus) herd. Nitrous oxide and methane fluxes in pasture soil were largely determined by the emission rates from cattle excrement with dung patches being hot spots of CH{sub 4} production and urine-affected areas showing extremely high N{sub 2}O release rates. Methane emissions from dung patches (0.778more » g CH{sub 4}-C per animal and day) were insignificant when compared with those from the rumen of the cattle. Total N{sub 2}O-N losses from the droppings were equivalent to 3.2% of the nitrogen excreted. Based on global data of total nitrogen excretion by dairy cattle, non-dairy cattle, buffalo (Syncerus caffer), and bison during grazing, we estimate the global N{sub 2}O emission from this source to be {approximately}1.18 teragrams N{sub 2}O-N per year, indicating that grazing cattle excretory products are one of the most important sources of atmospheric nitrous oxide. Our work suggests that these sources have been drastically underestimated. 27 refs., 2 figs., 2 tabs.« less

  15. Laboratory formation of non-cementing, methane hydrate-bearing sands

    USGS Publications Warehouse

    Waite, William F.; Bratton, Peter M.; Mason, David H.

    2011-01-01

    Naturally occurring hydrate-bearing sands often behave as though methane hydrate is acting as a load-bearing member of the sediment. Mimicking this behavior in laboratory samples with methane hydrate likely requires forming hydrate from methane dissolved in water. To hasten this formation process, we initially form hydrate in a free-gas-limited system, then form additional hydrate by circulating methane-supersaturated water through the sample. Though the dissolved-phase formation process can theoretically be enhanced by increasing the pore pressure and flow rate and lowering the sample temperature, a more fundamental concern is preventing clogs resulting from inadvertent methane bubble formation in the circulation lines. Clog prevention requires careful temperature control throughout the circulation loop.

  16. 40 CFR 86.007-11 - Emission standards and supplemental requirements for 2007 and later model year diesel heavy-duty...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... family are derived from averaging, banking, or trading programs. (ii)(A) Non-Methane Hydrocarbons (NMHC... brake horsepower-hour (0.052 grams per megajoule). (B) Non-Methane Hydrocarbon Equivalent (NMHCE) for... of the given hardware and lead time and production cycles including phase-in or phase-out of engines...

  17. 40 CFR 86.007-11 - Emission standards and supplemental requirements for 2007 and later model year diesel heavy-duty...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... family are derived from averaging, banking, or trading programs. (ii)(A) Non-Methane Hydrocarbons (NMHC... brake horsepower-hour (0.052 grams per megajoule). (B) Non-Methane Hydrocarbon Equivalent (NMHCE) for... of the given hardware and lead time and production cycles including phase-in or phase-out of engines...

  18. 40 CFR 86.007-11 - Emission standards and supplemental requirements for 2007 and later model year diesel heavy-duty...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family are derived from averaging, banking, or trading programs. (ii)(A) Non-Methane Hydrocarbons (NMHC... brake horsepower-hour (0.052 grams per megajoule). (B) Non-Methane Hydrocarbon Equivalent (NMHCE) for... of the given hardware and lead time and production cycles including phase-in or phase-out of engines...

  19. 40 CFR 86.007-11 - Emission standards and supplemental requirements for 2007 and later model year diesel heavy-duty...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... family are derived from averaging, banking, or trading programs. (ii)(A) Non-Methane Hydrocarbons (NMHC... brake horsepower-hour (0.052 grams per megajoule). (B) Non-Methane Hydrocarbon Equivalent (NMHCE) for... of the given hardware and lead time and production cycles including phase-in or phase-out of engines...

  20. 40 CFR 86.007-11 - Emission standards and supplemental requirements for 2007 and later model year diesel heavy-duty...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... family are derived from averaging, banking, or trading programs. (ii)(A) Non-Methane Hydrocarbons (NMHC... brake horsepower-hour (0.052 grams per megajoule). (B) Non-Methane Hydrocarbon Equivalent (NMHCE) for... of the given hardware and lead time and production cycles including phase-in or phase-out of engines...

  1. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... megajoule). (B) Oxides of Nitrogen plus Non-methane Hydrocarbon Equivalent (NO X + NMHCE) for engines fueled... Nitrogen plus Non-methane Hydrocarbon Equivalent (NO X + NMHCE) for engines fueled with methanol. 1.5 grams... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...

  2. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Non-methane Hydrocarbon Equivalent (NO X + NMHCE) for engines fueled with methanol. 1.0 grams per... megajoule). (ii) Oxides of Nitrogen plus Non-methane Hydrocarbon Equivalent (NO X + NMHCE) for engines... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...

  3. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Non-methane Hydrocarbon Equivalent (NO X + NMHCE) for engines fueled with methanol. 1.0 grams per... megajoule). (ii) Oxides of Nitrogen plus Non-methane Hydrocarbon Equivalent (NO X + NMHCE) for engines... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...

  4. A multi-year Record of Total Column and Lower-Tropospheric Methane

    NASA Astrophysics Data System (ADS)

    Worden, J.; Yin, Y.; Frankenberg, C.; Bloom, A. A.

    2017-12-01

    Evaluating carbon / climate interactions and feedbacks and their effects on global fluxes of methane require a record of well-calibrated and validated methane data that is long enough to span several perturbations to rain and drought related to ENSO or other climactic perturbations along with the spatial sampling that can infer how these changes in the water and carbon cycles affect methane fluxes from wetlands and fires. Here we describe the first version of a decadal scale record of total column and lower-tropospheric methane derived from reflected sunlight and thermal IR measurements (SCIAMACHY, GOSAT, TES, and AIRS). We describe the validation of these data sets using independent data such as from TCCON, the surface network, and aircraft and how they can be inter-calibrated using a global atmospheric model as a transfer function to construct a long-term data record. We show how the new lower-tropospheric measurements can potentially provide new insights into wetland fluxes and how they vary inter-annually with rainfall and temperature perturbations.

  5. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows.

    PubMed

    Guyader, J; Eugène, M; Doreau, M; Morgavi, D P; Gérard, C; Martin, C

    2017-03-01

    The effect of tea saponin supplementation in the ruminant diet on methane emissions, rumen fermentation, and digestive processes is still under debate. The objective of this study was to assess the effect of this plant extract on methanogenesis, total-tract digestibility, and lactating performances of dairy cows. The work included 2 independent and successive experiments. First, the effect of 7 tea saponin doses (from 0 to 0.50 g/L) on methane emissions and protozoa concentrations was tested in 2 repeated in vitro batch culture incubations using bovine rumen contents as inoculum and a cereal mixture as substrate. After 18 h of incubation, total gas production and composition as well as rumen fermentation parameters and protozoa concentration were analyzed. Increasing dosage of the plant extract reduced methane production and protozoa concentration, with a maximum reduction of 29% for CH 4 (mL/g of substrate) and 51% for protozoa (10 5 /mL). Tea saponin did not affect volatile fatty acids concentration, but marginally decreased total gas production by 5% at the highest dose. Second, a 2-period crossover design experiment was carried out with 8 lactating dairy cows fed a basal diet (54% corn silage, 6% hay, and 40% pelleted concentrates on a dry matter basis) without (control) or with 0.52% tea saponin (TSP). Each experimental period lasted 5 wk. Animals were fed ad libitum during the first 3 wk of the period (wk 1, 2, and 3) and restricted (95% of ad libitum intake) during the last 2 wk (wk 4 and 5). Intake and milk production were recorded daily. Methane emissions were quantified using open chambers (2 d, wk 4). Total-tract digestibility and nitrogen balance were determined from total feces and urine collected separately (5 d, wk 5). Rumen fermentation parameters and protozoa concentration were analyzed from samples taken after morning feeding (1 d, wk 5). Milk production, dry matter intake, and feed efficiency were reduced with TSP (-18, -12, and -8%, respectively). As daily methane production (g/d) was not affected, methane emissions (g/kg of dry matter intake) increased by 14% with TSP. Total-tract digestibility and nitrogen balance were similar between diets, except for acid detergent fiber digestibility, which tended to be improved with TSP (+4 percentage units). Rumen fermentation parameters and protozoa concentration were relatively unchanged by diets. Under the conditions of this experiment, tea saponin is not efficient to reduce methane emissions from dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. SLOW-NEUTRON SCATTERING BY MOLECULES OF LIQUID METHANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogalska, Z.

    1962-10-01

    The total slow neutron scattering cross section of liquid methane molecules as a function of neutron energy was measured. Agreement between experimental results and the theoretical curve, calculated on the basis of the Krieger and Nelkin theory for gaseous methane, was found. The most reasonable interpretation of this agreement was attributed to the fact that there exists a free rotation of molecules in liquid methane. It might be concluded that a free rotation is maintained at the transition from gas to liquid. (auth)

  7. In vitro-in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats.

    PubMed

    Martínez-Fernández, G; Abecia, L; Martín-García, A I; Ramos-Morales, E; Hervás, G; Molina-Alcaide, E; Yáñez-Ruiz, D R

    2013-12-01

    Two in vitro and one in vivo experiments were conducted to investigate the effects of a selection of plant compounds on rumen fermentation, microbial concentration and methane emissions in goats. Treatments were: control (no additive), carvacrol (CAR), cinnamaldehyde (CIN), eugenol (EUG), propyl propane thiosulfinate (PTS), propyl propane thiosulfonate (PTSO), diallyl disulfide (DDS), a mixture (40 : 60) of PTS and PTSO (PTS+PTSO), and bromochloromethane (BCM) as positive control with proven antimethanogenic effectiveness. Four doses (40, 80, 160 and 320 µl/l) of the different compounds were incubated in vitro for 24 h in diluted rumen fluid from goats using two diets differing in starch and protein source within the concentrate (Experiment 1).The total gas production was linearly decreased (P<0.012) by all compounds, with the exception of EUG and PTS+PTSO (P≥ 0.366). Total volatile fatty-acid (VFA) concentration decreased (P≤ 0.018) only with PTS, PTSO and CAR, whereas the acetate:propionate ratio decreased (P≤ 0.002) with PTS, PTSO and BCM, and a tendency (P=0.064) was observed for DDS. On the basis of results from Experiment 1, two doses of PTS, CAR, CIN, BCM (160 and 320 µl/l), PTSO (40 and 160 µl/l) and DDS (80 and 320 µl/l) were further tested in vitro for 72 h (Experiment 2). The gas production kinetics were affected (P≤ 0.045) by all compounds, and digested NDF (DNDF) after 72 h of incubation was only linearly decreased (P≤ 0.004) by CAR and PTS. The addition of all compounds linearly decreased (P≤ 0.009) methane production, although the greatest reductions were observed for PTS (up to 96%), DDS (62%) and BCM (95%). No diet-dose interaction was observed. To further test the results obtained in vitro, two groups of 16 adult non-pregnant goats were used to study in vivo the effect of adding PTS (50, 100 and 200 mg/l rumen content per day) and BCM (50, 100 and 160 mg/l rumen content per day) during the 9 days on methane emissions (Experiment 3). The addition of PTS and BCM resulted in linear reductions (33% and 64%, respectively, P≤ 0.002) of methane production per unit of dry matter intake, which were lower than the maximum inhibition observed in vitro (87% and 96%, respectively). We conclude that applying the same doses in vivo as in vitro resulted in a proportional lower extent of methane decrease, and that PTS at 200 mg/l rumen content per day has the potential to reduce methane emissions in goats. Whether the reduction in methane emission observed in vivo persists over longer periods of treatments and improves feed conversion efficiency requires further research.

  8. Extraction of soluble substances from organic solid municipal waste to increase methane production.

    PubMed

    Campuzano, Rosalinda; González-Martínez, Simón

    2015-02-01

    This work deals with the analysis of the methane production from Mexico City's urban organic wastes after separating soluble from suspended substances. Water was used to extract soluble substances under three different water to waste ratios and after three extraction procedures. Methane production was measured at 35 °C during 21 days using a commercial methane potential testing device. Results indicate that volatile solids extraction increases with dilution rate to a maximum of 40% at 20 °C and to 43% at 93 °C. The extracts methane production increases with the dilution rate as a result of enhanced dissolved solids extraction. The combined (extract and bagasse) methane production reached, in 6 days, 66% of the total methane produced in 21 days. The highest methane production rates were measured during the first six days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Biogas production of Chicken Manure by Two-stage fermentation process

    NASA Astrophysics Data System (ADS)

    Liu, Xin Yuan; Wang, Jing Jing; Nie, Jia Min; Wu, Nan; Yang, Fang; Yang, Ren Jie

    2018-06-01

    This paper performs a batch experiment for pre-acidification treatment and methane production from chicken manure by the two-stage anaerobic fermentation process. Results shows that the acetate was the main component in volatile fatty acids produced at the end of pre-acidification stage, accounting for 68% of the total amount. The daily biogas production experienced three peak period in methane production stage, and the methane content reached 60% in the second period and then slowly reduced to 44.5% in the third period. The cumulative methane production was fitted by modified Gompertz equation, and the kinetic parameters of the methane production potential, the maximum methane production rate and lag phase time were 345.2 ml, 0.948 ml/h and 343.5 h, respectively. The methane yield of 183 ml-CH4/g-VSremoved during the methane production stage and VS removal efficiency of 52.7% for the whole fermentation process were achieved.

  10. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile isotopic methane analysis based on Cavity Ringdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric

    2014-05-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region.

  11. Sources and Fate of Reactive Carbon over North America

    NASA Astrophysics Data System (ADS)

    Chen, X.; Millet, D. B.; Singh, H. B.; Wisthaler, A.

    2016-12-01

    We apply a high-resolution chemical transport model (GEOS-Chem CTM at 0.25°×0.3125°) to generate, a comprehensive gas-phase reactive carbon budget over North America. Based on state-of-science source inventories and known chemistry, we find in the model that biogenic sources dominate the overall reactive carbon budget, with 49, 15, 4, and 39 TgC, respectively, introduced to the North American atmosphere from the biosphere, anthropogenic sources, fires, and from methane oxidation in 2013. Biogenic and anthropogenic non-methane volatile organic compounds contribute 60% and 10%, respectively, to the total OH reactivity over the Southeast US, along with other contributions from methane and inorganics. Oxidation to CO and CO2 then represents the overwhelming fate of that reactive carbon, with 65, 15, 7 and 5 TgC, respectively, oxidized to produce CO/CO2, dry deposited, wet deposited and transported (net) out of North America. We confront this simulation with an ensemble of recent airborne measurements over North America (SEAC4RS, SENEX, DISCOVER-AQ, DC3) and interpret the model-measurement comparisons in terms of their implications for current understanding of atmospheric reactive carbon and the processes driving its distribution.

  12. Influence on anaerobic digestion by intermediate thermal hydrolysis of waste activated sludge and co-digested wheat straw.

    PubMed

    Bjerg-Nielsen, Michael; Ward, Alastair James; Møller, Henrik Bjarne; Ottosen, Lars Ditlev Mørck

    2018-02-01

    This paper analyses time (30 and 60 min) and temperature (120-190 °C) effects of intermediate thermal hydrolysis (ITHP) in a two-step anaerobic digestion of waste activated sludge (WAS) with and without wheat straw as a co-substrate. Effects were analyzed by measuring biochemical methane potential for 60 days and assessing associated kinetic and chemical data. Compared to non-treatment, ITHP increased the secondary step methane yield from 52 to 222 L CH 4  kg VS -1 and from 147 to 224 L CH 4  kg VS -1 for pre-digested WAS and pre-co-digested WAS respectively at an optimum of 170 °C and 30 min. The hydrolysis coefficients (k hyd ) increased by up to 127% following treatment. Increasing ITHP time from 30 to 60 min showed ambiguous results regarding methane yields, whilst temperature had a clear and proportional effect on the concentrations of acetic acid. The energy balances were found to be poor and dewatering to increase total solids above the values tested here is necessary for this process to be energetically feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    PubMed

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  14. Bioelectrochemical approach for control of methane emission from wetlands.

    PubMed

    Liu, Shentan; Feng, Xiaojuan; Li, Xianning

    2017-10-01

    To harvest electricity and mitigate methane emissions from wetlands, a novel microbial fuel cell coupled constructed wetland (MFC-CW) was assembled with an anode placing in the rhizosphere and a cathode on the water surface. Plant-mediated methane accounted for 71-82% of the total methane fluxes. The bioanode served as an inexhaustible source of electron acceptors and resulted in reduced substantial methane emissions owing to electricigens outcompeting methanogens for carbon and electrons when substrate was deficient. However, when supplying sufficient organic carbon, both electricity and methane increased, indicating that electrogenesis and methanogenesis could co-exist in harmony. Direct methane emission (diffusion/ebullition) and plant-mediated methane emission were affected by operating conditions. Methanogenesis was significantly suppressed (∼98%) at HRT of 96h and with external resistance of 200Ω, accompanied with improved coulombic efficiency of 14.9% and current density of 187mA/m 2 . Contrarily, change of electrode polarity in the rhizosphere led to more methane efflux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Reconciling divergent estimates of oil and gas methane emissions

    PubMed Central

    Zavala-Araiza, Daniel; Lyon, David R.; Alvarez, Ramón A.; Davis, Kenneth J.; Harriss, Robert; Herndon, Scott C.; Karion, Anna; Kort, Eric Adam; Lamb, Brian K.; Lan, Xin; Marchese, Anthony J.; Pacala, Stephen W.; Robinson, Allen L.; Shepson, Paul B.; Sweeney, Colm; Talbot, Robert; Townsend-Small, Amy; Yacovitch, Tara I.; Zimmerle, Daniel J.; Hamburg, Steven P.

    2015-01-01

    Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency’s Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%. PMID:26644584

  16. Harnessing methane

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The total methane resource in hydrates—ice-like substances found in deep ocean sediments and Arctic permafrost—exceeds the energy content of all other fossil fuel resources,such as coal, oil, and conventional gas, according to the U.S. Geological Survey (USGS).The Methane Hydrate Research and Development Act, signed into law by U.S. President Bill Clinton on May 3, establishes a new federal commitment to developing methane hydrates, which has been touted as a potentially clean energy source that could make the U.S. less dependent on foreign sources of energy. The bill authorizes $47.5 million over five years for the Department of Energy to establish a federal methane hydrate research and development program.

  17. Amazon capims (floating grassmats) - A source of C-13 enriched methane to the troposphere

    NASA Technical Reports Server (NTRS)

    Chanton, Jeffrey; Crill, Patrick; Bartlett, Karen; Martens, Christopher

    1989-01-01

    The C-13 isotopic composition of methane emitted to the troposphere from Amazon capims (floating grassmats) ranged from -36.9 to -48.0, per mil averaging -44.4 + or - 4.2 per mil. All pools of methane associated with the grassmats were enriched; methane withdrawn from plant stems ranged from -39 to -49 per mil while bubbles stirred from the root mat averaged -41.4 per mil. As the CH4 flux from these habitats makes up some 40 percent of the total flux from the Amazon floodplain, methane emissions from the region as a whole must be enriched in.

  18. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments.

    PubMed

    Delsontro, Tonya; McGinnis, Daniel F; Sobek, Sebastian; Ostrovsky, Ilia; Wehrli, Bernhard

    2010-04-01

    Methane emission pathways and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using gas traps indicated very high ebullition rates, but due to the stochastic nature of ebullition a mass balance approach was crucial to deduce system-wide methane sources and losses. Methane diffusion from the sediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane measured in the reservoir discharge. A strong positive correlation between water temperature and the observed dissolved methane concentration enabled us to quantify the dissolved methane addition from bubble dissolution using a system-wide mass balance. Finally, knowing the contribution due to bubble dissolution, we used a bubble model to estimate bubble emission directly to the atmosphere. Our results indicated that the total methane emission from Lake Wohlen was on average >150 mg CH(4) m(-2) d(-1), which is the highest ever documented for a midlatitude reservoir. The substantial temperature-dependent methane emissions discovered in this 90-year-old reservoir indicate that temperate water bodies can be an important but overlooked methane source.

  19. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    PubMed

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  20. Processes and Parameters Controlling the Extent of Methanogenic Conditions in the Unsaturated Zone of a Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Molins, S.; Mayer, K.

    2007-12-01

    Gas concentrations measured in the vadose zone at a crude oil spill site near Bemidji, MN, show that a large area near the oil body is currently dominated by methanogenic conditions. Away from the oil body methane concentrations decrease as it is degraded by methanotrophic bacteria under aerobic conditions. Numerical simulations have been conducted to quantify the contributions of the relevant transport and reaction processes to the production and attenuation of methane in the vadose zone. Methane is generated in the vadose zone by anaerobic degradation of oil and is also added by fluxes from the capillary fringe and the saturated zone. Gas diffusion and advection contribute to the transport of methane in the lateral direction and towards the ground surface. Attenuation of methane concentrations occurs through aerobic oxidation in the presence of methanotrophic bacteria. Critical parameters were varied within bounds provided by field data and previous studies. Simulation results confirm that the layered sediment structure present at the site plays a significant role in explaining the observed distribution of gases in the vadose zone. The presence of a low permeability lens in the area upgradient from the source results in higher moisture contents, limiting diffusion of oxygen into the zone of methane production, and contributes to the spread of methane. Diffusion was identified as the most significant transport mechanism for gases in the vadose zone. However, field-observed zones of depleted and enriched N2 and Ar concentrations could only be explained by the development of advective fluxes induced by reactive processes (methanogenesis and methanotrophy). The zones of gas production are characterized by slightly increased total gas pressures and low concentrations of N2 and Ar, while zones of gas consumption show slightly depressed total gas pressures and high concentrations of N2 and Ar. The simulations suggest that the advective flux that develops between these zones contributes up to 15% of the total methane flux.

  1. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  2. Anaerobic methane oxidation in low-organic content methane seep sediments

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, Michael; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Lapham, Laura; Grabowski, Kenneth S.; Coffin, Richard B.; Spence, George D.

    2013-01-01

    Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.

  3. Methane Fingerprinting: Isotopic Methane and Ethane-to-Methane Ratio Analysis Using a Cavity Ring-Down Spectrometer

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Fleck, Derek; Hoffnagle, John

    2016-04-01

    Emissions of Natural gas, and methane (CH4) specifically, have come under increased scrutiny by virtue of methane's 28-36x greenhouse warming potential compared to carbon dioxide (CO2) while accounting for 10% of the total greenhouse gas emissions in the US. Large uncontrolled leaks, such as the recent Aliso Canyon leak, originating from uncapped wells, coal mines and storage facilities have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources, by quantifying δ13C values and C2:C1 ratios, provides the means to understand methane producing processes and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic vs. thermogenic, wet vs dry. In this study we present a fully developed Cavity Ring-Down Spectrometer (CRDS) that precisely measures 12CH4 concentration and its 13CH4 isotope concentration, yielding δ13C measurements, C2H6 concentration, along with CO2 and H2O. This provides real-time continuous measurements without an upfront separation requirement or multiple analyses to derive the origin of the gas samples. The highly sensitive analyzer allows for measurements of scarce molecules down to sub-ppb 1-σ precision in 5 minutes of measurement: with CH4 <0.1ppb, δ13C <1‰ C2H6 <1ppb and CO2 <1ppm. To complement this work, we provide the analysis of different methane sources providing a 2-dimensional mapping of methane sources as functions of δ13C and C2:C1 ratios, which can be thought of as a modified Bernard Plot. This dual ratio mapping can be used to discriminate between naturally occurring biogenic methane sources, naturally occurring enriched thermogenic sources, and natural gas distribution sources. This also shows future promise in aiding gas and oil exploration, in distinguishing oil vs coal gases, as well as a valuable tool in the development of methane sequestration.

  4. Evaluation of non-enteric sources of non-methane volatile organic compound (NMVOC) emissions from dairies

    NASA Astrophysics Data System (ADS)

    Chung, Myeong Y.; Beene, Matt; Ashkan, Shawn; Krauter, Charles; Hasson, Alam S.

    2010-02-01

    Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006-2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.

  5. 40 CFR 63.2535 - What compliance options do I have if part of my plant is subject to both this subpart and another...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance, you must consider all total organic compounds, minus methane and ethane, in such equipment for... total organic compounds, minus methane and ethane, in such equipment for purposes of compliance with... greatest production on a mass basis over the 5-year period specified in paragraph (l)(1)(ii) of this...

  6. 40 CFR 63.2535 - What compliance options do I have if part of my plant is subject to both this subpart and another...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance, you must consider all total organic compounds, minus methane and ethane, in such equipment for... total organic compounds, minus methane and ethane, in such equipment for purposes of compliance with... greatest production on a mass basis over the 5-year period specified in paragraph (l)(1)(ii) of this...

  7. Effect of monensin on in vitro fermentation of silages and microbial protein synthesis.

    PubMed

    Wischer, Gerald; Boguhn, Jeannette; Steingaß, Herbert; Schollenberger, Margit; Hartung, Karin; Rodehutscord, Markus

    2013-06-01

    The objective of the study was to investigate the effects of monensin on silage fermentation and microbial net protein synthesis. In Experiment 1, monensin (0.5, 1, 2, 4, 6, or 10 µg) was added to syringes that contained 120 mg of grass silage (GS), grass silage and concentrate (GS + C), or maize silage (MS), resulting in concentrations of 4.2, 8.3, 16.7, 33.3, 50.0 and 83.3 mg monensin/kg feed. Samples were incubated for 24 h to determine the monensin concentration that resulted in the maximum reduction in methane production without effects on the total gas production. In Experiment 2, GS and GS + C were incubated in a rumen simulation technique (Rusitec) to assess the monensin effects (133 and 266 mg/kg feed) on the production of total gas, methane and volatile fatty acids (VFA), degradation of nutrients and microbial net protein synthesis. In Experiment 1, methane production was reduced without significant effects on the total gas production; the reductions were 17% (GS), 10% (GS + C) and 13% (MS) with 16.7 (GS), 50.0 (GS + C) and 33.3 (MS) mg monensin/kg feed. Monensin reduced the total gas and methane production in GS and GS + C in Experiment 2. Propionate production was enhanced by monensin, accompanied by a decrease in acetate production. Along with a reduction in crude protein (CP) degradation, monensin reduced the ammonia nitrogen concentration in the effluent of both treatments. While the protein produced by liquid-associated microbes increased with monensin, protein production by solid-associated microbes was reduced. Total microbial net protein synthesis increased in the presence of monensin. Monensin influenced the production of total gas, methane and VFA from the silages without an effect on the degradation of organic matter (OM). Different microbial fractions were affected differently by monensin supplementation. If monensin is used as a tool to reduce methane emission, the supplementation level must be carefully chosen to avoid negative effects on overall fermentation in the rumen.

  8. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maranon, E., E-mail: emara@uniovi.es; Castrillon, L.; Quiroga, G.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogasmore » yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.« less

  9. Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases

    DTIC Science & Technology

    2016-08-01

    AnMBR) technology with clinoptilolite ion exchange and GreenBox™ ammonia electrolysis. The system generates both methane and hydrogen fuels...experimental setup. ................................................ 21 Figure 10. Methane phase semi batch experimental setup, a total of three reactors were...set up for PS + solid, Bioc and ADS methane phase reactors. .................... 21 Figure 11. Dried PS solid for the control, Bioc blend for the

  10. An empirical equation with tables of smoothed solubilities of methane in water and aqueous sodium chloride solutions up to 25 weight percent, 360 degrees C, and 138 MPa

    USGS Publications Warehouse

    Haas, John L.

    1978-01-01

    The total pressure for the system H2O-CH 4 is given by p(total) = P(H2O,t) + exp10[log x(CH 4) - a - b x(CH4)], where P(H2O,t) is the vapor pressure of H2O liquid at the temperature t (?C) and x(CH 4) is the molal concentration of methane in the solution. The terms a and b are functions of temperature only. Where the total pressure and temperature are known, the concentration of methane, x(CH4), is found by iteration. The concentration of methane in a sodium chloride brine, y(CH4), is estimated using the function log y(CH4) = log x(CH4) - A I, where A is the salting out constant and I is the ionic strength. For sodium chloride solutions, the ionic strength is equal to the molality of the salt. The equations are valid to 360?C, 138 MPa, and 25 weight percent sodium chloride.

  11. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    PubMed

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Online dissolved methane and total dissolved sulfide measurement in sewers.

    PubMed

    Liu, Yiwen; Sharma, Keshab R; Fluggen, Markus; O'Halloran, Kelly; Murthy, Sudhir; Yuan, Zhiguo

    2015-01-01

    Recent studies using short-term manual sampling of sewage followed by off-line laboratory gas chromatography (GC) measurement have shown that a substantial amount of dissolved methane is produced in sewer systems. However, only limited data has been acquired to date due to the low frequency and short span of this method, which cannot capture the dynamic variations of in-sewer dissolved methane concentrations. In this study, a newly developed online measuring device was used to monitor dissolved methane concentrations at the end of a rising main sewer network, over two periods of three weeks each, in summer and early winter, respectively. This device uses an online gas-phase methane sensor to measure methane under equilibrium conditions after being stripped from the sewage. The data are then converted to liquid-phase methane concentrations according to Henry's Law. The detection limit and range are suitable for sewer application and can be adjusted by varying the ratio of liquid-to-gas phase volume settings. The measurement presented good linearity (R² > 0.95) during field application, when compared to off-line measurements. The overall data set showed a wide variation in dissolved methane concentration of 5-15 mg/L in summer and 3.5-12 mg/L in winter, resulting in a significant average daily production of 24.6 and 19.0 kg-CH₄/d, respectively, from the network with a daily average sewage flow of 2840 m³/day. The dissolved methane concentration demonstrated a clear diurnal pattern coinciding with flow and sulfide fluctuation, implying a relationship with the wastewater hydraulic retention time (HRT). The total dissolved sulfide (TDS) concentration in sewers can be determined simultaneously with the same principle.

  13. Methane and nitrous oxide (N{sub 2}O) emission characteristics from automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Noriyuki; Odaka, Matsuo

    Exhaust gases discharged from automobiles are noticed as one of the reasons for recent increase in atmospheric methane and nitrous oxide concentration, which have been considered as greenhouse gases. In order to make an accurate estimation of methane and nitrous oxide discharged from automobiles, measurement methods were experimentally developed and emissions were measured for different kinds of automobiles under various driving conditions. Then, the authors have tried to estimate the annual global emissions from automobiles using these measurement results and statistical data such as the number of automobiles, the total annual mileage, and the total annual fuel consumption, etc. Themore » emissions from passenger vehicles which have been estimated from the global number of automobiles were 477.263 t/year for methane and 313.472 t/year for nitrous oxide. These numbers are higher than what had been estimated.« less

  14. Optimization of methane production in anaerobic co-digestion of poultry litter and wheat straw at different percentages of total solid and volatile solid using a developed response surface model.

    PubMed

    Shen, Jiacheng; Zhu, Jun

    2016-01-01

    Poultry litter (PL) can be good feedstock for biogas production using anaerobic digestion. In this study, methane production from batch co-digestion of PL and wheat straw (WS) was investigated for two factors, i.e., total solid (2%, 5%, and 10%) and volatile solid (0, 25, and 50% of WS), constituting a 3 × 3 experimental design. The results showed that the maximum specific methane volume [197 mL (g VS)(‑1)] was achieved at 50% VS from WS at 5% TS level. It was estimated that the inhibitory threshold of free ammonia was about 289 mg L(--1), beyond which reduction of methanogenic activity by at least 54% was observed. The specific methane volume and COD removal can be expressed using two response surface models (R(2) = 0.9570 and 0.9704, respectively). Analysis of variance of the experimental results indicated that the C/N ratio was the most significant factor influencing the specific methane volume and COD removal in the co-digestion of these two materials.

  15. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only.

    PubMed

    Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente

    2014-08-01

    Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.

  16. IR Studies of the Spin-Nuclear Conversion in the Vicinity of alpha α - beta β - Transition in Cryodeposited Methane Films

    NASA Astrophysics Data System (ADS)

    Drobyshev, A.; Aldiyarov, A.; Sokolov, D.; Shinbayeva, A.

    2017-06-01

    Solid methane belongs to a group of crystals containing hydrogen atoms, whose macroscopic properties are greatly influenced by the spin interaction of hydrogen nuclei. In particular, the methane molecule, which has four protons with spin I=1/2, has three total spin modifications: para-, ortho- and meta-states with three values of the total spin moments of 0, 1 and 2, respectively. Equilibrium concentrations of these modifications and relaxation times are dependent on the temperature, affecting the observed thermal properties of solid methane, such as thermal conductivity, specific heat, thermal expansion. In this paper, we attempt to explain the peculiarities of thin film growth of methane at cryogenic temperatures from the viewpoint of spin-nuclear transformations. Our observations of absorption intensity at a frequency corresponding to 1/2 of the absorption band amplitude of deformation vibrations record a step-like change in the position of the absorption band during the sample deposition process. The observed phenomenon, in our opinion, is the demonstration of spin transformations during deposition.

  17. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer.

    PubMed

    Gao, Yaohuan; Ryu, Hodon; Rittmann, Bruce E; Hussain, Abid; Lee, Hyung-Sool

    2017-10-01

    A biofilm anode acclimated with growth media containing acetate, then acetate+methane, and finally methane alone produced electrical current in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for the bacterial domain (93%) in the biofilm anode, while methanogens (Methanocorpusculum labreanum and Methanosaeta concilii) accounted for 82% of the total archaeal clones in the biofilm. Fluorescence in situ hybridization (FISH) imaging clearly showed a biofilm of mixed bacteria and archaea, suggesting a syntrophic interaction between them for performing anaerobic oxidation of methane (AOM) in the biofilm anode. Measured cumulative coulombs were linearly correlated to the methane-gas concentration in the range of 10-99.97% (R 2 ≥0.99) when the measurement was sustained for at least 50min Thus, cumulative coulombs over 50min could be used to quantify the methane concentration in gas samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell.

    PubMed

    Park, Jungyu; Lee, Beom; Tian, Donjie; Jun, Hangbae

    2018-01-01

    A microbial electrolysis cell (MEC) is a promising technology for enhancing biogas production from an anaerobic digestion (AD) reactor. In this study, the effects of the MEC on the rate of methane production from food waste were examined by comparing an AD reactor with an AD reactor combined with a MEC (AD+MEC). The use of the MEC accelerated methane production and stabilization via rapid organic oxidation and rapid methanogenesis. Over the total experimental period, the methane production rate and stabilization time of the AD+MEC reactor were approximately 1.7 and 4.0 times faster than those of the AD reactor. Interestingly however, at the final steady state, the methane yields of both the reactors were similar to the theoretical maximum methane yield. Based on these results, the MEC did not increase the methane yield over the theoretical value, but accelerated methane production and stabilization by bioelectrochemical reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microwave-assisted direct synthesis of butene from high-selectivity methane

    PubMed Central

    Li, Kang; Lu, Yu-wei

    2017-01-01

    Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1–0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx–MoOy/SiO2 are used as the catalyst, the methane–hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0–3.0 wt%. PMID:29308261

  20. A field experimental study on non-methane hydrocarbon (NMHC) emissions from a straw-returned maize cropping system.

    PubMed

    Zhang, Shuangqi; Deng, Mengsi; Shan, Ming; Zhou, Chuang; Liu, Wei; Xu, Xiaoqiu; Yang, Xudong

    2018-04-28

    Non-methane hydrocarbons (NMHCs) play an important role in the atmospheric environment. However, NMHC emissions from agricultural fields, especially their variations with straw return, are poorly understood. Therefore, a field study comprising two treatments, i.e., (1) S0 (straw removal) and (2) S1 (incorporation of maize straw at a rate of 9000 kg ha -1 ), was conducted in a straw-returned maize cropping system to characterize NMHC emissions as well as to estimate the effect of straw return on those emissions. Using a Gas Chromatography-Mass Spectrometer (GC-MS) method, 28 types of NMHCs were identified. The total NMHC emission from S0 was 2018 g ha -1 , where 1-methyl-3-propyl-benzene, (1-methylethyl)-benzene, and toluene were obviously predominant, whereas the total NMHC emission from S1 was 1903 g ha -1 , where 1-methyl-3-propyl-benzene, 2-methyl-pentane, and (1-methylethyl)-benzene were the main species. The results showed that straw return had opposing effects on NMHC emissions, ranging from -55.4% to 478.6%. Overall, the total NMHC emission with returned straw alone decreased by 2963 ng kg straw -1  h -1 . Furthermore, NMHC fluxes had higher correlations with soil temperature than with soil moisture or pH. Notably, the higher correlations of NMHC fluxes with 10 cm soil temperature than with 5 cm soil temperature indicate that soil in the deeper layer might play a more important role in NMHC fluxes. The results also suggest that more field study is needed to accurately estimate the effect of straw return on NMHC emissions from agroecosystems and fully understand its underlying mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Non-methane hydrocarbons in a controlled ecological life support system.

