Light extinction by aerosols during summer air pollution
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1983-01-01
In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes, the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been derived from solar transmission measurements in eight spectral bands within the band lambda 440-870 nm during the summers of 1980 and 1981 near Washington, DC. The optical thicknesses for the eight bands are strongly correlated. It was found that first eigenvalue of the covariance matrix of all observations accounts for 99 percent of the trace of the matrix. Since the measured aerosol optical thickness was closely proportional to the wavelength raised to a power, the aerosol size distribution derived from it is proportional to the diameter (d) raised to a power for the range of diameters between 0.1 to 1.0 micron. This power is insensitive to the total optical thickness. Changes in the aerosol optical thickness depend on several aerosol parameters, but it is difficult to identify the dominant one. The effects of relative humidity and accumulation mode concentration on the optical thickness are analyzed theoretically, and compared with the measurements.
Dzhongova, Elitsa; Harwood, Colin R; Thennadil, Suresh N
2011-11-01
In order to determine the bulk optical properties of a Bacillus subtilis culture during growth phase we investigated the effect of sample thickness on measurements taken with different measurement configurations, namely total diffuse reflectance and total diffuse transmittance. The bulk optical properties were extracted by inverting the measurements using the radiative transfer theory. While the relationship between reflectance and biomass changes with sample thickness and the intensity (absorbance) levels vary significantly for both reflectance and transmittance measurements, the extracted optical properties show consistent behavior in terms of both the relationship with biomass and magnitude. This observation indicates the potential of bulk optical properties for building models that could be more easily transferable compared to those built using raw measurements.
NASA Technical Reports Server (NTRS)
Soulas, George C.
2001-01-01
The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.
Cost effective flat plate photovoltaic modules using light trapping
NASA Technical Reports Server (NTRS)
Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.
1981-01-01
Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.
Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme
NASA Astrophysics Data System (ADS)
Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping
2018-06-01
The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.
NASA Astrophysics Data System (ADS)
Kokolakis, Athanasios; Zacharakis, Giannis; Krasagakis, Konstantin; Lasithiotakis, Konstantinos; Favicchio, Rosy; Spiliopoulos, George; Giannikaki, Elpida; Ripoll, Jorge; Tosca, Androniki
2012-06-01
Discrimination of benign and malignant melanocytic lesions is a major issue in clinical dermatology. Assessment of the thickness of melanoma is critical for prognosis and treatment selection. We aimed to evaluate a novel optical computed tomography (optical-CT) system as a tool for three-dimensional (3-D) imaging of melanocytic lesions and its ability to discriminate benign from malignant melanocytic lesions while simultaneously determining the thickness of invasive melanoma. Seventeen melanocytic lesions, one hemangioma, and normal skin were assessed immediately after their excision by optical-CT and subsequently underwent histopathological examination. Tomographic reconstructions were performed with a back-propagation algorithm calculating a 3-D map of the total attenuation coefficient (AC). There was a statistically significant difference between melanomas, dysplastic nevi, and non-dysplastic nevi, as indicated by Kruskal-Wallis test. Median AC values were higher for melanomas compared with dysplastic and non-dysplastic nevi. No statistically significant difference was observed when thickness values obtained by optical-CT were compared with histological thickness using a Wilcoxon sighed rank test. Our results suggest that optical-CT can be important for the immediate prehistological evaluation of biopsies, assisting the physician for a rapid assessment of malignancy and of the thickness of a melanocytic lesion.
Kee, Changwon; Cho, Changhwan
2003-06-01
The authors investigated the correlation between visual field defects detected by automated perimetry and the thickness of the retinal nerve fiber layer measured with optical coherence tomography, and examined whether there is a decrease in retinal nerve fiber layer thickness in the apparently normal hemifield of glaucomatous eyes. Forty-one patients with glaucoma and 41 normal control subjects were included in this study. Statistical correlations between the sum of the total deviation of 37 stimuli of each hemifield and the ratio of decrease in retinal nerve fiber layer thickness were evaluated. The statistical difference between the retinal nerve fiber layer thickness of the apparently normal hemifield in glaucomatous eyes and that of the corresponding hemifield in normal subjects was also evaluated. There was a statistically significant correlation in the sum of the total deviation and retinal nerve fiber layer thickness decrease ratio (superior hemifield, P = 0.001; inferior hemifield, P = 0.003). There was no significant decrease in retinal nerve fiber layer thickness in the area that corresponded to the normal visual field in the hemifield defect with respect to the horizontal meridian in glaucomatous eyes (superior side, P = 0.148; inferior side, P = 0.341). Optical coherence tomography was capable of demonstrating and measuring retinal nerve fiber layer abnormalities. No changes in the retinal nerve fiber layer thickness of the apparently normal hemifield were observed in glaucomatous eyes.
Villain, Max A; Greenfield, David S
2003-01-01
To assess reproducibility of quadrantic and clock hour sectors of retinal nerve fiber layer thickness in normal eyes using optical coherence tomography. Normal eyes of healthy volunteers meeting eligibility criteria were imaged by two inexperienced operators. Six 360 degrees circular scans with a diameter of 3.4 mm centered on the optic disc were obtained during each scanning session, and a baseline image was formed using 3 high-quality images defined by the software. Images were obtained on three different days within a 4-week period. Variance and coefficient of variation (CV) were calculated for quadrantic and retinal nerve fiber layer clock hour sectors obtained from the baseline image. Five normal eyes were scanned. Intraoperator reproducibility was high. The mean (+/- SD) CV for total retinal nerve fiber layer thickness was 5.3 +/- 3.82% and 4.33 +/- 3.7% for operators 1 and 2, respectively. Interoperator reproducibility was good with statistically similar variance for all quadrantic and clock hour retinal nerve fiber layer parameters (P = .42 to .99). The nasal retinal nerve fiber layer was the most variable sector for both operators (mean CV: 10.42% and 7.83% for operators 1 and 2, respectively). Differences in mean total, nasal, temporal, and superior retinal nerve fiber layer thickness were not statistically significant between operators for all eyes; however, for inferior retinal nerve fiber layer thickness, there was a significant (P = .0007) difference between operators in one eye. Peripapillary retinal nerve fiber layer thickness assessments using optical coherence tomography have good intraoperator and interoperator reproducibility. Inexperienced operators can generate useful measurement data with acceptable levels of variance.
Optical X-ray density of composite resin luting agents.
Carracho, Helena G; da Silveira, Ivori D; Soares, Clarissa G; Paranhos, Maria Paula G; Júnior, Luiz Henrique Burnett; Spohr, Ana Maria
2011-01-01
This study verified the optical density of four composite resin luting agents - RelyX ARC (RY), Enforce (E), C&B Cement (CB) and Flow it (FI), at thicknesses of 2, 3, and 4 mm. The optical density of the luting agents was compared with that of enamel and dentin at the same thicknesses. Fifteen tooth crowns were embedded in PVC cylinders with self-cured acrylic resin. In addition, acrylic resin was poured into 5 PVC cylinders and four equidistant 5 mm diameter holes were prepared, with one luting material inserted in each. A laboratory cutting machine was used to prepare 4-, 3- and 2-mm thick slices of the tooth crowns and materials. Digital images were obtained with a Digora system. Three radiographs of each thickness were obtained, totalizing 135 radiographs of the crowns and 45 of the materials. Three readings were carried out on each radiograph: three in enamel, three in dentin and three in each material, totalizing 1350. According to Students t-test (p
Multi-band filter design with less total film thickness for short-wave infrared
NASA Astrophysics Data System (ADS)
Yan, Yung-Jhe; Chien, I.-Pen; Chen, Po-Han; Chen, Sheng-Hui; Tsai, Yi-Chun; Ou-Yang, Mang
2017-08-01
A multi-band pass filter array was proposed and designed for short wave infrared applications. The central wavelength of the multi-band pass filters are located about 905 nm, 950 nm, 1055 nm and 1550 nm. In the simulation of an optical interference band pass filter, high spectrum performance (high transmittance ratio between the pass band and stop band) relies on (1) the index gap between the selected high/low-index film materials, with a larger gap correlated to higher performance, and (2) sufficient repeated periods of high/low-index thin-film layers. When determining high and low refractive index materials, spectrum performance was improved by increasing repeated periods. Consequently, the total film thickness increases rapidly. In some cases, a thick total film thickness is difficult to process in practice, especially when incorporating photolithography liftoff. Actually the maximal thickness of the photoresist being able to liftoff will bound the total film thickness of the band pass filter. For the application of the short wave infrared with the wavelength range from 900nm to 1700nm, silicone was chosen as a high refractive index material. Different from other dielectric materials used in the visible range, silicone has a higher absorptance in the visible range opposite to higher transmission in the short wave infrared. In other words, designing band pass filters based on silicone as a high refractive index material film could not obtain a better spectrum performance than conventional high index materials like TiO2 or Ta2O5, but also its material cost would reduce about half compared to the total film thickness with the conventional material TiO2. Through the simulation and several experimental trials, the total film thickness below 4 um was practicable and reasonable. The fabrication of the filters was employed a dual electric gun deposition system with ion assisted deposition after the lithography process. Repeating four times of lithography and deposition process and black matrix coating, the optical device processes were completed.
Vukusic, P.; Kelly, R.; Hooper, I.
2008-01-01
Broadband optical reflectors generally function through coherent scattering from systems comprising one of three designs: overlapped; chirped; or chaotic multilayer reflectors. For each, the requirement to scatter a broad band of wavelengths is met through the presence of a variation in nanostructural periodicity running perpendicular to the systems' outer surfaces. Consequently, the requisite total thickness of the multilayer can often be in excess of 50 μm. Here, we report the discovery and the microwave-assisted characterization of a natural system that achieves excellent optical broadband reflectivity but that is less than 1 μm thick. This system, found on the wing scales of the butterfly Argyrophorus argenteus, comprises a distinctive variation in periodicity that runs parallel to the reflecting surface, rather than perpendicular to it. In this way, the requirement for an extensively thick system is removed. PMID:19042180
Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer
2017-07-01
A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Remer, Lorraine
1999-01-01
Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.
Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography.
Wessel, Julia M; Horn, Folkert K; Tornow, Ralf P; Schmid, Matthias; Mardin, Christian Y; Kruse, Friedrich E; Juenemann, Anselm G; Laemmer, Robert
2013-05-01
To compare the longitudinal loss of RNFL thickness measurements by SD-OCT in healthy individuals and glaucoma patients with or without progression concerning optic disc morphology. A total of 62 eyes, comprising 38 glaucomatous eyes with open angle glaucoma and 24 healthy controls, were included in the study (Erlangen Glaucoma Registry, NTC00494923). All patients were investigated annually over a period of 3 years by Spectralis SD-OCT measuring peripapillary RNFL thickness. By masked comparative analysis of photographs, the eyes were classified into nonprogressive and progressive glaucoma cases. Longitudinal loss of RNFL thickness was compared with morphological changes of optic disc morphology. Mixed model analysis of annual OCT scans revealed an estimated annual decrease of the RNFL thickness by 2.12 μm in glaucoma eyes with progression, whereas glaucoma eyes without progression in optic disc morphology lost 1.18 μm per year in RNFL thickness (P = 0.002). The rate of change in healthy eyes was 0.60 μm and thereby also significantly lower than in glaucoma eyes with progression (P < 0.001). The intrasession variability of three successive measurements without head repositioning was 1.5 ± 0.7 μm. The loss of mean RNFL thickness exceeded the intrasession variability in 60% of nonprogressive eyes, and in 85% of progressive eyes after 3 years. LONGITUDINAL MEASUREMENTS OF RNFL THICKNESS USING SD-OCT SHOW A MORE PRONOUNCED REDUCTION OF RNFL THICKNESS IN PATIENTS WITH PROGRESSION COMPARED WITH PATIENTS WITHOUT PROGRESSION IN GLAUCOMATOUS OPTIC DISC CHANGES. (www.clinicaltrials.gov number, NTC00494923.).
Hull, J R
1989-01-01
Coupling a dielectric compound parabolic concentrator (DCPC) to an absorber across a vacuum gap by means of frustrated total internal reflection (FTIR) can theoretically approach the maximum concentration permitted by physical laws, thus allowing higher radiative fluxes in thermal applications. The calculated optical performance of 2-D DCPCs with FTIR absorbers indicates that the ratio of gap thickness to optical wavelength must be <0.22 before the optical performance of the DCPC is superior to that of the nondielectric CPC.
Choroidal thickness in traumatic optic neuropathy.
Lee, Ju-Yeun; Eo, Doo-Ri; Park, Kyung-Ah; Oh, Sei Yeul
2017-12-01
To examine the choroidal thickness in patients with indirect traumatic optic neuropathy (TON) Methods: Patients with unilateral traumatic optic neuropathy over a period of 4 years were included in this study. Horizontal and vertical enhanced-depth imaging (EDI) from spectral-domain optical coherence tomography (SD-OCT) scans of the fovea were obtained in patients with unilateral TON within 2 weeks of injury. The main outcome measure was the choroidal thickness at nine locations. The choroidal thickness was compared between affected and unaffected eyes in the TON group, and the mean difference in the choroidal thickness in both eyes was compared between TON and control groups. A total of 16 patients and 20 control subjects were included. The choroidal thickness at horizontal, vertical and average subfoveal, inner temporal, and outer inferior locations was significantly thicker (13-23%) in affected eyes than in unaffected fellow eyes (p = 0.042, 0.046, 0.024, 0.013, 0.018, and 0.027, respectively). The mean difference value between choroidal thickness measurements in both eyes was significantly larger in the TON group than in the control group at the horizontal, vertical and average subfoveal, inner temporal, inner nasal, inner superior, inner inferior, and outer superior locations (p = 0.001, 0.011, <0.001, 0.001, 0.033, 0.014, 0.011, and 0.014, respectively). The choroidal thickness at subfoveal locations showed no statistical difference between TON and control eyes (p > 0.05). Eyes affected by TON showed a regionally thicker choroid than unaffected fellow eye. This thick choroid might be due to impaired blood circulation and vascular remodeling of the optic nerve head and choroid. These results help to better understand the pathophysiology of TON.
Diffractive flat panel solar concentrators of a novel design.
de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M
2016-07-11
A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.
Dagi, Linda R; Tiedemann, Laura M; Heidary, Gena; Robson, Caroline D; Hall, Amber M; Zurakowski, David
2014-12-01
Detecting and monitoring optic neuropathy in patients with craniosynostosis is a clinical challenge due to limited cooperation, and subjective measures of visual function. The purpose of this study was to appraise the correlation of peripapillary retinal nerve fiber layer (RNFL) thickness measured by spectral-domain ocular coherence tomography (SD-OCT) with indication of optic neuropathy based on fundus examination. The medical records of all patients with craniosynostosis presenting for ophthalmic evaluation during 2013 were retrospectively reviewed. The following data were abstracted from the record: diagnosis, historical evidence of elevated intracranial pressure, current ophthalmic evaluation and visual field results, and current peripapillary RNFL thickness. A total of 54 patients were included (mean age, 10.6 years [range, 2.4-33.8 years]). Thirteen (24%) had evidence of optic neuropathy based on current fundus examination. Of these, 10 (77%) demonstrated either peripapillary RNFL elevation and papilledema or depression with optic atrophy. Sensitivity for detecting optic atrophy was 88%; for papilledema, 60%; and for either form of optic neuropathy, 77%. Specificity was 94%, 90%, and 83%, respectively. Kappa agreement was substantial for optic atrophy (κ = 0.73) and moderate for papilledema (κ = 0.39) and for either form of optic neuropathy (κ = 0.54). Logistic regression indicated that peripapillary RNFL thickness was predictive of optic neuropathy (P < 0.001). Multivariable analysis demonstrated that RNFL thickness measurements were more sensitive at detecting optic neuropathy than visual field testing (likelihood ratio = 10.02; P = 0.002). Sensitivity and specificity of logMAR visual acuity in detecting optic neuropathy were 15% and 95%, respectively. Peripapillary RNFL thickness measured by SD-OCT provides adjunctive evidence for identifying optic neuropathy in patients with craniosynostosis and appears more sensitive at detecting optic atrophy than papilledema. Copyright © 2014 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
Şahin, Muhammed; Şahin, Alparslan; Kılınç, Faruk; Karaalp, Ümit; Yüksel, Harun; Özkurt, Zeynep Gürsel; Türkcü, Fatih Mehmet; Çaça, İhsan
2018-02-01
To compare the retina ganglion cell complex (GCC) layer and peripapillary nerve fibre layer thickness (pRNFL) in patients with prediabetes and healthy subjects analysed by spectral domain optical coherence tomography (SD-OCT). This cross-sectional and comparative study included prediabetic patients and healthy subjects. All participants underwent SD-OCT measurement of pRNFL thickness, and GCC thickness. A total of 30 eyes of the 30 patients with prediabetes and 30 eyes of 30 controls were included. The overall calculated pRNFL thicknesses were similar between the prediabetic and control subjects. The GCC thickness was significantly lower in all quadrants of the inner macula, and outer nasal quadrant in the prediabetes group when compared to the control group. Our study demonstrated that inner macular GCC thickness was significantly thinner in prediabetic subjects. As a result neurodegeneration may play role in the thinning of GCC.
Evanescent Field Based Photoacoustics: Optical Property Evaluation at Surfaces
Goldschmidt, Benjamin S.; Rudy, Anna M.; Nowak, Charissa A.; Tsay, Yowting; Whiteside, Paul J. D.; Hunt, Heather K.
2016-01-01
Here, we present a protocol to estimate material and surface optical properties using the photoacoustic effect combined with total internal reflection. Optical property evaluation of thin films and the surfaces of bulk materials is an important step in understanding new optical material systems and their applications. The method presented can estimate thickness, refractive index, and use absorptive properties of materials for detection. This metrology system uses evanescent field-based photoacoustics (EFPA), a field of research based upon the interaction of an evanescent field with the photoacoustic effect. This interaction and its resulting family of techniques allow the technique to probe optical properties within a few hundred nanometers of the sample surface. This optical near field allows for the highly accurate estimation of material properties on the same scale as the field itself such as refractive index and film thickness. With the use of EFPA and its sub techniques such as total internal reflection photoacoustic spectroscopy (TIRPAS) and optical tunneling photoacoustic spectroscopy (OTPAS), it is possible to evaluate a material at the nanoscale in a consolidated instrument without the need for many instruments and experiments that may be cost prohibitive. PMID:27500652
Agarwal, Prakashchand; Sathyan, P; Saini, VK
2014-01-01
ABSTRACT Aim: To compare the difference of retinal macular thickness and macular volume using optical coherence tomography (OCT) in primary open angle glaucoma (POAG) patients with the normal subjects. Materials and methods: This observational case control study included primary open angle glaucoma (POAG) patients (n = 124 eyes) and healthy subjects in the control group (n = 124 eyes). All subjects underwent detailed history, general and systemic exami -nation. Complete ocular examination included best corrected visual acuity (BCVA), slit lamp examination, intraocular pressure (IOP), central corneal thickness, gonioscopy, dilated fundus biomicroscopy. Field analysis was done by white on white Humphrey Field Analyzer (Carl Zeiss). Optical coherence tomography imaging of macular area was performed using Stratus OCT (OCT 3, Version 4, Carl Zeiss Inc, Dublin, California, USA). In both these groups, parameters analyzed were macular thickness, inner macular thicknesses (IMT), outer macular thicknesses (OMT), central macular thick ness (CMT) and total macular volume (TMV). Results: The POAG group had significantly decreased values of TMV, OMT and IMT, compared to control group, while there was no difference in CMT, presumably due to absence of ganglion cells in the central part. Thus, macular thickness and volume parameters may be used for making the diagnosis of glaucoma especially in patients with abnormalities of disc. Conclusion: Macular thickness parameters correlated well with the diagnosis of glaucoma. How to cite this article: Sharma A, Agarwal P, Sathyan P, Saini VK. Macular Thickness Variability in Primary Open Angle Glaucoma Patients using Optical Coherence Tomography. J Current Glau Prac 2014;8(1):10-14. PMID:26997801
NASA Astrophysics Data System (ADS)
Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.
