Sample records for total optical path

  1. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  2. The current development status of the Orbiting Carbon Observatory (OCO) instrument optical design

    NASA Technical Reports Server (NTRS)

    Haring, Robert; Sutin, Brian; Crisp, David; Pollock, Randy; Sundstrand, Hamilton

    2005-01-01

    The status of the OCO instrument optical design is presented in this paper. The optical bench assembly comprises three cooled grating spectrometers coupled to an all-reflective telescope/relay system. Dichroic beam splitters are used to separate the light from a common telescope into the three spectral bands. The three bore sighted spectrometers allow the total column CO2 absorption path to be corrected for optical path and surface pressure uncertainties, aerosols, and water vapor. The design of the instrument is based on classic flight proven technologies.

  3. An optically passive method that doubles the rate of 2-Ghz timing fiducials

    NASA Astrophysics Data System (ADS)

    Boni, R.; Kendrick, J.; Sorce, C.

    2017-08-01

    Solid-state optical comb-pulse generators provide a convenient and accurate method to include timing fiducials in a streak camera image for time base correction. Commercially available vertical-cavity surface-emitting lasers (VCSEL's) emitting in the visible currently in use can be modulated up to 2 GHz. An optically passive method is presented to interleave a time-delayed path of the 2-GHz comb with itself, producing a 4-GHz comb. This technique can be applied to VCSEL's with higher modulation rates. A fiber-delivered, randomly polarized 2-GHz VCSEL comb is polarization split into s-polarization and p-polarization paths. One path is time delayed relative to the other by twice the 2-GHz rate with +/-1-ps accuracy; the two paths then recombine at the fiber-coupled output. High throughput (>=90%) is achieved by carefully using polarization beam-splitting cubes, a total internal reflection beam-path-steering prism, and antireflection coatings. The glass path-length delay block and turning prism are optically contacted together. The beam polarizer cubes that split and recombine the paths are precision aligned and permanently cemented into place. We expect the palm-sized, inline fiber-coupled, comb-rate-doubling device to maintain its internal alignment indefinitely.

  4. The study of optimization on process parameters of high-accuracy computerized numerical control polishing

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu

    2017-09-01

    Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.

  5. Pulse stretcher

    DOEpatents

    Horton, James A.

    1994-01-01

    Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).

  6. Cross-Polarization Optical Coherence Tomography with Active Maintenance of the Circular Polarization of a Sounding Wave in a Common Path System

    NASA Astrophysics Data System (ADS)

    Gelikonov, V. M.; Romashov, V. N.; Shabanov, D. V.; Ksenofontov, S. Yu.; Terpelov, D. A.; Shilyagin, P. A.; Gelikonov, G. V.; Vitkin, I. A.

    2018-05-01

    We consider a cross-polarization optical coherence tomography system with a common path for the sounding and reference waves and active maintenance of the circular polarization of a sounding wave. The system is based on the formation of birefringent characteristics of the total optical path, which are equivalent to a quarter-wave plate with a 45° orientation of its optical axes with respect to the linearly polarized reference wave. Conditions under which any light-polarization state can be obtained using a two-element phase controller are obtained. The dependence of the local cross-scattering coefficient of light in a model medium and biological tissue on the sounding-wave polarization state is demonstrated. The necessity of active maintenance of the circular polarization of a sounding wave in this common path system (including a flexible probe) is shown to realize uniform optimal conditions for cross-polarization studies of biological tissue.

  7. System and Method for Measuring the Transfer Function of a Guided Wave Device

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)

    2002-01-01

    A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.

  8. Photon path distribution and optical responses of turbid media: theoretical analysis based on the microscopic Beer-Lambert law.

    PubMed

    Tsuchiya, Y

    2001-08-01

    A concise theoretical treatment has been developed to describe the optical responses of a highly scattering inhomogeneous medium using functions of the photon path distribution (PPD). The treatment is based on the microscopic Beer-Lambert law and has been found to yield a complete set of optical responses by time- and frequency-domain measurements. The PPD is defined for possible photons having a total zigzag pathlength of l between the points of light input and detection. Such a distribution is independent of the absorption properties of the medium and can be uniquely determined for the medium under quantification. Therefore, the PPD can be calculated with an imaginary reference medium having the same optical properties as the medium under quantification except for the absence of absorption. One of the advantages of this method is that the optical responses, the total attenuation, the mean pathlength, etc are expressed by functions of the PPD and the absorption distribution.

  9. Photonic-powered cable assembly

    DOEpatents

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  10. Photonic-powered cable assembly

    DOEpatents

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  11. Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).

    PubMed

    Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko

    2010-10-11

    We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.

  12. A complete VLBI delay model for deforming radio telescopes: the Effelsberg case

    NASA Astrophysics Data System (ADS)

    Artz, T.; Springer, A.; Nothnagel, A.

    2014-12-01

    Deformations of radio telescopes used in geodetic and astrometric very long baseline interferometry (VLBI) observations belong to the class of systematic error sources which require correction in data analysis. In this paper we present a model for all path length variations in the geometrical optics of radio telescopes which are due to gravitational deformation. The Effelsberg 100 m radio telescope of the Max Planck Institute for Radio Astronomy, Bonn, Germany, has been surveyed by various terrestrial methods. Thus, all necessary information that is needed to model the path length variations is available. Additionally, a ray tracing program has been developed which uses as input the parameters of the measured deformations to produce an independent check of the theoretical model. In this program as well as in the theoretical model, the illumination function plays an important role because it serves as the weighting function for the individual path lengths depending on the distance from the optical axis. For the Effelsberg telescope, the biggest contribution to the total path length variations is the bending of the main beam located along the elevation axis which partly carries the weight of the paraboloid at its vertex. The difference in total path length is almost 100 mm when comparing observations at 90 and at 0 elevation angle. The impact of the path length corrections is validated in a global VLBI analysis. The application of the correction model leads to a change in the vertical position of mm. This is more than the maximum path length, but the effect can be explained by the shape of the correction function.

  13. Optical system and method for gas detection and monitoring

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Sinko, John Elihu (Inventor); Korman, Valentin (Inventor); Witherow, William K. (Inventor); Hendrickson, Adam Gail (Inventor)

    2011-01-01

    A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded.

  14. Optical multi-species gas monitoring sensor and system

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Polzin, Kurt A. (Inventor)

    2012-01-01

    The system includes at least one light source generating light energy having a corresponding wavelength. The system's sensor is based on an optical interferometer that receives light energy from each light source. The interferometer includes a free-space optical path disposed in an environment of interest. The system's sensor includes an optical device disposed in the optical path that causes light energy of a first selected wavelength to continue traversing the optical path whereas light energy of at least one second selected wavelength is directed away from the optical path. The interferometer generates an interference between the light energy of the first selected wavelength so-traversing the optical path with the light energy at the corresponding wavelength incident on the optical interferometer. A first optical detector detects the interference. At least one second detector detects the light energy at the at least one second selected wavelength directed away from the optical path.

  15. Research on the Calculation Method of Optical Path Difference of the Shanghai Tian Ma Telescope

    NASA Astrophysics Data System (ADS)

    Dong, J.; Fu, L.; Jiang, Y. B.; Liu, Q. H.; Gou, W.; Yan, F.

    2016-03-01

    Based on the Shanghai Tian Ma Telescope (TM), an optical path difference calculation method of the shaped Cassegrain antenna is presented in the paper. Firstly, the mathematical model of the TM optics is established based on the antenna reciprocity theorem. Secondly, the TM sub-reflector and main reflector are fitted by the Non-Uniform Rational B-Splines (NURBS). Finally, the method of optical path difference calculation is implemented, and the expanding application of the Ruze optical path difference formulas in the TM is researched. The method can be used to calculate the optical path difference distributions across the aperture field of the TM due to misalignment like the axial and lateral displacements of the feed and sub-reflector, or the tilt of the sub-reflector. When the misalignment quantity is small, the expanding Ruze optical path difference formulas can be used to calculate the optical path difference quickly. The paper supports the real-time measurement and adjustment of the TM structure. The research has universality, and can provide reference for the optical path difference calculation of other radio telescopes with shaped surfaces.

  16. Overlapped optics induced perfect coherent effects.

    PubMed

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-20

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  17. Method and system for compact, multi-pass pulsed laser amplifier

    DOEpatents

    Erlandson, Alvin Charles

    2014-11-25

    A laser amplifier includes an input aperture operable to receive laser radiation having a first polarization, an output aperture coupled to the input aperture by an optical path, and a polarizer disposed along an optical path. A transmission axis of the polarizer is aligned with the first polarization. The laser amplifier also includes n optical switch disposed along the optical path. The optical switch is operable to pass the laser radiation when operated in a first state and to reflect the laser radiation when operated in a second state. The laser amplifier further includes an optical gain element disposed along the optical path and a polarization rotation device disposed along the optical path.

  18. [System design of open-path natural gas leakage detection based on Fresnel lens].

    PubMed

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui

    2009-03-01

    Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edner, H.; Ragnarson, P.; Svanberg, S.

    The authors present measurements of the total flux of sulfur dioxide from three Italian volcanoes Etna, Stromboli, and Vulcano, measured in a three day period in Sept, 1992. The fluxes were measured from shipboard by means of an active differential absorption lidar technique, and a passive differential optical absorption spectroscopy technique. Corrections had to be applied to the passive optical technique because the light source paths were not well defined. The total fluxes were found to be roughly 25, 180, and 1300 tons/day for Vulcano, Stromboli, and Etna, respectively. 43 refs., 10 figs., 6 tabs.

  20. Differential Optical Absorption Spectroscopy (DOAS) using Targets: SO2 and NO2 Measurements in Montevideo City

    NASA Astrophysics Data System (ADS)

    Louban, Ilia; Píriz, Gustavo; Platt, Ulrich; Frins, Erna

    2008-04-01

    SO2 and NO2 were remotely measured in a main street of Montevideo city using Multiaxis-Differential Optical Absorption Spectroscopy (MAX-DOAS) combined with on-field selected targets. Target-based measurements are the basis of a new experimental procedure called Topographic Target Light scattering-DOAS (TOTAL-DOAS) that provides a well define absorption path to measure the near surface distribution of trace gases in the boundary layer. It combines the measurement principles of the long-path DOAS and zenith-scattered sunlight DOAS, within the near UV and VIS spectral range. We give a general description of the procedure and present first results of the 2006 campaign at Montevideo.

  1. A Dynamic Resilience Approach for WDM Optical Networks

    NASA Astrophysics Data System (ADS)

    Garg, Amit Kumar

    2017-12-01

    Optical fibres have been developed as a transmission medium to carry traffic in order to provide various services in telecommunications platform. Failure of this fibre caused loss of data which can interrupt communication services. This paper has been focused only on survivable schemes in order to guarantee both protection and restoration in WDM optical networks. In this paper, a dynamic resilience approach has been proposed whose objective is to route the flows in a way which minimizes the total amount of bandwidth used for working and protection paths. In the proposed approach, path-based protection is utilized because it yields lower overhead and is also suitable for global optimization where, in case of a single link failure, all the flows utilizing the failed link are re-routed to a pre-computed set of paths. The simulation results demonstrate that proposed approach is much more efficient as it provides better quality of services (QoS) in terms of network resource utilization, blocking probability etc. as compared to conventional protection and restoration schemes. The proposed approach seems to offer an attractive combination of features, with both ring like speed and mesh-like efficiency.

  2. Hybrid shearing and phase-shifting point diffraction interferometer

    DOEpatents

    Goldberg, Kenneth Alan; Naulleau, Patrick P.

    2003-06-03

    A new interferometry configuration combines the strengths of two existing interferometry methods, improving the quality and extending the dynamic range of both. On the same patterned mask, placed near the image-plane of an optical system under test, patterns for phase-shifting point diffraction interferometry and lateral shearing interferometry coexist. The former giving verifiable high accuracy for the measurement of nearly diffraction-limited optical systems. The latter enabling the measurement of optical systems with more than one wave of aberration in the system wavefront. The interferometry configuration is a hybrid shearing and point diffraction interferometer system for testing an optical element that is positioned along an optical path including: a source of electromagnetic energy in the optical path; a first beam splitter that is secured to a device that includes means for maneuvering the first beam splitter in a first position wherein the first beam splitter is in the optical path dividing light from the source into a reference beam and a test beam and in a second position wherein the first beam splitter is outside the optical path: a hybrid mask which includes a first section that defines a test window and at least one reference pinhole and a second section that defines a second beam splitter wherein the hybrid mask is secured to a device that includes means for maneuvering either the first section or the second section into the optical path positioned in an image plane that is created by the optical element, with the proviso that the first section of the hybrid mask is positioned in the optical path when first beam splitter is positioned in the optical path; and a detector positioned after the hybrid mask along the optical path.

  3. Method and apparatus for timing of laser beams in a multiple laser beam fusion system

    DOEpatents

    Eastman, Jay M.; Miller, Theodore L.

    1981-01-01

    The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.

  4. Optical path switching based differential absorption radiometry for substance detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2005-01-01

    An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  5. Optical path switching based differential absorption radiometry for substance detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2003-01-01

    An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  6. Prototype high speed optical delay line for stellar interferometry

    NASA Astrophysics Data System (ADS)

    Colavita, M. M.; Hines, B. E.; Shao, M.; Klose, G. J.; Gibson, B. V.

    1991-12-01

    The long baselines of the next-generation ground-based optical stellar interferometers require optical delay lines which can maintain nm-level path-length accuracy while moving at high speeds. NASA-JPL is currently designing delay lines to meet these requirements. The design is an enhanced version of the Mark III delay line, with the following key features: hardened, large diameter wheels, rather than recirculating ball bearings, to reduce mechanical noise; a friction-drive cart which bears the cable-dragging forces, and drives the optics cart through a force connection only; a balanced PZT assembly to enable high-bandwidth path-length control; and a precision aligned flexural suspension for the optics assembly to minimize bearing noise feedthrough. The delay line is fully programmable in position and velocity, and the system is controlled with four cascaded software feedback loops. Preliminary performance is a jitter in any 5 ms window of less than 10 nm rms for delay rates of up to 28 mm/s; total jitter is less than 10 nm rms for delay rates up to 20 mm/s.

  7. Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same

    DOEpatents

    Ray, Mark D.; Sedlacek, Arthur J.

    2003-08-19

    A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.

  8. Optical stabilization for time transfer infrastructure

    NASA Astrophysics Data System (ADS)

    Vojtech, Josef; Altmann, Michal; Skoda, Pavel; Horvath, Tomas; Slapak, Martin; Smotlacha, Vladimir; Havlis, Ondrej; Munster, Petr; Radil, Jan; Kundrat, Jan; Altmannova, Lada; Velc, Radek; Hula, Miloslav; Vohnout, Rudolf

    2017-08-01

    In this paper, we propose and present verification of all-optical methods for stabilization of the end-to-end delay of an optical fiber link. These methods are verified for deployment within infrastructure for accurate time and stable frequency distribution, based on sharing of fibers with research and educational network carrying live data traffic. Methods range from path length control, through temperature conditioning method to transmit wavelength control. Attention is given to achieve continuous control for relatively broad range of delays. We summarize design rules for delay stabilization based on the character and the total delay jitter.

  9. Enhanced sensitivity for optical loss measurement in planar thin-films (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Hua-Kang

    2016-09-01

    An organic-inorganic hybrid material benefits from processing advantages of organics and high refractive indices of inorganics. We focus on a titanium oxide hydrate system combined with common bulk polymers. In particular, we target thin-film structures of a few microns in thickness. Traditional Beer-Lambert approaches for measuring optical losses can only provide an upper limit estimate. This sensitivity is highly limited when considering the low-losses required for mid-range optical applications, on the order of 0.1 cm-1. For intensity based measurements, improving the sensitivity requires an increase in the optical path length. Instead, a new sensitive technique suitable for simple planar thin films is required. A number of systems were modelled to measure optical losses in films of 1 micron thick. The presented techniques utilise evanescent waves and total internal reflection to increase optical path length through the material. It was found that a new way of using prism coupling provides the greatest improvement in sensitivity. In keeping the requirements on the material simple, this method for measuring loss is well suited to any future developments of new materials in thin-film structures.

  10. AMBIENT CARBON MONOXIDE MONITOR

    EPA Science Inventory

    A portable instrument has been designed and two units have been built to monitor the concentration of CO in ambient air. The air flows through a sampling section that is approximately 43 cm long with a 28-pass optical system that produces a total path of 12 meters. Gas-filter cor...

  11. Retrievals of atmospheric columnar carbon dioxide and methane from GOSAT observations with photon path-length probability density function (PPDF) method

    NASA Astrophysics Data System (ADS)

    Bril, A.; Oshchepkov, S.; Yokota, T.; Yoshida, Y.; Morino, I.; Uchino, O.; Belikov, D. A.; Maksyutov, S. S.

    2014-12-01

    We retrieved the column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) and methane (XCH4) from the radiance spectra measured by Greenhouse gases Observing SATellite (GOSAT) for 48 months of the satellite operation from June 2009. Recent version of the Photon path-length Probability Density Function (PPDF)-based algorithm was used to estimate XCO2 and optical path modifications in terms of PPDF parameters. We also present results of numerical simulations for over-land observations and "sharp edge" tests for sun-glint mode to discuss the algorithm accuracy under conditions of strong optical path modification. For the methane abundance retrieved from 1.67-µm-absorption band we applied optical path correction based on PPDF parameters from 1.6-µm carbon dioxide (CO2) absorption band. Similarly to CO2-proxy technique, this correction assumes identical light path modifications in 1.67-µm and 1.6-µm bands. However, proxy approach needs pre-defined XCO2 values to compute XCH4, whilst the PPDF-based approach does not use prior assumptions on CO2 concentrations.Post-processing data correction for XCO2 and XCH4 over land observations was performed using regression matrix based on multivariate analysis of variance (MANOVA). The MANOVA statistics was applied to the GOSAT retrievals using reference collocated measurements of Total Carbon Column Observing Network (TCCON). The regression matrix was constructed using the parameters that were found to correlate with GOSAT-TCCON discrepancies: PPDF parameters α and ρ, that are mainly responsible for shortening and lengthening of the optical path due to atmospheric light scattering; solar and satellite zenith angles; surface pressure; surface albedo in three GOSAT short wave infrared (SWIR) bands. Application of the post-correction generally improves statistical characteristics of the GOSAT-TCCON correlation diagrams for individual stations as well as for aggregated data.In addition to the analysis of the observations over 12 TCCON stations we estimated temporal and spatial trends (interannual XCO2 and XCH4 variations, seasonal cycles, latitudinal gradients) and compared them with modeled results as well as with similar estimates from other GOSAT retrievals.

  12. Optical Circuit Switched Protocol

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    2000-01-01

    The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

  13. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    PubMed

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  15. A 2-dimensional optical architecture for solving Hamiltonian path problem based on micro ring resonators

    NASA Astrophysics Data System (ADS)

    Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama

    2015-01-01

    The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).

  16. Spectral measurements and analyses of atmospheric effects on remote sensor data

    NASA Technical Reports Server (NTRS)

    Hulstrom, R. L.

    1975-01-01

    The radiance as measured by a satellite remote sensor is determined by a number of different factors, including the intervening atmosphere, the target reflectivity characteristics, the characteristics of the total incident solar irradiance, and the incident solar irradiance/sensor viewing geometry. Measurement techniques and instrumentation are considered, taking into account total and diffuse solar irradiance, target reflectance/radiance, atmospheric optical depth/transmittance, and atmospheric path radiance.

  17. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1999-04-06

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.

  18. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1995-05-30

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.

  19. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1995-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  20. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1999-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  1. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  2. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  3. Architecture and design of optical path networks utilizing waveband virtual links

    NASA Astrophysics Data System (ADS)

    Ito, Yusaku; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi

    2016-02-01

    We propose a novel optical network architecture that uses waveband virtual links, each of which can carry several optical paths, to directly bridge distant node pairs. Future photonic networks should not only transparently cover extended areas but also expand fiber capacity. However, the traversal of many ROADM nodes impairs the optical signal due to spectrum narrowing. To suppress the degradation, the bandwidth of guard bands needs to be increased, which degrades fiber frequency utilization. Waveband granular switching allows us to apply broader pass-band filtering at ROADMs and to insert sufficient guard bands between wavebands with minimum frequency utilization offset. The scheme resolves the severe spectrum narrowing effect. Moreover, the guard band between optical channels in a waveband can be minimized, which increases the number of paths that can be accommodated per fiber. In the network, wavelength path granular routing is done without utilizing waveband virtual links, and it still suffers from spectrum narrowing. A novel network design algorithm that can bound the spectrum narrowing effect by limiting the number of hops (traversed nodes that need wavelength path level routing) is proposed in this paper. This algorithm dynamically changes the waveband virtual link configuration according to the traffic distribution variation, where optical paths that need many node hops are effectively carried by virtual links. Numerical experiments demonstrate that the number of necessary fibers is reduced by 23% compared with conventional optical path networks.

  4. Vibrational Analysis of a Shipboard Free Electron Laser Beam Path

    DTIC Science & Technology

    2011-12-01

    2 Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1...in Figure 2. Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1]) The narrow beam...3 is a top down view of the entire electron beam path. Figure 3. Electron Beam Line of a Notional FEL Oscillator . 2. Optical Path The optical

  5. Nonadiabatic quantum path analysis of high-order harmonic generation: Role of the carrier-envelope phase on short and long paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansone, G.; Stagira, S.; Nisoli, M.

    2004-07-01

    High-order harmonic generation process in the few- and multiple-optical-cycle regime is theoretically investigated, using the saddle-point method generalized to account for nonadiabatic effects. The influence of the carrier-envelope phase of the driving pulses on the various electron quantum paths is analyzed. We demonstrate that the short and long quantum paths are influenced in different ways by the carrier-envelope phase. In particular, we show that clear phase effects are visible on the long quantum paths even in the multiple-optical-cycle regime, while the short quantum paths are significantly influenced by the carrier-envelope phase only in the few-optical-cycle regime.

  6. High-temperature multipass cell for infrared spectroscopy of heated gases and vapors.

    PubMed

    Bartlome, R; Baer, M; Sigrist, M W

    2007-01-01

    In absorption spectroscopy, infrared spectra of heated gases or condensed samples in the vapor phase are usually recorded with a single pass heated gas cell. This device exhibits two orders of magnitude lower sensitivity than the high-temperature multipass cell presented in this article. Our device is a novel type of compact long path absorption cell that can withstand aggressive chemicals in addition to temperatures up to 723 K. The construction of the cell and its technical features are described in detail, paying special attention to the mechanisms that compensate for thermal expansion and that allow the user to vary the optical path length under any thermal or vacuum condition. The cell may be used with a laser source or implemented within a Fourier transform infrared spectrometer. Its design is compatible with optical arrangements using astigmatic mirrors or spherical mirrors in a Herriott configuration. Here we implement a homebuilt Herriott-type cell with a total optical path length of up to 35 m. In order to demonstrate the feasibility of the cell, methane and water vapor absorption lines showing dissimilar temperature effects on line intensity were recorded with the help of a mid-infrared laser source tunable between 3 and 4 microm. Emphasis is put on lines that are too weak to be recorded with a single pass cell.

  7. Compact programmable photonic variable delay devices

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1999-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  8. Evaluation of Acoustic Propagation Paths into the Human Head

    DTIC Science & Technology

    2005-04-01

    pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult...optics, rays are used to depict the path or paths taken as a light wave travels through a lens. However, in optics, the eikonal equation can be solved

  9. All-Optical Wavelength-Path Service With Quality Assurance by Multilayer Integration System

    NASA Astrophysics Data System (ADS)

    Yagi, Mikio; Tanaka, Shinya; Satomi, Shuichi; Ryu, Shiro; Asano, Shoichiro

    2006-09-01

    In the future all-optical network controlled by generalized multiprotocol label switching (GMPLS), the wavelength path between end nodes will change dynamically. This inevitably means that the fiber parameters along the wavelength path will also vary. This variation in fiber parameters influences the signal quality of high-speed-transmission system (bit rates over 40 Gb/s). Therefore, at a path setup, the fiber-parameter effect should be adequately compensated. Moreover, the path setup must be completed fast enough to meet the network-application demands. To realize the rapid setup of adequate paths, a multilayer integration system for all-optical wavelength-path quality assurance is proposed. This multilayer integration system is evaluated in a field trial. In the trial, the GMPLS control plane, measurement plane, and data plane coordinated to maintain the quality of a 40-Gb/s wavelength path that would otherwise be degraded by the influence of chromatic dispersion. It is also demonstrated that the multilayer integration system can assure the signal quality in the face of not only chromatic dispersion but also degradation in the optical signal-to-noise ratio by the use of a 2R regeneration system. Our experiments confirm that the proposed multilayer integration system is an essential part of future all-optical networks.

  10. Method and system for compact efficient laser architecture

    DOEpatents

    Bayramian, Andrew James; Erlandson, Alvin Charles; Manes, Kenneth Rene; Spaeth, Mary Louis; Caird, John Allyn; Deri, Robert J.

    2015-09-15

    A laser amplifier module having an enclosure includes an input window, a mirror optically coupled to the input window and disposed in a first plane, and a first amplifier head disposed along an optical amplification path adjacent a first end of the enclosure. The laser amplifier module also includes a second amplifier head disposed along the optical amplification path adjacent a second end of the enclosure and a cavity mirror disposed along the optical amplification path.

  11. Attenuator And Conditioner

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  12. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  13. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  14. Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.

    2006-02-01

    Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.

  15. Modeling of optical quadrature microscopy for imaging mouse embryos

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2008-02-01

    Optical quadrature microscopy (OQM) has been shown to provide the optical path difference through a mouse embryo, and has led to a novel method to count the total number of cells further into development than current non-toxic imaging techniques used in the clinic. The cell counting method has the potential to provide an additional quantitative viability marker for blastocyst transfer during in vitro fertilization. OQM uses a 633 nm laser within a modified Mach-Zehnder interferometer configuration to measure the amplitude and phase of the signal beam that travels through the embryo. Four cameras preceded by multiple beamsplitters record the four interferograms that are used within a reconstruction algorithm to produce an image of the complex electric field amplitude. Here we present a model for the electric field through the primary optical components in the imaging configuration and the reconstruction algorithm to calculate the signal to noise ratio when imaging mouse embryos. The model includes magnitude and phase errors in the individual reference and sample paths, fixed pattern noise, and noise within the laser and detectors. This analysis provides the foundation for determining the imaging limitations of OQM and the basis to optimize the cell counting method in order to introduce additional quantitative viability markers.

  16. On the optical path length in refracting media

    NASA Astrophysics Data System (ADS)

    Hasbun, Javier E.

    2018-04-01

    The path light follows as it travels through a substance depends on the substance's index of refraction. This path is commonly known as the optical path length (OPL). In geometrical optics, the laws of reflection and refraction are simple examples for understanding the path of light travel from source to detector for constant values of the traveled substances' refraction indices. In more complicated situations, the Euler equation can be quite useful and quite important in optics courses. Here, the well-known Euler differential equation (EDE) is used to obtain the OPL for several index of refraction models. For pedagogical completeness, the OPL is also obtained through a modified Monte Carlo (MC) method, versus which the various results obtained through the EDE are compared. The examples developed should be important in projects involving undergraduate as well as graduate students in an introductory optics course. A simple matlab script (program) is included that can be modified by students who wish to pursue the subject further.

  17. Folded path LWIR system for SWAP constrained platforms

    NASA Astrophysics Data System (ADS)

    Fleet, Erin F.; Wilson, Michael L.; Linne von Berg, Dale; Giallorenzi, Thomas; Mathieu, Barry

    2014-06-01

    Folded path reflection and catadioptric optics are of growing interest, especially in the long wave infrared (LWIR), due to continuing demands for reductions in imaging system size, weight and power (SWAP). We present the optical design and laboratory data for a 50 mm focal length low f/# folded-path compact LWIR imaging system. The optical design uses 4 concentric aspheric mirrors, each of which is described by annular aspheric functions well suited to the folded path design space. The 4 mirrors are diamond turned onto two thin air-spaced aluminum plates which can be manually focused onto the uncooled LWIR microbolometer array detector. Stray light analysis will be presented to show how specialized internal baffling can be used to reduce stray light propagation through the folded path optical train. The system achieves near diffraction limited performance across the FOV with a 15 mm long optical train and a 5 mm back focal distance. The completed system is small enough to reside within a 3 inch diameter ball gimbal.

  18. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  19. Measured Mass-Normalized Optical Cross Sections For Aerosolized Organophosphorus Chemical Warfare Simulants

    DTIC Science & Technology

    2007-08-01

    solely to the absorption by the calibration gas. By equating the path-integrated extinction to the total absorption, we have ε(1/m) = α(1/m), where 6 α...using a high-resolution (0.02 wave-number) Bomem MR Series FTIR spectrometer. A radiometrically stabilized IR Nernst glow-bar is used as the broadband

  20. Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer.

    PubMed

    Tanizawa, Ken; Suzuki, Keijiro; Toyama, Munehiro; Ohtsuka, Minoru; Yokoyama, Nobuyuki; Matsumaro, Kazuyuki; Seki, Miyoshi; Koshino, Keiji; Sugaya, Toshio; Suda, Satoshi; Cong, Guangwei; Kimura, Toshio; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi

    2015-06-29

    We demonstrate a 32 × 32 path-independent-insertion-loss optical path switch that integrates 1024 thermooptic Mach-Zehnder switches and 961 intersections on a small, 11 × 25 mm2 die. The switch is fabricated on a 300-mm-diameter silicon-on-insulator wafer by a complementary metal-oxide semiconductor-compatible process with advanced ArF immersion lithography. For reliable electrical packaging, the switch chip is flip-chip bonded to a ceramic interposer that arranges the electrodes in a 0.5-mm pitch land grid array. The on-chip loss is measured to be 15.8 ± 1.0 dB, and successful switching is demonstrated for digital-coherent 43-Gb/s QPSK signals. The total crosstalk of the switch is estimated to be less than -20 dB at the center wavelength of 1545 nm. The bandwidth narrowing caused by dimensional errors that arise during fabrication is discussed.

  1. Multipass optical device and process for gas and analyte determination

    DOEpatents

    Bernacki, Bruce E [Kennewick, WA

    2011-01-25

    A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length.

  2. Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)

    1992-01-01

    A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

  3. Optical Carry Adder.

    DTIC Science & Technology

    1987-03-01

    AOM’s) with the deflected beam as the modulator "on" state. These AOM’s ( TeO2 crystals, manufactured by Newport E.O. Systems) have high deflection...caused by the slow acoustic propagation (4.2 - 105 cm/s for TeO2 ), but this delay can be minimized by placing the laser beam close to the acoustic...dependent jitter in the optical carry to below 1 ns, the total carry path must be less than 30 cm long (or 20 cm in glass , 14 cm in LiNbO 3). Thus, a 32

  4. Using refraction in thick glass plates for optical path length modulation in low coherence interferometry.

    PubMed

    Kröger, Niklas; Schlobohm, Jochen; Pösch, Andreas; Reithmeier, Eduard

    2017-09-01

    In Michelson interferometer setups the standard way to generate different optical path lengths between a measurement arm and a reference arm relies on expensive high precision linear stages such as piezo actuators. We present an alternative approach based on the refraction of light at optical interfaces using a cheap stepper motor with high gearing ratio to control the rotation of a glass plate. The beam path is examined and a relation between angle of rotation and change in optical path length is devised. As verification, an experimental setup is presented, and reconstruction results from a measurement standard are shown. The reconstructed step height from this setup lies within 1.25% of the expected value.

  5. Theoretical analysis for scaling law of thermal blooming based on optical phase deference

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie

    2016-10-01

    In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.

  6. Optical pumping in a whispering-mode optical waveguide

    DOEpatents

    Kurnit, N.A.

    1981-08-11

    A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  7. Geometrical modeling of optical phase difference for analyzing atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Yuksel, Demet; Yuksel, Heba

    2013-09-01

    Ways of calculating phase shifts between laser beams propagating through atmospheric turbulence can give us insight towards the understanding of spatial diversity in Free-Space Optical (FSO) links. We propose a new geometrical model to estimate phase shifts between rays as the laser beam propagates through a simulated turbulent media. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. The level of turbulence is increased by elongating the range and/or increasing the number of bubbles that the rays interact with along their path. For each statistical representation of the atmosphere, the trajectories of two parallel rays separated by a particular distance are analyzed and computed simultaneously using geometrical optics. The three-dimensional geometry of the spheres is taken into account in the propagation of the rays. The bubble model is used to calculate the correlation between the two rays as their separation distance changes. The total distance traveled by each ray as both rays travel to the target is computed. The difference in the path length traveled will yield the phase difference between the rays. The mean square phase difference is taken to be the phase structure function which in the literature, for a pair of collimated parallel pencil thin rays, obeys a five-third law assuming weak turbulence. All simulation results will be compared with the predictions of wave theory.

  8. Analysis of Tyman green detection system based on polarization interference

    NASA Astrophysics Data System (ADS)

    Huang, Yaolin; Wang, Min; Shao, Xiaoping; Kou, Yuanfeng

    2018-02-01

    The optical surface deviation of the lens can directly affect the quality of the optical system.In order to effectively and accurately detect the surface shape, an optical surface on-line detection system based on polarization interference technology is designed and developed. The system is based on Tyman-Green interference optical path, join the polarization interference measuring technology. Based on the theoretical derivation of the optical path and the ZEMAX software simulation, the experimental optical path is constructed. The parallel light is used to detect the concave lens. The parallel light is used as the light source, the size of the polarization splitting prism, detection radius of curvature, the relations between and among the size of the lens aperture, a detection range is given.

  9. Apodization of beams in an optical interferometer

    NASA Technical Reports Server (NTRS)

    Ames, Lawrence L. (Inventor); Dutta, Kalyan (Inventor)

    2006-01-01

    An interferometry apparatus comprises one or more beam generators, a detector, and a plurality of optical paths along which one or more beams of light propagate. Disposed along at least one of the optical paths is an apodization mask to shape one of the beams.

  10. Modeling heading and path perception from optic flow in the case of independently moving objects

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2013-01-01

    Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589

  11. Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams

    NASA Technical Reports Server (NTRS)

    Jennings, Donald

    2013-01-01

    Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires almost no adjustment.

  12. Optical remote measurement of toxic gases

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Kagann, R. H.; McClenny, W. A.

    1992-01-01

    Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.

  13. Aerosol optical properties inferred from in-situ and path-averaged measurements

    NASA Astrophysics Data System (ADS)

    van Binsbergen, Sven A.; Grossmann, Peter; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.

    2017-09-01

    This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC) and a visibility meter, the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and a scintillometer (BLS). Data was collected at a test site in Northern Germany. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over-optimistic in their estimate of the transmission.

  14. Controlling the scattering properties of thin, particle-doped coatings

    NASA Astrophysics Data System (ADS)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  15. Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Boehm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; hide

    2016-01-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller.

  16. Computing the total atmospheric refraction for real-time optical imaging sensor simulation

    NASA Astrophysics Data System (ADS)

    Olson, Richard F.

    2015-05-01

    Fast and accurate computation of light path deviation due to atmospheric refraction is an important requirement for real-time simulation of optical imaging sensor systems. A large body of existing literature covers various methods for application of Snell's Law to the light path ray tracing problem. This paper provides a discussion of the adaptation to real time simulation of atmospheric refraction ray tracing techniques used in mid-1980's LOWTRAN releases. The refraction ray trace algorithm published in a LOWTRAN-6 technical report by Kneizys (et. al.) has been coded in MATLAB for development, and in C-language for simulation use. To this published algorithm we have added tuning parameters for variable path segment lengths, and extensions for Earth grazing and exoatmospheric "near Earth" ray paths. Model atmosphere properties used to exercise the refraction algorithm were obtained from tables published in another LOWTRAN-6 related report. The LOWTRAN-6 based refraction model is applicable to atmospheric propagation at wavelengths in the IR and visible bands of the electromagnetic spectrum. It has been used during the past two years by engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) in support of several advanced imaging sensor simulations. Recently, a faster (but sufficiently accurate) method using Gauss-Chebyshev Quadrature integration for evaluating the refraction integral was adopted.

  17. Temporal overlap estimation based on interference spectrum in CARS microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen

    2018-01-01

    Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.

  18. MAS Bulletin. GY-90 Fiber Optic Gyro

    DTIC Science & Technology

    1989-07-20

    487 GY.9O Fiber Optic Gyro Background. Elettronica San Giorgio ELSAG S.p.A., Genoa, Italy, has developed a fiber optic gyro (FOG) for use on short...to the length of ELSAG S.p.A., Naval Systems Division, Via G. Puccini, 2-16154 the optical path and an extremely long optical path can be Genoa, Italy...Telephone 39 10/60011, Fax 39 10/607329, Telex achieved in a small size by using a many-turn coil of optical fiber. 270660/213847 ELSAG 1. There are

  19. Multigranular integrated services optical network

    NASA Astrophysics Data System (ADS)

    Yu, Oliver; Yin, Leping; Xu, Huan; Liao, Ming

    2006-12-01

    Based on all-optical switches without requiring fiber delay lines and optical-electrical-optical interfaces, the multigranular optical switching (MGOS) network integrates three transport services via unified core control to efficiently support bursty and stream traffic of subwavelength to multiwavelength bandwidth. Adaptive robust optical burst switching (AR-OBS) aggregates subwavelength burst traffic into asynchronous light-rate bursts, transported via slotted-time light paths established by fast two-way reservation with robust blocking recovery control. Multiwavelength optical switching (MW-OS) decomposes multiwavelength stream traffic into a group of timing-related light-rate streams, transported via a light-path group to meet end-to-end delay-variation requirements. Optical circuit switching (OCS) simply converts wavelength stream traffic from an electrical-rate into a light-rate stream. The MGOS network employs decoupled routing, wavelength, and time-slot assignment (RWTA) and novel group routing and wavelength assignment (GRWA) to select slotted-time light paths and light-path groups, respectively. The selected resources are reserved by the unified multigranular robust fast optical reservation protocol (MG-RFORP). Simulation results show that elastic traffic is efficiently supported via AR-OBS in terms of loss rate and wavelength utilization, while connection-oriented wavelength traffic is efficiently supported via wavelength-routed OCS in terms of connection blocking and wavelength utilization. The GRWA-tuning result for MW-OS is also shown.

  20. Turbulence effects in a horizontal propagation path close to ground: implications for optics detection

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Allard, Lars; Gustafsson, Ove; Henriksson, Markus; Pettersson, Magnus

    2011-11-01

    Atmospheric turbulence effects close to ground may affect the performance of laser based systems severely. The variations in the refractive index along the propagation path cause effects such as beam wander, intensity fluctuations (scintillations) and beam broadening. Typical geometries of interest for optics detection include nearly horizontal propagation paths close to the ground and up to kilometre distance to the target. The scintillations and beam wander affect the performance in terms of detection probability and false alarm rate. Of interest is to study the influence of turbulence in optics detection applications. In a field trial atmospheric turbulence effects along a 1 kilometre horizontal propagation path were studied using a diode laser with a rectangular beam profile operating at 0.8 micrometer wavelength. Single-path beam characteristics were registered and analysed using photodetectors arranged in horizontal and vertical directions. The turbulence strength along the path was determined using a scintillometer and single-point ultrasonic anemometers. Strong scintillation effects were observed as a function of the turbulence strength and amplitude characteristics were fitted to model distributions. In addition to the single-path analysis double-path measurements were carried out on different targets. Experimental results are compared with existing theoretical turbulence laser beam propagation models. The results show that influence from scintillations needs to be considered when predicting performance in optics detection applications.