    PubMed

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-02-01

    Non-methane hydrocarbons (NMHCs) are vital to people's health and plants' growth, especially inside a controlled ecological life support system (CELSS) built for long-term space explorations. In this study, we measured 54 kinds of NMHCs to study their changing trends in concentration levels during a 4-person-180-day integrated experiment inside a CELSS with four cabins for plants growing and other two cabins for human daily activities and resources management. During the experiment, the total mixing ratio of measured NMHCs was 423 ± 283 ppbv at the first day and it approached 2961 ± 323 ppbv ultimately. Ethane and propane were the most abundant alkanes and their mixing ratios kept growing from 27.5 ± 19.4 and 31.0 ± 33.6 ppbv to 2423 ± 449 ppbv and 290 ± 10 ppbv in the end. For alkenes, ethylene and isoprene presented continuously fluctuating states during the experimental period with average mixing ratios of 30.4 ± 19.3 ppbv, 7.4 ± 5.8 ppbv. For aromatic hydrocarbons, the total mixing ratios of benzene, toluene, ethylbenzene and xylenes declined from 48.0 ± 44 ppbv initially to 3.8 ± 1.1 ppbv ultimately. Biomass burning, sewage treatment, construction materials and plants all contributed to NMHCs inside CELSS. In conclusion, the results demonstrate the changing trends of NMHCs in a long-term closed ecological environment's atmosphere which provides valuable information for both the atmosphere management of CELSS and the exploration of interactions between humans and the total environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 76 FR 80928 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... operation and maintenance of this equipment. These standards rely on the capture and reduction of methane, carbon dioxide, and non-methane organic gas compound emissions by combustion devices (boilers, internal...

  3. Comparison of emission estimates for non-CO2 greenhouse gases from livestock and poultry in Korea from 1990 to 2010.

    PubMed

    Paik, Chunhyun; Chung, Yongjoo; Kim, Hugon; Kim, Young Jin

    2016-04-01

    It has often been claimed that non-carbon dioxide greenhouse gases (NCGGs), such as methane, nitrous oxide and fluorinated greenhouse gases, are significant contributors to climate change. Here we nvestigate emission estimates of methane and nitrous oxide from livestock and poultry production, which is recognized as a major source of those NCGGs, in Korea over the period of 1990 through 2010. Based on the data on livestock and poultry populations, emission estimates of methane and nitrous oxide are first derived based on the Tier 1 approach. Then, the Tier 2 approach is adopted to obtain emission estimates of methane and nitrous oxide from cattle, which are known to be the largest sources of these NCGGs and account for about 70% of emissions from livestock and poultry in Korea. The result indicates that the Tier 2 estimates of methane and nitrous oxide emissions from enteric fermentation and manure management are significantly different from the Tier 1 estimates over the analysis period. © 2015 Japanese Society of Animal Science.

  4. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, C.S.; Albert, D.B.; Alperin, M.J.

    Methane concentrations in the pore waters of Eckernfoerde Bay in the German Baltic Sea generally reach gas bubble saturation values within the upper meter of the sediment column. The depth at which saturation occurs is controlled by a balance between rates of methane production, consumption (oxidation), and transport. The relative importance of anaerobic methane oxidation (AMO) in controlling dissolved and gas bubble methane distributions in the bay's sediments is indirectly revealed through methane concentration versus depth profiles, depth variations in the stable C and H isotope composition of methane, and the C isotope composition of total dissolved inorganic carbon ({Sigma}CO{submore » 2}). Direct radiotracer measurements indicate that AMO rates of over 15 mM/yr are focused at the base of the sulfate reduction zone. Diagenetic equations that describe the depth destructions of the {delta}{sup 13}C and {delta}D values of methane reproduce isotopic shifts observed throughout the methane oxidation zone and are best fit with kinetic isotope fractionation factors of 1.012 {+-} 0.001 and 1.120 {plus{underscore}minus} 0.020 respectively.« less

  5. Catalytic generation of methane at 60-100 °C and 0.1-300 MPa from source rocks containing kerogen Types I, II, and III

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Schimmelmann, Arndt; Mastalerz, Maria; Lahann, Richard W.; Sauer, Peter E.; Drobniak, Agnieszka; Strąpoć, Dariusz; Mango, Frank D.

    2018-06-01

    Low temperature (60 and 100 °C) and long-term (6 months to 5 years) heating of pre-evacuated and sterilized shales and coals containing kerogen Types I (Mahogany Shale), II (Mowry Shale and New Albany Shale), and III (Springfield Coal and Wilcox Lignite) with low initial maturities (vitrinite reflectance Ro 0.39-0.62%) demonstrates that catalytically generated hydrocarbons may explain the occurrence of some non-biogenic natural gas accumulations where insufficient thermal maturity contradicts the conventional thermal cracking paradigm. Extrapolation of the observed rate of catalytic methanogenesis in the laboratory suggests that significant amounts of sedimentary organic carbon can be converted to relatively dry natural gas over tens of thousands of years in sedimentary basins at temperatures as low as 60 °C. Our laboratory experiments utilized source rock (shale and coal) chips sealed in gold and Pyrex® glass tubes in the presence of hydrogen-isotopically contrasting waters. Parallel heating experiments applied hydrostatic pressures from 0.1 to 300 MPa. Control experiments constrained the influence of pre-existing and residual methane in closed pores of rock chips that was unrelated to newly generated methane. This study's experimental methane yields at 60 and 100 °C are 5-11 orders of magnitude higher than the theoretically predicted yields from kinetic models of thermogenic methane generation, which strongly suggests a contribution of catalytic methanogenesis. Higher temperature, longer heating time, and lower hydrostatic pressure enhanced catalytic methanogenesis. No clear relationships were observed between kerogen type or total organic carbon content and methane yields via catalysis. Catalytic methanogenesis was strongest in Mowry Shale where methane yields at 60 °C amounted to ∼2.5 μmol per gram of organic carbon after one year of hydrous heating at ambient pressure. In stark contrast to the earlier findings of hydrogen isotopic exchange between water and thermogenic methane in hydrous pyrolysis experiments above 300 °C, the hydrogen isotopic composition of added water exerted limited influence on the δ2H value of methane generated catalytically at low temperatures. We hypothesize that the catalytic sites responsible for methanogenesis are located in hydrophobic microenvironments with limited access to water. The δ13CCH4 values of methane generated catalytically at 60-100 °C range from ∼-57.6 to -41.4‰ and are thus similar to typical thermogenic methane (δ13CCH4 >-50‰) and microbially generated methane (<-55‰). Future studies need to evaluate the possibility that clumped isotope characteristics of catalytically generated methane can diagnose the low-temperature regime of catalytic methanogenesis. Furthermore, testing of freshly cored anoxic rocks is needed to determine whether the use of archived, oxygen-exposed rocks in geochemical maturation/catalysis studies introduces artifacts in experimental hydrocarbon yields.

  6. Effect of coconut oil and defaunation treatment on methanogenesis in sheep.

    PubMed

    Machmüller, Andrea; Soliva, Carla R; Kreuzer, Michael

    2003-01-01

    The present study was conducted to evaluate in vivo the role of rumen ciliate protozoa with respect to the methane-suppressing effect of coconut oil. Three sheep were subjected to a 2 x 2 factorial design comprising two types of dietary lipids (50 g x kg(-1) coconut oil vs. 50 g x kg(-1) rumen-protected fat) and defaunation treatment (with vs. without). Due to the defaunation treatment, which reduced the rumen ciliate protozoa population by 94% on average, total tract fibre degradation was reduced but not the methane production. Feeding coconut oil significantly reduced daily methane release without negatively affecting the total tract nutrient digestion. Compared with the rumen-protected fat diet, coconut oil did not alter the energy retention of the animals. There was no interaction between coconut oil feeding and defaunation treatment in methane production. An interaction occurred in the concentration of methanogens in the rumen fluid, with the significantly highest values occurring when the animals received the coconut oil diet and were subjected to the defaunation treatment. Possible explanations for the apparent inconsistency between the amount of methane produced and the concentration of methane-producing microbes are discussed. Generally, the present data illustrate that a depression of the concentration of ciliate protozoa or methanogens in rumen fluid cannot be used as a reliable indicator for the success of a strategy to mitigate methane emission in vivo. The methane-suppressing effect of coconut oil seems to be mediated through a changed metabolic activity and/or composition of the rumen methanogenic population.

  7. Flammulina velutipes treatment of non-sterile tall wheat grass for enhancing biodegradability and methane production.

    PubMed

    Kasprzycka, Agnieszka; Lalak-Kańczugowska, Justyna; Tys, Jerzy

    2018-05-09

    In this study fungal pretreatment of non-sterile tall wheat grass via the white rot fungi Flammulina velutipes was studied and the effect on biodegradability of lignocellulosic biomass and methane production, was evaluated. Degradation of lignin, cellulose, hemicellulose, and dry matter in non-sterile tall wheat grass during 28 days of fungal pretreatment using different inoculum ratio (0%-50%) and moisture content (MC) (45% MC, 65% MC, and 75% MC) were assessed via comparison to untreated biomass. Pretreatment with F. velutipes was most effective at 65% MC and 40% inoculum ratio, resulting in 22% lignin removal. The corresponding methane yields were 181.3 Ndm 3 ·kg VS -1 , which were 280% higher than for the untreated tall wheat grass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A Calibration-Capture-Recapture Model for Inferring Natual Gas Leak Population Characteristics Using Data from Google Street View Cars

    NASA Astrophysics Data System (ADS)

    Weller, Z.; Hoeting, J.; von Fischer, J.

    2017-12-01

    Pipeline systems that distribute natural gas (NG) within cities can leak, leading to safety hazards and wasted product. Moreover, these leaks are climate-altering because NG is primarily composed of methane, a potent greenhouse gas. Scientists have recently developed an innovative method for mapping NG leak locations by installing atmospheric methane analyzers on Google Street View cars. We develop new statistical methodology to answer key inferential questions using data collected by these mobile air monitors. The new calibration-capture-recapture (CCR) model utilizes data from controlled methane releases and data collected by GSV cars to provide inference for several desired quantities, including the number of undetected methane sources and the total methane output rate in a surveyed region. The CCR model addresses challenges associated with using a capture-recapture model to analyze data collected by a mobile detection system including variable sampling effort and lack of physically marking individuals. We develop a Markov chain Monte Carlo algorithm for parameter estimation and apply the CCR model to methane data collected in two U.S. cities. The CCR model provides a new framework for inferring the total number of leaks in NG distribution systems and offers critical insights for informing intelligent repair policy that is both cost-effective and environmentally friendly.

  9. New roughage source of Pennisetum purpureum cv. Mahasarakham utilization for ruminants feeding under global climate change.

    PubMed

    Wanapat, Metha; Mapato, Chaowarit

    2018-05-31

    As the climate changes, it influences ruminant's feed intake, nutrient digestibility, rumen methane production and emission. This experiment aimed to evaluate the effect of feeding Sweet grass (Pennisetum purpureum cv. Mahasarakham) as a new source of good quality forage to improve feed utilization efficiency and to mitigate rumen methane production and emission. Four, growing crossbred of Holstein Friesian heifers, 14 months old, were arranged in a 4 x 4 Latin square design to receive four dietary treatments. Treatment 1 (T1) was rice straw (RS) fed on ad libitum with 1.0 % BW of concentrate (C) supplementation (RS/1.0C). Treatment 2 (T2) and treatment 3 (T3) were Sweet grass (SG), fed on ad libitum with 1.0 and 0.5 %BW of concentrate supplementation, respectively (SG/1.0C and SG/0.5C, respectively). Treatment 4 (T4) was total Sweet grass fed on ad libitum basis with non-concentrate supplementation (TSG). The results revealed that roughage and total feed intake were increased with SG when compared to RS (P<0.01) while TSG was similar to RS/1.0C treatment. Digestibility of nutrients, nutrients intake, total VFAs, rumen microorganisms were the highest and CH4 was the lowest in the heifers received SG/1.0C (P<0.01). Total DM feed intake, digestibility and intake of nutrients, total VFAs, NH3-N, bacterial and fungal population of animals receiving SG/0.5C were higher than those fed on RS/1.0C. Reducing of concentrate supplementation with SG as a roughage source increased NH3-N, acetic acid, and fungal populations, but it decreased propionic acid and protozoal populations (P<0.05). However, ruminal pH and blood urea nitrogen were not affected by the dietary treatments (P>0.05). As the results, Sweet grass could be a good forage to improve rumen fermentation, decrease methane production and reduced the level of concentrate supplementation for growing ruminants in the tropics especially under global climate change.

  10. Variation in Methane Emission Rates from Well Pads in Four Oil and Gas Basins with Contrasting Production Volumes and Compositions.

    PubMed

    Robertson, Anna M; Edie, Rachel; Snare, Dustin; Soltis, Jeffrey; Field, Robert A; Burkhart, Matthew D; Bell, Clay S; Zimmerle, Daniel; Murphy, Shane M

    2017-08-01

    Atmospheric methane emissions from active natural gas production sites in normal operation were quantified using an inverse Gaussian method (EPA's OTM 33a) in four major U.S. basins/plays: Upper Green River (UGR, Wyoming), Denver-Julesburg (DJ, Colorado), Uintah (Utah), and Fayetteville (FV, Arkansas). In DJ, Uintah, and FV, 72-83% of total measured emissions were from 20% of the well pads, while in UGR the highest 20% of emitting well pads only contributed 54% of total emissions. The total mass of methane emitted as a percent of gross methane produced, termed throughput-normalized methane average (TNMA) and determined by bootstrapping measurements from each basin, varied widely between basins and was (95% CI): 0.09% (0.05-0.15%) in FV, 0.18% (0.12-0.29%) in UGR, 2.1% (1.1-3.9%) in DJ, and 2.8% (1.0-8.6%) in Uintah. Overall, wet-gas basins (UGR, DJ, Uintah) had higher TNMA emissions than the dry-gas FV at all ranges of production per well pad. Among wet basins, TNMA emissions had a strong negative correlation with average gas production per well pad, suggesting that consolidation of operations onto single pads may reduce normalized emissions (average number of wells per pad is 5.3 in UGR versus 1.3 in Uintah and 2.8 in DJ).

  11. Methane emission during municipal wastewater treatment.

    PubMed

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Methane production and hydrolysis kinetics in the anaerobic degradation of wastewater screenings.

    PubMed

    Cadavid-Rodríguez, L S; Horan, N

    2013-01-01

    Anaerobic biodegradability and hydrolysis rates of wastewater screenings were determined using the biochemical methane potential test at 37 °C. The extent and rate of screenings conversion to methane of this complex and particulate substrate were investigated and since two stages of hydrolysis were identified, corresponding to the different types of materials in screenings, a linear and non-linear model was used. No accumulation of intermediary products was observed and so it was possible to use the methane production rate and a linear model to estimate the hydrolysis rate in the first phase of hydrolysis. The measured values of 0.061-0.127 d(-1) are in the range reported for other comparable organic wastes. It was also observed that the inoculum-to-substrate ratio has a large impact on methane production rate of screenings. The difference in biodegradation rates from the materials in screenings and the overall hydrolysis could be represented by the modified Gompertz non-linear model which was able to describe the methane production rate of screenings with a high confidence. Screenings were found to have 52% biodegradability on average and this shows the potential for volatile solids destruction. A two-stage process with an improved hydrolysis rate is proposed to ensure that the full potential of the material is exploited.

  13. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado and Utah using mobile stable isotope (13CH4) analysis

    NASA Astrophysics Data System (ADS)

    Rella, Chris; Jacobson, Gloria; Crosson, Eric; Karion, Anna; Petron, Gabrielle; Sweeney, Colm

    2013-04-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation. However, given that the global warming potential of methane is many times greater than that of carbon dioxide (Solomon et al. 2007), the importance of quantifying the fugitive emissions of methane throughout the natural gas production and distribution process becomes clear (Howarth et al. 2011). A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis. In particular, the 13CH4 signature of natural gas (-35 to -40 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-45 to -70 permil). In this paper we present measurements of mobile field 13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in two intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, and the Uintah basin in Utah. Mobile isotope measurements in the nocturnal boundary layer have been made, over a total path of 100s of km throughout the regions, allowing spatially resolved measurements of the regional isotope signature. Secondly, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in these regions, by making measurements of the isotope ratio directly in the downwind plume from each source. These data are combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities in the regions. The fraction of total methane emissions in the Denver-Julesburg basin that can be attributed to natural gas fugitive emissions has been determined to be 71 +/- 9%. References: 1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.). IPCC, 2007: Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2. R.W. Howarth, R. Santoro, and A. Ingraffea. "Methane and the greenhouse-gas footprint of natural gas from shale formations." Climate Change, 106, 679 (2011).

  15. Root-Associated Methane Oxidation and Methanogenesis: Key Determinants of Wetland Methane Emissions

    NASA Technical Reports Server (NTRS)

    King, G. M.

    1997-01-01

    During the award period, we have assessed the extent and controls of methane oxidation in north temperate wetlands. It is evident that wetlands have been a major global source of atmospheric methane in the past, and are so at present. It is also evident that microbial methane oxidation consumes a variable fraction of total wetland methane production, perhaps 10%-90%. Methane oxidation is thus a potentially important control of wetland methane emission. Our efforts have been designed to determine the extent of the process, its controls, and possible relationships to changes that might be expected in wetlands as a consequence of anthropogenic or climate-related disturbances. Current work, has emphasized controls of methane oxidation associated with rooted aquatic plants. As for the sediment-water interface, we have observed that oxygen availability is a primary limiting factor. Our conclusion is based on several different lines of evidence obtained from in vitro and in situ analyses. First, we have measured the kinetics of methane oxidation by intact plant roots harboring methane-oxidizing bacteria, as well as the kinetics of the methanotrophs themselves. Values for the half-saturation constant (apparent K(sub m)) are approximately 5 microns. These values are roughly equivalent to, or much less than porewater methane concentrations, indicating that uptake is likely saturated with respect to methane, and that some other parameter must limit activity. Methane concentrations in the lacunar spaces at the base of plant stems are also comparable to the half-saturation constants (when expressed as equivalent dissolved concentrations), providing further support for limitation of uptake by parameters other than methane.

  16. Non-Faradaic electrochemical promotion of catalytic methane reforming for methanol production

    DOEpatents

    Fan, Qinbai

    2016-11-22

    A method of converting methane to methanol at low temperatures utilizes a reactor including an anode, a cathode, a membrane separator between the anode and cathode, a metal oxide catalyst at the anode and a hydrogen recovery catalyst at the cathode. The method can convert methane to methanol at as rate exceeding the theoretical Faradaic rate due to the contribution of an electrochemical reaction occurring in tandem with a Faradaic reaction.

  17. Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.

    PubMed

    Refaat, Tamer F; Ismail, Syed; Nehrir, Amin R; Hair, John W; Crawford, James H; Leifer, Ira; Shuman, Timothy

    2013-12-16

    Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications.

  18. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    NASA Astrophysics Data System (ADS)

    Shuai, Yanhua; Douglas, Peter M. J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael D.; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-02-01

    Multiply isotopically substituted molecules ('clumped' isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature-time conditions corresponding to 'low,' 'mature,' and 'over-mature' stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions ('high' to 'over-mature' stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where 'secondary' cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation of methane from an alkyl precursor. Other interpretations are also explored. These findings provide new insights into the chemistry of thermogenic methane generation, and may provide an explanation of the elevated apparent temperatures recorded by the methane clumped-isotope thermometer in some natural gases. However, it remains unknown if the laboratory experiments capture the processes that occur at the longer time and lower temperatures of natural gas formation.

  19. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile δ13CH4 analysis

    NASA Astrophysics Data System (ADS)

    Rella, C.; Crosson, E.; Petron, G.; Sweeney, C.; Karion, A.

    2013-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the δ13CH4 signature to distinguish between natural gas and landfills or ruminants. We present measurements of mobile field δ13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region. (left panel) Distribution of oil and gas well pads (yellow) and landfills (blue) in the Dallas / Ft. Worth area. Mobile nocturnal measurements of methane are shown in red, indicating a strong degree of source heterogeneity. (right panel) Histogram of individual isotopic source signatures, showing distinct signatures for landfills (red) and oil and gas sources (green).

  20. Rumen modulatory effect of thyme, clove and peppermint oils in vitro using buffalo rumen liquor.

    PubMed

    Roy, Debashis; Tomar, S K; Kumar, Vinod

    2015-02-01

    The present study was conducted to examine the rumen modulatory effect of thyme, clove and peppermint oils on rumen fermentation pattern in vitro using roughage based diet. Thyme, clove and peppermint oils were tested at concentration of 0, 30, 300 and 600 mg/l (ppm) of total culture fluid using in vitro gas production technique in wheat straw based diet (concentrate: Wheat straw 50:50). Different in vitro parameters e.g., total gas production, methane production, nutrient degradability, volatile fatty acid (VFA) production and ammonia nitrogen concentration were studied using buffalo rumen liquor. Thyme oil at higher dose level (600 ppm) reduced (p<0.05) total gas production, feed degradability and ammonia nitrogen (NH3-N) concentration whereas total VFA concentration was significantly lower (p>0.05) in 300 and 600 ppm dose levels. 600 ppm dose level of clove oil reduced (p<0.05) total gas production, feed degradability, total VFA and acetate to propionate ratio. Methane production was significantly reduced (p<0.05) in 300 and 600 ppm dose levels of clove and peppermint oil. Right combination of these essential oils may prove to enhance performance of animals by reducing methane production and inhibiting protein degradation in rumen.

  1. Methane attenuates retinal ischemia/reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    PubMed

    Liu, Lin; Sun, Qinglei; Wang, Ruobing; Chen, Zeli; Wu, Jiangchun; Xia, Fangzhou; Fan, Xian-Qun

    2016-09-01

    Retinal ischemia/reperfusion injury (IRI) may cause incurable visual impairment due to neural regeneration limits. Methane was shown to exert a protective effect against IRI in many organs. This study aims to explore the possible protective effects of methane-rich saline against retinal IRI in rat. Retinal IRI was performed on the right eyes of male Sprague-Dawley rats, which were immediately injected intraperitoneally with methane-saturated saline (25ml/kg). At one week after surgery, the number of retinal ganglion cells (RGCs), total retinal thickness, visual function were measured by hematoxylin and eosin staining, FluoroGold anterograde labeling and flash visual evoked potentials. The levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), 4-Hydroxy-2-nonenal (4-HNE), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspase-3, caspase-9, B cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2 associated X protein (Bax) in retinas were assessed by immunofluorescence staining, enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. As expected, methane treatment significantly improved the retinal IRI-induced RGC loss, total retinal layer thinning and visual dysfunction. Moreover, methane treatment significantly reduced the levels of oxidative stress biomarkers (8-OHdG, 4-HNE, MDA) and increased the antioxidant enzyme activities (SOD, CAT, GPx) in the retinas with IRI. Meanwhile, methane treatment significantly increased the anti-apoptotic gene (Bcl-2) expression and decreased the pro-apoptotic gene (Bax) expression, accompanied by the suppression of caspase-3 and caspase-9 activity. Thus, these data demonstrated that methane can exert a neuroprotective role against retinal IRI through anti-oxidative and anti-apoptotic pathways. Copyright © 2016. Published by Elsevier B.V.

  2. Revised spatially distributed global livestock emissions

    NASA Astrophysics Data System (ADS)

    Asrar, G.; Wolf, J.; West, T. O.

    2015-12-01

    Livestock play an important role in agricultural carbon cycling through consumption of biomass and emissions of methane. Quantification and spatial distribution of methane and carbon dioxide produced by livestock is needed to develop bottom-up estimates for carbon monitoring. These estimates serve as stand-alone international emissions estimates, as input to global emissions modeling, and as comparisons or constraints to flux estimates from atmospheric inversion models. Recent results for the US suggest that the 2006 IPCC default coefficients may underestimate livestock methane emissions. In this project, revised coefficients were calculated for cattle and swine in all global regions, based on reported changes in body mass, quality and quantity of feed, milk production, and management of living animals and manure for these regions. New estimates of livestock methane and carbon dioxide emissions were calculated using the revised coefficients and global livestock population data. Spatial distribution of population data and associated fluxes was conducted using the MODIS Land Cover Type 5, version 5.1 (i.e. MCD12Q1 data product), and a previously published downscaling algorithm for reconciling inventory and satellite-based land cover data at 0.05 degree resolution. Preliminary results for 2013 indicate greater emissions than those calculated using the IPCC 2006 coefficients. Global total enteric fermentation methane increased by 6%, while manure management methane increased by 38%, with variation among species and regions resulting in improved spatial distributions of livestock emissions. These new estimates of total livestock methane are comparable to other recently reported studies for the entire US and the State of California. These new regional/global estimates will improve the ability to reconcile top-down and bottom-up estimates of methane production as well as provide updated global estimates for use in development and evaluation of Earth system models.

  3. A new tracer experiment to estimate the methane emissions from a dairy cow shed using sulfur hexafluoride (SF6)

    NASA Astrophysics Data System (ADS)

    Marik, Thomas; Levin, Ingeborg

    1996-09-01

    Methane emission from livestock and agricultural wastes contribute globally more than 30% to the anthropogenic atmospheric methane source. Estimates of this number have been derived from respiration chamber experiments. We determined methane emission rates from a tracer experiment in a modern cow shed hosting 43 dairy cows in their accustomed environment. During a 24-hour period the concentrations of CH4, CO2, and SF6, a trace gas which has been released at a constant rate into the stable air, have been measured. The ratio between SF6 release rate and measured SF6 concentration was then used to estimate the ventilation rate of the stable air during the course of the experiment. The respective ratio between CH4 or CO2 and SF6 concentration together with the known SF6 release rate allows us to calculate the CH4 (and CO2) emissions in the stable. From our experiment we derive a total daily mean CH4 emission of 441 LSTP per cow (9 cows nonlactating), which is about 15% higher than previous estimates for German cows with comparable milk production obtained during respiration chamber experiments. The higher emission in our stable experiment is attributed to the contribution of CH4 release from about 50 m3 of liquid manure present in the cow shed in underground channels. Also, considering measurements we made directly on a liquid manure tank, we obtained an estimate of the total CH4 production from manure: The normalized contribution of methane from manure amounts to 12-30% of the direct methane release of a dairy cow during rumination. The total CH4 release per dairy cow, including manure, is 521-530 LSTP CH4 per day.

  4. Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim Delta, Western Alaska

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Kelley, Cheryl A.; Chanton, Jeffrey P.; Showers, William J.

    1992-01-01

    The results are reported of a study of the carbon and hydrogen isotopic composition of methane from tundra environments of the Yukon-Kuskokwin Delta of western Alaska. The delta C-13 value of diffusive methane emissions from wet meadow tundra of the Delta is -65.82 +/- 2.21 per mil (n=18). Detritus-rich sediments of tundra lakes are loaded with methane-rich gas bubbles during the warm season. Spatial trend is the major gas concentration and isotopic values of methane in these gas bubbles appear to reflect processes associated with production rate and mechanisms; high methane concentrations, lightest delta C-13 values, the heaviest delta D value occur in detritus-rich sediments isolated from emergent vegetation. Heavier delta C-13 and lighter delta D values in methane from heavily vegetated lake margins suggest a shift toward a larger role for acetate fermentation in association with aquatic plants and plant detritus. Bubble ebullition is estimated to account for up to 17 percent of total Delta methane emissions.

  5. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    PubMed Central

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  6. Termites Facilitate Methane Oxidation and Shape the Methanotrophic Community

    PubMed Central

    Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Van Ranst, Eric

    2013-01-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population. PMID:24038691

  7. Termites facilitate methane oxidation and shape the methanotrophic community.

    PubMed

    Ho, Adrian; Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Boon, Nico; Van Ranst, Eric

    2013-12-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population.

  8. LOX/Methane In-Space Propulsion Systems Technology Status and Gaps

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.

    2017-01-01

    Human exploration architecture studies have identified liquid oxygen (LOX)Methane (LCH4) as a strong candidate for both interplanetary and descent ascent propulsion solutions. Significant research efforts into methane propulsion have been conducted for over 50 years, ranging from fundamental combustion mixing efforts to rocket chamber and system level demonstrations. Over the past 15 years NASA and its partners have built upon these early activities that have demonstrated practical components and sub-systems needed to field future methane space transportation elements. These advanced development efforts have formed a foundation of LOXLCH4 propulsion knowledge that has significantly reduced the development risks of future methane based space transportation elements for human exploration beyond earth orbit. As a bipropellant propulsion system, LOXLCH4 has some favorable characteristics for long life and reusability, which are critical to lunar and Mars missions. Non-toxic, non-corrosive, self-venting, and simple to purge. No extensive decontamination process required as with toxic propellants. High vapor pressure provides for excellent vacuum ignition characteristics. Performance is better than current earth storable propellants for human scale spacecraft. Provides the capability for future Mars exploration missions to use propellants that are produced in-situ on Mars Liquid Methane is thermally similar to O2 as a cryogenic propellant, 90,111 K (LO2, LCH4 respectively) instead of the 23 K of LH2. Allows for common components and thus providing cost savings as compared to liquid hydrogen (LH2). Due to liquid methane having a 6x higher density than hydrogen, it can be stored in much smaller volumes. Cryogenic storage aspect of these propellants needs to be addressed. Passive techniques using shielding and orientations to deep space Refrigeration may be required to maintain both oxygen and methane in liquid forms

  9. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets

    PubMed Central

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E.; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I), without archaea (–A), without fungi (–F), without protozoa (–P) and with bacteria only (–AFP). A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower (Carthamus tinctorius) or poppy (Papaver somniferum) or camelina (Camelina sativa) at 70 g oil kg−1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, –F decreased organic matter (OM) degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in –F was greater with camelina seeds (−12 vs.−7% with I, P = 0.06), but smaller with poppy seeds (−4 vs. −8% with I, P = 0.03), and not affected with safflower seeds. With –P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08). Hydrogen recovery was improved with –P in any oilseeds compared to non-supplemented control. No methane emission was detected with the –A and –AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea associated with protozoa. This demonstrated that the microbial groups differ in their contribution to the methane suppressing effect dependent on the source of lipid. These findings help to understand how lipid supplementation and microbial groups interact, and thus may assist in making this methane mitigation tool more efficient, but await confirmation in vivo. PMID:29033916

  10. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets.

    PubMed

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I), without archaea (-A), without fungi (-F), without protozoa (-P) and with bacteria only (-AFP). A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower ( Carthamus tinctorius ) or poppy ( Papaver somniferum ) or camelina ( Camelina sativa ) at 70 g oil kg -1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, -F decreased organic matter (OM) degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in -F was greater with camelina seeds (-12 vs.-7% with I, P = 0.06), but smaller with poppy seeds (-4 vs. -8% with I, P = 0.03), and not affected with safflower seeds. With -P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08). Hydrogen recovery was improved with -P in any oilseeds compared to non-supplemented control. No methane emission was detected with the -A and -AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea associated with protozoa. This demonstrated that the microbial groups differ in their contribution to the methane suppressing effect dependent on the source of lipid. These findings help to understand how lipid supplementation and microbial groups interact, and thus may assist in making this methane mitigation tool more efficient, but await confirmation in vivo .

  11. Improved volatile fatty acid and biomethane production from lipid removed microalgal residue (LRμAR) through pretreatment.

    PubMed

    Suresh, Arumuganainar; Seo, Charles; Chang, Ho Nam; Kim, Yeu-Chun

    2013-12-01

    Renewable energy from lipid removed microalgal residues (LRμARs) serves as a promising tool for sustainable development of the microalgal biodiesel industry. Hence, in this study, LRμAR from Ettlia sp. was characterized for its physico-biochemical parameters, and applied to various pretreatment to increase the biodegradability and used in batch experiments for the production of volatile fatty acids (VFA) and biomethane. After various pretreatments, the soluble organic matters were increased at a maximum of 82% in total organic matters in alkali-autoclaved sample. In addition, VFA and methane production was enhanced by 30% and 40% in alkali-sonicated and alkali-autoclaved samples, respectively. Methane heating value was recovered at maximum of 6.6 MJ kg(-1)VS in alkali-autoclaved conditions with comparison to non-pretreated samples. The pretreatment remarkably improved LRμAR solubilization and enhanced VFA and biomethane production, which holds immense potential to eventually reduce the cost of algal biodiesel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Ionophores: A tool for improving ruminant production and reducing environmental impact

    USDA-ARS?s Scientific Manuscript database

    Agriculture has come under intense scrutiny in recent years due to increased concern over greenhouse gas emissions. 70 percent of total methane production comes from anthropogenic sources, of which two-thirds are related to agriculture. Because ruminant livestock produce methane via gastrointestin...

  13. Techno-economical study of biogas production improved by steam explosion pretreatment.

    PubMed

    Shafiei, Marzieh; Kabir, Maryam M; Zilouei, Hamid; Sárvári Horváth, Ilona; Karimi, Keikhosro

    2013-11-01

    Economic feasibility of steam explosion pretreatment for improvement of biogas production from wheat straw and paper tube residuals was investigated. The process was simulated by Aspen plus ®, and the economical feasibility of five different plant capacities was studied by Aspen Process Economic Analyzer. Total project investment of a plant using paper tube residuals or wheat straw was 63.9 or 61.8 million Euros, respectively. The manufacturing cost of raw biogas for these two feedstocks was calculated to 0.36 or 0.48 €/m(3) of methane, respectively. Applying steam explosion pretreatment resulted in 13% higher total capital investment while significantly improved the economy of the biogas plant and decreased the manufacturing cost of methane by 36%. The sensitivity analysis showed that 5% improvement in the methane yield and 20% decrease in the raw material price resulted in 5.5% and 8% decrease in the manufacturing cost of methane, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Reversing methanogenesis to capture methane for liquid biofuel precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soo, Valerie W. C.; McAnulty, Michael J.; Tripathi, Arti

    Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) frommore » a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl 3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl 3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using 13C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. Lastly, we anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.« less

  15. Reversing methanogenesis to capture methane for liquid biofuel precursors

    DOE PAGES

    Soo, Valerie W. C.; McAnulty, Michael J.; Tripathi, Arti; ...

    2016-01-14

    Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) frommore » a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl 3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl 3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using 13C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. Lastly, we anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.« less

  16. Kansas coal distribution, resources, and potential for coalbed methane

    USGS Publications Warehouse

    Brady, L.L.

    2000-01-01

    100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth Kansas has large amounts of bituminous coal both at the surface and in the subsurface of eastern Kansas. Preliminary studies indicate at least 53 billion tons (48 billion MT) of deep coal [>100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth < 100 ft (<30 m) total 2.8 billion tons (2.6 billion MT), and this total is determined from 17 coals. Coal beds present in the Cherokee Group (Middle Pennsylvanian) represent most of these coal resource totals. Deep coal beds with the largest resource totals include the Bevier, Mineral, "Aw" (unnamed coal bed), Riverton, and Weir-Pittsburg coals, all within the Cherokee Group. Based on chemical analyses, coals in the southeastern part of the state are generally high volatile A bituminous, whereas coals in the east-central and northeastern part of the state are high-volatile B bituminous coals. The primary concern of coal beds in Kansas for deep mining or development of coalbed methane is the thin nature [<2 ft (0.6 m)] of most coal beds. Present production of coalbed methane is centered mainly in the southern Wilson/northern Montgomery County area of southeastern Kansas where methane is produced from the Mulky, Weir-Pittsburg, and Riverton coals.

  17. Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement

    NASA Astrophysics Data System (ADS)

    Roest, Geoffrey; Schade, Gunnar

    2017-09-01

    The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C2-C4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7 % with an interquartile range (IQR) of 0.5-1.3 %, below the US Environmental Protection Agency's (EPA) current estimates. However, storage tanks contributed 17 % of methane emissions, 55 % of ethane, 82 % percent of propane, 90 % of n-butane, and 83 % of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0 % (IQR of 0.7-1.6 %) relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6 %. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.