2008-12-01
Clouds increase the complexity of atmospheric radiative transfer processes, particularly for aerosol retrievals in clear regions in the vicinity of clouds. This study focuses on identifying mechanisms responsible for the enhancement of nadir reflectance in clear regions in the vicinity of cumulus clouds and quantifies the relative importance of each mechanism. Using cloud optical properties and surface albedo derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectroradiometer (MODIS), we performed extensive Monte Carlo simulations of radiative transfer in two cumulus scenes in a biomass burning region in Brazil. The results show that the scattering of radiation by clouds, followed by upward Rayleigh scattering by molecules above cloud top over clear gaps, is the dominant mechanism for the enhancement of visible reflectance in clear regions in boundary layer cumulus field over dark surfaces with aerosols trapped in the boundary layer. The Rayleigh scattering contributes ˜80% and ˜50% to the total enhancement for wavelengths 0.47 μm (with aerosol optical thickness 0.2) and 0.66 μm (with aerosol optical thickness 0.1), respectively. Out of the total contribution of molecular scattering, ˜90% arises from the clear atmosphere above cloud top height. The mechanism is valid for a large range of aerosol optical thicknesses (up to 1 in this study) for 0.47 μm, and for aerosol optical thickness up to 0.2 for 0.66 μm. Our results provide a basis to develop simplifications for future aerosol remote sensing from satellite.
Zhi, Zhongwei; Chao, Jennifer R.; Wietecha, Tomasz; Hudkins, Kelly L.; Alpers, Charles E.; Wang, Ruikang K.
2014-01-01
Purpose. To evaluate early diabetes-induced changes in retinal thickness and microvasculature in a type 2 diabetic mouse model by using optical coherence tomography (OCT)/optical microangiography (OMAG). Methods. Twenty-two-week-old obese (OB) BTBR mice (n = 10) and wild-type (WT) control mice (n = 10) were imaged. Three-dimensional (3D) data volumes were captured with spectral domain OCT using an ultrahigh-sensitive OMAG scanning protocol for 3D volumetric angiography of the retina and dense A-scan protocol for measurement of the total retinal blood flow (RBF) rate. The thicknesses of the nerve fiber layer (NFL) and that of the NFL to the inner plexiform layer (IPL) were measured and compared between OB and WT mice. The linear capillary densities within intermediate and deep capillary layers were determined by the number of capillaries crossing a 500-μm line. The RBF rate was evaluated using an en face Doppler approach. These quantitative measurements were compared between OB and WT mice. Results. The retinal thickness of the NFL to IPL was significantly reduced in OB mice (P < 0.01) compared to that in WT mice, whereas the NFL thickness between the two was unchanged. 3D depth-resolved OMAG angiography revealed the first in vivo 3D model of mouse retinal microcirculation. Although no obvious differences in capillary vessel densities of the intermediate and deep capillary layers were detected between normal and OB mice, the total RBF rate was significantly lower (P < 0.05) in OB mice than in WT mice. Conclusions. We conclude that OB BTBR mice have significantly reduced NFL–IPL thicknesses and total RBF rates compared with those of WT mice, as imaged by OCT/OMAG. OMAG provides an unprecedented capability for high-resolution depth-resolved imaging of mouse retinal vessels and blood flow that may play a pivotal role in providing a noninvasive method for detecting early microvascular changes in patients with diabetic retinopathy. PMID:24458155
Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-03-01
We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.
Development of a non-invasive LED based device for adipose tissue thickness measurements in vivo
NASA Astrophysics Data System (ADS)
Volceka, K.; Jakovels, D.; Arina, Z.; Zaharans, J.; Kviesis, E.; Strode, A.; Svampe, E.; Ozolina-Moll, L.; Butnere, M. M.
2012-06-01
There are a number of techniques for body composition assessment in clinics and in field-surveys, but in all cases the applied methods have advantages and disadvantages. High precision imaging methods are available, though expensive and non-portable, however, the methods devised for the mass population, often suffer from the lack of precision. Therefore, the development of a safe, mobile, non-invasive, optical method that would be easy to perform, precise and low-cost, but also would offer an accurate assessment of subcutaneous adipose tissue (SAT) both in lean and in obese persons is required. Thereof, the diffuse optical spectroscopy is advantageous over the aforementioned techniques. A prototype device using an optical method for measurement of the SAT thickness in vivo has been developed. The probe contained multiple LEDs (660nm) distributed at various distances from the photo-detector which allow different light penetration depths into the subcutaneous tissue. The differences of the reflected light intensities were used to create a non-linear model, and the computed values were compared with the corresponding thicknesses of SAT, assessed by B-mode ultrasonography. The results show that with the optical system used in this study, accurate results of different SAT thicknesses can be obtained, and imply a further potential for development of multispectral optical system to observe changes of SAT thickness as well as to determine the percentage of total body fat.
Faria, Mun Y; Ferreira, Nuno P; Mano, Sofia; Cristóvao, Diana M; Sousa, David C; Monteiro-Grillo, Manuel E
2018-05-01
To provide a spectral-domain optical coherence tomography (SD-OCT)-based analysis of retinal layers thickness and nasal displacement of closed macular hole after internal limiting membrane peeling in macular hole surgery. In this nonrandomized prospective interventional study, 36 eyes of 32 patients were subjected to pars plana vitrectomy and 3.5 mm diameter internal limiting membrane (ILM) peeling for idiopathic macular hole (IMH). Nasal and temporal internal retinal layer thickness were assessed with SD-OCT. Each scan included optic disc border so that distance between optic disc border and fovea were measured. Thirty-six eyes had a successful surgery with macular hole closure. Total nasal retinal thickening (p<0.001) and total temporal retinal thinning (p<0.0001) were observed. Outer retinal layers increased thickness after surgery (nasal p<0.05 and temporal p<0.01). Middle part of inner retinal layers (mIRL) had nasal thickening (p<0.001) and temporal thinning (p<0.05). The mIRL was obtained by deducting ganglion cell layer (GCL) and retinal nerve fiber layer (RNFL) thickness from overall thickness of the inner retinal layer. Papillofoveal distance was shorter after ILM peeling in macular hole surgery (3,651 ± 323 μm preoperatively and 3,361 ± 279 μm at 6 months; p<0.0001). Internal limiting membrane peel is associated with important alteration in inner retinal layer architecture, with thickening of mIRL and shortening of papillofoveal distance. These factors may contribute to recovery of disrupted foveal photoreceptor and vision improvement after IMH closure.
Impact of non-integer planetary revolutions on the distribution of evaporated optical coatings
Oliver, J. B.
2017-02-08
Planetary substrate rotation for optical-coating deposition is evaluated based on initial and final positions for a given layer with different numbers of revolutions and various deposition-source locations. The influence of partial revolutions of the rotation system is analyzed relative to the total number of planetary revolutions in that layer to determine the relative impact on film thickness and uniformity. Furthermore, guidance is provided on the necessary planetary revolutions that should take place in each layer versus the expected error level in the layer thickness for the modeled system.
NASA Astrophysics Data System (ADS)
Sadeghi, Pegah; Safavinejad, Ali
2017-11-01
Radiative entropy generation through a gray absorbing, emitting, and scattering planar medium at radiative equilibrium with diffuse-gray walls is investigated. The radiative transfer equation and radiative entropy generation equations are solved using discrete ordinates method. Components of the radiative entropy generation are considered for two different boundary conditions: two walls are at a prescribed temperature and mixed boundary conditions, which one wall is at a prescribed temperature and the other is at a prescribed heat flux. The effect of wall emissivities, optical thickness, single scattering albedo, and anisotropic-scattering factor on the entropy generation is attentively investigated. The results reveal that entropy generation in the system mainly arises from irreversible radiative transfer at wall with lower temperature. Total entropy generation rate for the system with prescribed temperature at walls remarkably increases as wall emissivity increases; conversely, for system with mixed boundary conditions, total entropy generation rate slightly decreases. Furthermore, as the optical thickness increases, total entropy generation rate remarkably decreases for the system with prescribed temperature at walls; nevertheless, for the system with mixed boundary conditions, total entropy generation rate increases. The variation of single scattering albedo does not considerably affect total entropy generation rate. This parametric analysis demonstrates that the optical thickness and wall emissivities have a significant effect on the entropy generation in the system at radiative equilibrium. Considering the parameters affecting radiative entropy generation significantly, provides an opportunity to optimally design or increase overall performance and efficiency by applying entropy minimization techniques for the systems at radiative equilibrium.
Infrared radiation of thin plastic films.
NASA Technical Reports Server (NTRS)
Tien, C. L.; Chan, C. K.; Cunnington, G. R.
1972-01-01
A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.
Wasyluk, Jaromir T.; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona
2012-01-01
Summary Background We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Material/Methods Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18–70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. Results The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in μm) differ significantly between GDx and all OCT devices. Conclusions Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients. PMID:22367131
Bassi, Shikha Talwar; Mohana, Kuppuswamy Parthasarthy
2014-12-01
To compare the spectral domain optical coherence tomography (SD-OCT) findings of the optic disc and the peripapillary retina of patients with a true papilledema and pseudopapilledema with and without optic nerve head drusen (ONHD). Retrospective Case Control Study. Peripapillary retinal nerve fiber layer (PPRNFL) thickness as depicted by SD-OCT of 94 eyes of 66 patients with papilledema (30 eyes), pseudopapiledema (31 eyes), and normal controls (33 eyes) was analyzed. The mean RNFL thickness, total retinal thickness (TRT) at a superior and inferior edge of the disc and the quadrant wise topography of increased RNFL were compared in all three groups. Sensitivity, specificity, and area under the receiver operating characteristic curve (AROC) were calculated for all the parameters. The median RNFL thickness was 185.4 (129.5-349.3 μm), 122.3 (109-156.3 μm) and 91.62 ± 7 μm in papilledema, pseudopapilledema, and controls, respectively. Papilledema group had thicker PPRNFL in all quadrants except temporal quadrant. TRT was thicker in papilledema and pseudopapilledema compared to controls. ONHD could be directly visualized as high reflective clumps in the sub-retinal space or the RNFL in 30 eyes. Increased RNFL thickness in all four quadrants was noted 43.3% in papilledema and 9.7% in pseudopapilledema. Normal RNFL thickness in all four quadrants was noted in 0% in papilledema and 32.3% in pseudopapilledema. Nasal RNFL had the highest AROC (0.792) indicating high diagnostic ability to differentiate papilledema from pseudopapilledema. SD-OCT can be used as a tool to differentiate between papilledema and pseudopapilledema.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa
2016-01-01
To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa
2016-01-01
Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541
Systems Issues Pertaining to Holographic Optical Data Storage in Thick Bacteriorhodopsin Films
NASA Technical Reports Server (NTRS)
Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Oezcan, Meric; Smithey, Daniel T.; Crew, Marshall; Lau, Sonie (Technical Monitor)
1998-01-01
The optical data storage capacity and raw bit-error-rate achievable with thick photochromic bacteriorhodopsin (BR) films are investigated for sequential recording and read- out of angularly- and shift-multiplexed digital holograms inside a thick blue-membrane D85N BR film. We address the determination of an exposure schedule that produces equal diffraction efficiencies among each of the multiplexed holograms. This exposure schedule is determined by numerical simulations of the holographic recording process within the BR material, and maximizes the total grating strength. We also experimentally measure the shift selectivity and compare the results to theoretical predictions. Finally, we evaluate the bit-error-rate of a single hologram, and of multiple holograms stored within the film.
Optical properties and light irradiance of monolithic zirconia at variable thicknesses.
Sulaiman, Taiseer A; Abdulmajeed, Aous A; Donovan, Terrence E; Ritter, André V; Vallittu, Pekka K; Närhi, Timo O; Lassila, Lippo V
2015-10-01
The aims of this study were to: (1) estimate the effect of polishing on the surface gloss of monolithic zirconia, (2) measure and compare the translucency of monolithic zirconia at variable thicknesses, and (3) determine the effect of zirconia thickness on irradiance and total irradiant energy. Four monolithic partially stabilized zirconia (PSZ) brands; Prettau® (PRT, Zirkonzahn), Bruxzir® (BRX, Glidewell), Zenostar® (ZEN, Wieland), Katana® (KAT, Noritake), and one fully stabilized zirconia (FSZ); Prettau Anterior® (PRTA, Zirkonzahn) were used to fabricate specimens (n=5/subgroup) with different thicknesses (0.5, 0.7, 1.0, 1.2, 1.5, and 2.0mm). Zirconia core material ICE® Zircon (ICE, Zirkonzahn) was used as a control. Surface gloss and translucency were evaluated using a reflection spectrophotometer. Irradiance and total irradiant energy transmitted through each specimen was quantified using MARC® Resin Calibrator. All specimens were then subjected to a standardized polishing method and the surface gloss, translucency, irradiance, and total irradiant energy measurements were repeated. Statistical analysis was performed using two-way ANOVA and post-hoc Tukey's tests (p<0.05). Surface gloss was significantly affected by polishing (p<0.05), regardless of brand and thickness. Translucency values ranged from 5.65 to 20.40 before polishing and 5.10 to 19.95 after polishing. The ranking from least to highest translucent (after polish) was: BRX=ICE=PRT
Lee, Tae Hee; Choi, Won; Ji, Yong Sok; Yoon, Kyung Chul
2016-05-01
To compare the effects of ketorolac 0.45% and diclofenac 0.1% on macular thickness and volume after uncomplicated cataract surgery. A total of 76 eyes of 76 patients who underwent uncomplicated cataract surgery were included. Patients were treated with either diclofenac 0.1% (38 eyes) or ketorolac 0.45% (38 eyes) after surgery. The macular thickness and volume were obtained with optical coherence tomography (OCT). Central subfield thickness (CST, OCT 1 mm zone), total foveal thickness (TFT, OCT 3 mm zone), total macular thickness (TMT, OCT 6 mm zone), average macular thickness (AMT) and total macular volume (TMV) were compared between the two study groups. No significant differences between groups were found in macular thickness or volume 1 month after cataract surgery. Two months after surgery, the ketorolac group had significantly lower CST, TFT, TMT and AMT than the diclofenac group (p < 0.05 for all). Additionally, 1 and 2 months after surgery, changes from preoperative values in CST (both p = 0.04), AMT (p = 0.02 and p < 0.01, respectively) and TMV (both p = 0.04) were significantly less in the ketorolac group than in the diclofenac group. Following uncomplicated cataract surgery, topical ketorolac 0.45% was more effective than diclofenac 0.1% in preventing increases in macular thickness and volume. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Satellite measurements of large-scale air pollution - Measurements of forest fire smoke
NASA Technical Reports Server (NTRS)
Ferrare, Richard A.; Kaufman, Yoram J.; Fraser, Robert S.
1990-01-01
The transport, optical properties, total mass, and removal of smoke produced by forest fires in western Canada during late July and early August 1982 are studied using NOAA 7 AVHRR data. Color composite imagery is produced to track the movement of the smoke over Canada and the U.S. as the smoke traveled thousands of km from the source region. Smoke optical thickness, particle size, and single scattering albedo are computed using radiances measured by AVHRR bands 1 and 2. Results show that smoke optical thickness ranged from less that 0.1 to greater than 3.7 and the geometric mean mass radii ranged from 300 to 900 nm. The smoke single scattering albedo ranged from 0.9 to nearly 1.0. The total smoke mass over the eastern U.S. ranged from 0.1 to 0.5 Tg, which is close to the 0.5 Tg estimated from the forest fuel content. The smoke lifetime is estimated to be between 15 and 20 days.
Damin, Craig A.; Nguyen, Vy H. T.; Niyibizi, Auguste S.; ...
2015-02-11
In this study, near-infrared scanning angle (SA) Raman spectroscopy was utilized to determine the interface location in bilayer films (a stack of two polymer layers) of polystyrene (PS) and polycarbonate (PC). Finite-difference-time-domain (FDTD) calculations of the sum square electric field (SSEF) for films with total bilayer thicknesses of 1200–3600 nm were used to construct models for simultaneously measuring the film thickness and the location of the buried interface between the PS and PC layers. Samples with total thicknesses of 1320, 1890, 2300, and 2750 nm and varying PS/PC interface locations were analyzed using SA Raman spectroscopy. Comparing SA Raman spectroscopymore » and optical profilometry measurements, the average percent difference in the total bilayer thickness was 2.0% for films less than ~2300 nm thick. The average percent difference in the thickness of the PS layer, which reflects the interface location, was 2.5% when the PS layer was less than ~1800 nm. SA Raman spectroscopy has been shown to be a viable, non-destructive method capable of determining the total bilayer thickness and buried interface location for bilayer samples consisting of thin polymer films with comparable indices of refraction.« less
Bassi, Shikha Talwar; Mohana, Kuppuswamy Parthasarthy
2014-01-01
Aim: To compare the spectral domain optical coherence tomography (SD-OCT) findings of the optic disc and the peripapillary retina of patients with a true papilledema and pseudopapilledema with and without optic nerve head drusen (ONHD). Study Design: Retrospective Case Control Study. Subjects and Methods: Peripapillary retinal nerve fiber layer (PPRNFL) thickness as depicted by SD-OCT of 94 eyes of 66 patients with papilledema (30 eyes), pseudopapiledema (31 eyes), and normal controls (33 eyes) was analyzed. The mean RNFL thickness, total retinal thickness (TRT) at a superior and inferior edge of the disc and the quadrant wise topography of increased RNFL were compared in all three groups. Sensitivity, specificity, and area under the receiver operating characteristic curve (AROC) were calculated for all the parameters. Results: The median RNFL thickness was 185.4 (129.5–349.3 μm), 122.3 (109–156.3 μm) and 91.62 ± 7 μm in papilledema, pseudopapilledema, and controls, respectively. Papilledema group had thicker PPRNFL in all quadrants except temporal quadrant. TRT was thicker in papilledema and pseudopapilledema compared to controls. ONHD could be directly visualized as high reflective clumps in the sub-retinal space or the RNFL in 30 eyes. Increased RNFL thickness in all four quadrants was noted 43.3% in papilledema and 9.7% in pseudopapilledema. Normal RNFL thickness in all four quadrants was noted in 0% in papilledema and 32.3% in pseudopapilledema. Nasal RNFL had the highest AROC (0.792) indicating high diagnostic ability to differentiate papilledema from pseudopapilledema. Conclusion: SD-OCT can be used as a tool to differentiate between papilledema and pseudopapilledema. PMID:25579359
Zhao, Jing; Wang, Ya Xing; Zhang, Qi; Wei, Wen Bin; Xu, Liang; Jonas, Jost B
2018-03-13
To study macular choroidal layer thickness, 3187 study participants from the population-based Beijing Eye Study underwent spectral-domain optical coherence tomography with enhanced depth imaging for thickness measurements of the macular small-vessel layer, including the choriocapillaris, medium-sized choroidal vessel layer (Sattler's layer) and large choroidal vessel layer (Haller's layer). In multivariate analysis, greater thickness of all three choroidal layers was associated (all P < 0.05) with higher prevalence of age-related macular degeneration (AMD) (except for geographic atrophy), while it was not significantly (all P > 0.05) associated with the prevalence of open-angle glaucoma or diabetic retinopathy. There was a tendency (0.07 > P > 0.02) toward thinner choroidal layers in chronic angle-closure glaucoma. The ratio of small-vessel layer thickness to total choroidal thickness increased (P < 0.001; multivariate analysis) with older age and longer axial length, while the ratios of Sattler's layer and Haller's layer thickness to total choroidal thickness decreased. A higher ratio of small-vessel layer thickness to total choroidal thickness was significantly associated with a lower prevalence of AMD (early type, intermediate type, late geographic type). Axial elongation-associated and aging-associated choroidal thinning affected Haller's and Sattler's layers more markedly than the small-vessel layer. Non-exudative and exudative AMD, except for geographic atrophy, was associated with slightly increased choroidal thickness.