  1. Optoelectronic System Measures Distances to Multiple Targets

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Abramovici, Alexander; Bartman, Randall; Chapsky, Jacob; Schmalz, John; Coste, Keith; Litty, Edward; Lam, Raymond; Jerebets, Sergei

    2007-01-01

    An optoelectronic metrology apparatus now at the laboratory-prototype stage of development is intended to repeatedly determine distances of as much as several hundred meters, at submillimeter accuracy, to multiple targets in rapid succession. The underlying concept of optoelectronic apparatuses that can measure distances to targets is not new; such apparatuses are commonly used in general surveying and machining. However, until now such apparatuses have been, variously, constrained to (1) a single target or (2) multiple targets with a low update rate and a requirement for some a priori knowledge of target geometry. When fully developed, the present apparatus would enable measurement of distances to more than 50 targets at an update rate greater than 10 Hz, without a requirement for a priori knowledge of target geometry. The apparatus (see figure) includes a laser ranging unit (LRU) that includes an electronic camera (photo receiver), the field of view of which contains all relevant targets. Each target, mounted at a fiducial position on an object of interest, consists of a small lens at the output end of an optical fiber that extends from the object of interest back to the LRU. For each target and its optical fiber, there is a dedicated laser that is used to illuminate the target via the optical fiber. The targets are illuminated, one at a time, with laser light that is modulated at a frequency of 10.01 MHz. The modulated laser light is emitted by the target, from where it returns to the camera (photodetector), where it is detected. Both the outgoing and incoming 10.01-MHz laser signals are mixed with a 10-MHz local-oscillator to obtain beat notes at 10 kHz, and the difference between the phases of the beat notes is measured by a phase meter. This phase difference serves as a measure of the total length of the path traveled by light going out through the optical fiber and returning to the camera (photodetector) through free space. Because the portion of the path length inside the optical fiber is not ordinarily known and can change with temperature, it is also necessary to measure the phase difference associated with this portion and subtract it from the aforementioned overall phase difference to obtain the phase difference proportional to only the free-space path length, which is the distance that one seeks to measure. Therefore, the apparatus includes a photodiode and a circulator that enable measurement of the phase difference associated with propagation from the LRU inside the fiber to the target, reflection from the fiber end, and propagation back inside the fiber to the LRU. Because this phase difference represents twice the optical path length of the fiber, this phase difference is divided in two before subtraction from the aforementioned total-path-length phase difference. Radiation-induced changes in the photodetectors in this apparatus can affect the measurements. To enable calibration for the purpose of compensation for these changes, the apparatus includes an additional target at a known short distance, located inside the camera. If the measured distance to this target changes, then the change is applied to the other targets.

  2. Method for Balancing Detector Output to a Desired Level of Balance at a Frequency

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor)

    2003-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination elements, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  3. Multi-Gas Sensor

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)

    1999-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  4. Rotational symmetric HMD with eye-tracking capability

    NASA Astrophysics Data System (ADS)

    Liu, Fangfang; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    As an important auxiliary function of head-mounted displays (HMDs), eye tracking has an important role in the field of intelligent human-machine interaction. In this paper, an eye-tracking HMD system (ET-HMD) is designed based on the rotational symmetric system. The tracking principle in this paper is based on pupil-corneal reflection. The ET-HMD system comprises three optical paths for virtual display, infrared illumination, and eye tracking. The display optics is shared by three optical paths and consists of four spherical lenses. For the eye-tracking path, an extra imaging lens is added to match the image sensor and achieve eye tracking. The display optics provides users a 40° diagonal FOV with a ״ 0.61 OLED, the 19 mm eye clearance, and 10 mm exit pupil diameter. The eye-tracking path can capture 15 mm × 15 mm of the users' eyes. The average MTF is above 0.1 at 26 lp/mm for the display path, and exceeds 0.2 at 46 lp/mm for the eye-tracking path. Eye illumination is simulated using LightTools with an eye model and an 850 nm near-infrared LED (NIR-LED). The results of the simulation show that the illumination of the NIR-LED can cover the area of the eye model with the display optics that is sufficient for eye tracking. The integrated optical system HMDs with eye-tracking feature can help improve the HMD experience of users.

  5. High-speed measurement of an air transect's temperature shift heated by laser beam

    NASA Astrophysics Data System (ADS)

    Li, WenYu; Jiang, ZongFu; Xi, Fengjie; Li, Qiang; Xie, Wenke

    2005-02-01

    Laser beam heat the air on the optic path, Beam-deflection optical tomography is a non-intrusive method to measure the 2-dimension temperature distribution in the transect. By means of linear Hartmann Sensor at the rate of 27kHz, the optic path was heated by a 2.7μm HF laser, continuous and high time resolution gradients of optic phase were obtained. the result of analysing and calculation showed the temperament shift in the heated beam path was not higher than 50K when the HF laser power was 9W. The experiment showed that it is a practical non-intrusive temperature shift measurement method for a small area aero-optical medium.

  6. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  7. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  8. Comparison of primary optics in amonix CPV arrays

    NASA Astrophysics Data System (ADS)

    Nayak, Aditya; Kinsey, Geoffrey S.; Liu, Mingguo; Bagienski, William; Garboushian, Vahan

    2012-10-01

    The Amonix CPV system utilizes an acrylic Fresnel lens Primary Optical Element (POE) and a reflective Secondary Optical Element (SOE). Improvements in the optical design have contributed to more than 10% increase in rated power last year. In order to further optimize the optical power path, Amonix is looking at various trade-offs in optics, including, concentration, optical materials, reliability, and cost. A comparison of optical materials used for manufacturing the primary optical element and optical design trade off's used to maximize power output will be presented. Optimization of the power path has led to the demonstration of a module lens-area efficiency of 35% in outdoor testing at Amonix.

  9. Periscopic Spine Surgery

    DTIC Science & Technology

    2006-01-01

    Technologies, Bellaire, TX, USA) with embedded sensor coils. An NDI Optotrak infrared optical tracking device was used also to collect measurements...simultaneously with the AURORA device. Optotrak records measurement with 3-DOF and has an RMS position accuracy of 0.1mm. Since the accuracy of...path at fixed intervals and poll the AURORA and Optotrak devices for position measurements successively. A total of 100 measurement cycles from each

  10. Detecting Topological Defect Dark Matter Using Coherent Laser Ranging System

    PubMed Central

    Yang, Wanpeng; Leng, Jianxiao; Zhang, Shuangyou; Zhao, Jianye

    2016-01-01

    In the last few decades, optical frequency combs with high intensity, broad optical bandwidth, and directly traceable discrete wavelengths have triggered rapid developments in distance metrology. However, optical frequency combs to date have been limited to determine the absolute distance to an object (such as satellite missions). We propose a scheme for the detection of topological defect dark matter using a coherent laser ranging system composed of dual-combs and an optical clock via nongravitational signatures. The dark matter field, which comprises a defect, may interact with standard model particles, including quarks and photons, resulting in the alteration of their masses. Thus, a topological defect may function as a dielectric material with a distinctive frequency-depend index of refraction, which would cause the time delay of a periodic extraterrestrial or terrestrial light. When a topological defect passes through the Earth, the optical path of long-distance vacuum path is altered, this change in optical path can be detected through the coherent laser ranging system. Compared to continuous wavelength(cw) laser interferometry methods, dual-comb interferometry in our scheme excludes systematic misjudgement by measuring the absolute optical path length. PMID:27389642

  11. Optical Remote Sensing Measurements of Air Pollution in Mexico City During MCMA- 2006

    NASA Astrophysics Data System (ADS)

    Galle, B.; Mellqvist, J.; Johansson, M.; Rivera, C.; Samuelsson, J.; Zhang, Y.

    2007-05-01

    During March 2006 the Optical Remote sensing group at Chalmers University of Technology participated in the MCMA-2006 field campaign in Mexico City, performing measurements of air pollution using a set of different optical remote sensing instruments. This poster gives an overview of the techniques applied and results obtained. The techniques applied were: Solar Occultation FTIR and UV spectroscopy from fixed locations throughout the MCMA area, yielding total columns of CO, CH2O, SO2 and NO2. Long Path FTIR measurements from site T0 located in the north part of central Mexico City. With this instrument line-averaged concentration measurements of CO and CO2 was obtained in parallel with DOAS measurements performed by other partners. MAX-DOAS measurements from site T0, yielding total column and spatial distributions of SO2 and NO2. Mobile DOAS scattered Sunlight measurements of total columns of SO2 and NO2 in and around the MCMA area. Mobile and stationary DOAS measurements in the vicinity of Tula and Popocatépetl in order to quantify emissions from industry and volcano.

  12. Large dynamic range optical vector analyzer based on optical single-sideband modulation and Hilbert transform

    NASA Astrophysics Data System (ADS)

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2016-07-01

    A large dynamic range optical vector analyzer (OVA) based on optical single-sideband modulation is proposed and demonstrated. By dividing the optical signal after optical device under test into two paths, reversing the phase of one swept sideband using a Hilbert transformer in one path, and detecting the two signals from the two paths with a balanced photodetector, the measurement errors induced by the residual -1st-order sideband and the high-order sidebands can be eliminated and the dynamic range of the measurement is increased. In a proof-of-concept experiment, the stimulated Brillouin scattering and a fiber Bragg grating are measured by OVAs with and without the Hilbert transform and balanced photodetection. Results show that about 40-dB improvement in the measurement dynamic range is realized by the proposed OVA.

  13. Observing the 2017 Total Solar Eclipse from the Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Kirwan, Sean Matthew; Cline, J. Donald; Krochmal, Mark; Donald Cline, Mark Krochmal

    2017-01-01

    The Pisgah Astronomical Research Institute (PARI) is located directly under the path of totality of next year’s solar eclipse and possesses two 26m radio telescopes capable of interferometry at simultaneously at 2.3 GHz and 8.4 GHZ. PARI is preparing these radio telescopes for use by the astronomical community to observe solar eclipse. We will present the status of PARI’s radio telescopes and information on access for the eclipse. We will also present the status and availability of several optical telescopes.

  14. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    NASA Astrophysics Data System (ADS)

    Taguchi, K.; Sugiyama, J.; Totsuka, M.; Imanaka, S.

    2012-03-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  15. In-situ and path-averaged measurements of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    van Binsbergen, Sven A.; Grossmann, Peter; February, Faith J.; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.

    2017-09-01

    This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC), the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and scintillometers (BLS). Data were collected at two sites: a homogeneous test site in Northern Germany, and over the inhomogeneous False Bay near Cape Town, South Africa. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over optimistic in their estimate of the transmission. For the homogeneous test site, in-situ and path-averaged sensors yield similar results. For the inhomogeneous test site, sensors may react differently or temporally separated to meteorological events such as a change in wind speed and/or direction.

  16. Holographic Optical Coherence Imaging of Rat Osteogenic Sarcoma Tumor Spheroids

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Mustata, Mirela; Peng, Leilei; Turek, John J.; Melloch, Michael R.; French, Paul M. W.; Nolte, David D.

    2004-09-01

    Holographic optical coherence imaging is a full-frame variant of coherence-domain imaging. An optoelectronic semiconductor holographic film functions as a coherence filter placed before a conventional digital video camera that passes coherent (structure-bearing) light to the camera during holographic readout while preferentially rejecting scattered light. The data are acquired as a succession of en face images at increasing depth inside the sample in a fly-through acquisition. The samples of living tissue were rat osteogenic sarcoma multicellular tumor spheroids that were grown from a single osteoblast cell line in a bioreactor. Tumor spheroids are nearly spherical and have radial symmetry, presenting a simple geometry for analysis. The tumors investigated ranged in diameter from several hundred micrometers to over 1 mm. Holographic features from the tumors were observed in reflection to depths of 500-600 µm with a total tissue path length of approximately 14 mean free paths. The volumetric data from the tumor spheroids reveal heterogeneous structure, presumably caused by necrosis and microcalcifications characteristic of some human avascular tumors.

  17. Aero-Optical Wavefront Propagation and Refractive Fluid Interfaces in Large-Reynolds-Number Compressible Turbulent Flows

    DTIC Science & Technology

    2005-12-31

    are utilized with the eikonal equation of geometrical optics to propagate computationally the optical wavefronts in the near field. As long as the...aero-optical interactions. In terms of the refractive index field n and the optical path length (OPL), the eikonal equation is: |∇ (OPL)| = n , (9) (e.g...ray n(`, t) d` . (10) The OPL integral corresponds to inverting the eikonal equation 9. The physical distance along the beam propagation path for

  18. Low-coherence interferometric sensor system utilizing an integrated optics configuration

    NASA Astrophysics Data System (ADS)

    Plissi, M. V.; Rogers, A. J.; Brassington, D. J.; Wilson, M. G. F.

    1995-08-01

    The implementation of a twin Mach-Zehnder reference interferometer in an integrated optics substrate is described. From measurements of the fringe visibilities, an identification of the fringe order is attempted as a way to provide an absolute sensor for any parameter capable of modifying the difference in path length between two interfering optical paths.

  19. New Remote Gas Sensor Using Rapid Electro-Optical Path Switching

    NASA Technical Reports Server (NTRS)

    Sachse, G. W.; Lebel, P. J.; Wallio, H. A.; Vay, S. A.; Wang, L. G.

    1994-01-01

    Innovative gas filter correlation radiometer (GFCR) features nonmechanical switching of internal optical paths. Incoming radiation switched electro-optically, by means of polarization, between two optical paths, one of which contains correlation gas cell while other does not. Advantages include switching speed, 2 to 3 orders of magnitude faster than mechanical techniques, and high reliability. Applications include regional studies of atmospheric chemistry from either manned or unmanned aircraft as well as satellite studies of global distributions, sources and sink mechanisms for key species involved in chemistry of troposphere. Commercial applications: ability to survey many miles of natural gas pipelines rapidly from aircraft, pinpointing gas leaks by measuring methane at 2.3 micrometers.

  20. Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R. (Inventor)

    2010-01-01

    A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path.

  1. Fast wavelength tuning techniques for external cavity lasers

    DOEpatents

    Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX

    2011-01-11

    An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.

  2. Terrestrial Planet Finder cryogenic delay line development

    NASA Technical Reports Server (NTRS)

    Smythe, Robert F.; Swain, Mark R.; Alvarez-Salazar, Oscar; Moore, James D.

    2004-01-01

    Delay lines provide the path-length compensation that makes the measurement of interference fringes possible. When used for nulling interferometry, the delay line must control path-lengths so that the null is stable and controlled throughout the measurement. We report on a low noise, low disturbance, and high bandwidth optical delay line capable of meeting the TPF interferometer optical path length control requirements at cryogenic temperatures.

  3. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  4. Detailed Comparisons of COMBAT Data to Wave-Optics Simulations

    DTIC Science & Technology

    2015-10-18

    2010 along the path between Mauna Loa and Haleakala and is one of many to investigate atmospheric effects in long horizontal optical paths [1-7]. The...Relatively strong jitter sources near transmitter ( atmosphere or telescope). Rationale: Turbulence -induced scintillation alone does not explain the...Characterization of atmospheric turbulence effects over 149 km propagation path using multi-wavelength laser beacons,” in Proceedings of the 2010 AMOS

  5. 128×128 three-dimensional MEMS optical switch module with simultaneous optical path connection for optical cross-connect systems.

    PubMed

    Mizukami, Masato; Yamaguchi, Joji; Nemoto, Naru; Kawajiri, Yuko; Hirata, Hirooki; Uchiyama, Shingo; Makihara, Mitsuhiro; Sakata, Tomomi; Shimoyama, Nobuhiro; Oda, Kazuhiro

    2011-07-20

    A 128×128 three-dimensional MEMS optical switch module and a switching-control algorithm for high-speed connection and optical power stabilization are described. A prototype switch module enables the simultaneous switching of all optical paths. The insertion loss is less than 4.6 dB and is 2.3 dB on average. The switching time is less than 38 ms and is 8 ms on average. We confirmed that the maximum optical power can be obtained and optical power stabilization control is possible. The results confirm that the module is suitable for practical use in optical cross-connect systems. © 2011 Optical Society of America

  6. Simultaneous water vapor and dry air optical path length measurements and compensation with the large binocular telescope interferometer

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Hinz, P.; Downey, E.; Böhm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Pott, J.-U.; Skemer, A.; Spalding, E.; Stone, J.; Vaz, A.

    2016-08-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.

  7. Long-distance thermal temporal ghost imaging over optical fibers

    NASA Astrophysics Data System (ADS)

    Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong

    2018-02-01

    A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.

  8. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers.

    PubMed

    Cao, Yingchun; Jin, Wei; Ho, Lut Hoi; Liu, Zhibo

    2012-01-15

    We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.

  9. Procedure Enabling Simulation and In-Depth Analysis of Optical Effects in Camera-Based Time-Of Sensors

    NASA Astrophysics Data System (ADS)

    Baumgart, M.; Druml, N.; Consani, M.

    2018-05-01

    This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens) are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.

  10. Monlithic nonplanar ring oscillator and method

    NASA Technical Reports Server (NTRS)

    Nilsson, Alan C. (Inventor); Byer, Robert L. (Inventor)

    1991-01-01

    A monolithic nonplanar ring oscillator having an optically isotropic solid-state laser body for propagating laser radiation about a nonplanar ring path internal to the laser body is disclosed. The monolithic laser body is configured to produce a 2N reflection nonplanar ring light path, where N is an integer greater than or equal to 2, comprising 2N-1 total internal reflections and one reflection at a coupler in a single round trip. Undirectional traveling wave oscillation of the laser is induced by the geometry of the nonplanar ring path together with the effect of an applied magnetic field and partial polarizer characteristics of the oblique reflection from the coupler. The 6-reflection nonplanar ring oscillator makes possible otpimal unidirectional oscillation (low loss for the oscillating direction of propagation and, simultaneously high loss for the nonoscillating direction of propagation) in monolithic NPROs using materials with index of refraction smaller than the square root of 3, for example, laser glass.

  11. Horizontal Line-of-Sight Turbulence Over Near-Ground Paths and Implications for Adaptive Optics Corrections in Laser Communications.

    PubMed

    Levine, B M; Martinsen, E A; Wirth, A; Jankevics, A; Toledo-Quinones, M; Landers, F; Bruno, T L

    1998-07-20

    Atmospheric turbulence over long horizontal paths perturbs phase and can also cause severe intensity scintillation in the pupil of an optical communications receiver, which limits the data rate over which intensity-based modulation schemes can operate. The feasibility of using low-order adaptive optics by applying phase-only corrections over horizontal propagation paths is investigated. A Shack-Hartmann wave-front sensor was built and data were gathered on paths 1 m above ground and between a 1- and 2.5-km range. Both intensity fluctuations and optical path fluctuation statistics were gathered within a single frame, and the wave-front reconstructor was modified to allow for scintillated data. The temporal power spectral density for various Zernike polynomial modes was used to determine the effects of the expected corrections by adaptive optics. The slopes of the inertial subrange of turbulence were found to be less than predicted by Kolmogorov theory with an infinite outer scale, and the distribution of variance explained by increasing order was also found to be different. Statistical analysis of these data in the 1-km range indicates that at communications wavelengths of 1.3 mum, a significant improvement in transmitted beam quality could be expected most of the time, to a performance of 10% Strehl ratio or better.

  12. Middle infrared (wavelength range: 8 μm-14 μm) 2-dimensional spectroscopy (total weight with electrical controller: 1.7 kg, total cost: less than 10,000 USD) so-called hyperspectral camera for unmanned air vehicles like drones

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoyuki; Saito, Tsubasa; Ogawa, Satoru; Ishimaru, Ichiro

    2016-05-01

    We developed the palm size (optical unit: 73[mm]×102[mm]×66[mm]) and light weight (total weight with electrical controller: 1.7[kg]) middle infrared (wavelength range: 8[μm]-14[μm]) 2-dimensional spectroscopy for UAV (Unmanned Air Vehicle) like drone. And we successfully demonstrated the flights with the developed hyperspectral camera mounted on the multi-copter so-called drone in 15/Sep./2015 at Kagawa prefecture in Japan. We had proposed 2 dimensional imaging type Fourier spectroscopy that was the near-common path temporal phase-shift interferometer. We install the variable phase shifter onto optical Fourier transform plane of infinity corrected imaging optical systems. The variable phase shifter was configured with a movable mirror and a fixed mirror. The movable mirror was actuated by the impact drive piezo-electric device (stroke: 4.5[mm], resolution: 0.01[μm], maker: Technohands Co.,Ltd., type:XDT50-45, price: around 1,000USD). We realized the wavefront division type and near common path interferometry that has strong robustness against mechanical vibrations. Without anti-mechanical vibration systems, the palm-size Fourier spectroscopy was realized. And we were able to utilize the small and low-cost middle infrared camera that was the micro borometer array (un-cooled VOxMicroborometer, pixel array: 336×256, pixel pitch: 17[μm], frame rate 60[Hz], maker: FLIR, type: Quark 336, price: around 5,000USD). And this apparatus was able to be operated by single board computer (Raspberry Pi.). Thus, total cost was less than 10,000 USD. We joined with KAMOME-PJ (Kanagawa Advanced MOdule for Material Evaluation Project) with DRONE FACTORY Corp., KUUSATSU Corp., Fuji Imvac Inc. And we successfully obtained the middle infrared spectroscopic imaging with multi-copter drone.

  13. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    NASA Astrophysics Data System (ADS)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  14. Parallel multiplex laser feedback interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Song; Tan, Yidong; Zhang, Shulian, E-mail: zsl-dpi@mail.tsinghua.edu.cn

    2013-12-15

    We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimentalmore » results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.« less

  15. Generation of elliptical and circular vector hollow beams with different polarizations by a Mach-Zehnder-type optical path

    NASA Astrophysics Data System (ADS)

    Wang, Zhizhang; Pei, Chunying; Xia, Meng; Yin, Yaling; Xia, Yong; Yin, Jianping

    2018-01-01

    We present an experimental approach to convert linearly polarized Gaussian beams into elliptical and circular vector hollow beams (VHBs) with different polarization states. The scheme employed is based on a Mach-Zehnder-type optical path combined with a reflective spatial light modulator (SLM) in each path. The resulting VHBs have radial, azimuthal, and other polarization states. Our studies also show that the size of the generated VHBs remains constant during the propagation in free space over a certain distance, and can be controlled by the axial ratio of the SLM’s binary phase plate. These studies deliver great optical parameters and hold promising applications in the fields of optical trapping and manipulation of particles.

  16. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  17. Multiple-Path-Length Optical Absorbance Cell

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,

  18. Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa.

    PubMed

    Wang, Bo; Lucy, Katie A; Schuman, Joel S; Sigal, Ian A; Bilonick, Richard A; Lu, Chen; Liu, Jonathan; Grulkowski, Ireneusz; Nadler, Zachary; Ishikawa, Hiroshi; Kagemann, Larry; Fujimoto, James G; Wollstein, Gadi

    2018-05-08

    The lamina cribrosa is a primary site of damage in glaucoma. While mechanical distortion is hypothesized to cause reduction of axoplasmic flow, little is known about how the pores, which contains the retinal ganglion cell axons, traverse the lamina cribrosa. We investigated lamina cribrosa pore paths in vivo to quantify differences in tortuosity of pore paths between healthy and glaucomatous eyes. We imaged 16 healthy, 23 glaucoma suspect and 48 glaucomatous eyes from 70 subjects using a swept source optical coherence tomography system. The lamina cribrosa pores were automatically segmented using a previously described segmentation algorithm. Individual pore paths were automatically tracked through the depth of the lamina cribrosa using custom software. Pore path convergence to the optic nerve center and tortuosity was quantified for each eye. We found that lamina cribrosa pore pathways traverse the lamina cribrosa closer to the optic nerve center along the depth of the lamina cribrosa regardless of disease severity or diagnostic category. In addition, pores of glaucoma eyes take a more tortuous path through the lamina cribrosa compared to those of healthy eyes, suggesting a potential mechanism for reduction of axoplasmic flow in glaucoma.

  19. Performance analysis of visible light communication using the STBC-OFDM technique for intelligent transportation systems

    NASA Astrophysics Data System (ADS)

    Li, Changping; Yi, Ying; Lee, Kyujin; Lee, Kyesan

    2014-08-01

    Visible light communication (VLC) applied in an intelligent transportation system (ITS) has attracted growing attentions, but it also faces challenges, for example deep path loss and optical multi-path dispersion. In this work, we modelled an actual outdoor optical channel as a Rician channel and further proposed space-time block coding (STBC) orthogonal frequency-division multiplexing (OFDM) technology to reduce the influence of severe optical multi-path dispersion associated with such a mock channel for achieving the effective BER of 10-6 even at a low signal-to-noise ratio (SNR). In this case, the optical signals transmission distance can be extended as long as possible. Through the simulation results of STBC-OFDM and single-input-single-output (SISO) counterparts in bit error rate (BER) performance comparison, we can distinctly observe that the VLC-ITS system using STBC-OFDM technique can obtain a strongly improved BER performance due to multi-path dispersion alleviation.

  20. An automatic alignment system for measuring optical path of transmissometer based on light beam scanning

    NASA Astrophysics Data System (ADS)

    Zhou, Shudao; Ma, Zhongliang; Wang, Min; Peng, Shuling

    2018-05-01

    This paper proposes a novel alignment system based on the measurement of optical path using a light beam scanning mode in a transmissometer. The system controls both the probe beam and the receiving field of view while scanning in two vertical directions. The system then calculates the azimuth angle of the transmitter and the receiver to determine the precise alignment of the optical path. Experiments show that this method can determine the alignment angles in less than 10 min with errors smaller than 66 μrad in the azimuth. This system also features high collimation precision, process automation and simple installation.

  1. Statistical analysis of measured free-space laser signal intensity over a 2.33 km optical path.

    PubMed

    Tunick, Arnold

    2007-10-17

    Experimental research is conducted to determine the characteristic behavior of high frequency laser signal intensity data collected over a 2.33 km optical path. Results focus mainly on calculated power spectra and frequency distributions. In addition, a model is developed to calculate optical turbulence intensity (C(n)/2) as a function of receiving and transmitting aperture diameter, log-amplitude variance, and path length. Initial comparisons of calculated to measured C(n)/2 data are favorable. It is anticipated that this kind of signal data analysis will benefit laser communication systems development and testing at the U.S. Army Research Laboratory (ARL) and elsewhere.

  2. Peano-like paths for subaperture polishing of optical aspherical surfaces.

    PubMed

    Tam, Hon-Yuen; Cheng, Haobo; Dong, Zhichao

    2013-05-20

    Polishing can be more uniform if the polishing path provides uniform coverage of the surface. It is known that Peano paths can provide uniform coverage of planar surfaces. Peano paths also contain short path segments and turns: (1) all path segments have the same length, (2) path segments are mutually orthogonal at the turns, and (3) path segments and turns are uniformity distributed over the domain surface. These make Peano paths an attractive candidate among polishing tool paths because they enhance multidirectional approaches of the tool to each surface location. A method for constructing Peano paths for uniform coverage of aspherical surfaces is proposed in this paper. When mapped to the aspherical surface, the path also contains short path segments and turns, and the above attributes are approximately preserved. Attention is paid so that the path segments are still well distributed near the vertex of the surface. The proposed tool path was used in the polishing of a number of parabolic BK7 specimens using magnetorheological finishing (MRF) and pitch with cerium oxide. The results were rather good for optical lenses and confirm that a Peano-like path was useful for polishing, for MRF, and for pitch polishing. In the latter case, the surface roughness achieved was 0.91 nm according to WYKO measurement.

  3. Light trapping structures in wing scales of butterfly Trogonoptera brookiana.

    PubMed

    Han, Zhiwu; Niu, Shichao; Shang, Chunhui; Liu, Zhenning; Ren, Luquan

    2012-04-28

    The fine optical structures in wing scales of Trogonoptera brookiana, a tropical butterfly exhibiting efficient light trapping effect, were carefully examined and the reflectivity was measured using reflectance spectrometry. The optimized 3D configuration of the coupling structure was determined using SEM and TEM data, and the light trapping mechanism of butterfly scales was studied. It is found that the front and back sides of butterfly wings possess different light trapping structures, but both can significantly increase the optical path and thus result in almost total absorption of all incident light. An optical model was created to check the properties of this light trapping structure. The simulated reflectance spectra are in concordance with the experimental ones. The results reliably confirm that these structures induce efficient light trapping effect. This functional "biomimetic structure" would have a potential value in wide engineering and optical applications. This journal is © The Royal Society of Chemistry 2012

  4. Optical modeling based on mean free path calculations for quantum dot phosphors applied to optoelectronic devices.

    PubMed

    Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo

    2017-02-20

    We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.

  5. Accuracy enhanced distance measurement system using double-sideband modulated frequency scanning interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Xilun; Wang, Xiangchuan; Pan, Shilong

    2017-03-01

    An implementation of a distance measurement system using double-sideband with suppressed carrier modulation (DSB-SC) frequency scanning interferometry is proposed to reduce the variations in the optical path and improve the measurement accuracy. In this proposed system, the electro-optic DSB-SC is used to create dual-swept signals with opposite scanning directions. For each swept signal, the relative distance between the reference arm and the measuring arm is determined by the beat frequency of signals from two arms. By multiplying both beat signals, measurement errors caused by variations in the optical path can be greatly reduced. As an experimental demonstration, a vibration was introduced in the optical path length. The experimental results show that the variations can be suppressed for over 19.9 dB.

  6. Model of Atmospheric Links on Optical Communications from High Altitude

    NASA Technical Reports Server (NTRS)

    Subich, Christopher

    2004-01-01

    Optical communication links have the potential to solve many of the problems of current radio and microwave links to satellites and high-altitude aircraft. The higher frequency involved in optical systems allows for significantly greater signal bandwidth, and thus information transfer rate, in excess of 10 Gbps, and the highly directional nature of laser-based signals eliminates the need for frequency-division multiplexing seen in radio and microwave links today. The atmosphere, however, distorts an optical signal differently than a microwave signal. While the ionosphere is one of the most significant sources of noise and distortion in a microwave or radio signal, the lower atmosphere affects an optical signal more significantly. Refractive index fluctuations, primarily caused by changes in atmospheric temperature and density, distort the incoming signal in both deterministic and nondeterministic ways. Additionally, suspended particles, such as those in haze or rain, further corrupt the transmitted signal. To model many of the atmospheric effects on the propagating beam, we use simulations based on the beam-propagation method. This method, developed both for simulation of signals in waveguides and propagation in atmospheric turbulence, separates the propagation into a diffraction and refraction problem. The diffraction step is an exact solution, within the limits of numerical precision, to the problem of propagation in free space, and the refraction step models the refractive index variances over a segment of the propagation path. By applying refraction for a segment of the propagation path, then diffracting over that same segment, this method forms a good approximation to true propagation through the atmospheric medium. Iterating over small segments of the total propagation path gives a good approximation to the problem of propagation over the entire path. Parameters in this model, such as initial beam profile and atmospheric constants, are easily modified in a simulation such as this, which allows for the rapid analysis of different propagation scenarios. Therefore, this method allows the development of a near-optimal system design for a wide range of situations, typical of what would be seen in different atmospheric conditions over a receiving ground station. A simulation framework based upon this model was developed in FORTRAN, and for moderate grid sizes and propagation distances these simulations are computable in reasonable time on a standard workstation. This presentation will discuss results thus far.

  7. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  8. Full optical model of micro-endoscope with optical coherence microscopy, multiphoton microscopy and visible capabilities

    NASA Astrophysics Data System (ADS)

    Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.

    2018-02-01

    While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.

  9. Low-latency optical parallel adder based on a binary decision diagram with wavelength division multiplexing scheme

    NASA Astrophysics Data System (ADS)

    Shinya, A.; Ishihara, T.; Inoue, K.; Nozaki, K.; Kita, S.; Notomi, M.

    2018-02-01

    We propose an optical parallel adder based on a binary decision diagram that can calculate simply by propagating light through electrically controlled optical pass gates. The CARRY and CARRY operations are multiplexed in one circuit by a wavelength division multiplexing scheme to reduce the number of optical elements, and only a single gate constitutes the critical path for one digit calculation. The processing time reaches picoseconds per digit when we use a 100-μm-long optical path gates, which is ten times faster than a CMOS circuit.

  10. Design of MOEMS adjustable optical delay line to reduce link set-up time in a tera-bit/s optical interconnection network.

    PubMed

    Jing, Wencai; Zhang, Yimo; Zhou, Ge

    2002-07-15

    A new structure for bit synchronization in a tera-bit/s optical interconnection network has been designed using micro-electro-mechanical system (MEMS) technique. Link multiplexing has been adopted to reduce data packet communication latency. To eliminate link set-up time, adjustable optical delay lines (AODLs) have been adopted to shift the phases of the distributed optical clock signals for bit synchronization. By changing the optical path distance of the optical clock signal, the phase of the clock signal can be shifted at a very high resolution. A phase-shift resolution of 0.1 ps can be easily achieved with 30-microm alternation of the optical path length in vacuum.

  11. Microscopic optical path length difference and polarization measurement system for cell analysis

    NASA Astrophysics Data System (ADS)

    Satake, H.; Ikeda, K.; Kowa, H.; Hoshiba, T.; Watanabe, E.

    2018-03-01

    In recent years, noninvasive, nonstaining, and nondestructive quantitative cell measurement techniques have become increasingly important in the medical field. These cell measurement techniques enable the quantitative analysis of living cells, and are therefore applied to various cell identification processes, such as those determining the passage number limit during cell culturing in regenerative medicine. To enable cell measurement, we developed a quantitative microscopic phase imaging system based on a Mach-Zehnder interferometer that measures the optical path length difference distribution without phase unwrapping using optical phase locking. The applicability of our phase imaging system was demonstrated by successful identification of breast cancer cells amongst normal cells. However, the cell identification method using this phase imaging system exhibited a false identification rate of approximately 7%. In this study, we implemented a polarimetric imaging system by introducing a polarimetric module to one arm of the Mach-Zehnder interferometer of our conventional phase imaging system. This module was comprised of a quarter wave plate and a rotational polarizer on the illumination side of the sample, and a linear polarizer on the optical detector side. In addition, we developed correction methods for the measurement errors of the optical path length and birefringence phase differences that arose through the influence of elements other than cells, such as the Petri dish. As the Petri dish holding the fluid specimens was transparent, it did not affect the amplitude information; however, the optical path length and birefringence phase differences were affected. Therefore, we proposed correction of the optical path length and birefringence phase for the influence of elements other than cells, as a prerequisite for obtaining highly precise phase and polarimetric images.

  12. Barriers Keep Drops Of Water Out Of Infrared Gas Sensors

    NASA Technical Reports Server (NTRS)

    Murray, Sean K.

    1996-01-01

    Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.

  13. OPEN PATH AMBIENT MEASUREMENTS OF POLLUTANTS WITH A DOAS SYSTEM

    EPA Science Inventory

    A differential optical absorption spectrometer (DOAS) has been in operation since August 1991 at the U.S. EPA in RTP, NC. he analyzer unit is located in an environmentally-controlled shelter in the EPA parking lot. our separate open optical paths have been established, ranging fr...

  14. SIMULATION STUDY FOR GASEOUS FLUXES FROM AN AREA SOURCE USING COMPUTED TOMOGRAPHY AND OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper presents a new approach to quantifying emissions from fugitive gaseous air pollution sources. Computed tomography (CT) and path-integrated optical remote sensing (PI-ORS) concentration data are combined in a new field beam geometry. Path-integrated concentrations are ...

  15. Differential phase contrast X-ray imaging system and components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutman, Daniel; Finkenthal, Michael

    2017-11-21

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  16. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    PubMed

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  17. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  18. Method and apparatus for optical communication by frequency modulation

    DOEpatents

    Priatko, Gordon J.

    1988-01-01

    Laser optical communication according to this invention is carried out by producing multi-frequency laser beams having different frequencies, splitting one or more of these constituent beams into reference and signal beams, encoding information on the signal beams by frequency modulation and detecting the encoded information by heterodyne techniques. Much more information can be transmitted over optical paths according to the present invention than with the use of only one path as done previously.

  19. Tomographic multiaxis-differential optical absorption spectroscopy observations of Sun-illuminated targets: a technique providing well-defined absorption paths in the boundary layer

    NASA Astrophysics Data System (ADS)

    Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas

    2006-08-01

    A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO2, HCHO, SO2, H2O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg.

  20. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2014-01-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth. PMID:25401020

  1. Optical signature of an ionospheric hole

    NASA Technical Reports Server (NTRS)

    Mendillo, M.; Baumgardner, J.

    1982-01-01

    Simultaneous radio and optical diagnostics of a large, artificially-induced ionospheric modification were conducted during the June 1981 launch of a weather satellite. Intensified imaging and photometer observations at 6300 A, along the same ray path as VHF polarimeter measurements of the ionosphere's total electron content (TEC), were made while the rocket plume caused disturbances. A rapid TEC chemical depletion, on the order of -16.8 x 10 to the 12th el/sq cm, caused a burst of 6300 A radiation which expanded over 60 deg of the sky, with a peak intensity of almost 9 k R. Atmospheric diffusion and O(1D) quenching rate theoretical estimates were then tested, using the event as an active space plasma experiment.

  2. Optical switch based on thermocapillarity

    NASA Astrophysics Data System (ADS)

    Sakata, Tomomi; Makihara, Mitsuhiro; Togo, Hiroyoshi; Shimokawa, Fusao; Kaneko, Kazumasa

    2001-11-01

    Space-division optical switches are essential for the protection, optical cross-connects (OXCs), and optical add/drop multiplexers (OADMs) needed in future fiber-optic communication networks. For applications in these areas, we proposed a thermocapillarity switch called oil-latching interfacial-tension variation effect (OLIVE) switch. An OLIVE switch is a micro-mechanical optical switch fabricated on planar lightwave circuits (PLC) using micro-electro-mechanical systems (MEMS) technology. It consists of a crossing waveguide that has a groove at each crossing point and a pair of microheaters. The groove is partially filled with the refractive-index-matching liquid, and optical signals are switched according to the liquid's position in the groove, i.e., whether it is passing straight through the groove or reflecting at the sidewall of the groove. The liquid is driven by thermocapillarity and latched by capillarity. Using the total internal reflection to switch the optical path, the OLIVE switch exhibits excellent optical characteristics, such as high transparency (insertion loss: < 2 dB), high extinction ratio (> 50 dB), and low crosstalk (< -50 dB). Moreover, since this switch has a simple structure and bi-stability, it has wide variety of applications in wavelength division multiplexing (WDM) networks.

  3. Multi-point laser ignition device

    DOEpatents

    McIntyre, Dustin L.; Woodruff, Steven D.

    2017-01-17

    A multi-point laser device comprising a plurality of optical pumping sources. Each optical pumping source is configured to create pumping excitation energy along a corresponding optical path directed through a high-reflectivity mirror and into substantially different locations within the laser media thereby producing atomic optical emissions at substantially different locations within the laser media and directed along a corresponding optical path of the optical pumping source. An output coupler and one or more output lenses are configured to produce a plurality of lasing events at substantially different times, locations or a combination thereof from the multiple atomic optical emissions produced at substantially different locations within the laser media. The laser media is a single continuous media, preferably grown on a single substrate.

  4. Demonstrating Fermat's Principle in Optics

    ERIC Educational Resources Information Center

    Paleiov, Orr; Pupko, Ofir; Lipson, S. G.

    2011-01-01

    We demonstrate Fermat's principle in optics by a simple experiment using reflection from an arbitrarily shaped one-dimensional reflector. We investigated a range of possible light paths from a lamp to a fixed slit by reflection in a curved reflector and showed by direct measurement that the paths along which light is concentrated have either…

  5. Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.

    2006-01-01

    Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.

  6. Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City.

    PubMed

    Sinclair, Laura C; Swann, William C; Bergeron, Hugo; Baumann, Esther; Cermak, Michael; Coddington, Ian; Deschênes, Jean-Daniel; Giorgetta, Fabrizio R; Juarez, Juan C; Khader, Isaac; Petrillo, Keith G; Souza, Katherine T; Dennis, Michael L; Newbury, Nathan R

    2016-10-15

    We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths.