  18. Air Quality measurements near the Gulf of Mexico Deep Water Horizon Oil Spill site in July 2010

    NASA Astrophysics Data System (ADS)

    Schade, G. W.; Rasmussen, R.; Conlee, D.; Seroka, G.; Delao, D.

    2010-12-01

    Eight whole air samples were acquired within several kilometers of the Deepwater Horizon well head location between 5 and 13 July 2010. A Teflon coated pump was used to pressurize 0.8 L volume stainless steel canisters to approximately 2 bar. Various amounts of oil were visible on the water surface during most sampling times, and some samples were accompanied by strong hydrocarbon smells. The air samples were analyzed over the next two months using high sensitivity GC-FID and GC-MS methods for C1-C30 hydrocarbons and selected hetero-atomic compounds. Highest concentrations reached several ppm for total hydrocarbons, comparable to concentrations in highway road tunnels. None of the samples showed elevated concentrations suggestive of hazardous concentrations, or near OSHA PEL or NIOSH REL levels. Consistent with studies of seawater methane concentrations at different depths, atmospheric methane mixing ratios were close to background abundances at 1.75-1.78 ppm, suggesting that the spill’s methane emissions had not reached the surface at that time. Non-methane hydrocarbons presented a highly complex mixture (100+ species) of dominantly alkanes, as expected. Linear alkanes were detected at elevated mixing ratios from C4 up to C30, and were dominated by nonane (C9). Aromatic hydrocarbons showed a pattern suggestive of a significant retention by seawater of benzene and toluene, the compounds with the highest water solubilities. While benzene was hardly and toluene only slightly elevated, lower solubility compounds such as the xylenes and naphthalene were clearly elevated. Data will be presented relative to an upwind sample taken on 5 July.

  19. Effect of unconventional oilseeds (safflower, poppy, hemp, camelina) on in vitro ruminal methane production and fermentation.

    PubMed

    Wang, Shaopu; Kreuzer, Michael; Braun, Ueli; Schwarm, Angela

    2017-08-01

    Dietary supplementation with oilseeds can reduce methane emission in ruminants, but only a few common seeds have been tested so far. This study tested safflower (Carthamus tinctorius), poppy (Papaver somniferum), hemp (Cannabis sativa), and camelina (Camelina sativa) seeds in vitro using coconut (Cocos nucifera) oil and linseed (Linum usitatissimum) as positive controls. All the tested oilseeds suppressed methane yield (mL g -1 dry matter, up to 21%) compared to the non-supplemented control when provided at 70 g oil kg -1 dry matter, and they were as effective as coconut oil. Safflower and hemp were more effective than linseed (21% and 18% vs. 10%), whereas the effects of poppy and camelina were similar to linseed. When methane was related to digestible organic matter, only hemp and safflower seeds and coconut oil were effective compared to the non-supplemented control (up to 11%). The level of methanogenesis and the ratios of either the n-6:n-3 fatty acids or C 18 :2 :C 18 :3 in the seed lipids were not related. Unconventional oilseeds widen the spectrum of oilseeds that can be used in dietary methane mitigation. In vivo confirmation of their methane mitigating effect is still needed, and their effects on animal performance still must be determined. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades †

    PubMed Central

    King, Gary M.; Roslev, Peter; Skovgaard, Henrik

    1990-01-01

    Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparable to profiles measured in situ. Thus, the laboratory incubations appeared to provide a reasonable approximation of in situ activities. This was further supported by the agreement between measured methane fluxes and fluxes predicted on the basis of methane profiles determined by in situ sampling of pore water. Methane emissions from peat sediments, oxygen concentrations and penetration depths, and methane concentration profiles were all sensitive to light-dark shifts as determined by a combination of field and laboratory analyses. Methane emissions were lower and oxygen concentrations and penetration depths were higher under illuminated than under dark conditions; the profiles of methane concentration changed in correspondence to the changes in oxygen profiles, but the estimated flux of methane into the oxic zone changed negligibly. Sediment-free, root-associated methane oxidation showed a pattern similar to that for methane oxidation in the core analyses: no oxidation was detected for roots growing in marl sediment, even for roots of Cladium jamaicense, which had the highest activity for samples from peat sediments. The magnitude of the root-associated oxidation rates indicated that belowground plant surfaces may not markedly increase the total capacity for methane consumption. However, the data collectively support the notion that the distribution and activity of methane oxidation have a major impact on the magnitude of atmospheric fluxes from the Everglades. PMID:16348299

  1. Reconciling Top-Down and Bottom-Up Estimates of Oil and Gas Methane Emissions in the Barnett Shale

    NASA Astrophysics Data System (ADS)

    Hamburg, S.

    2015-12-01

    Top-down approaches that use aircraft, tower, or satellite-based measurements of well-mixed air to quantify regional methane emissions have typically estimated higher emissions from the natural gas supply chain when compared to bottom-up inventories. A coordinated research campaign in October 2013 used simultaneous top-down and bottom-up approaches to quantify total and fossil methane emissions in the Barnett Shale region of Texas. Research teams have published individual results including aircraft mass-balance estimates of regional emissions and a bottom-up, 25-county region spatially-resolved inventory. This work synthesizes data from the campaign to directly compare top-down and bottom-up estimates. A new analytical approach uses statistical estimators to integrate facility emission rate distributions from unbiased and targeted high emission site datasets, which more rigorously incorporates the fat-tail of skewed distributions to estimate regional emissions of well pads, compressor stations, and processing plants. The updated spatially-resolved inventory was used to estimate total and fossil methane emissions from spatial domains that match seven individual aircraft mass balance flights. Source apportionment of top-down emissions between fossil and biogenic methane was corroborated with two independent analyses of methane and ethane ratios. Reconciling top-down and bottom-up estimates of fossil methane emissions leads to more accurate assessment of natural gas supply chain emission rates and the relative contribution of high emission sites. These results increase our confidence in our understanding of the climate impacts of natural gas relative to more carbon-intensive fossil fuels and the potential effectiveness of mitigation strategies.

  2. [Towards computer-aided catalyst design: Three effective core potential studies of C-H activation]. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    Research in the initial grant period focused on computational studies relevant to the selective activation of methane, the prime component of natural gas. Reaction coordinates for methane activation by experimental models were delineated, as well as the bonding and structure of complexes that effect this important reaction. This research, highlighted in the following sections, also provided the impetus for further development, and application of methods for modeling metal-containing catalysts. Sections of the report describe the following: methane activation by multiple-bonded transition metal complexes; computational lanthanide chemistry; and methane activation by non-imido, multiple-bonded ligands.

  3. Total non-methane volatile organic compounds (TNMVOC) in the atmosphere of Delhi

    NASA Astrophysics Data System (ADS)

    Kumar Padhy, Pratap; Varshney, C. K.

    Volatile organic compounds (VOC), more specifically, non-methane volatile organic compounds (NMVOC) play a critical role in the atmospheric chemistry. NMVOC, through complex photochemical reactions, contribute to the formation of toxic oxidants, such as tropospheric ozone and PAN, which are injurious to health and highly phytotoxic. Certain NMVOC have been shown to be highly toxic, mutagenic and carcinogenic. NMVOC are receiving increasing attention in the west on account of their implication for human health and air quality. On the other hand, information on NMVOC in India and other developing countries is not available. As a result, appreciation of potential threat from NMVOC in relation to air quality and public health is sadly lacking among planners and policy makers. The paper deals with the estimation of total NMVOC at 13 sites in the urban environment of Delhi during November 1994 to June 1995. An inexpensive, labour intensive manual sample collection device was used and the air samples were analysed using GC-FID. The results show that the amount of NMVOC in the ambient environment of Delhi varied between 1.3 and 32.5 ppmv exhibiting wide temporal and seasonal variation. NMVOC levels mostly peaked at 0900 h, which coincide with the peak traffic hour. The implications of NMVOC build-up in the urban atmosphere are obvious for air quality. The results of this preliminary study make out a strong case for developing a regular monitoring programme for NMVOC in the urban environment of Delhi as well as in other major cities in the region.

  4. Temperature-dependent ozone chemiluminescence: A new approach for hydrocarbon monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, N.; Gaffney, J.

    1996-12-31

    Ozone chemiluminescent reactions have been used for some time to detect oxides of nitrogen, ozone, and olefins in air quality studies. Current procedures use non-methane hydrocarbon analyzers based on the flame ionization detector (FID), which quantitate total non-methane hydrocarbons but do not differentiate between the wide variety of volatile organic classes and oxygenates. The other methodology that has been used, gas chromatography/mass spectroscopy (GC/MS), can measure a variety of individual hydrocarbon species and classes, but it is costly, time-consuming, and labor intensive and is not amenable to real-time measurements. Presented here is preliminary research aimed at the development of anmore » alternative to FID and GC/MS: the ozone chemiluminescent detector (OCD) for measurement of a variety of hydrocarbon species and classes by use of the temperature dependence of ozone chemiluminescent reactions. Responses for various hydrocarbon classes obtained with an OCD operated at 170 C or the FID were compared. The results indicate that the OCD detector responds like a total carbon detector at this temperature, with sensitivities 10-100 times higher than those of a FID. Use of the temperature dependence of the chemiluminescent reaction and prereactors will apparently make a real-time hydrocarbon analyzer based on this approach feasible for determination of high-, moderate-, and low-reactivity hydrocarbon levels in ambient air. The OCD approach may be very useful in determining oxygenate emissions from motor vehicles, particularly alternative fuels. The OCD may also be useful in monitoring of ambient air for natural hydrocarbon emissions.« less

  5. Comparison of Landfill Methane Oxidation Measured Using Stable Isotope Analysis and CO2/CH4 Fluxes Measured by the Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Xu, L.; Chanton, J.; McDermitt, D. K.; Li, J.; Green, R. B.

    2015-12-01

    Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate methane oxidation fraction when the anaerobic CO2 / CH4 production ratio is known, or can be estimated. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2 / CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested using carbon dioxide emission rates (fluxes) and methane emission rates (fluxes) measured using the eddy covariance method over a one year period at the Turkey Run landfill in Georgia, USA. The CO2 / CH4 production ratio was estimated by measuring CO2 and CH4 concentrations in air sampled under anaerobic conditions deep inside the landfill. We also used a mass balance approach to independently estimate fractional oxidation based on stable isotope measurements (δ13C of methane) of gas samples taken from deep inside the landfill and just above the landfill surface. Results from the two independent methods agree well. The model will be described and methane oxidation will be discussed in relation to wind direction, location at the landfill, and age of the deposited refuse.

  6. Landfill Methane

    USDA-ARS?s Scientific Manuscript database

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  7. Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane.

    PubMed

    Gebert, J; Gröngröft, A

    2006-01-01

    An upflow biofilter system was operated on a passively vented landfill for the treatment of residual landfill methane. Biofilter methane emissions as a basis for determining methane removal rates were assessed by manual and automated chamber measurements, by measuring methane concentrations in the top layer gaseous phase in combination with gas flow rates, and by evaluating the methane load in the reverse gas flow following the change of landfill gas flux direction as governed by the course of barometric pressure. Methane removal rates were very high with maximum values of 80 g h(-1) m(-3). For the observed cases, the limit of biofilter methane oxidation capacity was not reached and absolute removal rates were thus linearly correlated to the amount of methane entering the filter. The analysis of methane loads flowing back from the biofilter following phases of longer, continuous and non-oscillating landfill gas emission, however, revealed that in these situations biofilter performance is restricted by deficient oxygen supply. At the oxygen-restricted capacity limit, removal rates are influenced by temperature (positively), methane influx (negatively) and flow rate (negatively) as a measure for the displacement of oxygen. These situations, however, account for only 12% of all emission phases. The investigated biofilter capacity, as derived from laboratory analyses of methanotrophic activities, is sufficient to oxidise 62% of the methane load emitted annually. Field and laboratory data provide a stable basis for the dimensioning of filters in future applications.

  8. 40 CFR 92.206 - Required information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... locomotive engine. (c) Emission data, including exhaust methane data in the case of locomotives or locomotive engines subject to a non-methane hydrocarbon standard, on such locomotives or locomotive engines tested in... requirement to measure smoke emissions is waived for certification and production line testing of Tier 2...

  9. 40 CFR 92.206 - Required information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... locomotive engine. (c) Emission data, including exhaust methane data in the case of locomotives or locomotive engines subject to a non-methane hydrocarbon standard, on such locomotives or locomotive engines tested in... requirement to measure smoke emissions is waived for certification and production line testing of Tier 2...

  10. 40 CFR 92.206 - Required information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... locomotive engine. (c) Emission data, including exhaust methane data in the case of locomotives or locomotive engines subject to a non-methane hydrocarbon standard, on such locomotives or locomotive engines tested in... requirement to measure smoke emissions is waived for certification and production line testing of Tier 2...

  11. 40 CFR 92.206 - Required information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... locomotive engine. (c) Emission data, including exhaust methane data in the case of locomotives or locomotive engines subject to a non-methane hydrocarbon standard, on such locomotives or locomotive engines tested in... requirement to measure smoke emissions is waived for certification and production line testing of Tier 2...

  12. 40 CFR 92.206 - Required information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... locomotive engine. (c) Emission data, including exhaust methane data in the case of locomotives or locomotive engines subject to a non-methane hydrocarbon standard, on such locomotives or locomotive engines tested in... requirement to measure smoke emissions is waived for certification and production line testing of Tier 2...

  13. Testing and Validation Studies of the NSMII-Benthic Sediment Diagenesis Module

    DTIC Science & Technology

    2016-07-01

    NSMII analytical vs. numerical solutions of sediment methane ............................ 27 3.2.4 Comparisons of the diagenesis rates of three sediment...26 Figure 12. Comparisons of NSMII analytical vs. numerical solutions of sediment methane : (a) layer 2’s CH4, (b...oxygen demand mg-O2 L-1 0-10 CH4 Methane mg-O2 L-1 On/Off HxS Total dissolved sulfides mg-O2 L-1 On/Off DO Dissolved oxygen mg-O2 L-1 On BSi

  14. Methanator Fueled Engines for Pollution Control

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Winkler, E. L.

    1973-01-01

    A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.

  15. Outcome of breath tests in adult patients with suspected small intestinal bacterial overgrowth

    PubMed Central

    Mattsson, Johanna; Minaya, Maria Teresa; Monegro, Milka; Lebwohl, Benjamin; Lewis, Suzanne K.; Green, Peter HR; Stenberg, Reidun

    2017-01-01

    Aim: The aim was to investigate breath test outcomes in patients with suspected SIBO and indicative symptoms of SIBO, diagnosed by breath testing. Background: Breath testing is used to detect small intestinal bacterial overgrowth (SIBO) by measuring hydrogen and methane produced by intestinal bacteria. Methods: This retrospective cross sectional study included 311 patients with gastrointestinal symptoms who underwent the breath test for evaluation of SIBO at Celiac Disease Center at Columbia University, New York, in 2014-2015. The patients were divided into two groups based on the physician’s choice: lactulose breath test group (72%) and glucose breath test group (28%). Among them, 38% had a history of celiac disease or non-celiac gluten sensitivity. Results: In total, 46% had a positive breath test: 18% were positive for methane, 24 % positive for hydrogen and 4% positive for both gases (p=0.014). Also, 50% had a positive lactulose breath result and 37% had a positive glucose breath result (p=0.036). The most common symptom for performing the breath test was bloating and the only clinical symptom that significantly showed a positive glucose breath test was increased gas (p=0.028). Conclusion: Lactulose breath test was more often positive than glucose breath test. Positivity for hydrogen was more common than methane. Bloating was the most frequently perceived symptom of the patients undergoing the breath test but the only statistically significant clinical symptom for a positive glucose breath test was increased gas. Furthermore, the results showed that there was no significant association between positive breath test result and gender, age, non-celiac gluten sensitivity or celiac disease. PMID:29118931

  16. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.

    PubMed

    Ho, L; Ho, G

    2012-09-15

    High free ammonia released during anaerobic digestion of livestock wastes is widely known to inhibit methanogenic microorganisms and result in low methane production. This was encountered during our earlier thermophilic semi-continuously fed continuously-stirred tank reactor (CSTR) treatment of piggery wastewater. This study explored chemical and biological means to mitigate ammonia inhibition on thermophilic anaerobic treatment of piggery wastewater with the aim to increase organic volatile carbon reduction and methane production. A series of thermophilic anaerobic batch experiments were conducted on the digested piggery effluent to investigate the effects of pH reduction (pH 8.3 to 7.5, 7.0 and 6.5) and additions of biomass (10% v/v and 19% v/v anaerobic digested piggery biomass and aerobic-anaerobic digested municipal biomass), natural zeolite (10, 15 and 20 g/L) and humic acid (1, 5 and 10 g/L) on methane production at 55 °C for 9-11 days. Reduction of the wastewater pH from its initial pH of 8.3 to 6.5 produced the greatest stimulation of methane production (3.4 fold) coupled with reductions in free ammonia (38 fold) and total volatile fatty acids (58% TVFA), particularly acetate and propionate. Addition of 10-20 g/L zeolite to piggery wastewater with and without pH reduction to 6.5 further enhanced total VFA reduction and methane production over their respective controls, with 20 g/L zeolite producing the highest enhancement effect despite the ammonia-nitrogen concentrations of the treated wastewaters remaining high. Without pH reduction, zeolite concentration up to 20 g/L was required to achieve comparable methane enhancement as the pH-reduced wastewater at pH 6.5. Although biomass (10% v/v piggery and municipal wastes) and low humic acid (1 and 5 g/L) additions enhanced total VFA reduction and methane production, they elevated the residual effluent total COD concentrations over the control wastewaters (pH-unadjusted and pH-reduced) unlike zeolite treatment. The outcomes from these batch experiments support the use of pH reduction to 6.5 and zeolite treatment (10-20 g/L) as effective strategies to mitigate ammonia inhibition of the thermophilic anaerobic treatment of piggery wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows.

    PubMed

    Lopes, J C; de Matos, L F; Harper, M T; Giallongo, F; Oh, J; Gruen, D; Ono, S; Kindermann, M; Duval, S; Hristov, A N

    2016-07-01

    The objective of this crossover experiment was to investigate the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission, methane isotopic composition, and rumen fermentation and microbial profile in lactating dairy cows. The experiment involved 6 ruminally cannulated late-lactation Holstein cows assigned to 2 treatments: control and 3NOP (60 mg/kg of feed dry matter). Compared with the control, 3NOP decreased methane emission by 31% and increased hydrogen emission from undetectable to 1.33 g/d. Methane emissions per kilogram of dry matter intake and milk yield were also decreased 34% by 3NOP. Milk production and composition were not affected by 3NOP, except milk fat concentration was increased compared with the control. Concentrations of total VFA and propionate in ruminal fluid were not affected by treatment, but acetate concentration tended to be lower and acetate-to-propionate ratio was lower for 3NOP compared with the control. The 3NOP decreased the molar proportion of acetate and increase those of propionate, butyrate, valerate, and isovalerate. Deuterium-to-hydrogen ratios of methane and the abundance of (13)CH3D were similar between treatments. Compared with the control, minor (4‰) depletion in the (13)C/(12)C ratio was observed for 3NOP. Genus composition of methanogenic archaea (Methanobrevibacter, Methanosphaera, and Methanomicrobium) was not affected by 3NOP, but the proportion of methanogens in the total cell counts tended to be decreased by 3NOP. Prevotella spp., the predominant bacterial genus in ruminal contents in this experiment, was also not affected by 3NOP. Compared with the control, Ruminococcus and Clostridium spp. were decreased and Butyrivibrio spp. was increased by 3NOP. This experiment demonstrated that a substantial inhibition of enteric methane emission by 3NOP in dairy cows was accompanied with increased hydrogen emission and decreased acetate-to-propionate ratio; however, neither an effect on rumen archaeal community composition nor a significant change in the isotope composition of methane was observed. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. 40 CFR 63.7890 - What emissions limitations and work practice standards must I meet for process vents?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... total organic compounds (TOC) (minus methane and ethane) to a level below 1.4 kg/hr and 2.8 Mg/yr (3.0... process vents the emissions of TOC (minus methane and ethane) by 95 percent by weight or more. (c) For...

  19. Source partitioning of methane emissions and its seasonality in the U.S. Midwest

    USDA-ARS?s Scientific Manuscript database

    The methane (CH4) budget and its source partitioning are poorly constrained in the Midwestern, United States. We used tall tower (185 m) aerodynamic flux measurements and atmospheric scale factor Bayesian inversions (SFBI) to constrain the monthly budget and to partition the total budget into natura...

  20. Photocatalytic conversion of methane to methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R.

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifiermore » product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.« less

  1. Methane Emissions from Permafrost Regions using Low-Power Eddy Covariance Stations

    NASA Astrophysics Data System (ADS)

    Burba, G.; Sturtevant, C.; Schreiber, P.; Peltola, O.; Zulueta, R.; Mammarella, I.; Haapanala, S.; Rinne, J.; Vesala, T.; McDermitt, D.; Oechel, W.

    2012-04-01

    Methane is an important greenhouse gas with a warming potential 23 times that of carbon dioxide over a 100-year cycle. The permafrost regions of the world store significant amounts of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over the coming decades and centuries. Presently, most measurements of methane fluxes in permafrost regions have been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for permafrost research. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hours to annual estimates). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump and analyzer system. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a result, spatial coverage of eddy covariance methane flux measurements remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path approach allows methane flux measurements at ambient pressure without the need for a pump. As a result, the measurements can be done with very low-power (e.g. 5-10 Watts), light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance stations is important for a number of ecosystems (rice fields, landfills, wetlands, cattle yards), but it is especially important for permafrost regions where grid power and access roads are generally not available, and the logistics of running the experiments are particularly expensive. Emerging research on methane flux measurements using low-power stations equipped with LI-7700 open-path methane analyzer (LI-COR Biosciences) are presented from several permafrost ecosystems with contrasting setups, and weather conditions. Principles of operation, station characteristics and requirements are also discussed.

  2. Fire and Pesticides: A Review of Air Quality Considerations

    Treesearch

    Parshall B. Bush; Daniel G. Neary; Charles K. McMahon

    2000-01-01

    The classes of primary chemical products naturally produced by the combustion of forest fuels are: carbon dioxide, water, carbon monoxide, particulate matter, methane and non-methane hydrocarbons, polynuclear aromatic hydrocarbons, nitrogen and sulfur oxides, aldehydes, free radicals, and inorganic elements. Secondary chemical products produced by reactions in smoke...

  3. Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals

    USDA-ARS?s Scientific Manuscript database

    Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...

  4. Anaerobic methanotrophic communities thrive in deep submarine permafrost.

    PubMed

    Winkel, Matthias; Mitzscherling, Julia; Overduin, Pier P; Horn, Fabian; Winterfeld, Maria; Rijkers, Ruud; Grigoriev, Mikhail N; Knoblauch, Christian; Mangelsdorf, Kai; Wagner, Dirk; Liebner, Susanne

    2018-01-22

    Thawing submarine permafrost is a source of methane to the subsurface biosphere. Methane oxidation in submarine permafrost sediments has been proposed, but the responsible microorganisms remain uncharacterized. We analyzed archaeal communities and identified distinct anaerobic methanotrophic assemblages of marine and terrestrial origin (ANME-2a/b, ANME-2d) both in frozen and completely thawed submarine permafrost sediments. Besides archaea potentially involved in anaerobic oxidation of methane (AOM) we found a large diversity of archaea mainly belonging to Bathyarchaeota, Thaumarchaeota, and Euryarchaeota. Methane concentrations and δ 13 C-methane signatures distinguish horizons of potential AOM coupled either to sulfate reduction in a sulfate-methane transition zone (SMTZ) or to the reduction of other electron acceptors, such as iron, manganese or nitrate. Analysis of functional marker genes (mcrA) and fluorescence in situ hybridization (FISH) corroborate potential activity of AOM communities in submarine permafrost sediments at low temperatures. Modeled potential AOM consumes 72-100% of submarine permafrost methane and up to 1.2 Tg of carbon per year for the total expected area of submarine permafrost. This is comparable with AOM habitats such as cold seeps. We thus propose that AOM is active where submarine permafrost thaws, which should be included in global methane budgets.

  5. Screening for Dissolved Methane in Groundwater Across Texas Shale Plays

    NASA Astrophysics Data System (ADS)

    Nicot, J. P.; Mickler, P. J.; Hildenbrand, Z.; Larson, T.; Darvari, R.; Uhlman, K.; Smyth, R. C.; Scanlon, B. R.

    2014-12-01

    There is considerable interest in methane concentrations in groundwater, particularly as they relate to hydraulic fracturing in shale plays. Recent studies of aquifers in the footprint of several gas plays across the US have shown that (1) dissolved thermogenic methane may or may not be present in the shallow groundwater and (2) shallow thermogenic methane may be naturally occurring and emplaced through mostly vertical migration over geologic time and not necessarily a consequence of recent unconventional gas production. We are currently conducting a large sampling campaign across the state of Texas to characterize shallow methane in fresh-water aquifers overlying shale plays and other tight formations. We collected a total of ~800 water samples, ~500 in the Barnett, ~150 in the Eagle Ford, ~80 in the Haynesville shale plays as well as ~50 in the Delaware Basin of West Texas. Preliminary analytical results suggest that dissolved methane is not widespread in shallow groundwater and that, when present at concentrations exceeding 10 mg/L, it is often of thermogenic origin according to the isotopic signature and to the presence of other light hydrocarbons. The Barnett Shale contains a large methane hotspot (~ 2 miles wide) along the Hood-Parker county line which is likely of natural origin whereas the Eagle Ford and Haynesville shales, neglecting microbial methane, show more distributed methane occurrences. Samples from the Delaware Basin show no methane except close to blowouts.

  6. Type and amount of organic amendments affect enhanced biogenic methane production from coal and microbial community structure

    USGS Publications Warehouse

    Davis, Katherine J.; Lu, Shipeng; Barnhart, Elliott P.; Parker, Albert E.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Slow rates of coal-to-methane conversion limit biogenic methane production from coalbeds. This study demonstrates that rates of coal-to-methane conversion can be increased by the addition of small amounts of organic amendments. Algae, cyanobacteria, yeast cells, and granulated yeast extract were tested at two concentrations (0.1 and 0.5 g/L), and similar increases in total methane produced and methane production rates were observed for all amendments at a given concentration. In 0.1 g/L amended systems, the amount of carbon converted to methane minus the amount produced in coal only systems exceeded the amount of carbon added in the form of amendment, suggesting enhanced coal-to-methane conversion through amendment addition. The amount of methane produced in the 0.5 g/L amended systems did not exceed the amount of carbon added. While the archaeal communities did not vary significantly, the bacterial populations appeared to be strongly influenced by the presence of coal when 0.1 g/L of amendment was added; at an amendment concentration of 0.5 g/L the bacterial community composition appeared to be affected most strongly by the amendment type. Overall, the results suggest that small amounts of amendment are not only sufficient but possibly advantageous if faster in situcoal-to-methane production is to be promoted.

  7. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  8. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming

    2015-04-01

    Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Regarding retrievals of methane in the atmosphere from IASI/Metop spectra and their comparison with ground-based FTIR measurements data

    NASA Astrophysics Data System (ADS)

    Khamatnurova, M. Yu.; Gribanov, K. G.; Zakharov, V. I.; Rokotyan, N. V.; Imasu, R.

    2017-11-01

    The algorithm for atmospheric methane distribution retrieval in atmosphere from IASI spectra has been developed. The feasibility of Levenberg-Marquardt method for atmospheric methane total column amount retrieval from the spectra measured by IASI/METOP modified for the case of lack of a priori covariance matrices for methane vertical profiles is studied in this paper. Method and algorithm were implemented into software package together with iterative estimation of a posteriori covariance matrices and averaging kernels for each individual retrieval. This allows retrieval quality selection using the properties of both types of matrices. Methane (XCH4) retrieval by Levenberg-Marquardt method from IASI/METOP spectra is presented in this work. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder, USA) were taken as initial guess. Surface temperature, air temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval. The data retrieved from ground-based measurements at the Ural Atmospheric Station and data of L2/IASI standard product were used for the verification of the method and results of methane retrieval from IASI/METOP spectra.

  10. Effects of Nitrogen Load on the Function and Diversity of Methanotrophs in the Littoral Wetland of a Boreal Lake

    PubMed Central

    Siljanen, Henri M. P.; Saari, Anne; Bodrossy, Levente; Martikainen, Pertti J.

    2012-01-01

    Methane is the second most abundant greenhouse gas in the atmosphere. A major part of the total methane emissions from lake ecosystems is emitted from littoral wetlands. Methane emissions are significantly reduced by methanotrophs, as they use methane as their sole energy and carbon source. Methanotrophic activity can be either activated or inhibited by nitrogen. However, the effects of nitrogen on methanotrophs in littoral wetlands are unknown. Here we report how nitrogen loading in situ affected the function and diversity of methanotrophs in a boreal littoral wetland. Methanotrophic community composition and functional diversity were analyzed with a particulate methane monooxygenase (pmoA) gene targeted microarray. Nitrogen load had no effects on methane oxidation potential and methane fluxes. Nitrogen load activated pmoA gene transcription of type I (Methylobacter, Methylomonas, and LW21-freshwater phylotypes) methanotrophs, but decreased the relative abundance of type II (Methylocystis, Methylosinus trichosporium, and Methylosinus phylotypes) methanotrophs. Hence, the overall activity of a methanotroph community in littoral wetlands is not affected by nitrogen leached from the catchment area. PMID:22363324

  11. Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone.

    PubMed

    Chronopoulou, Panagiota-Myrsini; Shelley, Felicity; Pritchard, William J; Maanoja, Susanna T; Trimmer, Mark

    2017-06-01

    Oxygen minimum zones (OMZs) contain the largest pools of oceanic methane but its origin and fate are poorly understood. High-resolution (<15 m) water column profiles revealed a 300 m thick layer of elevated methane (20-105 nM) in the anoxic core of the largest OMZ, the Eastern Tropical North Pacific. Sediment core incubations identified a clear benthic methane source where the OMZ meets the continental shelf, between 350 and 650 m, with the flux reflecting the concentration of methane in the overlying anoxic water. Further incubations characterised a methanogenic potential in the presence of both porewater sulphate and nitrate of up to 88 nmol g -1 day -1 in the sediment surface layer. In these methane-producing sediments, the majority (85%) of methyl coenzyme M reductase alpha subunit (mcrA) gene sequences clustered with Methanosarcinaceae (⩾96% similarity to Methanococcoides sp.), a family capable of performing non-competitive methanogenesis. Incubations with 13 C-CH 4 showed potential for both aerobic and anaerobic methane oxidation in the waters within and above the OMZ. Both aerobic and anaerobic methane oxidation is corroborated by the presence of particulate methane monooxygenase (pmoA) gene sequences, related to type I methanotrophs and the lineage of Candidatus Methylomirabilis oxyfera, known to perform nitrite-dependent anaerobic methane oxidation (N-DAMO), respectively.

  12. Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone

    PubMed Central

    Chronopoulou, Panagiota-Myrsini; Shelley, Felicity; Pritchard, William J; Maanoja, Susanna T; Trimmer, Mark

    2017-01-01

    Oxygen minimum zones (OMZs) contain the largest pools of oceanic methane but its origin and fate are poorly understood. High-resolution (<15 m) water column profiles revealed a 300 m thick layer of elevated methane (20–105 nM) in the anoxic core of the largest OMZ, the Eastern Tropical North Pacific. Sediment core incubations identified a clear benthic methane source where the OMZ meets the continental shelf, between 350 and 650 m, with the flux reflecting the concentration of methane in the overlying anoxic water. Further incubations characterised a methanogenic potential in the presence of both porewater sulphate and nitrate of up to 88 nmol g−1day−1 in the sediment surface layer. In these methane-producing sediments, the majority (85%) of methyl coenzyme M reductase alpha subunit (mcrA) gene sequences clustered with Methanosarcinaceae (⩾96% similarity to Methanococcoides sp.), a family capable of performing non-competitive methanogenesis. Incubations with 13C-CH4 showed potential for both aerobic and anaerobic methane oxidation in the waters within and above the OMZ. Both aerobic and anaerobic methane oxidation is corroborated by the presence of particulate methane monooxygenase (pmoA) gene sequences, related to type I methanotrophs and the lineage of Candidatus Methylomirabilis oxyfera, known to perform nitrite-dependent anaerobic methane oxidation (N-DAMO), respectively. PMID:28244978

  13. Total solids content drives high solid anaerobic digestion via mass transfer limitation.

    PubMed

    Abbassi-Guendouz, Amel; Brockmann, Doris; Trably, Eric; Dumas, Claire; Delgenès, Jean-Philippe; Steyer, Jean-Philippe; Escudié, Renaud

    2012-05-01

    The role of the total solids (TS) content on anaerobic digestion was investigated in batch reactors. A range of TS contents from 10% to 35% was evaluated, four replicates were performed. The total methane production slightly decreased with TS concentrations increasing from 10% to 25% TS. Two behaviors were observed at 30% TS: two replicates had similar performances to that at 25% TS; for the two other replicates, the methane production was inhibited as observed at 35% TS. This difference suggested that 30% TS content corresponded to a threshold of the solids content, above which methanogenesis was strongly inhibited. The Anaerobic Digestion Model No. 1 (ADM1) was used to describe the experimental data. The effects of hydrolysis step and liquid/gas mass transfer were particularly investigated. The simulations showed that mass transfer limitation could explain the low methane production at high TS, and that hydrolysis rate constants slightly decreased with increasing TS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Dry reforming of methane on a highly-active Ni-CeO 2 catalyst: Effects of metal-support interactions on C–H bond breaking

    DOE PAGES

    Liu, Zongyuan; Grinter, David C.; Lustemberg, Pablo G.; ...

    2016-05-04

    Ni-CeO 2 is a highly efficient, stable and non-expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO 2 at temperatures as low as 300 K, generating CH x and CO x species on the surface of the catalyst. Strong metal–support interactions activate Ni for the dissociation of methane. The results of density-functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) tomore » only 0.15 eV on Ni/CeO 2–x(111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CH x or C species are detected in the C1s XPS region. As a result, the reforming of methane proceeds in a clean and efficient way.« less

  15. Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production.

    PubMed

    Capson-Tojo, Gabriel; Rouez, Maxime; Crest, Marion; Trably, Eric; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-11-01

    Dry anaerobic digestion is a promising option for food waste treatment and valorization. However, accumulation of ammonia and volatile fatty acids often occurs, leading to inefficient processes and digestion failure. Co-digestion with cardboard may be a solution to overcome this problem. The effect of the initial substrate to inoculum ratio (0.25 to 1gVS·gVS -1 ) and the initial total solids contents (20-30%) on the kinetics and performance of dry food waste mono-digestion and co-digestion with cardboard was investigated in batch tests. All the conditions produced methane efficiently (71-93% of the biochemical methane potential). However, due to lack of methanogenic activity, volatile fatty acids accumulated at the beginning of the digestion and lag phases in the methane production were observed. At increasing substrate to inoculum ratios, the initial acid accumulation was more pronounced and lower cumulative methane yields were obtained. Higher amounts of soluble organic matter remained undegraded at higher substrate loads. Although causing slightly longer lag phases, high initial total solids contents did not jeopardize the methane yields. Cardboard addition reduced acid accumulation and the decline in the yields at increasing substrate loads. However, cardboard addition also caused higher concentrations of propionic acid, which appeared as the most last acid to be degraded. Nevertheless, dry co-digestion of food waste and cardboard in urban areas is demonstrated asan interesting feasible valorization option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Multi-scale monitoring of a marine geologic methane source in the Santa Barbara Channel using imaging spectrometry, ARCTAS-CARB in situ sampling and coastal hourly total hydrocarbon measurements

    NASA Astrophysics Data System (ADS)

    Bradley, E. S.; Leifer, I.; Roberts, D.; Dennison, P. E.; Margolis, J.; Moritsch, M.; Diskin, G. S.; Sachse, G. W.