Optical properties of marine stratocumulus clouds modified by ships
NASA Technical Reports Server (NTRS)
King, Michael D.; Radke, Lawrence F.; Hobbs, Peter V.
1993-01-01
Results are presented of an application of the diffusion domain method to multispectral solar radiation measurements obtained deep within a marine stratocumulus cloud layer modified by pollution from ships. In situ airborne measurements of the relative angular distribution of scattered radiation are compared to known asymptotic expressions for the intensity field deep within an optically thick cloud layer. Analytical expressions relating the ratio of the nadir-to-zenith intensities to surface reflectance, similarity parameter, and scaled optical depth beneath the aircraft flight level are used to analyze measurements obtained with the cloud absorption radiometer mounted on the University of Washington's C-131A research aircraft. It is shown that the total optical thickness of the cloud layer increased in the ship tracks, in contrast to the similarity parameter, which decreased. The decrease in absorption was a direct consequence of the reduction in cloud droplet size that occurred within the ship tracks.
NASA Astrophysics Data System (ADS)
Xu, Xu; Li, Bincheng; He, Wenyan; Wang, Changjun; Wei, Ming
2018-04-01
Gemini-style protected-silver mirror (Sub / NiCrNx / Ag / NiCrNx / SiNx / Air) is a suitable choice for optical instruments requiring both long-term environmental durability and high broadband reflectance. Three Gemini-style protected-silver mirrors with NiCrNx interlayer thicknesses between 0.1 and 0.6 nm were prepared by magnetron sputtering, and the dependences of spectral properties and environmental durability of these protected-silver mirrors on the thickness of NiCrNx interlayer between the silver layer and SiNx layer were investigated in-depth. The reflectance, transmittance and total scattering loss measurements, optical microscope, and scanning electron microscope imaging were employed to characterize the spectral properties and surface morphology, and accelerated environmental tests, including humidity test and salt fog test, were applied to investigate the environmental durability. The experimental results showed that both optical and corrosion-resistant properties of protected-silver mirrors were NiCrNx interlayer thickness dependent, and an optimum NiCrNx interlayer thickness should be ˜0.3 nm for Gemini-style protected-silver mirrors to have reasonably both high reflectance in a broadband spectral range from visible to far infrared and good corrosion resistance for long-lifetime applications in harsh environments.
Veligdan, James Thomas
1997-01-01
An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.
Nabok, Alexei; Tsargorodskaya, Anna; Davis, Frank; Higson, Séamus P J
2007-10-31
The adsorption of genomic DNA and subsequent interactions between adsorbed and solvated DNA was studied using a novel sensitive optical method of total internal reflection ellipsometry (TIRE), which combines spectroscopic ellipsometry with surface plasmon resonance (SPR). Single strands of DNA of two species of fish (herring and salmon) were electrostatically adsorbed on top of polyethylenimine films deposited upon gold coated glass slides. The ellipsometric spectra were recorded and data fitting utilized to extract optical parameters (thickness and refractive index) of adsorbed DNA layers. The further adsorption of single stranded DNA from an identical source, i.e. herring ss-DNA on herring ss-DNA or salmon ss-DNA on salmon ss-DNA, on the surface was observed to give rise to substantial film thickness increases at the surface of about 20-21 nm. Conversely adsorption of DNA from alternate species, i.e. salmon ss-DNA on herring ss-DNA or herring ss-DNA on salmon ss-DNA, yielded much smaller changes in thickness of 3-5 nm. AFM studies of the surface roughness of adsorbed layers were in line with the TIRE data.
Real-time optical fiber dosimeter probe
NASA Astrophysics Data System (ADS)
Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy
2011-03-01
There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.
Shin, Hye-Young; Park, Hae-Young Lopilly; Jung, Younhea; Choi, Jin-A; Park, Chan Kee
2014-10-01
To compare the initial visual field (VF) defect pattern and the spectral-domain optical coherence tomography (OCT) parameters and investigate the effects of distinct types of optic disc damage on the diagnostic performance of these OCT parameters in early glaucoma. Retrospective, observational study. A total of 138 control eyes and 160 eyes with early glaucoma were enrolled. The glaucomatous eyes were subdivided into 4 groups according to the type of optic disc damage: focal ischemic (FI) group, myopic (MY) group, senile sclerotic (SS) group, and generalized enlargement (GE) group. The values of total deviation (TD) maps were analyzed, and superior-inferior (S-I) differences of TD were calculated. The optic nerve head (ONH) parameters, peripapillary retinal nerve fiber layer (pRNFL), and ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured. Comparison of diagnostic ability using area under the receiver operating characteristic curves (AUCs). The S-I and central S-I difference of the FI group were larger than those of the GE group. The rim area of the SS group was larger than those of the 3 other groups, and the vertical cup-to-disc ratio (CDR) of the GE group was larger than that of the MY group. In addition, the minimum and inferotemporal GCIPL thicknesses of the FI group were smaller than those of the GE group. The AUC of the rim area (0.89) was lower than that of the minimum GCIPL (0.99) in the SS group, and the AUC of the vertical CDR (0.90) was lower than that of the minimum GCIPL (0.99) in the MY group. Furthermore, the AUCs of the minimum GCIPL thicknesses of the FI and MY group were greater than those of the average pRNFL thickness for detecting glaucoma, as opposed to the SS and GE. The OCT parameters differed among the 4 groups on the basis of the distinct optic disc appearance and initial glaucomatous damage pattern. Clinicians should be aware that the diagnostic capability of OCT parameters could differ according to the type of optic disc damage in early glaucoma. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Fauchez, Thomas; Platnick, Steven; Meyer, Kerry; Cornet, Celine; Szczap, Frederic; Varnai, Tamas
2017-01-01
This paper presents a study on the impact of cirrus cloud heterogeneities on MODIS simulated thermal infrared (TIR) brightness temperatures (BTs) at the top of the atmosphere (TOA) as a function of spatial resolution from 50 meters to 10 kilometers. A realistic 3-D (three-dimensional) cirrus field is generated by the 3DCLOUD model (average optical thickness of 1.4, cloudtop and base altitudes at 10 and 12 kilometers, respectively, consisting of aggregate column crystals of D (sub eff) equals 20 microns), and 3-D thermal infrared radiative transfer (RT) is simulated with the 3DMCPOL (3-D Monte Carlo Polarized) code. According to previous studies, differences between 3-D BT computed from a heterogenous pixel and 1-D (one-dimensional) RT computed from a homogeneous pixel are considered dependent at nadir on two effects: (i) the optical thickness horizontal heterogeneity leading to the plane-parallel homogeneous bias (PPHB); and the (ii) horizontal radiative transport (HRT) leading to the independent pixel approximation error (IPAE). A single but realistic cirrus case is simulated and, as expected, the PPHB mainly impacts the low-spatial resolution results (above approximately 250 meters), with averaged values of up to 5-7 K (thousand), while the IPAE mainly impacts the high-spatial resolution results (below approximately 250 meters) with average values of up to 1-2 K (thousand). A sensitivity study has been performed in order to extend these results to various cirrus optical thicknesses and heterogeneities by sampling the cirrus in several ranges of parameters. For four optical thickness classes and four optical heterogeneity classes, we have found that, for nadir observations, the spatial resolution at which the combination of PPHB and HRT effects is the smallest, falls between 100 and 250 meters. These spatial resolutions thus appear to be the best choice to retrieve cirrus optical properties with the smallest cloud heterogeneity-related total bias in the thermal infrared. For off-nadir observations, the average total effect is increased and the minimum is shifted to coarser spatial resolutions.
Rohrbach, Daniel J.; Muffoletto, Daniel; Huihui, Jonathan; Saager, Rolf; Keymel, Kenneth; Paquette, Anne; Morgan, Janet; Zeitouni, Nathalie; Sunar, Ulas
2014-01-01
Rationale and Objectives The treatment of nonmelanoma skin cancer (NMSC) is usually by surgical excision or Mohs micrographic surgery and alternatively may include photodynamic therapy (PDT). To guide surgery and to optimize PDT, information about the tumor structure, optical parameters, and vasculature is desired. Materials and Methods Spatial frequency domain imaging (SFDI) can map optical absorption, scattering, and fluorescence parameters that can enhance tumor contrast and quantify light and photosensitizer dose. High frequency ultrasound (HFUS) imaging can provide high-resolution tumor structure and depth, which is useful for both surgery and PDT planning. Results Here, we present preliminary results from our recently developed clinical instrument for patients with NMSC. We quantified optical absorption and scattering, blood oxygen saturation (StO2), and total hemoglobin concentration (THC) with SFDI and lesion thickness with ultrasound. These results were compared to histological thickness of excised tumor sections. Conclusions SFDI quantified optical parameters with high precision, and multiwavelength analysis enabled 2D mappings of tissue StO2 and THC. HFUS quantified tumor thickness that correlated well with histology. The results demonstrate the feasibility of the instrument for noninvasive mapping of optical, physiological, and ultrasound contrasts in human skin tumors for surgery guidance and therapy planning. PMID:24439339
Optical coherence tomography study of retinal changes in normal aging and after ischemia.
Shariati, Mohammad Ali; Park, Joyce Ho; Liao, Yaping Joyce
2015-05-01
Age-related thinning of the retinal ganglion cell axons in the nerve fiber layer has been measured in humans using optical coherence tomography (OCT). In this study, we used OCT to measure inner retinal changes in 3-month-, 1-year-, and 2-year-old mice and after experimental anterior ischemic optic neuropathy (AION). We used OCT to quantify retinal thickness in over 200 eyes at different ages before and after a photochemical thrombosis model of AION. The scans were manually or automatically segmented. In normal aging, there was 1.3-μm thinning of the ganglion cell complex (GCC) between 3 months and 1 year (P < 0.0001) and no further thinning at 2 years. In studying age-related inner retinal changes, measurement of the GCC (circular scan) was superior to that of the total retinal thickness (posterior pole scan) despite the need for manual segmentation because it was not contaminated by outer retinal changes. Three weeks after AION, there was 8.9-μm thinning of the GCC (circular scan; P < 0.0001), 50-μm thinning of the optic disc (posterior pole scan; P < 0.0001), and 17-μm thinning of the retina (posterior pole scan; P < 0.0001) in the 3-month-old group. Changes in the older eyes after AION were similar to those of the 3-month-old group. Optical coherence tomography imaging of a large number of eyes showed that, like humans, mice exhibited small, age-related inner retinal thinning. Measurement of the GCC was superior to total retinal thickness in quantifying age-related changes, and both circular and posterior pole scans were useful to track short-term changes after AION.
Wang, Jui-Kai; Kardon, Randy H.; Kupersmith, Mark J.; Garvin, Mona K.
2012-01-01
Purpose. To develop an automated method for the quantification of volumetric optic disc swelling in papilledema subjects using spectral-domain optical coherence tomography (SD-OCT) and to determine the extent that such volumetric measurements correlate with Frisén scale grades (from fundus photographs) and two-dimensional (2-D) peripapillary retinal nerve fiber layer (RNFL) and total retinal (TR) thickness measurements from SD-OCT. Methods. A custom image-analysis algorithm was developed to obtain peripapillary circular RNFL thickness, TR thickness, and TR volume measurements from SD-OCT volumes of subjects with papilledema. In addition, peripapillary RNFL thickness measures from the commercially available Zeiss SD-OCT machine were obtained. Expert Frisén scale grades were independently obtained from corresponding fundus photographs. Results. In 71 SD-OCT scans, the mean (± standard deviation) resulting TR volumes for Frisén scale 0 to scale 4 were 11.36 ± 0.56, 12.53 ± 1.21, 14.42 ± 2.11, 17.48 ± 2.63, and 21.81 ± 3.16 mm3, respectively. The Spearman's rank correlation coefficient was 0.737. Using 55 eyes with valid Zeiss RNFL measurements, Pearson's correlation coefficient (r) between the TR volume and the custom algorithm's TR thickness, the custom algorithm's RNFL thickness, and Zeiss' RNFL thickness was 0.980, 0.929, and 0.946, respectively. Between Zeiss' RNFL and the custom algorithm's RNFL, and the study's TR thickness, r was 0.901 and 0.961, respectively. Conclusions. Volumetric measurements of the degree of disc swelling in subjects with papilledema can be obtained from SD-OCT volumes, with the mean volume appearing to be roughly linearly related to the Frisén scale grade. Using such an approach can provide a more continuous, objective, and robust means for assessing the degree of disc swelling compared with presently available approaches. PMID:22599584
Non-destructive analysis of DU content in the NIF hohlraums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharibyan, Narek; Moody, Ken J.; Shaughnessy, Dawn A.
2015-12-16
The advantage of using depleted uranium (DU) hohlraums in high-yield deuterium-tritium (DT) shots at the National Ignition Facility (NIF) is addressed by Döppner, et al., in great detail [1]. This DU based hohlraum incorporates a thin layer of DU, ~7 μm thick, on the inner surface along with a thin layer of a gold coating, ~0.7 μm thick, while the outer layer is ~22 μm thick gold. A thickness measurement of the DU layer can be performed using an optical microscope where the total DU weight can be computed provided a uniform DU layer. However, the uniformity of the thicknessmore » is not constant throughout the hohlraum since CAD drawing calculations of the DU weight do not agree with the computed values from optical measurements [2]. Therefore, a non-destructive method for quantifying the DU content in hohlraums has been established by utilizing gamma-ray spectroscopy. The details of this method, along with results from several hohlraums, are presented in this report.« less
Multilayer Dielectric Transmissive Optical Phase Modulator
NASA Technical Reports Server (NTRS)
Keys, Andrew Scott; Fork, Richard Lynn
2004-01-01
A multilayer dielectric device has been fabricated as a prototype of a low-loss, low-distortion, transmissive optical phase modulator that would provide as much as a full cycle of phase change for all frequency components of a transmitted optical pulse over a frequency band as wide as 6.3 THz. Arrays of devices like this one could be an alternative to the arrays of mechanically actuated phase-control optics (adaptive optics) that have heretofore been used to correct for wave-front distortions in highly precise optical systems. Potential applications for these high-speed wave-front-control arrays of devices include agile beam steering, optical communications, optical metrology, optical tracking and targeting, directional optical ranging, and interferometric astronomy. The device concept is based on the same principle as that of band-pass interference filters made of multiple dielectric layers with fractional-wavelength thicknesses, except that here there is an additional focus on obtaining the desired spectral phase profile in addition to the device s spectral transmission profile. The device includes a GaAs substrate, on which there is deposited a stack of GaAs layers alternating with AlAs layers, amounting to a total of 91 layers. The design thicknesses of the layers range from 10 nm to greater than 1 micrometer. The number of layers and the thickness of each layer were chosen in a computational optimization process in which the wavelength dependences of the indices of refraction of GaAs and AlAs were taken into account as the design was iterated to maximize the transmission and minimize the group-velocity dispersion for a wavelength band wide enough to include all significant spectral components of the pulsed optical signal to be phase modulated.
2014-01-01
Purpose. Optical coherence tomography (OCT) has been used to investigate papilledema in single-site, mostly retrospective studies. We investigated whether spectral-domain OCT (SD-OCT), which provides thickness and volume measurements of the optic nerve head and retina, could reliably demonstrate structural changes due to papilledema in a prospective multisite clinical trial setting. Methods. At entry, 126 subjects in the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) with mild visual field loss had optic disc and macular scans, using the Cirrus SD-OCT. Images were analyzed by using the proprietary commercial and custom 3D-segmentation algorithms to calculate retinal nerve fiber layer (RNFL), total retinal thickness (TRT), optic nerve head volume (ONHV), and retinal ganglion cell layer (GCL) thickness. We evaluated variability, with interocular comparison and correlation between results for both methods. Results. The average RNFL thickness > 95% of normal controls in 90% of eyes and the RNFL, TRT, ONH height, and ONHV showed strong (r > 0.8) correlations for interocular comparisons. Variability for repeated testing of OCT parameters was low for both methods and intraclass correlations > 0.9 except for the proprietary GCL thickness. The proprietary algorithm–derived RNFL, TRT, and GCL thickness measurements had failure rates of 10%, 16%, and 20% for all eyes respectively, which were uncommon with 3D-segmentation–derived measurements. Only 7% of eyes had GCL thinning that was less than fifth percentile of normal age-matched control eyes by both methods. Conclusions. Spectral-domain OCT provides reliable continuous variables and quantified assessment of structural alterations due to papilledema. (ClinicalTrials.gov number, NCT01003639.) PMID:25370510
Over-under double-pass interferometer
NASA Technical Reports Server (NTRS)
Schindler, R. A. (Inventor)
1977-01-01
An over-under double pass interferometer in which the beamsplitter area and thickness can be reduced to conform only with optical flatness considerations was achieved by offsetting the optical center line of one cat's-eye retroreflector relative to the optical center line of the other in order that one split beam be folded into a plane distinct from the other folded split beam. The beamsplitter is made transparent in one area for a first folded beam to be passed to a mirror for doubling back and is made totally reflective in another area for the second folded beam to be reflected to a mirror for doubling back. The two beams thus doubled back are combined in the central, beamsplitting area of the beamsplitting and passed to a detector. This makes the beamsplitter insensitive to minimum thickness requirements and selection of material.
Over-under double-pass interferometer
NASA Technical Reports Server (NTRS)
Schindler, Rudolf A. (Inventor)
1980-01-01
An over-under double-pass interferometer in which the beamsplitter area and thickness can be reduced to conform only with optical flatness considerations is achieved by offsetting the optical center line of one cat's-eye retroreflector relative to the optical center line of the other in order that one split beam be folded into a plane distinct from the other folded split beam. The beamsplitter is made transparent in one area for a first folded beam to be passed to a mirror for doubling back and is made totally reflective in another area for the second folded beam to be reflected to a mirror for doubling back. The two beams thus doubled back are combined in the central, beam-splitting area of the beamsplitter and passed to a detector. This makes the beamsplitter insensitive to minimum-thickness requirements and selection of material.