  7. Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City

    PubMed Central

    Sinclair, Laura C.; Swann, William C.; Bergeron, Hugo; Baumann, Esther; Cermak, Michael; Coddington, Ian; Deschênes, Jean-Daniel; Giorgetta, Fabrizio R.; Juarez, Juan C.; Khader, Isaac; Petrillo, Keith G.; Souza, Katherine T.; Dennis, Michael L.; Newbury, Nathan R.

    2018-01-01

    We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths. PMID:29348695

  8. Raman scattering in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1982-01-01

    A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  9. Automatic cell identification and visualization using digital holographic microscopy with head mounted augmented reality devices.

    PubMed

    O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram

    2018-03-01

    We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.

  10. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  11. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  12. CFO compensation method using optical feedback path for coherent optical OFDM system

    NASA Astrophysics Data System (ADS)

    Moon, Sang-Rok; Hwang, In-Ki; Kang, Hun-Sik; Chang, Sun Hyok; Lee, Seung-Woo; Lee, Joon Ki

    2017-07-01

    We investigate feasibility of carrier frequency offset (CFO) compensation method using optical feedback path for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. Recently proposed CFO compensation algorithms provide wide CFO estimation range in electrical domain. However, their practical compensation range is limited by sampling rate of an analog-to-digital converter (ADC). This limitation has not drawn attention, since the ADC sampling rate was high enough comparing to the data bandwidth and CFO in the wireless OFDM system. For CO-OFDM, the limitation is becoming visible because of increased data bandwidth, laser instability (i.e. large CFO) and insufficient ADC sampling rate owing to high cost. To solve the problem and extend practical CFO compensation range, we propose a CFO compensation method having optical feedback path. By adding simple wavelength control for local oscillator, the practical CFO compensation range can be extended to the sampling frequency range. The feasibility of the proposed method is experimentally investigated.

  13. The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results

    NASA Astrophysics Data System (ADS)

    Che, Xiao; Sturmann, Laszlo; Monnier, John D.; ten Brummelaar, Theo A.; Sturmann, Judit; Ridgway, Stephen T.; Ireland, Michael J.; Turner, Nils H.; McAlister, Harold A.

    2014-07-01

    The CHARA array is an optical interferometer with six 1-meter diameter telescopes, providing baselines from 33 to 331 meters. With sub-milliarcsecond angular resolution, its versatile visible and near infrared combiners offer a unique angle of studying nearby stellar systems by spatially resolving their detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011 to install adaptive optics (AO) systems on all six telescopes. The initial grant covers Phase I of the AO systems, which includes on-telescope Wavefront Sensors (WFS) and non-common-path (NCP) error correction. Meanwhile we are seeking funding for Phase II which will add large Deformable Mirrors on telescopes to close the full AO loop. The corrections of NCP error and static aberrations in the optical system beyond the WFS are described in the second paper of this series. This paper describes the design of the common-path optical system and the on-telescope WFS, and shows the on-sky commissioning results.

  14. Monolithic mm-wave phase shifter using optically activated superconducting switches

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)

    1992-01-01

    A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.

  15. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    NASA Astrophysics Data System (ADS)

    Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred

    2017-09-01

    Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  16. The Abcd Formula of Phase Definition in Optical Interferometry: Combined Effect of Air Dispersion and Broad Passband

    NASA Astrophysics Data System (ADS)

    Mathar, Richard J.

    Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).

  17. A study of the high-precision displacement laser probe

    NASA Astrophysics Data System (ADS)

    Fan, Yuming; Zhang, Guoxiong

    2006-06-01

    On the basis of the measuring principle of the dynamic active optical confocal probe based on time difference measurement that has a reference path, a dynamic active optical confocal probe based on time difference measurement but has no reference path is developed. In this paper, the working principle of this optical confocal probe is dissertated. A large-scale integrated measuring system is designed to simplify the structure of the probe and to enhance the stability of the probe. Single-chip microcomputer system with a high-speed ADC is selected in the measurement and control system of the probe. At the end of the paper, experiments on the performance of the optical confocal probe based on time difference measurement with no reference path are carried out. Experiment results show that the probe has a measuring resolution of 0.05μm, a measuring range of 0.2mm and a linearity of 0.4μm.

  18. Optical path design of phase contrast imaging on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Qiyun, CHENG; Yi, YU; Shaobo, GONG; Min, XU; Tao, LAN; Wei, JIANG; Boda, YUAN; Yifan, WU; Lin, NIE; Rui, KE; Ting, LONG; Dong, GUO; Minyou, YE; Xuru, DUAN

    2017-12-01

    A phase contrast imaging (PCI) diagnostic has recently been developed on HL-2A tokamak. It can diagnose plasma density fluctuations with maximum wave number of 15 cm-1 and wave number resolution of 2 cm-1. The time resolution reaches 2 μs. A 10.6 μm CO2 laser is expanded to a beam with a diameter of 30 mm and injected into the plasma as an incident beam, injecting into plasma. The emerging scattered and unscattered beams are contrasted by a phase plate. The ideas of optical path design are presented in this paper, together with the parameters of the main optical components. The whole optical path of PCI is not only carefully designed, but also constructed on HL-2A. First calibration results show the ability of this system to catch plasma turbulence in a wide frequency domain.

  19. Polarization feedback laser stabilization

    DOEpatents

    Esherick, Peter; Owyoung, Adelbert

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  20. Light-driven phase shifter

    DOEpatents

    Early, James W.

    1990-01-01

    A light-driven phase shifter is provided for modulating a transmission light beam. A gaseous medium such as argon is provided with electron energy states excited to populate a metastable state. A tunable dye laser is selected with a wavelength effective to deplete the metastable electron state and may be intensity modulated. The dye laser is directed through the gaseous medium to define a first optical path having an index of refraction determined by the gaseous medium having a depleted metastable electron state. A transmission laser beam is also directed through the gaseous medium to define a second optical path at least partially coincident with the first optical path. The intensity of the dye laser beam may then be varied to phase modulate the transmission laser beam.

  1. Complete description of the optical path difference of a novel spectral zooming imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wu, Haiying; Qi, Chun

    2018-03-01

    A complete description of the optical path difference of a novel spectral zooming imaging spectrometer (SZIS) is presented. SZIS is designed based on two identical Wollaston prisms with an adjustable air gap. Thus, interferogram with arbitrary spectral resolution and great reduction of spectral image size can be conveniently formed to adapt to different application requirements. Ray tracing modeling in arbitrary incidence with a quasi-parallel-plate approximation scheme is proposed to analyze the optical path difference of SZIS. In order to know the characteristics of the apparatus, exact calculations of the corresponding spectral resolution and field of view are both derived and analyzed in detail. We also present a comparison of calculation and experiment to prove the validity of the theory.

  2. Optical path difference microscopy with a Shack-Hartmann wavefront sensor.

    PubMed

    Gong, Hai; Agbana, Temitope E; Pozzi, Paolo; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2017-06-01

    In this Letter, we show that a Shack-Hartmann wavefront sensor can be used for the quantitative measurement of the specimen optical path difference (OPD) in an ordinary incoherent optical microscope, if the spatial coherence of the illumination light in the plane of the specimen is larger than the microscope resolution. To satisfy this condition, the illumination numerical aperture should be smaller than the numerical aperture of the imaging lens. This principle has been successfully applied to build a high-resolution reference-free instrument for the characterization of the OPD of micro-optical components and microscopic biological samples.

  3. Aerosol mass spectrometry systems and methods

    DOEpatents

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  4. Stray magnetic-field response of linear birefringent optical current sensors

    NASA Astrophysics Data System (ADS)

    MacDougall, Trevor W.; Hutchinson, Ted F.

    1995-07-01

    It is well known that the line integral, describing Faraday rotation in an optical medium, reduces to zero at low frequencies for a closed path that does not encircle a current source. If the closed optical path possesses linear birefringence in addition to Faraday rotation, the cumulative effects on the state of polarization result in a response to externally located current-carrying conductors. This effect can induce a measurable error of the order of 0.3% during certain steady-state operating conditions.

  5. Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.

    1998-12-01

    We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.

  6. Three-tier multi-granularity switching system based on PCE

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Sun, Hao; Liu, Yanfei

    2017-10-01

    With the growing demand for business communications, electrical signal processing optical path switching can't meet the demand. The multi-granularity switch system that can improve node routing and switching capabilities came into being. In the traditional network, each node is responsible for calculating the path; synchronize the whole network state, which will increase the burden on the network, so the concept of path calculation element (PCE) is proposed. The PCE is responsible for routing and allocating resources in the network1. In the traditional band-switched optical network, the wavelength is used as the basic routing unit, resulting in relatively low wavelength utilization. Due to the limitation of wavelength continuity, the routing design of the band technology becomes complicated, which directly affects the utilization of the system. In this paper, optical code granularity is adopted. There is no continuity of the optical code, and the number of optical codes is more flexible than the wavelength. For the introduction of optical code switching, we propose a Code Group Routing Entity (CGRE) algorithm. In short, the combination of three-tier multi-granularity optical switching system and PCE can simplify the network structure, reduce the node load, and enhance the network scalability and survivability. Realize the intelligentization of optical network.

  7. Slant-path coherent free space optical communications over the maritime and terrestrial atmospheres with the use of adaptive optics for beam wavefront correction.

    PubMed

    Li, Ming; Gao, Wenbo; Cvijetic, Milorad

    2017-01-10

    As a continuation of our previous work [Appl. Opt.54, 1453 (2015)APOPAI0003-693510.1364/AO.54.001453] in which we have studied the performance of coherent free space optical (FSO) communication systems operating over a horizontal path, in this paper we study the coherent FSO system operating over a general slant path. We evaluated system bit-error-rate (BER) in the case when the quadrature phase-shift keying (QPSK) modulation format is applied and when an adaptive optics (AO) system is employed to mitigate the air turbulence effects for both maritime and terrestrial air transmission scenarios. We adopted a multiple-layer scheme to efficiently model the FSO slant-path links. The atmospheric channel fading was characterized by the wavefront phase distortions and the log-amplitude fluctuations. We derived analytical expressions to characterize log-amplitude fluctuations of air turbulence by asserting the aperture averaging within the frame of the multiple-layer model. The obtained results showed that use of AO enabled improvement of system performance for both uplinks and downlinks, and also revealed that it is more beneficial for the FSO downlinks. Also, AO employment brought larger enhancements in BER performance for the maritime slant-path FSO links than for the terrestrial ones, with an additional striking increase in performance when the AO correction is combined with the aperture averaging.

  8. Advanced laser architectures for high power eyesafe illuminators

    NASA Astrophysics Data System (ADS)

    Baranova, N.; Pati, B.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.

    2018-02-01

    Q-Peak has demonstrated a novel pulsed eyesafe laser architecture operating with >50 mJ pulse energies at Pulse Repetition Frequencies (PRFs) as high as 320 Hz. The design leverages an Optical Parametric Oscillator (OPO) and Optical Parametric Amplifier (OPA) geometry, which provides the unique capability for high power in a comparatively compact package, while also offering the potential for additional eyesafe power scaling. The laser consists of a Commercial Off-the-Shelf (COTS) Q-switched front-end seed laser to produce pulse-widths around 10 ns at 1.06-μm, which is then followed by a pair of Multi-Pass Amplifier (MPA) architectures (comprised of side-pumped, multi-pass Nd:YAG slabs with a compact diode-pump-array imaging system), and finally involving two sequential nonlinear optical conversion architectures for transfer into the eyesafe regime. The initial seed beam is first amplified through the MPA, and then split into parallel optical paths. An OPO provides effective nonlinear conversion on one optical path, while a second MPA further amplifies the 1.06-μm beam for use in pumping an OPA on the second optical path. These paths are then recombined prior to seeding the OPA. Each nonlinear conversion subsystem utilizes Potassium Titanyl Arsenate (KTA) for effective nonlinear conversion with lower risk to optical damage. This laser architecture efficiently produces pulse energies of >50 mJ in the eyesafe band at PRFs as high as 320 Hz, and has been designed to fit within a volume of 4,500 in3 (0.074 m3 ). We will discuss theoretical and experimental details of the nonlinear optical system for achieving higher eyesafe powers.

  9. Polarization feedback laser stabilization

    DOEpatents

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  10. Report on Research

    DTIC Science & Technology

    1989-06-01

    Force systems require a resolved information on the optical thorough understanding of the propaga- extinction coefficient. Measurements of tion path , the...Depolarization as Function of Snow Density. Measurement System ). (It correlated well with the ( Multi -scatter scale length information is usable to extinction ...data on the effect of optically thin cirrus clouds on long - path infrared transmit- tance. Future system designers will have access to this new

  11. Simulation of the fixed optical path difference of near infrared wind imaging interferometer

    NASA Astrophysics Data System (ADS)

    Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen

    2017-02-01

    As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.

  12. Quantum correlation in degenerate optical parametric oscillators with mutual injections

    NASA Astrophysics Data System (ADS)

    Takata, Kenta; Marandi, Alireza; Yamamoto, Yoshihisa

    2015-10-01

    We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive P representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes p ̂ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.

  13. Unsteady density and velocity measurements in the 6 foot x 6 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Rose, W. C.; Johnson, D. A.

    1980-01-01

    The methods used and the results obtained in four aero-optic tests are summarized. It is concluded that the rather large values of density fluctuation appear to be the result of much higher Mach number than freestream and the violent turbulence in the flow as it separates from the turret. A representative comparison of fairing on-fairing off rms density fluctuation indicates essentially no effect at M = 0.62 and a small effect at M = 0.95. These data indicate that some slight improvement in optical quality can be expected with the addition of a fairing, although at M = 0.62 its effect would be nil. Fairings are very useful in controlling pressure loads on turrets, but will not have first order effects on optical quality. Scale sizes increase dramatically with increasing azimuth angle for a reprensentative condition. Since both scale sizes and fluctuation levels increase (total turbulence path length also increases) with azimuth angle, substantial optical degradation might be expected. For shorter wave lengths, large degradations occur.

  14. Kinetic analysis of rare gas metastable production and optically pumped Xe lasers

    NASA Astrophysics Data System (ADS)

    Demyanov, A. V.; Kochetov, I. V.; Mikheyev, P. A.; Azyazov, V. N.; Heaven, M. C.

    2018-01-01

    Optically pumped all-rare-gas lasers use metastable rare gas atoms as the lasing species in mixtures with He or Ar buffer gas. The metastables are generated in a glow discharge, and we report model calculations for the optimal production of Ne*, Ar*, Kr* and Xe*. Discharge efficiency was estimated by solving the Boltzmann equation. Laser efficiency, gain and output power of the CW optically pumped Xe laser were assessed as functions of heavier rare gas content, pressure, optical pump intensity and the optical path length. It was found that, for efficient operation the heavier rare gas content has to be of the order of one percent or less, and the total pressure—in the range 0.3-1.5 atm. Output power and specific discharge power increase approximately linearly with pump intensity over the output range from 300-500 W cm-2. Ternary mixtures Xe:Ar:He were found to be the most promising. Total laser efficiency was found to be nearly the same for pumping the 2p8 or 2p9 state, reaching 61%-70% for a pump intensity of ~720 W cm-2 when the Xe fraction was in the range 0.001 ÷ 0.01 and Ar fraction—0.1 ÷ 0.5. However, when the 2p8 state was pumped, the maximum total efficiency occurred at larger pressures than for pumping of the 2p9 state. The discharge power density required to sustain a sufficient Xe* number density was in the range of tens of watts per cubic centimeter for 50% Ar in the mixture.

  15. Airborne Lidar Bathymetry Beam Diagnostics Using an Underwater Optical Detector Array

    NASA Astrophysics Data System (ADS)

    Birkebak, Matthew

    The surface geometry of air-water interface is considered as an important factor affecting the performance of Airborne Lidar Bathymetry (ALB), and laser optical communication through the water surface. ALB is a remote sensing technique that utilizes a pulsed green (532 nm) laser mounted to an airborne platform in order to measure water depth. The water surface (i.e., air-water interface) can distort the light beam's ray-path geometry and add uncertainty to range calculation measurements. Previous studies on light refracting through a complex water surface are heavily dependent on theoretical models and simulations. In addition, only very limited work has been conducted to validate these theoretical models using experiments under well-controlled laboratory conditions. The goal of the study is to establish a clear relationship between water-surface conditions and the uncertainty of ALB measurement. This relationship will be determined by conducting more extensive empirical measurements to characterize the changes in beam slant path associated with a variety of short wavelength wind ripples, typically seen in ALB survey conditions. This study will focus on the effects of capillary and gravity-capillary waves with surface wavelengths smaller than the diameter of the laser beam on the water surface. Simulations using Monte-Carlo techniques of the ALB beam footprints and the environmental conditions were used to analyze the ray-path geometries. Based on the simulation results, laboratory experiments were then designed to test key parameters that have the greatest contribution on beam path and direction through the water. The laser beam dispersion experiments were conducted in well-controlled laboratory setting at the University of New Hampshire's Wave and Tow tank. The spatial elevations of the water surface were independently measured using a high resolution wave staff. The refracted laser beam footprint was measured using an underwater optical detector consisting of a 6x6 array of photodiodes. Image processing techniques were used to estimate the laser's incidence angle intercepted by the detector array. Beam patterns that resulted from intersection between the laser beam light field underwater and the detector array were modeled and used to calculate changes in position and orientation for water surface conditions containing wavelengths less than 0.1m. Finally, a total horizontal uncertainty (THU) model was estimated, which can be implemented in total propagated uncertainty (TPU) models for reporting as a measure of the quality of each measurement. The wave refraction error for various sea states and beam characteristics was successfully quantified using both experimental and analytical techniques.

  16. Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch.

    PubMed

    Tanizawa, Ken; Suzuki, Keijiro; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi

    2016-04-04

    We demonstrate the compact polarization diversity based on the bidirectional full-port use of a path-independent-insertion-loss (PILOSS) optical switch. A polarization-diversity 4 × 4 strictly non-blocking optical switch is developed using a single thermooptic PILOSS Si-wire switch and fiber-based polarization beam splitters (PBSs) and combiners (PBCs). We measure characteristics of the switch and confirm that the proposed configuration demonstrates the performance in the insertion loss, polarization-dependent loss (PDL), and differential group delay (DGD) comparable with that of a conventional polarization-diversity 4 × 4 PILOSS switch using double switch elements. On the other hand, higher crosstalk is observed. The crosstalk increase is associated with the backward crosstalk at a waveguide intersection based on a directional coupler. The effect of the backward crosstalk on the total crosstalk is estimated, and future prospects are discussed.

  17. Novel Diffusivity Measurement Technique

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser

    2001-01-01

    A common-path interferometer (CPI) system was developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. This system uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Hence, the molecular diffusion coefficient of liquids can be determined using the physical relations between changes in the optical path length and the liquid phase properties. The data obtained with this interferometer were compared with similar results from other techniques and demonstrated that the instrument is superior in measuring the diffusivity of miscible liquids while keeping the system very compact and robust. CPI can also be used for studies in interface dynamics and other diffusion-dominated-process applications.

  18. Optical Frequency Comb Fourier Transform Spectroscopy with Resolution Exceeding the Limit Set by the Optical Path Difference

    NASA Astrophysics Data System (ADS)

    Foltynowicz, Aleksandra; Rutkowski, Lucile; Johanssson, Alexandra C.; Khodabakhsh, Amir; Maslowski, Piotr; Kowzan, Grzegorz; Lee, Kevin; Fermann, Martin

    2015-06-01

    Fourier transform spectrometers (FTS) based on optical frequency combs (OFC) allow detection of broadband molecular spectra with high signal-to-noise ratios within acquisition times orders of magnitude shorter than traditional FTIRs based on thermal sources. Due to the pulsed nature of OFCs the interferogram consists of a series of bursts rather than a single burst at zero optical path difference (OPD). The comb mode structure can be resolved by acquiring multiple bursts, in both mechanical FTS systems and dual-comb spectroscopy. However, in all existing demonstrations the resolution was ultimately limited either by the maximum available OPD between the interferometer arms or by the total acquisition time enabled by the storage memory. We present a method that provides spectral resolution exceeding the limit set by the maximum OPD using an interferogram containing only a single burst. The method allows measurements of absorption lines narrower than the OPD-limited resolution without any influence of the instrumental lineshape function. We demonstrate this by measuring undistorted CO2 and CO absorption lines with linewidth narrower than the OPD-limited resolution using OFC-based mechanical FTS in the near- and mid-infrared wavelength ranges. The near-infrared system is based on an Er:fiber femtosecond laser locked to a high finesse cavity, while the mid-infrared system is based on a Tm:fiber-laser-pumped optical parametric oscillator coupled to a multi-pass cell. We show that the method allows acquisition of high-resolution molecular spectra with interferometer length orders of magnitude shorter than traditional FTIR. Mandon, J., G. Guelachvili, and N. Picque, Nat. Phot., 2009. 3(2): p. 99-102. Zeitouny, M., et al., Ann. Phys., 2013. 525(6): p. 437-442. Zolot, A.M., et al., Opt. Lett., 2012. 37(4): p. 638-640.

  19. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOEpatents

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  20. Scanning optical microscope with long working distance objective

    DOEpatents

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  1. Understanding and applying open-path optical sensing data

    NASA Astrophysics Data System (ADS)

    Virag, Peter; Kricks, Robert J.

    1999-02-01

    During the last 10 years, open-path air monitors have evolved to yield reliable and effective measurements of single and multiple compounds on a real-time basis. To many individuals within the optical remote sensing community, the attributes of open-path and its the potential uses seem unlimited. Then why has the market has been stagnant for the last few years? The reason may center on how open-path information is applied and how well the end user understands that information. We constantly try to compare open-path data to risk/health or safety levels that are based for use at a single point and for a specific averaging period often far longer than a typical open-path data point. Often this approach is perceived as putting a square peg in a round hole. This perception may be well founded, as open-path data at times may need to go through extensive data manipulation and assumptions before it can be applied. This paper will review pervious open-path monitoring programs and their success in applying the data collected. We will also look at how open-path data is being currently used, some previous pitfalls in data use, alternate methods of data interpretation, and how open-path data can be best practically applied to fit current needs.

  2. APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS

    EPA Science Inventory

    Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...

  3. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOEpatents

    Karl JR., Robert R.

    1990-03-06

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  4. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    DOEpatents

    Karl, Jr., Robert R.

    1990-01-01

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  5. Resonant optical scattering in nanoparticle-doped polymer photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumberg, J. J.; Pursiainen, O. L.; Spahn, P.

    2009-11-15

    A broadband hyperspectral technique is used to measure the coherent optical backscatter across a wide spectral bandwidth, showing the resonant suppression of the photon transport mean free path around the photonic bandgap of a shear-assembled polymer photonic crystal. By doping with carbon nanoscale scatterers that reside at specific points within the photonic crystal lattice, the ratio between photon mean free path and optical penetration is tuned from 10 to 1, enhancing forward scatter at the expense of back-scatter. The back-scattering strength of different polarisations is not explained by any current theory.

  6. Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2016-04-01

    An optical phase interrogation is proposed to study reflection-induced linear polarization rotation in a common-path homodyne interferometer. This optical methodology can also be applied to the measurement of the refractive index variation of a liquid solution. The performance of the refractive index sensing structure is discussed theoretically, and the experimental results demonstrated a very good ability based on the proposed schemes. Compared with a conventional common-path heterodyne interferometer, the proposed homodyne interferometer with only a single channel reduced the usage of optic elements.

  7. Recognition of the optical packet header for two channels utilizing the parallel reservoir computing based on a semiconductor ring laser

    NASA Astrophysics Data System (ADS)

    Bao, Xiurong; Zhao, Qingchun; Yin, Hongxi; Qin, Jie

    2018-05-01

    In this paper, an all-optical parallel reservoir computing (RC) system with two channels for the optical packet header recognition is proposed and simulated, which is based on a semiconductor ring laser (SRL) with the characteristic of bidirectional light paths. The parallel optical loops are built through the cross-feedback of the bidirectional light paths where every optical loop can independently recognize each injected optical packet header. Two input signals are mapped and recognized simultaneously by training all-optical parallel reservoir, which is attributed to the nonlinear states in the laser. The recognition of optical packet headers for two channels from 4 bits to 32 bits is implemented through the simulation optimizing system parameters and therefore, the optimal recognition error ratio is 0. Since this structure can combine with the wavelength division multiplexing (WDM) optical packet switching network, the wavelength of each channel of optical packet headers for recognition can be different, and a better recognition result can be obtained.

  8. Periscopic Spine Surgery

    DTIC Science & Technology

    2005-03-01

    Guided Technologies, Boulder, CO; motion path built from three orthogonal sinusoidal paths is Optotrak , Northern Digital, Waterloo, ON) optical tracking...Hopkins University using an Optotrak to evaluate the simulated motions. The Optotrak (Northern Digital, Inc.) is an optical high- precision 3-D motion...verify the accuracy of the RMS, tests were carried out using the Optotrak , which was placed about 2 m from the simulator. For each test, two sets of data

  9. High frequency modulation circuits based on photoconductive wide bandgap switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, Stephen

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less

  10. Large optical glass blanks for the ELT generation

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Petzold, Uwe; Dietrich, Volker; Wittmer, Volker; Rexius, Olga

    2016-07-01

    The upcoming extremely large telescope projects like the E-ELT, TMT or GMT telescopes require not only large amount of mirror blank substrates but have also sophisticated instrument setups. Common instrument components are atmospheric dispersion correctors that compensate for the varying atmospheric path length depending on the telescope inclination angle. These elements consist usually of optical glass blanks that have to be large due to the increased size of the focal beam of the extremely large telescopes. SCHOTT has a long experience in producing and delivering large optical glass blanks for astronomical applications up to 1 m and in homogeneity grades up to H3 quality in the past. The most common optical glass available in large formats is SCHOTT N-BK7. But other glass types like F2 or LLF1 can also be produced in formats up to 1 m. The extremely large telescope projects partly demand atmospheric dispersion components even in sizes beyond 1m up to a range of 1.5 m diameter. The production of such large homogeneous optical glass banks requires tight control of all process steps. To cover this demand in the future SCHOTT initiated a research project to improve the large optical blank production process steps from melting to annealing and measurement. Large optical glass blanks are measured in several sub-apertures that cover the total clear aperture of the application. With SCHOTT's new stitching software it is now possible to combine individual sub-aperture measurements to a total homogeneity map of the blank. In this presentation first results will be demonstrated.

  11. Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe

    NASA Astrophysics Data System (ADS)

    Gurbani, Saumya S.; Wilkening, Paul; Zhao, Mingtao; Gonenc, Berk; Cheon, Gyeong Woo; Iordachita, Iulian I.; Chien, Wade; Taylor, Russell H.; Niparko, John K.; Kang, Jin U.

    2014-05-01

    Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to profound deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomography endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path 600-μm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 μm precision movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal formed by the scala tympani into the first cochlear turn.

  12. Noninvasive imaging of oral mucosae with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Yu; Chen, Wei-Chuan; Tsai, Meng-Tsan

    2017-04-01

    In this study, a swept-source optical coherence tomography (OCT) system is developed for in vivo visualization of structural and vascular morphology oral mucosa. For simplification of optical probe fabrication, probe weight, and system setup, the body of the scanning probe is fabricated by a 3D printer to fix the optical components and the mechanical scanning device, and a partially reflective slide is attached at the output end of probe to achieve a common-path configuration. Aside from providing the ability of 3D structural imaging with the developed system, 3D vascular images of oral mucosa can be simultaneously obtained. Then, different locations of oral mucosa are scanned with common-path OCT. The results show that epithelium and lamina propria layers as well as fungiform papilla can be identified and microvascular images can be acquired. With the proposed probe, the system cost and volume can be greatly reduced. Experimental results indicate that such common-path OCT system could be further implemented for oral cancer diagnosis.

  13. Laser modulator for LISA pathfinder

    NASA Astrophysics Data System (ADS)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU together with a summary of the results of the Laser Modulator engineering model test campaign.

  14. A common-path optical coherence tomography based electrode for structural imaging of nerves and recording of action potentials

    NASA Astrophysics Data System (ADS)

    Islam, M. Shahidul; Haque, Md. Rezuanul; Oh, Christian M.; Wang, Yan; Park, B. Hyle

    2013-03-01

    Current technologies for monitoring neural activity either use different variety of electrodes (electrical recording) or require contrast agents introduced exogenously or through genetic modification (optical imaging). Here we demonstrate an optical method for non-contact and contrast agent free detection of nerve activity using phase-resolved optical coherence tomography (pr-OCT). A common-path variation of the pr-OCT is recently implemented and the developed system demonstrated the capability to detect rapid transient structural changes that accompany neural spike propagation. No averaging over multiple trials was required, indicating its capability of single-shot detection of individual impulses from functionally stimulated Limulus optic nerve. The strength of this OCT-based optical electrode is that it is a contactless method and does not require any exogenous contrast agent. With further improvements in accuracy and sensitivity, this optical electrode will play a complementary role to the existing recording technologies in future.

  15. Long range laser traversing system

    NASA Technical Reports Server (NTRS)

    Caudill, L. O. (Inventor)

    1974-01-01

    The relative azimuth bearing between first and second spaced terrestrial points which may be obscured from each other by intervening terrain is measured by placing at one of the points a laser source for projecting a collimated beam upwardly in the vertical plane. The collimated laser beam is detected at the second point by positioning the optical axis of a receiving instrument for the laser beam in such a manner that the beam intercepts the optical axis. In response to the optical axis intercepting the beam, the beam is deflected into two different ray paths by a beam splitter having an apex located on the optical axis. The energy in the ray paths is detected by separate photoresponsive elements that drive logic networks for proving indications of: (1) the optical axis intercepting the beam; (2) the beam being on the left of the optical axis and (3) the beam being on the right side of the optical axis.

  16. Influence of visual path information on human heading perception during rotation.

    PubMed

    Li, Li; Chen, Jing; Peng, Xiaozhe

    2009-03-31

    How does visual path information influence people's perception of their instantaneous direction of self-motion (heading)? We have previously shown that humans can perceive heading without direct access to visual path information. Here we vary two key parameters for estimating heading from optic flow, the field of view (FOV) and the depth range of environmental points, to investigate the conditions under which visual path information influences human heading perception. The display simulated an observer traveling on a circular path. Observers used a joystick to rotate their line of sight until deemed aligned with true heading. Four FOV sizes (110 x 94 degrees, 48 x 41 degrees, 16 x 14 degrees, 8 x 7 degrees) and depth ranges (6-50 m, 6-25 m, 6-12.5 m, 6-9 m) were tested. Consistent with our computational modeling results, heading bias increased with the reduction of FOV or depth range when the display provided a sequence of velocity fields but no direct path information. When the display provided path information, heading bias was not influenced as much by the reduction of FOV or depth range. We conclude that human heading and path perception involve separate visual processes. Path helps heading perception when the display does not contain enough optic-flow information for heading estimation during rotation.

  17. High bandwidth underwater optical communication.

    PubMed

    Hanson, Frank; Radic, Stojan

    2008-01-10

    We report error-free underwater optical transmission measurements at 1 Gbit/s (10(9) bits/s) over a 2 m path in a laboratory water pipe with up to 36 dB of extinction. The source at 532 nm was derived from a 1064 nm continuous-wave laser diode that was intensity modulated, amplified, and frequency doubled in periodically poled lithium niobate. Measurements were made over a range of extinction by the addition of a Mg(OH)(2) and Al(OH)(3) suspension to the water path, and we were not able to observe any evidence of temporal pulse broadening. Results of Monte Carlo simulations over ocean water paths of several tens of meters indicate that optical communication data rates >1 Gbit/s can be supported and are compatible with high-capacity data transfer applications that require no physical contact.

  18. Characterizing the propagation path in moderate to strong optical turbulence.

    PubMed

    Vetelino, Frida Strömqvist; Clare, Bradley; Corbett, Kerry; Young, Cynthia; Grant, Kenneth; Andrews, Larry

    2006-05-20

    In February 2005 a joint atmospheric propagation experiment was conducted between the Australian Defence Science and Technology Organisation and the University of Central Florida. A Gaussian beam was propagated along a horizontal 1500 m path near the ground. Scintillation was measured simultaneously at three receivers of diameters 1, 5, and 13 mm. Scintillation theory combined with a numerical scheme was used to infer the structure constant C2n, the inner scale l0, and the outer scale L0 from the optical measurements. At the same time, C2n measurements were taken by a commercial scintillometer, set up parallel to the optical path. The C2n values from the inferred scheme and the commercial scintillometer predict the same behavior, but the inferred scheme consistently gives slightly smaller C2n values.

  19. Heuristic approaches for energy-efficient shared restoration in WDM networks

    NASA Astrophysics Data System (ADS)

    Alilou, Shahab

    In recent years, there has been ongoing research on the design of energy-efficient Wavelength Division Multiplexing (WDM) networks. The explosive growth of Internet traffic has led to increased power consumption of network components. Network survivability has also been a relevant research topic, as it plays a crucial role in assuring continuity of service with no disruption, regardless of network component failure. Network survivability mechanisms tend to utilize considerable resources such as spare capacity in order to protect and restore information. This thesis investigates techniques for reducing energy demand and enhancing energy efficiency in the context of network survivability. We propose two novel heuristic energy-efficient shared protection approaches for WDM networks. These approaches intend to save energy by setting on sleep mode devices that are not being used while providing shared backup paths to satisfy network survivability. The first approach exploits properties of a math series in order to assign weight to the network links. It aims at reducing power consumption at the network indirectly by aggregating traffic on a set of nodes and links with high traffic load level. Routing traffic on links and nodes that are already under utilization makes it possible for the links and nodes with no load to be set on sleep mode. The second approach is intended to dynamically route traffic through nodes and links with high traffic load level. Similar to the first approach, this approach computes a pair of paths for every newly arrived demand. It computes these paths for every new demand by comparing the power consumption of nodes and links in the network before the demand arrives with their potential power consumption if they are chosen along the paths of this demand. Simulations of two different networks were used to compare the total network power consumption obtained using the proposed techniques against a standard shared-path restoration scheme. Shared-path restoration is a network survivability method in which a link-disjoint backup path and wavelength is reserved at the time of call setup for a working path. However, in order to reduce spare capacity consumption, this reserved backup path and wavelength may be shared with other backup paths. Pool Sharing Scheme (PSS) is employed to implement shared-path restoration scheme [1]. In an optical network, the failure of a single link leads to the failure of all the lightpaths that pass through that particular link. PSS ensures that the amount of backup bandwidth required on a link to restore the failed connections will not be more than the total amount of reserved backup bandwidth on that link. Simulation results indicate that the proposed approaches lead to up to 35% power savings in WDM networks when traffic load is low. However, power saving decreases to 14% at high traffic load level. Furthermore, in terms of the total capacity consumption for working paths, PSS outperforms the two proposed approaches, as expected. In terms of total capacity consumption all the approaches behave similarly. In general, at low traffic load level, the two proposed approaches behave similar to PSS in terms of average link load, and the ratio of block demands. Nevertheless, at high traffic load, the proposed approaches result in higher ratio of blocked demands than PSS. They also lead to higher average link load than PSS for the equal number of generated demands.

  20. Global Coordinates and Exact Aberration Calculations Applied to Physical Optics Modeling of Complex Optical Systems

    NASA Astrophysics Data System (ADS)

    Lawrence, G.; Barnard, C.; Viswanathan, V.

    1986-11-01

    Historically, wave optics computer codes have been paraxial in nature. Folded systems could be modeled by "unfolding" the optical system. Calculation of optical aberrations is, in general, left for the analyst to do with off-line codes. While such paraxial codes were adequate for the simpler systems being studied 10 years ago, current problems such as phased arrays, ring resonators, coupled resonators, and grazing incidence optics require a major advance in analytical capability. This paper describes extension of the physical optics codes GLAD and GLAD V to include a global coordinate system and exact ray aberration calculations. The global coordinate system allows components to be positioned and rotated arbitrarily. Exact aberrations are calculated for components in aligned or misaligned configurations by using ray tracing to compute optical path differences and diffraction propagation. Optical path lengths between components and beam rotations in complex mirror systems are calculated accurately so that coherent interactions in phased arrays and coupled devices may be treated correctly.

  1. Development of optical packet and circuit integrated ring network testbed.

    PubMed

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  2. Experimental demonstration of laser tomographic adaptive optics on a 30-meter telescope at 800 nm

    NASA Astrophysics Data System (ADS)

    Ammons, S., Mark; Johnson, Luke; Kupke, Renate; Gavel, Donald T.; Max, Claire E.

    2010-07-01

    A critical goal in the next decade is to develop techniques that will extend Adaptive Optics correction to visible wavelengths on Extremely Large Telescopes (ELTs). We demonstrate in the laboratory the highly accurate atmospheric tomography necessary to defeat the cone effect on ELTs, an essential milestone on the path to this capability. We simulate a high-order Laser Tomographic AO System for a 30-meter telescope with the LTAO/MOAO testbed at UCSC. Eight Sodium Laser Guide Stars (LGSs) are sensed by 99x99 Shack-Hartmann wavefront sensors over 75". The AO system is diffraction-limited at a science wavelength of 800 nm (S ~ 6-9%) over a field of regard of 20" diameter. Openloop WFS systematic error is observed to be proportional to the total input atmospheric disturbance and is nearly the dominant error budget term (81 nm RMS), exceeded only by tomographic wavefront estimation error (92 nm RMS). The total residual wavefront error for this experiment is comparable to that expected for wide-field tomographic adaptive optics systems of similar wavefront sensor order and LGS constellation geometry planned for Extremely Large Telescopes.

  3. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata,Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  4. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  5. Detection, Evaluation, and Optimization of Optical Signals Generated by Fiber Optic Bragg Gratings Under Dynamic Excitations

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Lekki, John; Lock, James A.

    2002-01-01

    The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.

  6. Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Strandgren, Johan; Bugliaro, Luca; Sehnke, Frank; Schröder, Leon

    2017-09-01

    Cirrus clouds play an important role in climate as they tend to warm the Earth-atmosphere system. Nevertheless their physical properties remain one of the largest sources of uncertainty in atmospheric research. To better understand the physical processes of cirrus clouds and their climate impact, enhanced satellite observations are necessary. In this paper we present a new algorithm, CiPS (Cirrus Properties from SEVIRI), that detects cirrus clouds and retrieves the corresponding cloud top height, ice optical thickness and ice water path using the SEVIRI imager aboard the geostationary Meteosat Second Generation satellites. CiPS utilises a set of artificial neural networks trained with SEVIRI thermal observations, CALIOP backscatter products, the ECMWF surface temperature and auxiliary data. CiPS detects 71 and 95 % of all cirrus clouds with an optical thickness of 0.1 and 1.0, respectively, that are retrieved by CALIOP. Among the cirrus-free pixels, CiPS classifies 96 % correctly. With respect to CALIOP, the cloud top height retrieved by CiPS has a mean absolute percentage error of 10 % or less for cirrus clouds with a top height greater than 8 km. For the ice optical thickness, CiPS has a mean absolute percentage error of 50 % or less for cirrus clouds with an optical thickness between 0.35 and 1.8 and of 100 % or less for cirrus clouds with an optical thickness down to 0.07 with respect to the optical thickness retrieved by CALIOP. The ice water path retrieved by CiPS shows a similar performance, with mean absolute percentage errors of 100 % or less for cirrus clouds with an ice water path down to 1.7 g m-2. Since the training reference data from CALIOP only include ice water path and optical thickness for comparably thin clouds, CiPS also retrieves an opacity flag, which tells us whether a retrieved cirrus is likely to be too thick for CiPS to accurately derive the ice water path and optical thickness. By retrieving CALIOP-like cirrus properties with the large spatial coverage and high temporal resolution of SEVIRI during both day and night, CiPS is a powerful tool for analysing the temporal evolution of cirrus clouds including their optical and physical properties. To demonstrate this, the life cycle of a thin cirrus cloud is analysed.