    2009-12-01

    The Coal Oil Point (COP) hydrocarbon seep field off the coast of Santa Barbara, CA is one of the most active and best-studied marine geologic methane sources in the world and contributes to elevated terrestrial methane concentrations downwind. In this study, we investigate the spatiotemporal variability of this local source and the influence of meteorological conditions on transport and concentration. A methane plume emanating from Trilogy Seep was mapped with the Airborne Visible Infrared Imaging Spectrometer at a 7.5 m resolution with a short-wave infrared band ratio technique. This structure agrees with the local wind speed and direction and is orthogonal to the surface currents. ARCTAS-CARB aircraft in situ sampling of lower-troposphere methane is compared to sub-hour total hydrocarbon concentration (THC) measurements from the Santa Barbara Air Pollution Control District (SBAPCD) station located near COP. Hourly SBAPCD THC values from 1980-2008 demonstrate a decrease in seep source strength until the late 1990s, followed by a consistent increase. The occurrence of elevated SBAPCD THC values for onshore wind conditions as well as numerous positive outliers as high as 17 ppm suggests that seep field emissions are both quasi-steady state and transient, direct (bubble) and diffuse (outgassing). As demonstrated for the COP seeps, the combination of imaging spectrometry, aircraft in situ sampling, and ground-based monitoring provides a powerful approach for understanding local methane sources and transport processes.

  17. Treatment of corn ethanol distillery wastewater using two-stage anaerobic digestion.

    PubMed

    Ráduly, B; Gyenge, L; Szilveszter, Sz; Kedves, A; Crognale, S

    In this study the mesophilic two-stage anaerobic digestion (AD) of corn bioethanol distillery wastewater is investigated in laboratory-scale reactors. Two-stage AD technology separates the different sub-processes of the AD in two distinct reactors, enabling the use of optimal conditions for the different microbial consortia involved in the different process phases, and thus allowing for higher applicable organic loading rates (OLRs), shorter hydraulic retention times (HRTs) and better conversion rates of the organic matter, as well as higher methane content of the produced biogas. In our experiments the reactors have been operated in semi-continuous phase-separated mode. A specific methane production of 1,092 mL/(L·d) has been reached at an OLR of 6.5 g TCOD/(L·d) (TCOD: total chemical oxygen demand) and a total HRT of 21 days (5.7 days in the first-stage, and 15.3 days in the second-stage reactor). Nonetheless the methane concentration in the second-stage reactor was very high (78.9%); the two-stage AD outperformed the reference single-stage AD (conducted at the same reactor loading rate and retention time) by only a small margin in terms of volumetric methane production rate. This makes questionable whether the higher methane content of the biogas counterbalances the added complexity of the two-stage digestion.

  18. Nutrient and energy content, in vitro ruminal fermentation characteristics and methanogenic potential of alpine forage plant species during early summer.

    PubMed

    Jayanegara, Anuraga; Marquardt, Svenja; Kreuzer, Michael; Leiber, Florian

    2011-08-15

    Plants growing on alpine meadows are reported to be rich in phenols. Such compounds may affect ruminal fermentation and reduce the plants' methanogenic potential, making alpine grazing advantageous in this respect. The objective of this study was to quantify nutrients and phenols in Alpine forage grasses, herbs and trees collected over 2 years and, in a 24 h in vitro incubation, their effects on ruminal fermentation parameters. The highest in vitro gas production, resulting in metabolisable energy values around 10 MJ kg⁻¹, were found with Alchemilla xanthochlora and Crepis aurea (herbaceous species) and with Sambucus nigra leaves and flowers (tree species). Related to the amount of total gas production, methane formation was highest with Nardus stricta, and lowest with S. nigra and A. xanthochlora. In addition, Castanea sativa leaves led to an exceptional low methane production, but this was accompanied by severely impaired ruminal fermentation. When the data were analysed by principal component analysis, phenol concentrations were negatively related with methane proportion in total gas. Variation in methane production potential across the investigated forages was small. The two goals of limited methane production potential and high nutritive value for ruminants were met best by A. xanthochlora and S. nigra. Copyright © 2011 Society of Chemical Industry.

  19. Estimation of methane flux from fish ponds of southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, K. H.; Hung, C. C.

    2016-02-01

    CH4 is one of the trace gases in the atmosphere, but it is an important greenhouse gas, with 15 times more effective than CO2 absorbing infrared radiation capability. To date, scientists generally consider that the methane production is mainly from livestock farming, such as pigs and cattle, but the source of methane emission from aquaculture ponds have been ignored. Due to overfishing in the ocean, aquaculture fishery in coastal zone has been increasing globally and the methane emission from those fish ponds has seldom been studied. To better evaluate the emission of methane from fish ponds, we measured methane concentrations in both atmosphere and fish ponds of the southwestern Taiwan from March to September in 2015. Besides an extremely high flux (829 mmol/m2/d), the fluxes of methane in different fish ponds ranged from 19 to 725 μmol/m2/d, which is lower than the global mean value of lakes (2.7 mmol/m2/d). The low methane fluxes during sampling period may be due to non-harvest season, because when the harvest season comes, the higher trophic status will appear, and there will be more organic matter supply for methanogenesis. Currently, we have no idea where the extremely high methane flux comes from. We will try to measure C-isotopes to understand the sources of highest methane fluxes. Overall, the preliminary results provide substantive evidence that methane emission from aquaculture ponds could be an important source and it needs long-term investigations.

  20. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Weld County Colorado using δ13CH4 analysis

    NASA Astrophysics Data System (ADS)

    Rella, C.; Jacobson, G. A.; Crosson, E.; Sweeney, C.; Karion, A.; Petron, G.

    2012-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide (Forster et al. 2007), the importance of quantifying methane emissions becomes clear. Companion presentations at this meeting describe efforts to quantify the overall methane emissions in two separate gas producing areas in Colorado and Utah during intensive field campaigns undertaken in 2012. A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One method for assessing the contribution of these different sources is stable isotope analysis. In particular, the δ13CH4 signature of natural gas (-37 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-50 to -70 permil). In this paper we present measurements of δ13CH4 in Colorado in Weld County, a region of intense natural gas production, using a mobile δ13CH4¬ analyzer capable of high-precision measurements of the stable isotope ratio of methane at ambient levels. This analyzer was used to make stable isotope measurements at a fixed location near the center of the gas producing region, from which an overall isotope ratio for the regional emissions is determined. In addition, mobile measurements in the nocturnal boundary layer have been made, over a total distance of 150 km throughout Weld County, allowing spatially resolved measurements of this isotope signature. Finally, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in this region, by making measurements of the isotope ratio directly in the downwind plume from each source. These data are combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities in the region. The results are compared to inventories as well as other measurement techniques, and the uncertainty of the measurement is estimated.

  1. Estimates of methane emissions from India using CH4-CO-C2H6 relationships from CARIBIC observations in monsoon convective outflow

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Rauthe-Schöch, A.; Schuck, T. J.; van Velthoven, P. F.; Slemr, F.; Brenninkmeijer, C. A.

    2010-12-01

    A large fraction of methane sources are anthropogenic, and include fossil fuel use, biomass/biofuel burning, agriculture and waste treatment. Recently, much attention regarding emissions of greenhouse gases has focused on large, developing nations, as their emissions are expected to rise rapidly over the coming decades. As the second most populous country in the world, and one of the fastest growing economies, India has been of particular interest. Arguably the most important feature of meteorology in India is the Asian summer monsoon. During the monsoon period there exists persistent deep convection over Southern Asia, and the composition of convected air masses is strongly influenced by emissions from India. This ultimately results in a well-mixed air parcel containing air from India being transported to the upper troposphere. Over the course of the 2008 monsoon period the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) passenger aircraft conducted monthly measurement flights which probed this outflow. Data collected during these flights provides a unique opportunity to examine sources of atmospheric species in India. Here we use measurements of methane (CH4), carbon monoxide (CO) and ethane (C2H6) from whole air samples collected during CARIBIC flights to estimate emissions of methane and to quantify those emissions related to flooding during the monsoon. Methane data from the monsoon period show enhancements inside the monsoon plume, which increase as the monsoon progresses. Using emission data for CO and ΔCH4/ΔCO derived from CARIBIC measurements, we estimate total methane emissions to be ~40 Tg yr-1. Relationships of methane to ethane, which shares the bulk of its sources with methane but lacks a biological component, are further used to estimate the fraction of “extra” emissions from biological activity related to increased monsoon rains. This additional methane is a considerable fraction of total methane emissions. As emissions from rice paddies, which are not restricted to the monsoon season, are estimated to be 4±2 Tg yr-1, we expect that the additional methane emitted during the monsoon season is a product of anaerobic microbial activity related to persistent and widespread flooding during the monsoon, although the exact sources cannot be identified from our data.

  2. The rumen microbial metagenome associated with high methane production in cattle.

    PubMed

    Wallace, R John; Rooke, John A; McKain, Nest; Duthie, Carol-Anne; Hyslop, Jimmy J; Ross, David W; Waterhouse, Anthony; Watson, Mick; Roehe, Rainer

    2015-10-23

    Methane represents 16 % of total anthropogenic greenhouse gas emissions. It has been estimated that ruminant livestock produce ca. 29 % of this methane. As individual animals produce consistently different quantities of methane, understanding the basis for these differences may lead to new opportunities for mitigating ruminal methane emissions. Metagenomics is a powerful new tool for understanding the composition and function of complex microbial communities. Here we have applied metagenomics to the rumen microbial community to identify differences in the microbiota and metagenome that lead to high- and low-methane-emitting cattle phenotypes. Four pairs of beef cattle were selected for extreme high and low methane emissions from 72 animals, matched for breed (Aberdeen-Angus or Limousin cross) and diet (high or medium concentrate). Community analysis was carried out by qPCR of 16S and 18S rRNA genes and by alignment of Illumina HiSeq reads to the GREENGENES database. Total genomic reads were aligned to the KEGG genes databasefor functional analysis. Deep sequencing produced on average 11.3 Gb per sample. 16S rRNA gene abundances indicated that archaea, predominantly Methanobrevibacter, were 2.5× more numerous (P = 0.026) in high emitters, whereas among bacteria Proteobacteria, predominantly Succinivibrionaceae, were 4-fold less abundant (2.7 vs. 11.2 %; P = 0.002). KEGG analysis revealed that archaeal genes leading directly or indirectly to methane production were 2.7-fold more abundant in high emitters. Genes less abundant in high emitters included acetate kinase, electron transport complex proteins RnfC and RnfD and glucose-6-phosphate isomerase. Sequence data were assembled de novo and over 1.5 million proteins were annotated on the subsequent metagenome scaffolds. Less than half of the predicted genes matched matched a domain within Pfam. Amongst 2774 identified proteins of the 20 KEGG orthologues that correlated with methane emissions, only 16 showed 100 % identity with a publicly available protein sequence. The abundance of archaeal genes in ruminal digesta correlated strongly with differing methane emissions from individual animals, a finding useful for genetic screening purposes. Lower emissions were accompanied by higher Succinovibrionaceae abundance and changes in acetate and hydrogen production leading to less methanogenesis, as similarly postulated for Australian macropods. Large numbers of predicted protein sequences differed between high- and low-methane-emitting cattle. Ninety-nine percent were unknown, indicating a fertile area for future exploitation.

  3. The methane production of poultry slaughtering residues and effects of pre-treatments on the methane production of poultry feather.

    PubMed

    Salminen, E; Einola, J; Rintala, J

    2003-09-01

    The biological methane production rate and yield of different poultry slaughtering residues were studied. Poultry offal, blood, and bonemeal were rich in proteins and lipids and showed high methane yields, 0.7-0.9, 0.5, and 0.6-0.7 m3 kg(-1) volatile solids(added), respectively (270-340, 100, and 150-170 m3 ton(-1) wet weight). Blood and bonemeal produced methane rapidly, whereas the methane production of offal was more delayed probably due to long-chain fatty acid inhibition. The length of delay depended on the source and concentration of inoculum and incubation temperature, sewage sludge at 35 degrees C having the shortest delay of a few days, while granular sludge did not produce methane within 94 days of incubation. Feather showed a somewhat lower methane yield, 0.21 m3 kg(-1) volatile solids(added) (50 m3 ton(-1) wet weight). Combined thermal (120 degrees C, 5 min) and enzymatic (commercial alkaline endopeptidase, 2-10 g l(-1)) pre-treatments increased its methane yield by 37 to 51%. Thermal (70-120 degrees C, 5-60 min), chemical (NaOH 2-10 g l(-1), 2-24 h), and enzymatic pre-treatments were less effective, with methane yield increasing by 5 to 32%. Based on the present results, anaerobic digestion of the studied poultry slaughtering residues appears a promising possibility because of the high methane yield and nitrogen content of these residues (8 to 14% N of total solids), whereas pre-treatments were shown to improve the methane production of feather.

  4. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may compensate for the loss of the methane sink function following land-use change. © 2015 John Wiley & Sons Ltd.

  5. Microscopic Origin of Strain Hardening in Methane Hydrate

    PubMed Central

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2016-01-01

    It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon. PMID:27009239

  6. Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows.

    PubMed

    Guyader, J; Eugène, M; Doreau, M; Morgavi, D P; Gérard, C; Loncke, C; Martin, C

    2015-11-01

    Tea saponin is considered a promising natural compound for reducing enteric methane emissions in ruminants. A trial was conducted to study the effect of this plant extract fed alone or in combination with nitrate on methane emissions, total tract digestive processes, and ruminal characteristics in cattle. The experiment was conducted as a 2 × 2 factorial design with 4 ruminally cannulated nonlactating dairy cows. Feed offer was restricted to 90% of voluntary intake and diets consisted of (DM basis): 1) control (CON; 50% hay and 50% pelleted concentrates), 2) CON with 0.5% tea saponin (TEA), 3) CON with 2.3% nitrate (NIT), and 4) CON with 0.5% tea saponin and 2.3% nitrate (TEA+NIT). Tea saponin and nitrate were included in pelleted concentrates. Diets contained similar amounts of CP (12.2%), starch (26.0%), and NDF (40.1%). Experimental periods lasted 5 wk including 2 wk of measurement (wk 4 and 5), during which intake was measured daily. In wk 4, daily methane emissions were quantified for 4 d using open circuit respiratory chambers. In wk 5, total tract digestibility, N balance, and urinary excretion of purine derivatives were determined from total feces and urine collected separately for 6 d. Ruminal fermentation products and protozoa concentration were analyzed from samples taken after morning feeding for 2 nonconsecutive days in wk 5. Tea saponin and nitrate supplementation decreased feed intake ( < 0.05), with an additive effect when fed in combination. Compared with CON, tea saponin did not modify methane emissions (g/kg DMI; > 0.05), whereas nitrate-containing diets (NIT and TEA+NIT) decreased methanogenesis by 28%, on average ( < 0.001). Total tract digestibility, N balance, and urinary excretion of purine derivatives were similar among diets. Ruminal fermentation products were not affected by tea saponin, whereas nitrate-containing diets increased acetate proportion and decreased butyrate proportion and ammonia concentration ( < 0.05). Under the experimental conditions tested, we confirmed the antimethanogenic effect of nitrate, whereas tea saponin alone included in pelleted concentrates failed to decrease enteric methane emissions in nonlactating dairy cows.

  7. Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Tongwei; Krooss, Bernhard M.

    2001-08-01

    Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated. Compared with the carbon isotopic composition of the source methane (δ13C1 = -39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff -δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed. The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous ;semi-infinite; shale caprock over a period of 10 Ma. In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas. The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.

  8. Co-digestion of solid waste: Towards a simple model to predict methane production.

    PubMed

    Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme

    2018-04-01

    Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Factors controlling headspace pressure in a manual manometric BMP method can be used to produce a methane output comparable to AMPTS.

    PubMed

    Himanshu, H; Voelklein, M A; Murphy, J D; Grant, J; O'Kiely, P

    2017-08-01

    The manual manometric biochemical methane potential (mBMP) test uses the increase in pressure to calculate the gas produced. This gas production may be affected by the headspace volume in the incubation bottle and by the overhead pressure measurement and release (OHPMR) frequency. The biogas and methane yields of cellulose, barley, silage and slurry were compared with three incubation bottle headspace volumes (50, 90 and 180ml; constant 70ml total medium) and four OHPMR frequencies (daily, each third day, weekly and solely at the end of experiment). The methane yields of barley, silage and slurry were compared with those from an automated volumetric method (AMPTS). Headspace volume and OHPMR frequency effects on biogas yield were mediated mainly through headspace pressure, with the latter having a negative effect on the biogas yield measured and relatively little effect on methane yield. Two mBMP treatments produced methane yields equivalent to AMPTS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass.

    PubMed

    Zhao, Xiaoling; Liu, Jinhuan; Liu, Jingjing; Yang, Fuyu; Zhu, Wanbin; Yuan, Xufeng; Hu, Yuegao; Cui, Zongjun; Wang, Xiaofen

    2017-10-01

    Silage processing has a crucial positive impact on the methane yield of anaerobic treated substrates. Changes in the characteristics of switchgrass after ensiling with different additives and their effects on methane production and microbial community changes during anaerobic digestion were investigated. After ensiling (CK), methane yield was increased by 33.59% relative to that of fresh switchgrass (FS). In comparison with the CK treatment, methane production was improved by 17.41%, 13.08% and 8.72% in response to ensiling with LBr+X, LBr and X, respectively. A modified Gompertz model predicted that the optimum treatment was LBr+X, with a potential cumulative methane yield of 178.31mL/g total solids (TS) and a maximum biogas production rate of 44.39mL/g TS·d. Firmicutes and Bacteroidetes were the predominant bacteria in FS and silage switchgrass; however, the switchgrass treated with LBr+X was rich in Synergistetes, which was crucial for methane production. Copyright © 2017. Published by Elsevier Ltd.

  11. Measurements of Methane Emissions and Volatile Organic Compounds from Shale Gas Operations in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Omara, M.; Subramanian, R.; Sullivan, M.; Robinson, A. L.; Presto, A. A.

    2014-12-01

    The Marcellus Shale is the most expansive shale gas reserve in play in the United States, representing an estimated 17 to 29 % of the total domestic shale gas reserves. The rapid and extensive development of this shale gas reserve in the past decade has stimulated significant interest and debate over the climate and environmental impacts associated with fugitive releases of methane and other pollutants, including volatile organic compounds. However, the nature and magnitude of these pollutant emissions remain poorly characterized. This study utilizes the tracer release technique to characterize total fugitive methane release rates from natural gas facilities in southwestern Pennsylvania and West Virginia that are at different stages of development, including well completion flowbacks and active production. Real-time downwind concentrations of methane and two tracer gases (acetylene and nitrous oxide) released onsite at known flow rates were measured using a quantum cascade tunable infrared laser differential absorption spectrometer (QC-TILDAS, Aerodyne, Billerica, MA) and a cavity ring down spectrometer (Model G2203, Picarro, Santa Clara, CA). Evacuated Silonite canisters were used to sample ambient air during downwind transects of methane and tracer plumes to assess volatile organic compounds (VOCs). A gas chromatograph with a flame ionization detector was used to quantify VOCs following the EPA Method TO-14A. A preliminary assessment of fugitive emissions from actively producing sites indicated that methane leak rates ranged from approximately 1.8 to 6.2 SCFM, possibly reflecting differences in facility age and installed emissions control technology. A detailed comparison of methane leak rates and VOCs emissions with recent published literature for other US shale gas plays will also be discussed.

  12. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows.

    PubMed

    Olijhoek, D W; Hellwing, A L F; Brask, M; Weisbjerg, M R; Højberg, O; Larsen, M K; Dijkstra, J; Erlandsen, E J; Lund, P

    2016-08-01

    Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility, microbial protein synthesis, and blood methemoglobin. In a 4×4 Latin square design 4 lactating Danish Holstein dairy cows fitted with rumen, duodenal, and ileal cannulas were assigned to 4 calcium ammonium nitrate addition levels: control, low, medium, and high [0, 5.3, 13.6, and 21.1g of nitrate/kg of dry matter (DM), respectively]. Diets were made isonitrogenous by replacing urea. Cows were fed ad libitum and, after a 6-d period of gradual introduction of nitrate, adapted to the corn-silage-based total mixed ration (forage:concentrate ratio 50:50 on DM basis) for 16d before sampling. Digesta content from duodenum, ileum, and feces, and rumen liquid were collected, after which methane production and hydrogen emissions were measured in respiration chambers. Methane production [L/kg of dry matter intake (DMI)] linearly decreased with increasing nitrate concentrations compared with the control, corresponding to a reduction of 6, 13, and 23% for the low, medium, and high diets, respectively. Methane production was lowered with apparent efficiencies (measured methane reduction relative to potential methane reduction) of 82.3, 71.9, and 79.4% for the low, medium, and high diets, respectively. Addition of nitrate increased hydrogen emissions (L/kg of DMI) quadratically by a factor of 2.5, 3.4, and 3.0 (as L/kg of DMI) for the low, medium, and high diets, respectively, compared with the control. Blood methemoglobin levels and nitrate concentrations in milk and urine increased with increasing nitrate intake, but did not constitute a threat for animal health and human food safety. Microbial crude protein synthesis and efficiency were unaffected. Total volatile fatty acid concentration and molar proportions of acetate, butyrate, and propionate were unaffected, whereas molar proportions of formate increased. Milk yield, milk composition, DMI and digestibility of DM, organic matter, crude protein, and neutral detergent fiber in rumen, small intestine, hindgut, and total tract were unaffected by addition of nitrate. In conclusion, nitrate lowered methane production linearly with minor effects on rumen fermentation and no effects on nutrient digestibility. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Carbon isotope fractionation during microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Barker, James F.; Fritz, Peter

    1981-09-01

    Methane, a common trace constituent of groundwaters, occasionally makes up more than 20% of the total carbon in groundwaters1,2. In aerobic environments CH4-rich waters can enable microbial food chain supporting a mixed culture of bacteria with methane oxidation as the primary energy source to develop3. Such processes may influence the isotopic composition of the residual methane and because 13C/12C analyses have been used to characterize the genesis of methanes found in different environments, an understanding of the magnitude of such effects is necessary. In addition, carbon dioxide produced by the methane-utilizing bacteria can be added to the inorganic carbon pool of affected groundwaters. We found carbon dioxide experimentally produced by methane-utilizing bacteria to be enriched in 12C by 5.0-29.6‰, relative to the residual methane. Where methane-bearing groundwaters discharged into aerobic environments microbial methane oxidation occurred, with the residual methane becoming progressively enriched in 13C. Various models have been proposed to explain the 13C/12C and 14C content of the dissolved inorganic carbon (DIC) of groundwaters in terms of additions or losses during flow in the subsurface4,5. The knowledge of both stable carbon isotope ratios in various pools and the magnitude of carbon isotope fractionation during various processes allows geochemists to use the 13C/12C ratio of the DIC along with water chemistry to estimate corrected 14C groundwater ages4,5. We show here that a knowledge of the carbon isotope fractionation between CH4 and CO2 during microbial methane-utilization could modify such models for application to groundwaters affected by microbial methane oxidation.

  14. Ebullitive methane emissions from oxygenated wetland streams

    USGS Publications Warehouse

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  15. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    USGS Publications Warehouse

    Shuai, Yanhua; Douglas, Peter M.J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-01-01

    Multiply isotopically substituted molecules (‘clumped’ isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature–time conditions corresponding to ‘low,’ ‘mature,’ and ‘over-mature’ stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions (‘high’ to ‘over-mature’ stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where ‘secondary’ cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation of methane from an alkyl precursor. Other interpretations are also explored. These findings provide new insights into the chemistry of thermogenic methane generation, and may provide an explanation of the elevated apparent temperatures recorded by the methane clumped-isotope thermometer in some natural gases. However, it remains unknown if the laboratory experiments capture the processes that occur at the longer time and lower temperatures of natural gas formation.

  16. An advanced method of contributing emissions to short-lived chemical species (OH and HO2): the TAGGING 1.1 submodel based on the Modular Earth Submodel System (MESSy 2.53)

    NASA Astrophysics Data System (ADS)

    Rieger, Vanessa S.; Mertens, Mariano; Grewe, Volker

    2018-06-01

    To mitigate the human impact on climate change, it is essential to determine the contribution of emissions to the concentration of trace gases. In particular, the source attribution of short-lived species such as OH and HO2 is important as they play a crucial role for atmospheric chemistry. This study presents an advanced version of a tagging method for OH and HO2 (HOx) which attributes HOx concentrations to emissions. While the former version (V1.0) only considered 12 reactions in the troposphere, the new version (V1.1), presented here, takes 19 reactions in the troposphere into account. For the first time, the main chemical reactions for the HOx chemistry in the stratosphere are also regarded (in total 27 reactions). To fully take into account the main HO2 source by the reaction of H and O2, the tagging of the H radical is introduced. In order to ensure the steady-state assumption, we introduce rest terms which balance the deviation of HOx production and loss. This closes the budget between the sum of all contributions and the total concentration. The contributions to OH and HO2 obtained by the advanced tagging method V1.1 deviate from V1.0 in certain source categories. For OH, major changes are found in the categories biomass burning, biogenic emissions and methane decomposition. For HO2, the contributions differ strongly in the categories biogenic emissions and methane decomposition. As HOx reacts with ozone (O3), carbon monoxide (CO), reactive nitrogen compounds (NOy), non-methane hydrocarbons (NMHCs) and peroxyacyl nitrates (PAN), the contributions to these species are also modified by the advanced HOx tagging method V1.1. The contributions to NOy, NMHC and PAN show only little change, whereas O3 from biogenic emissions and methane decomposition increases in the tropical troposphere. Variations for CO from biogenic emissions and biomass burning are only found in the Southern Hemisphere.

  17. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    PubMed

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but TMP tended to increase due to increasing bicarbonate concentration. Although total VFA concentration and molar percentage of butyrate were unchanged, the molar percentage of acetate, and acetate-to-propionate ratio decreased, whereas the molar percentage of propionate increased quadratically with increasing bicarbonate concentration. This study demonstrated for the first time that headspace composition, especially CO2 content, and bicarbonate concentration in media could significantly influence gas and methane production, and rumen fermentation in gas production techniques. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdridge, D. J.

    Global Warming and Methane--Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as ''greenhouse gases.'' These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro-carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a greenhouse enclosure, trapping infrared radiation inside and warming the space. One of the more important greenhouse gases is the naturally occurring hydrocarbon methane. Methane, a primary component of natural gas, is themore » second most important contributor to the greenhouse effect (after carbon dioxide). Natural sources of methane include wetlands, fossil sources, termites, oceans, fresh-waters, and non-wetland soils. Methane is also produced by human-related (or anthropogenic) activities such as fossil fuel production, coal mining, rice cultivation, biomass burning, water treatment facilities, waste management operations and landfills, and domesticated livestock operations (Figure 1). These anthropogenic activities account for approximately 70% of the methane emissions to the atmosphere. Methane is removed naturally from the atmosphere in three ways. These methods, commonly referred to as sinks, are oxidation by chemical reaction with tropospheric hydroxyl ion, oxidation within the stratosphere, and microbial uptake by soils. In spite of their important role in removing excess methane from the atmosphere, the sinks cannot keep up with global methane production. Methane concentrations in the atmosphere have increased by 145% since 1800. Increases in atmospheric methane roughly parallel world population growth, pointing to anthropogenic sources as the cause (Figure 2). Increases in the methane concentration reduce Earth's natural cooling efficiency by trapping more of the outgoing terrestrial infrared radiation, increasing the near-surface temperature.« less

  19. 40 CFR 63.1426 - Process vent requirements for determining organic HAP concentration, control efficiency, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Production § 63.1426 Process vent requirements for determining organic HAP concentration, control efficiency..., total organic HAP, or as TOC minus methane and ethane according to the procedures specified. When... methane and ethane) concentrations in all process vent streams and primary and secondary fuels introduced...

  20. 40 CFR 63.772 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Oil and Natural Gas Production Facilities § 63.772 Test methods, compliance procedures, and compliance...) A mixture of methane in air at a concentration less than 10,000 parts per million by volume. (5) An... methane and ethane) or total HAP (Ei, Eo) shall be computed using the equations and procedures specified...

  1. 40 CFR 63.772 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Oil and Natural Gas Production Facilities § 63.772 Test methods, compliance procedures, and compliance...) A mixture of methane in air at a concentration less than 10,000 parts per million by volume. (5) An... methane and ethane) or total HAP (Ei, Eo) shall be computed using the equations and procedures specified...

  2. 40 CFR 63.997 - Performance test and compliance assessment requirements for control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as TOC minus methane and ethane according to the procedures specified. (i) Selection of sampling... regulated material or TOC, sampling sites shall be located as specified in paragraphs (e)(2)(i)(A)(1) and (e... shall ensure the measurement of total organic regulated material or TOC (minus methane and ethane...

  3. 40 CFR 65.158 - Performance test procedures for control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulated material or as TOC (minus methane and ethane) according to the procedures specified. (1) Method 1... material or TOC, sampling sites shall be located at the inlet of the control device as specified in the... sampling sites shall ensure the measurement of total regulated material or TOC (minus methane and ethane...

  4. HIGH FLUX MEMBRANES TO UPGRADE BIOGAS FROM ANAEROBIC DIGESTERS - PHASE I

    EPA Science Inventory

    Despite the general decrease in total methane emissions since 1990, methane emissions from manure management increased by 33% from 1.5 Tg in 1990 to 2.0 Tg in 2006. The majority of this increase was due to general changes in methods of manure management. It is reasonable to ...

  5. Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste.

    PubMed

    Chen, Xiang; Yan, Wei; Sheng, Kuichuan; Sanati, Mehri

    2014-02-01

    Co-digestion of food waste and green waste was conducted with six feedstock mixing ratios to evaluate biogas production. Increasing the food waste percentage in the feedstock resulted in an increased methane yield, while shorter retention time was achieved by increasing the green waste percentage. Food waste/green waste ratio of 40:60 was determined as preferred ratio for optimal biogas production. About 90% of methane yield was obtained after 24.5 days of digestion, with total methane yield of 272.1 mL/g VS. Based the preferred ratio, effect of total solids (TS) content on co-digestion of food waste and green waste was evaluated over a TS range of 5-25%. Results showed that methane yields from high-solids anaerobic digestion (15-20% TS) were higher than the output of liquid anaerobic digestion (5-10% TS), while methanogenesis was inhibited by further increasing the TS content to 25%. The inhibition may be caused by organic overloading and excess ammonia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion.

    PubMed

    Motte, J-C; Escudié, R; Bernet, N; Delgenes, J-P; Steyer, J-P; Dumas, C

    2013-09-01

    Among all the process parameters of solid-state anaerobic digestion (SS-AD), total solid content (TS), inoculation (S/X ratio) and size of the organic solid particles can be optimized to improve methane yield and process stability. To evaluate the effects of each parameter and their interactions on methane production, a three level Box-Behnken experimental design was implemented in SS-AD batch tests degrading wheat straw by adjusting: TS content from 15% to 25%, S/X ratio (in volatile solids) between 28 and 47 and particle size with a mean diameter ranging from 0.1 to 1.4mm. A dynamic analysis of the methane production indicates that the S/X ratio has only an effect during the start-up phase of the SS-AD. During the growing phase, TS content becomes the main parameter governing the methane production and its strong interaction with the particle size suggests the important role of water compartmentation on SS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. 2004 Methane and Nitrous Oxide Emissions from Manure Management in South Africa

    PubMed Central

    Moeletsi, Mokhele Edmond; Tongwane, Mphethe Isaac

    2015-01-01

    Simple Summary Livestock manure management is one of the main sources of greenhouse gas (GHG) emissions in South Africa producing mainly methane and nitrous oxide. The emissions from this sub-category are dependent on how manure is stored. Liquid-stored manure predominantly produces methane while dry-based manure enhances mainly production of nitrous oxide. Intergovernmental Panel on Climate Change (IPCC) guidelines were utilized at different tier levels in estimating GHG emissions from manure management. The results show that methane emissions are relatively higher than nitrous oxide emissions with 3104 Gg and 2272 Gg respectively in carbon dioxide global warming equivalent. Abstract Manure management in livestock makes a significant contribution towards greenhouse gas emissions in the Agriculture; Forestry and Other Land Use category in South Africa. Methane and nitrous oxide emissions are prevalent in contrasting manure management systems; promoting anaerobic and aerobic conditions respectively. In this paper; both Tier 1 and modified Tier 2 approaches of the IPCC guidelines are utilized to estimate the emissions from South African livestock manure management. Activity data (animal population, animal weights, manure management systems, etc.) were sourced from various resources for estimation of both emissions factors and emissions of methane and nitrous oxide. The results show relatively high methane emissions factors from manure management for mature female dairy cattle (40.98 kg/year/animal), sows (25.23 kg/year/animal) and boars (25.23 kg/year/animal). Hence, contributions for pig farming and dairy cattle are the highest at 54.50 Gg and 32.01 Gg respectively, with total emissions of 134.97 Gg (3104 Gg CO2 Equivalent). Total nitrous oxide emissions are estimated at 7.10 Gg (2272 Gg CO2 Equivalent) and the three main contributors are commercial beef cattle; poultry and small-scale beef farming at 1.80 Gg; 1.72 Gg and 1.69 Gg respectively. Mitigation options from manure management must be taken with care due to divergent conducive requirements of methane and nitrous oxide emissions requirements. PMID:26479229

  8. Speciation and Toxic Emissions from On road Vehicles, and Particulate Matter Emissions from Light-Duty Gasoline Vehicles in MOVES201X

    EPA Science Inventory

    Updated methane, non-methane organic gas, and volatile organic compound calculations based on speciation data. Updated speciation and toxic emission rates for new model year 2010 and later heavy-duty diesel engines. Updated particulate matter emission rates for 2004 and later mod...

  9. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event.

    PubMed

    Petrenko, Vasilii V; Smith, Andrew M; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F; Severinghaus, Jeffrey P

    2017-08-23

    Methane (CH 4 ) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane ( 14 CH 4 ) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today's natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  10. Role of Megafauna and Frozen Soil in the Atmospheric CH4 Dynamics

    PubMed Central

    Zimov, Sergey; Zimov, Nikita

    2014-01-01

    Modern wetlands are the world’s strongest methane source. But what was the role of this source in the past? An analysis of global 14C data for basal peat combined with modelling of wetland succession allowed us to reconstruct the dynamics of global wetland methane emission through time. These data show that the rise of atmospheric methane concentrations during the Pleistocene-Holocene transition was not connected with wetland expansion, but rather started substantially later, only 9 thousand years ago. Additionally, wetland expansion took place against the background of a decline in atmospheric methane concentration. The isotopic composition of methane varies according to source. Owing to ice sheet drilling programs past dynamics of atmospheric methane isotopic composition is now known. For example over the course of Pleistocene-Holocene transition atmospheric methane became depleted in the deuterium isotope, which indicated that the rise in methane concentrations was not connected with activation of the deuterium-rich gas clathrates. Modelling of the budget of the atmospheric methane and its isotopic composition allowed us to reconstruct the dynamics of all main methane sources. For the late Pleistocene, the largest methane source was megaherbivores, whose total biomass is estimated to have exceeded that of present-day humans and domestic animals. This corresponds with our independent estimates of herbivore density on the pastures of the late Pleistocene based on herbivore skeleton density in the permafrost. During deglaciation, the largest methane emissions originated from degrading frozen soils of the mammoth steppe biome. Methane from this source is unique, as it is depleted of all isotopes. We estimated that over the entire course of deglaciation (15,000 to 6,000 year before present), soils of the mammoth steppe released 300–550 Pg (1015 g) of methane. From current study we conclude that the Late Quaternary Extinction significantly affected the global methane cycle. PMID:24695117

  11. Controls on Methane Occurrences in Aquifers Overlying the Eagle Ford Shale Play, South Texas.

    PubMed

    Nicot, Jean-Philippe; Larson, Toti; Darvari, Roxana; Mickler, Patrick; Uhlman, Kristine; Costley, Ruth

    2017-07-01

    Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo-Wilcox Aquifer (250-1200 m depth range) and Queen City-Sparta Aquifer (150-900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ 13 C methane (>-55‰) and δD methane (>-180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ 13 C methane and δD methane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs. © 2017, National Ground Water Association.

  12. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event

    NASA Astrophysics Data System (ADS)

    Petrenko, Vasilii V.; Smith, Andrew M.; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F.; Severinghaus, Jeffrey P.

    2017-08-01

    Methane (CH4) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane (14CH4) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today’s natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  13. Pilot-scale testing of a leachbed for anaerobic digestion of livestock residues on-farm.