Liu, Langechuan; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao
2014-01-01
Purpose: Active matrix flat-panel imagers (AMFPIs) incorporating thick, segmented scintillators have demonstrated order-of-magnitude improvements in detective quantum efficiency (DQE) at radiotherapy energies compared to systems based on conventional phosphor screens. Such improved DQE values facilitate megavoltage cone-beam CT (MV CBCT) imaging at clinically practical doses. However, the MV CBCT performance of such AMFPIs is highly dependent on the design parameters of the scintillators. In this paper, optimization of the design of segmented scintillators was explored using a hybrid modeling technique which encompasses both radiation and optical effects. Methods: Imaging performance in terms of the contrast-to-noise ratio (CNR) and spatial resolution of various hypothetical scintillator designs was examined through a hybrid technique involving Monte Carlo simulation of radiation transport in combination with simulation of optical gain distributions and optical point spread functions. The optical simulations employed optical parameters extracted from a best fit to measurement results reported in a previous investigation of a 1.13 cm thick, 1016 μm pitch prototype BGO segmented scintillator. All hypothetical designs employed BGO material with a thickness and element-to-element pitch ranging from 0.5 to 6 cm and from 0.508 to 1.524 mm, respectively. In the CNR study, for each design, full tomographic scans of a contrast phantom incorporating various soft-tissue inserts were simulated at a total dose of 4 cGy. Results: Theoretical values for contrast, noise, and CNR were found to be in close agreement with empirical results from the BGO prototype, strongly supporting the validity of the modeling technique. CNR and spatial resolution for the various scintillator designs demonstrate complex behavior as scintillator thickness and element pitch are varied—with a clear trade-off between these two imaging metrics up to a thickness of ∼3 cm. Based on these results, an optimization map indicating the regions of design that provide a balance between these metrics was obtained. The map shows that, for a given set of optical parameters, scintillator thickness and pixel pitch can be judiciously chosen to maximize performance without resorting to thicker, more costly scintillators. Conclusions: Modeling radiation and optical effects in thick, segmented scintillators through use of a hybrid technique can provide a practical way to gain insight as to how to optimize the performance of such devices in radiotherapy imaging. Assisted by such modeling, the development of practical designs should greatly facilitate low-dose, soft tissue visualization employing MV CBCT imaging in external beam radiotherapy. PMID:24877827
Ho, Joyce K.; Stanford, Madison P.; Shariati, Mohammad A.; Dalal, Roopa; Liao, Yaping Joyce
2013-01-01
Purpose. The optic nerve is part of the central nervous system, and interruption of this pathway due to ischemia typically results in optic atrophy and loss of retinal ganglion cells. In this study, we assessed in vivo retinal changes following murine anterior ischemic optic neuropathy (AION) by using spectral-domain optical coherence tomography (SD-OCT) and compared these anatomic measurements to that of histology. Methods. We induced ischemia at the optic disc via laser-activated photochemical thrombosis, performed serial SD-OCT and manual segmentation of the retinal layers to measure the ganglion cell complex (GCC) and total retinal thickness, and correlated these measurements with that of histology. Results. There was impaired perfusion and leakage at the optic disc on fluorescein angiography immediately after AION and severe swelling and distortion of the peripapillary retina on day-1. We used SD-OCT to quantify the changes in retinal thickness following experimental AION, which revealed significant thickening of the GCC on day-1 after ischemia followed by gradual thinning that plateaued by week-3. Thickness of the peripapillary sensory retina was also increased on day-1 and thinned chronically. This pattern of acute retinal swelling and chronic thinning on SD-OCT correlated well with changes seen in histology and corresponded to loss of retinal ganglion layer cells after ischemia. Conclusions. This was a serial SD-OCT quantification of acute and chronic changes following experimental AION, which revealed changes in the GCC similar to that of human AION, but over a time frame of weeks rather than months. PMID:23887804
Ryals, Renee C.; Andrews, Michael D.; Datta, Shreya; Coyner, Aaron S.; Fischer, Cody M.; Wen, Yuquan; Pennesi, Mark E.; McGill, Trevor J.
2017-01-01
Purpose Prospective treatments for age-related macular degeneration and inherited retinal degenerations are commonly evaluated in the Royal College of Surgeons (RCS) rat before translation into clinical application. Historically, retinal thickness obtained through postmortem anatomic assessments has been a key outcome measure; however, utility of this measurement is limited because it precludes the ability to perform longitudinal studies. To overcome this limitation, the present study was designed to provide a baseline longitudinal quantification of retinal thickness in the RCS rat by using spectral-domain optical coherence tomography (SD-OCT). Methods Horizontal and vertical linear SD-OCT scans centered on the optic nerve were captured from Long-Evans control rats at P30, P60, P90 and from RCS rats between P17 and P90. Total retina (TR), outer nuclear layer+ (ONL+), inner nuclear layer (INL), and retinal pigment epithelium (RPE) thicknesses were quantified. Histologic sections of RCS retina obtained from P21 to P60 were compared to SD-OCT images. Results In RCS rats, TR and ONL+ thickness decreased significantly as compared to Long-Evans controls. Changes in INL and RPE thickness were not significantly different between control and RCS retinas. From P30 to P90 a subretinal hyperreflective layer (HRL) was observed and quantified in RCS rats. After correlation with histology, the HRL was identified as disorganized outer segments and the location of accumulated debris. Conclusions Retinal layer thickness can be quantified longitudinally throughout the course of retinal degeneration in the RCS rat by using SD-OCT. Thickness measurements obtained with SD-OCT were consistent with previous anatomic thickness assessments. This study provides baseline data for future longitudinal assessment of therapeutic agents in the RCS rat. PMID:28253400
Ryals, Renee C; Andrews, Michael D; Datta, Shreya; Coyner, Aaron S; Fischer, Cody M; Wen, Yuquan; Pennesi, Mark E; McGill, Trevor J
2017-03-01
Prospective treatments for age-related macular degeneration and inherited retinal degenerations are commonly evaluated in the Royal College of Surgeons (RCS) rat before translation into clinical application. Historically, retinal thickness obtained through postmortem anatomic assessments has been a key outcome measure; however, utility of this measurement is limited because it precludes the ability to perform longitudinal studies. To overcome this limitation, the present study was designed to provide a baseline longitudinal quantification of retinal thickness in the RCS rat by using spectral-domain optical coherence tomography (SD-OCT). Horizontal and vertical linear SD-OCT scans centered on the optic nerve were captured from Long-Evans control rats at P30, P60, P90 and from RCS rats between P17 and P90. Total retina (TR), outer nuclear layer+ (ONL+), inner nuclear layer (INL), and retinal pigment epithelium (RPE) thicknesses were quantified. Histologic sections of RCS retina obtained from P21 to P60 were compared to SD-OCT images. In RCS rats, TR and ONL+ thickness decreased significantly as compared to Long-Evans controls. Changes in INL and RPE thickness were not significantly different between control and RCS retinas. From P30 to P90 a subretinal hyperreflective layer (HRL) was observed and quantified in RCS rats. After correlation with histology, the HRL was identified as disorganized outer segments and the location of accumulated debris. Retinal layer thickness can be quantified longitudinally throughout the course of retinal degeneration in the RCS rat by using SD-OCT. Thickness measurements obtained with SD-OCT were consistent with previous anatomic thickness assessments. This study provides baseline data for future longitudinal assessment of therapeutic agents in the RCS rat.
Kuhli-Hattenbach, Claudia; Koss, Michael Janusz; Kohnen, Thomas; Fronius, Maria
2015-11-01
To search for morphological abnormalities in compliant unilaterally amblyopic children with poor occlusion treatment outcomes, for the first time with electronically recorded patching dosage. We included school children with remaining interocular logMAR (logarithm of the minimum angle of resolution) difference ≥ 0.3 after patching time of more than 22 months and 1300 h total in a previous prospective study. Six patients with a mean age of 11.19 years were included. Four patients had anisometropic amblyopia and two patients had a mixed strabismic and anisometropic amblyopia. Best-corrected visual acuity, cycloplegic refraction, dilated fundus examination, optic disc morphology and macular thickness using optical coherence tomography (OCT), retinal visual acuity, color perception, and the presence of a relative afferent pupillary defect (RAPD) were assessed. Paired t tests were performed to compare optic disc values and macular thickness of the amblyopic eyes to those of the fellow eyes. Average (± SD) logMAR VA in the amblyopic eyes was 0.42 (±0.23) with a remaining average interocular difference (IOD) of 0.51 (± 0.23), despite electronically monitored occlusion treatment of more than 1300 h. All patients presented with hyperopia and a significantly different mean spherical equivalent of + 4.73 (± 2.73) D in the amblyopic eye compared with the fellow eye (p = 0.02). A statistically significant difference in macular thickness was found between amblyopic and fellow eyes, with amblyopic eyes having an increased average thickness (p = 0.0062) and total volume (p = 0.0091) of the macula. One patient had familial hereditary primary macrodisc in both eyes. Our results provide evidence that average macular thickness and total macular volume tended to be increased among these compliant amblyopic children with unsatisfactory occlusion treatment outcomes. Further studies are warranted to evaluate whether morphological changes may have an impact on the effectiveness of amblyopia treatment. Moreover, our findings suggest that greater magnitude of hyperopia and anisometropia as well as older age may be risk factors associated with a poor visual acuity outcome among compliant amblyopic children.
Fabrication and characterization of a real-time optical fiber dosimeter probe
NASA Astrophysics Data System (ADS)
Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy
2011-07-01
There is a pressing need for a low cost, passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on the deposition of a radiochromic thin film on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500 cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively. An improved optical fiber probe fabrication method is presented.
Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell
NASA Astrophysics Data System (ADS)
Zaki, A. A.; El-Amin, A. A.
2017-12-01
In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.
García-Medina, José Javier; García-Piñero, María; Del-Río-Vellosillo, Mónica; Fares-Valdivia, Jesarán; Ragel-Hernández, Ana Belén; Martínez-Saura, Salvador; Cárcel-López, María Dolores; Zanon-Moreno, Vicente; Pinazo-Duran, María Dolores; Villegas-Pérez, María Paz
2017-11-01
To compare thicknesses of intraretinal layers segmented by spectral-domain optical coherence tomography (SD-OCT) between autism spectrum disorder (ASD) and neurotypical (NT) individuals. We performed 2 scans on 108 eyes from 54 participants (27 high-functioning ASD and 27 age- and sex-matched NT subjects): macular fast volume and peripapillary retinal nerve fiber layer (pRNFL). Macula was automatically segmented. The mean foveal and macular thickness of nine different layers and the thickness of nine pRNFL sectors were considered. Data from the right and left eyes were averaged for each participant. The results were compared between the ASD and NT groups. Associations between the Kaufman brief intelligence test (K-BIT), head circumference and SD-OCT results were also investigated in ASD individuals. ASD subjects showed greater foveal thickness at total retina, total inner retina, inner plexiform and inner nuclear layers, and greater macular thickness at total retina and total inner retina. Inferior, nasal inferior and temporal inferior sectors of pRNFL were also thicker in the ASD participants than in the controls (P < 0.05, unpaired t-test). Significant correlations were found between some K-BIT results and temporal inferior and inferior pRNFL thicknesses in the ASD group (P < 0.05, Spearman's rank correlation). No associations were seen between head circumference and OCT parameters. There are intraretinal thickenings at different locations in ASD subjects when compared to NT controls. This fact should be taken into account when interpreting SD-OCT examinations in ASD individuals. Plus, some pRNFL thicknesses present positive correlations with scores of cognitive status in ASD.
NASA Astrophysics Data System (ADS)
Ko, Tony H.; Hartl, Ingmar; Drexler, Wolfgang; Ghanta, Ravi K.; Fujimoto, James G.
2002-06-01
Quantitative, three-dimensional mapping of retinal architectural morphology was achieved using an ultrahigh resolution ophthalmic OCT system. This OCT system utilizes a broad bandwidth titanium-sapphire laser light source generating bandwidths of up to 300 nm near 800 nm center wavelength. The system enables real-time cross-sectional imaging of the retina with ~3 micrometers axial resolution. The macula and the papillomacular axis of a normal human subject were systematically mapped using a series of linear scans. Edge detection and segmentation algorithms were developed to quantify retinal and intraretinal thicknesses. Topographic mapping of the total retinal thickness and the total ganglion cell/inner plexiform layer thickness was achieved around the macula. A topographic mapping quantifying the progressive thickening of the nerve fiber layer (NFL) nasally approaching the optic disk was also demonstrated. The ability to create three-dimensional topographic mapping of retinal architectural morphology at ~3 micrometers axial resolution will be relevant for the diagnosis of many retinal diseases. The topographic quantification of these structures can serve as a powerful tool for developing algorithms and clinical scanning protocols for the screening and staging of ophthalmic diseases such as glaucoma.
Wanek, Justin; Blair, Norman P.; Chau, Felix Y.; Lim, Jennifer I.; Leiderman, Yannek I.; Shahidi, Mahnaz
2016-01-01
Purpose This article reports a method for en face optical coherence tomography (OCT) imaging and quantitative assessment of alterations in both thickness and reflectance of individual retinal layers at different stages of diabetic retinopathy (DR). Methods High-density OCT raster volume scans were acquired in 29 diabetic subjects divided into no DR (NDR) or non-proliferative DR (NPDR) groups and 22 control subjects (CNTL). A customized image segmentation method identified eight retinal layer interfaces and generated en face thickness maps and reflectance images for nerve fiber layer (NFL), ganglion cell and inner plexiform layers (GCLIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor outer segment layer (OSL), and retinal pigment epithelium (RPE). Mean thickness and intensity values were calculated in nine macular subfields for each retinal layer. Results En face thickness maps and reflectance images of retinal layers in CNTL subjects corresponded to normal retinal anatomy. Total retinal thickness correlated negatively with age in nasal subfields (R ≤−0.31; P ≤ 0.03, N = 51). In NDR subjects, NFL and OPL thickness were decreased (P = 0.05), and ONL thickness was increased (P = 0.04) compared to CNTL. In NPDR subjects, GCLIPL thickness was increased in perifoveal subfields (P < 0.05) and INL intensity was higher in all macular subfields (P = 0.04) compared to CNTL. Conclusions Depth and spatially resolved retinal thickness and reflectance measurements are potential biomarkers for assessment and monitoring of DR. PMID:27409491
NASA Technical Reports Server (NTRS)
Lee, Joonsuk; Yang, Ping; Dessler, Andrew E.; Baum, Bryan A.; Platnick, Steven
2005-01-01
Cloud microphysical and optical properties are inferred from the bidirectional reflectances simulated for a single-layered cloud consisting of an external mixture of ice particles and liquid droplets. The reflectances are calculated with a rigorous discrete ordinates radiative transfer model and are functions of the cloud effective particle size, the cloud optical thickness, and the values of the ice fraction in the cloud (i.e., the ratio of ice water content to total water content). In the present light scattering and radiative transfer simulations, the ice fraction is assumed to be vertically homogeneous; the habit (shape) percentage as a function of ice particle size is consistent with that used for the Moderate Resolution Imaging Spectroradiometer (MODIS) operational (Collection 4 and earlier) cloud products; and the surface is assumed to be Lambertian with an albedo of 0.03. Furthermore, error analyses pertaining to the inference of the effective particle sizes and optical thicknesses of mixed-phase clouds are performed. Errors are calculated with respect to the assumption of a cloud containing solely liquid or ice phase particles. The analyses suggest that the effective particle size inferred for a mixed-phase cloud can be underestimated (or overestimated) if pure liquid phase (or pure ice phase) is assumed for the cloud, whereas the corresponding cloud optical thickness can be overestimated (or underestimated).
NASA Astrophysics Data System (ADS)
Ghosh, S.; Osborne, S.; Smith, M. H.
The stratocumulus cloud widely studied during the ACE-2 (Aerosol Characterisation Experiment-2) campaign was contaminated on certain days with European pollution. This led to some modification of the aerosol and the cloud properties and forms the basis of this observational and modelling study. Model results showed that much of the pH levels for the ammonium sulphate based droplets ranged between 4-6 indicating that sulphate production was effected predominantly by hydrogen peroxide and to some extent, when the pH was above 5.5, by ozone causing a very substantial increase in the total amount of sulphate. Our paper has also examined the alteration of the radiative properties induced by SO2 pollution. Under clean conditions (26 June 1997) the optical thickness was the lowest with the largest droplet effective diameters. Under the most polluted conditions (18 July 1997) when the SO2 level was the maximum the optical thickness was the high- est with the lowest droplet effective diameter. The following day (19 July) was less polluted with lower SO2 concentration and the optical depth and the effective diame- ters were in between the two. For the most polluted case the geometric cloud thickness was also the largest, and our sensitivity studies performed over 4 horizontal sectional runs showed that the droplet number concentrations changed considerably, and since the cloud thickness and the LWC did not vary much over these sections, the overall optical properties did not show much horizontal variablity.
NASA Astrophysics Data System (ADS)
Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; Miguel, Argimiro
2013-04-01
The Universities of Malta and Valladolid (Spain) developed a measurement campaign, which took place in the Institute for Energy Technology in Marsaxlokk (Southern Malta) between May and October 2012, and it was supported by the Spanish government through the Project titled "Measurement campaign about Solar Radiation, Ozone, and Aerosol in the Mediterranean area" (with reference CGL2010-12140-E). This campaign provided the first ground-based measurements in Malta of erythemal radiation and UV index, which indicate the effectiveness of the sun exposure to produce sunburn on human skin. A wide variety of instruments was involved in the campaign, providing a complete atmospheric characterization. Data of erythemal radiation and UV index (from UVB-1 pyranometer), total shortwave radiaton (global and diffuse components from CM-6B pyranometers), and total ozone column, aerosol optical thickness, and precitable water column (from a Microtops-II sunphotometer) were available in the campaign. Ground-based and satellite instruments were used in the analysis, and several intercomparisons were carried out to validate remote sensing data. OMI, GOME, GOME-2, and MODIS instruments, which provide data of ozone, aerosol load and optical properties, were used to this end. The effects on solar radiation, ultraviolet and total shortwave ranges, of total ozone column, aerosol optical thickness and precipitable water column were obtained using radiation measurements at different fixed solar zenith angles. The empirical results shown a determinant role of the solar position, a negligible effect of ozone on total shortwave radiation, and a stronger attenuation provided by aerosol particles in the erythemal radiation. A variety of aerosol types from different sources (desert dust, biomass burning, continental, and maritime) reach Malta, in this campaign several dust events from the Sahara desert occurred and were analyzed establishing the air mass back-trajectories ending at Malta at several heights calculated by means of the HYSPLIT model. Hence, changes in the UV index due to atmospheric aerosol were characterized.
Enhanced sensitivity for optical loss measurement in planar thin-films (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yuan, Hua-Kang
2016-09-01
An organic-inorganic hybrid material benefits from processing advantages of organics and high refractive indices of inorganics. We focus on a titanium oxide hydrate system combined with common bulk polymers. In particular, we target thin-film structures of a few microns in thickness. Traditional Beer-Lambert approaches for measuring optical losses can only provide an upper limit estimate. This sensitivity is highly limited when considering the low-losses required for mid-range optical applications, on the order of 0.1 cm-1. For intensity based measurements, improving the sensitivity requires an increase in the optical path length. Instead, a new sensitive technique suitable for simple planar thin films is required. A number of systems were modelled to measure optical losses in films of 1 micron thick. The presented techniques utilise evanescent waves and total internal reflection to increase optical path length through the material. It was found that a new way of using prism coupling provides the greatest improvement in sensitivity. In keeping the requirements on the material simple, this method for measuring loss is well suited to any future developments of new materials in thin-film structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffel, J.A.; Mullinix, B.R.; Ranson, W.F.