  7. FIELD EVALUATION OF A METHOD FOR ESTIMATING GASEOUS FLUXES FROM AREA SOURCES USING OPEN-PATH FTIR

    EPA Science Inventory


    The paper gives preliminary results from a field evaluation of a new approach for quantifying gaseous fugitive emissions of area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) ...

  8. FIELD EVALUATION OF A METHOD FOR ESTIMATING GASEOUS FLUXES FROM AREA SOURCES USING OPEN-PATH FOURIER TRANSFORM INFRARED

    EPA Science Inventory

    The paper describes preliminary results from a field experiment designed to evaluate a new approach to quantifying gaseous fugitive emissions from area air pollution sources. The new approach combines path-integrated concentration data acquired with any path-integrated optical re...

  9. Remote atmospheric probing by ground to ground line of sight optical methods

    NASA Technical Reports Server (NTRS)

    Lawrence, R. S.

    1969-01-01

    The optical effects arising from refractive-index variations in the clear air are qualitatively described, and the possibilities are discussed of using those effects for remotely sensing the physical properties of the atmosphere. The effects include scintillations, path length fluctuations, spreading of a laser beam, deflection of the beam, and depolarization. The physical properties that may be measured include the average temperature along the path, the vertical temperature gradient, and the distribution along the path of the strength of turbulence and the transverse wind velocity. Line-of-sight laser beam methods are clearly effective in measuring the average properties, but less effective in measuring distributions along the path. Fundamental limitations to the resolution are pointed out and experiments are recommended to investigate the practicality of the methods.

  10. Remote Sensing of the Optical and Physical Densities of Smoke, Dust, and Water Clouds.

    DTIC Science & Technology

    1982-12-01

    systems to measure variability of aerosol concentration distributions along horizontal optical paths . Analysis of backscatter... extinction measurements using a single- laser lidar system operating at 1.06- and 0.53-pm wavelengths. For larger mean particle sizes the extinction ratio...clear air paths and The transmissometers were mounted across a 10-m complete blockage of the source energy. Transmisso- long aerosol tunnel that

  11. Ejecta Experiments at the Pegasus Pulsed Power Facility

    DTIC Science & Technology

    1997-06-01

    Laboratory (LANL ). The facility provides both radial and axial access for making measurements. There exist optical, laser , and X-Ray paths for performing...and axial access for making measurements. There exist optical, laser , and X-Ray paths for performing measurements on the target assembly located near...surface variations, microjets can be formed thus contributing to the amount of ejecta. In addition to material properties which contribute to ejecta

  12. Advances in stereomicroscopy

    NASA Astrophysics Data System (ADS)

    Schnitzler, H.; Zimmer, Klaus-Peter

    2008-09-01

    Similar to human's binocular vision, stereomicroscopes are comprised of two optical paths under a convergence angle providing a full perspective insight into the world's microstructure. The numerical aperture of stereomicroscopes has continuously increased over the years, reaching the point where the lenses of left and right perspective paths touched each other. This constraint appeared as an upper limit for the resolution of stereomicroscopes, as the resolution of a stereomicroscope was deduced from the numerical apertures of the two equally sized perspective channels. We present the optical design and advances in resolution of the world's first asymmetrical stereomicroscope, which is a technological breakthrough in many aspects of stereomicroscopes. This unique approach uses a large numerical aperture and thus an, so far, unachievable high lateral resolution in the one path, and a small aperture in the other path, which provides a high depth of field ("Fusion Optics"). This new concept is a technical challenge for the optical design of the zoom system as well as for the common main objectives. Furthermore, the new concept makes use of the particular way in which perspective information by binocular vision is formed in the human's brain. In conjunction with a research project at the University of Zurich, Leica Microsystems consolidated the functionality of this concept in to a new generation of stereomicroscopes.

  13. Phase-Shifted Laser Feedback Interferometry

    NASA Technical Reports Server (NTRS)

    Ovryn, Benjie

    1999-01-01

    Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.

  14. Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy.

    PubMed

    Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai

    2016-04-01

    We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50  mm and the reflected optical path length was 2L=100  mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6  GHz and 4 MHz/h at a detuning of -5.2  GHz were also obtained for the transmitted and reflected light Faraday signal.

  15. High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound.

    PubMed

    Forget, Benoît-Claude; Ramaz, François; Atlan, Michaël; Selb, Juliette; Boccara, Albert-Claude

    2003-03-01

    We report new results on acousto-optical tomography in phantom tissues using a frequency chirp modulation and a CCD camera. This technique allows quick recording of three-dimensional images of the optical contrast with a two-dimensional scan of the ultrasound source in a plane perpendicular to the ultrasonic path. The entire optical contrast along the ultrasonic path is concurrently obtained from the capture of a film sequence at a rate of 200 Hz. This technique reduces the acquisition time, and it enhances the axial resolution and thus the contrast, which are usually poor owing to the large volume of interaction of the ultrasound perturbation.

  16. Semi-monolithic cavity for external resonant frequency doubling and method of performing the same

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid (Inventor)

    1999-01-01

    The fabrication of an optical cavity for use in a laser, in a frequency doubling external cavity, or any other type of nonlinear optical device, can be simplified by providing the nonlinear crystal in combination with a surrounding glass having an index of refraction substantially equal to that of the nonlinear crystal. The closed optical path in this cavity is formed in the surrounding glass and through the nonlinear crystal which lies in one of the optical segments of the light path. The light is transmitted through interfaces between the surrounding glass in the nonlinear crystal through interfaces which are formed at the Brewster-angle to minimize or eliminate reflection.

  17. Quantum routing of single optical photons with a superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Xia, Keyu; Jelezko, Fedor; Twamley, Jason

    2018-05-01

    Interconnecting optical photons with superconducting circuits is a challenging problem but essential for building long-range superconducting quantum networks. We propose a hybrid quantum interface between the microwave and optical domains where the propagation of a single-photon pulse along a nanowaveguide is controlled in a coherent way by tuning the electromagnetically induced transparency window with the quantum state of a flux qubit mediated by the spin in a nanodiamond. The qubit can route a single-photon pulse using the nanodiamond into a quantum superposition of paths without the aid of an optical cavity—simplifying the setup. By preparing the flux qubit in a superposition state our cavityless scheme creates a hybrid state-path entanglement between a flying single optical photon and a static superconducting qubit.

  18. Effective distance adaptation traffic dispatching in software defined IP over optical network

    NASA Astrophysics Data System (ADS)

    Duan, Zhiwei; Li, Hui; Liu, Yuze; Ji, Yuefeng; Li, Hongfa; Lin, Yi

    2017-10-01

    The rapid growth of IP traffic has contributed to the wide deployment of optical devices (ROADM/OXC, etc.). Meanwhile, with the emergence and application of high-performance network services such as ultra-high video transmission, people are increasingly becoming more and more particular about the quality of service (QoS) of network. However, the pass-band shape of WSSs which is utilized in the ROADM/OXC is not ideal, causing narrowing of spectrum. Spectral narrowing can lead to signal impairment. Therefore, guard-bands need to be inserted between adjacent paths. In order to minimize the bandwidth waste due to guard bands, we propose an effective distance-adaptation traffic dispatching algorithm in IP over optical network based on SDON architecture. We use virtualization technology to set up virtual resources direct links by extracting part of the resources on paths which meet certain specific constraints. We also assign different bandwidth to each IP request based on path length. There is no need for guard-bands between the adjacent paths on the virtual link, which can effectively reduce the number of guard-bands and save the spectrum.

  19. A Random Walk into Optical Signal Processing and Integrated Optofluidics

    NASA Astrophysics Data System (ADS)

    Baylor, Martha-Elizabeth

    2013-04-01

    As a young child, I knew that I wanted to be a paleontologist. My parents, both artists, did their best to encourage me in my quest to dig for dinosaurs. However, decisions during my late high school and early college years serendipitously shifted my path so that I ended up pursuing a career in applied physics. In particular, my career path has been centered in optics with an emphasis on holography and signal processing. This talk will discuss my research in the areas of opto-electronic blind source separation and holographic photopolymers as well as the non-linear path that has gotten me to this point.

  20. NACA Flight-Path Angle and Air-Speed Recorder

    NASA Technical Reports Server (NTRS)

    Coleman, Donald G

    1926-01-01

    A new trailing bomb-type instrument for photographically recording the flight-path angle and air speed of aircraft in unaccelerated flight is described. The instrument consists essentially of an inclinometer, air-speed meter and a film-drum case. The inclinometer carries an oil-damped pendulum which records optically the flight-path angle upon a rotating motor-driven film drum. The air-speed meter consists of a taut metal diaphragm of high natural frequency which is acted upon by the pressure difference of a Prandtl type Pitot-static tube. The inclinometer record and air-speed record are made optically on the same sensitive film. Two records taken by this instrument are shown.

  1. Study on system for extracted type infrared gas analysis

    NASA Astrophysics Data System (ADS)

    Gu, Ruirui; Yao, Jun; Li, Wei; Li, Wenzhong; Zhang, Shaohua; Liu, Zhe; Wen, Qiang

    2015-12-01

    Based on the Beer-Lambert law and the characteristic IR absorption spectrum of CO, a system for extracted type infrared gas analysis has been designed and manufactured, which utilizes different absorptive degrees infrared light gain under different concentration degrees of the gas to be measured to the value of detect CO concentration, including optical path, electric circuit and gas path. A forward and backward gas detection chamber equipped with a micro flow sensor has been used in the optical path as well as a multistage high precision amplifier and filter circuit has been used in the electric circuit. The experimental results accord with the testing standard.

  2. High-resolution laser spectroscopy of hot Cs and Rb vapor confined in a thin optical cell

    NASA Astrophysics Data System (ADS)

    Todorov, P.; Krasteva, A.; Vartanyan, T.; Todorov, G.; Sarkisyan, D.; Cartaleva, S.

    2018-03-01

    We propose a novel use of an optical cell of micrometer thickness filled with Cs vapor in view of studying the collisions between two different alkali atoms of strongly different densities. We demonstrate narrow and good-contrast sub-Doppler resonances at the Rb D2 line for a mean-free-path of the Cs atoms comparable to the optical cell longitudinal dimension; the resonances are completely destroyed when the mean-free-path of the Cs atoms is more than two orders of magnitude shorter than the longitudinal dimension of the thin cell.

  3. Multiple-wavelength tunable laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2010-01-01

    A tunable laser includes dispersion optics for separating generated laser pulses into first and second wavelength pulses directed along first and second optical paths. First and second reflective mirrors are disposed in the first and second optical paths, respectively. The laser's output mirror is partially reflective and partially transmissive with respect to the first wavelength and the second wavelength in accordance with provided criteria. A first resonator length is defined between the output mirror and the first mirror, while a second resonator length is defined between the output mirror and the second mirror. The second resonator length is a function of the first resonator length.

  4. Low-Coherence light source design for ESPI in-plane displacement measurements

    NASA Astrophysics Data System (ADS)

    Heikkinen, J. J.; Schajer, G. S.

    2018-01-01

    The ESPI method for surface deformation measurements requires the use of a light source with high coherence length to accommodate the optical path length differences present in the apparatus. Such high-coherence lasers, however, are typically large, delicate and costly. Laser diodes, on the other hand, are compact, mechanically robust and inexpensive, but unfortunately they have short coherence length. The present work aims to enable the use of a laser diode as an illumination source by equalizing the path lengths within an ESPI interferometer. This is done by using a reflection type diffraction grating to compensate for the path length differences. The high optical power efficiency of such diffraction gratings allows the use of much lower optical power than in previous interferometer designs using transmission gratings. The proposed concept was experimentally investigated by doing in-plane ESPI measurements using a high-coherence single longitudinal mode (SLM) laser, a laser diode and then a laser diode with path length optimization. The results demonstrated the limitations of using an uncompensated laser diode. They then showed the effectiveness of adding a reflection type diffraction grating to equalize the interferometer path lengths. This addition enabled the laser diode to produce high measurement quality across the entire field of view, rivaling although not quite equaling the performance of a high-coherence SLM laser source.

  5. Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator.

    PubMed

    Ikeda, Taro; Takahashi, Kazunori; Kanamori, Yoshiaki; Hane, Kazuhiro

    2010-03-29

    Phase shifter is an important part of optical waveguide circuits as used in interferometer. However, it is not always easy to generate a large phase shift in a small region. Here, a variable phase-shifter operating as delay-line of silicon waveguide was designed and fabricated by silicon micromachining. The proposed phase-shifter consists of a freestanding submicron-wide silicon waveguide with two waveguide couplers and an ultrasmall silicon comb-drive actuator. The position of the freestanding waveguide is moved by the actuator to vary the total optical path. Phase-shift was measured in a Mach-Zehnder interferometer to be 3.0pi at the displacement of 1.0 mum at the voltage of 31 V. The dimension of the fabricated device is 50microm wide and 85microm long.

  6. Cloud Optical Depths and Liquid Water Paths at the NSA CART

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doran, J C.; Barnard, James C.; Zhong, Shiyuan

    2000-03-14

    Cloud optical depths have been measured using multifilter rotating shadowband radiometers (MFRSRs) at Barrow and Atqasuk, and liquid water paths have been measured at Barrow using a microwave radiometer (MWR) during the warm season (June-September) in 1999. Comparisons have been made between these quantities and the corresponding ones determined from the ECMWF GCM. Hour-by-hour comparisons of cloud optical depths show considerable scatter. The scatter is reduced, but is still substantial, when the averaging period is increased to ''daily'' averages, i.e., the time period each day over which the MFRSR can make measurements. This period varied between 18 hours in Junemore » and 6 hours in September. Preliminary results indicate that, for measured cloud optical depths less than approximately 25, the ECMWF has a low bias in its predictions, consistent with a low bias in predicted liquid water path. Based on a more limited set of data, the optical depths at Atqasuk were found to be generally lower than those at Barrow, a trend at least qualitatively captured by the ECMWF model. Analyses to identify the cause of the biases and the considerable scatter in the predictions are continuing.« less

  7. Optical reset modulation in the SiO2/Cu conductive-bridge resistive memory stack

    NASA Astrophysics Data System (ADS)

    Kawashima, T.; Zhou, Y.; Yew, K. S.; Ang, D. S.

    2017-09-01

    We show that the negative photoconductivity property of the nanoscale filamentary breakdown path in the SiO2 electrolyte of the SiO2/Cu conductive bridge resistive random access memory (CBRAM) stack is affected by the number of positive-voltage sweeps applied to the Cu electrode (with respect to a non-metal counter electrode). The path's photo-response to white light, of a given intensity, is suppressed with an increasing number of applied positive-voltage sweeps. When this occurs, the path may only be disrupted by the light of a higher intensity. It is further shown that the loss of the path's photosensitivity to the light of a given intensity can be recovered using a negative-voltage sweep (which eliminates the path), followed by the reformation of the path by a positive-voltage sweep. The above behavior is, however, not seen in the SiO2/Si stack (which involves a non-metal Si electrode), suggesting that the photo-response modulation effect is related to the Cu electrode. The demonstrated reversible electrical modulation of the path's photo-response may afford greater flexibility in the electro-optical control of the CBRAM device.

  8. Integration of Ground-Based Solar FT-IR Absorption Spectroscopy and Open-Path Systems for Atmospheric Analysis

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Hager, J. S.; Compton, R. N.

    2005-12-01

    Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provides a unique opportunity to analyze the local atmospheric chemical composition. Many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of diurnal trends in the trace gas concentrations. Anthropogenic influences are of special interest, and seasonal and daily trends in amounts of tropospheric pollutants such as ozone correlate with other sources such as the EPA. Although obviously limited by weather considerations, the technique is suited to the regional climate and a body of data of more than two years extent is available for analysis.

  9. INNOVATIVE APPROACH FOR MEASURING AMMONIA AND METHANE FLUXES FROM A HOG FARM USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    EPA Science Inventory

    The paper describes a new approach to quantify emissions from area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) technique and computed tomography (CT) technique. In this study, an...

  10. Computer aided manufacturing for complex freeform optics

    NASA Astrophysics Data System (ADS)

    Wolfs, Franciscus; Fess, Ed; Johns, Dustin; LePage, Gabriel; Matthews, Greg

    2017-10-01

    Recently, the desire to use freeform optics has been increasing. Freeform optics can be used to expand the capabilities of optical systems and reduce the number of optics needed in an assembly. The traits that increase optical performance also present challenges in manufacturing. As tolerances on freeform optics become more stringent, it is necessary to continue to improve methods for how the grinding and polishing processes interact with metrology. To create these complex shapes, OptiPro has developed a computer aided manufacturing package called PROSurf. PROSurf generates tool paths required for grinding and polishing freeform optics with multiple axes of motion. It also uses metrology feedback for deterministic corrections. ProSurf handles 2 key aspects of the manufacturing process that most other CAM systems struggle with. The first is having the ability to support several input types (equations, CAD models, point clouds) and still be able to create a uniform high-density surface map useable for generating a smooth tool path. The second is to improve the accuracy of mapping a metrology file to the part surface. To perform this OptiPro is using 3D error maps instead of traditional 2D maps. The metrology error map drives the tool path adjustment applied during processing. For grinding, the error map adjusts the tool position to compensate for repeatable system error. For polishing, the error map drives the relative dwell times of the tool across the part surface. This paper will present the challenges associated with these issues and solutions that we have created.

  11. A compact CCD-monitored atomic force microscope with optical vision and improved performances.

    PubMed

    Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang

    2013-09-01

    A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.

  12. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    PubMed

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  13. Direct view zoom scope with single focal plane and adaptable reticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagwell, Brett

    A direct view telescopic sight includes objective lens, eyepiece, and prism erector assemblies. The objective lens assembly is mounted to receive light of an image from an object direction and direct the light along an optical path. The eyepiece assembly is mounted to receive the light along the optical path and to emit the light of the image along an eye-ward direction. The prism erector assembly is positioned between the objective lens and eyepiece assemblies and includes first and second prism elements through which the optical path passes. The first and second prism elements invert the image. A reticle elementmore » is disposed on or adjacent to a surface of one of the first or second prism elements to combine a reticle on the image. The image is brought into focus at only a single focal plane between the objective lens and eyepiece assemblies at a given time.« less

  14. Arbitrary unitary transformations on optical states using a quantum memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi

    2014-12-04

    We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.

  15. Slant Path Low Visibility Atmospheric Conditions.

    DTIC Science & Technology

    1980-09-01

    situation. a) An optical propagation slant test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude...transmission measure - ments which are close to 100% and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in...is available for measurement of backscatter cross section along the chosen transmissometer path . 3. Rough Cross Cut of the Works unde Contract in

  16. On-Chip Photothermal Analyte Detection Using Integrated Luminescent Temperature Sensors.

    PubMed

    Pfeiffer, Simon A; Nagl, Stefan

    2017-09-05

    Optical absorbance detection based on attenuated light transmission is limited in sensitivity due to short path lengths in microfluidic and other miniaturized platforms. An alternative is detection using the photothermal effect. Herein we introduce a new kind of photothermal absorbance measurement using integrated luminescent temperature sensor spots inside microfluidic channels. The temperature sensors were photopolymerized inside the channels from NOA 81 UV-curable thiolene prepolymer doped with a tris(1,10-phenanthroline)ruthenium(II) temperature probe. The polymerized sensing structures were as small as 26 ± 3 μm in diameter and displayed a temperature resolution of better than 0.3 K between 20 and 50 °C. The absorbance from 532 nm laser excitation of the food dye Amaranth as a model analyte was quantified using these spots, and the influence of the flow rate, laser power, and concentration was investigated. Calibration yielded a linear relationship between analyte concentration and the temperature signal in the channels. The limit of detection for the azo-dye Amaranth (E123) in this setup was 13 μM. A minimal detectable absorbance of 3.2 × 10 -3 AU was obtained using an optical path length of 125 μm in this initial study. A microreactor with integrated temperature sensors was then employed for an absorbance-based miniaturized nitrite analysis, yielding a detection limit of 26 μM at a total assay time of only 75 s. This technique is very promising for sensitive, and potentially spatially resolved, optical absorbance detection on the micro- and nanoscale.

  17. A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.

    PubMed

    Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E

    2018-06-20

    Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. 2000W high beam quality diode laser for direct materials processing

    NASA Astrophysics Data System (ADS)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong

    2011-11-01

    This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.

  19. Piezoelectric Diffraction-Based Optical Switches

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Fuhr, Peter; Schipper, John

    2003-01-01

    Piezoelectric diffraction-based optoelectronic devices have been invented to satisfy requirements for switching signals quickly among alternative optical paths in optical communication networks. These devices are capable of operating with switching times as short as microseconds or even nanoseconds in some cases.

  20. Linear Optical Quantum Metrology with Single Photons: Exploiting Spontaneously Generated Entanglement to Beat the Shot-Noise Limit

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Olson, Jonathan P.; Rabeaux, Evan J.; Dowling, Jonathan P.; Olson, S. Jay; Rohde, Peter P.

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place—typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  1. Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit.

    PubMed

    Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  2. Three-dimensional crossbar interconnection using planar-integrated free-space optics and digital mirror-device

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.

    2011-01-01

    We consider the implementation of a dynamic crossbar interconnect using planar-integrated free-space optics (PIFSO) and a digital mirror-device™ (DMD). Because of the 3D nature of free-space optics, this approach is able to solve geometrical problems with crossings of the signal paths that occur in waveguide optical and electrical interconnection, especially for large number of connections. The DMD device allows one to route the signals dynamically. Due to the large number of individual mirror elements in the DMD, different optical path configurations are possible, thus offering the chance for optimizing the network configuration. The optimization is achieved by using an evolutionary algorithm for finding best values for a skewless parallel interconnection. Here, we present results and experimental examples for the use of the PIFSO/DMD-setup.

  3. Modeling and properties of an ion-exchanged optical variable attenuator

    NASA Astrophysics Data System (ADS)

    Orignac, Xavier; Ingenhoff, Jan; Fabricius, Norbert

    1999-03-01

    The optical signal power needs to be regulated at some locations in transmission lines. That can be done with the help of optical variable attenuators (OVA), devices which allows for the control of their insertion loss. This work describes the design and properties of some OVAs fabricated by the ion-exchange technique. The OVA functionality relies on a Mach-Zehnder structure, where the output optical intensity is tuned via the change in optical path along one of the two interferometer arms. Here, the optical path is varied through thermo-optic effect (change of refractive index with temperature). Modelling is first addressed: a mostly qualitative theoretical investigation is used to clarify how the fabrication parameters (burial depth and Mach-Zehnder arm separation distance) can be related to the OVAs properties (attenuation dynamic, switching power, settling time, PDL). Properties of fabricated OVAs are presented in a second part. They are compared with other existing products. The relationship between fabrication parameters and properties is also re-examined in light of these results.

  4. Note: A portable Raman analyzer for microfluidic chips based on a dichroic beam splitter for integration of imaging and signal collection light paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Yijia; Xu, Shuping; Xu, Weiqing, E-mail: xuwq@jlu.edu.cn

    An integrated and portable Raman analyzer featuring an inverted probe fixed on a motor-driving adjustable optical module was designed for the combination of a microfluidic system. It possesses a micro-imaging function. The inverted configuration is advantageous to locate and focus microfluidic channels. Different from commercial micro-imaging Raman spectrometers using manual switchable light path, this analyzer adopts a dichroic beam splitter for both imaging and signal collection light paths, which avoids movable parts and improves the integration and stability of optics. Combined with surface-enhanced Raman scattering technique, this portable Raman micro-analyzer is promising as a powerful tool for microfluidic analytics.

  5. Backscattering enhancement factor dependence of a Laguerre-Gaussian laser beam propagating on the location path in the atmosphere on optical turbulence intensity

    NASA Astrophysics Data System (ADS)

    Rytchkov, D. S.

    2017-11-01

    The paper presents the results of a study of the backscattering enhancement factor (BSE) dependence of vortex LaguerreGaussian beams propagating on monostatic location paths in the atmosphere on optical turbulence intensity. The numeric simulation split-step method of laser beam propagation was used to obtain BSE factor values of a laser beam propagated on monostatic location path in the turbulent atmosphere and reflected from a diffuse target. It is shown that BSE factor of the averaged intensity of a backscattered vortex laser beam of any topological charge is less than BSE factor values of backscattered Gaussian beam in arbitrary turbulent conditions.

  6. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    USGS Publications Warehouse

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  7. Absolute metrology for space interferometers

    NASA Astrophysics Data System (ADS)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  8. Visible light optical coherence microscopy imaging of the mouse cortex with femtoliter volume resolution

    NASA Astrophysics Data System (ADS)

    Merkle, Conrad W.; Chong, Shau Poh; Kho, Aaron M.; Zhu, Jun; Kholiqov, Oybek; Dubra, Alfredo; Srinivasan, Vivek J.

    2018-02-01

    Most flying-spot Optical Coherence Tomography (OCT) and Optical Coherence Microscopy (OCM) systems use a symmetric confocal geometry, where the detection path retraces the illumination path starting from and ending with the spatial mode of a single mode optical fiber. Here, we describe a visible light OCM instrument that breaks this symmetry to improve transverse resolution without sacrificing collection efficiency in scattering tissue. This was achieved by overfilling a 0.3 numerical aperture (NA) water immersion objective on the illumination path, while maintaining a conventional Gaussian mode detection path (1/e2 intensity diameter 0.82 Airy disks), enabling 1.1 μm full-width at half-maximum (FWHM) transverse resolution. At the same time, a 0.9 μm FWHM axial resolution in tissue, achieved by a broadband visible light source, enabled femtoliter volume resolution. We characterized this instrument according to paraxial coherent microscopy theory, and then used it to image the meningeal layers, intravascular red blood cell-free layer, and myelinated axons in the mouse neocortex in vivo through the thinned skull. Finally, by introducing a 0.8 NA water immersion objective, we improved the lateral resolution to 0.44 μm FWHM, which provided a volumetric resolution of 0.2 fL, revealing cell bodies in cortical layer I of the mouse brain with OCM for the first time.

  9. On the wavelength dependence of the effects of turbulence on average refraction angles in occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.; Eshleman, V. R.

    1979-01-01

    The dependence of the effects of planetary atmospheric turbulence on radio or optical wavelength in occultation experiments is discussed, and the analysis of Hubbard and Jokipii (1977) is criticized. It is argued that in deriving a necessary condition for the applicability of their method, Hubbard and Jokipii neglect a factor proportional to the square of the ratio of atmospheric or local Fresnel zone radius and the inner scale of turbulence, and fail to establish sufficient conditions, thereby omitting the square of the ratio of atmospheric scale height and the local Fresnel zone radius. The total discrepancy is said to mean that the results correspond to geometrical optics instead of wave optics, as claimed, thus being inapplicable in a dicussion of wavelength dependence. Calculations based on geometrical optics show that the bias in the average bending angle depends on the wavelength in the same way as does the bias in phase path caused by turbulence in a homogeneous atmosphere. Hubbard and Jokipii comment that the criterion of Haugstad and Eshleman is incorrect and show that there is a large wave optical domain where the results are independent of wavelength.

  10. Laser Communications Relay Demonstration (LCRD) Update and the Path Towards Optical Relay Operations

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Edwards, Bernard L.; Staren, John W.

    2017-01-01

    This paper provides a concept for an evolution of NASA's optical communications near Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory - California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO), following launch in 2019. This paper will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.

  11. Common-path low-coherence interferometry fiber-optic sensor guided microincision

    NASA Astrophysics Data System (ADS)

    Zhang, Kang; Kang, Jin U.

    2011-09-01

    We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than +/-5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations.

  12. High channel density wavelength division multiplexer with defined diffracting means positioning

    DOEpatents

    Jannson, Tomasz P.; Jannson, Joanna L.; Yeung, Peter C.

    1990-01-01

    A wavelength division multiplexer/demultiplexer having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges.

  13. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  14. High temperature, minimally invasive optical sensing modules

    DOEpatents

    Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA

    2008-02-05

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  15. Laser Communications Relay Demonstration (LCRD) Update and the Path Towards Optical Relay Operations

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Edwards, Bernard L.; Staren, John W.

    2017-01-01

    This Presentation provides a concept for an evolution of NASAs optical communications near Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD), a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory - California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO), following launch in 2019. This paper will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.

  16. Compact OXC architecture, design and prototype development for flexible waveband routing optical networks.

    PubMed

    Ishikawa, Tomohiro; Mori, Yojiro; Hasegawa, Hiroshi; Subramaniam, Suresh; Sato, Ken-Ichi; Moriwaki, Osamu

    2017-07-10

    A novel compact OXC node architecture that combines WSSs and arrays of small scale optical delivery-coupling type switches ("DCSWs") is proposed. Unlike conventional OXC nodes, the WSSs are only responsible for dynamic path bundling ("flexible waveband") while the small scale optical switches route bundled path groups. A network design algorithm that is aware of the routing scheme is also proposed, and numerical experiments elucidate that the necessary number of WSSs and amplifiers can be significantly reduced. A prototype of the proposed OXC is also developed using monolithic arrayed DCSWs. Transmission experiments on the prototype verify the proposal's technical feasibility.

  17. Optics from Euclid to Huygens.

    PubMed

    Herzberger, M

    1966-09-01

    The salient contributions of writers on optics from Euclid to Newton and Huygens are outlined, with a workable bibliography, to encourage present-day workers to restudy the classical writings and to find ideas that lie outside the paths that orthodox optical science has taken.

  18. Light Management in Flexible Glass by Wood Cellulose Coating

    PubMed Central

    Fang, Zhi-Qiang; Zhu, Hong-Li; Li, Yuan-Yuan; Liu, Zhen; Dai, Jia-Qi; Preston, Colin; Garner, Sean; Cimo, Pat; Chai, Xin-Sheng; Chen, Gang; Hu, Liang-Bing

    2014-01-01

    Ultra-thin flexible glass with high transparency is attractive for a broad range of display applications; however, substrates with low optical haze are not ideal for thin film solar cells, since most of the light will go through the semiconductor layer without scattering, and the length of light travelling path in the active layer is small. By simply depositing a layer of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-oxidized wood fibers (TOWFs), we are able to tailor the optical properties of flexible glass dramatically from exhibiting low haze (<1%) to high haze (~56%) without compromising the total forward transmittance (~90%). The influence of the TOWFs morphology on the optical properties of TOWFs-coated flexible glass is investigated. As the average fiber length decreases, the transmission haze of TOWF-coated flexible glass illustrates a decreasing trend. Earth-abundant natural materials for transparent, hazy, and flexible glass have tremendous applicability in the fabrication of flexible optoelectronics with tunable light scattering effects by enabling inexpensive and large-scale processes. PMID:25068486

  19. Virtually assisted optical colonoscopy

    NASA Astrophysics Data System (ADS)

    Marino, Joseph; Qiu, Feng; Kaufman, Arie

    2008-03-01

    We present a set of tools used to enhance the optical colonoscopy procedure in a novel manner with the aim of improving both the accuracy and efficiency of this procedure. In order to better present the colon information to the gastroenterologist performing a conventional (optical) colonoscopy, we undistort the radial distortion of the fisheye view of the colonoscope. The radial distortion is modeled with a function that converts the fisheye view to the perspective view, where the shape and size of polyps can be more readily observed. The conversion, accelerated on the graphics processing unit and running in real-time, calculates the corresponding position in the fisheye view of each pixel on the perspective image. We also merge our previous work in computer-aided polyp detection for virtual colonoscopy into the optical colonoscopy environment. The physical colonoscope path in the optical colonoscopy is approximated with the hugging corner shortest path, which is correlated with the centerline in the virtual colonoscopy. With the estimated distance that the colonoscope has been inserted, we are able to provide the gastroenterologist with visual cues along the observation path as to the location of possible polyps found by the detection process. In order to present the information to the gastroenterologist in a non-intrusive manner, we have developed a friendly user interface to enhance the optical colonoscopy without being cumbersome, distracting, or resulting in a more lackadaisical inspection by the gastroenterologist.

  20. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Ripin, D. J.; Ochoa, J. R.; Fan, T. Y.

    2005-11-01

    Thermo-optic materials properties of laser host materials have been measured to enable solid-state laser performance modeling. The thermo-optic properties include thermal diffusivity (β), specific heat at constant pressure (Cp), thermal conductivity (κ), coefficient of thermal expansion (α), thermal coefficient of the optical path length (γ) equal to (dO/dT)/L, and thermal coefficient of refractive index (dn/dT) at 1064nm; O denotes the optical path length, which is equal to the product of the refractive index (n) and sample length (L). Thermal diffusivity and specific heat were measured using laser-flash method. Thermal conductivity was deduced using measured values of β, Cp, and the density (ρ ). Thermal expansion was measured using a Michelson laser interferometer. Thermal coefficient of the optical path length was measured at 1064nm, using interference between light reflected from the front and rear facets of the sample. Thermal coefficient of the refractive index was determined, using the measured values of γ, α, and n. β and κ of Y3Al5O12, YAIO3, and LiYF4 were found to decrease, as expected, upon doping with Yb.

  1. Optical fiber network sensor system for monitoring methane concentration

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-wei; Zhang, Ji-long

    2011-08-01

    With regard to the high accuracy optic-fiber sensor for monitoring methane concentration, the choice of light source depends on methane peak values. Besides, the environment of mine should be considered, that is to say other gas should be considered, such as vapor, CO and CO2 etc, without absorbent spectrum in the decided wavelength. It has been reported that vapor, CO and CO2 have no obvious absorption in 0.85μm, 1.3μm and 1.66μm area, CH4 has no obvious absorption in 0.85μm area. So diode laser with 1.3μm or 1.66μm peak wavelength is chosen as the optic-fiber sensor's light source for detecting methane concentration. On the basis of the principle of optic absorption varied with methane concentration at its characteristic absorbent wavelength, the advantage of optic-fiber sensor technology and the circumstance characteristic of the coal mine. An optic-fiber sensor system is presented for monitoring methane concentration. Space Division Multiple Access Technology (SDMAT) and long optical path absorbent pool technology are combined in the study. Considering the circumstance characteristic of the coal mine, the optic-fiber network sensors for detecting methane concentration from mix gas of vapor, CO, CH4 and CO2 are used. It introduces the principle of an optic-fiber sensor system for monitoring methane concentration in coal mine. It contains the structure block diagram of monitoring system, the system is mainly made up of diode laser for monitoring methane concentration, Y-shaped photo-coupler with coupled rate 50:50, optical switch 1×2, gas absorbent cell, the computer data process and control system and photoelectric transformer. In this study, in order to decrease to the influence of the dark-current of photodiode, intensity in light sources and temperature drifts of processing circuit on the system accuracy in measurement, a beam of light is broken down into two beams in the coupler of Y-shaped coupler, the one acts as the reference optical path, the other is known as the sensing optical path. The experimental result shows that diode laser with 1654.141nm in wavelength is taken as the optic source for detecting methane concentration, the detective limit of the sensor is below 4.274mg/m3 when the optical path of absorbent pool is 20 centimeters, and the prevision and stability could satisfy practical application. The whole instrument can also reach on-line measurement with multiple points on different spot.

  2. Motion detection, novelty filtering, and target tracking using an interferometric technique with GaAs phase conjugate mirror

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Tsuen-Hsi (Inventor)

    1991-01-01

    A method and apparatus for detecting and tracking moving objects in a noise environment cluttered with fast- and slow-moving objects and other time-varying background. A pair of phase conjugate light beams carrying the same spatial information commonly cancel each other out through an image subtraction process in a phase conjugate interferometer, wherein gratings are formed in a fast photorefractive phase conjugate mirror material. In the steady state, there is no output. When the optical path of one of the two phase conjugate beams is suddenly changed, the return beam loses its phase conjugate nature and the interferometer is out of balance, resulting in an observable output. The observable output lasts until the phase conjugate nature of the beam has recovered. The observable time of the output signal is roughly equal to the formation time of the grating. If the optical path changing time is slower than the formation time, the change of optical path becomes unobservable, because the index grating can follow the change. Thus, objects traveling at speeds which result in a path changing time which is slower than the formation time are not observable and do not clutter the output image view.

  3. Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition.

    PubMed

    Richmond, Amos; Cheng-Wu, Zhang; Zarmi, Yair

    2003-07-01

    The interrelationships between the optical path in flat plate reactors and photosynthetic productivity were elucidated. In preliminary works, a great surge in photosynthetic productivity was attained in flat plate photoreactors with an ultra short (e.g. 1.0 cm) optical path, in which extremely high culture density was facilitated by vigorous stirring and strong light. This surge in net photosynthetic efficiency was associated with a very significant increase in the optimal population density facilitated by the very short optical path (OP). A salient feature of these findings concerns the necessity to address growth inhibition (GI) which becomes increasingly manifested as cell concentration rises above a certain, species-specific, threshold (e.g. 1-2 billion cells of Nannochloropsis sp. ml(-1)). Indeed, ultrahigh cell density cultures may be established and sustained only if growth inhibition is continuously, or at least frequently, removed. Nannochloropsis culture from which GI was not removed, yielded 60 mg(-1) h(-1), yielding 260 mg l(-1) h(-1) when GI was removed. Two basic factors crucial for obtaining maximal photosynthetic productivity and efficiency in strong photon irradiance are defined: (1) areal cell density must be optimal, as high as possible (cell growth inhibition having been eliminated), insuring the average photon irradiance (I(av)) available per cell is falling at the end of the linear phase of the PI(av) curve, relating rate of photosynthesis to I(av), i.e. approximately photon irradiance per cell. (2) The light-dark (L-D) cycle period, which is determined by travel time of cells between the dark and the light volumes along the optical path, should be made as short as practically feasible, so as to approach, as much as possible the photosynthetic unit turnover time. This is obtainable in flat plate reactors by reducing the OP to as small a magnitude as is practically feasible.

  4. Multi-aperture laser transmissometer system for long-path aerosol extinction rate measurement.

    PubMed

    Wu, Chensheng; Rzasa, John R; Ko, Jonathan; Paulson, Daniel A; Coffaro, Joseph; Spychalsky, Jonathan; Crabbs, Robert F; Davis, Christopher C

    2018-01-20

    We present the theory, design, simulation, and experimental evaluations of a new laser transmissometer system for aerosol extinction rate measurement over long paths. The transmitter emits an ON/OFF modulated Gaussian beam that does not require strict collimation. The receiver uses multiple point detectors to sample the sub-aperture irradiance of the arriving beam. The sparse detector arrangement makes our transmissometer system immune to turbulence-induced beam distortion and beam wander caused by the atmospheric channel. Turbulence effects often cause spatial discrepancies in beam propagation and lead to miscalculation of true power loss when using the conventional approach of measuring the total beam power directly with a large-aperture optical concentrator. Our transmissometer system, on the other hand, combines the readouts from distributed detectors to rule out turbulence-induced temporal power fluctuations. As a result, we show through both simulation and field experiments that our transmissometer system works accurately with turbulence strength Cn2 up to 10 -12   m -2/3 over a typical 1-km atmospheric channel. In application, our turbulence- and weather-resistant laser transmissometer system has significant advantages for the measurement and study of aerosol concentration, absorption, and scattering properties, which are crucial for directed energy systems, ground-level free-space optical communication systems, environmental monitoring, and weather forecasting.

  5. Optically reconfigurable patterning for control of the propagation characteristics of a planar waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Klittnick, A.; Clark, N. A.; Keller, P.

    2008-10-01

    We demonstrate an easily fabricated all-optical and freely reconfigurable method of controlling the propagating characteristics of the optic path within a planar waveguide with low insertion losses by employing the optical patterning of the refractive index of an erasable and rewriteable photosensitive liquid crystal polymer cladding layer.