    PubMed

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2016-04-01

    A leachbed is a relatively simple anaerobic digester suitable for high-solids residues and on-farm applications. However, performance characteristics and optimal configuration of leachbeds are not well-understood. In this study, two 200 L pilot-scale leachbeds fed with spent straw bedding from pigs/swine (methane potential, B0 = 195-218 L CH4 kg(-1) VS fed) were used to assess the effects of leachate recirculation mode (trickling vs. flood-and-drain) on the digestion performance. Results showed comparable substrate solubilisation extents (30-45% of total chemical oxygen demand fed) and methane conversion (50% of the B0) for the trickling and flood-and-drain modes, indicating that digestion performance was insensitive to the mode of leachate flow. However, the flood-and-drain leachbed mobilised more particulates into the leachate than the trickling leachbed, an undesirable outcome, because these particulates were mostly non-biodegradable. Inoculation with solid residues from a previous leachbed (inoculum-to-substrate ratio of 0.22 on a VS basis) hastened the leachbed start-up, but methane recovery remained at 50% of the B0 regardless of the leachate recirculation mode. Post-digestion testing indicated that the leachbeds may have been limited by microbial activity/inhibition. The high residual methane potential of leachate from the trickling (residual Bo = 732 ± 7 L CH4 kg(-1) VS fed) and flood-and-drain leachbeds (582 ± 8 L CH4 kg(-1) VS fed) indicated an opportunity for further processing of leachate via a separate methanogenic step. Overall, a trickling leachbed appeared to be more favourable than the flood-and-drain leachbed for treating spent bedding at farm-scale due to easier operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Transcontinental Surface Validation of Satellite Observations of Enhanced Methane Anomalies Associated with Fossil Fuel Industrial Methane Emissions

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Culling, D.; Schneising, O.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.

    2012-12-01

    A ground-based, transcontinental (Florida to California - i.e., satellite-scale) survey was conducted to understand better the role of fossil fuel industrial (FFI) fugitive emissions of the potent greenhouse gas, methane. Data were collected by flame ion detection gas chromatography (Fall 2010) and by a cavity ring-down sensor (Winter 2012) from a nearly continuously moving recreational vehicle, allowing 24/7 data collection. Nocturnal methane measurements for similar sources tended to be higher compared to daytime values, sometime significantly, due to day/night meteorological differences. Data revealed strong and persistent FFI methane sources associated with refining, a presumed major pipeline leak, and several minor pipeline leaks, a coal loading plant, and areas of active petroleum production. Data showed FFI source emissions were highly transient and heterogeneous; however, integrated over these large-scale facilities, methane signatures overwhelmed that of other sources, creating clearly identifiable plumes that were well elevated above ambient. The highest methane concentration recorded was 39 ppm at an active central valley California production field, while desert values were as low as 1.80 ppm. Surface methane data show similar trends with strong emissions correlated with FFI on large (4° bin) scales and positive methane anomalies centered on the Gulf Coast area of Houston, home to most of US refining capacity. Comparison with SCIAMACHY and GOSAT satellite data show agreement with surface data in the large-scale methane spatial patterns. Positive satellite methane anomalies in the southeast and Mexico largely correlated with methane anthropogenic and wetland inventory models suggests most strong ground methane anomalies in the Gulf of Mexico region were related to dominant FFI input for most seasons. Wind advection played a role, in some cases confounding a clear relationship. Results are consistent with a non-negligible underestimation of the FFI contribution to global methane budgets.; In situ methane concentrations during transcontinental survey Fall 2010.

  15. Estimating Landfill Methane Oxidation Using the Information of CO2/CH4 Fluxes Measured By the Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Xu, L.; McDermitt, D. K.; Li, J.; Green, R. B.

    2016-12-01

    Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate the landfill methane oxidation fraction when the anaerobic CO2/CH4 production ratio is known. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2/CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested with eddy covariance CO2 and CH4 emission rates at Bluff Road Landfill in Lincoln Nebraska. It predicted zero oxidation rate in the northern portion of this landfill where a membrane and vents were present. The zero oxidation rate was expected because there would be little opportunity for methane to encounter oxidizing conditions before leaving the vents. We also applied the model at the Turkey Run Landfill in Georgia to estimate the CH4 oxidation rate over a one year period. In contrast to Bluff Road Landfill, the Turkey Run Landfill did not have a membrane or vents. Instead, methane produced in the landfill had to diffuse through a 0.5 m soil cap before release to the atmosphere. We observed evidence for methane oxidation ranging from about 18% to above 60% depending upon the age of deposited waste material. The model will be briefly described, and results from the two contrasting landfills will be discussed in this presentation.

  16. Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.

    2014-01-01

    NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.

  17. A review of oxygen removal from oxygen-bearing coal-mine methane.

    PubMed

    Zhao, Peiyu; Zhang, Guojie; Sun, Yinghui; Xu, Ying

    2017-06-01

    In this article, a comparison will be made concerning the advantages and disadvantages of five kinds of coal mine methane (CMM) deoxygenation method, including pressure swing adsorption, combustion, membrane separation, non-metallic reduction, and cryogenic distillation. Pressure swing adsorption has a wide range of application and strong production capacity. To achieve this goal, adsorbent must have high selectivity, adsorption capacity, and adequate adsorption/desorption kinetics, remain stable after several adsorption/desorption cycles, and possess good thermal and mechanical stabilities. Catalytic combustion deoxygenation is a high-temperature exothermic redox chemical reaction, which releases large amounts of thermal energy. So, the stable and accurate control of the temperature is not easy. Meanwhile partial methane is lost. The key of catalytic combustion deoxygenation lies in the development of high-efficiency catalyst. Membrane separation has advantages of high separation efficiency and low energy consumption. However, there are many obstacles, including higher costs. Membrane materials have the requirements of both high permeability and high selectivity. The development of new membrane materials is a key for membrane separation. Cryogenic distillation has many excellence advantages, such as high purity production and high recovery. However, the energy consumption increases with decreasing CH 4 concentrations in feed gas. Moreover, there are many types of operational security problems. And that several kinds of deoxygenation techniques mentioned above have an economic value just for oxygen-bearing CMM with methane content above 30%. Moreover, all the above methods are not applicable to deoxygenation of low concentration CMM. Non-metallic reduction method cannot only realize cyclic utilization of deoxidizer but also have no impurity gases generation. It also has a relatively low cost and low loss rate of methane, and the oxygen is removed thoroughly. In particular, the non-metallic reduction method has good development prospects for low concentration oxygen-bearing CMM. This article also points out the direction of future development of coal mine methane deoxygenation.

  18. Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

    NASA Astrophysics Data System (ADS)

    Banerjee, Antara; Maycock, Amanda C.; Pyle, John A.

    2018-02-01

    The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of -0.09 W m-2. This is opposed by a positive ozone RF of 0.05 W m-2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.18 W m-2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (˜ 15 %) of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m-2) for RCP4.5 and a negative RF (-0.07 W m-2) for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m-2) for the stratospheric, tropospheric and whole-atmosphere RFs.

  19. Investigations of Methane Production in Hypersaline Environments

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being produced by these sediments. Substrate limitation of methanogenesis in these environments, and not methane oxidation, would explain the isotopic values of the methane in these environments. Incubations with both isotopically labeled and unlabeled putative substrates for methanogenesis have shown that the substrates most important for methanogenesis in these environments are the so-called non-competitive substrates, e.g., methylamines, dimethylsulfide, and methanol. Acetate and bicarbonate appear not to be important substrates for methanogens in these environments. Extraction of DNA and analysis of a gene used for methane production (mcrA) has revealed that the community composition of methanogens is consistent with organisms known to use non-competitive substrates. Our work has shown that hypersaline environments have the potential to both produce and preserve methane for analysis, e.g., by capable rovers. Our work expends the range of methane isotopic values now known to be produced by active methanogenesis

  20. Mitigation options for methane emissions from rice fields in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R.

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of themore » total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.« less

  1. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.

    PubMed

    Niemann, Helge; Lösekann, Tina; de Beer, Dirk; Elvert, Marcus; Nadalig, Thierry; Knittel, Katrin; Amann, Rudolf; Sauter, Eberhard J; Schlüter, Michael; Klages, Michael; Foucher, Jean Paul; Boetius, Antje

    2006-10-19

    Mud volcanism is an important natural source of the greenhouse gas methane to the hydrosphere and atmosphere. Recent investigations show that the number of active submarine mud volcanoes might be much higher than anticipated (for example, see refs 3-5), and that gas emitted from deep-sea seeps might reach the upper mixed ocean. Unfortunately, global methane emission from active submarine mud volcanoes cannot be quantified because their number and gas release are unknown. It is also unclear how efficiently methane-oxidizing microorganisms remove methane. Here we investigate the methane-emitting Haakon Mosby Mud Volcano (HMMV, Barents Sea, 72 degrees N, 14 degrees 44' E; 1,250 m water depth) to provide quantitative estimates of the in situ composition, distribution and activity of methanotrophs in relation to gas emission. The HMMV hosts three key communities: aerobic methanotrophic bacteria (Methylococcales), anaerobic methanotrophic archaea (ANME-2) thriving below siboglinid tubeworms, and a previously undescribed clade of archaea (ANME-3) associated with bacterial mats. We found that the upward flow of sulphate- and oxygen-free mud volcano fluids restricts the availability of these electron acceptors for methane oxidation, and hence the habitat range of methanotrophs. This mechanism limits the capacity of the microbial methane filter at active marine mud volcanoes to <40% of the total flux.

  2. Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars

    NASA Astrophysics Data System (ADS)

    Kite, Edwin S.; Gao, Peter; Goldblatt, Colin; Mischna, Michael A.; Mayer, David P.; Yung, Yuk L.

    2017-10-01

    Lakes existed on Mars later than 3.6 billion years ago, according to sedimentary evidence for deltaic deposition. The observed fluviolacustrine deposits suggest that individual lake-forming climates persisted for at least several thousand years (assuming dilute flow). But the lake watersheds’ little-weathered soils indicate a largely dry climate history, with intermittent runoff events. Here we show that these observational constraints, although inconsistent with many previously proposed triggers for lake-forming climates, are consistent with a methane burst scenario. In this scenario, chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize methane clathrate. Using numerical simulations, we find that outgassed methane can build up to atmospheric levels sufficient for lake-forming climates, if methane clathrate initially occupies more than 4% of the total volume in which it is thermodynamically stable. Such occupancy fractions are consistent with methane production by water-rock reactions due to hydrothermal circulation on early Mars. We further estimate that photochemical destruction of atmospheric methane curtails the duration of individual lake-forming climates to less than a million years, consistent with observations. We conclude that methane bursts represent a potential pathway for intermittent excursions to a warm, wet climate state on early Mars.

  3. Biomass measurement of methane forming bacteria in environmental samples

    NASA Technical Reports Server (NTRS)

    Martz, R. F.; Sebacher, D. I.; White, D. C.

    1983-01-01

    Methane-forming bacteria contain unusual phytanylglycerol ether phospholipids which can be extracted from the bacteria in sediments and assayed quantitatively by high performance liquid chromatography (HPLC). In this procedure the lipids were extracted, the phospholipids recovered, hydrolyzed, purified by thin layer chromatography, derivatized and assayed by HPLC. Ether lipids were recovered quantitatively from Methanobacterium thermoautotrophicum and sediments at levels as low as 8 x 10(-14) moles. In freshwater and marine sediments the flux of methane to the atmosphere and the methane levels in the pore water reflects the recovery of the phytanyl glycerol ether lipid 'signature'. The proportion of the ether phospholipid to the total recoverable phospholipid was highest in anaerobic digester sewage sludge and deeper subsurface freshwater sediment horizons.

  4. Non-CO2 Greenhouse Gases: International Emissions and Projections

    EPA Pesticide Factsheets

    EPA August 2011 report on global non-CO2 emissions projections (1990-2030) for emissions of non-CO2 greenhouse gases (methane, nitrous oxide, and fluorinated greenhouse gases) from more than twenty emissions sources.

  5. Significance of dissolved methane in effluents of anaerobically ...

    EPA Pesticide Factsheets

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  6. 40 CFR 63.772 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Oil and Natural Gas Production Facilities § 63.772 Test methods, compliance procedures, and compliance...) A mixture of methane in air at a concentration less than 10,000 parts per million by volume. (5) An... rate of either TOC (minus methane and ethane) or total HAP (Ei, Eo) shall be computed using the...

  7. 40 CFR 63.772 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Oil and Natural Gas Production Facilities § 63.772 Test methods, compliance procedures, and compliance...) A mixture of methane in air at a concentration less than 10,000 parts per million by volume. (5) An... rate of either TOC (minus methane and ethane) or total HAP (Ei, Eo) shall be computed using the...

  8. 40 CFR Figure 1 to Subpart G of... - Definitions of Terms Used in Wastewater Equations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wastewater, ppmw. CG=Concentration of TOC (minus methane and ethane) or total organic hazardous air pollutants, in vented gas stream, dry basis, ppmv. CGc=Concentration of TOC or organic hazardous air... flow rate of vented gas stream, dry standard, m3/min. QMG=Mass flowrate of TOC (minus methane and...

  9. Source partitioning of methane emissions and its seasonality in the U.S. Midwest

    Treesearch

    Zichong Chen; Timothy J. Griffis; John M. Baker; Dylan B. Millet; Jeffrey D. Wood; Edward J. Dlugokencky; Arlyn E. Andrews; Colm Sweeney; Cheng Hu; Randall K. Kolka

    2018-01-01

    The methane (CH4) budget and its source partitioning are poorly constrained in the Midwestern United States. We used tall tower (185 m) aerodynamic flux measurements and atmospheric scale factor Bayesian inversions to constrain the monthly budget and to partition the total budget into natural (e.g., wetlands) and anthropogenic (e.g., livestock,...

  10. Arctic lakes are continuous methane sources to the atmosphere under warming conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zeli; Zhuang, Qianlai

    2015-05-01

    Methane is the second most powerful carbon-based greenhouse gas in the atmosphere and its production in the natural environment through methanogenesis is positively correlated with temperature. Recent field studies showed that methane emissions from Arctic thermokarst lakes are significant and could increase by two- to four-fold due to global warming. But the estimates of this source are still poorly constrained. By using a process-based climate-sensitive lake biogeochemical model, we estimated that the total amount of methane emissions from Arctic lakes is 11.86 Tg yr-1, which is in the range of recent estimates of 7.1-17.3 Tg yr-1 and is on the same order of methane emissions from northern high-latitude wetlands. The methane emission rate varies spatially over high latitudes from 110.8 mg CH4 m-2 day-1 in Alaska to 12.7 mg CH4 m-2 day-1 in northern Europe. Under Representative Concentration Pathways (RCP) 2.6 and 8.5 future climate scenarios, methane emissions from Arctic lakes will increase by 10.3 and 16.2 Tg CH4 yr-1, respectively, by the end of the 21st century.

  11. Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan.

    PubMed

    Hegde, Ullas; Chang, Tsan-Chang; Yang, Shang-Shyng

    2003-09-01

    To investigate the methane and carbon dioxide emissions from landfill, samples were taken of material up to 5 years old from Shan-Chu-Ku landfill located in the northern part of Taiwan. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide ranged from 310 to 530, 2.64 to 20.16 and 0.358 to 1.516 ppmv with the measurement of gas-type open-path Fourier transform infra-red (FTIR) spectroscopy during February 1998 to March 2000, respectively. Average methane emission rate was 13.17, 65.27 and 0.99 mgm(-2)h(-1) measured by the gas chromatography chamber method in 1-2, 2-3 and 5 year-old landfill, respectively. Similarly, average carbon dioxide emission rate was 93.70, 314.60 and 48.46 mgm(-2)h(-1), respectively. About 2-3 year-old landfill had the highest methane and carbon dioxide emission rates among the tested areas, while 5 year-old landfill was the least. Methane emission rate at night in most tested locations was higher than that in the daytime. Total amount of methane and carbon dioxide emission from this landfill was around 171 and 828 ton in 1999, respectively.

  12. Physical and chemical characterization of Devonian gas shale. Quarterly status report, October 1-December 31, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zielinski, R.E.; Nance, S.W.

    On shale samples from the WV-6 (Monongalia County, West Virginia) well, mean total gas yield was 80.4 ft/sup 3//ton. Mean hydrocarbon gas yield was 5.7 ft/sup 3//ton, 7% of total yield. Methane was the major hydrocarbon component and carbon dioxide the major nonhydrocarbon component. Oil yield was negligible. Clay minerals and organic matter were the dominant phases of the shale. Illite averages 76% of the total clay mineral content. This is detrital illite. Permeation of methane, parallel to the bedding direction for select samples from WV-5 (Mason County, West Virginia) well ranges from 10/sup -4/ to 10/sup -12/ darcys. Themore » permeability of these shales is affected by orgaic carbon content, density, particle orientation, depositional facies, etc. Preliminary studies of Devonian shale methane sorption rates suggest that these rates may be affected by shale porosity, as well as absorption and adsorption processes. An experimental system was designed to effectively simulate sorption of methane at natural reservoir conditions. The bulk density and color of select shales from Illinois, Appalachian and Michigan Basins suggest a general trend of decreasing density with increasing organic content. Black and grayish black shales have organic contents which normally exceed 1.0 wt %. Medium dark gray and gray shales generally have organic contents less than 1.0 wt %.« less

  13. Bioassay for estimating the biogenic methane-generating potential of coal samples

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Voytek, Mary A.; Warwick, Peter D.; Corum, Margo D.; Cohn, Alexander G.; Bunnell, Joseph E.; Clark, Arthur C.; Orem, William H.

    2008-01-01

    Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80 µmol methane/g coal (56 scf/ton or 1.75 cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0–23 µmol/g (up to 16 scf/ton or 0.5 cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the mechanisms involved in this economically important activity.

  14. Methane–oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification†

    PubMed Central

    Wang, Zhe; Guo, Min; Baker, Gary A.; Stetter, Joseph R.; Lin, Lu; Mason, Andrew J.

    2017-01-01

    Current sensor devices for the detection of methane or natural gas emission are either expensive and have high power requirements or fail to provide a rapid response. This report describes an electrochemical methane sensor utilizing a non-volatile and conductive pyrrolidinium-based ionic liquid (IL) electrolyte and an innovative internal standard method for methane and oxygen dual-gas detection with high sensitivity, selectivity, and stability. At a platinum electrode in bis(trifluoromethylsulfonyl)imide (NTf2)-based ILs, methane is electro-oxidized to produce CO2 and water when an oxygen reduction process is included. The in situ generated CO2 arising from methane oxidation was shown to provide an excellent internal standard for quantification of the electrochemical oxygen sensor signal. The simultaneous quantification of both methane and oxygen in real time strengthens the reliability of the measurements by cross-validation of two ambient gases occurring within a single sample matrix and allows for the elimination of several types of random and systematic errors in the detection. We have also validated this IL-based methane sensor employing both conventional solid macroelectrodes and flexible microfabricated electrodes using single- and double-potential step chronoamperometry. PMID:25093213

  15. Measurement of methane fluxes from terrestrial landscapes using static, non-steady state enclosures. Chapter 12

    Treesearch

    Peter Weishampel; Randall Kolka

    2008-01-01

    Wetlands are a dominant natural source of atmospheric methane (CH4), a potent greenhouse gas whose concentration in the atmosphere has doubled over the past 150 years. Evaluating the impacts of CH4 emissions on global climate and developing policies to mitigate those impacts requires a quantifiable and predictive...

  16. Products derived from olive leaves and fruits can alter in vitro ruminal fermentation and methane production.

    PubMed

    Shakeri, Pirouz; Durmic, Zoey; Vadhanabhuti, Joy; Vercoe, Philip E

    2017-03-01

    The industrial processing of olive generates a high quantity of by-products. The objective of this study was to examine the effects of products derived from olive trees, i.e. leaves, fruits or kernels as a sole substrate (part A), and crude extract from leaves combined with a substrate (part B) on rumen microbial fermentation in an in vitro batch fermentation system. In this study, total gas production, methane production, and concentrations of volatile fatty acids (VFA) and ammonia in ruminal fluid were measured. In part A, in vitro fermentation of leaves or fruits yielded a gas and total VFA production that were comparable with control substrate, while most of them produced significantly less methane (up to 55.6%) when compared to control substrate. In part B, amongst leaf extracts, only addition of chloroform extract reduced methane production, which was also associated with a decrease (P < 0.01) in gas production. This effect was associated with a significant reduction (P < 0.01) in acetate to propionate ratio and ammonia production, but not in reduction in VFA concentrations. Olive leaf and olive leaf chloroform extract reduced ammonia production and increased the molar proportion of propionate in the rumen and can assist in developing novel feed additives for methane mitigation from the rumen. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Effect of magnetite powder on anaerobic co-digestion of pig manure and wheat straw.

    PubMed

    Wang, Yanzi; Ren, Guangxin; Zhang, Tong; Zou, Shuzhen; Mao, Chunlan; Wang, Xiaojiao

    2017-08-01

    This study investigated the effects of different amounts of magnetite powder (i.e., 0g, 1.5g, 3g, 4.5g, 6g) on the anaerobic co-digestion of pig manure (PM) and wheat straw (WS). The variations in pH, alkalinity, cellulase activity (CEA), dehydrogenase activity (DHA) and methane production, were analyzed by phases. Correlation of the activities of the two enzymes with methane production was also analyzed, and the Gompertz model was used to evaluate the efficiency of anaerobic digestion (AD) with the addition of magnetite powder. The results showed that magnetite powder had significant effects on the anaerobic co-digestion of PM and WS. The maximum total methane production with the addition of 3g of magnetite powder was 195mL/g total solids (TS), an increase of 72.1%. The CEA and DHA increased with magnetite powder in the ranges of 1.5-4.5g, 1.5-6g, respectively, while the methane production showed a better correlation with DHA than with CEA. Using the Gompertz model, the efficiency of AD was optimal when adding 3g magnetite powder, with higher methane production potential (206mL/g TS), shorter lag-phase time (14.9d) and shorter AD period (44d). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparing top-down and bottom-up estimates of methane emissions across multiple U.S. oil and gas basins provides insights into national O&G emissions, mitigation strategies, and research priorities

    NASA Astrophysics Data System (ADS)

    Lyon, D. R.; Alvarez, R.; Zavala Araiza, D.; Hamburg, S.

    2017-12-01

    We develop a county-level inventory of U.S. anthropogenic methane emissions by integrating multiple data sources including the Drillinginfo oil and gas (O&G) production database, Environmental Protection Agency (EPA) Greenhouse Gas Reporting Program, a previously published gridded EPA Greenhouse Gas Inventory (Maasakkers et al 2016), and recent measurements studies of O&G pneumatic devices, equipment leaks, abandoned wells, and midstream facilities. Our bottom-up estimates of total and O&G methane emissions are consistently lower than top-down, aerial mass balance estimates in ten O&G production areas. We evaluate several hypotheses for the top-down/bottom-up discrepancy including potential bias of the aerial mass balance method, temporal mismatch of top-down and bottom-up emission estimates, and source attribution errors. In most basins, the top-down/bottom-up gap cannot be explained fully without additional O&G emissions from sources not included in traditional inventories, such as super-emitters caused by malfunctions or abnormal process conditions. Top-down/bottom-up differences across multiple basins are analyzed to estimate the magnitude of these additional emissions and constrain total methane emissions from the U.S. O&G supply chain. We discuss the implications for mitigating O&G methane emissions and suggest research priorities for increasing the accuracy of future emission inventories.

  19. Role of natural gas in meeting an electric sector emissions ...

    EPA Pesticide Factsheets

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  20. The effect of water regime and soil management on methane (CH4) emission of rice field

    NASA Astrophysics Data System (ADS)

    Naharia, O.; Setyanto, P.; Arsyad, M.; Burhan, H.; Aswad, M.

    2018-05-01

    Mitigation of CH4 emission of rice field is becoming a serious issue. The Agricultural Environment Preservation Research Station in Central Java conducted a field study to investigate the effect of water regime and soil tillage on CH4 emission from paddy fields. Treatments consisted of two factors. The first factor was water regime, e.g., 1) continuously flooded 5 cm, 2) intermittent irrigation and 3) saturated water condition at 0-1 cm water level. The second factor was soil management, e.g., 1) normal tillage, 2) zero tillage + 3 sulfosate ha-1 and 3) zero tillage + 3 L paraquat ha-1. Most of treatments gave a significant reduction of total CH4 emission between 34 – 85% during the wet season crop as compared to normal rice cropping practice, while in the dry season the CH4 reduction ranged between 16 – 92%. No-tillage with non-selective herbicides combined with intermittent/saturated irrigation system significantly reduced methane emission without significantly affecting rice productivity as compared to normal tillage with continuous flooding (farmers practice)

  1. Trace gas emissions from tropical biomass fires: Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.; Cahoon, Donald R.; Pinto, Joseph P.

    Mixing ratios for carbon dioxide (CO 2), carbon monoxide (CO), hydrogen (H 2), methane (CH 4) and total non-methane hydrocarbons (TNMHC) were determined from the smoke plumes of two small (˜0.25 ha) prescribed biomass fires conducted on the Yucatan Peninsula in Mexico. In the region of these fires the combination of climate and shallow soils produces a scrubby and stunted forest with species composition similar to the Brazilian rain forest, but at a noticeably reduced size. Aircraft collections of smoke from these fires were analysed and used to determine CO 2-normalized emission ratios ( ΔX/ ΔCO 2; v/v; where Δ = in-plume specie concentration less background concentration) for CO, H 2, CH 4 and TNMHC produced and released into the atmosphere from these fires. Suprisingly, high mean emission ratios for TNMHCs (˜1.7% of CO 2 release) and H 2 (˜2.5% of CO 2) were determined. Emission ratios for CO (˜7%) and CH 4 (˜0.7%), however, were found to fall within expected bounds.

  2. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production.

    PubMed

    Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo

    2016-09-01

    Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (p<0.05) increased cumulative methane yield (by 63%) over that of untreated biomass (217L/kgVS). LHW pretreatment obtained negative net electrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Exploring the clean development mechanism: Malaysian case study.

    PubMed

    Pedersen, Anne

    2008-02-01

    During 2006 the CDM market in Malaysia became established and by December 2007 a total of 20 Malaysian projects had registered with the CDM Executive Board. The Kyoto Protocol defines the Annex 1 countries, as countries that are obliged to reduce their greenhouse gas (GHG) emissions and the clean development mechanism (CDM) allows Annex 1 countries to develop projects, which contribute to emission reduction, in non-Annex 1 (developing) countries. Currently, two projects have been corrected due to request for review and there is one project for which review is requested. Two projects have been rejected by the Executive Board. The broad knowledge of CDM in Malaysia and the number of successful projects are partly due to the well-functioning CDM institutional framework in Malaysia. As an illustration this article focuses on a Malaysian-Danish project and describes the implementation of CDM in Malaysia and refers to this specific project. The project was registered with the CDM Executive Board in May 2007 and is a methane avoidance project in which methane is captured from a landfill and used to generate electricity.

  4. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste.

    PubMed

    Zahedi, S; Solera, R; Micolucci, F; Cavinato, C; Bolzonella, D

    2016-03-01

    In this paper, the microbial community in a two-phase thermophilic anaerobic co-digestion process was investigated for its role in hydrogen and methane production, treating waste activated sludge and treating the organic fraction of municipal solid waste. In the acidogenic phase, in which hydrogen is produced, Clostridium sp. clusters represented 76% of total Firmicutes. When feeding the acidogenic effluent into the methanogenic reactors, these acidic conditions negatively influenced methanogenic microorganisms: Methanosaeta sp., (Methanobacteriales, Methanomicrobiales, Methanococcales) decreased by 75%, 50%, 38% and 52%, respectively. At the same time, methanogenic digestion lowered the numbers of Clostridium sp. clusters due to both pH increasing and substrate reduction, and an increase in both Firmicutes genera (non Clostridium) and methanogenic microorganisms, especially Methanosaeta sp. (208%). This was in accordance with the observed decrease in acetic (98%) and butyric (100%) acid contents. To ensure the activity of the acetate-utilizing methanogens (AUM) and the acetogens, high ratios of H2-utilizing methanogens (HUM)/AUM (3.6) were required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Methane efflux measured by eddy covariance in Alaskan upland tundra undergoing permafrost degradation

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Celis, G.; Ledman, J.; Bracho, R. G.; Schuur, E.

    2017-12-01

    Permafrost thaw can increase landscape heterogeneity, leading to wetter and drier soil conditions that affect the magnitude and form (carbon dioxide - CO2 and methane - CH4) of carbon produced via microbial decomposition. Environmental controls on CH4 emissions, especially in drier upland tundra systems, are not well understood. In degrading upland tundra permafrost, cold season CH4 fluxes may contribute significantly to annual emissions from CH4 production within unfrozen layers deep in the soil profile. Eight Mile Lake (EML), located in Interior Alaska near Denali National Park, is a moist acidic tussock tundra ecosystem undergoing permafrost degradation. Perennially frozen soils have warmed between 1985 and 2016 from -1.2 to -0.75˚C resulting in a deeper active layer depth from 61 to 70 cm between 2004-2016. Depth from the soil/moss surface to the water table perched on the permafrost surface has decreased from 30 to 20 cm over the same interval. Here we present the first year of continuous CH4 flux measurements made at EML (May 2016 - May 2017). The site was a net source of low-level CH4 emissions throughout the year. Annual CH4 emissions (1.3 g C yr-1) made up 8.8% of total annual C emissions (14.7 g m-2yr-1). Methane flux is related with soil temperatures during both summer and non-summer seasons. Emissions increased throughout the summer season as thaw depth and soil temperatures increased. In contrast with wetland sites where water table is at or above the soil surface for much of the growing season, EML is relatively dry and there was no relationship between soil moisture and emissions. Non-summer season CH4 emissions are related to increases in atmospheric and shallow soil temperatures. Winter season emissions account for 37% of the annual CH4 budget, the bulk of which occurred between October and January when deep soils remained thawed. Non-summer season CH4 and CO2 pulses appear to be coupled, suggesting a similar mechanism for release. We hypothesize that this relationship is the result of surface soils warming and cracking, allowing for the escape of microbially produced gases at depth. While annual CH4 emissions made up 8.8% of total annual C emissions at this site, taking into account the greenhouse warming potential of CH4 relative to CO2, the climate impact of CH4 is 15.6 g m-2yr-1, or 69% of the C budget.

  6. Ozone pretreatment of olive mill wastewaters (OMW) and its effect on OMW biochemical methane potential (BMP).

    PubMed

    Tsintavi, E; Pontillo, N; Dareioti, M A; Kornaros, M

    2013-01-01

    The possibility of coupling a physicochemical pretreatment (ozonation) with a biological treatment (anaerobic digestion) was investigated for the case of olive mill wastewaters (OMW). Batch ozonation experiments were performed in a glass bubble reactor. The parameters which were tested included the ozone concentration in the inlet gas stream, the reactor temperature and the composition of the liquid medium in terms of raw or fractionated OMW used. In the sequel, ozone-pretreated OMW samples were tested for their biochemical methane potential (BMP) under mesophilic conditions and these results were compared to the BMP of untreated OMW. The ozonation process alone resulted in a 57-76% decrease of total phenols and a 5-18% decrease of total carbohydrates contained in OMW, depending on the experimental conditions. Nevertheless, the ozone-pretreated OMW exhibited lower chemical oxygen demand removal and methane production during BMP testing compared to the untreated OMW.

  7. A mass diffusion-based interpretation of the effect of total solids content on solid-state anaerobic digestion of cellulosic biomass.

    PubMed

    Xu, Fuqing; Wang, Zhi-Wu; Tang, Li; Li, Yebo

    2014-09-01

    In solid-state anaerobic digestion (SS-AD) of cellulosic biomass, the volumetric methane production rate has often been found to increase with the increase in total solids (TS) content until a threshold is reached, and then to decrease. This phenomenon cannot be explained by conventional understanding derived from liquid anaerobic digestion. This study proposed that the high TS content-caused mass diffusion limitation may be responsible for the observed methane production deterioration. Based on this hypothesis, a new SS-AD model was developed by taking into account the mass diffusion limitation and hydrolysis inhibition. The good agreement between model simulation and the experimental as well as literature data verified that the observed reduction in volumetric methane production rate could be ascribed to hydrolysis inhibition as a result of the mass diffusion limitation in SS-AD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 40 CFR 1066.15 - Overview of test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ways: (i) Total hydrocarbons, THC. (ii) Nonmethane hydrocarbons, NMHC, which results from subtracting methane (CH4) from THC. (iii) Total hydrocarbon-equivalent, THCE, which results from adjusting THC...

  9. 40 CFR 1066.15 - Overview of test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ways: (i) Total hydrocarbons, THC. (ii) Nonmethane hydrocarbons, NMHC, which results from subtracting methane (CH4) from THC. (iii) Total hydrocarbon-equivalent, THCE, which results from adjusting THC...

  10. Variability of methane fluxes over high latitude permafrost wetlands

    NASA Astrophysics Data System (ADS)

    Serafimovich, Andrei; Hartmann, Jörg; Larmanou, Eric; Sachs, Torsten

    2013-04-01

    Atmospheric methane plays an important role in the global climate system. Due to significant amounts of organic material stored in the upper layers of high latitude permafrost wetlands and a strong Arctic warming trend, there is concern about potentially large methane emissions from Arctic and sub-Arctic areas. The quantification of methane fluxes and their variability from these regions therefore plays an important role in understanding the Arctic carbon cycle and changes in atmospheric methane concentrations. However, direct measurements of methane fluxes in permafrost regions are sparse, very localized, inhomogeneously distributed in space, and thus difficult to use for accurate model representation of regional to global methane contributions from the Arctic. We aim to contribute to reducing uncertainty and improve spatial coverage and spatial representativeness of flux estimates by using airborne eddy covariance measurements across large areas. The research aircraft POLAR 5 was equipped with a turbulence nose boom and a fast response methane analyzer and served as the platform for measurements of methane emissions. The measuring campaign was carried out from 28 June to 10 July 2012 across the entire North Slope of Alaska and the Mackenzie Delta in Canada. The supplemented simulations from the Weather Research and Forecasting (WRF) model exploring the dynamics of the atmospheric boundary layer were used to analyze high methane concentrations occasionally observed within the boundary layer with a distinct drop to background level above. Strong regional differences were detected over both investigated areas showing the non-uniform distribution of methane sources. In order to cover the whole turbulent spectrum and at the same time to resolve methane fluxes on a regional scale, different integration paths were analyzed and validated through spectral analysis. Methane emissions measured over the Mackenzie Delta were higher and generally more variable in space, especially in the outer Delta with known geogenic methane seepage. On the North Slope, methane fluxes were larger in the western part than in the central and eastern parts. The obtained results are essential for the advanced, scale dependent quantification of methane emissions. Our contribution will present an overview of the experiment as well as preliminary results from more than 52 flight hours over high latitude permafrost wetlands.

  11. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    NASA Astrophysics Data System (ADS)

    Fraser, A.; Palmer, P. I.; Feng, L.; Boesch, H.; Cogan, A.; Parker, R.; Dlugokencky, E. J.; Fraser, P. J.; Krummel, P. B.; Langenfelds, R. L.; O'Doherty, S.; Prinn, R. G.; Steele, L. P.; van der Schoot, M.; Weiss, R. F.

    2013-06-01

    We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4) fluxes for the period June 2009-December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510-516 Tg yr-1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr-1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr-1) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of surface CH4 measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH4 measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (r2) increasing by a mean of 0.04 (range: -0.17 to 0.23) and the biases decreasing by a mean of 0.4 ppb (range: -8.9 to 8.4 ppb).

  12. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    NASA Astrophysics Data System (ADS)

    Fraser, A.; Palmer, P. I.; Feng, L.; Boesch, H.; Cogan, A.; Parker, R.; Dlugokencky, E. J.; Fraser, P. J.; Krummel, P. B.; Langenfelds, R. L.; O'Doherty, S.; Prinn, R. G.; Steele, L. P.; van der Schoot, M.; Weiss, R. F.

    2012-12-01

    We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4) fluxes for the period June 2009-December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510-516 Tg yr-1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr-1. We find larger differences between regional prior and posterior fluxes, with the largest changes (75 Tg yr-1) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes > 60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 5% of true values, with the exception of South Africa and Tropical South America where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 17% and 19% of true fluxes, respectively. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of independent surface CH4 measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH4 measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (r2) increasing by a mean of 0.04 (range: -0.17, 0.23) and the biases decreasing by a mean of 0.4 ppb (range: -8.9, 8.4 ppb).

  13. Dissolved methane occurrences in aquifers in the footprint of Texas shale plays and their controls

    NASA Astrophysics Data System (ADS)

    Nicot, J. P.; Mickler, P. J.; Larson, T.; Darvari, R.; Smyth, R. C.