An experimental technique to simulate and evaluate the effects of high concentrations of x-rays resulting from a nuclear detonation on missile structures is presented. Data from 34 tests are included to demonstrate the technique. The effects of variations in the foil thickness, capacitor voltage, and plate thickness on the total impulse and maximum strain in the structure were determined. The experimental technique utilizes a high energy capacitor discharge unit to explode an aluminum foil on the surface of the structure. The structural response is evaluated by optical methods using the grid slope deflection method. The fringe patterns were recorded usingmore » a high-speed framing camera. The data were digitized using an optical comparator with an x-y table. The analysis was performed on a CDC 6600 computer.« less
Thennadil, Suresh N; Chen, Yi-Chieh
2017-02-01
The usual approach for estimating bulk optical properties using an integrating sphere measurement setup is by acquiring spectra from three measurement modes namely collimated transmittance (T c ), total transmittance (T d ), and total diffuse reflectance (R d ), followed by the inversion of these measurements using the adding-doubling method. At high scattering levels, accurate acquisition of T c becomes problematic due to the presence of significant amounts of forward-scattered light in this measurement which is supposed to contain only unscattered light. In this paper, we propose and investigate the effectiveness of using alternative sets of integrating sphere measurements that avoid the use of T c and could potentially increase the upper limit of concentrations of suspensions at which bulk optical property measurements can be obtained in the visible-near-infrared (Vis-NIR) region of the spectrum. We examine the possibility of replacing T c with one or more reflectance measurements at different sample thicknesses. We also examine the possibility of replacing both the collimated (T c ) and total transmittance (T d ) measurements with reflectance measurements taken from different sample thicknesses. The analysis presented here indicates that replacing T c with a reflectance measurement can reduce the errors in the bulk scattering properties when scattering levels are high. When only multiple reflectance measurements are used, good estimates of the bulk optical properties can be obtained when the absorption levels are low. In addition, we examine whether there is any advantage in using three measurements instead of two to obtain the reduced bulk scattering coefficient and the bulk absorption coefficient. This investigation is made in the context of chemical and biological suspensions which have a much larger range of optical properties compared to those encountered with tissue.
NASA Astrophysics Data System (ADS)
Boers, R.; van Weele, M.; van Meijgaard, E.; Savenije, M.; Siebesma, A. P.; Bosveld, F.; Stammes, P.
2015-01-01
Time series of visibility and aerosol optical thickness for the Netherlands have been constructed for 1956-2100 based on observations and aerosol mass scenarios. Aerosol optical thickness from 1956 to 2013 has been reconstructed by converting time series of visibility to visible extinction which in turn are converted to aerosol optical thickness using an appropriate scaling depth. The reconstruction compares closely with remote sensing observations of aerosol optical thickness between 1960 and 2013. It appears that aerosol optical thickness was relatively constant over the Netherlands in the years 1955-1985. After 1985, visibility has improved, while at the same time aerosol optical thickness has decreased. Based on aerosol emission scenarios for the Netherlands three aerosol types have been identified: (1) a constant background consisting of sea salt and mineral dust, (2) a hydrophilic anthropogenic inorganic mixture, and (3) a partly hydrophobic mixture of black carbon (BC) and organic aerosols (OAs). A reduction in overall aerosol concentration turns out to be the most influential factor in the reduction in aerosol optical thickness. But during 1956-1985, an upward trend in hydrophilic aerosols and associated upward trend in optical extinction has partly compensated the overall reduction in optical extinction due to the reduction in less hydrophilic BC and OAs. A constant optical thickness ensues. This feature highlights the influence of aerosol hygroscopicity on time-varying signatures of atmospheric optical properties. Within the hydrophilic inorganic aerosol mixture there is a gradual shift from sulfur-based (1956-1985) to a nitrogen-based water aerosol chemistry (1990 onwards) but always modulated by the continual input of sodium from sea salt. From 2013 to 2100, visibility is expected to continue its increase, while at the same time optical thickness is foreseen to continue to decrease. The contribution of the hydrophilic mixture to the aerosol optical thickness will increase from 30% to 35% in 1956 to more than 70% in 2100. At the same time the contribution of black and organic aerosols will decrease by more than 80%.
Characteristics of peripapillary retinal nerve fiber layer in preterm children.
Wang, Jingyun; Spencer, Rand; Leffler, Joel N; Birch, Eileen E
2012-05-01
To examine quantitatively characteristics of the peripapillary retinal nerve fiber layer (RNFL) in preterm children using Fourier-domain optical coherence tomography (FD-OCT). Prospective cross-sectional study. A 3-mm high-resolution FD-OCT peripapillary RNFL circular scan centered on the optic disc was obtained from right eyes of 25 preterm children (10.6 ± 3.7 years old, 8 preterm and 17 with regressed retinopathy of prematurity with normal-appearing posterior poles) and 54 full-term controls (9.8 ± 3.2 years old). Images were analyzed using Spectralis FD-OCT software to obtain average thickness measurements for 6 sectors (temporal superior, temporal, temporal inferior, nasal inferior, nasal, nasal superior), and the global average. The RNFL global average for preterm children was 8% thinner than for full-term controls. In the preterm group, peripapillary RNFL thickness on the temporal side of the disc was 6% thicker than in full-term controls, while all other peripapillary RNFL sectors were 9% to 13% thinner. In the preterm group, temporal sector peripapillary RNFL thickness was correlated with gestational age (r = -0.47, P < .001), with foveal center total thickness (r = 0.48, P = .008, 1-tailed), and with visual acuity (r = 0.42; P = .026, 1-tailed). The significantly thinner RNFL global average for preterm children suggests that prematurity is associated with subclinical optic nerve hypoplasia. Significant correlations between temporal sector RNFL thickness and both the foveal thickness and visual acuity suggest that the peripapillary RNFL is related to abnormalities in macular development as a result of preterm birth. Copyright © 2012 Elsevier Inc. All rights reserved.
Diagnostic ability of macular ganglion cell-inner plexiform layer thickness in glaucoma suspects.
Xu, Xiaoyu; Xiao, Hui; Guo, Xinxing; Chen, Xiangxi; Hao, Linlin; Luo, Jingyi; Liu, Xing
2017-12-01
The purpose is to assess the diagnostic ability for early glaucoma of macular ganglion cell-inner plexiform layer (GCIPL) thickness in a Chinese population including glaucoma suspects.A total of 367 eyes with primary open-angle glaucoma (168 early glaucoma, 78 moderate glaucoma, and 121 advanced glaucoma), 52 eyes with ocular hypertension (OHT), 59 eyes with enlarged cup-to-disc ratio (C/D), and 225 normal eyes were included. GCIPL thickness (average, minimum, superotemporal, superior, superonasal, inferonasal, inferior, and inferotemporal), retinal nerve fiber layer (RNFL) thickness, and optic nerve head (ONH) parameters were measured using Cirrus high-definition optical coherence tomography (OCT) and compared. The diagnostic ability of OCT parameters was assessed by area under receiver operating characteristic curve (AUROC) in 3 distinguishing groups: normal eyes and eyes with early glaucoma, normal eyes and eyes with glaucoma regardless of disease stage, and nonglaucomatous eyes (normal eyes, eyes with OHT, and enlarged C/D) and early glaucomatous eyes.Glaucomatous eyes showed a significant reduction in GCIPL thickness compared with nonglaucomatous eyes. In all 3 distinguishing groups, best-performing parameters of GCIPL thickness, RNFL thickness, and ONH parameters were minimum GCIPL thickness (expressed in AUROC, 0.899, 0.952, and 0.900, respectively), average RNFL thickness (0.904, 0.953, and 0.892, respectively), and rim area (0.861, 0.925, and 0.824, respectively). There was no statistical significance of AUROC between minimum GCIPL thickness and average RNFL thickness (all P > .05).GCIPL thickness could discriminate early glaucoma from normal and glaucoma suspects with good sensitivity and specificity. The glaucoma diagnostic ability of GCIPL thickness was comparable to that of RNFL thickness. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
The new design of final optics assembly on SG-III prototype facility
NASA Astrophysics Data System (ADS)
Li, Ping; Zhao, Runchang; Wang, Wei; Jia, Huaiting; Chen, Liangmin; Su, Jingqin
2014-09-01
To improve the performance of SG-III prototype facility (TIL-Technical Integration Line), final optics assembly (FOA) is re-designed. It contains that stray light and focusing ghosts are optimized, operational performance and environments are improved and the total thickness of optics is reduced. With the re-designed FOA, Some performance advantages are achieved. First, the optics damages are mitigated obviously, especially crystals and Focus lens; Second, stray light and focusing ghosts are controlled better that organic contamination sources inside FOA are eliminated; Third, maintenance and operation are more convenient for the atoms environment; Fourth, the focusable power on target is increased for lower B-integral.
All-Dielectric Multilayer Cylindrical Structures for Invisibility Cloaking
Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2015-01-01
We study optical response of all-dielectric multilayer structures and demonstrate that the total scattering of such structures can be suppressed leading to optimal invisibility cloaking. We use experimental material data and a genetic algorithm to reduce the total scattering by adjusting the material and thickness of various layers for several types of dielectric cores at telecommunication wavelengths. Our approach demonstrates 80-fold suppression of the total scattering cross-section by employing just a few dielectric layers. PMID:25858295
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, J. B.
Planetary substrate rotation for optical-coating deposition is evaluated based on initial and final positions for a given layer with different numbers of revolutions and various deposition-source locations. The influence of partial revolutions of the rotation system is analyzed relative to the total number of planetary revolutions in that layer to determine the relative impact on film thickness and uniformity. Furthermore, guidance is provided on the necessary planetary revolutions that should take place in each layer versus the expected error level in the layer thickness for the modeled system.
Huynh, Son C; Wang, Xiu Ying; Rochtchina, Elena; Mitchell, Paul
2006-09-01
To study the distribution of retinal nerve fiber layer (RNFL) thickness by ocular and demographic variables in a population-based study of young children. Population-based cross-sectional study. One thousand seven hundred sixty-five of 2238 (78.9%) eligible 6-year-old children participated in the Sydney Childhood Eye Study between 2003 and 2004. Mean age was 6.7 years (50.9% boys). Detailed examination included cycloplegic autorefraction and measurement of axial length. Retinal nerve fiber layer scans using an optical coherence tomographer were performed with a circular scan pattern of 3.4-mm diameter. Multivariate analyses were performed to examine the distribution of RNFL parameters with gender, ethnicity, axial length, and refraction. Peripapillary RNFL thickness and RNFL(estimated integral) (RNFL(EI)), which measures the total cross-sectional area of ganglion cell axons converging onto the optic nerve head. Peripapillary RNFL thickness and RNFL(EI) were normally distributed. The mean+/-standard deviation RNFL average thickness was 103.7+/-11.4 microm and RNFL(EI) was 1.05+/-0.12 mm2. Retinal nerve fiber layer thickness was least for the temporal quadrant (75.7+/-14.7 microm), followed by the nasal (81.7+/-19.6 microm), inferior (127.8+/-20.5 microm), and superior (129.5+/-20.6 microm) quadrants. Multivariate adjusted RNFL average thickness was marginally greater in boys than in girls (104.7 microm vs. 103.2 microm; P = 0.007) and in East Asian than in white children (107.7 microm vs. 102.7 microm; P<0.0001). The RNFL was thinner with greater axial length (P(trend)<0.0001) and less positive spherical equivalent refractions (P(trend) = 0.004). Retinal nerve fiber layer average thickness and RNFL(EI) followed a normal distribution. Retinal nerve fiber layer thickness varied marginally with gender, but differences were more marked between white and East Asian children. Retinal nerve fiber layer thinning was associated with increasing axial length and less positive refractions.
NASA Astrophysics Data System (ADS)
Das, M. R.; Mukherjee, A.; Mitra, P.
2017-09-01
We have studied the electrical conductivity, dielectric relaxation mechanism and impedance spectroscopy characteristics of nickel oxide (NiO) thin films synthesized by chemical bath deposition (CBD) method. Thickness dependent structural, optical and ac electrical characterization has been carried out and deposition time was varied to control the thickness. The material has been characterized using X-ray diffraction and UV-VIS spectrophotometer. Impedance spectroscopy analysis confirmed enhancement of ac conductivity and dielectric constant for films deposited with higher deposition time. Decrease of grain size in thicker films were confirmed from XRD analysis and activation energy of the material for electrical charge hopping process was increased with thickness of the film. Decrease in band gap in thicker films were observed which could be associated with creation of additional energy levels in the band gap of the material. Cole-Cole plot shows contribution of both grain and grain boundary towards total resistance and capacitance. The overall resistance was found to decrease from 14.6 × 105 Ω for 30 min deposited film ( 120 nm thick) to 2.42 × 105 Ω for 120 min deposited film ( 307 nm thick). Activation energy value to electrical conduction process evaluated from conductivity data was found to decrease with thickness. Identical result was obtained from relaxation time approach suggesting hopping mechanism of charge carriers.
Saini, VK; Gupta, Saroj; Sharma, Anjali
2014-01-01
ABSTRACT Purpose: To evaluate the normative data of macular thickness and retinal nerve fiber layer thickness (RNFL) among normal subjects using spectral domain optical coherence tomography (OCT). Materials and methods: Normal subjects presenting to a tertiary medical hospital were included in the study. All patient underwent clinical examination followed by study of macular thickness and RN FL thick ness by spectral domain Topc on OCT. The data was collected and analyzed for variations in gender and age. The data was also compared with available literature. Results: Total numbers of patients enrolled in the study were 154 (308 eyes). Numbers of males were 79 (158 eyes) and numbers of females were 75 (150 eyes). The mean age among males was 42.67 ± 12.15 years and mean age among females was 42.88 ± 11.73 years. Overall the mean mac ular thickness (central 1 mm zone) with SD - OCT was 241.75 ± 17.3 microns. The mean macular volume was 7.6 cu. mm ± 0.33. On analysis of the RNFL thickness, we observed that the RNFL was thickest in the inferior quadrant (138.58) followed by superior (122.30) nasal (116.32) and temporal quadrant (73.04). Gender-wise comparison of the data revealed no statistically significant difference for age, macular thickness parameters, volume and RFNL values except outer temporal thickness among males and females. No age-related difference was noted in the above parameters. On comparison with available norma tive data from India and elsewhere, we found significant variations with different machines. Conclusion: The study is the first to provide normative data using SD-OCT from central India. The data from spectral domain OCT correlated well with the values obtained from similar studies with SD - OCT. Values obtained from time domain OCT machines are different and are not comparable. How to cite this article: Agarwal P, Saini VK, Gupta S, Sharma A. Evaluation of Central Macular Thickness and Retinal Nerve Fiber Layer Thickness using Spectral Domain Optical Coherence Tomography in a Tertiary Care Hospital. J Curr Glaucoma Pract 2014;8(2):75-81. PMID:26997813
Browning, David J.; Glassman, Adam R.; Aiello, Lloyd P.; Bressler, Neil M.; Bressler, Susan; Danis, Ronald P.; Davis, Matthew D.; Ferris, Frederick L.; Huang, Suber S.; Kaiser, Peter K.; Kollman, Craig; Sadda, Srinavas; Scott, Ingrid U.; Qin, Haijing
2009-01-01
Objective To evaluate optical coherence tomography (OCT) measurements and methods of analysis of OCT data in studies of diabetic macular edema (DME). Design Associations of pairs of OCT variables and results of three analysis methods using data from two studies of DME. Participants Two hundred sixty-three subjects from a study of modified Early Treatment of Diabetic Retinopathy Study (mETDRS) versus modified macular grid (MMG) photocoagulation for DME and 96 subjects from a study of diurnal variation of DME. Methods Correlations were calculated for pairs of OCT variables at baseline and for changes in the variables over time. Distribution of OCT measurement changes, predictive factors for OCT measurement changes, and treatment group outcomes were compared when three measures of change in macular thickness were analyzed: absolute change in retinal thickness, relative change in retinal thickness, and relative change in retinal thickening. Main Outcome Measures Concordance of results using different OCT variables and analysis methods. Results Center point thickness correlated highly with central subfield mean thickness (CSMT) at baseline (0.98–0.99). The distributions of changes in CSMT were approximately normally distributed for absolute change in retinal thickness and relative change in retinal thickness, but not for relative change in retinal thickening. The macular thinning in the mETDRS group was significantly greater than in the MMG group when absolute change in retinal thickness was used, but not when relative change in thickness and relative change in thickening were used. Relative change in macular thickening provides unstable data in eyes with mild degrees of baseline thickening, unlike the situation with absolute or relative change in retinal thickness. Conclusions Central subfield mean thickness is the preferred OCT measurement for the central macula because of its higher reproducibility and correlation with other measurements of the central macula. Total macular volume may be preferred when the central macula is less important. Absolute change in retinal thickness is the preferred analysis method in studies involving eyes with mild macular thickening. Relative change in thickening may be preferable when retinal thickening is more severe. PMID:18675696
Browning, David J; Glassman, Adam R; Aiello, Lloyd P; Bressler, Neil M; Bressler, Susan B; Danis, Ronald P; Davis, Matthew D; Ferris, Frederick L; Huang, Suber S; Kaiser, Peter K; Kollman, Craig; Sadda, Srinavas; Scott, Ingrid U; Qin, Haijing
2008-08-01
To evaluate optical coherence tomography (OCT) measurements and methods of analysis of OCT data in studies of diabetic macular edema (DME). Associations of pairs of OCT variables and results of 3 analysis methods using data from 2 studies of DME. Two hundred sixty-three subjects from a study of modified Early Treatment of Diabetic Retinopathy Study (mETDRS) versus modified macular grid (MMG) photocoagulation for DME and 96 subjects from a study of diurnal variation of DME. Correlations were calculated for pairs of OCT variables at baseline and for changes in the variables over time. Distribution of OCT measurement changes, predictive factors for OCT measurement changes, and treatment group outcomes were compared when 3 measures of change in macular thickness were analyzed: absolute change in retinal thickness, relative change in retinal thickness, and relative change in retinal thickening. Concordance of results using different OCT variables and analysis methods. Center point thickness correlated highly with central subfield mean thickness (CSMT) at baseline (0.98-0.99). The distributions of changes in CSMT were approximately normally distributed for absolute change in retinal thickness and relative change in retinal thickness, but not for relative change in retinal thickening. Macular thinning in the mETDRS group was significantly greater than in the MMG group when absolute change in retinal thickness was used, but not when relative change in thickness and relative change in thickening were used. Relative change in macular thickening provides unstable data in eyes with mild degrees of baseline thickening, unlike the situation with absolute or relative change in retinal thickness. Central subfield mean thickness is the preferred OCT measurement for the central macula because of its higher reproducibility and correlation with other measurements of the central macula. Total macular volume may be preferred when the central macula is less important. Absolute change in retinal thickness is the preferred analysis method in studies involving eyes with mild macular thickening. Relative change in thickening may be preferable when retinal thickening is more severe.
Choroidal thickness in Chinese patients with non-arteritic anterior ischemic optic neuropathy.
Jiang, Libin; Chen, Lanlan; Qiu, Xiujuan; Jiang, Ran; Wang, Yaxing; Xu, Liang; Lai, Timothy Y Y
2016-08-31
Non-arteritic anterior ischemic optic neuropathy (NA-AION) is one of the most common types of ischemic optic neuropathy. Several recent studies suggested that abnormalities of choroidal thickness might be associated with NA-AION. The main objective of this case-control study was to evaluate whether choroidal thickness is an ocular risk factor for the development of NA-AION by evaluating the peripapillary and subfoveal choroidal thicknesses in affected Chinese patients. Forty-four Chinese patients with unilateral NA-AION were recruited and compared with 60 eyes of 60 normal age and refractive-error matched control subjects. Peripapillary and subfoveal choroidal thicknesses were measured by enhanced depth imaging optical coherence tomography. Choroidal thicknesses of eyes with NA-AION and unaffected fellow eyes were compared with normal controls. Choroidal thicknesses of NA-AION eyes with or without optic disc edema were also compared. The correlation between choroidal thickness and retinal nerve fiber layer (RNFL) thickness, logMAR best-corrected visual acuity (BCVA), and the mean deviation (MD) of Humphrey static perimetry in NA-AION eyes were analyzed. The peripapillary choroidal thicknesses at the nasal, nasal inferior and temporal inferior segments in NA-AION eyes with optic disc edema were significantly thicker compared with that of normal subjects (P < 0.05). There was no significant difference in the choroidal thicknesses between the unaffected fellow eyes of NA-AION patients and normal eyes of healthy controls; or between the NA-AION eyes with resolved optic disc edema and normal eyes (all P > 0.05). No significant correlation between choroidal thickness and RNFL thickness, logMAR BCVA and perimetry MD was found in eyes affected by NA-AION (all P > 0.05). Increase in peripapillary choroid thickness in some segments was found in NA-ION eyes with optic disc edema. However, our findings do not support the hypothesis that choroidal thickness is abnormal in Chinese patients with NA-AION compared with normal subjects with similar age and refractive error status.