  6. A Classroom Demonstration of Rayleigh Light Scattering in Optically Active and Inactive Systems.

    ERIC Educational Resources Information Center

    Pecina, Monica Avalos; Smith, Charles A.

    1999-01-01

    Argues that the concept of optical activity is vague to students because it is difficult for instructors to demonstrate the phenomenon in the classroom. Presents a demonstration that allows students to observe and manipulate the optical path of polarized light through optically inactive and active solutions. (CCM)

  7. Optical Interconnections for VLSI Computational Systems Using Computer-Generated Holography.

    NASA Astrophysics Data System (ADS)

    Feldman, Michael Robert

    Optical interconnects for VLSI computational systems using computer generated holograms are evaluated in theory and experiment. It is shown that by replacing particular electronic connections with free-space optical communication paths, connection of devices on a single chip or wafer and between chips or modules can be improved. Optical and electrical interconnects are compared in terms of power dissipation, communication bandwidth, and connection density. Conditions are determined for which optical interconnects are advantageous. Based on this analysis, it is shown that by applying computer generated holographic optical interconnects to wafer scale fine grain parallel processing systems, dramatic increases in system performance can be expected. Some new interconnection networks, designed to take full advantage of optical interconnect technology, have been developed. Experimental Computer Generated Holograms (CGH's) have been designed, fabricated and subsequently tested in prototype optical interconnected computational systems. Several new CGH encoding methods have been developed to provide efficient high performance CGH's. One CGH was used to decrease the access time of a 1 kilobit CMOS RAM chip. Another was produced to implement the inter-processor communication paths in a shared memory SIMD parallel processor array.

  8. Smooth light extraction in lighting optical fibre

    NASA Astrophysics Data System (ADS)

    Fernandez-Balbuena, A. A.; Vazquez-Molini, D.; Garcia-Botella, A.; Martinez-Anton, J. C.; Bernabeu, E.

    2011-10-01

    Recent advances in LED technology have relegated the use of optical fibre for general lighting, but there are several applications where it can be used as scanners lighting systems, daylight, cultural heritage lighting, sensors, explosion risky spaces, etc. Nowadays the use of high intensity LED to inject light in optical fibre increases the possibility of conjugate fibre + LED for lighting applications. New optical fibres of plastic materials, high core diameter up to 12.6 mm transmit light with little attenuation in the visible spectrum but there is no an efficient and controlled way to extract the light during the fibre path. Side extracting fibres extracts all the light on 2π angle so is not well suited for controlled lighting. In this paper we present an extraction system for mono-filament optical fibre which provides efficient and controlled light distribution. These lighting parameters can be controlled with an algorithm that set the position, depth and shape of the optical extraction system. The extraction system works by total internal reflection in the core of the fibre with high efficiency and low cost. A 10 m length prototype is made with 45° sectional cuts in the fibre core as extraction system. The system is tested with a 1W white LED illuminator in one side.

  9. Polarization Considerations for the Laser Interferometer Space Antenna

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, Paul

    2005-01-01

    A polarization ray trace model of the Laser Interferometer Space Antenna s (LISA) optical path is being created. The model will be able to assess the effects of various polarizing elements and the optical coatings on the required, very long path length, picometer level dynamic interferometry. The computational steps are described. This should eliminate any ambiguities associated with polarization ray tracing of interferometers and provide a basis for determining the computer model s limitations and serve as a clearly defined starting point for future work.

  10. Experimental cancellation of aberrations in intensity correlation in classical optics

    NASA Astrophysics Data System (ADS)

    Jesus-Silva, A. J.; Silva, Juarez G.; Monken, C. H.; Fonseca, E. J. S.

    2018-01-01

    We study the classical correlation function of spatially incoherent beams with a phase aberration in the beam path. On the basis of our experimental measurements and in the optical coherence theory, we show that the effects of phase disturbances, independently of their kind and without need of coordinate inversion, can be canceled out if the same phase is aligned in the signal and reference beam path. These results can be useful for imaging and microscopy through random media.

  11. Discharge source with gas curtain for protecting optics from particles

    DOEpatents

    Fornaciari, Neal R.; Kanouff, Michael P.

    2004-03-30

    A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

  12. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path

    PubMed Central

    Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.

    2018-01-01

    The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352

  13. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path.

    PubMed

    Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R

    2016-04-01

    The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.

  14. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    DOE PAGES

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; ...

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less

  15. The VLA Low-band Ionosphere and Transient Experiment (VLITE)

    NASA Astrophysics Data System (ADS)

    Clarke, Tracy; Peters, Wendy; Brisken, Walter; Giacintucci, Simona; Kassim, Namir; Polisensky, Emil; Helmboldt, Joseph; Richards, Emily E.; Erickson, Alan; Ray, Paul S.; Kerr, Matthew T.; Deneva, Julia; Coburn, William; Huber, Robert; Long, Jeff

    2018-01-01

    The VLA Low-band Ionosphere and Transient Experiment (VLITE, http://vlite.nrao.edu/ ) is a commensal low-frequency observing system that has been operational on the National Radio Astronomy Observatory's Karl G. Jansky Very Large Array (VLA) since late 2014. The separate optical paths of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus 1-50 GHz feeds allow both systems to operate simultaneously with independent correlators. The initial 2.5 years of VLITE operation provided real-time correlation of 10 antennas across the 320-384 MHz band with a total observing time approaching 12,000 hours. During the summer of 2017, VLITE was upgraded to a total of 16 antennas (more than doubling the number of baselines) with enhanced correlator capabilities to enable correlation of the on-the-fly observing mode being used for the new NRAO VLA Sky Survey (VLASS).We present an overview of the VLITE system, including highlights of the complexities of a commensal observing program, sparse-array challenges, and scientific capabilities from our science-ready data pipeline. In the longer term, we seek a path to broadband expansion across all VLA antennas to develop a powerful new LOw Band Observatory (LOBO).

  16. Optical pumping in a whispering mode optical waveguide

    DOEpatents

    Kurnit, Norman A.

    1984-01-01

    A device and method for optical pumping in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction pathlengths which are achieved in a small volume.

  17. Improved Electro-Optical Switches

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N.; Cooper, Ronald F.

    1994-01-01

    Improved single-pole, double-throw electro-optical switches operate in switching times less than microsecond developed for applications as optical communication systems and networks of optical sensors. Contain no moving parts. In comparison with some prior electro-optical switches, these are simpler and operate with smaller optical losses. Beam of light switched from one output path to other by applying, to electro-optical crystal, voltage causing polarization of beam of light to change from vertical to horizontal.

  18. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    PubMed

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  19. Fourier transform spectroscopy of the nu3 band of the N3 radical

    NASA Technical Reports Server (NTRS)

    Brazier, C. R.; Bernath, P. F.; Burkholder, James B.; Howard, Carleton J.

    1988-01-01

    The nu3 transitions of N3 radicals produced by HN3-Cl reactions in a multipass cell (effective path length 100 m) are investigated experimentally using a Fourier-transform spectrometer with maximum resolution 0.004/cm. A total of 176 rotation-vibration lines are listed in a table and used, in combination with published data on 240 optical lines (Douglas and Jones, 1965), to determine the nu3 molecular constants. The lower-than-expected value of the nu3 fundamental frequency (1644.6784/cm) is attributed to the vibronic interaction discussed by Kawaguchi et al. (1981).

  20. NDE Imaging of Time Differential Terahertz Waves

    NASA Technical Reports Server (NTRS)

    Trinh, Long B.

    2008-01-01

    Natural voids are present in the vicinity of a conathane interface that bonds two different foam materials. These voids are out of focus with the terahertz imaging system and multiple optical reflections also make it difficult to determine their depths. However, waves passing through the top foam article at normal incidence are partially reflected at the denser conathane layer prior to total reflection at the tank s wall. Reflections embedded in the oscillating noise segment prior to the main signals can be extracted with dual applications of filtering and time derivative. Void's depth is computed from direct path's time of flight.

  1. Phase retrieval without unwrapping by single-shot dual-wavelength digital holography

    NASA Astrophysics Data System (ADS)

    Min, Junwei; Yao, Baoli; Zhou, Meiling; Guo, Rongli; Lei, Ming; Yang, Yanlong; Dan, Dan; Yan, Shaohui; Peng, Tong

    2014-12-01

    A phase retrieval method by using single-shot dual-wavelength digital holography is proposed. Each single wavelength hologram is extracted from the color CCD recorded hologram at one exposure, and the unwrapped phase image of object can be reconstructed directly. Different from the traditional multiple wavelength phase unwrapping techniques, any single complex wave-fronts at different wavelengths have no need to be calculated any more. Thus, the phase retrieval is computationally fast and straightforward, and the limitations on the total optical path difference are significantly relaxed. The practicability of the proposed method is demonstrated by both simulated and experimental results.

  2. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  3. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James [Manteca, CA

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  4. Optimization of confocal laser induced fluorescence for long focal length applications

    NASA Astrophysics Data System (ADS)

    Jemiolo, Andrew J.; Henriquez, Miguel F.; Thompson, Derek S.; Scime, Earl E.

    2017-10-01

    Laser induced fluorescence (LIF) is a non-perturbative diagnostic for measuring ion and neutral particle velocities and temperatures in a plasma. The conventional method for single-photon LIF requires intersecting optical paths for light injection and collection. The multiple vacuum windows needed for such measurements are unavailable in many plasma experiments. Confocal LIF eliminates the need for perpendicular intersecting optical paths by using concentric injection and collection paths through a single window. One of the main challenges with using confocal LIF is achieving high resolution measurements at the longer focal lengths needed for many plasma experiments. We present confocal LIF measurements in HELIX, a helicon plasma experiment at West Virginia University, demonstrating spatial resolution dependence on focal length and spatial filtering. By combining aberration mitigating optics with spatial filtering, our results show high resolution measurements at focal lengths of 0.5 m, long enough to access the interiors of many laboratory plasma experiments. This work was supported by U.S. National Science Foundation Grant No. PHY-1360278.

  5. Measurement of refractive index of photopolymer for holographic gratings

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Mizuno, Jun; Fujikawa, Chiemi; Kodate, Kashiko

    2007-02-01

    We have made attempts to measure directly the small-scale variation of optical path lengths in photopolymer samples. For those with uniform thickness, the measured quantity is supposed to be proportional to the refractive index of the photopolymer. The system is based on a Mach-Zehnder interferometer using phase-locking technique and measures the change in optical path length during the sample is scanned across the optical axis. The spatial resolution is estimated to be 2μm, which is limited by the sample thickness. The path length resolution is estimated to be 6nm, which corresponds to the change in refractive index less than 10 -3 for the sample of 10μm thick. The measurement results showed clearly that the refractive index of photopolymer is not simply proportional to the exposure energy, contrary to the conventional photosensitive materials such as silver halide emulsion and dichromated gelatine. They also revealed the refractive index fluctuation in uniformly exposed photopolymer sample, which explains the milky appearance that sometimes observed in thick samples.

  6. Secondary and compound concentrators for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Poon, P. T.

    1981-01-01

    A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat.

  7. Chinese vinegar classification via volatiles using long-optical-path infrared spectroscopy and chemometrics.

    PubMed

    Dong, D; Zheng, W; Jiao, L; Lang, Y; Zhao, X

    2016-03-01

    Different brands of Chinese vinegar are similar in appearance, color and aroma, making their discrimination difficult. The compositions and concentrations of the volatiles released from different vinegars vary by raw material and brewing process and thus offer a means to discriminate vinegars. In this study, we enhanced the detection sensitivity of the infrared spectrometer by extending its optical path. We measured the infrared spectra of the volatiles from 5 brands of Chinese vinegar and observed the spectral characteristics corresponding to alcohols, esters, acids, furfural, etc. Different brands of Chinese vinegar had obviously different infrared spectra and could be classified through chemometrics analysis. Furthermore, we established classification models and demonstrated their effectiveness for classifying different brands of vinegar. This study demonstrates that long-optical-path infrared spectroscopy has the ability to discriminate Chinese vinegars with the advantages that it is fast and non-destructive and eliminates the need for sampling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Simultaneous data communication and position sensing with an impact ionization engineered avalanche photodiode array for free space optical communication

    NASA Astrophysics Data System (ADS)

    Ferraro, Mike S.; Mahon, Rita; Rabinovich, William S.; Murphy, James L.; Dexter, James L.; Clark, William R.; Waters, William D.; Vaccaro, Kenneth; Krejca, Brian D.

    2017-02-01

    Photodetectors in free space optical communication systems perform two functions: reception of data communication signals and position sensing for pointing, tracking, and stabilization. Traditionally, the optical receive path in an FSO system is split into separate paths for data detection and position sensing. The need for separate paths is a consequence of conflicting performance criteria between position sensitive detectors (PSD) and data detectors. Combining the functionality of both detector types requires that the combinational sensor not only have the bandwidth to support high data rate communication but the active area and spatial discrimination to accommodate position sensing. In this paper we present a large area, concentric five element impact ionization engineered avalanche photodiode array rated for bandwidths beyond 1GHz with a measured carrier ionization ratio of less than 0.1 at moderate APD gains. The integration of this array as a combinational sensor in an FSO system is discussed along with the development of a pointing and stabilization algorithm.

  9. The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. Volume 8

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Quinn, Katherine J.

    2012-01-01

    NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.

  10. Electro-Optical Modulator Bias Control Using Bipolar Pulses

    NASA Technical Reports Server (NTRS)

    Farr, William; Kovalik, Joseph

    2007-01-01

    An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the difference between the optical-path lengths can drift with changes in temperature and other spurious effects. The effects of both types of drift are suppressed in the present method, in which one takes advantage of the fact that when Vbias is set at the value for maximum extinction, equal-magnitude positive and negative pulses applied to the electro-optical crystal produce equal output light pulses.

  11. Multi-chord fiber-coupled interferometer with a long coherence length laser

    NASA Astrophysics Data System (ADS)

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Hsu, Scott C.

    2012-03-01

    This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 1015-1018 cm-2. Such plasmas are produced by railguns on the plasma liner experiment, which aims to produce μs-, cm-, and Mbar-scale plasmas through the merging of 30 plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely matched probe and reference path lengths. Thus, only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of the order of 5 × 1015 cm-2.

  12. Teaching quantum physics by the sum over paths approach and GeoGebra simulations

    NASA Astrophysics Data System (ADS)

    Malgieri, M.; Onorato, P.; De Ambrosis, A.

    2014-09-01

    We present a research-based teaching sequence in introductory quantum physics using the Feynman sum over paths approach. Our reconstruction avoids the historical pathway, and starts by reconsidering optics from the standpoint of the quantum nature of light, analysing both traditional and modern experiments. The core of our educational path lies in the treatment of conceptual and epistemological themes, peculiar of quantum theory, based on evidence from quantum optics, such as the single photon Mach-Zehnder and Zhou-Wang-Mandel experiments. The sequence is supported by a collection of interactive simulations, realized in the open source GeoGebra environment, which we used to assist students in learning the basics of the method, and help them explore the proposed experimental situations as modeled in the sum over paths perspective. We tested our approach in the context of a post-graduate training course for pre-service physics teachers; according to the data we collected, student teachers displayed a greatly improved understanding of conceptual issues, and acquired significant abilities in using the sum over path method for problem solving.

  13. Common-path low-coherence interferometry fiber-optic sensor guided microincision

    PubMed Central

    Zhang, Kang; Kang, Jin U.

    2011-01-01

    We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than ±5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations. PMID:21950912

  14. High channel density wavelength division multiplexer with defined diffracting means positioning

    DOEpatents

    Jannson, T.P.; Jannson, J.L.; Yeung, P.C.

    1990-05-15

    A wavelength division multiplexer/demultiplexer is disclosed having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges. 11 figs.

  15. A path planning method used in fluid jet polishing eliminating lightweight mirror imprinting effect

    NASA Astrophysics Data System (ADS)

    Li, Wenzong; Fan, Bin; Shi, Chunyan; Wang, Jia; Zhuo, Bin

    2014-08-01

    With the development of space technology, the design of optical system tends to large aperture lightweight mirror with high dimension-thickness ratio. However, when the lightweight mirror PV value is less than λ/10 , the surface will show wavy imprinting effect obviously. Imprinting effect introduced by head-tool pressure has become a technological barrier in high-precision lightweight mirror manufacturing. Fluid jet polishing can exclude outside pressure. Presently, machining tracks often used are grating type path, screw type path and pseudo-random path. On the edge of imprinting error, the speed of adjacent path points changes too fast, which causes the machine hard to reflect quickly, brings about new path error, and increases the polishing time due to superfluous path. This paper presents a new planning path method to eliminate imprinting effect. Simulation results show that the path of the improved grating path can better eliminate imprinting effect compared to the general path.

  16. Integrated five-port non-blocking optical router based on mode-selective property

    NASA Astrophysics Data System (ADS)

    Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin

    2018-05-01

    In this paper, we propose and demonstrate a five-port optical router based on mode-selective property. It utilizes different combinations of four spatial modes at input and output ports as labels to distinguish its 20 routing paths. It can direct signals from the source port to the destination port intelligently without power consumption and additional switching time to realize various path steering. The proposed architecture is constructed by asymmetric directional coupler based mode-multiplexers/de-multiplexers, multimode interference based waveguide crossings and single-mode interconnect waveguides. The broad optical bandwidths of these constituents make the device suitable to combine with wavelength division multiplexing signal transmission, which can effectively increase the data throughput. Measurement results show that the insertion loss of its 20 routing paths are lower than 8.5 dB and the optical signal-to-noise ratios are larger than 16.3 dB at 1525-1565 nm. To characterize its routing functionality, a 40-Gbps data transmission with bit-error-rate (BER) measurement is implemented. The power penalties for the error-free switching (BER<10-9) are 1.0 dB and 0.8 dB at 1545 nm and 1565 nm, respectively.

  17. Study of Einstein-Podolsky-Rosen state for space-time variables in a two photon interference experiment

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Sergienko, A. V.; Rubin, M. H.

    1993-01-01

    A pair of correlated photons generated from parametric down conversion was sent to two independent Michelson interferometers. Second order interference was studied by means of a coincidence measurement between the outputs of two interferometers. The reported experiment and analysis studied this second order interference phenomena from the point of view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first step of the experiment used 50 psec and 3 nsec coincidence time windows simultaneously. The 50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers. The interference visibility was measured to be 38 percent and 21 percent for the 50 psec time window and 22 percent and 7 percent for the 3 nsec time window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows, the experiment showed the non-classical effect which resulted from an E.P.R. state. The second step of the experiment used a 20 psec coincidence time window, which was able to distinguish a 6 mm optical path difference in the interferometers. The interference visibilities were measured to be 59 percent for an optical path difference of 7 mm. This is the first observation of visibility greater than 50 percent for a two interferometer E.P.R. experiment which demonstrates nonclassical correlation of space-time variables.

  18. A geometrical optics approach for modeling atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Yuksel, Heba; Atia, Walid; Davis, Christopher C.

    2005-08-01

    Atmospheric turbulence has a significant impact on the quality of a laser beam propagating through the atmosphere over long distances. Turbulence causes the optical phasefront to become distorted from propagation through turbulent eddies of varying sizes and refractive index. Turbulence also results in intensity scintillation and beam wander, which can severely impair the operation of target designation and free space optical (FSO) communications systems. We have developed a new model to assess the effects of turbulence on laser beam propagation in such applications. We model the atmosphere along the laser beam propagation path as a spatial distribution of spherical bubbles or curved interfaces. The size and refractive index discontinuity represented by each bubble are statistically distributed according to various models. For each statistical representation of the atmosphere, the path of a single ray, or a bundle of rays, is analyzed using geometrical optics. These Monte Carlo techniques allow us to assess beam wander, beam spread, and phase shifts along the path. An effective Cn2 can be determined by correlating beam wander behavior with the path length. This model has already proved capable of assessing beam wander, in particular the (Range)3 dependence of mean-squared beam wander, and in estimating lateral phase decorrelations that develop across the laser phasefront as it propagates through turbulence. In addition, we have developed efficient computational techniques for various correlation functions that are important in assessing the effects of turbulence. The Monte Carlo simulations are compared and show good agreement with the predictions of wave theory.

  19. Refractive indices used by the Haag-Streit Lenstar to calculate axial biometric dimensions.

    PubMed

    Suheimat, Marwan; Verkicharla, Pavan K; Mallen, Edward A H; Rozema, Jos J; Atchison, David A

    2015-01-01

    To estimate refractive indices used by the Lenstar biometer to translate measured optical path lengths into geometrical path lengths within the eye. Axial lengths of model eyes were determined using the IOLMaster and Lenstar biometers; comparing those lengths gave an overall eye refractive index estimate for the Lenstar. Using the Lenstar Graphical User Interface, we noticed that boundaries between media could be manipulated and opposite changes in optical path lengths on either side of the boundary could be introduced. Those ratios were combined with the overall eye refractive index to estimate separate refractive indices. Furthermore, Haag-Streit provided us with a template to obtain 'air thicknesses' to compare with geometrical distances. The axial length estimates obtained using the IOLMaster and the Lenstar agreed to within 0.01 mm. Estimates of group refractive indices used in the Lenstar were 1.340, 1.341, 1.415, and 1.354 for cornea, aqueous, lens, and overall eye, respectively. Those refractive indices did not match those of schematic eyes, but were close in the cases of aqueous and lens. Linear equations relating air thicknesses to geometrical thicknesses were consistent with our findings. The Lenstar uses different refractive indices for different ocular media. Some of the refractive indices, such as that for the cornea, are not physiological; therefore, it is likely that the calibrations in the instrument correspond to instrument-specific corrections and are not the real optical path lengths. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  20. Optical overview and qualification of the LLCD space terminal

    NASA Astrophysics Data System (ADS)

    DeVoe, C. E.; Pillsbury, A. D.; Khatri, F.; Burnside, J. M.; Raudenbush, A. C.; Petrilli, L. J.; Williams, T.

    2017-11-01

    In October 2013 the Lunar Laser Communications Demonstration (LLCD) made communications history by successfully demonstrating 622 megabits per second laser communication from the moon's orbit to earth. The LLCD consisted of the Lunar Laser Communication Space Terminal (LLST), developed by MIT Lincoln Laboratory, mounted on NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and a primary ground terminal located in New Mexico, the Lunar Laser Communications Ground Terminal (LLGT), and two alternate ground terminals. This paper presents the optical layout of the LLST, the approach for testing the optical subsystems, and the results of the optical qualification of the LLST. Also described is the optical test set used to qualify the LLST. The architecture philosophy for the optics was to keep a small, simple optical backend that provided excellent boresighting and high isolation between the optical paths, high quality wavefront on axis, with minimal throughput losses on all paths. The front end large optics consisted of a Cassegrain 107mm telescope with an f/0.7 parabolic primary mirror and a solar window to reduce the thermal load on the telescope and to minimize background light received at the sensors.

  1. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2009-12-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  2. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2010-03-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  3. Electro-Optic Propagation

    DTIC Science & Technology

    2002-09-30

    Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...OBJECTIVES The electro - optical propagation objectives are: 1) The acquisition and analysis of mid-wave and long-wave infrared transmission and...elements to the electro - optical propagation model development. The first element is the design and execution of field experiments to generate useful

  4. Computer Tomography and Hybrid Optical/Digital Methods for Aerodynamic Measurements.

    DTIC Science & Technology

    1987-12-28

    Industrial Applications of Corn- on Axisymnnietric Flame ’Iempnlw res Measured by Holo- puted Tornographv arid NMI? Imiaging (Optical Society of graphic...Pontificia Universidad Catolica de Chile. Escuela de Ingenieria . Santiago, equal. The optical path length difference (OPD) be- Chile. tween the two rays

  5. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  6. Large volume multiple-path nuclear pumped laser

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Deyoung, R. J. (Inventor)

    1981-01-01

    Large volumes of gas are excited by using internal high reflectance mirrors that are arranged so that the optical path crosses back and forth through the excited gaseous medium. By adjusting the external dielectric mirrors of the laser, the number of paths through the laser cavity can be varied. Output powers were obtained that are substantially higher than the output powers of previous nuclear laser systems.

  7. Analysis of Non-Uniform Gain for Control of a Deformable Mirror in an Adaptive-Optics System

    DTIC Science & Technology

    2008-03-01

    Turbulence Estimator SM Path SH WFS – DM Path Figure 3.6: Primary layout. The blue boxed components is representative of the SM path, the red boxed components...layout that was developed for the majority of the experiments conducted. 3.1.5.1 Steering Mirror Path. This path, boxed in blue in Figure 3.6, is used to...Christou, T.S. Duncan, R.J. Eager, M.A. Ealey, B.L. Ellerbroek, R.Q. Fugate , G.W. Jones, R.M. Kuhns, D.J. Lee, W.H. Lowrey, M.D. Oliker, R.E. Ruane

  8. On Applications of Disruption Tolerant Networking to Optical Networking in Space

    NASA Technical Reports Server (NTRS)

    Hylton, Alan Guy; Raible, Daniel E.; Juergens, Jeffrey; Iannicca, Dennis

    2012-01-01

    The integration of optical communication links into space networks via Disruption Tolerant Networking (DTN) is a largely unexplored area of research. Building on successful foundational work accomplished at JPL, we discuss a multi-hop multi-path network featuring optical links. The experimental test bed is constructed at the NASA Glenn Research Center featuring multiple Ethernet-to-fiber converters coupled with free space optical (FSO) communication channels. The test bed architecture models communication paths from deployed Mars assets to the deep space network (DSN) and finally to the mission operations center (MOC). Reliable versus unreliable communication methods are investigated and discussed; including reliable transport protocols, custody transfer, and fragmentation. Potential commercial applications may include an optical communications infrastructure deployment to support developing nations and remote areas, which are unburdened with supporting an existing heritage means of telecommunications. Narrow laser beam widths and control of polarization states offer inherent physical layer security benefits with optical communications over RF solutions. This paper explores whether or not DTN is appropriate for space-based optical networks, optimal payload sizes, reliability, and a discussion on security.

  9. Adaptive optics compensation over a 3 km near horizontal path

    NASA Astrophysics Data System (ADS)

    Mackey, Ruth; Dainty, Chris

    2008-10-01

    We present results of adaptive optics compensation at the receiver of a 3km optical link using a beacon laser operating at 635nm. The laser is transmitted from the roof of a seven-storey building over a near horizontal path towards a 127 mm optical receiver located on the second-floor of the Applied Optics Group at the National University of Ireland, Galway. The wavefront of the scintillated beam is measured using a Shack-Hartmann wavefront sensor (SHWFS) with high-speed CMOS camera capable of frame rates greater than 1kHz. The strength of turbulence is determined from the fluctuations in differential angle-of-arrival in the wavefront sensor measurements and from the degree of scintillation in the pupil plane. Adaptive optics compensation is applied using a tip-tilt mirror and 37 channel membrane mirror and controlled using a single desktop computer. The performance of the adaptive optics system in real turbulence is compared with the performance of the system in a controlled laboratory environment, where turbulence is generated using a liquid crystal spatial light modulator.

  10. Eliminating Unwanted Far-Field Excitation in Objective-Type TIRF. Part I. Identifying Sources of Nonevanescent Excitation Light

    PubMed Central

    Brunstein, Maia; Teremetz, Maxime; Hérault, Karine; Tourain, Christophe; Oheim, Martin

    2014-01-01

    Total internal reflection fluorescence microscopy (TIRFM) achieves subdiffraction axial sectioning by confining fluorophore excitation to a thin layer close to the cell/substrate boundary. However, it is often unknown how thin this light sheet actually is. Particularly in objective-type TIRFM, large deviations from the exponential intensity decay expected for pure evanescence have been reported. Nonevanescent excitation light diminishes the optical sectioning effect, reduces contrast, and renders TIRFM-image quantification uncertain. To identify the sources of this unwanted fluorescence excitation in deeper sample layers, we here combine azimuthal and polar beam scanning (spinning TIRF), atomic force microscopy, and wavefront analysis of beams passing through the objective periphery. Using a variety of intracellular fluorescent labels as well as negative staining experiments to measure cell-induced scattering, we find that azimuthal beam spinning produces TIRFM images that more accurately portray the real fluorophore distribution, but these images are still hampered by far-field excitation. Furthermore, although clearly measureable, cell-induced scattering is not the dominant source of far-field excitation light in objective-type TIRF, at least for most types of weakly scattering cells. It is the microscope illumination optical path that produces a large cell- and beam-angle invariant stray excitation that is insensitive to beam scanning. This instrument-induced glare is produced far from the sample plane, inside the microscope illumination optical path. We identify stray reflections and high-numerical aperture aberrations of the TIRF objective as one important source. This work is accompanied by a companion paper (Pt.2/2). PMID:24606927

  11. Six years of surface remote sensing of stratiform warm clouds in marine and continental air over Mace Head, Ireland

    NASA Astrophysics Data System (ADS)

    Preißler, Jana; Martucci, Giovanni; Saponaro, Giulia; Ovadnevaite, Jurgita; Vaishya, Aditya; Kolmonen, Pekka; Ceburnis, Darius; Sogacheva, Larisa; de Leeuw, Gerrit; O'Dowd, Colin

    2016-12-01

    A total of 118 stratiform water clouds were observed by ground-based remote sensing instruments at the Mace Head Atmospheric Research Station on the west coast of Ireland from 2009 to 2015. Microphysical and optical characteristics of these clouds were studied as well as the impact of aerosols on these properties. Microphysical and optical cloud properties were derived using the algorithm SYRSOC (SYnergistic Remote Sensing Of Clouds). Ground-based in situ measurements of aerosol concentrations and the transport path of air masses at cloud level were investigated as well. The cloud properties were studied in dependence of the prevailing air mass at cloud level and season. We found higher cloud droplet number concentrations (CDNC) and smaller effective radii (reff) with greater pollution. Median CDNC ranged from 60 cm-3 in marine air masses to 160 cm-3 in continental air. Median reff ranged from 8 μm in polluted conditions to 10 μm in marine air. Effective droplet size distributions were broader in marine than in continental cases. Cloud optical thickness (COT) and albedo were lower in cleaner air masses and higher in more polluted conditions, with medians ranging from 2.1 to 4.9 and 0.22 to 0.39, respectively. However, calculation of COT and albedo was strongly affected by liquid water path (LWP) and departure from adiabatic conditions. A comparison of SYRSOC results with MODIS (Moderate-Resolution Imaging Spectroradiometer) observations showed large differences for LWP and COT but good agreement for reff with a linear fit with slope near 1 and offset of -1 μm.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.

    Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Modelsmore » that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. As a result, it is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.« less

  13. Rod Photopigment Kinetics After Photodisruption of the Retinal Pigment Epithelium

    PubMed Central

    Masella, Benjamin D.; Hunter, Jennifer J.; Williams, David R.

    2014-01-01

    Purpose. Advances in retinal imaging have led to the discovery of long-lasting retinal changes caused by light exposures below published safety limits, including disruption of the RPE. To investigate the functional consequences of RPE disruption, we combined adaptive optics ophthalmoscopy with retinal densitometry. Methods. A modified adaptive optics scanning light ophthalmoscope (AOSLO) measured the apparent density and regeneration rate of rhodopsin in two macaques before and after four different 568-nm retinal radiant exposures (RREs; 400–3200 J/cm2). Optical coherence tomography (OCT) was used to measure the optical path length through the photoreceptor outer segments before and after RPE disruption. Results. All tested RREs caused visible RPE disruption. Apparent rhodopsin density was significantly reduced following 1600 (P = 0.01) and 3200 J/cm2 (P = 0.007) exposures. No significant change in apparent density was observed in response to 800 J/cm2. Surprisingly, exposure to 400 J/cm2 showed a significant increase in apparent density (P = 0.047). Rhodopsin recovery rate was not significantly affected by these RREs. Optical coherence tomography measurements showed a significant decrease in the optical path length through the photoreceptor outer segments for RREs above 800 J/cm2 (P < 0.001). Conclusions. At higher RREs, optical path length through the outer segments was reduced. However, the rate of photopigment regeneration was unchanged. While some ambiguity remains as to the correlation between measured reflectivity and absolute rhodopsin density; at the lowest RREs, RPE disruption appears not to be accompanied by a loss of apparent rhodopsin density, which would have been indicative of functional loss. PMID:25316724

  14. Gaining with loss

    NASA Astrophysics Data System (ADS)

    Pile, Interview by David F. P.

    2017-12-01

    Nature Photonics spoke to Demetrios Christodoulides, of CREOL, The College of Optics & Photonics, University of Central Florida, about the birth of the parity-time-symmetry concepts in optics and the challenges and prospects on the path ahead.

  15. Ultrastable assembly and integration technology for ground- and space-based optical systems.

    PubMed

    Ressel, Simon; Gohlke, Martin; Rauen, Dominik; Schuldt, Thilo; Kronast, Wolfgang; Mescheder, Ulrich; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2010-08-01

    Optical metrology systems crucially rely on the dimensional stability of the optical path between their individual optical components. We present in this paper a novel adhesive bonding technology for setup of quasi-monolithic systems and compare selected characteristics to the well-established state-of-the-art technique of hydroxide-catalysis bonding. It is demonstrated that within the measurement resolution of our ultraprecise custom heterodyne interferometer, both techniques achieve an equivalent passive path length and tilt stability for time scales between 0.1 mHz and 1 Hz. Furthermore, the robustness of the adhesive bonds against mechanical and thermal inputs has been tested, making this new bonding technique in particular a potential option for interferometric applications in future space missions. The integration process itself is eased by long time scales for alignment, as well as short curing times.

  16. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  17. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-08

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.

  18. On-demand virtual optical network access using 100 Gb/s Ethernet.

    PubMed

    Ishida, Osamu; Takamichi, Toru; Arai, Sachine; Kawate, Ryusuke; Toyoda, Hidehiro; Morita, Itsuro; Araki, Soichiro; Ichikawa, Toshiyuki; Hoshida, Takeshi; Murai, Hitoshi

    2011-12-12

    Our Terabit LAN initiatives attempt to enhance the scalability and utilization of lambda resources. This paper describes bandwidth-on-demand virtualized 100GE access to WDM networks on a field fiber test-bed using multi-domain optical-path provisioning. © 2011 Optical Society of America

  19. Total solar eclipse of 3 November 1994

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1993-01-01

    A total eclipse of the Sun will be visible from the southern half of the Western Hemisphere on 3 November 1994. The path of the Moon's shadow passes through Peru, Chile, Bolivia, Paraguay, and Brazil. Detailed predictions for this event are presented and include tables of geographic coordinates of the path of totality, local circumstances for hundreds of cities, maps of the path of total and partial eclipse, weather prospects, and the lunar limb profile.

  20. Common path endoscopic probes for optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.

    2017-02-01

    Background: Dispersion imbalance and polarization mismatch between the reference and sample arm signals can lead to image quality degradation in optical coherence tomography (OCT). One approach to reduce these image artifacts is to employ a common-path geometry in fiber-based probes. In this work, we report an 800 um diameter all-fiber common-path monolithic probe for coronary artery imaging where the reference signal is generated using an inline fiber partial reflector. Methods: Our common-path probe was designed for swept-source based Fourier domain OCT at 1310 nm wavelength. A face of a coreless fiber was coated with gold and spliced to a standard SMF-28 single mode fiber creating an inline partial reflector, which acted as a reference surface. The other face of the coreless fiber was shaped into a ball lens for focusing. The optical elements were assembled within a 560 µm diameter drive shaft, which was attached to a rotary junction. The drive shaft was placed inside a transparent sheath having an outer diameter of 800 µm. Results: With a source input power of 30mW, the inline common-path probe achieved a sensitivity of 104 dB. Images of human finger skin showed the characteristic layers of skin as well as features such as sweat ducts. Images of coronary arteries ex vivo obtained with this probe enabled visualization of the characteristic architectural morphology of the normal artery wall and known features of atherosclerotic plaque. Conclusion: In this work, we have demonstrated a common path OCT probe for cardiovascular imaging. The probe is easy to fabricate, will reduce system complexity and overall cost. We believe that this design will be helpful in endoscopic applications that require high resolution and a compact form factor.

  1. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.

    PubMed

    Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick

    2009-08-01

    Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.

  2. Motion detection, novelty filtering, and target tracking using an interferometric technique with a GaAs phase conjugate mirror

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Tsuen-Hsi (Inventor)

    1990-01-01

    A method and apparatus is disclosed for detecting and tracking moving objects in a noise environment cluttered with fast-and slow-moving objects and other time-varying background. A pair of phase conjugate light beams carrying the same spatial information commonly cancel each other out through an image subtraction process in a phase conjugate interferometer, wherein gratings are formed in a fast photo-refractive phase conjugate mirror material. In the steady state, there is no output. When the optical path of one of the two phase conjugate beams is suddenly changed, the return beam loses its phase conjugate nature and the inter-ferometer is out of balance, resulting in an observable output. The observable output lasts until the phase conjugate nature of the beam has recovered. The observable time of the output signal is roughly equal to the formation time of the grating. If the optical path changing time is slower than the formation time, the change of optical path becomes unobservable, because the index grating can follow the change. Thus, objects traveling at speeds which result in a path changing time which is slower than the formation time are not observable and do not clutter the output image view.

  3. Path profiles of Cn2 derived from radiometer temperature measurements and geometrical ray tracing

    NASA Astrophysics Data System (ADS)

    Vyhnalek, Brian E.

    2017-02-01

    Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter C 2 n is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify C 2 n profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.

  4. Path Profiles of Cn2 Derived from Radiometer Temperature Measurements and Geometrical Ray Tracing

    NASA Technical Reports Server (NTRS)

    Vyhnalek, Brian E.

    2017-01-01

    Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter Cn2 is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify Cn2 profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time-varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.

  5. Some design considerations for a synthetic aperture optical telescope array

    NASA Astrophysics Data System (ADS)

    Scott, P. W.

    1984-01-01

    Several design considerations inherent in the configuration of phased array transmission of multiwavelength laser beams are discussed. Attention is focused on the U.S.A.F. phased array (PHASAR) demonstration project, where problems have been encountered in dividing the beam(s), controlling the optical path differences between subapertures, and expanding individual beams.A piston-driven path length adjustment mechanism has been selected, along with an active control system and proven components for stability maintenance. The necessity of developing broadband, high reflectivity low phase shift coatings for the system mirrors is stressed.

  6. Measurement of wavelength-dependent extinction to distinguish between absorbing and nonabsorbing aerosol particulates

    NASA Technical Reports Server (NTRS)

    Portscht, R.

    1977-01-01

    Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.

  7. Horizontal atmospheric turbulence, beam propagation, and modeling

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Judd, K. Peter; Restaino, Sergio R.

    2017-05-01

    The turbulent effect from the Earth's atmosphere degrades the performance of an optical imaging system. Many studies have been conducted in the study of beam propagation in a turbulent medium. Horizontal beam propagation and correction presents many challenges when compared to vertical due to the far harsher turbulent conditions and increased complexity it induces. We investigate the collection of beam propagation data, analysis, and use for building a mathematical model of the horizontal turbulent path and the plans for an adaptive optical system to use this information to correct for horizontal path atmospheric turbulence.

  8. Electro-Optic Propagation

    DTIC Science & Technology

    2003-09-30

    Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...scenarios to extend the capabilities of TAWS to surface and low altitude situations. OBJECTIVES The electro - optical propagation objectives are: 1...development of a new propagation assessment tool called EOSTAR ( Electro - Optical Signal Transmission and Ranging). The goal of the EOSTAR project is to

  9. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics

    PubMed Central

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-01-01

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284

  10. Investigation of the height dependency of optical turbulence in the surface layer over False Bay (South Africa)

    NASA Astrophysics Data System (ADS)

    Sprung, Detlev; van Eijk, Alexander M. J.; Günter, Willie; Griffith, Derek; Eisele, Christian; Sucher, Erik; Seiffer, Dirk; Stein, Karin

    2017-09-01

    Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 over a 1.8 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) at Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease with Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenario, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.69 km path from IMT to St. James, roughly perpendicular to the three 1.8 km paths.