    2015-12-01

    Many constituents typically associated with oil and gas production, such as methane and higher-order hydrocarbons, exist naturally in shallow groundwater. Recent studies of aquifers in the footprint of several gas plays across the US have showed that (1) dissolved thermogenic methane may or may not be present in the shallow subsurface and (2) shallow thermogenic methane could be naturally occurring and emplaced through mostly vertical migration over geologic time and is not necessarily a consequence of gas production from a gas play. A total of 800+ water wells have been sampled across the state of Texas to characterize shallow methane in fresh-water aquifers overlying shale plays and other tight formations (Barnett, Eagle Ford, Haynesville shale areas as well as in the Delaware Basin of West Texas). Analytical results suggest that dissolved methane is not widespread in shallow groundwater and that, when present at concentration greater than 10 mg/L, is often of natural but thermogenic or mixed origin according to the isotopic signature and to the presence of other light hydrocarbons.

  14. Herbage intake, methane emissions and animal performance of steers grazing dwarf elephant grass v. dwarf elephant grass and peanut pastures.

    PubMed

    Andrade, E A; Almeida, E X; Raupp, G T; Miguel, M F; de Liz, D M; Carvalho, P C F; Bayer, C; Ribeiro-Filho, H M N

    2016-10-01

    Management strategies for increasing ruminant legume consumption and mitigating methane emissions from tropical livestock production systems require further study. The aim of this work was to evaluate the herbage intake, animal performance and enteric methane emissions of cattle grazing dwarf elephant grass (DEG) (Pennisetum purpureum cv. BRS Kurumi) alone or DEG with peanut (Arachis pintoi cv. Amarillo). The experimental treatments were the following: DEG pastures receiving nitrogen fertilization (150 kg N/ha as ammonium nitrate) and DEG intercropped with peanut plus an adjacent area of peanut that was accessible to grazing animals for 5 h/day (from 0700 to 1200 h). The animals grazing legume pastures showed greater average daily gain and herbage intake, and shorter morning and total grazing times. Daily methane emissions were greater from the animals grazing legume pastures, whereas methane emissions per unit of herbage intake did not differ between treatments. Allowing animals access to an exclusive area of legumes in a tropical grass-pasture-based system can improve animal performance without increasing methane production per kg of dry matter intake.

  15. A non-LTE model for the Jovian methane infrared emissions at high spectral resolution

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Allen, J. E., Jr.; Decola, Philip L.

    1994-01-01

    High resolution spectra of Jupiter in the 3.3 micrometer region have so far failed to reveal either the continuum or the line emissions that can be unambiguously attributed to the nu(sub 3) band of methane (Drossart et al. 1993; Kim et al. 1991). Nu(sub 3) line intensities predicted with the help of two simple non-Local Thermodynamic Equilibrium (LTE) models -- a two-level model and a three-level model, using experimentally determined relaxation coefficients, are shown to be one to three orders of magnitude respectively below the 3-sigma noise level of these observations. Predicted nu(sub 4) emission intensities are consistent with observed values. If the methane mixing ratio below the homopause is assumed as 2 x 10(exp -3), a value of about 300 K is derived as an upper limit to the temperature of the high stratosphere at microbar levels.

  16. Mapping of West Siberian taiga wetland complexes using Landsat imagery: Implications for methane emissions

    NASA Astrophysics Data System (ADS)

    Terentieva, Irina; Sabrekov, Alexander; Glagolev, Mikhail; Maksyutov, Shamil

    2017-04-01

    Boreal wetlands are important for understanding climate change risks because these environments sink carbon dioxide and emit methane. The West Siberia Lowland (WSL) is the biggest peatland area in Eurasia and is situated in the high latitudes experiencing enhanced rate of climate change. However, fine-scale heterogeneity of wetland landscapes poses a serious challenge when generating regional-scale estimates of greenhouse gas fluxes from point observations. A number of peatland maps of the West Siberia was developed in 1970s, but their accuracy is limited. In order to reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the WSL on a scene-by-scene basis using a supervised classification of Landsat imagery. Training data consisted of high-resolution images and extensive field data collected at 41 test areas. The classification scheme aimed at supporting methane inventory applications and included 7 wetland ecosystem types comprising 9 wetland complexes distinguishable at the Landsat resolution. To merge typologies, mean relative areas of wetland ecosystems within each wetland complex type were estimated using high-resolution images. Accuracy assessment based on 1082 validation polygons of 10×10 pixels indicated an overall map accuracy of 79%. The total area of the WSL wetlands and water bodies was estimated to be 70.78 Mha or 5-17% of the global wetland area. Various oligotrophic environments are dominant among wetland ecosystems, while different fens cover only 14% of the area. Taiga zone contains 75% of WSL's wetlands; their distribution was described in detail by Terentieva et al. (2016). Concerning methane emission, taiga contributes 85% to regional methane flux and tundra only 8%, however ebullition in tundra lakes was not directly measured. Elevated environments as forested bogs and ridges emit at the lowest rates of methane emission. They account for only 2% of the regional total emissions occupying almost 40% of the wetland area. Depressed environments as different types of hollows contribute 96% to the methane regional flux, covering 50% of the wetland area in the region. Applying the new map resulted in total methane emissions of 4.62 TgCH4/yr, which is 72% higher than the earlier estimate based on the same emission dataset and the less detailed map by Peregon et al. (2009). The revision resulted from the changes in fractional coverages of methane emitting ecosystems due to the better spatial resolution of the new map. The new Landsat-based map of WSL wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland datasets in high latitudes. Terentieva, I.E., Glagolev, M.V., Lapshina, E.D., Sabrekov, A.F., Maksyutov, S. Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions // Biogeosciences. 2016. V. 13. № 16. P. 4615-4626.

  17. Experimental investigation on variation of physical properties of coal samples subjected to microwave irradiation

    NASA Astrophysics Data System (ADS)

    Hu, Guozhong; Yang, Nan; Xu, Guang; Xu, Jialin

    2018-03-01

    The gas drainage rate of low-permeability coal seam is generally less than satisfactory. This leads to the gas disaster of coal mine, and largely restricts the extraction of coalbed methane (CBM), and increases the emission of greenhouse gases in the mining area. Consequently, enhancing the gas drainage rate is an urgent challenge. To solve this problem, a new approach of using microwave irradiation (MWR) as a non-contact physical field excitation method to enhance gas drainage has been attempted. In order to evaluate the feasibility of this method, the methane adsorption, diffusion and penetrability of coal subjected to MWR were experimentally investigated. The variation of methane adsorbed amount, methane diffusion speed and absorption loop for the coal sample before and after MWR were obtained. The findings show that the MWR can change the adsorption property and reduce the methane adsorption capacity of coal. Moreover, the methane diffusion characteristic curves for both the irradiated coal samples and theoriginal coal samples present the same trend. The irradiated coal samples have better methane diffusion ability than the original ones. As the adsorbed methane decreases, the methane diffusion speed increases or remain the same for the sample subjected to MWR. Furthermore, compared to the original coal samples, the area of the absorption loop for irradiated samples increases, especially for the micro-pore and medium-pore stage. This leads to the increase of open pores in the coal, thus improving the gas penetrability of coal. This study provides supports for positive MWR effects on changing the methane adsorption and improving the methane diffusion and the gas penetrability properties of coal samples.

  18. Effects of titanium dioxide and zinc oxide nanoparticles on methane production from anaerobic co-digestion of primary and excess sludge.

    PubMed

    Zheng, Xiong; Wu, Lijuan; Chen, Yinguang; Su, Yinglong; Wan, Rui; Liu, Kun; Huang, Haining

    2015-01-01

    Anaerobic co-digestion of primary and excess sludge is regarded as an efficient way to reuse sludge organic matter to produce methane. In this study, short-term and long-term exposure experiments were conducted to investigate the possible effects of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) on methane production from anaerobic co-digestion of primary and excess sludge. The data showed that TiO2 NPs had no measurable impact on methane production, even at a high concentration (150 mg/g total suspended solids (TSS)). However, short-term (8 days) exposure to 30 or 150 mg/g-TSS of ZnO NPs significantly decreased methane production. More importantly, these negative effects of ZnO NPs on anaerobic sludge co-digestion were not alleviated by increasing the adaptation time to 105 days. Further studies indicated that the presence of ZnO NPs substantially decreased the abundance of methanogenic archaea, which reduced methane production. Meanwhile, the activities of some key enzymes involved in methane production, such as protease, acetate kinase, and coenzyme F420, were remarkably inhibited by the presence of ZnO NPs, which was also an important reason for the decreased methane production. These results provide a better understanding of the potential risks of TiO2 and ZnO NPs to methane production from anaerobic sludge co-digestion.

  19. Inventory of methane emissions from U.S. cattle

    NASA Astrophysics Data System (ADS)

    Westberg, H.; Lamb, B.; Johnson, K. A.; Huyler, M.

    2001-01-01

    Many countries, including the United States, are in the process of inventorying greenhouse gas emissions as a prerequisite for designing control strategies. We have developed a measurement-based inventory of methane emissions from cattle in the United States. Methane emission factors were established for the major livestock groups using an internal tracer method. The groups studied included cows, replacement heifers, slaughter cattle, calves, and bulls in the beef sector and cows plus replacement heifers in the dairy industry. Since methane emission is dependent on the quality and quantity of feed, diets were chosen that are representative of the feed regimes utilized by producers in the United States. Regional cattle populations, obtained from U.S. Department of Agriculture statistics, were combined with the methane emission factors to yield regional emission estimates. The methane totals from the five regions were then summed to give a U.S. inventory of cattle emissions for 1990, 1992, 1994, 1996, and 1998. Annual releases ranged from 6.50 Tg in 1990 to a high of 6.98 Tg in 1996. On a regional scale the North Central region of the United States had the largest methane emissions from livestock followed by the South Central and the West. The beef cow group released the most methane (˜2.5 Tg yr-1) followed by slaughter cattle (˜1.7 Tg yr-1) and dairy cows at about 1.5 Tg yr-1. Methane released by cattle in the United States contributes about 11% of the global cattle source.

  20. Pretreatment of food waste with high voltage pulse discharge towards methane production enhancement.

    PubMed

    Zou, Lianpei; Ma, Chaonan; Liu, Jianyong; Li, Mingfei; Ye, Min; Qian, Guangren

    2016-12-01

    Anaerobic batch tests were performed to investigate the methane production enhancement and solid transformation rates from food waste (FW) by high voltage pulse discharge (HVPD) pretreatment. The total cumulative methane production with HVPD pretreatment was 134% higher than that of the control. The final volatile solids transformation rates of FW with and without HVPD pretreatment were 54.3% and 32.3%, respectively. Comparison study on HVPD pretreatment with acid, alkali and ultrasonic pretreatments showed that the methane production and COD removal rates of FW pretreated with HVPD were more than 100% higher than the control, but only about 50% higher can be obtained with other pretreatments. HVPD pretreatment could be a promising pretreatment method in the application of energy recovery from FW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ford, T. B.; Guha, A.; Boulanger, K.; Brioude, J.; Angevine, W. M.; de Gouw, J. A.; Warneke, C.; Gilman, J. B.; Ryerson, T. B.; Peischl, J.; Meinardi, S.; Blake, D. R.; Atlas, E.; Lonneman, W. A.; Kleindienst, T. E.; Beaver, M. R.; St. Clair, J. M.; Wennberg, P. O.; VandenBoer, T. C.; Markovic, M. Z.; Murphy, J. G.; Harley, R. A.; Goldstein, A. H.

    2014-05-01

    Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is consistent with fugitive emissions of condensate during storage or processing of associated gas following extraction and methane separation. Aircraft observations of concentration hotspots near oil wells and dairies are consistent with the statistical source footprint determined via our FLEXPART-WRF-based modeling method and ground-based data. We quantitatively compared our observations at Bakersfield to the California Air Resources Board emission inventory and find consistency for relative emission rates of reactive organic gases between the aforementioned sources and motor vehicles in the region. We estimate that petroleum and dairy operations each comprised 22% of anthropogenic non-methane organic carbon at Bakersfield and were each responsible for 8-13% of potential precursors to ozone. Yet, their direct impacts as potential secondary organic aerosol (SOA) precursors were estimated to be minor for the source profiles observed in the San Joaquin Valley.

  2. Thermal properties of methane gas hydrates

    USGS Publications Warehouse

    Waite, William F.

    2007-01-01

    Gas hydrates are crystalline solids in which molecules of a “guest” species occupy and stabilize cages formed by water molecules. Similar to ice in appearance (fig. 1), gas hydrates are stable at high pressures and temperatures above freezing (0°C). Methane is the most common naturally occurring hydrate guest species. Methane hydrates, also called simply “gas hydrates,” are extremely concentrated stores of methane and are found in shallow permafrost and continental margin sediments worldwide. Brought to sea-level conditions, methane hydrate breaks down and releases up to 160 times its own volume in methane gas. The methane stored in gas hydrates is of interest and concern to policy makers as a potential alternative energy resource and as a potent greenhouse gas that could be released from sediments to the atmosphere and ocean during global warming. In continental margin settings, methane release from gas hydrates also is a potential geohazard and could cause submarine landslides that endanger offshore infrastructure. Gas hydrate stability is sensitive to temperature changes. To understand methane release from gas hydrate, the U.S. Geological Survey (USGS) conducted a laboratory investigation of pure methane hydrate thermal properties at conditions relevant to accumulations of naturally occurring methane hydrate. Prior to this work, thermal properties for gas hydrates generally were measured on analog systems such as ice and non-methane hydrates or at temperatures below freezing; these conditions limit direct comparisons to methane hydrates in marine and permafrost sediment. Three thermal properties, defined succinctly by Briaud and Chaouch (1997), are estimated from the experiments described here: - Thermal conductivity, λ: if λ is high, heat travels easily through the material. - Thermal diffusivity, κ: if κ is high, it takes little time for the temperature to rise in the material. - Specific heat, cp: if cp is high, it takes a great deal of heat to raise the temperature of the material.

  3. Anaerobic digestion of blackwater from vacuum toilets and kitchen refuse in a continuous stirred tank reactor (CSTR).

    PubMed

    Wendland, C; Deegener, S; Behrendt, J; Toshev, P; Otterpohl, R

    2007-01-01

    The objective of this research was mesophilic anaerobic digestion of blackwater from vacuum toilets (BW) and kitchen refuse (KR) in a CSTR within an ecological sanitation system. A detailed investigation of the BW characteristics was carried out. Research on anaerobic digestion was performed with CSTR of 101 volume at HRT of 10, 15 and 20 days. The digestion of BW at 20 days HRT showed stable performance without inhibition effects, in spite of relatively high ammonium concentrations. The removal of total and particulate COD was 61% and 53%, respectively, and the methane yield 10/CH4/cap/day. The addition of kitchen refuse (KR) improved the performance of the CSTR in terms of COD removal efficiency and methane yield. At 20 days HRT the removal of total and particulate COD increased up to 71% and 67%, respectively, and the methane yield to 27/CH4/cap/day. The results at 15 days HRT showed similar performance. At HRT of 10 days, the anaerobic treatment was limited but reached steady state conditions at higher VFA concentrations in the effluent, with a decrease of COD removal of 30 to 33% and of methane yields of 19 to 21%.

  4. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps

    PubMed Central

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  5. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Leonte, Mihai; Kessler, John D.; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Sylva, Sean P.

    2017-05-01

    Aerobic oxidation is an important methane sink in seawater overlying gas seeps. Recent surveys have identified active methane seeps in the waters of Hudson Canyon, US Atlantic Margin near the updip limit of methane clathrate hydrate stability. The close proximity of these seeps to the upper stability limit of methane hydrates suggests that changing bottom water temperatures may influence the release rate of methane into the overlying water column. In order to assess the significance of aerobic methane oxidation in limiting the atmospheric expression of methane released from Hudson Canyon, the total extent of methane oxidized along with integrated oxidation rates were quantified. These calculations were performed by combining the measurements of the natural levels of methane concentrations, stable carbon isotopes, and water current velocities into kinetic isotope models yielding rates ranging from 22.8 ± 17 to 116 ± 76 nM/day with an average of 62.7 ± 37 nM/day. Furthermore, an average of 63% of methane released into the water column from an average depth of 515 m was oxidized before leaving this relatively small study area (6.5 km2). Results from the kinetic isotope model were compared to previously-published but concurrently-sampled ex situ measurements of oxidation potential performed using 13C-labeled methane. Ex situ rates were substantially lower, ranging from 0.1 to 22.5 nM/day with an average of 5.6 ± 2.3 nM/day, the discrepancy likely due to the inherent differences between these two techniques. Collectively, the results reveal exceptionally-rapid methane oxidation, with turnover times for methane as low as 0.3-3.7 days, indicating that methane released to the water column is removed quantitatively within the greater extent of Hudson Canyon. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text.

  6. Controls on Methane Occurrences in Shallow Aquifers Overlying the Haynesville Shale Gas Field, East Texas.

    PubMed

    Nicot, Jean-Philippe; Larson, Toti; Darvari, Roxana; Mickler, Patrick; Slotten, Michael; Aldridge, Jordan; Uhlman, Kristine; Costley, Ruth

    2017-07-01

    Understanding the source of dissolved methane in drinking-water aquifers is critical for assessing potential contributions from hydraulic fracturing in shale plays. Shallow groundwater in the Texas portion of the Haynesville Shale area (13,000 km 2 ) was sampled (70 samples) for methane and other dissolved light alkanes. Most samples were derived from the fresh water bearing Wilcox formations and show little methane except in a localized cluster of 12 water wells (17% of total) in a approximately 30 × 30 km 2 area in Southern Panola County with dissolved methane concentrations less than 10 mg/L. This zone of elevated methane is spatially associated with the termination of an active fault system affecting the entire sedimentary section, including the Haynesville Shale at a depth more than 3.5 km, and with shallow lignite seams of Lower Wilcox age at a depth of 100 to 230 m. The lignite spatial extension overlaps with the cluster. Gas wetness and methane isotope compositions suggest a mixed microbial and thermogenic origin with contribution from lignite beds and from deep thermogenic reservoirs that produce condensate in most of the cluster area. The pathway for methane from the lignite and deeper reservoirs is then provided by the fault system. © 2017, National Ground Water Association.

  7. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  8. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  9. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  10. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... NOX plus NMHC standard may not exceed 50 percent of the manufacturer's U.S.-directed production of...

  11. Characteristics of atmospheric non-methane hydrocarbons during haze episode in Beijing, China.

    PubMed

    Guo, Songjun; Tan, Jihua; Duan, Jingchun; Ma, Yongliang; Yang, Fumo; He, Kebin; Hao, Jimin

    2012-12-01

    This study firstly focused on non-methane hydrocarbons (NMHCs) during three successive days with haze episode (16-18 August 2006) in Beijing. Concentrations of alkanes, alkenes, aromatic hydrocarbons, and ethyne all peaked at traffic rush hour, implying vehicular emission; and alkanes also peaked at non-traffic rush hour in the daytime, implying additional source. Especially, alkanes and aromatics clearly showed higher levels in the nighttime than that in the daytime, implying their active photochemical reactions in the daytime. Correlation coefficients (R (2)) showed that propane, n-butane, i-butane, ethene, propene, and benzene correlated with ethyne (R (2) = 0.61-0.66), suggesting that their main source is vehicular emission; 2-methylpentane and n-hexane correlated with i-pentane (R (2) = 0.61-0.64), suggesting that gasoline evaporation is their main source; and ethylbezene, m-/p-xylene, and o-xylene correlated with toluene (R (2) = 0.60-0.79), suggesting that their main source is similar to that of toluene (e.g., solvent usage). The R (2) of ethyne, i-pentane, and toluene with total NMHCs were 0.58, 0.76, and 0.60, respectively, indicating that ambient hydrocarbons are associated with vehicular emission, gasoline evaporation, and solvent usage. The sources of other hydrocarbons (e.g., ethane) might be natural gas leakage, biogenic emission, or long-range transport of air pollutants. Measured higher mean B/T ratio (0.78 ± 0.27) was caused by the more intensive photochemical activity of toluene than benzene, still indicating the dominant emission from vehicles.

  12. Integrated Pressure-Fed Liquid Oxygen / Methane Propulsion Systems - Morpheus Experience, MARE, and Future Applications

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric; Morehead, Robert; Melcher, John C.; Atwell, Matt

    2016-01-01

    An integrated liquid oxygen (LOx) and methane propulsion system where common propellants are fed to the reaction control system and main engines offers advantages in performance, simplicity, reliability, and reusability. LOx/Methane provides new capabilities to use propellants that are manufactured on the Mars surface for ascent return and to integrate with power and life support systems. The clean burning, non-toxic, high vapor pressure propellants provide significant advantages for reliable ignition in a space vacuum, and for reliable safing or purging of a space-based vehicle. The NASA Advanced Exploration Systems (AES) Morpheus lander demonstrated many of these key attributes as it completed over 65 tests including 15 flights through 2014. Morpheus is a prototype of LOx/Methane propellant lander vehicle with a fully integrated propulsion system. The Morpheus lander flight demonstrations led to the proposal to use LOx/Methane for a Discovery class mission, named Moon Aging Regolith Experiment (MARE) to land an in-situ science payload for Southwest Research Institute on the Lunar surface. Lox/Methane is extensible to human spacecraft for many transportation elements of a Mars architecture. This paper discusses LOx/Methane propulsion systems in regards to trade studies, the Morpheus project experience, the MARE NAVIS (NASA Autonomous Vehicle for In-situ Science) lander, and future possible applications. The paper also discusses technology research and development needs for Lox/Methane propulsion systems.

  13. Co-digestion performance of organic fraction of municipal solid waste with leachate: Preliminary studies.

    PubMed

    Guven, Huseyin; Akca, Mehmet Sadik; Iren, Erol; Keles, Fatih; Ozturk, Izzet; Altinbas, Mahmut

    2018-01-01

    The main aim of the study was to evaluate the co-digestion performance of OFMSW with different wastes. Leachate, reverse osmosis (RO) concentrate collected from a leachate treatment facility and dewatered sewage sludge taken from a wastewater treatment plant (WWTP) were used for co-digestion in this paper. An extra effort was made to observe the effect of leachate inclusion in the co-digestion. In the study, the mono-digestion of OFMSW, leachate, RO concentrate and sewage sludge as well as digestion of 7 different waste mixtures were carried out for this objective. The experiments were carried out for approximately 50days under mesophilic conditions. The highest methane yield was 785L CH 4 /kg VS added in the reactor, which had only OFMSW. While the methane yield derived from OFMSW was found higher than previous studies, methane yield of leachate was found to be 110L CH 4 /kg VS added , which was lower than findings in the literature. The mono-substrate of OFMSW was followed by the reactor of having waste mixture of leachate+sewage sludge+OFMSW+water (C7) with 391L CH 4 /kg VS added , which was the only combination included water. In order to understand the effect of leachate and water inclusions on co-digestion, two separate waste combinations; leachate+sewage sludge+OFMSW+water (C7) and leachate+sewage sludge+OFMSW (C1) were prepared that had different amounts of leachate but same amounts of other wastes. The methane yield of leachate+sewage sludge+OFMSW+water (C7) indicated that addition of some water instead of leachate could stimulate biogas production. Methane yield of this reactor was found to be 71% higher than the waste combination of leachate+sewage sludge+OFMSW (C1). It could be thought that the high amount of non-biodegradable matters in leachate could be responsible for lower methane yield in leachate+sewage sludge+OFMSW (C1) reactor. Methane yields of the reactors showed that co-digestion of OFMSW and leachate could be a solution not only for treatment of leachate and but also increasing the biogas potential of leachate. Leachate addition could also adjust optimum total solids (TS) content in anaerobic digestion. It was also understood that RO concentrate did not affect the methane yield in a negative way. The similar characterization of leachate and RO concentrate in this study could offer the utilization of RO concentrate instead of leachate. The findings showed that volatile solids (VS) removals were changed from 32% to 61% in the reactors. While the reactor of leachate+RO concentrate+OFMSW (C6) had the highest VS removal, the reactor of the sole substrate leachate had the lowest VS removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.

    PubMed

    Lösekann, Tina; Knittel, Katrin; Nadalig, Thierry; Fuchs, Bernhard; Niemann, Helge; Boetius, Antje; Amann, Rudolf

    2007-05-01

    Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56%+/-8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94%+/-2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and anaerobic methanotrophs.

  15. Airborne vs. Inventory Measurements of Methane Emissions in the Alberta Upstream Oil and Gas Sector

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Tyner, D. R.; Conley, S.; Schwietzke, S.; Zavala Araiza, D.

    2017-12-01

    Airborne measurements of methane emission rates were directly compared with detailed, spatially-resolved inventory estimates for different oil and gas production regions in Alberta, Canada. For a 50 km × 50 km region near Red Deer, Alberta, containing 2700 older gas and oil wells, measured methane emissions were 16 times higher than reported venting and flaring volumes would suggest, but consistent with regional inventory estimates (which include estimates for additional emissions from pneumatic equipment, fugitive leaks, gas migration, etc.). This result highlights how 94% of methane emissions in this region are attributable to sources missing from current reporting requirements. The comparison was even more stark for a 60 km × 60 km region near Lloydminster, dominated by 2300 cold heavy oil with sand (CHOPS) production sites. Aircraft measured methane emissions in this region were 5 times larger than that expected from reported venting and flaring volumes, and more than 3 times greater than regional inventory estimates. This significant discrepancy is most likely attributable to underreported intentional venting of casing gas at CHOPS sites, which is generally estimated based on the product of the measured produced oil volume and an assumed gas to oil ratio (GOR). GOR values at CHOPS sites can be difficult to measure and can be notoriously variable in time. Considering the implications for other CHOPS sites across Alberta only, the present results suggest that total reported venting in Alberta is low by a factor of 2.4 (range of 2.0-2.7) and total methane emissions from the conventional oil and gas sector (excluding mined oil sands) are likely at least 25-41% greater than currently estimated. This work reveals critical gaps in current measurement and reporting, while strongly supporting the need for urgent mitigation efforts in the context of newly proposed federal methane regulations in Canada, and separate regulatory development efforts in the province of Alberta.

  16. Verification of German methane emission inventories and their recent changes based on atmospheric observations

    NASA Astrophysics Data System (ADS)

    Levin, Ingeborg; Glatzel-Mattheier, Holger; Marik, Thomas; Cuntz, Matthias; Schmidt, Martina; Worthy, Douglas E.

    1999-02-01

    Continuous methane concentration records and stable isotope observations measured in the suburbs of Heidelberg, Germany, are presented. While δ13C-CH4 shows a significant trend of -0.14‰ per year, toward more depleted values, no trend is observed in the concentration data. Comparison of the Heidelberg records with clean air observations in the North Atlantic at Izaña station (Tenerife) allows the determination of the continental methane excess at Heidelberg, decreasing by 20% from 190 ppb in 1992 to 150 ppb in 1997. The isotope ratio which is associated with this continental methane pileup in the Heidelberg catchment area shows a significant trend to more depleted values from δ13Csource = -47.4 ± 1.2‰ in 1992 to -52.9 ± 0.4‰ in 1995/1996, pointing to a significant change in the methane source mix. Total methane emissions in the Heidelberg catchment area are estimated using the 222radon (222Rn) tracer method: from the correlations of half-hourly 222Rn and CH4 mixing ratios from 1995 to 1997, and the mean 222Rn exhalation rate from typical soils in the Rhine valley, a mean methane flux of 0.24 ± 0.5 g CH4 km-2 s-1 is derived. For the Heidelberg catchment area with an estimated radius of approximately 150 km, Core Inventories Air 1990 (CORINAIR90) emission estimates yield a flux of 0.47 g CH4 km-2 s-1, which is about 40% higher than the 222Rn-derived number if extrapolated to 1990. The discrepancy can be explained by overestimated emissions from waste management in the CORINAIR90 statistical assessment. The observed decrease in total emissions can be accounted for by decreasing contributions from fossil sources (mainly coal mining) and from cattle breeding. This finding is also supported by the observed decrease in mean source isotopic signatures.

  17. Quantitative geochemical modeling along a transect off Peru: Carbon cycling in time and space, and the triggering factors for carbon loss and storage

    NASA Astrophysics Data System (ADS)

    Arning, Esther T.; van Berk, Wolfgang; Schulz, Hans-Martin

    2012-12-01

    Early diagenetic processes in Peruvian shelf and slope sediments are numerically reproduced by applying chemical thermodynamics in a complex, universal approach using the PHREEQC (version 2) computer code. The reaction kinetics of organic carbon remineralization are integrated into a set of equilibrium reactions by defining the type and the amount of converted organic matter in a certain time step. We calculate the most intense remineralization of organic carbon for present-day shelf sites, and the final carbon pool is dominated by secondary carbonates. This serves to highlight the influence of organic matter degradation and anaerobic oxidation of methane (AOM) on diagenetic mineral formation. The enrichment of aqueous methane and the formation of methane hydrate only takes place in slope sediments with high sedimentation rates that prevent diffusive loss of methane (e.g., Sites 682 and 688). Moreover, AOM prevents the diffusion of dissolved methane into overlying seawater. Throughout the Miocene period, these sites were located on a former shelf and the total carbon loss from the sediments was significantly higher in comparison with the present-day. Compared with the present-day shelf site, organic matter remineralization is high, and methane is produced but not stored within the sediments. Our model calculations rule out the possibility of present-day and former shelf site sediments off the coast of Peru as methane reservoirs. Remineralized TOC has to be considered, particularly in older sediments, when interpreting TOC profiles and calculating mass accumulation rates of total organic carbon (MARTOC). The more organic matter has been remineralized during the depositional history, the larger the difference between MARTOC calculated from measured TOC data, and from the sum of modeled and measured TOC data. Consequently, most reliable primary productivity calculations are based on the sum of measured relict TOC and the amount of remineralized organic carbon determined by modeling.

  18. Methane Exchange in a Coastal Fen in the First Year after Flooding - A Systems Shift

    PubMed Central

    Hahn, Juliane; Köhler, Stefan; Glatzel, Stephan; Jurasinski, Gerald

    2015-01-01

    Background Peatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem. Methods Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients. Results Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged. Conclusions Our results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should be considered when forecasting the overall effect of rewetting on GHG exchange. PMID:26461916

  19. Diversity and Abundance of Aerobic and Anaerobic Methane Oxidizers at the Haakon Mosby Mud Volcano, Barents Sea▿

    PubMed Central

    Lösekann, Tina; Knittel, Katrin; Nadalig, Thierry; Fuchs, Bernhard; Niemann, Helge; Boetius, Antje; Amann, Rudolf

    2007-01-01

    Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56% ± 8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94% ± 2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and anaerobic methanotrophs. PMID:17369343

  20. Methane Exchange in a Coastal Fen in the First Year after Flooding--A Systems Shift.

    PubMed

    Hahn, Juliane; Köhler, Stefan; Glatzel, Stephan; Jurasinski, Gerald

    2015-01-01

    Peatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem. Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients. Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged. Our results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should be considered when forecasting the overall effect of rewetting on GHG exchange.

  1. Gammaproteobacterial Methanotrophs Dominate Cold Methane Seeps in Floodplains of West Siberian Rivers

    PubMed Central

    Oshkin, Igor Y.; Wegner, Carl-Eric; Lüke, Claudia; Glagolev, Mikhail V.; Filippov, Illiya V.; Pimenov, Nikolay V.; Liesack, Werner

    2014-01-01

    A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h−1, while some seeps emitted up to 5.54 g CH4 h−1. The δ13C value of methane released from these seeps varied between −71.1 and −71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml−1 day−1) were measured in mud samples. Fluorescence in situ hybridization detected 107 methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies. PMID:25063667

  2. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge.

    PubMed

    Costa, J C; Gonçalves, P R; Nobre, A; Alves, M M

    2012-06-01

    Biochemical methane potential of four species of Ulva and Gracilaria genus was assessed in batch assays at mesophilic temperature. The results indicate a higher specific methane production (per volatile solids) for one of the Ulva sp. compared with other macroalgae and for tests running with 2.5% of total solids (196±9 L CH(4) kg(-1)VS). Considering that macroalgae can potentially be a post treatment of municipal wastewater for nutrients removal, co-digestion of macroalgae with waste activated sludge (WAS) was assessed. The co-digestion of macroalgae (15%) with WAS (85%) is feasible at a rate of methane production 26% higher than WAS alone without decreasing the overall biodegradability of the substrate (42-45% methane yield). The use of anoxic marine sediment as inoculum had no positive effect on the methane production in batch assays. The limiting step of the overall anaerobic digestion process was the hydrolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Methane production from wheat straw with anaerobic sludge by heme supplementation.

    PubMed

    Xi, Yonglan; Chang, Zhizhou; Ye, Xiaomei; Xu, Rong; Du, Jing; Chen, Guangyin

    2014-11-01

    Wheat straw particles were directly used as substrate for batch anaerobic digestion with anaerobic sludge under 35°C to evaluate the effects of adding heme on methane production. When 1mg/l heme was added to the fermentation process with no agitated speed, a maximum cumulative methane production of 12227.8ml was obtained with cumulative methane yield of wheat straw was 257.4ml/g-TS (total solid), which was increased by 20.6% compared with 213.5ml/g-TS of no heme was added in the reactor. Meanwhile, oxido-reduction potential (ORP) level was decreased, the activity of coenzyme F420 was significantly improved and NADH/NAD(+) ratio were the highest than other experimental groups. These results suggest that heme-supplemented anaerobic sludge with no agitated speed may be providing a more reductive environment, which is a cost-effective method of anaerobic digestion from biomass waste to produce methane with less energy consuming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Enhanced Solid-State Biogas Production from Lignocellulosic Biomass by Organosolv Pretreatment

    PubMed Central

    Mirmohamadsadeghi, Safoora; Zamani, Akram; Horváth, Ilona Sárvári

    2014-01-01

    Organosolv pretreatment was used to improve solid-state anaerobic digestion (SSAD) for methane production from three different lignocellulosic substrates (hardwood elm, softwood pine, and agricultural waste rice straw). Pretreatments were conducted at 150 and 180°C for 30 and 60 min using 75% ethanol solution as an organic solvent with addition of sulfuric acid as a catalyst. The statistical analyses showed that pretreatment temperature was the significant factor affecting methane production. Optimum temperature was 180°C for elmwood while it was 150°C for both pinewood and rice straw. Maximum methane production was 152.7, 93.7, and 71.4 liter per kg carbohydrates (CH), which showed up to 32, 73, and 84% enhancement for rice straw, elmwood, and pinewood, respectively, compared to those from the untreated substrates. An inverse relationship between the total methane yield and the lignin content of the substrates was observed. Kinetic analysis of the methane production showed that the process followed a first-order model for all untreated and pretreated lignocelluloses. PMID:25243134

  5. [Estimating spatiotemporal dynamics of methane emissions from livestock in China].

    PubMed

    Lin, Yu; Zhang, Wen; Huang, Yao

    2011-08-01

    Combining Tier 2 method presented in the guidelines of the Intergovernmental Panel on Climate Change (IPCC, 2006) with GIS techniques, a primary estimation of methane emission from livestock in 2004 (including emission from enteric fermentation and manure management system) was made with county-level livestock statistics and 1 km x 1 km raster data. The results indicated that the methane emission from livestock was 12.79 x 10(6) tons totally in China, and 11.64 x 10(6) tons from enteric fermentation and 1.16 x 10(6) tons from manure management. The uncertainties of the methane emission from enteric fermentation and manure management were +/- 35.10% and +/- 14. 58% respectively. The high methane emission was at Yellow River basin, especially in the lower reaches of the Yellow River and the North China Plain. The Southwestern China also can be found with high emission. In accordance with the seasonal temperature changes, the temporal variation of manure management emission was estimated the highest in summer and the lowest in winter.

  6. Catalytic conversion of methane to methanol using Cu-zeolites.

    PubMed

    Alayon, Evalyn Mae C; Nachtegaal, Maarten; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2012-01-01

    The conversion of methane to value-added liquid chemicals is a promising answer to the imminent demand for fuels and chemical synthesis materials in the advent of a dwindling petroleum supply. Current technology requires high energy input for the synthesis gas production, and is characterized by low overall selectivity, which calls for alternative reaction routes. The limitation to achieve high selectivity is the high C-H bond strength of methane. High-temperature reaction systems favor gas-phase radical reactions and total oxidation. This suggests that the catalysts for methane activation should be active at low temperatures. The enzymatic-inspired metal-exchanged zeolite systems apparently fulfill this need, however, methanol yield is low and a catalytic process cannot yet be established. Homogeneous and heterogeneous catalytic systems have been described which stabilize the intermediate formed after the first C-H activation. The understanding of the reaction mechanism and the determination of the active metal sites are important for formulating strategies for the upgrade of methane conversion catalytic technologies.