Infrared laboratory studies of synthetic planetary atmospheres
NASA Technical Reports Server (NTRS)
Williams, D.
1977-01-01
Topics covered include: the broadening of individual lines in the CO fundamental by various gases; total band absorptance as a function of absorber thickness and total effect pressure at various temperatures for bands of CO and N2O; nitric acid vapor content in the region of the ozone layer; optical properties of solid NH3; HSO4 concentration in Venus clouds; Burch's law of multiplicative transmittance for mixing absorbing gases when their lines are broadened by helium and hydrogen; ling strength and self-broadening parameters in the v3 fundamental of CO2 and N2O; optical constants of liquid ammonia, liquid methane, saturated hydrocarbons, ammonium hydride and ammonium salts.
A design study for an advanced ocean color scanner system. [spaceborne equipment
NASA Technical Reports Server (NTRS)
Kim, H. H.; Fraser, R. S.; Thompson, L. L.; Bahethi, O.
1980-01-01
Along with a colorimetric data analysis scheme, the instrumental parameters which need to be optimized in future spaceborne ocean color scanner systems are outlined. With regard to assessing atmospheric effects from ocean colorimetry, attention is given to computing size parameters of the aerosols in the atmosphere, total optical depth measurement, and the aerosol optical thickness. It is suggested that sensors based on the use of linear array technology will meet hardware objectives.
Correction Factor for Gaussian Deconvolution of Optically Thick Linewidths in Homogeneous Sources
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1999-01-01
Profiles of optically thick, non-Gaussian emission line profiles convoluted with Gaussian instrumental profiles are constructed, and are deconvoluted on the usual Gaussian basis to examine the departure from accuracy thereby caused in "measured" linewidths. It is found that "measured" linewidths underestimate the true linewidths of optically thick lines, by a factor which depends on the resolution factor r congruent to Doppler width/instrumental width and on the optical thickness tau(sub 0). An approximating expression is obtained for this factor, applicable in the range of at least 0 <= tau(sub 0) <= 10, which can provide estimates of the true linewidth and optical thickness.
Seo, Sam; Lee, Chong Eun; Jeong, Jae Hoon; Park, Ki Ho; Kim, Dong Myung; Jeoung, Jin Wook
2017-03-11
To determine the influences of myopia and optic disc size on ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) thickness profiles obtained by spectral domain optical coherence tomography (OCT). One hundred and sixty-eight eyes of 168 young myopic subjects were recruited and assigned to one of three groups according to their spherical equivalent (SE) values and optic disc area. All underwent Cirrus HD-OCT imaging. The influences of myopia and optic disc size on the GCIPL and RNFL thickness profiles were evaluated by multiple comparisons and linear regression analysis. Three-dimensional surface plots of GCIPL and RNFL thickness corresponding to different combinations of myopia and optic disc size were constructed. Each of the quadrant RNFL thicknesses and their overall average were significantly thinner in high myopia compared to low myopia, except for the temporal quadrant (all Ps ≤0.003). The average and all-sectors GCIPL were significantly thinner in high myopia than in moderate- and/or low-myopia (all Ps ≤0.002). The average OCT RNFL thickness was correlated significantly with SE (0.81 μm/diopter, P < 0.001), axial length (-1.44 μm/mm, P < 0.001), and optic disc area (5.35 μm/mm 2 , P < 0.001) by linear regression analysis. As for the OCT GCIPL parameters, average GCIPL thickness showed a significant correlation with SE (0.84 μm/diopter, P < 0.001) and axial length (-1.65 μm/mm, P < 0.001). There was no significant correlation of average GCIPL thickness with optic disc area. Three-dimensional curves showed that larger optic discs were associated with increased average RNFL thickness and that more-myopic eyes were associated with decreased average GCIPL and RNFL thickness. Myopia can significantly affect GCIPL and RNFL thickness profiles, and optic disc size has a significant influence on RNFL thickness. The current OCT maps employed in the evaluation of glaucoma should be analyzed in consideration of refractive status and optic disc size.
NASA Technical Reports Server (NTRS)
Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.
2005-01-01
An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.
NASA Astrophysics Data System (ADS)
Stapelfeldt, K. R.; Menard, F.; Brandner, W.; Padgett, D. L.; Krist, J. E.; Watson, A. M.
2000-12-01
Hubble Space Telescope images of the HV Tauri triple system show that HV Tau C appears as a compact bipolar nebula at visual wavelengths. Near-infrared adaptive optics observations made at the Canada France Hawaii Telescope show a similar morphology, and no directly visible star at wavelengths less than 2 microns. These results confirm the conclusions of Monin & Bouvier 2000, namely that HV Tau C is an optically thick circumstellar disk seen close to edge-on. The images are compared to scattered light models for circumstellar disks. We find that the HV Tau C disk has an outer radius of 85 AU, inclination of about 6 deg, gaussian scale height of 15 AU at its outer radius, and is flared. The thickness of the dark lane indicates a total disk mass about half that of Jupiter. There is clear evidence for declining dust opacity toward longer wavelengths, as the dust lane thickness shrinks by 30 between 0.8 and 2.2 microns; the trend is consistent with interstellar dust grains. Tidal truncation of the disk outer radius may have occurred in this system.
Photorefractive keratectomy in the cat eye: biological and optical outcomes
Nagy, Lana J.; MacRae, Scott; Yoon, Geunyoung; Wyble, Matthew; Wang, Jianhua; Cox, Ian; Huxlin, Krystel R.
2007-01-01
PURPOSE To quantify optical and biomechanical properties of the feline cornea before and after photorefractive keratectomy (PRK) and assess the relative contribution of different biological factors to refractive outcome. SETTING Dept. Ophthalmology, University of Rochester, Rochester, New York, U.S.A. METHODS Adult cats underwent 6D myopic or 4D hyperopic PRK over 6 or 8mm optical zones (OZ). Pre- and post-operative wavefront aberrations were measured, along with intraocular pressure, corneal hysteresis (CH), corneal resistance factor (CRF), axial length, corneal thickness and radii of curvature. Finally, post-mortem imunohistochemistry for Vimentin and α-smooth muscle actin was performed. RESULTS PRK changed ocular defocus, increased higher order aberrations and induced myofibroblast differentiation in cats. However, the intended defocus corrections were only achieved with 8mm OZs. Long-term flattening of the epithelial and stromal surfaces was noted following myopic, but nor hyperopic PRKs. Feline intraocular pressure was unaltered by PRK, but CH and CRF decreased. Over the ensuing 6 months, ocular aberrations and intraocular pressure remained stable, while central corneal thickness, CH and CRF increased back towards normal levels. CONCLUSIONS Cat corneas exhibited optical, histological and biomechanical reactions to PRK that resembled those previously described in humans, especially when optical zone size was normalized to total corneal area. However, cats exhibited significant stromal regeneration, causing a return to pre-operative corneal thickness, CH and CRF without significant regression of optical changes induced by the surgery. Thus, the principal effects of laser refractive surgery on ocular wavefront aberrations can be achieved in spite of clear, inter-species differences in corneal biology. PMID:17531702
EFFECT OF CHERENKOV LIGHT POLARIZATION ON TOTAL REFLECTION COUNTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowell, J.D.; Duteil, P.; Leontic, B.
1963-01-01
A rugged total internal reflection counter with a 3- to 5cm thick compact radiator was used at the CERN proton synchrotron for beam analysis. The threshold behavior of this counter was compared when filled with glycerol and with turpentine. Turpentine is optically active and rotates the plane of polarization about 7 un. Concent 85% /cm. Figures illustrate the effect of this polarization rotation. (A.G.W.)
A novel color vision test for detection of diabetic macular edema.
Shin, Young Joo; Park, Kyu Hyung; Hwang, Jeong-Min; Wee, Won Ryang; Lee, Jin Hak; Lee, In Bum; Hyon, Joon Young
2014-01-02
To determine the sensitivity of the Seoul National University (SNU) computerized color vision test for detecting diabetic macular edema. From May to September 2003, a total of 73 eyes of 73 patients with diabetes mellitus were examined using the SNU computerized color vision test and optical coherence tomography (OCT). Color deficiency was quantified as the total error score on the SNU test and as error scores for each of four color quadrants corresponding to yellows (Q1), greens (Q2), blues (Q3), and reds (Q4). SNU error scores were assessed as a function of OCT foveal thickness and total macular volume (TMV). The error scores in Q1, Q2, Q3, and Q4 measured by the SNU color vision test increased with foveal thickness (P < 0.05), whereas they were not correlated with TMV. Total error scores, the summation of Q1 and Q3, the summation of Q2 and Q4, and blue-yellow (B-Y) error scores were significantly correlated with foveal thickness (P < 0.05), but not with TMV. The observed correlation between SNU color test error scores and foveal thickness indicates that the SNU test may be useful for detection and monitoring of diabetic macular edema.
Chung, Jae Keun; Hwang, Young Hoon; Wi, Jae Min; Kim, Mijin; Jung, Jong Jin
2017-11-01
To investigate the glaucoma diagnostic abilities of vessel density parameters as determined by optical coherence tomography (OCT) angiography in different stages of glaucoma. A total of 113 healthy eyes and 140 glaucomatous eyes were enrolled. Diagnostic abilities of the OCT vessel density parameters in the optic nerve head (ONH), peripapillary, and macular regions were evaluated by calculating the area under the receiver operation characteristic curves (AUCs). AUCs of the peripapillary vessel density parameters and circumpapillary retinal nerve fiber layer (RNFL) thickness were compared. OCT angiography vessel densities in the ONH, peripapillary, and macular regions in the glaucomatous eyes were significantly lower than those in the healthy eyes (P < 0.05). Among the vessel density parameters, the average peripapillary vessel density showed higher AUC than the ONH and macular region (AUCs: 0.807, 0.566, and 0.651, respectively) for glaucoma detection. The peripapillary vessel density parameters showed similar AUCs with the corresponding sectoral RNFL thickness (P > 0.05). However, in the early stage of glaucoma, the AUCs of the inferotemporal and temporal peripapillary vessel densities were significantly lower than that of the RNFL thickness (P < 0.05). The glaucomatous eyes showed decreased vessel density as determined by OCT angiography. Although the peripapillary vessel density parameters showed similar glaucoma diagnostic ability with circumpapillary RNFL thickness, in the early stage, the vessel density parameters showed limited clinical value.
Effect of Indium nano-sandwiching on the structural and optical performance of ZnSe films
NASA Astrophysics Data System (ADS)
Al Garni, S. E.; Qasrawi, A. F.
In the current study, we attempted to explore the effects of the Indium nanosandwiching on the mechanical and optical properties of the physically evaporated ZnSe thin films by means of X-ray diffractions and ultraviolet spectrophotometry techniques. While the thickness of each layer of ZnSe was fixed at 1.0 μm, the thickness of the nanosandwiched Indium thin films was varied in the range of 25-100 nm. It was observed that the as grown ZnSe films exhibits cubic and hexagonal nature of crystallization as those of the ZnSe powders before the film deposition. The cubic phases weighs ∼70% of the structure. The analysis of this phases revealed that there is a systematic variation process presented by the decreasing of; the lattice constant, compressing strain, stress, stacking faults and dislocation intensity and increasing grain size resulted from increasing the Indium layer thickness in the range of 50-100 nm. In addition, the nanosandwiching of Indium between two layers of ZnSe is observed to enhance the absorbability of the ZnSe. Particularly, at incident photon energy of 2.38 eV the absorbability of the ZnSe films which are sandwiched with 100 nm Indium is increased by 13.8 times. Moreover, increasing the thickness of the Indium layer shrinks the optical energy band gap. These systematic variations in mechanical and optical properties are assigned to the better recrystallization process that is associated with Indium insertion which in turn allows total internal energy redistribution in the ZnSe films through the enlargement of grains.
NASA Technical Reports Server (NTRS)
Holz, Robert E.; Ackerman, Steve; Antonelli, Paolo; Nagle, Fred; McGill, Matthew; Hlavka, Dennis L.; Hart, William D.
2005-01-01
This paper presents a comparison of cloud-top altitude retrieval methods applied to S-HIS (Scanning High Resolution Interferometer Sounder) measurements. Included in this comparison is an improvement to the traditional CO2 Slicing method. The new method, CO2 Sorting, determines optimal channel pairs to apply the CO2 Slicing. Measurements from collocated samples of the Cloud Physics Lidar (CPL) and Modis Airborne Simulator (MAS) instruments assist in the comparison. For optically thick clouds good correlation between the S-HIS and lidar cloud-top retrievals are found. For tenuous ice clouds there can be large differences between lidar (CPL) and S-HIS retrieved cloud-tops. It is found that CO2 Sorting significantly reduces the cloud height biases for the optically thin cloud (total optical depths less then 1.0). For geometrically thick but optically thin cirrus clouds large differences between the S-HIS infrared cloud top retrievals and the CPL detected cloud top where found. For these cases the cloud height retrieved by the S-HIS cloud retrievals correlated closely with the level the CPL integrated cloud optical depth was approximately 1.0.
Patel, Nimesh; Pass, Anastas; Mason, Sara; Gibson, Charles R; Otto, Christian
2018-02-01
After long-duration spaceflight, morphological changes in the optic nerve head (ONH) and surrounding tissues have been reported. To develop methods to quantify ONH and surrounding tissue changes using preflight and postflight optical coherence tomographic scans of the ONH region. Two separate analyses were done on retrospective data, with the first comparing a preflight group with a control group, followed by preflight to postflight analysis. All astronaut data were collected on the same instrument and maintained by the National Aeronautics and Space Administration (NASA) Lifetime Surveillance of Astronaut Health. Control data were all collected at the University of Houston. Participants were 15 astronauts who had previously been on an approximately 6-month long-duration mission and had associated preflight and postflight ONH scans. The control group consisted of 43 individuals with no history of ocular pathology or microgravity exposure. Development of algorithms and data analysis were performed between 2012 and 2015. The optical coherence tomography data were analyzed using custom MATLAB programs (MathWorks) in which the Bruch membrane opening (BMO) was manually delineated and used as a reference for all morphological measures. The retinal pigment epithelium (RPE) position 2 mm from the center of the BMO was used to calculate the BMO height. Global and quadrant total retinal thickness and retinal nerve fiber layer (RNFL) thickness were calculated for elliptical annular regions referenced to the BMO. The standard circumpapillary circular scan was used to quantify RNFL and choroidal thickness. Among 15 astronauts (mean [SD] age at preflight evaluation, 48.7 [4.0] years) in this retrospective study, the BMO was recessed in preflight astronauts compared with healthy controls and deepened after long-duration microgravity exposure (median change, -9.9 μm; 95% CI of difference, -16.3 to 3.7 μm; P = .03). After long-duration missions, there was an increase in total retinal thickness to 1000 μm and RNFL to 500 μm from the BMO. Circumpapillary RNFL thickness increased by a median of 2.9 μm (95% CI of difference, 1.1-4.4 μm; P < .01), and there was no change in choroidal thickness (median change, 9.3 μm; 95% CI of difference, -12.1 to 19.6 μm; P = .66). After long-duration microgravity exposure, there are disc edema-like changes in the morphology of the ONH and surrounding tissue. The methods developed to analyze the ONH and surrounding tissue can be useful for assessing longitudinal changes and countermeasures in astronauts, as well as potentially for terrestrial disc edema causes.
Dereci, Selim; Koca, Tuğba; Akçam, Mustafa; Türkyilmaz, Kemal
2015-07-01
We investigated the peripapillary retinal nerve fiber layer thickness with optical coherence tomography in epileptic children receiving valproic acid monotherapy. The study was conducted on children aged 8-16 years who were undergoing valproic acid monotherapy for epilepsy. The study group comprised a total of 40 children who met the inclusion criteria and 40 healthy age- and sex-matched children as a control group. Children with at least a 1-year history of epilepsy and taking 10-40 mg/kg/day treatment were included in the study. Peripapillary retinal nerve fiber layer thickness measurements were performed using Cirrus HD optical coherence tomography. All children and parents were informed about the study and informed consent was obtained from the parents of all the participants. The study group included 21 girls and 19 boys with a mean age of 10.6 ± 2.3 years. According to the results of optical coherence tomography measurements, the mean peripapillary retinal nerve fiber layer thickness was 91.6 ± 9.7 in the patient group and 95.5 ± 7.4 μm in the control group (P < 0.05). The superior peripapillary retinal nerve fiber layer thickness was 112.0 ± 13.2 in the patient group and 120.0 ± 14.7 μm in the control group (P < 0.02). According to the results of both measurements, the peripapillary retinal nerve fiber layer thickness was significantly lower in the patient group. Neither color vision loss nor visual field examination abnormality could be documented. According to the optical coherence tomography measurements, the average and superior peripapillary retinal nerve fiber layer thicknesses were thinner in patients with epilepsy who were receiving valproic acid monotherapy compared with healthy children. This situation can lead to undesirable results in terms of eye health. New studies are needed to investigate whether these findings are the result of epilepsy or can be attributed to valproic acid and whether there are adverse effects of valproic acid later in life. Copyright © 2015 Elsevier Inc. All rights reserved.
Ling, Li; Tugaoen, Heather; Brame, Jonathon; Sinha, Shahnawaz; Li, Chuanhao; Schoepf, Jared; Hristovski, Kiril; Kim, Jae-Hong; Shang, Chii; Westerhoff, Paul
2017-11-21
A photocatalyst-coated optical fiber was coupled with a 318 nm ultraviolet-A light emitting diode, which activated the photocatalysts by interfacial photon-electron excitation while minimizing photonic energy losses due to conventional photocatalytic barriers. The light delivery mechanism was explored via modeling of evanescent wave energy produced upon total internal reflection and photon refraction into the TiO 2 surface coating. This work explores aqueous phase LED-irradiated optical fibers for treating organic pollutants and for the first time proposes a dual-mechanistic approach to light delivery and photocatalytic performance. Degradation of a probe organic pollutant was evaluated as a function of optical fiber coating thickness, fiber length, and photocatalyst attachment method and compared against the performance of an equivalent catalyst mass in a completely mixed slurry reactor. Measured and simulated photon fluence through the optical fibers decreased as a function of fiber length, coating thickness, or TiO 2 mass externally coated on the fiber. Thinner TiO 2 coatings achieved faster pollutant removal rates from solution, and dip coating performed better than sol-gel attachment methods. TiO 2 attached to optical fibers achieved a 5-fold higher quantum yield compared against an equivalent mass of TiO 2 suspended in a slurry solution.
Gamma-ray transfer and energy deposition in supernovae
NASA Technical Reports Server (NTRS)
Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.
1995-01-01
Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.
Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology
NASA Astrophysics Data System (ADS)
Magnozzi, M.; Terreni, S.; Anghinolfi, L.; Uttiya, S.; Carnasciali, M. M.; Gemme, G.; Neri, M.; Principe, M.; Pinto, I.; Kuo, L.-C.; Chao, S.; Canepa, M.