  11. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics.

    PubMed

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-11-15

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers.

  12. Ballistic Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    DTIC Science & Technology

    2016-04-01

    polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are...The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are reported. The technique is demonstrated...cell filled with polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image

  13. Holographic motion picture camera with Doppler shift compensation

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1976-01-01

    A holographic motion picture camera is reported for producing three dimensional images by employing an elliptical optical system. There is provided in one of the beam paths (the object or reference beam path) a motion compensator which enables the camera to photograph faster moving objects.

  14. Development of Tailorable Electrically Conductive Thermal Control Material Systems

    NASA Technical Reports Server (NTRS)

    Deshpande, M. S.; Harada, Y.

    1998-01-01

    The optical characteristics of surfaces on spacecraft are fundamental parameters in controlling its temperature. Passive thermal control coatings with designed solar absorptance and infrared emittance properties have been developed and been in use for some time. In this total space environment, the coating must be stable and maintain its desired optical properties for the course of the mission lifetime. The mission lifetimes are increasing and in our quest to save weight, newer substrates are being integrated which limit electrical grounding schemes. All of this has already added to the existing concerns about spacecraft charging and related spacecraft failures or operational failures. The concern is even greater for thermal control surfaces that are very large. One way of alleviating such concerns is to design new thermal control material systems (TCMS) that can help to mitigate charging via providing charge leakage paths. The object of this program was to develop two types of passive electrically conductive TCMS.

  15. THE OUTBURST OF THE BLAZAR S5 0716+71 IN 2011 OCTOBER: SHOCK IN A HELICAL JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larionov, V. M.; Jorstad, S. G.; Morozova, D. A.

    We present the results of optical (R band) photometric and polarimetric monitoring and Very Long Baseline Array (VLBA) imaging of the blazar S5 0716+714 along with Fermi {gamma}-ray data during a multi-waveband outburst in 2011 October. We analyze total and polarized intensity images of the blazar obtained with the VLBA at 43 GHz during and after the outburst. Monotonic rotation of the linear polarization vector at a rate of {approx}> 50 Degree-Sign per night coincided with a sharp maximum in {gamma}-ray and optical flux. At the same time, within the uncertainties, a new superluminal knot appeared with an apparent speedmore » of 21 {+-} 2c. The general multi-frequency behavior of the outburst can be explained within the framework of a shock wave propagating along a helical path in the blazar's jet.« less

  16. Common-Path Interferometric Wavefront Sensing for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Wallace, James Kent

    2011-01-01

    This paper presents an optical configuration for a common-path phase-shifting interferometric wavefront sensor.1 2 This sensor has a host of attractive features which make it well suited for space-based adaptive optics. First, it is strictly reflective and therefore operates broadband, second it is common mode and therefore does not suffer from systematic errors (like vibration) that are typical in other interferometers, third it is a phase-shifting interferometer and therefore benefits from both the sensitivity of interferometric sensors as well as the noise rejection afforded by synchronous detection. Unlike the Shack-Hartman wavefront sensor, it has nearly uniform sensitivity to all pupil modes. Optical configuration, theory and simulations for such a system will be discussed along with predicted performance.

  17. Thermomagnetic recording and magneto-optic playback system having constant intensity laser beam control

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Guisinger, J. E. (Inventor)

    1973-01-01

    A system is developed for maintaining the intensity of a laser beam at a constant level in a thermomagnetic recording and magneto-optic playback system in which an isotropic film is heated along a continuous path by the laser beam for recording. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of a controlled magnetic field, a magneto-optic density is produced proportional to the amplitude of the controlled magnetic field. To play back the recorded signal, the intensity of the laser beam is reduced and a Faraday or Kerr effect analyzer is used, with a photodetector, as a transducer for producing an output signal.

  18. EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Rubin, M. H.; Sergienko, A. V.

    1992-01-01

    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences.

  19. Arc-evaporated carbon films: optical properties and electron mean free paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.W.; Arakawa, E.T.; Dolfini, S.M.

    1984-01-01

    This paper describes briefly a method which can be used to calculate inelastic mean free paths for electrons with energies in the range of interest for the interpretation of surface phenomena. This method requires a knowledge of the optical properties of the material for the photon energies associated with the oscillator strength of the valence electrons. However, in general it is easier to obtain accurate values of the required properties than it is to measure the electron attenuation lengths in the energy region of interest. This technique, demonstrated here for arc-evaporated carbon, can be used for any material for whichmore » the optical properties can be measured over essentially the whole energy range corresponding to the valence electron response.« less

  20. Snapshot polarization-sensitive plug-in optical module for a Fourier-domain optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Marques, Manuel J.; Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2018-02-01

    In this communication, we present a proof-of-concept polarization-sensitive Optical Coherence Tomography (PS-OCT) which can be used to characterize the retardance and the axis orientation of a linear birefringent sample. This module configuration is an improvement from our previous work1, 2 since it encodes the two polarization channels on the optical path difference, effectively carrying out the polarization measurements simultaneously (snapshot measurement), whilst retaining all the advantages (namely the insensitivity to environmental parameters when using SM fibers) of these two previous configurations. Further progress consists in employing Master Slave OCT technology,3 which is used to automatically compensate for the dispersion mismatch introduced by the elements in the module. This is essential given the encoding of the polarization states on two different optical path lengths, each of them having dissimilar dispersive properties. By utilizing this method instead of the commonly used re-linearization and numerical dispersion compensation methods an improvement in terms of the calculation time required can be achieved.

  1. Nitrogen dioxide sensing using a novel gas correlation detector

    NASA Astrophysics Data System (ADS)

    Kebabian, Paul L.; Annen, Kurt D.; Berkoff, Timothy A.; Freedman, Andrew

    2000-05-01

    A nitrogen dioxide point sensor, based on a novel nondispersive gas filter spectroscopic scheme, is described. The detection scheme relies on the fact that the absorption spectrum of nitrogen dioxide in the 400-550 nm region consists of a complicated line structure superimposed on an average broadband absorption. A compensating filter is used to remove the effect of the broadband absorption, making the sensor insensitive both to small particles in the optical path and to potentially interfering gases with broadband absorption features in the relevant wavelength region. Measurements are obtained using a remote optical absorption cell that is linked via multimode fibre optics to the source and detection optics. The incorporation of blue light emitting diodes which spectrally match the nitrogen dioxide absorption allows the employment of electronic (instead of mechanical) switching between optical paths. A sensitivity of better than 1.0 ppm m column density (1 s integration time) has been observed; improvements in electronics and thermal stabilization should increase this sensitivity.

  2. Geometrical-optics approximation of forward scattering by gradient-index spheres.

    PubMed

    Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen

    2007-08-01

    By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.

  3. All-optical optoacoustic microscopy based on probe beam deflection technique.

    PubMed

    Maswadi, Saher M; Ibey, Bennett L; Roth, Caleb C; Tsyboulski, Dmitri A; Beier, Hope T; Glickman, Randolph D; Oraevsky, Alexander A

    2016-09-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  4. Software-centric View on OVMS for LBT

    NASA Astrophysics Data System (ADS)

    Trowitzsch, J.; Borelli, J.; Pott, J.; Kürster, M.

    2012-09-01

    The performance of infrared interferometry (IF) and adaptive optics (AO) strongly depends on the mitigation and correction of telescope vibrations. Therefore, at the Large Binocular Telescope (LBT) the OVMS, the Optical Path Difference and Vibration Monitoring System, is being installed. It is meant to ensure suitable conditions for adaptive optics and interferometry. The vibration information is collected from accelerometers that are distributed over the optical elements of the LBT. The collected vibration measurements are converted into tip-tilt and optical path difference data. That data is utilized in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers, LINC-NIRVANA and LBTI. Within the OVMS the software part is responsibility of the LINC-NIRVANA team at MPIA Heidelberg. It comprises the software for the real-time data acquisition from the accelerometers as well as the related telemetry interface and the vibration monitoring quick look tools. The basic design ideas, implementation details and special features are explained here.

  5. Automatic Alignment of Displacement-Measuring Interferometer

    NASA Technical Reports Server (NTRS)

    Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer

    2006-01-01

    A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.

  6. Laser-Based Production of Metallic Conducting Paths

    NASA Astrophysics Data System (ADS)

    Vedder, Christian; Stollenwerk, Jochen; Wissenbach, Konrad; Pirch, Norbert

    For numerous devices such as OLEDs, solar cells or heated windows conducting paths are needed for collecting or distributing electricity on poorly or non-conducting surfaces. With established techniques the metallic paths can only be produced with a great deal of effort, incurring high costs for plant, equipment and energy. A new laser based process to manufacture conducting paths allows for writing narrow paths (down to 35 μm width) of Al, Cu, Ag or similar materials onto flat surfaces of glass (plain or coated with ITO) and silicon wafers by melting and vaporizing a metal foil through optical energy at high speeds of up to 2.5 m/s.

  7. OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA

    EPA Science Inventory

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...

  8. Performance of multi-hop parallel free-space optical communication over gamma-gamma fading channel with pointing errors.

    PubMed

    Gao, Zhengguang; Liu, Hongzhan; Ma, Xiaoping; Lu, Wei

    2016-11-10

    Multi-hop parallel relaying is considered in a free-space optical (FSO) communication system deploying binary phase-shift keying (BPSK) modulation under the combined effects of a gamma-gamma (GG) distribution and misalignment fading. Based on the best path selection criterion, the cumulative distribution function (CDF) of this cooperative random variable is derived. Then the performance of this optical mesh network is analyzed in detail. A Monte Carlo simulation is also conducted to demonstrate the effectiveness of the results for the average bit error rate (ABER) and outage probability. The numerical result proves that it needs a smaller average transmitted optical power to achieve the same ABER and outage probability when using the multi-hop parallel network in FSO links. Furthermore, the system use of more number of hops and cooperative paths can improve the quality of the communication.

  9. Development of a Differential Optical Absorption Spectroscopy System Using HighLuminance LED for Measurement of NO2

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo; Nayuki, Takuya; Mori, Hideto; Goto, Naohiko; Fujii, Takashi; Nemoto, Koshichi

    A differential optical absorption spectroscopy (DOAS) system for measurement of atmospheric NO2 was developed. The system uses a battery-operated, high luminance LED and a fiber-coupled spectrometer, and is portable. Laboratory experiments using a gas cell of length 0.22 m with varying NO2 concentrations were performed to evaluate the sensitivity of the DOAS system. The DOAS measurement results are in agreement with NO2 concentrations obtained simultaneously by a FT-IR (Fourier Transform Infrared) system for NO2 concentrations down to 20 ppm. Experiments with an optical path length of 93 m were also performed, and NO2 concentrations down to 0.20 ppm were measured. Since measurement of atmospheric NO2, which is in the order of several tens of ppb, requires optical path lengths of several hundred m, system improvements to improve the signal detection are necessary.

  10. Astigmatism corrected common path probe for optical coherence tomography.

    PubMed

    Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo

    2017-03-01

    Optical coherence tomography (OCT) catheters for intraluminal imaging are subject to various artifacts due to reference-sample arm dispersion imbalances and sample arm beam astigmatism. The goal of this work was to develop a probe that minimizes such artifacts. Our probe was fabricated using a single mode fiber at the tip of which a glass spacer and graded index objective lens were spliced to achieve the desired focal distance. The signal was reflected using a curved reflector to correct for astigmatism caused by the thin, protective, transparent sheath that surrounds the optics. The probe design was optimized using Zemax, a commercially available optical design software. Common path interferometric operation was achieved using Fresnel reflection from the tip of the focusing graded index objective lens. The performance of the probe was tested using a custom designed spectrometer-based OCT system. The probe achieved an axial resolution of 15.6 μm in air, a lateral resolution 33 μm, and a sensitivity of 103 dB. A scattering tissue phantom was imaged to test the performance of the probe for astigmatism correction. Images of the phantom confirmed that this common-path, astigmatism-corrected OCT imaging probe had minimal artifacts in the axial, and lateral dimensions. In this work, we developed an astigmatism-corrected, common path probe that minimizes artifacts associated with standard OCT probes. This design may be useful for OCT applications that require high axial and lateral resolutions. Lasers Surg. Med. 49:312-318, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Effect of travel speed on the visual control of steering toward a goal.

    PubMed

    Chen, Rongrong; Niehorster, Diederick C; Li, Li

    2018-03-01

    Previous studies have proposed that people can use visual cues such as the instantaneous direction (i.e., heading) or future path trajectory of travel specified by optic flow or target visual direction in egocentric space to steer or walk toward a goal. In the current study, we examined what visual cues people use to guide their goal-oriented locomotion and whether their reliance on such visual cues changes as travel speed increases. We presented participants with optic flow displays that simulated their self-motion toward a target at various travel speeds under two viewing conditions in which we made target egocentric direction available or unavailable for steering. We found that for both viewing conditions, participants did not steer along a curved path toward the target such that the actual and the required path curvature to reach the target would converge when approaching the target. At higher travel speeds, participants showed a faster and larger reduction in target-heading angle and more accurate and precise steady-state control of aligning their heading specified by optic flow with the target. These findings support the claim that people use heading and target egocentric direction but not path for goal-oriented locomotion control, and their reliance on heading increases at higher travel speeds. The increased reliance on heading for goal-oriented locomotion control could be due to an increased reliability in perceiving heading from optic flow as the magnitude of flow increases with travel speed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Using Two Models in Optics: Students' Difficulties and Suggestions for Teaching.

    ERIC Educational Resources Information Center

    Colin, P.; Viennot, L.

    2001-01-01

    Focuses on difficulties linked to situations in physics involving two models--geometrical optics and wave optics. Presents content analysis underlining two important features required for addressing such situations: (1) awareness of the status of the drawings; and (2) the 'backward selection' of paths of light. (Contains 24 references.)…

  13. Enhancing performance of LCoS-SLM as adaptive optics by using computer-generated holograms modulation software

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh

    2017-05-01

    We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system

  14. Random fluctuations of optical signal path delay in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kral, L.; Prochazka, I.; Hamal, K.

    2006-09-01

    Atmospheric turbulence induces random delay fluctuations to any optical signal transmitted through the air. These fluctuations can influence for example the measurement precision of laser rangefinders. We have found an appropriate theoretical model based on geometrical optics that allows us to predict the amplitude of the random delay fluctuations for different observing conditions. We have successfully proved the applicability of this model by a series of experiments, directly determining the amplitude of the turbulence-induced pulse delay fluctuations by analysis of a high precision laser ranging data. Moreover, we have also shown that a standard theoretical approach based on diffractive propagation of light through inhomogeneous media and implemented using the GLAD software is not suitable for modeling of the optical signal delay fluctuations caused by the atmosphere. These models based on diffractive propagation predict the turbulence-induced optical path length fluctuations of the order of micrometers, whereas the fluctuations predicted by the geometrical optics model (in agreement with our experimental data) are generally larger by two orders of magnitude, i.e. in the submillimeter range. The reason of this discrepancy is a subject to discussion.

  15. Multiparallel Three-Dimensional Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  16. Add-drop double bus microresonator array local oscillators for sharp multiple Fano resonance engineering

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Qu, Ye; Wu, Ying

    2018-03-01

    Asymmetric resonances are currently the subject of considerable research efforts in photonic nanostructures. Here we propose a feasible method to achieve multiple Fano resonances and their control in an optical compound system consisting of an array of on-chip microresonators without mutual coupling and two parallel fiber waveguides side-coupled to the microresonator array by means of a local oscillator. We derive analytical and transparent expressions for the power transmission function summing over the two light transporting paths within the framework of quantum optics. It is clearly shown that introducing the local oscillator as an additional light propagating path plays an important role in the formation of narrow and multiple Fano resonance lineshapes. The power transmission spectrum through the combination of both the microresonator array and the local oscillator is very sensitive to the system parameters, for example, the intrinsic decay rate of the resonator, the phase shift factor of the local oscillator, the transmission coefficient of the fiber beam splitter, and the total number of the microresonators. Through detailed analysis, we identify the optimums for generating Fano resonance lineshapes. Also, we assess the experimental feasibility of the scheme using currently available technology. The proposed method is relatively straightforward as it requires only one local oscillator as one interferometer arm and it is mostly fiber-based. We believe that our work will help to understand and improve multiple Fano resonance engineering.

  17. Cells and biofluids analyzed in aqueous environment by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Naumann, D.; Lasch, P.; Fabian, H.

    2006-02-01

    Infrared transmission/absorption measurements of cells and biofluids in water are restricted to very short optical pathlengths. When the amide I and amide II bands of protein constituents have to be analysed, path-lengths of less than 8 μm are necessary. Infrared spectra of cancer cells were collected from physiological buffer solutions utilizing custom-made mid-infrared compatible IR-cuvettes. The technology permitted to obtain cell-type specific spectral signatures and probe biochemical changes induced by varying temperatures or cell-drug interaction. Optical path-lengths of 8-30 μm were used on a set of microbial test strains to evaluate, whether the methodology can also be used to discriminate and identify micro-organisms. A semi-automatic methodology was developed for the analysis of liquid serum samples, which combines simple sample handling with high sample throughput and extreme measurement reproducibility. The applicability of this infrared technology to the analysis of liquid serum samples from cattle and human beings suffering from various acute viral or bacterial infections was explored testing the interrelationship between α-helical and β-sheet specific spectral signatures in the amide I band contour and total albumin and globulin content in serum. The technical details, advantages, and limitations of the new technology are described in the context of developing a routine, IR-based biodiagnostic technique for biofluids and biological cells.

  18. Logical optical line terminal technologies towards flexible and highly reliable metro- and access-integrated networks

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoru; Sato, Takehiro; Yamanaka, Naoaki

    2017-01-01

    In this paper, flexible and highly reliable metro and access integrated networks with network virtualization and software defined networking technologies will be presented. Logical optical line terminal (L-OLT) technologies and active optical distribution networks (ODNs) are the key to introduce flexibility and high reliability into the metro and access integrated networks. In the Elastic Lambda Aggregation Network (EλAN) project which was started in 2012, a concept of the programmable optical line terminal (P-OLT) has been proposed. A role of the P-OLT is providing multiple network services that have different protocols and quality of service requirements by single OLT box. Accommodated services will be Internet access, mobile front-haul/back-haul, data-center access, and leased line. L-OLTs are configured within the P-OLT box to support the functions required for each network service. Multiple P-OLTs and programmable optical network units (P-ONUs) are connected by the active ODN. Optical access paths which have flexible capacity are set on the ODN to provide network services from L-OLT to logical ONUs (L-ONUs). The L-OLT to L-ONU path on the active ODN provides a logical connection. Therefore, introducing virtualization technologies becomes possible. One example is moving an L-OLT from one P-OLT to another P-OLT like a virtual machine. This movement is called L-OLT migration. The L-OLT migration provides flexible and reliable network functions such as energy saving by aggregating L-OLTs to a limited number of P-OLTs, and network wide optical access path restoration. Other L-OLT virtualization technologies and experimental results will be also discussed in the paper.

  19. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn; Jiang, Song, E-mail: jiang@iapcm.ac.cn; Xu, Kun, E-mail: makxu@ust.hk

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transportmore » equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.« less

  20. Design and implementation of the one-step MSD adder of optical computer.

    PubMed

    Song, Kai; Yan, Liping

    2012-03-01

    On the basis of the symmetric encoding algorithm for the modified signed-digit (MSD), a 7*7 truth table that can be realized with optical methods was developed. And based on the truth table, the optical path structures and circuit implementations of the one-step MSD adder of ternary optical computer (TOC) were designed. Experiments show that the scheme is correct, feasible, and efficient. © 2012 Optical Society of America

  1. Development of a novel polymeric fiber-optic magnetostrictive metal detector.

    PubMed

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih

    2010-01-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.

  2. Asymmetric transmission and optical low-pass filtering in a stack of random media with graded transport mean free path

    NASA Astrophysics Data System (ADS)

    Bingi, J.; Hemalatha, M.; Anita, R. W.; Vijayan, C.; Murukeshan, V. M.

    2015-11-01

    Light transport and the physical phenomena related to light propagation in random media are very intriguing, they also provide scope for new paradigms of device functionality, most of which remain unexplored. Here we demonstrate, experimentally and by simulation, a novel kind of asymmetric light transmission (diffusion) in a stack of random media (SRM) with graded transport mean free path. The structure is studied in terms of transmission, of photons propagated through and photons generated within the SRM. It is observed that the SRM exhibits asymmetric transmission property with a transmission contrast of 0.25. In addition, it is shown that the SRM works as a perfect optical low-pass filter with a well-defined cutoff wavelength at 580 nm. Further, the photons generated within the SRM found to exhibit functionality similar to an optical diode with a transmission contrast of 0.62. The basis of this functionality is explained in terms of wavelength dependent photon randomization and the graded transport mean free path of SRM.

  3. Design of visible and IR infrared dual-band common-path telescope system

    NASA Astrophysics Data System (ADS)

    Guo, YuLin; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    The use of visible and IR infrared dual-band combination can effectively improve the performance of photoelectric detection system,TV and IR system were designed with the common path by the common reflection optical system.A TV/IR infrared common-caliber and common-path system is designed,which can realize the Remote and all-day information.For the 640×512 cooled focal plane array,an infrared middle wave system was presented with a focal length of 600mm F number of 4 field of view(FOV) of 0.38°×0.43°, the system uses optical passive thermal design, has o compact structure and can meet 100% cold shield efficiency,meanwhile it meets the design requirements of lightweight and athermalization. For the 1920×1080 pixels CCD,a visible (TV) system ,which had 500mm focal length, 4F number,was completed.The final optical design along with their modulation transfer function is presented,showing excellent imaging performance in dual-band at the temperature range between -40° and 60°.

  4. Three-dimensional automated nanoparticle tracking using Mie scattering in an optical microscope.

    PubMed

    Gineste, J-M; Macko, P; Patterson, E A; Whelan, M P

    2011-08-01

    The forward scattering of light in a conventional inverted optical microscope by nanoparticles ranging in diameter from 10 to 50nm has been used to automatically and quantitatively identify and track their location in three-dimensions with a temporal resolution of 200ms. The standard deviation of the location of nominally stationary 50-nm-diameter nanoparticles was found to be about 50nm along the light path and about 5nm in the plane perpendicular to the light path. The method is based on oscillating the microscope objective along the light path using a piezo actuator and acquiring images with the condenser aperture closed to a minimum to enhance the effects of diffraction. Data processing in the time and spatial domains allowed the location of particles to be obtained automatically so that the technique has potential applications both in the processing of nanoparticles and in their use in a variety of fields including nanobiotechnology, pharmaceuticals and food processing where a simple optical microscope maybe preferred for a variety of reasons. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  5. Studies of free-space optical links through simulated boundary layer and long-path turbulence

    NASA Astrophysics Data System (ADS)

    Wasiczko, Linda; Smolyaninov, Igor I.; Milner, Stuart D.; Davis, Christopher C.

    2004-02-01

    There is recent interest from the US Department of Defense in free space optical communication networks involving aircraft flying at various altitudes. The optical links between these aircraft may be as long as 100km, and involve communication between network nodes that are moving at sub-sonic speeds. An unresolved issue for links of this kind between pairs of aircraft is the effect of boundary layer turbulence near each aircraft, as well as along the atmospheric path between them. The deployment of optical wireless links in several different scenarios will be described. These include links near to the ground for which the turbulence parameter Cn2 varies along the path between transmitter (TX) and receiver (RX), high altitude links between aircraft, and ground to aircraft links. The last two of these may involve boundary layer turbulence near the aircraft node where the turbulence is localized either at the TX or at the RX. Some of the theoretical approaches to examining these situations will be described, as well as an ongoing program of research to examine these situations experimentally. Ways to mitigate the effects of node motion, and scintillation at the RX will be discussed, including the use of non-imaging concentrators at the RX.

  6. Proof of concept demonstration for coherent beam pattern measurements of KID detectors

    NASA Astrophysics Data System (ADS)

    Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.

    2016-07-01

    Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.

  7. Exchange interaction and tunneling-induced transparency in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Borges, H. S.; Alcalde, A. M.; Ulloa, Sergio E.

    2014-11-01

    We investigate the optical response of quantum dot molecules coherently driven by polarized laser light. Our description includes the splitting in excitonic levels caused by isotropic and anisotropic exchange interactions. We consider interdot transitions mediated by hole tunneling between states with the same total angular momentum and between bright and dark exciton states as allowed by spin-flip hopping between the dots in the molecule. Using realistic experimental parameters we demonstrate that the excitonic states coupled by tunneling exhibit a rich and controllable optical response. We show that through the appropriate control of an external electric field and light polarization, the tunneling coupling establishes an efficient destructive quantum interference path that creates a transparency window in the absorption spectra whenever states of appropriate symmetry are mixed by the carrier tunneling. We explore the relevant parameter space that allows probing this phenomenon in experiments. Controlled variation in applied field and laser detuning would allow the optical characterization of spin-preserving and spin-flip hopping amplitudes in such systems by measuring the width of the tunneling-induced transparency windows.

  8. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light

    NASA Astrophysics Data System (ADS)

    Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad

    2016-03-01

    We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2<1.1). Consequently, a low power sample of each laser was utilized for active linear polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2<1.1). The intrinsic DOE splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.

  9. Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence.

    PubMed

    Xu, Feng; Ren, Kuan Fang; Cai, Xiaoshu; Shen, Jianqi

    2006-07-10

    On the basis of our previous work on the extension of the geometrical-optics approximation to Gaussian beam scattering by a spherical particle, we present a further extension of the method to the scattering of a transparent or absorbing spheroidal particle with the same symmetric axis as the incident beam. As was done for the spherical particle, the phase shifts of the emerging rays due to focal lines, optical path, and total reflection are carefully considered. The angular position of the geometric rainbow of primary order is theoretically predicted. Compared with our results, the Möbius prediction of the rainbow angle has a discrepancy of less than 0.5 degrees for a spheroidal droplet of aspect radio kappa within 0.95 and 1.05 and less than 2 degrees for kappa within 0.89 and 1.11. The flux ratio index F, which qualitatively indicates the effect of a surface wave, is also studied and found to be dependent on the size, refractive index, and surface curvature of the particle.

  10. Indium-tin-oxide nanowhiskers crystalline silicon photovoltaics combining micro- and nano-scale surface textures

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Hsu, M. H.; Chang, W. L.; Sun, W. C.; Yu, Peichen

    2011-02-01

    In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The combined surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on passivated, micro-grooved silicon solar cells using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared, which is optically equivalent to a stack of two dielectric thin-films with step- and graded- refractive index profiles. The ITO nanowhiskers provide broadband anti-reflective properties (R<5%) in the wavelength range of 350-1100nm. In comparison with conventional Si solar cell, the combined surface texture solar cell shows higher external quantum efficiency (EQE) in the range of 700-1100nm. Moreover, the ITO nano-whisker coating Si solar cell shows a high total efficiency increase of 1.1% (from 16.08% to17.18%). Furthermore, the nano-whiskers also provide strong forward scattering for ultraviolet and visible light, favorable in thin-wafer silicon photovoltaics to increase the optical absorption path.

  11. Macroscopic Magnetization Control by Symmetry Breaking of Photoinduced Spin Reorientation with Intense Terahertz Magnetic Near Field

    NASA Astrophysics Data System (ADS)

    Kurihara, Takayuki; Watanabe, Hiroshi; Nakajima, Makoto; Karube, Shutaro; Oto, Kenichi; Otani, YoshiChika; Suemoto, Tohru

    2018-03-01

    We exploit an intense terahertz magnetic near field combined with femtosecond laser excitation to break the symmetry of photoinduced spin reorientation paths in ErFeO3 . We succeed in aligning macroscopic magnetization reaching up to 80% of total magnetization in the sample to selectable orientations by adjusting the time delay between terahertz and optical pump pulses. The spin dynamics are well reproduced by equations of motion, including time-dependent magnetic potential. We show that the direction of the generated magnetization is determined by the transient direction of spin tilting and the magnetic field at the moment of photoexcitation.

  12. Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials

    USGS Publications Warehouse

    Fishman, M.

    1977-01-01

    An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.

  13. Development of GK-2A cloud optical and microphysical properties retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Yum, S. S.; Um, J.

    2017-12-01

    Cloud and aerosol radiative forcing is known to be one of the the largest uncertainties in climate change prediction. To reduce this uncertainty, remote sensing observation of cloud radiative and microphysical properties have been used since 1970s and the corresponding remote sensing techniques and instruments have been developed. As a part of such effort, Geo-KOMPSAT-2A (Geostationary Korea Multi-Purpose Satellite-2A, GK-2A) will be launched in 2018. On the GK-2A, the Advanced Meteorological Imager (AMI) is primary instrument which have 3 visible, 3 near-infrared, and 10 infrared channels. To retrieve optical and microphysical properties of clouds using AMI measurements, the preliminary version of new cloud retrieval algorithm for GK-2A was developed and several validation tests were conducted. This algorithm retrieves cloud optical thickness (COT), cloud effective radius (CER), liquid water path (LWP), and ice water path (IWP), so we named this algorithm as Daytime Cloud Optical thickness, Effective radius and liquid and ice Water path (DCOEW). The DCOEW uses cloud reflectance at visible and near-infrared channels as input data. An optimal estimation (OE) approach that requires appropriate a-priori values and measurement error information is used to retrieve COT and CER. LWP and IWP are calculated using empirical relationships between COT/CER and cloud water path that were determined previously. To validate retrieved cloud properties, we compared DCOEW output data with other operational satellite data. For COT and CER validation, we used two different data sets. To compare algorithms that use cloud reflectance at visible and near-IR channels as input data, MODIS MYD06 cloud product was selected. For the validation with cloud products that are based on microwave measurements, COT(2B-TAU)/CER(2C-ICE) data retrieved from CloudSat cloud profiling radar (W-band, 94 GHz) was used. For cloud water path validation, AMSR-2 Level-3 Cloud liquid water data was used. Detailed results will be shown at the conference.

  14. Error rate performance of atmospheric laser communication based on bubble model

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Wang, Jin; Li, Yan

    2009-08-01

    Free-Space Optics (FSO) can provide an effective line-of-sight and wireless communication with high bandwidth over a short distance. As a promising field of wireless communication, FSO is being accepted as an alternative of the more expensive fiber-optic based solutions. Despite the advantages of FSO, atmospheric turbulence has a significant impact on laser beam propagating through the channel in the atmosphere over a long distance. Turbulent eddies of various size and refractive index result in intensity scintillation and phase wander, which can severely impair the quality of FSO communication system. In this paper, a new geometrical model is used to assess the effects of turbulence on laser beam in its propagation path. The atmosphere is modeled along the transmission path filled with spatial-distributed spherical bubbles. The size and refractive index discontinuity of each bubble is K-distributed. This Monte Carlo technique allows us to estimate the fluctuation of intensity and phase shifts along the path. A pair of uncollimated rays arrives at the receiver through different path, and an optical path difference is produced. This difference causes a delay between the two rays. At the receiver, as the two rays are superposed, the delay ultimately affects the judgement of the bits. In the simulation, we assume that when the delay exceeds half of the bit width, bit error is possible. On the contrary, when the delay is less than the bit width, the bit error will not happen. Based on this assumption, we calculate the BER under different conditions, and results are further analyzed.

  15. USING TUNABLE DIODE LASERS TO MEASURE EMISSIONS FROM ANIMAL HOUSING AND WASTE LAGOONS

    EPA Science Inventory

    Open-path optical spectroscopy has been applied to several fugitive sources by scientists at the EPA National Risk Management Research Laboratory for more than a decade. Open-path Fourier transform infrared (OP-FTIR) was used during the initial research phase because of the abil...

  16. OPEN PATH OPTICAL SENSING OF PARTICULATE MATTER

    EPA Science Inventory

    The paper discusses the concepts behind recent developments in optical remote sensing (ORS) and the results from experiments. Airborne fugitive and fine particulate matter (PM) from various sources contribute to exceedances of state and federal PM and visibility standards. Recent...

  17. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  18. Obtaining tight bounds on higher-order interferences with a 5-path interferometer

    NASA Astrophysics Data System (ADS)

    Kauten, Thomas; Keil, Robert; Kaufmann, Thomas; Pressl, Benedikt; Brukner, Časlav; Weihs, Gregor

    2017-03-01

    Within the established theoretical framework of quantum mechanics, interference always occurs between pairs of paths through an interferometer. Higher order interferences with multiple constituents are excluded by Born’s rule and can only exist in generalized probabilistic theories. Thus, high-precision experiments searching for such higher order interferences are a powerful method to distinguish between quantum mechanics and more general theories. Here, we perform such a test in an optical multi-path interferometer, which avoids crucial systematic errors, has access to the entire phase space and is more stable than previous experiments. Our results are in accordance with quantum mechanics and rule out the existence of higher order interference terms in optical interferometry to an extent that is more than four orders of magnitude smaller than the expected pairwise interference, refining previous bounds by two orders of magnitude.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riza, Nabeel Agha; Perez, Frank

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector tomore » calculate a temperature of the device.« less

  20. An Open-path Laser Transmissometer for Atmospheric Extinction Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandran, P. M. Satheesh; Krishnakumar, C. P.; Varma, Ravi

    2011-10-20

    A transmissometer is an optical instrument which measures transmitted intensity of monochromatic light over a fixed pathlength. Prototype of a simple laser transmissometer has been developed for transmission (or extinction) measurements through suspended absorbers and scatterers in the atmosphere over tens of meters. Instrument consists of a continuous green diode pumped solid state laser, transmission optics, photodiode detectors and A/D data acquisition components. A modulated laser beam is transmitted and subsequently reflected and returned to the unit by a retroreflecting mirror assembly placed several tens of meters away. Results from an open-path field measurement of the instrument are described.

  1. A Portable Ground-Based Atmospheric Monitoring System (PGAMS) for the Calibration and Validation of Atmospheric Correction Algorithms Applied to Aircraft and Satellite Images

    NASA Technical Reports Server (NTRS)

    Schiller, Stephen; Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Detecting changes in the Earth's environment using satellite images of ocean and land surfaces must take into account atmospheric effects. As a result, major programs are underway to develop algorithms for image retrieval of atmospheric aerosol properties and atmospheric correction. However, because of the temporal and spatial variability of atmospheric transmittance it is very difficult to model atmospheric effects and implement models in an operational mode. For this reason, simultaneous in situ ground measurements of atmospheric optical properties are vital to the development of accurate atmospheric correction techniques. Presented in this paper is a spectroradiometer system that provides an optimized set of surface measurements for the calibration and validation of atmospheric correction algorithms. The Portable Ground-based Atmospheric Monitoring System (PGAMS) obtains a comprehensive series of in situ irradiance, radiance, and reflectance measurements for the calibration of atmospheric correction algorithms applied to multispectral. and hyperspectral images. The observations include: total downwelling irradiance, diffuse sky irradiance, direct solar irradiance, path radiance in the direction of the north celestial pole, path radiance in the direction of the overflying satellite, almucantar scans of path radiance, full sky radiance maps, and surface reflectance. Each of these parameters are recorded over a wavelength range from 350 to 1050 nm in 512 channels. The system is fast, with the potential to acquire the complete set of observations in only 8 to 10 minutes depending on the selected spatial resolution of the sky path radiance measurements

  2. Airborne Sun Photometer Measurements of Aerosol Optical Depth during SOLVE II: Comparison with SAGE III and POAM III Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P.; Livingston, J.; Schmid, B.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Zawodny, J.

    2003-01-01

    The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II) and obtained successful measurements during the sunlit segments of eight science flights. These included six flights out of Kiruna, Sweden, one flight out of NASA Dryden Flight Research Center (DFRC), and the Kiruna-DFRC return transit flight. Values of spectral aerosol optical depth (AOD), columnar ozone and columnar water vapor have been derived from the AATS-14 measurements. In this paper, we focus on AATS-14 AOD data. In particular, we compare AATS-14 AOD spectra with temporally and spatially near-coincident measurements by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement III (POAM III) satellite sensors. We examine the effect on retrieved AOD of uncertainties in relative optical airmass (the ratio of AOD along the instrument-to-sun slant path to that along the vertical path) at large solar zenith angles. Airmass uncertainties result fiom uncertainties in requisite assumed vertical profiles of aerosol extinction due to inhomogeneity along the viewing path or simply to lack of available data. We also compare AATS-14 slant path solar transmission measurements with coincident measurements acquired from the DC-8 by the NASA Langley Research Center Gas and Aerosol Measurement Sensor (GAMS).

  3. Design of interferometer system on Versatile Experiment Spherical Torus (VEST) at Seoul National University

    NASA Astrophysics Data System (ADS)

    Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.

    2012-01-01

    A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.

  4. Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics

    NASA Astrophysics Data System (ADS)

    Kasper, Axel; Van Hille, Herbert; Kuk, Sola

    2018-02-01

    Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.

  5. OVMS: the optical path difference and vibration monitoring system for the LBT and its interferometers

    NASA Astrophysics Data System (ADS)

    Kürster, M.; Bertram, T.; Borelli, J. L.; Brix, M.; Gässler, W.; Herbst, T. M.; Naranjo, V.; Pott, J.-U.; Trowitzsch, J.; Connors, T. E.; Hinz, P. M.; McMahon, T. J.; Ashby, D. S.; Brynnel, J. G.; Cushing, N. J.; Edgin, T.; Esguerra, J. D.; Green, R. F.; Kraus, J.; Little, J.; Beckmann, U.; Weigelt, G. P.

    2010-07-01

    Characterisation, mitigation and correction of telescope vibrations have proven to be crucial for the performance of astronomical infrared interferometers. The project teams of the interferometers for the LBT, LINC-NIRVANA and LBTI, and LBT Observatory (LBTO) have embarked on a joint effort to implement an accelerometer-based vibration measurement system distributed over the optical elements of the LBT. OVMS, the Optical Path Difference and Vibration Monitoring System will serve to (i) ensure conditions suitable for adaptive optics (AO) and interferometric (IF) observations and (ii) utilize vibration information, converted into tip-tilt and optical path difference data, in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers. The system hardware is mainly developed by Steward Observatory's LBTI team and its installation at the LBT is underway. The OVMS software development and associated computer infrastructure is the responsibility of the LINC-NIRVANA team at MPIA Heidelberg. Initially, the OVMS will fill a data archive provided by LBTO that will be used to study vibration data and correlate them with telescope movements and environmental parameters thereby identifiying sources of vibrations and to eliminate or mitigate them. Data display tools will help LBTO staff to keep vibrations within predefined thresholds for quiet conditions for AO and IF observations. Later-on real-time data from the OVMS will be fed into the control loops of the AO systems and IF instruments in order to permit the correction of vibration signals with frequencies up to 450 Hz.

  6. LCRD Update and Path to Optical Relay Operations

    NASA Technical Reports Server (NTRS)

    Israel, David

    2017-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on May 23, 2017 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. This presentation discusses a concept for an evolution of NASAs optical communications near-Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD) is a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO) following launch in 2019. This presentation will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.

  7. Development of a visible light transmission (VLT) measurement system using an open-path optical method

    NASA Astrophysics Data System (ADS)

    Nurulain, S.; Manap, H.

    2017-09-01

    This paper describes about a visible light transmission (VLT) measurement system using an optical method. VLT rate plays an important role in order to determine the visibility of a medium. Current instrument to measure visibility has a gigantic set up, costly and mostly fails to function at low light condition environment. This research focuses on the development of a VLT measurement system using a simple experimental set-up and at a low cost. An open path optical technique is used to measure a few series of known-VLT thin film that act as sample of different visibilities. This measurement system is able to measure the light intensity of these thin films within the visible light region (535-540 nm) and the response time is less than 1s.

  8. Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications.