  7. The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus.

    PubMed

    Frydendal-Nielsen, Susanne; Hjorth, Maibritt; Baby, Sanmohan; Felby, Claus; Jørgensen, Uffe; Gislum, René

    2016-10-01

    Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller-milling, extrusion or grinding and accumulated methane production and enzymatically-accessible sugars were measured. Accumulated methane production was studied using sigmoid curves that allowed comparison among the treatments of the rate of the methane production and ultimate methane yield. The green biomass gave the highest methane yield and highest levels of enzymatically-accessible cellulose. The driest biomass gave the best effect from extrusion but with the highest energy consumption, whereas roller-milling was most efficient on wet biomass. The addition of water to the last harvest improved the effect of roller-milling and equalled extrusion of the samples in efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste.

    PubMed

    Marañón, E; Salter, A M; Castrillón, L; Heaven, S; Fernández-Nava, Y

    2011-08-01

    Four dairy cattle farms considered representative of Northern Spain milk production were studied. Cattle waste was characterised and energy consumption in the farms was inventoried. Methane emissions due to slurry/manure management and fuel consumption on the farms were calculated. The possibility of applying anaerobic digestion to the slurry to minimise emissions and of using the biogas produced to replace fossil fuels on the farm was considered. Methane emissions due to slurry management (storage and use as fertiliser) ranged from 34 to 66kg CH(4)cow(-1)year(-1) for dairy cows and from 13 to 25kg CH(4)cow(-1)year(-1) for suckler calves. Cattle on these farms are housed for most of the year, and the contribution from emissions from manure dropped in pastures is insignificant due to the very low methane conversion factors. If anaerobic digestion were implemented on the farms, the potential GHG emissions savings per livestock unit would range from 978 to 1776kg CO(2)eq year(-1), with the main savings due to avoided methane emissions during slurry management. The methane produced would be sufficient to supply digester heating needs (35-55% of the total methane produced) and on-farm fuel energy requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Methane, Black Carbon, and Ethane Emissions from Natural Gas Flares in the Bakken Shale, North Dakota.

    PubMed

    Gvakharia, Alexander; Kort, Eric A; Brandt, Adam; Peischl, Jeff; Ryerson, Thomas B; Schwarz, Joshua P; Smith, Mackenzie L; Sweeney, Colm

    2017-05-02

    Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed or between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting log-normal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.

  10. Shallow Gas Migration along Hydrocarbon Wells-An Unconsidered, Anthropogenic Source of Biogenic Methane in the North Sea.

    PubMed

    Vielstädte, Lisa; Haeckel, Matthias; Karstens, Jens; Linke, Peter; Schmidt, Mark; Steinle, Lea; Wallmann, Klaus

    2017-09-05

    Shallow gas migration along hydrocarbon wells constitutes a potential methane emission pathway that currently is not recognized in any regulatory framework or greenhouse gas inventory. Recently, the first methane emission measurements at three abandoned offshore wells in the Central North Sea (CNS) were conducted showing that considerable amounts of biogenic methane originating from shallow gas accumulations in the overburden of deep reservoirs were released by the boreholes. Here, we identify numerous wells poking through shallow gas pockets in 3-D seismic data of the CNS indicating that about one-third of the wells may leak, potentially releasing a total of 3-17 kt of methane per year into the North Sea. This poses a significant contribution to the North Sea methane budget. A large fraction of this gas (∼42%) may reach the atmosphere via direct bubble transport (0-2 kt yr -1 ) and via diffusive exchange of methane dissolving in the surface mixed layer (1-5 kt yr -1 ), as indicated by numerical modeling. In the North Sea and in other hydrocarbon-prolific provinces of the world shallow gas pockets are frequently observed in the sedimentary overburden and aggregate leakages along the numerous wells drilled in those areas may be significant.

  11. Comparison of the methane production potential and biodegradability of kitchen waste from different sources under mesophilic and thermophilic conditions.

    PubMed

    Yang, Ziyi; Wang, Wen; Zhang, Shuyu; Ma, Zonghu; Anwar, Naveed; Liu, Guangqing; Zhang, Ruihong

    2017-04-01

    The methane production potential of kitchen waste (KW) obtained from different sources was compared through mesophilic and thermophilic anaerobic digestion. The methane yields (MYs) obtained with the same KW sample under different temperatures were similar, whereas the MYs obtained with different samples differed significantly. The highest MY obtained in S7 was 54%-60% higher than the lowest MY in S3. The modified Gompertz model was utilized to simulate the methane production process. The maximum production rate of methane under thermophilic conditions was 2%-86% higher than that under mesophilic conditions. The characteristics of different KW samples were studied. In the distribution of total chemical oxygen demand, the diversity of organic compounds of KW was the most dominant factor that affected the potential MYs of KW. The effect of the C/N and C/P ratios or the concentration of metal ions was insignificant. Two typical methods to calculate the theoretical MY (TMY) were compared, the organic composition method can simulate methane production more precisely than the elemental analysis method. Significant linear correlations were found between TMY org and MYs under mesophilic and thermophilic conditions. The organic composition method can thus be utilized as a fast technique to predict the methane production potential of KW.

  12. [Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].

    PubMed

    González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo

    2015-01-01

    The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Refining Field Measurements of Methane Flux Rates from Abandoned Oil and Gas Wells

    NASA Astrophysics Data System (ADS)

    Lagron, C. S.; Kang, M.; Riqueros, N. S.; Jackson, R. B.

    2015-12-01

    Recent studies in Pennsylvania demonstrate the potential for significant methane emissions from abandoned oil and gas wells. A subset of tested wells was high emitting, with methane flux rates up to seven orders of magnitude greater than natural fluxes (up to 105 mg CH4/hour, or about 2.5LPM). These wells contribute disproportionately to the total methane emissions from abandoned oil and gas wells. The principles guiding the chamber design have been developed for lower flux rates, typically found in natural environments, and chamber design modifications may reduce uncertainty in flux rates associated with high-emitting wells. Kang et al. estimate errors of a factor of two in measured values based on previous studies. We conduct controlled releases of methane to refine error estimates and improve chamber design with a focus on high-emitters. Controlled releases of methane are conducted at 0.05 LPM, 0.50 LPM, 1.0 LPM, 2.0 LPM, 3.0 LPM, and 5.0 LPM, and at two chamber dimensions typically used in field measurements studies of abandoned wells. As most sources of error tabulated by Kang et al. tend to bias the results toward underreporting of methane emissions, a flux-targeted chamber design modification can reduce error margins and/or provide grounds for a potential upward revision of emission estimates.

  14. Effects of forage type and extruded linseed supplementation on methane production and milk fatty acid composition of lactating dairy cows.

    PubMed

    Livingstone, K M; Humphries, D J; Kirton, P; Kliem, K E; Givens, D I; Reynolds, C K

    2015-06-01

    Replacing dietary grass silage (GS) with maize silage (MS) and dietary fat supplements may reduce milk concentration of specific saturated fatty acids (SFA) and can reduce methane production by dairy cows. The present study investigated the effect of feeding an extruded linseed supplement on milk fatty acid (FA) composition and methane production of lactating dairy cows, and whether basal forage type, in diets formulated for similar neutral detergent fiber and starch, altered the response to the extruded linseed supplement. Four mid-lactation Holstein-Friesian cows were fed diets as total mixed rations, containing either high proportions of MS or GS, both with or without extruded linseed supplement, in a 4×4 Latin square design experiment with 28-d periods. Diets contained 500 g of forage/kg of dry matter (DM) containing MS and GS in proportions (DM basis) of either 75:25 or 25:75 for high MS or high GS diets, respectively. Extruded linseed supplement (275 g/kg ether extract, DM basis) was included in treatment diets at 50 g/kg of DM. Milk yields, DM intake, milk composition, and methane production were measured at the end of each experimental period when cows were housed in respiration chambers. Whereas DM intake was higher for the MS-based diet, forage type and extruded linseed had no significant effect on milk yield, milk fat, protein, or lactose concentration, methane production, or methane per kilogram of DM intake or milk yield. Total milk fat SFA concentrations were lower with MS compared with GS-based diets (65.4 vs. 68.4 g/100 g of FA, respectively) and with extruded linseed compared with no extruded linseed (65.2 vs. 68.6 g/100 g of FA, respectively), and these effects were additive. Concentrations of total trans FA were higher with MS compared with GS-based diets (7.0 vs. 5.4 g/100 g of FA, respectively) and when extruded linseed was fed (6.8 vs. 5. 6g/100 g of FA, respectively). Total n-3 FA were higher when extruded linseed was fed compared with no extruded linseed (1.2 vs. 0.8 g/100 g of FA, respectively), whereas total n-6 polyunsaturated FA were higher when feeding MS compared with GS (2.5 vs. 2.1 g/100 g of FA, respectively). Feeding extruded linseed and MS both provided potentially beneficial decreases in SFA concentration of milk, and no significant interactions were found between extruded linseed supplementation and forage type. However, both MS and extruded linseed increased trans FA concentration in milk fat. Neither MS nor extruded linseed had significant effects on methane production or yield, but the amounts of supplemental lipid provided by extruded linseed were relatively small. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    PubMed Central

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-01-01

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site. PMID:28589962

  16. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    DOE PAGES

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn; ...

    2017-06-07

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less

  17. Eruption of a deep-sea mud volcano triggers rapid sediment movement.

    PubMed

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R; Camilli, Richard; German, Christopher R; de Beer, Dirk

    2014-11-11

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO₂ from the seafloor.

  18. Eruption of a deep-sea mud volcano triggers rapid sediment movement

    PubMed Central

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R.; Camilli, Richard; German, Christopher R.; de Beer, Dirk

    2014-01-01

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO2 from the seafloor. PMID:25384354

  19. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming.

    PubMed

    Hong, Wei-Li; Torres, Marta E; Carroll, JoLynn; Crémière, Antoine; Panieri, Giuliana; Yao, Haoyi; Serov, Pavel

    2017-06-07

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ∼380 m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. Results of temperature modelling suggest limited impact of short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.

  20. Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei-Li; Torres, Marta E.; Carroll, JoLynn

    Arctic gas hydrate reservoirs located in shallow water and proximal to the sediment-water interface are thought to be sensitive to bottom water warming that may trigger gas hydrate dissociation and the release of methane. Here, we evaluate bottom water temperature as a potential driver for hydrate dissociation and methane release from a recently discovered, gas-hydrate-bearing system south of Spitsbergen (Storfjordrenna, ~380m water depth). Modelling of the non-steady-state porewater profiles and observations of distinct layers of methane-derived authigenic carbonate nodules in the sediments indicate centurial to millennial methane emissions in the region. The results of temperature modelling suggest limited impact ofmore » short-term warming on gas hydrates deeper than a few metres in the sediments. We conclude that the ongoing and past methane emission episodes at the investigated sites are likely due to the episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation in this shallow water seep site.« less

  1. Measurements and modeling to quantify emissions of methane and VOCs from shale gas operations: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Presto, Albert A

    The objectives of the project were to determine the leakage rates of methane and ozone-forming Volatile Organic Compounds (VOCs) and the emission rates of air toxics from Marcellus shale gas activities. Methane emissions in the Marcellus Shale region were differentiated between “newer” sources associated with shale gas development and “older” sources associated with coal or conventional natural gas exploration. This project conducted measurements of methane and VOC emissions from both shale and non-shale natural gas resources. The initial scope of the project was the Marcellus Shale basin, and measurements were conducted in both the western wet gas regions (southwest PAmore » and WV) and eastern dry gas region (northeast PA) of the basin. During this project, we obtained additional funding from other agencies to expand the scope of measurements to include additional basins. The data from both the Marcellus and other basins were combined to construct a national analysis of methane emissions from oil & gas production activities.« less

  2. Linking Microbial and Biogeochemical Studies: Biological Controls of Methane Release from an Acidic Natural Wetland in Central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Biddle, J. F.; Turich, C.; Brantley, S.; Bruns, M.

    2002-12-01

    Wetlands produce between 55 and 150 Tg of methane per year, or ~70% of all natural methane, and 20% of total methane (natural and anthropogenic). Understanding inputs to the global methane cycle depends on integrated in situ study of the sources and sinks of methane, as well as the rate and magnitude of methane production and consumption. Bear Meadows Natural Area in central Pennsylvania (N 40° 43.796' W 077° 45.310; 554 m elevation) contains an acidic, methane-producing, peaty bog with vegetation that is typical of wetlands at higher latitudes. In this four year study conducted within a cross-disciplinary training course offered by the NSF-IGERT Biogeochemical Research Initiative in Education (BRIE) program at Penn State University, graduate students applied a combination of geochemical and microbiological techniques to explore microbial diversity and activity in Bear Meadows sediments. The methane flux at the peat:water interface was highly variable, from 0.01 to over 3000 umol/m2/min in both sphagnum and sedge vegetation. The methane released from the bog had a carbon isotopic composition of -60 %o, typical of biogenic methane. Analysis of peat pore waters showed that the most methane was produced 30 cm below the peat:water interface, with a broad peak of methane in pore waters from 20-40 cm. At 21 cm below the peat:water interface, profiles of Archaeal 16S-23S ribosomal RNA spacer regions revealed the presence of populations having 92% similarity to 16S rRNA sequences of Methanoculleus marisnigri. Phospholipid fatty acids (PLFA) and compound specific isotope analysis revealed other biological controls on the methane cycle. PLFAs typical of methanotrophic bacteria were also present within peat cores from 20-30 cm below the water interface. The depleted carbon isotopic composition of these biomarkers (C16:1 and C18:1 fatty acids) was - 31.4 %o and - 33.8%o, indicative of methane oxidation. The presence of biomarkers of methane oxidizing bacteria within the zone of methane production may indicate that there is temporal or spatial heterogeneity in oxygen concentration within the peat. This interdisciplinary approach helped define specific ecological niches where novel methanogens and methane oxidizers may be active in a typical northern wetland. Through BRIE, on-going studies of the Bear Meadows wetland will focus on detecting other potentially novel aerobic and anaerobic microbes, and determining the biological influence on methane release to the atmosphere.

  3. Can we reconcile our understanding of the atmospheric methane budget over the past decades with atmospheric observations?

    NASA Astrophysics Data System (ADS)

    Bruhwiler, L. M.; Matthews, E.

    2007-12-01

    The balance of methane in the atmosphere is determined by surface emission, and losses due to uptake in soils and reaction with the hydroxyl radical. The atmospheric abundance of methane has risen by about a factor of three since pre-industrial times, but the growth rate has decreased substantially since the 1990's. Thus, global atmospheric methane appears to have equilibrated to around 1780 ppb subject to considerable interannual variability, the causes of which are not well-understood. Methane emissions are expected to increase in the future due to increases in fossil fuel use and possible changes in wetlands at high-latitudes, and it is therefore important to test our understanding of the methane budget over the last two decades against network observations of atmospheric methane. Issues of interest are whether we can match the rise in methane over the 1980's, whether we can explain the decrease in growth rate during the 1990's, and whether we are able to simulate the observed interannual variability in the observations. We will show results from a multi-decade model simulation using analyzed meteorology from the ERA-40 reanalysis over this period. New times series of methane sources for 1980 through the early 2000's are used in the simulation. Anthropogenic sources include fossil fuels with a total of 7 fuel-process emission combinations associated with mining, processing, transport and distribution of coal, natural gas and oil; ruminant animals and manure based on regionally-representative profiles of bovine populations ; landfills including the impact of on- site methane capture; and irrigated rice cultivation based on seasonal rice-cropping calendars. Natural sources we include are biomass burning from the GFED emission data base, oceans, termites, and natural wetlands using a multiple-regression model derived from a process-based model. If time permits, we will also show preliminary results of a methane data assimilation using the Cooperative Air-Sampling and GMD network observations, and our new estimates of methane sources.

  4. Constructing a Spatially Resolved Methane Emission Inventory of Natural Gas Production and Distribution over Contiguous United States

    NASA Astrophysics Data System (ADS)

    Li, X.; Omara, M.; Adams, P. J.; Presto, A. A.

    2017-12-01

    Methane is the second most powerful greenhouse gas after Carbon Dioxide. The natural gas production and distribution accounts for 23% of the total anthropogenic methane emissions in the United States. The boost of natural gas production in U.S. in recent years poses a potential concern of increased methane emissions from natural gas production and distribution. The Emission Database for Global Atmospheric Research (Edgar) v4.2 and the EPA Greenhouse Gas Inventory (GHGI) are currently the most commonly used methane emission inventories. However, recent studies suggested that both Edgar v4.2 and the EPA GHGI largely underestimated the methane emission from natural gas production and distribution in U.S. constrained by both ground and satellite measurements. In this work, we built a gridded (0.1° Latitude ×0.1° Longitude) methane emission inventory of natural gas production and distribution over the contiguous U.S. using emission factors measured by our mobile lab in the Marcellus Shale, the Denver-Julesburg Basin, and the Uintah Basin, and emission factors reported from other recent field studies for other natural gas production regions. The activity data (well location and count) are mostly obtained from the Drillinginfo, the EPA Greenhouse Gas Reporting Program (GHGRP) and the U.S. Energy Information Administration (EIA). Results show that the methane emission from natural gas production and distribution estimated by our inventory is about 20% higher than the EPA GHGI, and in some major natural gas production regions, methane emissions estimated by the EPA GHGI are significantly lower than our inventory. For example, in the Marcellus Shale, our estimated annual methane emission in 2015 is 600 Gg higher than the EPA GHGI. We also ran the GEOS-Chem methane simulation to estimate the methane concentration in the atmosphere with our built inventory, the EPA GHGI and the Edgar v4.2 over the nested North American Domain. These simulation results showed differences in some major gas production regions. The simulated methane concentrations will be compared with the GOSAT satellite data to explore whether our built inventory could potentially improve the prediction of regional methane concentrations in the atmosphere.

  5. Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements

    DOE PAGES

    Schwietzke, Stefan; Pétron, Gabrielle; Conley, Stephen; ...

    2017-06-05

    Divergence in recent oil and gas related methane emission estimates between aircraft studies (basin total for a midday window) and emissions inventories (annualized regional and national statistics) indicate the need for better understanding the experimental design, including temporal and spatial alignment and interpretation of results. In our aircraft-based methane emission estimates in a major U.S. shale gas basin resolved from west to east show (i) similar spatial distributions for 2 days, (ii) strong spatial correlations with reported NG production (R 2 = 0.75) and active gas well pad count (R 2 = 0.81), and (iii) 2× higher emissions in themore » western half (normalized by gas production) despite relatively homogeneous dry gas and well characteristics. Operator reported hourly activity data show that midday episodic emissions from manual liquid unloadings (a routine operation in this basin and elsewhere) could explain ~1/3 of the total emissions detected midday by the aircraft and ~2/3 of the west–east difference in emissions. The 22% emission difference between both days further emphasizes that episodic sources can substantially impact midday methane emissions and that aircraft may detect daily peak emissions rather than daily averages that are generally employed in emissions inventories. And while the aircraft approach is valid, quantitative, and independent, this study sheds new light on the interpretation of previous basin scale aircraft studies, and provides an improved mechanistic understanding of oil and gas related methane emissions.« less

  6. Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements.

    PubMed

    Schwietzke, Stefan; Pétron, Gabrielle; Conley, Stephen; Pickering, Cody; Mielke-Maday, Ingrid; Dlugokencky, Edward J; Tans, Pieter P; Vaughn, Tim; Bell, Clay; Zimmerle, Daniel; Wolter, Sonja; King, Clark W; White, Allen B; Coleman, Timothy; Bianco, Laura; Schnell, Russell C

    2017-06-20

    Divergence in recent oil and gas related methane emission estimates between aircraft studies (basin total for a midday window) and emissions inventories (annualized regional and national statistics) indicate the need for better understanding the experimental design, including temporal and spatial alignment and interpretation of results. Our aircraft-based methane emission estimates in a major U.S. shale gas basin resolved from west to east show (i) similar spatial distributions for 2 days, (ii) strong spatial correlations with reported NG production (R 2 = 0.75) and active gas well pad count (R 2 = 0.81), and (iii) 2× higher emissions in the western half (normalized by gas production) despite relatively homogeneous dry gas and well characteristics. Operator reported hourly activity data show that midday episodic emissions from manual liquid unloadings (a routine operation in this basin and elsewhere) could explain ∼1/3 of the total emissions detected midday by the aircraft and ∼2/3 of the west-east difference in emissions. The 22% emission difference between both days further emphasizes that episodic sources can substantially impact midday methane emissions and that aircraft may detect daily peak emissions rather than daily averages that are generally employed in emissions inventories. While the aircraft approach is valid, quantitative, and independent, our study sheds new light on the interpretation of previous basin scale aircraft studies, and provides an improved mechanistic understanding of oil and gas related methane emissions.

  7. Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwietzke, Stefan; Pétron, Gabrielle; Conley, Stephen

    Divergence in recent oil and gas related methane emission estimates between aircraft studies (basin total for a midday window) and emissions inventories (annualized regional and national statistics) indicate the need for better understanding the experimental design, including temporal and spatial alignment and interpretation of results. In our aircraft-based methane emission estimates in a major U.S. shale gas basin resolved from west to east show (i) similar spatial distributions for 2 days, (ii) strong spatial correlations with reported NG production (R 2 = 0.75) and active gas well pad count (R 2 = 0.81), and (iii) 2× higher emissions in themore » western half (normalized by gas production) despite relatively homogeneous dry gas and well characteristics. Operator reported hourly activity data show that midday episodic emissions from manual liquid unloadings (a routine operation in this basin and elsewhere) could explain ~1/3 of the total emissions detected midday by the aircraft and ~2/3 of the west–east difference in emissions. The 22% emission difference between both days further emphasizes that episodic sources can substantially impact midday methane emissions and that aircraft may detect daily peak emissions rather than daily averages that are generally employed in emissions inventories. And while the aircraft approach is valid, quantitative, and independent, this study sheds new light on the interpretation of previous basin scale aircraft studies, and provides an improved mechanistic understanding of oil and gas related methane emissions.« less

  8. Temporal variation of ecosystem scale methane emission from a boreal fen in relation to common model drivers

    NASA Astrophysics Data System (ADS)

    Rinne, J.; Tuittila, E. S.; Peltola, O.; Li, X.; Raivonen, M.; Alekseychik, P.; Haapanala, S.; Pihlatie, M.; Aurela, M.; Mammarella, I.; Vesala, T.

    2017-12-01

    Models for calculating methane emission from wetland ecosystems typically relate the methane emission to carbon dioxide assimilation. Other parameters that control emission in these models are e.g. peat temperature and water table position. Many of these relations are derived from spatial variation between chamber measurements by space-for-time approach. Continuous longer term ecosystem scale methane emission measurements by eddy covariance method provide us independent data to assess the validity of the relations derived by space-for-time approach.We have analyzed eleven-year methane flux data-set, measured at a boreal fen, together with data on environmental parameters and carbon dioxide exchange to assess the relations to typical model drivers. The data was obtained by the eddy covariance method at Siikaneva mire complex, Southern Finland, during 2005-2015. The methane flux showed seasonal cycles in methane emission, with strongest correlation with peat temperature at 35 cm depth. The temperature relation was exponential throughout the whole peat temperature range of 0-16°C. The methane emission normalized to remove temperature dependence showed a non-monotonous relation on water table and positive correlation with gross primary production (GPP). However, inclusion of these as explaining variables improved algorithm-measurement correlation only slightly, with r2=0.74 for exponential temperature dependent algorithm, r2=0.76 for temperature - water table algorithm, and r2=0.79 for temperature - GPP algorithm. The methane emission lagged behind net ecosystem exchange (NEE) and GPP by two to three weeks. Annual methane emission ranged from 8.3 to 14 gC m-2, and was 20 % of NEE and 2.8 % of GPP. The inter-annual variation of methane emission was of similar magnitude as that of GPP and ecosystem respiration (Reco), but much smaller than that of NEE. The interannual variability of June-September average methane emission correlated significantly with that of GPP indicating a close link between these two processes in boreal fen ecosystems.

  9. The Effects of Surface Properties and Albedo on Methane Retrievals with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)

    NASA Astrophysics Data System (ADS)

    Ayasse, A.; Thorpe, A. K.; Roberts, D. A.

    2017-12-01

    Atmospheric methane has increased by a factor of 2.5 since the beginning of the industrial era in response to anthropogenic emissions (Ciais et al., 2013). Although it is less abundant than carbon dioxide it is 86 time more potent on a 20 year time scale (Myhre et al., 2013) and is therefore responsible for about 20% of the total global warming induced by anthropogenic greenhouse gasses (Kirschke et al., 2013). Given the importance of methane to global climate change, monitoring and measuring methane emissions using techniques such as remote sensing is of increasing interest. Recently the Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) has proven to be a valuable instrument for quantitative mapping of methane plumes (Frankenberg et al., 2016; Thorpe et al., 2016; Thompson et al., 2015). In this study, we applied the Iterative Maximum a Posterior Differential Optical Spectroscopy (IMAP-DOAS) methane retrieval algorithm to a synthetic image with variable methane concentrations, albedo, and land cover. This allowed for characterizing retrieval performance, including potential sensitivity to variable land cover, low albedo surfaces, and surfaces known to cause spurious signals. We conclude that albedo had little influence on the IMAP-DOAS results except at very low radiance levels. Water (without sun glint) was found to be the most challenging surface for methane retrievals while hydrocarbons and some green vegetation also caused error. Understanding the effect of surface properties on methane retrievals is important given the increased use of AVIRIS-NG to map gas plumes over diverse locations and methane sources. This analysis could be expanded to include additional gas species like carbon dioxide and to further investigate gas sensitivity of proposed instruments for dedicated gas mapping from airborne and spaceborne platforms.

  10. Gas hydrates of outer continental margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvenvolden, K.A.

    1990-05-01

    Gas hydrates are crystalline substances in which a rigid framework of water molecules traps molecules of gas, mainly methane. Gas-hydrate deposits are common in continental margin sediment in all major oceans at water depths greater than about 300 m. Thirty-three localities with evidence for gas-hydrate occurrence have been described worldwide. The presence of these gas hydrates has been inferred mainly from anomalous lacoustic reflectors seen on marine seismic records. Naturally occurring marine gas hydrates have been sampled and analyzed at about tensites in several regions including continental slope and rise sediment of the eastern Pacific Ocean and the Gulf ofmore » Mexico. Except for some Gulf of Mexico gas hydrate occurrences, the analyzed gas hydrates are composed almost exclusively of microbial methane. Evidence for the microbial origin of methane in gas hydrates includes (1) the inverse relation between methane occurence and sulfate concentration in the sediment, (2) the subparallel depth trends in carbon isotopic compositions of methane and bicarbonate in the interstitial water, and (3) the general range of {sup 13}C depletion ({delta}{sub PDB}{sup 13}C = {minus}90 to {minus}60 {per thousand}) in the methane. Analyses of gas hydrates from the Peruvian outer continental margin in particular illustrate this evidence for microbially generated methane. The total amount of methane in gas hydrates of continental margins is not known, but estimates of about 10{sup 16} m{sup 3} seem reasonable. Although this amount of methane is large, it is not yet clear whether methane hydrates of outer continental margins will ever be a significant energy resource; however, these gas hydrates will probably constitute a drilling hazard when outer continental margins are explored in the future.« less

  11. Effect of three pretreatment techniques on the chemical composition and on the methane yields of Opuntia ficus-indica (prickly pear) biomass.

    PubMed

    Calabrò, P S; Catalán, E; Folino, A; Sánchez, A; Komilis, D

    2018-01-01

    Opuntia ficus-indica (OFI) is an emerging biomass that has the potential to be used as substrate in anaerobic digestion. The goal of this work was to investigate the effect of three pretreatment techniques (thermal, alkaline, acidic) on the chemical composition and the methane yield of OFI biomass. A composite experimental design with three factors and two to three levels was implemented, and regression modelling was employed using a total of 10 biochemical methane potential (BMP) tests. The measured methane yields ranged from 289 to 604 NmL/gVS added ; according to the results, only the acidic pretreatment (HCl) was found to significantly increase methane generation. However, as the experimental values were quite high with regards to the theoretical methane yield of the substrate, this effect still needs to be confirmed via further research. The alkaline pretreatment (NaOH) did not noticeably affect methane yields (an average reduction of 8% was recorded), despite the fact that it did significantly reduce the lignin content. Thermal pretreatment had no effect on the methane yields or the chemical composition. Scanning electron microscopy images revealed changes in the chemical structure after the addition of NaOH and HCl. Modelling of the cumulated methane production by the Gompertz modified equation was successful and aided in understanding kinetic advantages linked to some of the pretreatments. For example, the alkaline treatment (at the 20% dosage) at room temperature resulted to a μ max (maximum specific methane production rate [NmLCH 4 /(gVS added ·d)]) equal to 36.3 against 18.6 for the control.

  12. Fine-Scale Community Structure Analysis of ANME in Nyegga Sediments with High and Low Methane Flux

    PubMed Central

    Roalkvam, Irene; Dahle, Håkon; Chen, Yifeng; Jørgensen, Steffen Leth; Haflidason, Haflidi; Steen, Ida Helene

    2012-01-01

    To obtain knowledge on how regional variations in methane seepage rates influence the stratification, abundance, and diversity of anaerobic methanotrophs (ANME), we analyzed the vertical microbial stratification in a gravity core from a methane micro-seeping area at Nyegga by using 454-pyrosequencing of 16S rRNA gene tagged amplicons and quantitative PCR. These data were compared with previously obtained data from the more active G11 pockmark, characterized by higher methane flux. A down core stratification and high relative abundance of ANME were observed in both cores, with transition from an ANME-2a/b dominated community in low-sulfide and low methane horizons to ANME-1 dominance in horizons near the sulfate-methane transition zone. The stratification was over a wider spatial region and at greater depth in the core with lower methane flux, and the total 16S rRNA copy numbers were two orders of magnitude lower than in the sediments at G11 pockmark. A fine-scale view into the ANME communities at each location was achieved through operational taxonomical units (OTU) clustering of ANME-affiliated sequences. The majority of ANME-1 sequences from both sampling sites clustered within one OTU, while ANME-2a/b sequences were represented in unique OTUs. We suggest that free-living ANME-1 is the most abundant taxon in Nyegga cold seeps, and also the main consumer of methane. The observation of specific ANME-2a/b OTUs at each location could reflect that organisms within this clade are adapted to different geochemical settings, perhaps due to differences in methane affinity. Given that the ANME-2a/b population could be sustained in less active seepage areas, this subgroup could be potential seed populations in newly developed methane-enriched environments. PMID:22715336

  13. Metabolic activity of subterranean microbial communities in deep granitic groundwater supplemented with methane and H2

    PubMed Central

    Pedersen, Karsten

    2013-01-01

    It was previously concluded that opposing gradients of sulphate and methane, observations of 16S ribosomal DNA sequences displaying great similarity to those of anaerobic methane-oxidizing Archaea and a peak in sulphide concentration in groundwater from a depth of 250–350 m in Olkiluoto, Finland, indicated proper conditions for methane oxidation with sulphate. In the present research, pressure-resistant, gas-tight circulating systems were constructed to enable the investigation of attached and unattached anaerobic microbial populations from a depth of 327 m in Olkiluoto under in situ pressure (2.4 MPa), diversity, dissolved gas and chemistry conditions. Three parallel flow cell cabinets were configured to allow observation of the influence on microbial metabolic activity of 11 mℳ methane, 11 mℳ methane plus 10 mℳ H2 or 2.1 mℳ O2 plus 7.9 mℳ N2 (that is, air). The concentrations of these gases and of organic acids and carbon, sulphur chemistry, pH and Eh, ATP, numbers of cultivable micro-organisms, and total numbers of cells and bacteriophages were subsequently recorded under batch conditions for 105 days. The system containing H2 and methane displayed microbial reduction of 0.7 mℳ sulphate to sulphide, whereas the system containing only methane resulted in 0.2 mℳ reduced sulphate. The system containing added air became inhibited and displayed no signs of microbial activity. Added H2 and methane induced increasing numbers of lysogenic bacteriophages per cell. It appears likely that a microbial anaerobic methane-oxidizing process coupled to acetate formation and sulphate reduction may be ongoing in aquifers at a depth of 250–350 m in Olkiluoto. PMID:23235288

  14. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resourcesmore » (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.« less

  15. Age of Sulfate Methane Transition Zone Determined by Modelling Barium Sulfate Growth

    NASA Astrophysics Data System (ADS)

    Lin, S.; Wang, W. C.; Lien, K. L.; Liu, C. C.; Fan, L. F.

    2017-12-01

    Methane seep to the sediment/water interface could initiate anaerobic methane oxidation (AOM) with subsequent build up of chemosynthetic community, carbonate, pyrite and a number of other authigenic mineral formation. Determination the duration, sequence and time of methane seeps are keys to understand how methane seep to the environment and degree of alteration to the vicinity area. However, limited method existed in defining time of methane seep since there are some known problems involving typical dating methods, i.e. old carbon on C14 of fossil test or authigenic carbonate, thorium from surrounding matrix on U/Th authigenic carbonate dating. In this study, we have employed barium determination method (Dickens, 2001) to model timing of methane seep at two locations in the South China Sea. Our objective is to compare timing of the barium accumulation near the sulfate methane transition zone (SMTZ) on these two different locations and to seek if a similar mechanism driving the methane seep at two locations far apart. Dissolved barium, total sediment barium and aluminum were measured as well as pore water sulfate, and sediment pyrite concentrations. Time for the barium sulfate accumulation is calculated by: T = C/F, C= ∫ I x p x (1-Ø) Our results show that SMTZ is stabilized at each site for a duration of about 4000-5000 years. AOM process have been active at both sites at about the same time. In conjunction, pyrite also accumulated at a depth near the SMTZ as a result of methane oxidation. This result show that AOM could stay at the SMTZ for a relatively long period of time, on a scale of thousands of years.

  16. Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study.

    PubMed

    Lee, Dae Hee; Behera, Shishir Kumar; Kim, Ji Won; Park, Hung-Suck

    2009-02-01

    This paper examines the applicability of food waste leachate (FWL) in bioreactor landfills or anaerobic digesters to produce methane as a sustainable solution to the persisting leachate management problem in Korea. Taking into account the climatic conditions in Korea and FWL characteristics, the effect of key parameters, viz., temperature, alkalinity and salinity on methane yield was investigated. The monthly average moisture content and the ratio of volatile solids to total solids of the FWL were found to be 84% and 91%, respectively. The biochemical methane potential experiment under standard digestion conditions showed the methane yield of FWL to be 358 and 478 ml/g VS after 10 and 28 days of digestion, respectively, with an average methane content of 70%. Elemental analysis showed the chemical composition of FWL to be C(13.02)H(23.01)O(5.93)N(1). The highest methane yield of 403 ml/g VS was obtained at 35 degrees C due to the adaptation of seed microorganisms to mesophilic atmosphere, while methane yields at 25, 45 and 55 degrees C were 370, 351 and 275 ml/g VS, respectively, at the end of 20 days. Addition of alkalinity had a favorable effect on the methane yield. Dilution of FWL with salinity of 2g/l NaCl resulted in 561 ml CH(4)/g VS at the end of 30 days. Considering its high biodegradability (82.6%) and methane production potential, anaerobic digestion of FWL in bioreactor landfills or anaerobic digesters with a preferred control of alkalinity and salinity can be considered as a sustainable solution to the present emergent problem.