2018-01-01
The use of amorphous, SiO2-TiO2 nanolayered coatings has been proposed recently for the mirrors of 3rd-generation interferometric detectors of gravitational waves, to be operated at low temperature. Coatings with a high number of low-high index sub-units pairs with nanoscale thickness were found to preserve the amorphous structure for high annealing temperatures, a key factor to improve the mechanical quality of the mirrors. The optimization of mirror designs based on such coatings requires a detailed knowledge of the optical properties of sub-units at the nm-thick scale. To this aim we have performed a Spectroscopic Ellipsometry (SE) study of amorphous SiO2-TiO2 nanolayered films deposited on Si wafers by Ion Beam Sputtering (IBS). We have analyzed films that are composed of 5 and 19 nanolayers (NL5 and NL19 samples) and have total optical thickness nominally equivalent to a quarter of wavelength at 1064 nm. A set of reference optical properties for the constituent materials was obtained by the analysis of thicker SiO2 and TiO2 homogeneous films (∼ 120 nm) deposited by the same IBS facility. By flanking SE with ancillary techniques, such as TEM and AFM, we built optical models that allowed us to retrieve the broad-band (250-1700 nm) optical properties of the nanolayers in the NL5 and NL19 composite films. In the models which provided the best agreement between simulation and data, the thickness of each sub-unit was fitted within rather narrow bounds determined by the analysis of TEM measurements on witness samples. Regarding the NL5 sample, with thickness of 19.9 nm and 27.1 nm for SiO2 and TiO2 sub-units, respectively, the optical properties presented limited variations with respect to the thin film counterparts. For the NL19 sample, which is composed of ultrathin sub-units (4.4 nm and 8.4 nm for SiO2 and TiO2, respectively) we observed a significant decrease of the IR refraction index for both types of sub-units; this points to a lesser mass density with respect to the thin film reference. The results are discussed in the light of the existing literature on nanofilms of amorphous oxides.
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S
2005-10-01
To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.
Horn, Folkert K; Tornow, Ralf P; Jünemann, Anselm G; Laemmer, Robert; Kremers, Jan
2014-04-11
We compared the results of flicker-defined form (FDF) perimetry with standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) thickness measurements using spectral domain optical coherence tomography (OCT). A total of 64 healthy subjects, 45 ocular hypertensive patients, and 97 "early" open-angle glaucoma (OAG) patients participated in this study. Definition of glaucoma was based exclusively on glaucomatous optic disc appearance. All subjects underwent FDF perimetry, SAP, and peripapillary measurements of the RNFL thickness. The FDF perimetry and SAP were performed at identical test locations (G1 protocol). Exclusion criteria were subjects younger than 34 years, SAP mean defect (SAP MD) > 5 dB, eye diseases other than glaucoma, or nonreliable FDF measurements. The correlations between the perimetric data on one hand and RNFL thicknesses on the other hand were analyzed statistically. The age-corrected sensitivity values and the local results from the controls were used to determine FDF mean defect (FDF MD). The FDF perimetry and SAP showed high concordance in this cohort of experienced patients (MD values, R = -0.69, P < 0.001). Of a total of 42 OAG patients with abnormal SAP MD, 38 also displayed abnormal FDF MD. However, FDF MD was abnormal in 28 of 55 OAG patients with normal SAP MD. The FDF MD was significantly (R = -0.61, P < 0.001) correlated with RNFL thickness with a (nonsignificantly) larger correlation coefficient than conventional SAP MD (R = -0.48, P < 0.001). The FDF perimetry is able to uncover functional changes concurrent with the changes in RNFL thickness. The FDF perimetry may be an efficient functional test to detect early glaucomatous nerve atrophy. (ClinicalTrials.gov number, NCT00494923.).
Forooghian, Farzin; Cukras, Catherine; Meyerle, Catherine B; Chew, Emily Y; Wong, Wai T
2008-10-01
To evaluate macular thickness and volume measurements and their intrasession repeatability in two optical coherence tomography (OCT) systems: the Stratus OCT, a time domain system, and the Cirrus HD-OCT, a spectral domain system (both by Carl Zeiss Meditec, Inc., Dublin, CA), in the context of diabetic macular edema (DME). Thirty-three eyes of 33 diabetic patients with clinically significant macular edema (CSME) were scanned in a single session by a single operator on both OCT systems. Macular thickness measurements of nine standard macular subfields and total macular volume were obtained and analyzed. Bland-Altman plots were constructed to assess agreement in macular measurements. Intraclass correlation coefficients (ICCs), coefficients of repeatability (CR(W)), and coefficients of variation (CV(W)) were used to assess intrasession repeatability. Macular thickness in nine retinal subfields and macular volume were significantly higher in the Cirrus HD-OCT system compared with the Stratus OCT system. Subfield thickness and total volume measurements, respectively, were 30 to 55 microm and 3.2 mm(3) greater for the Cirrus HD-OCT system compared with the Stratus OCT system. Both Stratus OCT and Cirrus HD-OCT systems demonstrated high intrasession repeatability, with overlapping ranges for CR(W), CV(W), and ICC. Repeatability measures (CR(W) and CV(W)) differed significantly between systems in only one of nine subfields (outer temporal subfield). Absolute measures of macular thickness and volume in patients with DME differed significantly in magnitude between the Stratus OCT and Cirrus HD-OCT systems. However, both OCT systems demonstrated high intrasessional repeatability. Although the two systems may not be used interchangeably, they appear equally reliable in generating macular measurements for clinical practice and research.
Invernizzi, Alessandro; Giardini, Piero; Cigada, Mario; Viola, Francesco; Staurenghi, Giovanni
2015-07-01
We analyzed by swept-source anterior segment optical coherence tomography (SS-ASOCT) the three-dimensional iris morphology in a Caucasian population, and correlated the findings with iris color, iris sectors, subject age, and sex. One eye each from consecutive healthy emmetropic (refractive spherical equivalent ± 3 diopters) volunteers were selected for the study. The enrolled eye underwent standardized anterior segment photography to assess iris color. Iris images were assessed by SS-ASOCT for volume, thickness, width, and pupil size. Sectoral variations of morphometric data among the superior, nasal, inferior, and temporal sectors were recorded. A total of 135 eyes from 57 males and 78 females, age 49 ± 17 years, fulfilled the inclusion criteria. All iris morphometric parameters varied significantly among the different sectors (all P < 0.0001). Iris total volume and thickness were significantly correlated with increasingly darker pigmentation (P < 0.0001, P = 0.0384, respectively). Neither width nor pupil diameter was influenced by iris color. Age did not affect iris volume or thickness; iris width increased and pupil diameter decreased with age (rs = 0.52, rs = -0.58, respectively). There was no effect of sex on iris volume, thickness, or pupil diameter; iris width was significantly greater in males (P = 0.007). Morphology of the iris varied by iris sector, and iris color was associated with differences in iris volume and thickness. Morphological parameter variations associated with iris color, sector, age, and sex can be used to identify pathological changes in suspect eyes. To be effective in clinical settings, construction of iris morphological databases for different ethnic and racial populations is essential.
Duman, R; Yavas, G F; Veliyev, I; Dogan, M; Duman, R
2018-05-10
The aim was to assess the ganglion cell complex (GCC) thickness, retinal nerve fiber layer (RNFL) thickness and optic disk features in the affected eyes (AE) and unaffected fellow eyes (FE) of subjects with unilateral nonarteritic anterior ischemic optic neuropathy (NAION) and to compare with healthy control eyes (CE) using spectral domain-optical coherence tomography (SD-OCT). This study included 28 patients and age, sex and refraction-matched 28 control subjects. Mean GCC thickness and peripapillary RNFL thickness in four quadrants measured by cirrus SD-OCT were evaluated in both AE and FE of patients and CE. In addition, optic disk measurements obtained with OCT were evaluated. Mean GCC thickness was significantly lower in AE compared with both FE and CE (P < 0.001), and mean GCC thickness in FE was significantly lower than CE (P = 0.022). In addition, mean RNFL thickness in superior and nasal quadrants significantly decreased in FE compared with CE (P = 0.020 and 0.010, respectively). Furthermore, AE had significantly greater optic disk cupping compared with both FE and CE (P < 0.001). GCC and RNFL thickness decreased significantly at late stages of NAION, in both AE and FE compared with CE, suggesting that some subclinical structural changes may occur in FE despite lack of obvious visual symptoms. In addition, there was no significant difference in optic disk features between the CE and FE. And significantly greater optic disk cupping in the AE compared with both FE and CE supports the acquired enlargement of cupping after the onset of NAION.
Comparison of macular OCTs in right and left eyes of normal people
NASA Astrophysics Data System (ADS)
Mahmudi, Tahereh; Kafieh, Rahele; Rabbani, Hossein; Mehri dehnavi, Alireza; Akhlagi, Mohammadreza
2014-03-01
Retinal 3D Optical coherence tomography (OCT) is a non-invasive imaging modality in ocular diseases. Due to large volumes of OCT data, it is better to utilize automatic extraction of information from OCT images, such as total retinal thickness and retinal nerve fiber layer thickness (RNFLT). These two thickness values have become useful indices to indicate the progress of diseases like glaucoma, according to the asymmetry between two eyes of an individual. Furthermore, the loss of ganglion cells may not be diagnosable by other tests and even not be evaluated when we only consider the thickness of one eye (due to dramatic different thickness among individuals). This can justify our need to have a comparison between thicknesses of two eyes in symmetricity. Therefore, we have proposed an asymmetry analysis of the retinal nerve layer thickness and total retinal thickness around the macula in the normal Iranian population. In the first step retinal borders are segmented by diffusion map method and thickness profiles were made. Then we found the middle point of the macula by pattern matching scheme. RNFLT and retinal thickness are analyzed in 9 sectors and the mean and standard deviation of each sector in the right and left eye are obtained. The maximums of the average RNFL thickness in right and left eyes are seen in the perifoveal nasal, and the minimums are seen in the fovea. Tolerance limits in RNFL thickness is shown to be between 0.78 to 2.4 μm for 19 volunteers used in this study.
Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S
2013-11-01
To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p < 0.0001) and ultrasound pachymetry (p = < .0001). Ultrasound pachymetry readings had better 95% limits of agreement with swept source optical coherence tomography than slit scanning topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p < 0.05 for all). Overall, reproducibility coefficients and intraclass correlation coefficients were significantly better with swept source optical coherence tomography for measurement of central corneal thickness, anterior best-fit sphere and, posterior best-fit sphere (all p < 0.001). Corneal thickness and elevation measurements were significantly different between swept source optical coherence tomography and slit scanning topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.
Savini, G; Zanini, M; Carelli, V; Sadun, A A; Ross-Cisneros, F N; Barboni, P
2005-04-01
To investigate the correlation between retinal nerve fibre layer (RNFL) thickness and optic nerve head (ONH) size in normal white subjects by means of optical coherence tomography (OCT). 54 eyes of 54 healthy subjects aged between 15 and 54 underwent peripapillary RNFL thickness measurement by a series of three circular scans with a 3.4 mm diameter (Stratus OCT, RNFL Thickness 3.4 acquisition protocol). ONH analysis was performed by means of six radial scans centred on the optic disc (Stratus OCT, Fast Optic Disc acquisition protocol). The mean RNFL values were correlated with the data obtained by ONH analysis. The superior, nasal, and inferior quadrant RNFL thickness showed a significant correlation with the optic disc area (R = 0.3822, p = 0.0043), (R = 0.3024, p = 0.026), (R = 0.4048, p = 0.0024) and the horizontal disc diameter (R = 0.2971, p = 0.0291), (R = 0.2752, p = 0.044), (R = 0.3970, p = 0.003). The superior and inferior quadrant RNFL thickness was also positively correlated with the vertical disc diameter (R = 0.3774, p = 0.0049), (R = 0.2793, p = 0.0408). A significant correlation was observed between the 360 degrees average RNFL thickness and the optic disc area and the vertical and horizontal disc diameters of the ONH (R = 0.4985, p = 0.0001), (R = 0.4454, p = 0.0007), (R = 0.4301, p = 0.0012). RNFL thickness measurements obtained by Stratus OCT increased significantly with an increase in optic disc size. It is not clear if eyes with large ONHs show a thicker RNFL as a result of an increased amount of nerve fibres or to the shorter distance between the circular scan and the optic disc edge.
Rezaei, Nasim; Isabella, Olindo; Vroon, Zeger; Zeman, Miro
2018-01-22
A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device's rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF 2 / Al 2 O 3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al 2 O 3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF 2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.
NASA Technical Reports Server (NTRS)
Sako, Masao
2003-01-01
Radiative transfer effects due to overlapping X-ray lines in a high-temperature, optically thick, highly ionized medium are investigated. One particular example, in which the O VIII Lyalpha doublet (2(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) coincides in frequency with the N VII Lyzeta lines (7(sup 2) P(sub 1/2,3/2)-1(sup 2) S(sub 1/2) is studied in detail to illustrate the effects on the properties of the emergent line spectrum. We solve the radiative transfer equation to study the energy transport of resonance-line radiation in a static, infinite, plane-parallel geometry, which is used to compute the destruction/escape probabilities for each of the lines for various total optical thicknesses of the medium, as well as destruction probabilities by sources of underlying photoelectric opacity. It is found that a large fraction of the O vIII Lyalpha line radiation can be destroyed by N VII, which can result in a reversal of the O VIII Lyalpha/N VII Lyalpha line intensity ratio similar to what may be seen under nonsolar abundances. Photoelectric absorption by ionized carbon and nitrogen can also subsequently increase the emission-line intensities of these ions. We show that line ratios, which are directly proportional to the abundance ratios in optically thin plasmas, are not good indicators of the true CNO abundances. Conversely, global spectral modeling that assumes optically thin conditions may yield incorrect abundance estimates when compared with observations, especially if the optical depth is large. Other potentially important overlapping lines and continua in the X-ray band are also identified, and their possible relevance to recent high-resolution spectroscopic observations with Chandra and XMM-Newton are briefly discussed.
NASA Astrophysics Data System (ADS)
Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.
2013-03-01
High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.
Pair plasma relaxation time scales.
Aksenov, A G; Ruffini, R; Vereshchagin, G V
2010-04-01
By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.
Photorefractive keratectomy in the cat eye: biological and optical outcomes.
Nagy, Lana J; MacRae, Scott; Yoon, Geunyoung; Wyble, Matthew; Wang, Jianhua; Cox, Ian; Huxlin, Krystel R
2007-06-01
To quantify optical and biomechanical properties of the feline cornea before and after photorefractive keratectomy (PRK) and assess the relative contribution of different biological factors to refractive outcome. Department of Ophthalmology, University of Rochester, Rochester, New York, USA. Adult cats had 6.0 diopter (D) myopic or 4.0 D hyperopic PRK over 6.0 or 8.0 mm optical zones (OZ). Preoperative and postoperative wavefront aberrations were measured, as were intraocular pressure (IOP), corneal hysteresis, the corneal resistance factor, axial length, corneal thickness, and radii of curvature. Finally, postmortem immunohistochemistry for vimentin and alpha-smooth muscle actin was performed. Photorefractive keratectomy changed ocular defocus, increased higher-order aberrations, and induced myofibroblast differentiation in cats. However, the intended defocus corrections were only achieved with 8.0 mm OZs. Long-term flattening of the epithelial and stromal surfaces was noted after myopic, but not after hyperopic, PRK. The IOP was unaltered by PRK; however, corneal hysteresis and the corneal resistance factor decreased. Over the ensuing 6 months, ocular aberrations and the IOP remained stable, while central corneal thickness, corneal hysteresis, and the corneal resistance factor increased toward normal levels. Cat corneas exhibited optical, histological, and biomechanical reactions to PRK that resembled those previously described in humans, especially when the OZ size was normalized to the total corneal area. However, cats exhibited significant stromal regeneration, causing a return to preoperative corneal thickness, corneal hysteresis and the corneal resistance factor without significant regression of optical changes induced by the surgery. Thus, the principal effects of laser refractive surgery on ocular wavefront aberrations can be achieved despite clear interspecies differences in corneal biology.
Lee, Haeng-Jin; Kang, Tae-Seen; Kwak, Baek-Soo; Jo, Young-Joon; Kim, Jung-Yeul
2017-08-01
To evaluate the effects of panretinal photocoagulation on spectral domain optical coherence tomography measurements in diabetic retinopathy by comparing the thicknesses of the central macula, retinal nerve fiber layer, and ganglion cell layer, we used a Cirrus HD OCT® (Carl Zeiss Meditec, Dublin, CA, USA) in normal and diabetic retinopathy cohorts. We analyzed patients who visited our retinal clinic between May 2013 and July 2014. The patients were classified into four groups: normal (Group A), diabetes without diabetic retinopathy (Group B), severe nonproliferative or proliferative diabetic retinopathy (Group C), and at least 3 years after panretinal photocoagulation treatment (Group D). The mean thicknesses of the macula, retinal nerve fiber layer, and ganglion cell layer in each group were compared by measuring a macular cube 512 × 128 scan and an optic disc cube 200 × 200 scan twice. In total, 154 patients were enrolled. The mean thickness of the central macula in groups A to D was 257.2, 256.8, 257.4, and 255.6 µm, respectively, and did not differ significantly. The mean thickness of the RNFL in group A to D was 96.8, 96.5, 97.2, and 92.8 µm, respectively, and was significantly lower in group D (decreased in the inferior, superior, and nasal sectors, but increased in the temporal). The mean thickness of the ganglion cell layer was also significantly lower in group D (A, 84.5 µm; B, 84.4 µm; C, 82.5 µm; D, 78.5 µm). The mean thicknesses of the retinal nerve fiber and ganglion cell layers were decreased significantly in eyes with diabetic eye disease treated with panretinal photocoagulation compared to normal or eyes with diabetic eye disease that had not been laser-treated. Laser treatment might have altered the thickness of the inner layer of the retina, and such changes should be considered in diabetic retinopathy patients after panretinal photocoagulation treatment.
NASA Technical Reports Server (NTRS)
Hsu, Christina N.; Tsay, Si-Chee; Herman, R.; Holben, Brent; Bhartia, P. K. (Technical Monitor)
2002-01-01
The primary goal of the ACE (Aerosol Characterization Experiment)-Asia mission is to increase our understanding of how atmospheric aerosol particles over the Asian-Pacific region affect the Earth climate system. In support of the day-to-day flight planning of ACE-Asia, we built a near real-time system to provide satellite data from the polar-orbiting instruments Earth Probe TOMS (Total Ozone Mapping Spectrometer) (in the form of absorbing aerosol index) and SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) (in the form of aerosol optical thickness and Angstrom exponent). The results were available via web access. These satellite data provide a 'big picture' of aerosol distribution in the region, which is complementary to the ground based measurements. In this paper, we will briefly discuss the algorithms used to generate these data. The retrieved aerosol optical thickness and Angstrom exponent from SeaWiFS will be compared with those obtained from various AERONET (Aerosol Robotic Network) sites over the Asian-Pacific region. The TOMS aerosol index will also be compared with AERONET aerosol optical thickness over different aerosol conditions. Finally, we will discuss the climate implication of our studies using the combined satellite and AERONET observations.
Characterization on Smart Optics Using Ellipsometry
NASA Technical Reports Server (NTRS)
Song, Kyo D.