    PubMed

    Chen, Nan-Kuang; Hsieh, Yu-Hsin; Lee, Yi-Kun

    2013-05-06

    We demonstrate the optical measurements of heart-beat pulse rate and also elasticity of a polymeric tube, using a tapered fiber Mach-Zehnder interferometer. This device has two abrupt tapers in the Er/Yb codoped fiber and thus fractional amount of core mode is converted into cladding modes at the first abrupt taper. The core and cladding modes propagate through different optical paths and meet again at the second abrupt taper to produce interferences. The mechanical vibration signals generated by the blood vessels and by an inflated polymeric tube can perturb the optical paths of resonant modes to move around the resonant wavelengths. Thus, the cw laser signal is modulated to become pulses to reflect the heart-beat pulse rate and the elasticity of a polymeric tube, respectively.

  9. Alignment and Calibration of an Airborne Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Vira, A.

    2017-12-01

    The airborne infrared spectrometer (AIR-Spec) will measure the coronal plasma emission lines in the infrared at high spatial and spectral resolution. These results will enhance our understanding of the coronal dynamics and improve solar forecasting models. To measure the infrared coronal emission lines, the airborne system will fly on the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the total solar eclipse in August 2017. The flight path was calculated to maximize the observation time. A detailed analysis of our flight path will be reported. The optical system consists of a fast steering mirror, telescope, grating spectrometer, and slit-jaw imager. Light from the sun is directed into the f/15 telescope by a fast steering mirror. The telescope focuses the light on the slitjaw and the remaining light enters the grating spectrometer through the slit. The poster will include a discussion of the alignment procedures for the telescope and spectrograph. All of the spectrometer optics are cooled to cryogenic temperatures, which complicates the alignment process. After the telescope and spectrometer are aligned independently, the telescope needs to be precisely aligned to the spectrometer. Several alignment methods were used to ensure that the telescope is focused at the slitjaw and normal to the spectrometer. In addition to the optical alignment, there are a few calibrations to complete: 1) flat field, 2) spectral, and 3) radiometric. The flat field gives us a measure of the pixel to pixel variations. The spectral calibration is used to determine the conversion factor between wavelength and pixel. The radiometric calibration is used to map the camera output to radiance. All these calibrations are necessary for processing our data from the solar eclipse. We will report on our methods and results for the optical alignment and calibration for AIR-Spec. AIR-Spec is supported by NSF and Smithsonian Institution through the Major Research Instrumentation program. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  10. Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies

    NASA Astrophysics Data System (ADS)

    Ramanujam, Nirmala; Vishnoi, Gargi; Hielscher, Andreas H.; Rode, Martha; Forouzan, Iraj; Chance, Britton

    2000-04-01

    Near infrared (NIR) measurements were made from the maternal abdomen (clinical studies) and laboratory tissue phantoms (experimental studies) to gain insight into photon migration through the fetal head in utero. Specifically, a continuous wave spectrometer was modified and employed to make NIR measurements at 760 and 850 nm, at a large (10 cm) and small (2.5/4 cm) source-detector separation, simultaneously, on the maternal abdomen, directly above the fetal head. A total of 19 patients were evaluated, whose average gestational age and fetal head depth, were 37 weeks +/- 3 and 2.25 cm +/- 0.7, respectively. At the large source-detector separation, the photons are expected to migrate through both the underlying maternal and fetal tissues before being detected at the surface, while at the short source-detector separation, the photons are expected to migrate primarily through the superficial maternal tissues before being detected. Second, similar NIR measurements were made on laboratory tissue phantoms, with variable optical properties and physical geometries. The variable optical properties were obtained using different concentrations of India ink and Intralipid in water, while the variable physical geometries were realized by employing glass containers of different shapes and sizes. Third, the NIR measurements, which were made on the laboratory tissue phantoms, were compared to the NIR measurements made on the maternal abdomen to determine which tissue phantom best simulates the photon migration path through the fetal head in utero. The results of the comparison were used to provide insight into the optical properties and physical geometry of the maternal and fetal tissues in the photon migration path.

  11. Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models

    DOE PAGES

    McCoy, Daniel T.; Hartmann, Dennis L.; Zelinka, Mark D.; ...

    2015-08-21

    Increasing optical depth poleward of 45° is a robust response to warming in global climate models. Much of this cloud optical depth increase has been hypothesized to be due to transitions from ice-dominated to liquid-dominated mixed-phase cloud. In this study, the importance of liquid-ice partitioning for the optical depth feedback is quantified for 19 Coupled Model Intercomparison Project Phase 5 models. All models show a monotonic partitioning of ice and liquid as a function of temperature, but the temperature at which ice and liquid are equally mixed (the glaciation temperature) varies by as much as 40 K across models. Modelsmore » that have a higher glaciation temperature are found to have a smaller climatological liquid water path (LWP) and condensed water path and experience a larger increase in LWP as the climate warms. The ice-liquid partitioning curve of each model may be used to calculate the response of LWP to warming. It is found that the repartitioning between ice and liquid in a warming climate contributes at least 20% to 80% of the increase in LWP as the climate warms, depending on model. Intermodel differences in the climatological partitioning between ice and liquid are estimated to contribute at least 20% to the intermodel spread in the high-latitude LWP response in the mixed-phase region poleward of 45°S. As a result, it is hypothesized that a more thorough evaluation and constraint of global climate model mixed-phase cloud parameterizations and validation of the total condensate and ice-liquid apportionment against observations will yield a substantial reduction in model uncertainty in the high-latitude cloud response to warming.« less

  12. Total Solar Eclipse of 2008 August 01

    NASA Technical Reports Server (NTRS)

    Espenak, F.; Anderson, J.

    2007-01-01

    On 2008 August 01, a total eclipse of the Sun is visible from within a narrow corridor that traverses half the Earth. The path of the Moon's umbral shadow begins in northern Canada and extends across Greenland, the Arctic, central Russia, Mongolia, and China. A partial eclipse is seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, most of Europe and Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 308 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.

  13. Effects of Corrugated Temperature Sheets on Optical Propagation along Quasi-Horizontal Paths in the Stably Stratified Atmosphere

    DTIC Science & Technology

    2015-12-11

    diameter) are consistent with theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short...theoretical predictions based on Taylor’s frozen- turbulence hypothesis and the geometrical - optics approximation. Short-term (less than a few seconds... turbulent , quasi-horizontal interfaces, or “sheets”. Collocated in- situ and optical field measurements conducted in the atmospheric surface layer

  14. Inhomogeneity of optical turbulence over False Bay (South Africa)

    NASA Astrophysics Data System (ADS)

    Ullwer, Carmen; Sprung, Detlev; van Eijk, Alexander M. J.; Gunter, Willi; Stein, Karin

    2017-09-01

    Atmospheric turbulence impacts on the propagation of electro-optical radiation. Typical manifestations of optical turbulence are scintillation (intensity fluctuations), beam wander and (for laser systems) reduction of beam quality. For longer propagation channels, it is important to characterize the vertical and horizontal distribution (inhomogeneity) of the optical turbulence. In the framework of the First European South African Transmission ExpeRiment (FESTER) optical turbulence was measured between June 2015 and February 2016 on a 2 km over-water link over False Bay. The link ran from the Institute of Maritime Technology (IMT) in Simons Town to the lighthouse at Roman Rock Island. Three Boundary layer scintillometers (BLS900) allowed assessing the vertical distribution of optical turbulence at three different heights between 5 and 12 m above the water surface. The expected decrease of Cn2 with height is not always found. These results are analyzed in terms of the meteorological scenarios, and a comparison is made with a fourth optical link providing optical turbulence data over a 8.7 km path from IMT to Kalk Bay, roughly 36° to the north of the three 2 km paths. The results are related to the inhomogeneous meteorological conditions over the Bay as assessed with the numerical weather prediction tool, the Weather Forecast and Research model WRF.

  15. Routing and spectrum assignment based on ant colony optimization of minimum consecutiveness loss in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Tian, Qinghua; Zhang, Qi; Rao, Lan; Tian, Feng; Luo, Biao; Liu, Yingjun; Tang, Bao

    2016-10-01

    Elastic Optical Networks are considered to be a promising technology for future high-speed network. In this paper, we propose a RSA algorithm based on the ant colony optimization of minimum consecutiveness loss (ACO-MCL). Based on the effect of the spectrum consecutiveness loss on the pheromone in the ant colony optimization, the path and spectrum of the minimal impact on the network are selected for the service request. When an ant arrives at the destination node from the source node along a path, we assume that this path is selected for the request. We calculate the consecutiveness loss of candidate-neighbor link pairs along this path after the routing and spectrum assignment. Then, the networks update the pheromone according to the value of the consecutiveness loss. We save the path with the smallest value. After multiple iterations of the ant colony optimization, the final selection of the path is assigned for the request. The algorithms are simulated in different networks. The results show that ACO-MCL algorithm performs better in blocking probability and spectrum efficiency than other algorithms. Moreover, the ACO-MCL algorithm can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness. Compared with other algorithms, the ACO-MCL algorithm can reduce the blocking rate by at least 5.9% in heavy load.

  16. The slant path atmospheric refraction calibrator - An instrument to measure the microwave propagation delays induced by atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Bender, Peter L.

    1992-01-01

    The water vapor-induced propagation delay experienced by a radio signal traversing the atmosphere is characterized by the Slant Path Atmospheric Refraction Calibrator (SPARC), which measures the difference in the travel times between an optical and a microwave signal propagating along the same atmospheric path with an accuracy of 15 picosec or better. Attention is given to the theoretical and experimental issues involved in measuring the delay induced by water vapor; SPARC measurements conducted along a 13.35-km ground-based path are presented, illustrating the instrument's stability, precision, and accuracy.

  17. Blocking performance approximation in flexi-grid networks

    NASA Astrophysics Data System (ADS)

    Ge, Fei; Tan, Liansheng

    2016-12-01

    The blocking probability to the path requests is an important issue in flexible bandwidth optical communications. In this paper, we propose a blocking probability approximation method of path requests in flexi-grid networks. It models the bundled neighboring carrier allocation with a group of birth-death processes and provides a theoretical analysis to the blocking probability under variable bandwidth traffic. The numerical results show the effect of traffic parameters to the blocking probability of path requests. We use the first fit algorithm in network nodes to allocate neighboring carriers to path requests in simulations, and verify approximation results.

  18. Path connectivity based spectral defragmentation in flexible bandwidth networks.

    PubMed

    Wang, Ying; Zhang, Jie; Zhao, Yongli; Zhang, Jiawei; Zhao, Jie; Wang, Xinbo; Gu, Wanyi

    2013-01-28

    Optical networks with flexible bandwidth provisioning have become a very promising networking architecture. It enables efficient resource utilization and supports heterogeneous bandwidth demands. In this paper, two novel spectrum defragmentation approaches, i.e. Maximum Path Connectivity (MPC) algorithm and Path Connectivity Triggering (PCT) algorithm, are proposed based on the notion of Path Connectivity, which is defined to represent the maximum variation of node switching ability along the path in flexible bandwidth networks. A cost-performance-ratio based profitability model is given to denote the prons and cons of spectrum defragmentation. We compare these two proposed algorithms with non-defragmentation algorithm in terms of blocking probability. Then we analyze the differences of defragmentation profitability between MPC and PCT algorithms.

  19. Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Bhartia, P. K.; Krueger, Arlin J.; Herman, Jay R.; Schlesinger, Barry M.; Wellemeyer, Charles G.; Seftor, Colin J.; Jaross, Glen; Taylor, Steven L.; Swissler, Tom; hide

    1996-01-01

    Two data products from the Total Ozone Mapping Spectrometer (TOMS) onboard Nimbus-7 have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio is used in ozone retrievals. Changes in the instrument sensitivity are monitored by a spectral discrimination technique using measurements of the intrinsically stable wavelength dependence of derived surface reflectivity. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and drift is less than 1.0 percent per decade. The Level-2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level-3 product contains daily total ozone amount and reflectivity in a I - degree latitude by 1.25 degrees longitude grid. The Level-3 product also is available on CD-ROM. Detailed descriptions of both HDF data files and the CD-ROM product are provided.

  20. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  1. Comparison of micrometeorological methods using open-path optical instruments for measuring methane emission from agricultural sites

    USDA-ARS?s Scientific Manuscript database

    In this study, we evaluated the accuracies of two relatively new micrometeorological methods using open-path tunable diode laser absorption spectrometers: vertical radial plume mapping method (US EPA OTM-10) and the backward Lagragian stochastic method (Wintrax®). We have evaluated the accuracy of t...

  2. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  3. Integration of polarization-multiplexing and phase-shifting in nanometric two dimensional self-mixing measurement.

    PubMed

    Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui

    2017-02-06

    Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.

  4. Electro-optical propagation measurements during the MINOTAUROS experiment in the Cretan Sea

    NASA Astrophysics Data System (ADS)

    Eisele, Christian; Sucher, Erik; Wendelstein, Norbert; Stein, Karin

    2017-09-01

    We report on propagation measurements performed during the MINOTAUROS (Maritime INvestigations On Targets and Atmosphere Under Reduction of Optical Signatures) experiment on Crete, Greece, in late summer of 2016. The field trial has been organized by NATO STO Task Group SET-211 on Naval Platform Protection in the EO/IR Domain with strong support of the Hellenic Navy. Besides meteorological measurements, the experiment included measurements of turbulence using a boundary layer scintillometer on a slant path (d = 8 km) across the entry of Souda Bay (Crete). These are compared to values obtained by a 3D sonic anemometer, which was deployed at one end of the propagation path. Refraction effects have been measured using a 17.5 km path from Drapanos to Gerani. Two meteorological buoys along the path were used to gather information about the atmospheric conditions. An overview and a first analysis of the results are presented. The refraction measurements are compared to simulations using MORTICIA (Model of Range and Transmission in Coastal Inland Atmospheres), a new software tool currently under development in a collaboration of Fraunhofer IOSB and TNO.

  5. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  6. EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY

    EPA Science Inventory

    EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...

  7. Design of compact off-axis four-mirror anastigmatic system for space communications

    NASA Astrophysics Data System (ADS)

    Zhao, Fa-cai; Sun, Quan-she; Chen, Kun-feng; Zhu, Xing-bang; Wang, Shao-shui; Wang, Guo-quan; Zheng, Xiang-liang

    2013-08-01

    The deployment of advanced hyperspectral imaging and other Earth sensing instruments onboard Earth observing satellites is driving the demand for high-data rate communications. Space laser communications technology offers the potential for significantly increasing in data return capability from space to Earth. Compared to the current state of the art radio frequency communications links, lasercom links operate at much higher carrier frequencies. The use of higher carrier frequencies implies a much smaller diffraction loss, which in turn, results in a much higher efficiency in delivering the signal energy. Optical communications meet the required data rates with small, low-mass, and low-power communications packages. The communications optical system assembly typically consists of a front aperture, reflection or refraction type telescope, with or without a solar rejection filter, aft optics, fine-pointing mirrors, and array detectors. Optical system used in space laser communications usually has long focal length, large aperture compared with common optical systems. So the reflective optical system is widely used. An unobstructed four-mirror anastigmatic telescope system was proposed, which was modified based on the theory about geometry optics of common-axis three-mirror systems. Intermediate image was between secondary and tertiary mirror. In order to fold the optical path, four-mirror was designed by adding the plane reflective mirror at intermediate image. The design was analyzed, then a system with effective aperture of 200mm and field of view of 1.0°x1.0° was designed, total length and magnification are 700mm and 20, respectively. The system has advantages of large magnification, relative short physical size and loose manufacturing tolerances.

  8. Optical fibers for the distribution of frequency and timing references

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1981-01-01

    An optical fiber communications link was installed for the purpose of evaluating the applicability of optical fiber technology to the distribution of frequency and timing reference signals. It incorporated a 1.5km length of optical fiber cable containing two multimode optical fibers. The two fibers were welded together at one end of the cable to attain a path length of 3km. Preliminary measurements made on this link, including Allan variance and power spectral density of phase noise are reported.

  9. Cross-layer shared protection strategy towards data plane in software defined optical networks

    NASA Astrophysics Data System (ADS)

    Xiong, Yu; Li, Zhiqiang; Zhou, Bin; Dong, Xiancun

    2018-04-01

    In order to ensure reliable data transmission on the data plane and minimize resource consumption, a novel protection strategy towards data plane is proposed in software defined optical networks (SDON). Firstly, we establish a SDON architecture with hierarchical structure of data plane, which divides the data plane into four layers for getting fine-grained bandwidth resource. Then, we design the cross-layer routing and resource allocation based on this network architecture. Through jointly considering the bandwidth resource on all the layers, the SDN controller could allocate bandwidth resource to working path and backup path in an economical manner. Next, we construct auxiliary graphs and transform the shared protection problem into the graph vertex coloring problem. Therefore, the resource consumption on backup paths can be reduced further. The simulation results demonstrate that the proposed protection strategy can achieve lower protection overhead and higher resource utilization ratio.

  10. Integrated structural and optical modeling of the orbiting stellar interferometer

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.

    1993-11-01

    The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.

  11. DOAS (differential optical absorption spectroscopy) urban pollution measurements

    NASA Astrophysics Data System (ADS)

    Stevens, Robert K.; Vossler, T. L.

    1991-05-01

    During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. Over path 1 (1099 m) and path 2 (1824 m), ozone (03), sulfur dioxide (SO2) nitrogen dioxide (NO2), nitrous acid (HNO2) formaldehyde (HCHO), benzene, toluene, and o-xylene were measured. Nitric oxide (NO) and ammonia (NH3) were monitored over path 3 (143 m). The data quality and data capture depended on the compound being measured and the path over which it was measured. Data quality criteria for each compound were chosen such that the average relative standard deviation would be less than 25%. Data capture ranged from 43% for o-xylene for path 1 to 95% for ozone for path 2. Benzene, toluene, and o-xylene concentrations measured over path 2, which crossed over an interstate highway, were higher than concentrations measured over path 1, implicating emissions from vehicles on the highway as a significant source of these compounds. Federal Reference Method (FRN) instruments were located near the DOAS light receivers and measurements of 03, NO2, and NO were made concurrently with the DOAS. Correlation coefficients greater than 0.85 were obtained between the DOAS and FRM's; however, there was a difference between the mean values obtained by the two methods for 03 and NO. A gas chromatograph for measuring volatile organic compounds was operated next to the FRN's. Correlation coefficients of about 0.66 were obtained between the DOAS and GC measurements of benzene and o- xylene. However, the correlation coefficient between the DOAS and GC measurements of toluene averaged only 0.15 for the two DOAS measurement paths. The lack of correlation and other factors indicate the possibility of a localized source of toluene near the GC. In general, disagreements between the two measurement methods could be caused by atmospheric inhomogeneities or interferences in the DOAS and other methods.

  12. Development of a Submillimeter Multipass Spectrometer for the Study of Molecular Ions

    NASA Astrophysics Data System (ADS)

    Carroll, A.; Rocher, B.; Laas, J. C.; Deprince, B. A.; Hays, B.; Weaver, S. L. Widicus; Lang, S.

    2012-06-01

    We have developed a multipass spectrometer for the submillimeter spectral region that is being used to study molecular ions through gas phase spectroscopy. The optical configuration is based on the design of Perry and coworkers that was implemented in the optical regime. To our knowledge, this is the first implementation of this optical configuration at long wavelengths. The setup involves two nearly concentric spherical mirrors that focus the multiple beam passes into a small area, or ``waist'', in the middle of the sample chamber. A supersonic molecular beam is coupled to the setup so that the molecular beam crosses the optical path at the waist. Initial studies have focused on neutral test molecules to probe the physical properties of the molecular beam under various arrangements of the molecular source relative to the optical path. Current studies focus on coupling a plasma discharge source to the setup to enable the study of molecular ions. Here we present the design of this instrument, compare the spectrometer capabilities to a traditional single pass spectrometer, and discuss the results of initial spectroscopic studies.

  13. A Unified Model of Heading and Path Perception in Primate MSTd

    PubMed Central

    Layton, Oliver W.; Browning, N. Andrew

    2014-01-01

    Self-motion, steering, and obstacle avoidance during navigation in the real world require humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature, which humans accurately perceive and is critical to everyday locomotion. In primates, including humans, dorsal medial superior temporal area (MSTd) has been implicated in heading perception. However, the majority of MSTd neurons respond optimally to spiral patterns, rather than to the radial expansion patterns associated with heading. No existing theory of curved path perception explains the neural mechanisms by which humans accurately assess path and no functional role for spiral-tuned cells has yet been proposed. Here we present a computational model that demonstrates how the continuum of observed cells (radial to circular) in MSTd can simultaneously code curvature and heading across the neural population. Curvature is encoded through the spirality of the most active cell, and heading is encoded through the visuotopic location of the center of the most active cell's receptive field. Model curvature and heading errors fit those made by humans. Our model challenges the view that the function of MSTd is heading estimation, based on our analysis we claim that it is primarily concerned with trajectory estimation and the simultaneous representation of both curvature and heading. In our model, temporal dynamics afford time-history in the neural representation of optic flow, which may modulate its structure. This has far-reaching implications for the interpretation of studies that assume that optic flow is, and should be, represented as an instantaneous vector field. Our results suggest that spiral motion patterns that emerge in spatio-temporal optic flow are essential for guiding self-motion along complex trajectories, and that cells in MSTd are specifically tuned to extract complex trajectory estimation from flow. PMID:24586130

  14. Fluidic optics

    NASA Astrophysics Data System (ADS)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  15. Beam-guidance optics for high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  16. Self-Assembly of Reconfigurable By-Design Optical Materials with Molecular-Level Control

    DTIC Science & Technology

    2014-09-21

    International Conference on Metamaterials, Photonic Crystals and Plasmonics, Singapore, May 20 - 23, 2014. Zhang, W. “Design, Synthesis, and Applications of...metal  nanoparticles  positioned  in  3D   crystal   lattices...materials such as photonic crystal and metamaterial hold high promise of providing a path to by-design optical materials with engineered optical

  17. Development of Adaptive Tilt Tracker that Utilizes QUAD-cell Detector to Track Extended Objects

    DTIC Science & Technology

    2014-03-17

    telescopes. When incident light encounters the atmosphere , it experiences a turbulent medium that distorts optical wavefronts. Without the AO...fluctuations which randomize optical path lengths. Figure 2 - The temporal and spatial aspects of atmospheric turbulence [6] Consider...the PTS are determined by atmospheric turbulence , optical set-up, and object characteristics such as size, shape, motion, and intensity

  18. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  19. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    PubMed

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  20. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry

    PubMed Central

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-01-01

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time. PMID:28245603

  1. Annular beam shaping system for advanced 3D laser brazing

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  2. Changes in diffusion path length with old age in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Bonnéry, Clément; Leclerc, Paul-Olivier; Desjardins, Michèle; Hoge, Rick; Bherer, Louis; Pouliot, Philippe; Lesage, Frédéric

    2012-05-01

    Diffuse, optical near infrared imaging is increasingly being used in various neurocognitive contexts where changes in optical signals are interpreted through activation maps. Statistical population comparison of different age or clinical groups rely on the relative homogeneous distribution of measurements across subjects in order to infer changes in brain function. In the context of an increasing use of diffuse optical imaging with older adult populations, changes in tissue properties and anatomy with age adds additional confounds. Few studies investigated these changes with age. Duncan et al. measured the so-called diffusion path length factor (DPF) in a large population but did not explore beyond the age of 51 after which physiological and anatomical changes are expected to occur [Pediatr. Res. 39(5), 889-894 (1996)]. With increasing interest in studying the geriatric population with optical imaging, we studied changes in tissue properties in young and old subjects using both magnetic resonance imaging (MRI)-guided Monte-Carlo simulations and time-domain diffuse optical imaging. Our results, measured in the frontal cortex, show changes in DPF that are smaller than previously measured by Duncan et al. in a younger population. The origin of these changes are studied using simulations and experimental measures.

  3. Misconceptions about optics: An effect of misleading explanations?

    NASA Astrophysics Data System (ADS)

    Favale, Fabrizio; Bondani, Maria

    2014-07-01

    During our activities of physics dissemination with High School students especially concerning optics, we are used to distribute a questionnaire about colors and image formation by mirrors and lenses. The answers to some questions clearly show misconceptions and naïve ideas about colors, ray tracing, image formation in reflection and refraction. These misconceptions are widespread and do not depend on the gender, the level, and the age of the students: they seem to depend on some wrong ideas and explanatory models that are not changed by the curricular studies at school. In fact, the same errors are present in groups of students before and after taking optics courses at High School. On the other hand we have also found some misleading explanations of the phenomena both in textbooks and websites. Most of the time, errors occur in the explanatory drawings accompanying the text, which are based on some hybrid description of the optical processes: sometimes the description of the path of the ray light is confused with the image reconstruction by the lenses. We think that to partially avoid some errors it is important to use a teaching path centered on the actual path of the rays and not on what eyes see (the vision). Here we present the results of data collected from more than 200 students and some considerations about figures and explanations found in textbooks.

  4. Interferometer for Measuring Displacement to Within 20 pm

    NASA Technical Reports Server (NTRS)

    Zhao, Feng

    2003-01-01

    An optical heterodyne interferometer that can be used to measure linear displacements with an error <=20 pm has been developed. The remarkable accuracy of this interferometer is achieved through a design that includes (1) a wavefront split that reduces (relative to amplitude splits used in other interferometers) self interference and (2) a common-optical-path configuration that affords common-mode cancellation of the interference effects of thermal-expansion changes in optical-path lengths. The most popular method of displacement- measuring interferometry involves two beams, the polarizations of which are meant to be kept orthogonal upstream of the final interference location, where the difference between the phases of the two beams is measured. Polarization leakages (deviations from the desired perfect orthogonality) contaminate the phase measurement with periodic nonlinear errors. In commercial interferometers, these phase-measurement errors result in displacement errors in the approximate range of 1 to 10 nm. Moreover, because prior interferometers lack compensation for thermal-expansion changes in optical-path lengths, they are subject to additional displacement errors characterized by a temperature sensitivity of about 100 nm/K. Because the present interferometer does not utilize polarization in the separation and combination of the two interfering beams and because of the common-mode cancellation of thermal-expansion effects, the periodic nonlinear errors and the sensitivity to temperature changes are much smaller than in other interferometers

  5. Resonance fluorescence trajectories in superconducting qubit

    NASA Astrophysics Data System (ADS)

    Naghiloo, Mahdi; Tan, Dian; Harrington, Patrick; Lewalle, Philippe; Jordan, Andrew; Murch, Kater

    We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track the individual quantum state trajectories of the emitter. We analyze the ensemble properties of these trajectories by considering paths that connect specific initial and final states. By applying a stochastic path integral formalism, we calculate equations of motion for the most likely path between two quantum states and compare these predicted paths to experimental data. Drawing on the mathematical similarity between the action formalism of the most likely quantum paths and ray optics, we study the emergence of caustics in quantum trajectories-situations where multiple extrema in the stochastic action occur. We observe such multiple most likely paths in experimental data and find these paths to be in reasonable quantitative agreement with theoretical calculations. Supported by the John Templeton Foundation.

  6. Directional Radiometry and Radiative Transfer: the Convoluted Path From Centuries-old Phenomenology to Physical Optics

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2014-01-01

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

  7. Algorithm for lens calculations in the geometrized Maxwell theory

    NASA Astrophysics Data System (ADS)

    Kulyabov, Dmitry S.; Korolkova, Anna V.; Sevastianov, Leonid A.; Gevorkyan, Migran N.; Demidova, Anastasia V.

    2018-04-01

    Nowadays the geometric approach in optics is often used to find out media parameters based on propagation paths of the rays because in this case it is a direct problem. However inverse problem in the framework of geometrized optics is usually not given attention. The aim of this work is to demonstrate the work of the proposed the algorithm in the framework of geometrized approach to optics for solving the problem of finding the propagation path of the electromagnetic radiation depending on environmental parameters. The methods of differential geometry are used for effective metrics construction for isotropic and anisotropic media. For effective metric space ray trajectories are obtained in the form of geodesic curves. The introduced algorithm is applied to well-known objects, Maxwell and Luneburg lenses. The similarity of results obtained by classical and geometric approach is demonstrated.

  8. Light beam frequency comb generator

    DOEpatents

    Priatko, G.J.; Kaskey, J.A.

    1992-11-24

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics. 2 figs.

  9. Light beam frequency comb generator

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1992-01-01

    A light beam frequency comb generator uses an acousto-optic modulator to generate a plurality of light beams with frequencies which are uniformly separated and possess common noise and drift characteristics. A well collimated monochromatic input light beam is passed through this modulator to produce a set of both frequency shifted and unshifted optical beams. An optical system directs one or more frequency shifted beams along a path which is parallel to the path of the input light beam such that the frequency shifted beams are made incident on the modulator proximate to but separated from the point of incidence of the input light beam. After the beam is thus returned to and passed through the modulator repeatedly, a plurality of mutually parallel beams are generated which are frequency-shifted different numbers of times and possess common noise and drift characteristics.

  10. Spectral and Radiometric Calibration Using Tunable Lasers

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  11. Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths

    DOEpatents

    Jacobs, S.D.; Cerqua, K.A.

    1987-07-14

    The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile. 11 figs.

  12. Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths

    DOEpatents

    Jacobs, Stephen D.; Cerqua, Kathleen A.

    1987-01-01

    The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile.

  13. Thermomagnetic recording and magnetic-optic playback system

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Guisinger, J. E. (Inventor)

    1971-01-01

    A magnetic recording and magneto-optic playback system is disclosed wherein thermomagnetic recording is employed. A transparent isotropic film is heated along a continuous path by a focused laser beam. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of an applied magnetic field, a magneto-optic density is established proportional to the magnetic field and fixed in place as the area cools once the laser beam moves on to an adjacent area. To play back the recorded data, the intensity of the laser beam is reduced to avoid reaching the vicinity of the Curie point of the film as it is scanned by the laser beam in the same manner as for recording. A Faraday effect analyzer and photo detector are employed as a transducer for producing an output signal.

  14. A mobile system for active otpical pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sunesson, A.; Edner, H.; Svanberg, S.; Uneus, L.; Wendt, W.; Fredriksson, K.

    1986-01-01

    The remote monitoring of atmospheric pollutants can now be performed in several ways. Laser radar techniques have proven their ability to reveal the spatial distribution of different species or particles. Classical optical techniques can also be used, but yield the average concentration over a given path and hence no range resolution. One such technique is Differential Optical Absorption Spectroscopy, DOAS. Such schemes can be used to monitor paths that a preliminary lidar investigation has shown to be of interest. Having previously had access to a mobile lidar system, a new system has been completed. The construction builds on experience from using the other system and it is meant to be more of a mobile optical laboratory than just a lidar system. A complete system description is given along with some preliminary usage. Future uses are contemplated.

  15. Optical monitoring system for a turbine engine

    DOEpatents

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  16. Functionalizing a Tapered Microcavity as a Gas Cell for On-Chip Mid-Infrared Absorption Spectroscopy

    PubMed Central

    Mandon, Julien; Harren, Frans J. M.; Wolffenbuttel, Reinoud F.

    2017-01-01

    Increasing demand for field instruments designed to measure gas composition has strongly promoted the development of robust, miniaturized and low-cost handheld absorption spectrometers in the mid-infrared. Efforts thus far have focused on miniaturizing individual components. However, the optical absorption path that the light beam travels through the sample defines the length of the gas cell and has so far limited miniaturization. Here, we present a functionally integrated linear variable optical filter and gas cell, where the sample to be measured is fed through the resonator cavity of the filter. By using multiple reflections from the mirrors on each side of the cavity, the optical absorption path is elongated from the physical μm-level to the effective mm-level. The device is batch-fabricated at the wafer level in a CMOS-compatible approach. The optical performance is analyzed using the Fizeau interferometer model and demonstrated with actual gas measurements. PMID:28878167

  17. Development of an Optical Gas Leak Sensor for Detecting Ethylene, Dimethyl Ether and Methane

    PubMed Central

    Tan, Qiulin; Pei, Xiangdong; Zhu, Simin; Sun, Dong; Liu, Jun; Xue, Chenyang; Liang, Ting; Zhang, Wendong; Xiong, Jijun

    2013-01-01

    In this paper, we present an approach to develop an optical gas leak sensor that can be used to measure ethylene, dimethyl ether, and methane. The sensor is designed based on the principles of IR absorption spectrum detection, and comprises two crossed elliptical surfaces with a folded reflection-type optical path. We first analyze the optical path and the use of this structure to design a miniature gas sensor. The proposed sensor includes two detectors (one to acquire the reference signal and the other for the response signal), the light source, and the filter, all of which are integrated in a miniature gold-plated chamber. We also designed a signal detection device to extract the sensor signal and a microprocessor to calculate and control the entire process. The produced sensor prototype had an accuracy of ±0.05%. Experiments which simulate the transportation of hazardous chemicals demonstrated that the developed sensor exhibited a good dynamic response and adequately met technical requirements. PMID:23539025

  18. Optical Path Difference Fluctations at the CHARA Interferometric Array

    NASA Astrophysics Data System (ADS)

    Merand, A.; ten Brummelaar, T. A.; McAlister, H. A.; Ridgway, S. T.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Bagnuolo, W. G.; Hrynevych, M.; Shure, M. A.

    2001-05-01

    Commissioning observations at the CHARA Array have been carried out with the two south telescopes, with a telescope separation of 34 meters. Due to the size of the array (>340 meters across) and the optical delay geometry, the beams travel horizontal distances of approximately 200 meters, with a number of reflections in the telescope coude area and the optical delay and beam combination areas. Stellar and laboratory observations have been analyzed to determine the variations of the optical path, as revealed by shifts in the interference pattern. The power spectra of the OPD variations are diagnostic of the atmospheric turbulence characteristics, and of any internal vibrations in the laboratory. Results of the OPD analysis will be compared to similar studies at other interferometric facilities. The CHARA Array, a six-telescope O/IR interferometric array operated by Georgia State University on Mt. Wilson, Calfornia, was funded by the National Science Foundation, the W.M. Keck Foundation, the David and Lucile Packard Foundation, and Georgia State University.

  19. Total solar eclipse of 1995 October 24

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1994-01-01

    A total eclipse of the sun will be visible from Asia and the Pacific Ocean on 24 Oct. 1995. The path of the moon's shadow begins in the Middle East and sweeps across India, Southeast Asia, and the waters of the Indonesian archipelago before ending at sunset in the Pacific. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality.

  20. MOD3D: a model for incorporating MODTRAN radiative transfer into 3D simulations

    NASA Astrophysics Data System (ADS)

    Berk, Alexander; Anderson, Gail P.; Gossage, Brett N.

    2001-08-01

    MOD3D, a rapid and accurate radiative transport algorithm, is being developed for application to 3D simulations. MOD3D couples to optical property databases generated by the MODTRAN4 Correlated-k (CK) band model algorithm. The Beer's Law dependence of the CK algorithm provides for proper coupling of illumination and line-of-sight paths. Full 3D spatial effects are modeled by scaling and interpolating optical data to local conditions. A C++ version of MOD3D has been integrated into JMASS for calculation of path transmittances, thermal emission and single scatter solar radiation. Results from initial validation efforts are presented.

  1. The Mask Designs for Space Interferometer Mission (SIM)

    NASA Technical Reports Server (NTRS)

    Wang, Xu

    2008-01-01

    The Space Interferometer Mission (SIM) consists of three interferometers (science, guide1, and guide2) and two optical paths (metrology and starlight). The system requirements for each interferometer/optical path combination are different and sometimes work against each other. A diffraction model is developed to design and optimize various masks to simultaneously meet the system requirements of three interferometers. In this paper, the details of this diffraction model will be described first. Later, the mask design for each interferometer will be presented to demonstrate the system performance compliance. In the end, a tolerance sensitivity study on the geometrical dimension, shape, and the alignment of these masks will be discussed.

  2. Floquet Engineering of Optical Solenoids and Quantized Charge Pumping along Tailored Paths in Two-Dimensional Chern Insulators

    NASA Astrophysics Data System (ADS)

    Wang, Botao; Ünal, F. Nur; Eckardt, André

    2018-06-01

    The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.

  3. Reflective ghost imaging through turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, Nicholas D.; Shapiro, Jeffrey H.

    2011-12-15

    Recent work has indicated that ghost imaging may have applications in standoff sensing. However, most theoretical work has addressed transmission-based ghost imaging. To be a viable remote-sensing system, the ghost imager needs to image rough-surfaced targets in reflection through long, turbulent optical paths. We develop, within a Gaussian-state framework, expressions for the spatial resolution, image contrast, and signal-to-noise ratio of such a system. We consider rough-surfaced targets that create fully developed speckle in their returns and Kolmogorov-spectrum turbulence that is uniformly distributed along all propagation paths. We address both classical and nonclassical optical sources, as well as a computational ghostmore » imager.« less

  4. Combining Gabor and Talbot bands techniques to enhance the sensitivity with depth in Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Marques, Manuel J.; Bouchal, Petr; Podoleanu, Adrian Gh.

    2013-03-01

    The purpose of this study was to show how to favorably mix two e_ects to improve the sensitivity with depth in Fourier domain optical coherence tomography (OCT): Talbot bands (TB) and Gabor-based fusion (GF) technique. TB operation is achieved by directing the two beams, from the object arm and from the reference arm in the OCT interferometer, along parallel separate paths towards the spectrometer. By changing the lateral gap between the two beams in their path towards the spectrometer, the position for the maximum sensitivity versus the optical path difference in the interferometer is adjusted. For five values of the focus position, the gap between the two beams is readjusted to reach maximum sensitivity. Then, similar to the procedure employed in the GF technique, a composite image is formed by edging together the parts of the five images that exhibited maximum brightness. The combined procedure, TB/GF is examined for four different values of the beam diameters of the two beams. Also we demonstrate volumetric FD-OCT images with mirror term attenuation and sensitivity profile shifted towards higher OPD values by applying a Talbot bands configuration.

  5. Nano-optical functionality based on local photoisomerization in photochromic single crystal

    NASA Astrophysics Data System (ADS)

    Nakagomi, Ryo; Uchiyama, Kazuharu; Kubota, Satoru; Hatano, Eri; Uchida, Kingo; Naruse, Makoto; Hori, Hirokazu

    2018-01-01

    Towards the construction of functional devices and systems using optical near-field processes, we demonstrate the multivalent features in the path-branching phenomena in a photochromic single crystal observed in optical phase change between colorless (1o) and blue-colored (1c) phases that transmits in subwavelength scale over a macroscopic spatial range associated with local mechanical distortions induced. To observe the near-field optical processes of transmission path branching, we have developed a top-to-bottom double-probe scanning near-field optical microscope capable of nanometer-scale correlation measurements by two individually position-controlled probes that face each other sandwiching the photochromic material. We have experimentally confirmed that a local near-field optical excitation applied to one side of the photochromic crystal by a probe tip resulted in characteristic structures of subwavelength scale around 100 nm or less that are observed by the other probe tip located on the opposite side. The structures are different from those resulting from far-field excitations that are quantitively evaluated by autocorrelations. The results suggest that the mechanical distortion caused by the local phase change in the photochromic crystal suppresses the phase change of the neighboring molecules. This new type of optical-near-field-induced local photoisomerization has the potential to allow the construction of functional devices with multivalent properties for natural intelligence.

  6. Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user's guide

    NASA Technical Reports Server (NTRS)

    Mcpeters, Richard D.; Krueger, Arlin J.; Bhartia, P. K.; Herman, Jay R.; Oaks, Arnold; Ahmad, Ziuddin; Cebula, Richard P.; Schlesinger, Barry M.; Swissler, Tom; Taylor, Steven L.