  17. Role of microorganisms for cycling of atmospheric constituents, emphasizing the greenhouse gas methane (Invited)

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2013-12-01

    Microorganisms have contributed significantly to the formation of the atmosphere and the habitability of Earth. Microbial methanogenesis probably helped overcoming the faint sun problem on young Earth. Later on, cyanobacterial photosynthesis produced oxygen and thus restricted the life zone of methanogenic microbial communities, which nowadays contribute only about 1% to total carbon cycle. Nevertheless, methanogenesis still dominates the budget of atmospheric methane and contributes significantly to the greenhouse effect. There are numerous habitats, which exchange methane with the atmosphere, and even more in which methane is intensively cycled albeit little emitted. Methane can be a byproduct of chemical reactions in plant leaves, or of aerobic methyl phosphonate consumption in ocean water. Most commonly, however, methane is a stoichiometric catabolic product in the degradation of organic matter by anaerobic microorganisms. The degradation is achieved by a complex microbial community consisting of various species of hydrolytic and fermentative Bacteria that produce hydrogen, carbon dioxide and acetate as major end products, and of methanogenic Archaea that eventually convert these compounds to methane and carbon dioxide. The composition of such methanogenic microbial communities, the rates and paths of methane formation, and the isotopic composition of the produced methane all exhibit quite some variability across the different habitats in which methane is produced from organic matter decomposition, such as flooded soils, lake sediments, peatlands, animal gut systems. The structure of the microbial communities often strongly affects their function. It is a challenging task to understand the environmental and biochemical basis of the interactions of abiotic factors and microorganisms shaping the structure and function of the microbial communities in the different methanogenic habitats.

  18. Ancient dissolved methane in inland waters at low concentrations revealed by a new collection method for radiocarbon (^{14}C) analysis

    NASA Astrophysics Data System (ADS)

    Dean, Joshua F.; Billett, Michael F.; Murray, Callum; Garnett, Mark H.

    2017-04-01

    Methane (CH4) is a powerful greenhouse gas and is released to the atmosphere from freshwater systems in numerous biomes globally. Radiocarbon (14C) analysis of methane can provide unique information about its age, source and rate of cycling in natural environments. Methane is often released from aquatic sediments in bubbles (ebullition), but dissolved methane is also present in lakes and streams at lower concentrations, and may not be of the same age or source. Obtaining sufficient non-ebullitive aquatic methane for 14C analysis remains a major technical challenge. Previous studies have shown that freshwater methane, in both dissolved and ebullitive form, can be significantly older than other forms of aquatic carbon (C), and it is therefore important to characterise this part of the terrestrial C balance. We present a novel method to capture sufficient amounts of dissolved methane from freshwater environments for 14C analysis by circulating water across a hydrophobic, gas-permeable membrane and collecting the methane in a large collapsible vessel. The results of laboratory and field tests show that reliable dissolved δ13CH4 and 14CH4 samples can be readily collected over short time periods (˜4 to 24 hours), at relatively low cost and from a variety of surface water types. The initial results further support previous findings that dissolved methane can be significantly older than other forms of aquatic C, especially in organic-rich catchments, and is currently unaccounted for in many terrestrial C balances and models. This method is suitable for use in remote locations, and could potentially be used to detect the leakage of unique 14CH4 signatures from point sources into waterways, e.g. coal seam gas and landfill gas.

  19. Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs

    PubMed Central

    Piceno, Yvette M.; Reid, Francine C.; Tom, Lauren M.; Conrad, Mark E.; Bill, Markus; Hubbard, Christopher G.; Fouke, Bruce W.; Graff, Craig J.; Han, Jiabin; Stringfellow, William T.; Hanlon, Jeremy S.; Hu, Ping; Hazen, Terry C.; Andersen, Gary L.

    2014-01-01

    A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaskan North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24–27°C), Kuparuk (47–70°C), Sag River (80°C), and Ivishak (80–83°C) reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta) were most prominent in Schrader Bluff samples, and the combined δD and δ13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae) and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited). Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences. PMID:25147549

  20. Genomic and Transcriptomic Analysis of Growth-Supporting Dehalogenation of Chlorinated Methanes in Methylobacterium

    PubMed Central

    Chaignaud, Pauline; Maucourt, Bruno; Weiman, Marion; Alberti, Adriana; Kolb, Steffen; Cruveiller, Stéphane; Vuilleumier, Stéphane; Bringel, Françoise

    2017-01-01

    Bacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of Methylobacterium extorquens, by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains. In terms of gene content, adaptation toward dehalogenation appears limited, strains CM4 and DM4 sharing between 75 and 85% of their genome with other strains of M. extorquens. Transcript abundance in cultures of strain CM4 grown with chloromethane and of strain DM4 grown with dichloromethane was compared to growth with methanol as a reference C1 growth substrate. Previously identified strain-specific dehalogenase-encoding genes were the most transcribed with chlorinated methanes, alongside other genes encoded by genomic islands (GEIs) and plasmids involved in growth with chlorinated compounds as carbon and energy source. None of the 163 genes shared by strains CM4 and DM4 but not by other strains of M. extorquens showed higher transcript abundance in cells grown with chlorinated methanes. Among the several thousand genes of the M. extorquens core genome, 12 genes were only differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known function were detected, for the membrane-bound proton translocating pyrophosphatase HppA and the housekeeping molecular chaperone protein DegP. This indicates that the adaptive response common to chloromethane and dichloromethane is limited at the transcriptional level, and involves aspects of the general stress response as well as of a dehalogenation-specific response to intracellular hydrochloric acid production. Core genes only differentially abundant in either strain CM4 or strain DM4 total 13 and 58 CDS, respectively. Taken together, the obtained results suggest different transcriptional responses of chloromethane- and dichloromethane-degrading M. extorquens strains to dehalogenative metabolism, and substrate- and pathway-specific modes of growth optimization with chlorinated methanes. PMID:28919881

  1. Genomic and Transcriptomic Analysis of Growth-Supporting Dehalogenation of Chlorinated Methanes in Methylobacterium.

    PubMed

    Chaignaud, Pauline; Maucourt, Bruno; Weiman, Marion; Alberti, Adriana; Kolb, Steffen; Cruveiller, Stéphane; Vuilleumier, Stéphane; Bringel, Françoise

    2017-01-01

    Bacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of Methylobacterium extorquens , by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains. In terms of gene content, adaptation toward dehalogenation appears limited, strains CM4 and DM4 sharing between 75 and 85% of their genome with other strains of M. extorquens . Transcript abundance in cultures of strain CM4 grown with chloromethane and of strain DM4 grown with dichloromethane was compared to growth with methanol as a reference C 1 growth substrate. Previously identified strain-specific dehalogenase-encoding genes were the most transcribed with chlorinated methanes, alongside other genes encoded by genomic islands (GEIs) and plasmids involved in growth with chlorinated compounds as carbon and energy source. None of the 163 genes shared by strains CM4 and DM4 but not by other strains of M. extorquens showed higher transcript abundance in cells grown with chlorinated methanes. Among the several thousand genes of the M. extorquens core genome, 12 genes were only differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known function were detected, for the membrane-bound proton translocating pyrophosphatase HppA and the housekeeping molecular chaperone protein DegP. This indicates that the adaptive response common to chloromethane and dichloromethane is limited at the transcriptional level, and involves aspects of the general stress response as well as of a dehalogenation-specific response to intracellular hydrochloric acid production. Core genes only differentially abundant in either strain CM4 or strain DM4 total 13 and 58 CDS, respectively. Taken together, the obtained results suggest different transcriptional responses of chloromethane- and dichloromethane-degrading M. extorquens strains to dehalogenative metabolism, and substrate- and pathway-specific modes of growth optimization with chlorinated methanes.

  2. Use of a New Low-Power Laser-Based Instrumentation to Measure Methane Emissions from Remote Permafrost Regions

    NASA Astrophysics Data System (ADS)

    Burba, George; Sturtevant, Cove; Peltola, Olli; Schreiber, Peter; Zulueta, Rommel; Haapanala, Sami; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; McDermitt, Dayle; Oechel, Walt

    2013-04-01

    The permafrost regions store significant amount of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over following decades and centuries. Present measurements of methane fluxes in permafrost regions have mostly been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for remote or portable research in cold regions. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hourly to annual). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump, climate control, and analyzer systems. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a result, spatial coverage of eddy covariance methane flux measurements in cold regions remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path instrumentation allows methane flux measurements at normal pressure without a need for a pump. As a result, the measurements can be done with very low-power (e.g., 7-10 Watts) light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance station is important for number of ecosystems (rice fields, landfills, wetlands, cattle yards, etc.), but it is especially important for permafrost and other cold regions where grid power and access roads are generally not available, and logistics of running the experiment is particularly expensive. Emerging research using low-power laser-based instrumentation to measure CH4 emissions are presented from several permafrost ecosystems with contrasting setups, weather, and moisture conditions. Principles of open-path instrument operation, station characteristics and requirements are also discussed, as well as concurrent measurements of CO2 and H2O emissions using open-path and enclosed instrumentation.

  3. Constraining estimates of methane emissions from Arctic permafrost regions with CARVE

    NASA Astrophysics Data System (ADS)

    Chang, R. Y.; Karion, A.; Sweeney, C.; Henderson, J.; Mountain, M.; Eluszkiewicz, J.; Luus, K. A.; Lin, J. C.; Dinardo, S.; Miller, C. E.; Wofsy, S. C.

    2013-12-01

    Permafrost in the Arctic contains large carbon pools that are currently non-labile, but can be released to the atmosphere as polar regions warm. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents in-situ measurements of methane made on board an aircraft during the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), which sampled over the permafrost regions of Alaska. Using measurements from May to September 2012, seasonal emission rate estimates of methane from tundra are constrained using the Stochastic Time-Inverted Lagrangian Transport model, a Lagrangian particle dispersion model driven by custom polar-WRF fields. Preliminary results suggest that methane emission rates have not greatly increased since the Arctic Boundary Layer Experiment conducted in southwest Alaska in 1988.

  4. Methane distribution and oxidation around the Lena Delta in summer 2013

    NASA Astrophysics Data System (ADS)

    Bussmann, Ingeborg; Hackbusch, Steffen; Schaal, Patrick; Wichels, Antje

    2017-11-01

    The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The predicted increases in global temperatures are expected to cause the permafrost areas surrounding the Lena Delta to melt at increasing rates. This melting will result in high amounts of methane reaching the waters of the Lena and the adjacent Laptev Sea. The only biological sink that can lower methane concentrations within this system is methane oxidation by methanotrophic bacteria. However, the polar estuary of the Lena River, due to its strong fluctuations in salinity and temperature, is a challenging environment for bacteria. We determined the activity and abundance of aerobic methanotrophic bacteria by a tracer method and by the quantitative polymerase chain reaction. We described the methanotrophic population with a molecular fingerprinting method (monooxygenase intergenic spacer analysis), as well as the methane distribution (via a headspace method) and other abiotic parameters, in the Lena Delta in September 2013. The median methane concentrations were 22 nmol L-1 for riverine water (salinity (S) < 5), 19 nmol L-1 for mixed water (5 < S < 20) and 28 nmol L-1 for polar water (S > 20). The Lena River was not the source of methane in surface water, and the methane concentrations of the bottom water were mainly influenced by the methane concentration in surface sediments. However, the bacterial populations of the riverine and polar waters showed similar methane oxidation rates (0.419 and 0.400 nmol L-1 d-1), despite a higher relative abundance of methanotrophs and a higher estimated diversity in the riverine water than in the polar water. The methane turnover times ranged from 167 days in mixed water and 91 days in riverine water to only 36 days in polar water. The environmental parameters influencing the methane oxidation rate and the methanotrophic population also differed between the water masses. We postulate the presence of a riverine methanotrophic population that is limited by sub-optimal temperatures and substrate concentrations and a polar methanotrophic population that is well adapted to the cold and methane-poor polar environment but limited by a lack of nitrogen. The diffusive methane flux into the atmosphere ranged from 4 to 163 µmol m2 d-1 (median 24). The diffusive methane flux accounted for a loss of 8 % of the total methane inventory of the investigated area, whereas the methanotrophic bacteria consumed only 1 % of this methane inventory. Our results underscore the importance of measuring the methane oxidation activities in polar estuaries, and they indicate a population-level differentiation between riverine and polar water methanotrophs.

  5. Laboratory controls of precursor and temperature on the kinetics and isotopic fractionations of microbial methane for deep subsurface environments

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Lin, L.; Wang, P.; Sun, C.

    2009-12-01

    In subsurface environments, the mineralization of organic carbon involves complex interactions among geological and microbial processes. As the most reduced form and the shortest hydrocarbon chain, methane, is the final product of both microbial degradation and thermal-cracking of organic matter, it serves as the connection of carbon cycles between different reservoirs. Of various mechanisms for methane formation, microbial methane constitutes 85% of the total methane inventory investigated by far. However, the mechanisms and resultant carbon isotope fingerprints of methanogenesis in environments still remained largely unknown. The types of precursors and temperature might be the most critical factors governing methanogenesis. Lots of studies have been investigating the mechanisms responsible for methanogenesis by pure cultures, but it still remains obscure with regard to which precursors are predominantly utilized by methanogens in natural settings. The effect of temperature is especially prominent for anoxic sediments within which the temperature increases with depth in accordance with the local geotherm. Commonly observed temperatures for methanogenesis span from ambient temperature to 90OC, a temperature range for most diagenetic reactions. In order to address how different precursors would be activated for microbially catalytic methane formation upon different temperatures, we incubated the sediments collected from Kuan-Tzu-Ling hot spring at temperatures up to 90OC. Five precursors including acetate, formate, methanol, methylamine, and hydrogen were added with the inocula to stimulate methanogenesis and inhibit fermentation, and were monitored together with methane production through time. Results of this experiments indicated that methanogenesis was positive at temperatures from room temperature to 80OC and precursors investigated despite substantial variations in the maximum rates and yields. In the experiment supplied with hydrogen and formate, methanogenic rates were rapid at all temperatures. Maximum methane production rates occurred at 40~50OC for incubations with methanol, 40~60OC for incubation with acetate, and 50OC for those with methylamine. The patterns of carbon isotopic compositions on methane were either consistent with the prediction of the Rayleigh fractionation in a closed system, trending toward more depleted through time or invariant through time, suggesting variable physiological responses and microbial assemblages to precursor additions. The obtained ɛ values were 0~-12‰ for incubations with acetate, -16~-45‰ for incubations with hydrogen, -50~-80‰ for incubations with methanol, and -87~-115‰ for incubations with methylamine. Acetoclastic methanogenesis appears to fractionate carbon isotopes at the smallest magnitude. This when combined with the results from positive controls and the field observation suggests that acetoclastic methanogenesis produced methane with isotopic signatures comparable with those with thermogenic in origin and contributed significantly to the total methane inventory in the Kuan-Tzu-Ling hotspring area.

  6. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste.

    PubMed

    Pecorini, Isabella; Baldi, Francesco; Carnevale, Ennio Antonio; Corti, Andrea

    2016-10-01

    The aim of this research was to enhance the anaerobic biodegradability and methane production of two synthetic Organic Fractions of Municipal Solid Waste with different lignocellulosic contents by assessing microwave and autoclave pre-treatments. Biochemical Methane Potential assays were performed for 21days. Changes in the soluble fractions of the organic matter (measured by soluble chemical oxygen demand, carbohydrates and proteins), the first order hydrolysis constant kh and the cumulated methane production at 21days were used to evaluate the efficiency of microwaving and autoclaving pretreatments on substrates solubilization and anaerobic digestion. Microwave treatment led to a methane production increase of 8.5% for both the tested organic fractions while autoclave treatment had an increase ranging from 1.0% to 4.4%. Results showed an increase of the soluble fraction after pre-treatments for both the synthetic organic fractions. Soluble chemical oxygen demand observed significant increases for pretreated substrates (up to 219.8%). In this regard, the mediocre results of methane's production led to the conclusion that autoclaving and microwaving resulted in the hydrolysis of a significant fraction of non-biodegradable organic substances recalcitrant to anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Production waters associated with the Ferron coalbed methane fields, central Utah: Chemical and isotopic composition and volumes

    USGS Publications Warehouse

    Rice, C.A.

    2003-01-01

    This study investigated the composition of water co-produced with coalbed methane (CBM) from the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in east-central Utah to better understand coalbed methane reservoirs. The Ferron coalbed methane play currently has more than 600 wells producing an average of 240 bbl/day/well water. Water samples collected from 28 wellheads in three fields (Buzzards Bench, Drunkards Wash, and Helper State) of the northeast-southwest trending play were analyzed for chemical and stable isotopic composition.Water produced from coalbed methane wells is a Na-Cl-HCO3 type. Water from the Drunkards Wash field has the lowest total dissolved solids (TDS) (6300 mg/l) increasing in value to the southeast and northeast. In the Helper State field, about 6 miles northeast, water has the highest total dissolved solids (43,000 mg/l), and major ion abundance indicates the possible influence of evaporite dissolution or mixing with a saline brine. In the southern Buzzards Bench field, water has variable total dissolved solids that are not correlated with depth or spatial distance. Significant differences in the relative compositions are present between the three fields implying varying origins of solutes and/or different water-rock interactions along multiple flow paths.Stable isotopic values of water from the Ferron range from +0.9??? to -11.4??? ?? 18O and -32??? to -90??? ?? 2H and plot below the global meteoric water line (GMWL) on a line near, but above values of present-day meteoric water. Isotopic values of Ferron water are consistent with modification of meteoric water along a flow path by mixing with an evolved seawater brine and/or interaction with carbonate minerals. Analysis of isotopic values versus chloride (conservative element) and total dissolved solids concentrations indicates that recharge water in the Buzzards Bench area is distinct from recharge water in Drunkards Wash and is about 3 ??C warmer. These variations in isotopes along with compositional variations imply that the Ferron reservoir is heterogeneous and compartmentalized, and that multiple flow paths may exist. ?? 2003 Published by Elsevier B.V. All rights reserved.

  8. Anthropogenic emissions of methane in the United States

    PubMed Central

    Miller, Scot M.; Wofsy, Steven C.; Michalak, Anna M.; Kort, Eric A.; Andrews, Arlyn E.; Biraud, Sebastien C.; Dlugokencky, Edward J.; Eluszkiewicz, Janusz; Fischer, Marc L.; Janssens-Maenhout, Greet; Miller, Ben R.; Miller, John B.; Montzka, Stephen A.; Nehrkorn, Thomas; Sweeney, Colm

    2013-01-01

    This study quantitatively estimates the spatial distribution of anthropogenic methane sources in the United States by combining comprehensive atmospheric methane observations, extensive spatial datasets, and a high-resolution atmospheric transport model. Results show that current inventories from the US Environmental Protection Agency (EPA) and the Emissions Database for Global Atmospheric Research underestimate methane emissions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our study indicates that emissions due to ruminants and manure are up to twice the magnitude of existing inventories. In addition, the discrepancy in methane source estimates is particularly pronounced in the south-central United States, where we find total emissions are ∼2.7 times greater than in most inventories and account for 24 ± 3% of national emissions. The spatial patterns of our emission fluxes and observed methane–propane correlations indicate that fossil fuel extraction and refining are major contributors (45 ± 13%) in the south-central United States. This result suggests that regional methane emissions due to fossil fuel extraction and processing could be 4.9 ± 2.6 times larger than in EDGAR, the most comprehensive global methane inventory. These results cast doubt on the US EPA’s recent decision to downscale its estimate of national natural gas emissions by 25–30%. Overall, we conclude that methane emissions associated with both the animal husbandry and fossil fuel industries have larger greenhouse gas impacts than indicated by existing inventories. PMID:24277804

  9. Field test of methane fermentation system for treating swine wastes.

    PubMed

    Kataoka, N; Suzuki, T; Ishida, K; Yamada, N; Kurata, N; Katayose, M; Honda, K

    2002-01-01

    A methane fermentation system for treating swine wastes was developed and successfully demonstrated in a field test plant (0.5 m3/d). The system was composed of a screw-press dehydrator, a methanogenic digester, a sludge separator, an oxidation ditch (OD) and composting equipment. A performance evaluation was carried out regarding physical pre-treatment using the screw-press dehydrator, methane fermentation for pre-treated slurry, and post-treatment for digested effluent by OD. Total solids (TS) and chemical oxygen demand (CODCr) removal by the screw-press pre-treatment were 38% and 22%, respectively. Properties of the screenings were as follows: water content 57%, ignition loss 93%, specific gravity 0.33. The pretreated strong slurry was digested under mesophilic conditions. Digestion gas (biogas) production rate was 25 m3/m3-slurry (NTP) and methane content of the biogas was 67%. CODCr removal of 65% with methane fermentation treatment of the slurry operating at 35 degrees C was observed. No inhibition of methane fermentation reaction occurred at the NH4(+)-N concentration of 3,000 mg/l or less during methane fermentation by the system. Mass balance from the present pilot-scale study showed that 1 m3 of mixture of excrement and urine of swine waste (TS 90 kg/m3) was biologically converted to 25 m3/m3-slurry (NTP) of biogas (methane content 67%), 100 kg of compost (water content 40%, ignition loss 75%), and 0.80 m3 of treated water (SS 30-70 mg/l).

  10. Comparison of models used for national agricultural ammonia emission inventories in Europe: Litter-based manure systems

    NASA Astrophysics Data System (ADS)

    Reidy, B.; Webb, J.; Misselbrook, T. H.; Menzi, H.; Luesink, H. H.; Hutchings, N. J.; Eurich-Menden, B.; Döhler, H.; Dämmgen, U.

    Six N-flow models, used to calculate national ammonia (NH 3) emissions from agriculture in different European countries, were compared using standard data sets. Scenarios for litter-based systems were run separately for beef cattle and for broilers, with three different levels of model standardisation: (a) standardized inputs to all models (FF scenario); (b) standard N excretion, but national values for emission factors (EFs) (FN scenario); (c) national values for N excretion and EFs (NN scenario). Results of the FF scenario for beef cattle produced very similar estimates of total losses of total ammoniacal-N (TAN) (±6% of the mean total), but large differences in NH 3 emissions (±24% of the mean). These differences arose from the different approaches to TAN immobilization in litter, other N losses and mineralization in the models. As a result of those differences estimates of TAN available at spreading differed by a factor of almost 3. Results of the FF scenario for broilers produced a range of estimates of total changes in TAN (±9% of the mean total), and larger differences in the estimate of NH 3 emissions (±17% of the mean). The different approaches among the models to TAN immobilization, other N losses and mineralization, produced estimates of TAN available at spreading which differed by a factor of almost 1.7. The differences in estimates of NH 3 emissions decreased as estimates of immobilization and other N losses increased. Since immobilization and denitrification depend also on the C:N ratio in manure, there would be advantages to include C flows in mass-flow models. This would also provide an integrated model for the estimation of emissions of methane, non-methane VOCs and carbon dioxide. Estimation of these would also enable an estimate of mass loss, calculation of the N and TAN concentrations in litter-based manures and further validation of model outputs.

  11. The potential of biogas production from municipal solid waste in a tropical climate.

    PubMed

    Getahun, Tadesse; Gebrehiwot, Mulat; Ambelu, Argaw; Van Gerven, Tom; Van der Bruggen, Bart

    2014-07-01

    The objective of this study was to estimate the potential of organic municipal solid waste generated in an urban setting in a tropical climate to produce biogas. Five different categories of wastes were considered: fruit waste, food waste, yard waste, paper waste, and mixed waste. These fractions were assessed for their efficiency for biogas production in a laboratory-scale batch digester for a total period of 8 weeks at a temperature of 15-30 °C. During this period, fruit waste, food waste, yard waste, paper waste, and mixed waste were observed to produce 0.15, 0.17, 0.10, 0.08, and 0.15 m(3) of biogas per kilogram of volatile solids, respectively. The biogas produced and caloric value of each feedstock was in the range of 1.25 × 10(-3) m(3) (17 kWh)/cap/day (paper waste) to 15 × 10(-3) m(3) (170 kWh)/cap/day (mixed waste). Paper waste produced the least (<1×10(-3)(<17.8 kWh)/cap/day), and mixed waste produced the highest methane yield (10 × 10(-3) m(3) (178 kWh)/cap/day). Thus, mixed waste was found to be more efficient than other feedstocks for biogas and methane production; this was mainly related to the better C/N ratio in mixed waste. Taking the total waste production in Jimma into account, the total mixed organic solid waste could produce 865 × 10(3) m(3) (5.4 m(3)/capita) of biogas or 537 × 10(3) m(3) (3.4 m(3)/capita) of methane per year. The total caloric value of methane production potential from mixed organic municipal solid waste was many times higher than the total energy requirement of the area.

  12. Effects of inoculum to substrate ratio and co-digestion with bagasse on biogas production of fish waste.

    PubMed

    Xu, Jie; Mustafa, Ahmed M; Sheng, Kuichuan

    2017-10-01

    To overcome the biogas inhibition in anaerobic digestion of fish waste (FW), effects of inoculum to substrate ratio (I/S, based on VS) and co-digestion with bagasse on biogas production of FW were studied in batch reactors. I/S value was from 0.95 to 2.55, bagasse content in co-digestion (based on VS) was 25%, 50% and 75%. The highest biogas yield (433.4 mL/gVS) with 73.34% methane content was obtained at an I/S value of 2.19 in mono-digestion of FW; the biogas production was inhibited and the methane content was below 70% when I/S was below 1.5. Co-digestion of FW and bagasse could improve the stability and biogas potential, also reducing the time required to obtain 70% of the total biogas production, although the total biogas yield and methane content decreased with the increase in bagasse content in co-digestion. Biogas yield of 409.5 mL/gVS was obtained in co-digestion of 75% FW and 25% bagasse; simultaneously 78.46% of the total biogas production was achieved after 10 days of digestion.

  13. Baseline assessment of groundwater quality in Pike County, Pennsylvania, 2015

    USGS Publications Warehouse

    Senior, Lisa A.; Cravotta, Charles A.

    2017-12-29

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, which have the potential for natural gas development, underlie Pike County and neighboring counties in northeastern Pennsylvania. In 2015, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, conducted a study that expanded on a previous more limited 2012 study to assess baseline shallow groundwater quality in bedrock aquifers in Pike County prior to possible extensive shale-gas development. Seventy-nine water wells ranging in depths from 80 to 610 feet were sampled during June through September 2015 to provide data on the presence of methane and other aspects of existing groundwater quality in the various bedrock geologic units throughout the county, including concentrations of inorganic constituents commonly present at low values in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. All groundwater samples collected in 2015 were analyzed for bacteria, dissolved and total major ions, nutrients, selected dissolved and total inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane. Additionally, samples from 20 wells distributed throughout the county were analyzed for selected man-made volatile organic compounds, and samples from 13 wells where waters had detectable gross alpha activity were analyzed for radium-226 on the basis of relatively elevated gross alpha-particle activity.Results of the 2015 study show that groundwater quality generally met most drinking-water standards for constituents and properties included in analyses, but groundwater samples from some wells had one or more constituents or properties, including arsenic, iron, manganese, pH, bacteria, sodium, chloride, sulfate, total dissolved solids, and radon-222, that did not meet (commonly termed failed or exceeded) primary or secondary maximum contaminant levels (MCLs) or Health Advisories (HA) for drinking water. Except for iron, dissolved and total concentrations of major ions and most trace constituents generally were similar. Only 1 of 79 well-water samples had any constituent that exceeded a MCL, with an arsenic concentration of about 30 micrograms per liter (µg/L) that was higher than the MCL of 10 µg/L. However, total arsenic concentrations were higher than the HA of 2 µg/L in samples from another 12 of 79 wells (about 15 percent). Secondary maximum contaminant levels (SMCLs) were exceeded most frequently by pH and concentrations of iron and manganese. The pH was outside of the SMCL range of 6.5–8.5 in samples from 24 of 79 wells (30 percent), ranging from 5.5 to 9.2; more samples had pH values less than 6.5 than had pH values greater than 8.5. Total iron concentrations typically were much greater than dissolved iron concentrations, indicating substantial presence of iron in particulate phase, and exceeded the SMCL of 300 µg/L more often [35 of 79 samples (44 percent)] than dissolved iron concentrations [samples from 8 of 79 wells (10 percent)]. Total manganese concentrations exceeded the SMCL of 50 µg/L in samples from 31 of 79 wells (39 percent) and the HA of 300 µg/L in samples from 13 of 79 wells (about 16 percent). A few (1–2) samples had concentrations of sodium, chloride, sulfate, or TDS higher than the SMCLs of 60, 250, 250, and 500 mg/L, respectively. However, dissolved sodium concentrations were higher than the HA of 20 mg/L in samples from 15 of 79 wells (nearly 20 percent). Total coliform bacteria were detected in samples from 25 of 79 wells (32 percent) but Escherichia coli were not detected in any sample. Radon-222 activities ranged from 11 to 5,100 picocuries per liter (pCi/L), with a median of 1,440 pCi/L, and exceeded the proposed and the alternate proposed drinking-water standards of 300 and 4,000 pCi/L, respectively, in samples from 60 of 79 wells (75 percent) and in samples from 2 of 79 wells (3 percent), respectively.Groundwater samples from all wells were analyzed for dissolved methane by one contract laboratory that determined water from 19 of the 79 wells (24 percent) had concentrations of methane greater than the reporting level of 0.010 milligrams per liter (mg/L) with a maximum methane concentration of 2.5 mg/L. Methane concentrations in 18 replicate samples submitted to a second laboratory for dissolved gas and isotopic analysis generally were higher by as much as a factor of 2.7 from those determined by the first laboratory, indicating potential bias related to combined sampling and analytical methods, and therefore, caution needs to be used when comparing methane results determined by different methods. The isotopic composition of methane in 9 of 10 samples with sufficient dissolved methane (about 0.3 mg/L) for isotopic analysis is consistent with values reported for methane of microbial origin produced through carbon dioxide reduction; an isotopic shift in 1 or 2 samples may indicate subsequent methane oxidation. The low concentrations of ethane relative to methane in these samples further indicate that the methane may be of microbial origin. Groundwater samples with relatively elevated methane concentrations (near or greater than 0.3 mg/L) also had chemical compositions that differed in some respects from groundwater with relatively low methane concentrations (less than 0.3 mg/L) by having higher pH (greater than 8) and higher concentrations of sodium, lithium, boron, fluoride, arsenic, and bromide and chloride/bromide ratios indicative of mixing with a small amount of brine of probable natural occurrence.The spatial distribution of groundwater compositions differs by topographic setting and lithology and generally shows that (1) relatively dilute, slightly acidic, oxygenated, calcium-carbonate type waters tend to occur in the uplands underlain by the undivided Poplar Gap and Packerton members of the Catskill Formation in southwestern Pike County; (2) waters of near neutral pH with the highest amounts of hardness (calcium and magnesium) generally occur in areas of intermediate altitudes underlain by other members of the Catskill Formation; and (3) waters with pH values greater than 8, low oxygen concentrations, and the highest arsenic, sodium, lithium, bromide, and methane concentrations can be present in deep wells in uplands but most frequently occur in stream valleys, especially at low altitudes (less than about 1,200 feet above North American Vertical Datum of 1988) where groundwater may be discharging regionally, such as to the Delaware River in northern and eastern Pike County. Thus, the baseline assessment of groundwater quality in Pike County prior to gas-well development shows that shallow (less than about 1,000 feet deep) groundwater generally meets primary drinking-water standards for inorganic constituents but varies spatially, with methane and some constituents present in high concentrations in brine (and connate waters from gas and oil reservoirs) present at low to moderate concentrations in some parts of Pike County.

  14. Further evaluation of wetland emission estimates from the JULES land surface model using SCIAMACHY and GOSAT atmospheric column methane measurements

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; Comyn-Platt, Edward; McNorton, Joey; Chipperfield, Martyn; Gedney, Nicola

    2016-04-01

    The atmospheric concentration of methane began rising again in 2007 after a period of near-zero growth [1,2], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics since then. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [2,3]. Wetlands are generally accepted as being the largest, but least well quantified, single natural source of CH4, with global emission estimates ranging from 142-284 Tg yr-1 [3]. The modelling of wetlands and their associated emissions of CH4 has become the subject of much current interest [4]. We have previously used the HadGEM2 chemistry-climate model to evaluate the wetland emission estimates derived using the UK community land surface model (JULES, the Joint UK Land Earth Simulator) against atmospheric observations of methane, including SCIAMACHY total methane columns [5] up to 2007. We have undertaken a series of new HadGEM2 runs using new JULES emission estimates extended in time to the end of 2012, thereby allowing comparison with both SCIAMACHY and GOSAT atmospheric column methane measurements. We will describe the results of these runs and the implications for methane wetland emissions. References [1] Rigby, M., et al.: Renewed growth of atmospheric methane. Geophys. Res. Lett., 35, L22805, 2008; [2] Nisbet, E.G., et al.: Methane on the Rise-Again, Science 343, 493, 2014; [3] Kirschke, S., et al.,: Three decades of global methane sources and sinks, Nature Geosciences, 6, 813-823, 2013; [4] Melton, J. R., et al.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753-788, 2013; [5] Hayman, G.D., et al.: Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data, Atmos. Chem. Phys., 14, 13257-13280, 2014.

  15. Exceptional summer warming leads to contrasting outcomes for methane cycling in small Arctic lakes of Greenland

    NASA Astrophysics Data System (ADS)

    Cadieux, Sarah B.; White, Jeffrey R.; Pratt, Lisa M.

    2017-02-01

    In thermally stratified lakes, the greatest annual methane emissions typically occur during thermal overturn events. In July of 2012, Greenland experienced significant warming that resulted in substantial melting of the Greenland Ice Sheet and enhanced runoff events. This unusual climate phenomenon provided an opportunity to examine the effects of short-term natural heating on lake thermal structure and methane dynamics and compare these observations with those from the following year, when temperatures were normal. Here, we focus on methane concentrations within the water column of five adjacent small lakes on the ice-free margin of southwestern Greenland under open-water and ice-covered conditions from 2012-2014. Enhanced warming of the epilimnion in the lakes under open-water conditions in 2012 led to strong thermal stability and the development of anoxic hypolimnia in each of the lakes. As a result, during open-water conditions, mean dissolved methane concentrations in the water column were significantly (p < 0.0001) greater in 2012 than in 2013. In all of the lakes, mean methane concentrations under ice-covered conditions were significantly (p < 0.0001) greater than under open-water conditions, suggesting spring overturn is currently the largest annual methane flux to the atmosphere. As the climate continues to warm, shorter ice cover durations are expected, which may reduce the winter inventory of methane and lead to a decrease in total methane flux during ice melt. Under open-water conditions, greater heat income and warming of lake surface waters will lead to increased thermal stratification and hypolimnetic anoxia, which will consequently result in increased water column inventories of methane. This stored methane will be susceptible to emissions during fall overturn, which may result in a shift in greatest annual efflux of methane from spring melt to fall overturn. The results of this study suggest that interannual variation in ground-level air temperatures may be the primary driver of changes in methane dynamics because it controls both the duration of ice cover and the strength of thermal stratification.

  16. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  17. Performance estimates for space shuttle vehicles using a hydrogen or a methane fueled turboramjet powered first stage

    NASA Technical Reports Server (NTRS)

    Knip, G., Jr.; Eisenberg, J. D.

    1972-01-01

    Two- and three-stage (second stage expendable) shuttle vehicles, both having a hydrogen-fueled, turboramjet-powered first stage, are compared with a two-stage, VTOHL, all-rocket shuttle in terms of payload fraction, inert weight, development cost, operating cost, and total cost. All of the vehicles place 22,680 kilograms of payload into a 500-kilometer orbit. The upper stage(s) uses hydrogen-oxygen rockets. The effect on payload fraction and vehicle inert weight of methane and methane-FLOX as a fuel-propellant combination for the three-stage vehicle is indicated. Compared with a rocket first stage for a two-stage shuttle, an airbreathing first stage results in a higher payload fraction and a lower operating cost, but a higher total cost. The effect on cost of program size and first-stage flyback is indicated. The addition of an expendable rocket second stage (three-stage vehicle) improves the payload fraction but is unattractive economically.

  18. Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned Aboard STS-110 (ISS-8A) in April 2002

    NASA Technical Reports Server (NTRS)

    James, John T.

    2002-01-01

    The toxicological assessment of grab sample canisters (GSCs) returned aboard STS-110 is reported. Analytical methods have not changed from earlier reports, and surrogate standard recoveries from the GSCs were 77-121%, with one exception. Pressure tracking indicated no leaks in the canisters. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. These five indices of air quality are summarized.

  19. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-102 at the Conclusion of 5A.1

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-102 (5A.1) flight to the ISS is reported. ISS air samples were taken in late February 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges . A "first-entry" sample of the multipurpose logistics module (MPLM) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Discovery using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 contribution). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample. Formaldehyde is quantified separately.

  20. Note: Nonpolar solute partial molar volume response to attractive interactions with water.

    PubMed

    Williams, Steven M; Ashbaugh, Henry S

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

Top