    1993-01-01

    Two tape products from the Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus-7 have been archived at the National Space Science Data Center. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio -- the albedo -- is used in ozone retrievals. In-flight measurements are used to monitor changes in the instrument sensitivity. The algorithm to retrieve total column ozone compares the observed ratios of albedos at pairs of wavelengths with pair ratios calculated for different ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard-deviation random error is 2 percent, and the drift is +/- 1.5 percent over 14.5 years. The High Density TOMS (HDTOMS) tape contains the measured albedos, the derived total ozone amount, reflectivity, and cloud-height information for each scan position. It also contains an index of SO2 contamination for each position. The Gridded TOMS (GRIDTOMS) tape contains daily total ozone and reflectivity in roughly equal area grids (110 km in latitude by about 100-150 km in longitude). Detailed descriptions of the tape structure and record formats are provided.

  7. Iodine-frequency-stabilized laser diode and displacement-measuring interferometer based on sinusoidal phase modulation

    NASA Astrophysics Data System (ADS)

    Duong, Quang Anh; Vu, Thanh Tung; Higuchi, Masato; Wei, Dong; Aketagawa, Masato

    2018-06-01

    We propose a sinusoidal phase modulation method to achieve both the frequency stabilization of an external-cavity laser diode (ECLD) to an 127I2 saturated absorption transition near 633 nm and displacement measurement using a Mach–Zehnder interferometer. First, the frequency of the ECLD is stabilized to the b 21 hyperfine component of the P(33) 6-3 transition of 127I2 by combining sinusoidal phase modulation by an electro-optic modulator and frequency modulation spectroscopy by chopping the pump beam using an acousto-optic modulator. Even though a small modulation index of m  =  3.768 rad is utilized, a relative frequency stability of 10‑11 order is obtained over a sampling time of 400 s. Secondly, the frequency-stabilized ECLD is applied as a light source to a Mach–Zehnder interferometer. From the two consecutive modulation harmonics (second and third orders) involved in the interferometer signal, the displacement of the moving mirror is determined for four optical path differences (L 0  =  100, 200, 500, and 1000 mm). The measured modulation indexes for the four optical path differences coincide with the designated value (3.768 rad) within 0.5%. Compared with the sinusoidal frequency modulation Michelson interferometer (Vu et al 2016 Meas. Sci. Technol. 27 105201) which was demonstrated by some of the same authors of this paper, the phase modulation Mach–Zhender interferometer could fix the modulation index to a constant value for the four optical path differences. In this report, we discuss the measurement principle, experimental system, and results.

  8. Minimising back reflections from the common path objective in a fundus camera

    NASA Astrophysics Data System (ADS)

    Swat, A.

    2016-11-01

    Eliminating back reflections is critical in the design of a fundus camera with internal illuminating system. As there is very little light reflected from the retina, even excellent antireflective coatings are not sufficient suppression of ghost reflections, therefore the number of surfaces in the common optics in illuminating and imaging paths shall be minimised. Typically a single aspheric objective is used. In the paper an alternative approach, an objective with all spherical surfaces, is presented. As more surfaces are required, more sophisticated method is needed to get rid of back reflections. Typically back reflections analysis, comprise treating subsequent objective surfaces as mirrors, and reflections from the objective surfaces are traced back through the imaging path. This approach can be applied in both sequential and nonsequential ray tracing. It is good enough for system check but not very suitable for early optimisation process in the optical system design phase. There are also available standard ghost control merit function operands in the sequential ray-trace, for example in Zemax system, but these don't allow back ray-trace in an alternative optical path, illumination vs. imaging. What is proposed in the paper, is a complete method to incorporate ghost reflected energy into the raytracing system merit function for sequential mode which is more efficient in optimisation process. Although developed for the purpose of specific case of fundus camera, the method might be utilised in a wider range of applications where ghost control is critical.

  9. Common path ball lens probe for optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo J.

    2016-02-01

    Background: Common path probes are highly desirable for optical coherence tomography (OCT) as they reduce system complexity and cost. In this work we report an all-fiber common path side viewing monolithic probe for coronary artery imaging. Methods: Our common path probe was designed for spectrometer based Fourier domain OCT at 1310 nm wavelength. Light from the fiber expands in the coreless fiber region and then focussed by the ball lens. Reflection from ball lens-air interface served as reference signal. The monolithic ball lens probe was assembled within a 560 µmouter diameter drive shaft which was attached to a rotary junction. The drive shaft was placed inside an outer, transparent sheath of 800 µm diameter. Results: With a source input power of 25 mW, we could achieve sensitivity of 100.5 dB. The axial resolution of the system was found to be 15.6 µm in air and the lateral resolution (full width half maximum) was approximately 49 µm. As proof of principal, images of skin acquired using this probe demonstrated clear visualization of the stratum corneum, epidermis, and papillary dermis, along with sweat ducts. Conclusion: In this work we have demonstrated a monolithic, ball lens common, path probe for OCT imaging. The designed ball lens probe is easy to fabricate using a laser splicer. Based on the features and capability of common path probes to provide a simpler solution for OCT, we believe that this development will be an important enhancement for certain types of catheters.

  10. An Anatomically Constrained Model for Path Integration in the Bee Brain.

    PubMed

    Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley

    2017-10-23

    Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Testing of Cerex Open-Path Ultraviolet Differential Optical Absorption Spectroscopy Systems for Fenceline Monitoring Applications

    EPA Science Inventory

    Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...

  12. Testing of Cerex Open-Path Ultraviolet Differential Optical Absorption Spectroscopy System for Fenceline Monitoring Applications

    EPA Science Inventory

    Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...

  13. Image-rotating, 4-mirror, ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V.; Armstrong, Darrell J.

    2004-08-10

    A device for optical parametric amplification utilizing four mirrors oriented in a nonplanar configuration where the optical plane formed by two of the mirrors is orthogonal to the optical plane formed by the other two mirrors and with the ratio of lengths of the laser beam paths approximately constant regardless of the scale of the device. With a cavity length of less than approximately 110 mm, a conversion efficiency of greater than 45% can be achieved.

  14. Total Solar Eclipse of 2006 March 29

    NASA Technical Reports Server (NTRS)

    Espenak, F.; Anderson, J.

    2004-01-01

    On 2006 March 29, a total eclipse of the Sun will be visible from within a narrow corridor which traverses half the Earth. The path of the Moon's umbral shadow begins in Brazil and extends across the Atlantic, northern Africa, and central Asia where it ends at sunset in western Mongolia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the northern two thirds of Africa, Europe, and central Asia.Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.

  15. Total Solar Eclipse of 1997 March 9

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1995-01-01

    A total eclipse of the Sun will be visible from Asia and the Pacific Ocean on 1997 March 9. The path of the Moon's umbral shadow begins in eastern Kazakhstan and travels through Mongolia and eastern Siberia, where it swings northward to end at sunset in the Arctic Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern Asia, the northern Pacific, and the northwest corner of North America. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for 280 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.

  16. Total Solar Eclipse of 2001 June 21

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1999-01-01

    On 2001 June 21, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and Madagascar, and ends at sunset in the Indian Ocean. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes eastern South America and the southern two thirds of Africa. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 350 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.

  17. Total Solar Eclipse of 2002 December 04

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    2001-01-01

    On 2002 December 04, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Southern Hemisphere. The path of the Moon's umbral shadow begins in the South Atlantic, crosses southern Africa and the Indian Ocean, and ends at sunset in southern Australia. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes the southern two thirds of Africa, Antarctica, Indian Ocean and Australia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 400 cities, maps of the eclipse path, weather prospects, the lunar limb profile and the sky during totality. Information on safe eclipse viewing and eclipse photography is included.

  18. Calibrating excitation light fluxes for quantitative light microscopy in cell biology

    PubMed Central

    Grünwald, David; Shenoy, Shailesh M; Burke, Sean; Singer, Robert H

    2011-01-01

    Power output of light bulbs changes over time and the total energy delivered will depend on the optical beam path of the microscope, filter sets and objectives used, thus making comparison between experiments performed on different microscopes complicated. Using a thermocoupled power meter, it is possible to measure the exact amount of light applied to a specimen in fluorescence microscopy, regardless of the light source, as the light power measured can be translated into a power density at the sample. This widely used and simple tool forms the basis of a new degree of calibration precision and comparability of results among experiments and setups. Here we describe an easy-to-follow protocol that allows researchers to precisely estimate excitation intensities in the object plane, using commercially available opto-mechanical components. The total duration of this protocol for one objective and six filter cubes is 75 min including start-up time for the lamp. PMID:18974739

  19. ESO and Fokker Space Sign Contract about VLTI Delay Line

    NASA Astrophysics Data System (ADS)

    1998-03-01

    The European Southern Observatory is building the world's largest optical telescope, the Very Large Telescope (VLT) , at the ESO Paranal Observatory in Chile. The VLT consists of four 8.2-m unit telescopes and several smaller, moveable Auxiliary Telescopes. When coupled as the giant VLT Interferometer (VLTI) , they will together provide the sharpest images ever obtained by any optical telescope. It will in principle be able to see an astronaut on the surface of the Moon, 400,000 km away. The VLTI Delay Lines Fokker Space (Leiden, The Netherlands) has been awarded a contract for the delivery of the Delay Line of the VLTI. This is a mechanical-optical system that will compensate the optical path differences of the light beams from the individual telescopes. Such a system is necessary to ensure that the light from all telescopes arrive in the same phase at the focal point of the interferometer. Otherwise, the very sharp interferometric images cannot be obtained. ESO PR Photo 08/98 [JPEG, 102k] Schematic representation of the VLTI Delay Line, showing the retro-reflector on its moving base. For more details, please consult the technical explanation below. This highly accurate system will be developed in close co-operation with the Dutch institute TNO-TPD (Netherlands Organization for Applied Scientific Research - Institute of Applied Physics) . The most innovative feature of the Delay Line is the new control strategy, a two-stage control system, based on linear motor technology, combined with high accuracy piezo-electric control elements. This enables the system to position the so-called cat's eye reflector system with an accuracy of only a few nanometers (millionth of a millimetre (nm)) over a stroke length of 60 metres. Within radio astronomy, interferometric techniques have been applied by Dutch astronomers since many years. They will now be able to contribute with their extensive knowledge of such systems to the next generation of astronomical interferometric instruments within the present collaboration. About Fokker Space Fokker Space is the largest company in the Dutch space industry. It is based in Leiden, has 481 employees and an operating income of 220 million Netherlands Guilders in 1996. Fokker Space is mainly active in the field of solar arrays, launcher structures, thermal products, instruments and simulators. It also plays a key role in the development of robotics and is responsible as a prime contractor for the European Robotics Arm (ERA) to be used on the International Space Station. Fokker Space is well embedded in the Dutch aerospace infrastructure, thanks to close relations with the Dutch Space Agency (NIVR) , the National Aerospace Laboratory (NLR) , the Delft University of Technology and other Dutch space industries and institutes like TNO-TPD (Netherlands Organization for Applied Scientific Research - Institute of Applied Physics) . Fokker Space has also entered into strategic partnerships in Europe, Russia and North America. These facts, combined with the long lasting relation with the European Space Agency ESA and with the Dutch Government imply that Fokker Space has secured a solid base for continuation of its business far into the next millennium. Some technical details about the VLTI Delay Line The VLT Delay Line forms an essential part of the VLT Interferometer (VLTI) . It represents the current limit of high technology in this field and includes many innovative features. Some of the technical details are given below. In order to enable a useful combination of the light beams from the individual telescopes of the VLT (that is, to produce interferometric fringes at the focal point), the optical path length differences must be corrected by the Delay Line system. These differences are caused by: * the static geometric path length difference between the telescopes in a certain configuration; * the diurnal motion of the astronomical source during observation due to Earth's rotation; and * the rapid path length variations due to atmospheric disturbances and/or mechanical vibrations along the optical path length. The VLTI Delay Line system consists of a retro-reflector mounted on a moving base. The optical design of this `Cat's Eye' is of the Ritchey-Chretien type that reflects the light very effectively. For this particular application, the `Cat's Eye' is not a corner cube with 3 perpendicular mirrors as is the case in the reflectors on cars and bicycles; it is in fact a telescope with a mirror at the focus that sends a light beam back in a direction parallel to the one it came from. The moving base enables the Cat's Eye to travel along a 60 metres long rail track, thereby providing optical path difference corrections of up to 120 metres, as required for the VLT telescope configurations at Paranal. The necessary, rapid path length corrections are performed by a fine positioning loop in which a piezo crystal (mounted on the backside of the Variable Curvature Mirror M3) is used to correct the fast optical path variations as measured by a Fringe Sensing Unit (FSU). The latter provides a signal to the Delay Line system via a fast link to the Delay Line Local Control Unit. An optical datalink to the Cat's Eye on the carriage ensures the transfer of data to the Piezo controller. The carriage is driven by a Linear Induction Motor. The coils for the motor are mounted on the floor of the Delay Line Long Support Bench and the magnets are mounted on the bottom of the carriage. The metrology system (to measure the carriage position) consists of a laser-interferometer whose beam follows the same path as the light beams from the telescopes via the Cat's Eye. The main design parameters are shown here: Optical Path range above 120 m Optical Path resolution better than 20 nm Optical Path stability better than 14 nm over any 0.01 sec (in the visible spectral range) better than 50 nm over any 0.05 sec (in Near-IR spectral range) better than 225 nm over any 0.3 sec (in Thermal-IR spectral range) Absolute position repeatability 50 micron (over full length - 60 metres) 1 micron (over observation length - 3 metres) Maximum velocity: 0.5 m/sec Maximum velocity errors 1 micron/sec Maximum power dissipation 15 Watts Note: [1] This Press Release is issued jointly by ESO and Fokker Space on the occasion of the signature of the contract for the VLTI Delay System which takes place at Fokker Space in Leiden (The Netherlands) today. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  20. Effects of Stochastic Traffic Flow Model on Expected System Performance

    DTIC Science & Technology

    2012-12-01

    NSWC-PCD has made considerable improvements to their pedestrian flow modeling . In addition to the linear paths, the 2011 version now includes...using stochastic paths. 2.2 Linear Paths vs. Stochastic Paths 2.2.1 Linear Paths and Direct Maximum Pd Calculation Modeling pedestrian traffic flow...as a stochastic process begins with the linear path model . Let the detec- tion area be R x C voxels. This creates C 2 total linear paths, path(Cs

  1. Rate constant for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The presentmore » work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants.« less

  2. Electrical Current Leakage and Open-Core Threading Dislocations in AlGaN-Based Deep Ultraviolet Light-Emitting Diodes.

    DOE PAGES

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...

    2014-08-04

    Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) lightemitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these opencore threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templatesmore » are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.« less

  3. Chip-based wide field-of-view nanoscopy

    NASA Astrophysics Data System (ADS)

    Diekmann, Robin; Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Huser, Thomas R.; Schüttpelz, Mark; Ahluwalia, Balpreet S.

    2017-04-01

    Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.

  4. Experimental determination of cloud influence on the spectral UV irradiance and implications for biological effects

    NASA Astrophysics Data System (ADS)

    Mateos, David; di Sarra, Alcide; Meloni, Daniela; di Biagio, Claudia; Sferlazzo, Damiano M.

    2011-08-01

    Measurements of UV spectra, total ozone, cloud cover, and cloud optical thickness, obtained at Lampedusa (central Mediterranean), are used to investigate the influence of clouds on the spectral UV irradiance, through the cloud modification factor (CMF), and on five biological processes. The CMF decreases with cloud optical thickness (COT), from about 0.5 for COT˜15 to 0.25 for COT˜45, and decreases with increasing wavelength above 315-320-nm. Observations display an increase in the CMF from 295 to 320-nm, which is related to enhanced absorption by tropospheric ozone due to the long photon path lengths under cloudy conditions. The use of a wavelength independent CMF instead of the experimentally determined spectral curves produces an overestimation of the biological effects of UV irradiance. The overestimation may be as large as 30% for the DNA damage, 20% for vitamin D synthesis, 12% for plant damage, and 8-10% for phytoplankton inhibition and erythema.

  5. Integration of Ground-Based Solar FT-IR Absorption Spectroscopy and Open-Path Systems for Atmospheric Analysis

    NASA Astrophysics Data System (ADS)

    Steill, J. D.; Hager, J. S.; Compton, R. N.

    2006-05-01

    Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Infrared absorption spectroscopy of the atmosphere provides a unique opportunity to analyze the local chemical composition, since many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provide solar-sourced and boundary- layer atmospheric infrared spectra of these and other relevant atmospheric components. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar-sourced absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. A record of solar-sourced atmospheric spectra of greater than two years duration is under analysis to characterize experimental error and thus the limit of precision in the concentration determinations. Initial efforts using atmospheric O2 as a calibration indicate the solar- sourced spectra may not yet meet the precision required for accurate atmospheric CO2 quantification by such efforts as the OCO and NDSC. However, this variability is also indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the local trace gas concentrations.

  6. Simulation of optically pumped intersubband laser in magnetic field

    NASA Astrophysics Data System (ADS)

    Erić, Marko; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan

    2007-06-01

    Simulations of an optically pumped intersubband laser in magnetic field up to 60 T are performed within the steady-state rate equations model. The electron-polar optical phonon scattering is calculated using the confined and interface phonon model. A strong oscillatory optical gain vs. magnetic field dependence is found, with two dominant gain peaks occurring at 20 and 40 T, the fields which bring appropriate states into resonance with optical phonons and thus open additional relaxation paths. The peak at 20 T exceeds the value of gain achieved at zero field.

  7. Further Evaluation of Spray Characterization of Sprayers Typically Used in Vector Control

    DTIC Science & Technology

    2012-01-01

    E1260. Standard test method for determining liquid drop size characteristics in a spray using optical nonimaging light-scattering instru- ments...The time that the spray cloud was directed through the optical path of the laser varied between sprayers depending on the width of the spray plume

  8. Spray Characterization of Ultra-Low-Volume Sprayers Typically Used in Vector Control

    DTIC Science & Technology

    2009-01-01

    Standard test method for determining liquid drop size characteristics in a spray using optical nonimaging light-scattering instruments. An- nual book of...cloud was directed through the optical path of the laser varied between sprayers, depending on the width of the spray 1 Mention of a trademark

  9. The Compact and Inexpensive "Arrowhead" Setup for Holographic Interferometry

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo

    2011-01-01

    Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that…

  10. Total Solar Eclipse: “Through The Eyes of NASA,” Part 4

    NASA Image and Video Library

    2017-08-21

    During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. The eclipse’s long path over land provided a unique opportunity to study the Sun, Earth, Moon and their interaction.

  11. Total Solar Eclipse: “Through The Eyes of NASA,” Part 3

    NASA Image and Video Library

    2017-08-21

    During the eclipse, 14 states across the U.S. were in the path of totality and experienced more than two minutes of darkness in the middle of the day – with a partial eclipse viewable all across North America. The broadcast – Eclipse Across America: Through the Eyes of NASA – covered locations along the path of totality, from Oregon to South Carolina including public reactions from all ages. The eclipse’s long path over land provided a unique opportunity to study the Sun, Earth, Moon and their interaction.

  12. Multipass laser amplification with near-field far-field optical separation

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    This invention discloses two classes of optical configurations for high power laser amplification, one allowing near-field and the other allowing far-field optical separation, for the multiple passage of laser pulses through one or more amplifiers over an open optical path. These configurations may reimage the amplifier or any other part of the cavity on itself so as to suppress laser beam intensity ripples that arise from diffraction and/or non-linear effects. The optical cavities combine the features of multiple passes, spatial filtering and optical reimaging and allow sufficient time for laser gain recovery.

  13. [Optical-fiber Fourier transform spectrometer].

    PubMed

    Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An

    2006-10-01

    A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.

  14. Stroboscobic near-field scanning optical microscopy for 3D mapping of mode profiles of plasmonic nanostructures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dana, Aykutlu; Ozgur, Erol; Torunoglu, Gamze

    2016-09-01

    We present a dynamic approach to scanning near field optical microscopy that extends the measurement technique to the third dimension, by strobing the illumination in sync with the cantilever oscillation. Nitrogen vacancy (NV) centers in nanodiamonds placed on cantilever tips are used as stable emitters for emission enhancement. Local field enhancement and modulation of optical density states are mapped in three dimensions based on fluorescence intensity and spectrum changes as the tip is scanned over plasmonic nanostructures. The excitation of NV centers is done using a total internal reflection setup. Using a digital phase locked loop to pulse the excitation in various tip sample separations, 2D slices of fluorescence enhancement can be recorded. Alternatively, a conventional SNOM tip can be used to selectively couple wideband excitation to the collection path, with subdiffraction resolution of 60 nm in x and y and 10 nm in z directions. The approach solves the problem of tip-sample separation stabilization over extended periods of measurement time, required to collect data resolved in emission wavelength and three spatial dimensions. The method can provide a unique way of accessing the three dimensional field and mode profiles of nanophotonics structures.

  15. 3D hybrid integrated lasers for silicon photonics

    NASA Astrophysics Data System (ADS)

    Song, B.; Pinna, S.; Liu, Y.; Megalini, L.; Klamkin, J.

    2018-02-01

    A novel 3D hybrid integration platform combines group III-V materials and silicon photonics to yield high-performance lasers is presented. This platform is based on flip-chip bonding and vertical optical coupling integration. In this work, indium phosphide (InP) devices with monolithic vertical total internal reflection turning mirrors were bonded to active silicon photonic circuits containing vertical grating couplers. Greater than 2 mW of optical power was coupled into a silicon waveguide from an InP laser. The InP devices can also be bonded directly to the silicon substrate, providing an efficient path for heat dissipation owing to the higher thermal conductance of silicon compared to InP. Lasers realized with this technique demonstrated a thermal impedance as low as 6.2°C/W, allowing for high efficiency and operation at high temperature. InP reflective semiconductor optical amplifiers were also integrated with 3D hybrid integration to form integrated external cavity lasers. These lasers demonstrated a wavelength tuning range of 30 nm, relative intensity noise lower than -135 dB/Hz and laser linewidth of 1.5 MHz. This platform is promising for integration of InP lasers and photonic integrated circuits on silicon photonics.

  16. Complex modulation using tandem polarization modulators

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hall, Trevor

    2017-11-01

    A novel photonic technique for implementing frequency up-conversion or complex modulation is proposed. The proposed circuit consists of a sandwich of a quarter-wave plate between two polarization modulators, driven, respectively, by an in-phase and quadrature-phase signals. The operation of the circuit is modelled using a transmission matrix method. The theoretical prediction is then validated by simulation using an industry-standard software tool. The intrinsic conversion efficiency of the architecture is improved by 6 dB over a functionally equivalent design based on dual parallel Mach-Zehnder modulators. Non-ideal scenarios such as imperfect alignment of the optical components and power imbalances and phase errors in the electric drive signals are also analysed. As light travels, along one physical path, the proposed design can be implemented using discrete components with greater control of relative optical path length differences. The circuit can further be integrated in any material platform that offers electro-optic polarization modulators.

  17. A growth path for deep space communications

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Smith, J. G.

    1987-01-01

    Increased Deep Space Network (DPN) receiving capability far beyond that now available for Voyager is achievable through a mix of increased antenna aperture and increased frequency of operation. In this note a sequence of options are considered: adding midsized antennas for arraying with the existing network at X-band; converting to Ka-band and adding array elements; augmenting the DSN with an orbiting Ka-band station; and augmenting the DSN with an optical receiving capability, either on the ground or in space. Costs of these options are compared as means of achieving significantly increased receiving capability. The envelope of lowest costs projects a possible path for moving from X-band to Ka-band and thence to optical frequencies, and potentially for moving from ground-based to space-based apertures. The move to Ka-band is clearly of value now, with development of optical communications technology a good investment for the future.

  18. Apparatus and process for active pulse intensity control of laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.

  19. Definition of a metrology servo-system for a solar imaging fourier transform spectrometer working in the far UV (IFTSUV)

    NASA Astrophysics Data System (ADS)

    Ruiz de Galarreta Fanju, C.; Philippon, A.; Bouzit, M.; Appourchaux, T.; Vial, J.-C.; Maillard, J.-P.; Lemaire, P.

    2017-11-01

    The understanding of the solar outer atmosphere requires a simultaneous combination of imaging and spectral observations concerning the far UV lines that arise from the high chromospheres up to the corona. These observations must be performed with enough spectral, spatial and temporal resolution to reveal the small atmospheric structures and to resolve the solar dynamics. An Imaging Fourier Transform Spectrometer working in the far-UV (IFTSUV, Figure 1) is an attractive instrumental solution to fulfill these requirements. However, due to the short wavelength, to preserve IFTSUV spectral precision and Signal to Noise Ratio (SNR) requires a high optical surface quality and a very accurate (linear and angular) metrology to maintain the optical path difference (OPD) during the entire scanning process by: optical path difference sampling trigger; and dynamic alignment for tip/tilt compensation (Figure 2).

  20. An interferometer for high-resolution optical surveillance from GEO - internal metrology breadboard

    NASA Astrophysics Data System (ADS)

    Bonino, L.; Bresciani, F.; Piasini, G.; Pisani, M.; Cabral, A.; Rebordão, J.; Musso, F.

    2017-11-01

    This paper describes the internal metrology breadboard development activities performed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell by AAS-I and INETI. The Michelson Interferometer Testbed demonstrates the possibility of achieving a cophasing condition between two arms of the optical interferometer starting from a large initial white light Optical Path Difference (OPD) unbalance and of maintaining the fringe pattern stabilized in presence of disturbances.

  1. Multiple intensity distributions from a single optical element

    NASA Astrophysics Data System (ADS)

    Berens, Michael; Bruneton, Adrien; Bäuerle, Axel; Traub, Martin; Wester, Rolf; Stollenwerk, Jochen; Loosen, Peter

    2013-09-01

    We report on an extension of the previously published two-step freeform optics tailoring algorithm using a Monge-Kantorovich mass transportation framework. The algorithm's ability to design multiple freeform surfaces allows for the inclusion of multiple distinct light paths and hence the implementation of multiple lighting functions in a single optical element. We demonstrate the procedure in the context of automotive lighting, in which a fog lamp and a daytime running lamp are integrated in a single optical element illuminated by two distinct groups of LEDs.

  2. A hybrid quantum eraser scheme for characterization of free-space and fiber communication channels

    NASA Astrophysics Data System (ADS)

    Nape, Isaac; Kyeremah, Charlotte; Vallés, Adam; Rosales-Guzmán, Carmelo; Buah-Bassuah, Paul K.; Forbes, Andrew

    2018-02-01

    We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.

  3. Total Solar Eclipse of 1999 August 11

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1997-01-01

    On 1999 August 11, a total eclipse of the Sun will be visible from within a narrow corridor which traverses the Eastern Hemisphere. The path of the Moon's umbral shadow begins in the Atlantic and crosses central Europe, the Middle East, and India, where it ends at sunset in the Bay of Bengal. A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes northeastern North America, all of Europe, northern Africa, and the western half of Asia. Detailed predictions for this event are presented and include besselian elements, geographic coordinates of the path of totality, physical ephemeris of the umbra, topocentric limb profile corrections, local circumstances for approximately 1400 cities, maps of the eclipse path, weather prospects, the lunar limb profile, and the sky during totality. Tips and suggestions are also given on how to safely view and photograph the eclipse.

  4. Quantum caustics in resonance-fluorescence trajectories

    NASA Astrophysics Data System (ADS)

    Naghiloo, M.; Tan, D.; Harrington, P. M.; Lewalle, P.; Jordan, A. N.; Murch, K. W.

    2017-11-01

    We employ phase-sensitive amplification to perform homodyne detection of the resonance fluorescence from a driven superconducting artificial atom. Entanglement between the emitter and its fluorescence allows us to track the individual quantum state trajectories of the emitter conditioned on the outcomes of the field measurements. We analyze the ensemble properties of these trajectories by considering trajectories that connect specific initial and final states. By applying the stochastic path-integral formalism, we calculate equations of motion for the most-likely path between two quantum states and compare these predicted paths to experimental data. Drawing on the mathematical similarity between the action formalism of the most-likely quantum paths and ray optics, we study the emergence of caustics in quantum trajectories: places where multiple extrema in the stochastic action occur. We observe such multiple most-likely paths in experimental data and find these paths to be in reasonable quantitative agreement with theoretical calculations.

  5. Few-mode fiber detection for tissue characterization in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Eugui, Pablo; Lichtenegger, Antonia; Augustin, Marco; Harper, Danielle J.; Fialová, Stanislava; Wartak, Andreas; Hitzenberger, Christoph K.; Baumann, Bernhard

    2017-07-01

    A few-mode fiber based detection for OCT systems is presented. The capability of few-mode fibers for delivering light through different fiber paths enables the application of these fibers for angular scattering tissue character- ization. Since the optical path lengths traveled in the fiber change between the fiber modes, the OCT image information will be reconstructed at different depth positions, separating the directly backscattered light from the light scattered at other angles. Using the proposed method, the relation between the angle of reflection from the sample and the respective modal intensity distribution was investigated. The system was demonstrated for imaging ex-vivo brain tissue samples of patients with Alzheimer's disease.

  6. Differential correction system of laser beam directional dithering based on symmetrical beamsplitter

    NASA Astrophysics Data System (ADS)

    Hongwei, Yang; Wei, Tao; Xiaoqia, Yin; Hui, Zhao

    2018-02-01

    This paper proposes a differential correction system with a differential optical path and a symmetrical beamsplitter for correcting the directional dithering of the laser beams. This system can split a collimated laser beam into two laser beams with equal and opposite movements. Thus, the positional averages of the two split laser beams remain constant irrespective of the dithering angle. The symmetrical beamsplitter designed based on transfer matrix principle is to balance the optical paths and irradiances of the two laser beams. Experimental results show that the directional dithering is reduced to less than one-pixel value. Finally, two examples show that this system can be widely used in one-dimensional measurement.

  7. Increasing EUV source efficiency via recycling of radiation power

    NASA Astrophysics Data System (ADS)

    Hassanein, Ahmed; Sizyuk, Valeryi; Sizyuk, Tatyana; Johnson, Kenneth C.

    2018-03-01

    EUV source power is critical for advanced lithography, for achieving economical throughput performance and also for minimizing stochastic patterning effects. Power conversion efficiency can be increased by recycling plasma-scattered laser radiation and other out-of-band radiation back to the plasma via retroreflective optics. Radiation both within and outside of the collector light path can potentially be recycled. For recycling within the collector path, the system uses a diffractive collection mirror that concomitantly filters all laser and out-of-band radiation out of the EUV output. In this paper we review the optical design concept for power recycling and present preliminary plasma-physics simulation results showing a potential gain of 60% in EUV conversion efficiency.

  8. Channel Capacity Calculation at Large SNR and Small Dispersion within Path-Integral Approach

    NASA Astrophysics Data System (ADS)

    Reznichenko, A. V.; Terekhov, I. S.

    2018-04-01

    We consider the optical fiber channel modelled by the nonlinear Shrödinger equation with additive white Gaussian noise. Using Feynman path-integral approach for the model with small dispersion we find the first nonzero corrections to the conditional probability density function and the channel capacity estimations at large signal-to-noise ratio. We demonstrate that the correction to the channel capacity in small dimensionless dispersion parameter is quadratic and positive therefore increasing the earlier calculated capacity for a nondispersive nonlinear optical fiber channel in the intermediate power region. Also for small dispersion case we find the analytical expressions for simple correlators of the output signals in our noisy channel.

  9. Pupil geometry and pupil re-imaging in telescope arrays

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    1990-01-01

    This paper considers the issues of lateral and longitudinal pupil geometry in ground-based telescope arrays, such as IOTA. In particular, it is considered whether or not pupil re-imaging is required before beam combination. By considering the paths of rays through the system, an expression is derived for the optical path errors in the combined wavefront as a function of array dimensions, telescope magnification factor, viewing angle, and field-of-view. By examining this expression for the two cases of pupil-plane and image-plane combination, operational limits can be found for any array. As a particular example, it is shown that for IOTA no pupil re-imaging optics will be needed.

  10. Graded-Index "Whispering-Gallery" Optical Microresonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Iltchenko, Vladimir; Matsko, Andrey

    2006-01-01

    Graded-index-of-refraction dielectric optical microresonators have been proposed as a superior alternative to prior dielectric optical microresonators, which include microspheres and microtori wherein electromagnetic waves propagate along circumferential paths in "whispering-gallery" modes. The design and method of fabrication of the proposed microresonators would afford improved performance by exploiting a combination of the propagation characteristics of the whisperinggallery modes and the effect of a graded index of refraction on the modes.

  11. Long Coherence Length 193 nm Laser for High-Resolution Nano-Fabrication

    DTIC Science & Technology

    2008-06-27

    in the non-linear optical up-converter, as well as specifying their interaction lengths, phase -matching angles, coatings, temperatures of operation...when optical path differences between interfering beams become comparable to the temporal coherence length of the source, the fringe contrast diminishes...switched, intracavity frequency doubled Nd:YAG laser drives an optical parametric oscillator (OPO) running at 710 nm. A portion of the 532 nm light

  12. Aerodynamic distortion propagation calculation in application of high-speed target detection by laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao

    2015-10-01

    Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.

  13. Tunable optical nonreciprocity and a phonon-photon router in an optomechanical system with coupled mechanical and optical modes

    NASA Astrophysics Data System (ADS)

    Li, Guolong; Xiao, Xiao; Li, Yong; Wang, Xiaoguang

    2018-02-01

    We propose a multimode optomechanical system to realize tunable optical nonreciprocity that has the prospect of making an optical diode for information technology. The proposed model consists of two subsystems, each of which contains two optical cavities, injected with a classical field and a quantum signal via a 50:50 beam splitter, and a mechanical oscillator, coupled to both cavities via optomechanical coupling. Meanwhile two cavities and an oscillator in a subsystem are respectively coupled to their corresponding cavities and an oscillator in the other subsystem. Our scheme yields nonreciprocal effects at different frequencies with opposite directions, but each effective linear optomechanical coupling can be controlled by an independent classical one-frequency pump. With this setup one is able to apply quantum states with large fluctuations, which extends the scope of applicable quantum states, and exploit the independence of paths. Moreover, the optimal frequencies for nonreciprocal effects can be controlled by adjusting the relevant parameters. We also exhibit the path switching of two directions, from a mechanical input to two optical output channels, via tuning the signal frequency. In experiment, the considered scheme can be tuned to reach small damping rates of the oscillators relative to those of the cavities, which is more practical and requires less power than in previous schemes.

  14. Single-fiber multi-color pyrometry

    DOEpatents

    Small, IV, Ward; Celliers, Peter

    2004-01-27

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  15. Single-fiber multi-color pyrometry

    DOEpatents

    Small, IV, Ward; Celliers, Peter

    2000-01-01

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  16. Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis

    NASA Astrophysics Data System (ADS)

    Bo, En; Liu, Linbo

    2016-10-01

    We developed a spectral domain optical coherence tomography (SD-OCT) with an extended depth-of-focus (DOF) by synthetizing aperture. For a designated Gaussian-shape light source, the lateral resolution was determined by the numerical aperture (NA) of the objective lens and can be approximately maintained over the confocal parameter, which was defined as twice the Rayleigh range. However, the DOF was proportional to the square of the lateral resolution. Consequently, a trade-off existed between the DOF and lateral resolution, and researchers had to weigh and judge which was more important for their research reasonably. In this study, three distinct optical apertures were obtained by imbedding a circular phase spacer in the sample arm. Due to the optical path difference between three distinct apertures caused by the phase spacer, three images were aligned with equal spacing along z-axis vertically. By correcting the optical path difference (OPD) and defocus-induced wavefront curvature, three images with distinct depths were coherently summed together. This system digitally refocused the sample tissue and obtained a brand new image with higher lateral resolution over the confocal parameter when imaging the polystyrene calibration beads.

  17. Three-dimensional high-definition neuroendoscopic surgery: a controlled comparative laboratory study with two-dimensional endoscopy and clinical application.

    PubMed

    Inoue, Daisuke; Yoshimoto, Koji; Uemura, Munenori; Yoshida, Masaki; Ohuchida, Kenoki; Kenmotsu, Hajime; Tomikawa, Morimasa; Sasaki, Tomio; Hashizume, Makoto

    2013-11-01

    The purpose of this research was to investigate the usefulness of three-dimensional (3D) endoscopy compared with two-dimensional (2D) endoscopy in neuroendoscopic surgeries in a comparative study and to test the clinical applications. Forty-three examinees were divided into three groups according to their endoscopic experience: novice, beginner, or expert. Examinees performed three separate tasks using 3D and 2D endoscopy. A recently developed 3D high-definition (HD) neuroendoscope, 4.7 mm in diameter (Shinko Optical Co., Ltd., Tokyo, Japan) was used. In one of the three tasks, we developed a full-sized skull model of acrylic-based plastic using a 3D printer and a patient's thin slice computed tomography data, and evaluated the execution time and total path length of the tip of the pointer using an optical tracking system. Sixteen patients underwent endoscopic transnasal transsphenoidal pituitary surgery using both 3D and 2D endoscopy. Horizontal motion was evaluated using task 1, and anteroposterior motion was evaluated with task 3. Execution time and total path length in task 3 using the 3D system in both novice and beginner groups were significantly shorter than with the 2D system (p < 0.05), although no significant difference between 2D and 3D systems in task 1 was seen. In both the novice and beginner groups, the 3D system was better for depth perception than horizontal motion. No difference was seen in the expert group in this regard. The 3D HD endoscope was used for the pituitary surgery and was found very useful to identify the spatial relationship of carotid arteries and bony structures. The use of a 3D neuroendoscope improved depth perception and task performance. Our results suggest that 3D endoscopes could shorten the learning curve of young neurosurgeons and play an important role in both general surgery and neurosurgery. Georg Thieme Verlag KG Stuttgart · New York.

  18. Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia

    NASA Astrophysics Data System (ADS)

    Frey, Karen E.; Sobczak, William V.; Mann, Paul J.; Holmes, Robert M.

    2016-04-01

    The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ˜ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ˜ 3-6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a) aquatic microorganisms are acclimating to a downstream shift in DOM composition and/or (b) photodegradation is continually generating labile DOM for continued microbial processing of DOM along the flow-path continuum. Without such processes, we would otherwise expect to see a declining fraction of bioavailable DOC downstream with increasing residence time of water in the system. With ongoing and future permafrost degradation, peat and yedoma deposits throughout the northeast Siberian region will become more hydrologically active, providing greater amounts of DOM to fluvial networks and ultimately to the Arctic Ocean. The ability to rapidly and comprehensively monitor shifts in the quantity and quality of DOM across the landscape is therefore critical for understanding potential future feedbacks within the Arctic carbon cycle.

  19. Cost-effective method of manufacturing a 3D MEMS optical switch

    NASA Astrophysics Data System (ADS)

    Carr, Emily; Zhang, Ping; Keebaugh, Doug; Chau, Kelvin

    2009-02-01

    growth of data and video transport networks. All-optical switching eliminates the need for optical-electrical conversion offering the ability to switch optical signals transparently: independent of data rates, formats and wavelength. It also provides network operators much needed automation capabilities to create, monitor and protect optical light paths. To further accelerate the market penetration, it is necessary to identify a path to reduce the manufacturing cost significantly as well as enhance the overall system performance, uniformity and reliability. Currently, most MEMS optical switches are assembled through die level flip-chip bonding with either epoxies or solder bumps. This is due to the alignment accuracy requirements of the switch assembly, defect matching of individual die, and cost of the individual components. In this paper, a wafer level assembly approach is reported based on silicon fusion bonding which aims to reduce the packaging time, defect count and cost through volume production. This approach is successfully demonstrated by the integration of two 6-inch wafers: a mirror array wafer and a "snap-guard" wafer, which provides a mechanical structure on top of the micromirror to prevent electrostatic snap-down. The direct silicon-to-silicon bond eliminates the CTEmismatch and stress issues caused by non-silicon bonding agents. Results from a completed integrated switch assembly will be presented, which demonstrates the reliability and uniformity of some key parameters of this MEMS optical switch.

  20. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Zheng, Yunhui (Inventor); Degnan, III, John James (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

Top