2002-01-01
Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Wielicki, Bruce A.; Xi, Baike; Hu, Yongxiang; Mace, Gerald G.; Benson, Sally; Rose, Fred; Kato, Seiji; Charlock, Thomas; Minnis, Patrick
2008-01-01
Atmospheric column absorption of solar radiation A(sub col) is a fundamental part of the Earth's energy cycle but is an extremely difficult quantity to measure directly. To investigate A(sub col), we have collocated satellite-surface observations for the optically thick Deep Convective Systems (DCS) at the Department of Energy Atmosphere Radiation Measurement (ARM) Tropical Western Pacific (TWP) and Southern Great Plains (SGP) sites during the period of March 2000 December 2004. The surface data were averaged over a 2-h interval centered at the time of the satellite overpass, and the satellite data were averaged within a 1 deg X 1 deg area centered on the ARM sites. In the DCS, cloud particle size is important for top-of-atmosphere (TOA) albedo and A(sub col) although the surface absorption is independent of cloud particle size. In this study, we find that the A(sub col) in the tropics is approximately 0.011 more than that in the middle latitudes. This difference, however, disappears, i.e., the A(sub col) values at both regions converge to the same value (approximately 0.27 of the total incoming solar radiation) in the optically thick limit (tau greater than 80). Comparing the observations with the NASA Langley modified Fu_Liou 2-stream radiative transfer model for optically thick cases, the difference between observed and model-calculated surface absorption, on average, is less than 0.01, but the model-calculated TOA albedo and A(sub col) differ by 0.01 to 0.04, depending primarily on the cloud particle size observation used. The model versus observation discrepancies found are smaller than many previous studies and are just within the estimated error bounds. We did not find evidence for a large cloud absorption anomaly for the optically thick limit of extensive ice cloud layers. A more modest cloud absorption difference of 0.01 to 0.04 cannot yet be ruled out. The remaining uncertainty could be reduced with additional cases, and by reducing the current uncertainty in cloud particle size.
NASA Astrophysics Data System (ADS)
Uluta, K.; Deer, D.; Skarlatos, Y.
2006-08-01
The electrical conductivity and absorption coefficient of amorphous indium oxide thin films, thermally evaporated on glass substrates at room temperature, were evaluated. For direct transitions the variation of the optical band gap with thickness was determined and this variation was supposed to appear due to the variation of localized gap states, whereas the variation of conductivity with thickness was supposed to be due to the variation of carrier concentration. We attribute the variation of absorption coefficient with thickness to the variation of optical band gap energy rather than optical interference.
Effect of stratospheric aerosol layers on the TOMS/SBUV ozone retrieval
NASA Technical Reports Server (NTRS)
Torres, O.; Ahmad, Zia; Pan, L.; Herman, J. R.; Bhartia, P. K.; Mcpeters, R.
1994-01-01
An evaluation of the optical effects of stratospheric aerosol layers on total ozone retrieval from space by the TOMS/SBUV type instruments is presented here. Using the Dave radiative transfer model we estimate the magnitude of the errors in the retrieved ozone when polar stratospheric clouds (PSC's) or volcanic aerosol layers interfere with the measurements. The largest errors are produced by optically thick water ice PSC's. Results of simulation experiments on the effect of the Pinatubo aerosol cloud on the Nimbus-7 and Meteor-3 TOMS products are presented.
Dasenbrock, Hormuzdiyar H; Smith, Seth A; Ozturk, Arzu; Farrell, Sheena K; Calabresi, Peter A; Reich, Daniel S
2011-04-01
Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (P=.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=.51, P=.003) and total-macular-volume reduction (r=.59, P=.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. Copyright © 2010 by the American Society of Neuroimaging.
Dasenbrock, Hormuzdiyar H.; Smith, Seth A.; Ozturk, Arzu; Farrell, Sheena K.; Calabresi, Peter A.; Reich, Daniel S.
2009-01-01
Background and purpose Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Methods Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. Results After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (p=0.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=0.51, p=0.003) and total-macular-volume reduction (r=0.59, p=0.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Conclusions Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. PMID:20331501
SU-F-T-550: Radiochromic Plastic Thin Sheet Dosimeter: Initial Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, K; Adamovics, J
Purpose: Thin sheets, of a high sensitivity formulation of radiochromic dosimeter, Presage were prepared and evaluated for optical readout. Methods: Sheets of radiochromic polyurethane, 12 cm long, 10 cm wide and 0.2 cm thick were prepared with leuco crystal violet as the reporter molecule. Sample transmission was evaluated at a wavelength of 590 nm with in-house constructed instruments: optical cone beam laser CT scanner, fixed and scanning spot densitometers. Sample sequential irradiations to a total dose of 40 Gy were conducted with a modified, Theratron 60, cobalt radiotherapy machine at dose rates of 1 or 0.25 Gy per minute. Exposuremore » to ambient and readout light was minimized to limit background photochromic signals. Samples were stored at 4°C. Optical activity was assessed from linearly polarized transmission images. Comparison sensitivity measurements with EBT3 film were conducted. Results: Samples were transparent, smooth and pale purple before irradiation. Radiochromic reaction was completed in less than 5 minutes. A linear dose response with a sensitivity of 0.5 cm-1Gy-1 was observed. Micrometer measurements found sheet thickness variations up to 20%. Uniform dose, 2 Gy attenuation images, correlated with local sheet thicknesses. Comparable measurements with EBT3 film were 3 times more sensitive at 1 Gy but above 15 Gy, EBT3 film had lower sensitivity than 0.2 cm thick Presage sheet dosimeter due to its non-linear response. Conclusion: Dose sensitivity provided a 10% decrease in transmission for a 1 Gy dose. Improvements in mold design are expected to allow production of sheets with less than 5% variation in thickness. Above, 10 Gy, Presage sheet dosimeter performance expected to exceed EBT3 film based on linearity, sensitivity, transparency and smoothness of samples. J Adamovics is owner of Heuris Inc.« less
Theoretical study of ZnS/CdS bi-layer for thin-film CdTe solar cell
NASA Astrophysics Data System (ADS)
Mohamed, H. A.; Mohamed, A. S.; Ali, H. M.
2018-05-01
The performance of CdTe solar cells is strongly limited by the thickness of CdS window layer. A higher short-circuit current density might be achieved by decreasing the thickness of CdS layer as a result of reducing the absorption losses that take place in this layer. However, it is difficult to obtain uniform and pin-hole free CdS layers thinner than 50 nm. This problem can be solved through increasing the band gap of the window layer by adding a wide band gap semiconductor such as ZnS. In this work, bi-layer ZnS/CdS film was studied as an improved window layer of ITO/ZnS/CdS/CdTe solar cell. The total thickness of ZnS/CdS layer was taken about 60 nm. The effect of optical losses due to reflection at different interfaces in the cell and absorption in ITO, ZnS, CdS as well as the recombination loss have been studied. Finally, the effects of the recombination losses in the space-charge region and the reflectivity from the back contact were taken into accounts. The results revealed that the optical losses of 23% were achieved at 60 nm thickness of CdS and theses losses minimized to 18% when ZnS layer of 30 nm thickness was added to CdS layer. The minimum optical and recombination losses of about 26% were obtained at 1 ns of electron life-time and ∼0.4 μm width of the space-charge region. The maximum efficiency of 18.5% was achieved for ITO/CdS/CdTe cell and the efficiency increased up to 20% for ITO/ZnS/CdS/CdTe cell.
NASA Astrophysics Data System (ADS)
Tripathi, Ravi P.; Zulfequar, M.; Khan, Shamshad A.
2018-04-01
Our aim is to study the thickness dependent effects on structure, electrical and optical properties of Se85In12Bi3 nanochalcogenide thin films. Bulk alloy of Se85In12Bi3 was synthesized by melt-quenching technique. The amorphous as well as glassy nature of Se85In12Bi3 chalcogenide was confirmed by non-isothermal Differential Scanning Calorimetry (DSC) measurements. The nanochalcogenide thin films of thickness 30, 60 and 90 nm were prepared on glass/Si wafer substrate using Physical Vapour Condensation Technique (PVCT). From XRD studies it was found that thin films have amorphous texture. The surface morphology and particle size of films were studied by Field Emission Scanning Electron Microscope (FESEM). From optical studies, different optical parameters were estimated for Se85In12Bi3 thin films at different thickness. It was found that the absorption coefficient (α) and extinction coefficient (k) increases with photon energy and decreases with film thickness. The optical absorption process followed the rule of indirect transitions and optical band gap were found to be increase with film thickness. The value of Urbach energy (Et) and steepness parameter (σ) were also calculated for different film thickness. For electrical studies, dc-conductivity measurement was done at different temperature and activation energy (ΔEc) were determined and found to be increase with film thickness.
Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility.
Lucy, Katie A; Wang, Bo; Schuman, Joel S; Bilonick, Richard A; Ling, Yun; Kagemann, Larry; Sigal, Ian A; Grulkowski, Ireneusz; Liu, Jonathan J; Fujimoto, James G; Ishikawa, Hiroshi; Wollstein, Gadi
2017-03-01
Evaluation of the effect of prelaminar tissue thickness on visualization of the lamina cribrosa (LC) using optical coherence tomography (OCT). The optic nerve head (ONH) region was scanned using OCT. The quality of visible LC microstructure was assessed subjectively using a grading system and objectively by analyzing the signal intensity of each scan's superpixel components. Manual delineations were made separately and in 3-dimensions quantifying prelaminar tissue thickness, analyzable regions of LC microstructure, and regions with a visible anterior LC (ALC) boundary. A linear mixed effect model quantified the association between tissue thickness and LC visualization. A total of 17 healthy, 27 glaucoma suspect, and 47 glaucomatous eyes were included. Scans with thicker average prelaminar tissue measurements received worse grading scores (P = 0.007), and superpixels with low signal intensity were associated significantly with regions beneath thick prelaminar tissue (P < 0.05). The average prelaminar tissue thickness in regions of scans where the LC was analyzable (214 μm) was significantly thinner than in regions where the LC was not analyzable (569 μm; P < 0.001). Healthy eyes had significantly thicker average prelaminar tissue measurements than glaucoma or glaucoma suspect eyes (both P < 0.001), and glaucoma suspect eyes had significantly thicker average prelaminar tissue measurements than glaucoma eyes (P = 0.008). Significantly more of the ALC boundary was visible in glaucoma eyes (63% of ONH) than in healthy eyes (41%; P = 0.005). Thick prelaminar tissue was associated with impaired visualization of the LC. Healthy subjects generally had thicker prelaminar tissue, which potentially could create a selection bias against healthy eyes when comparing LC structures.
Wong, R Lm; Tsang, C W; Wong, D Sh; McGhee, S; Lam, C H; Lian, J; Lee, J Wy; Lai, J Sm; Chong, V; Wong, I Yh
2017-08-01
A large proportion of patients diagnosed with diabetic maculopathy using fundus photography and hence referred to specialist clinics following the current screening guidelines adopted in Hong Kong and United Kingdom are found to be false-positive, implying that they did not have macular oedema. This study aimed to evaluate the false-positive rate of diabetic maculopathy screening using the objective optical coherence tomography scan. This was a cross-sectional observational study. Consecutive diabetic patients from the Hong Kong West Cluster Diabetic Retinopathy Screening Programme with fundus photographs graded R1M1 were recruited between October 2011 and June 2013. Spectral-domain optical coherence tomography imaging was performed. Central macular thickness of ≥300 μm and/or the presence of optical coherence tomography signs of diabetic macular oedema were used to define the presence of diabetic macular oedema. Patients with conditions other than diabetes that might affect macular thickness were excluded. The mean central macular thickness in various subgroups of R1M1 patients was calculated and the proportion of subjects with central macular thickness of ≥300 μm was used to assess the false-positive rate of this screening strategy. A total of 491 patients were recruited during the study period. Of the 352 who were eligible for analysis, 44.0%, 17.0%, and 38.9% were graded as M1 due to the presence of foveal 'haemorrhages', 'exudates', or 'haemorrhages and exudates', respectively. The mean (±standard deviation) central macular thickness was 265.1±55.4 μm. Only 13.4% (95% confidence interval, 9.8%-17.0%) of eyes had a central macular thickness of ≥300 μm, and 42.9% (95% confidence interval, 37.7%-48.1%) of eyes had at least one optical coherence tomography sign of diabetic macular oedema. For patients with retinal haemorrhages only, 9.0% (95% confidence interval, 4.5%-13.5%) had a central macular thickness of ≥300 μm; 23.2% (95% confidence interval, 16.6%-29.9%) had at least one optical coherence tomography sign of diabetic macular oedema. The false-positive rate of the current screening strategy for diabetic macular oedema was 86.6%. The high false-positive rate of the current diabetic macular oedema screening adopted by the United Kingdom and Hong Kong may lead to unnecessary psychological stress for patients and place a financial burden on the health care system. A better way of screening is urgently needed. Performing additional spectral-domain optical coherence tomography scans on selected patients fulfils this need.
Correction of Rayleigh Scattering Effects in Cloud Optical Thickness Retrievals
NASA Technical Reports Server (NTRS)
Wang, Meng-Hua; King, Michael D.
1997-01-01
We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic Stratocumulus Transition Experiment (ASTEX) conducted near the Azores in June 1992 and compare these results to corresponding retrievals obtained using 0.88 Am. These results provide an example of the Rayleigh scattering effects on thin clouds and further test the Rayleigh correction scheme. Using a nonabsorbing near-infrared wavelength lambda (0.88 Am) in retrieving cloud optical thickness is only applicable over oceans, however, since most land surfaces are highly reflective at 0.88 Am. Hence successful global retrievals of cloud optical thickness should remove Rayleigh scattering effects when using reflectance measurements at 0.66 Am.
NASA Astrophysics Data System (ADS)
Melnikova, Irina; Gatebe, Charles K.
2018-07-01
Past strategies for retrieving cloud optical properties from remote sensing assumed significant limits for desired parameters such as semi-infinite optical thickness, single scattering albedo equaling unity (non-absorbing scattering), absence of spectral dependence of the optical thickness, etc., and only one optical parameter could be retrieved (either optical thickness or single scattering albedo). Here, we demonstrate a new method based on asymptotic theory for thick atmospheres, and the presence of a diffusion domain within the clouds that does not put restrictions and makes it possible to get two or even three optical parameters (optical thickness, single scattering albedo and phase function asymmetry parameter) for every wavelength independently. We applied this method to measurements of angular distribution of solar radiation above, inside and below clouds, obtained with NASA's Cloud Absorption Radiometer (CAR) over two cases of marine stratocumulus clouds; first case, offshore of Namibia and the second case, offshore of California. The observational and retrieval errors are accounted for by regularization, which allows stable and smooth solutions. Results show good potential for parameterization of the shortwave radiative properties (reflection, transmission, radiative divergence and heating rate) of water clouds.
Hybrid enabled thin film metrology using XPS and optical
NASA Astrophysics Data System (ADS)
Vaid, Alok; Iddawela, Givantha; Mahendrakar, Sridhar; Lenahan, Michael; Hossain, Mainul; Timoney, Padraig; Bello, Abner F.; Bozdog, Cornel; Pois, Heath; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Kang, Byung Cheol; Isbester, Paul; Sendelbach, Matthew; Yellai, Naren; Dasari, Prasad; Larson, Tom
2016-03-01
Complexity of process steps integration and material systems for next-generation technology nodes is reaching unprecedented levels, the appetite for higher sampling rates is on the rise, while the process window continues to shrink. Current thickness metrology specifications reach as low as 0.1A for total error budget - breathing new life into an old paradigm with lower visibility for past few metrology nodes: accuracy. Furthermore, for advance nodes there is growing demand to measure film thickness and composition on devices/product instead of surrogate planar simpler pads. Here we extend our earlier work in Hybrid Metrology to the combination of X-Ray based reference technologies (high performance) with optical high volume manufacturing (HVM) workhorse metrology (high throughput). Our stated goal is: put more "eyes" on the wafer (higher sampling) and enable move to films on pattern structure (control what matters). Examples of 1X front-end applications are used to setup and validate the benefits.
Material parameter estimation with terahertz time-domain spectroscopy.
Dorney, T D; Baraniuk, R G; Mittleman, D M
2001-07-01
Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.
NASA Technical Reports Server (NTRS)
LaMothe, J.; Ferland, Gary J.
2002-01-01
Recombination cooling, in which a free electron emits light while being captured to an ion, is an important cooling process in photoionized clouds that are optically thick or have low metallicity. State specific rather than total recombination cooling rates are needed since the hydrogen atom tends to become optically thick in high-density regimes such as Active Galactic Nuclei. This paper builds upon previous work to derive the cooling rate over the full temperature range where the process can be a significant contributor in a photoionized plasma. We exploit the fact that the recombination and cooling rates are given by intrinsically similar formulae to express the cooling rate in terms of the closely related radiative recombination rate. We give an especially simple but accurate approximation that works for any high hydrogenic level and can be conveniently employed in large-scale numerical simulations.
Weinman, J A
1988-10-01
A simulated analysis is presented that shows that returns from a single-frequency space-borne lidar can be combined with data from conventional visible satellite imagery to yield profiles of aerosol extinction coefficients and the wind speed at the ocean surface. The optical thickness of the aerosols in the atmosphere can be derived from visible imagery. That measurement of the total optical thickness can constrain the solution to the lidar equation to yield a robust estimate of the extinction profile. The specular reflection of the lidar beam from the ocean can be used to determine the wind speed at the sea surface once the transmission of the atmosphere is known. The impact on the retrieved aerosol profiles and surface wind speed produced by errors in the input parameters and noise in the lidar measurements is also considered.
Retrieval of the aerosol optical thickness from UV global irradiance measurements
NASA Astrophysics Data System (ADS)
Costa, M. J.; Salgueiro, V.; Bortoli, D.; Obregón, M. A.; Antón, M.; Silva, A. M.
2015-12-01
The UV irradiance is measured at Évora since several years, where a CIMEL sunphotometer integrated in AERONET is also installed. In the present work, measurements of UVA (315 - 400 nm) irradiances taken with Kipp&Zonen radiometers, as well as satellite data of ozone total column values, are used in combination with radiative transfer calculations, to estimate the aerosol optical thickness (AOT) in the UV. The retrieved UV AOT in Évora is compared with AERONET AOT (at 340 and 380 nm) and a fairly good agreement is found with a root mean square error of 0.05 (normalized root mean square error of 8.3%) and a mean absolute error of 0.04 (mean percentage error of 2.9%). The methodology is then used to estimate the UV AOT in Sines, an industrialized site on the Atlantic western coast, where the UV irradiance is monitored since 2013 but no aerosol information is available.
NASA Astrophysics Data System (ADS)
Broadway, David M.; Ramsey, Brian D.; O'Dell, Stephen L.; Gurgew, Danielle
2017-09-01
We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.
Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere
NASA Technical Reports Server (NTRS)
Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.
2003-01-01
We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).
NASA Technical Reports Server (NTRS)
Nakajima, Teruyuki; King, Michael D.; Spinhirne, James D.; Radke, Lawrence F.
1991-01-01
A multispectral scanning radiometer has been used to obtain measurements of the reflection function of marine stratocumulus clouds at 0.75 micron and at 1.65 and 2.16 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE, conducted off the coast of southern California during July 1987. Multispectral images of the reflection function were used to derive the optical thickness and the effective particle radius of stratiform cloud layers on four days. In addition to the radiation measurements, in situ microphysical measurements were obtained from an aircraft. In this paper, the remote sensing results are compared with in situ observations, which show a good spatial correlation for both optical thickness and effective radius. These comparisons further show systematic differences between remote sensing and in situ values, with a tendency for remote sensing to overestimate the effective radius by about 2-3 microns, independent of particle radius. The optical thickness, in contrast, is somewhat overestimated for small optical thicknesses and underestimated for large optical thicknesses. An introduction of enhanced gaseous absorption at a wavelength of 2.16 microns successfully explains some of these observed discrepancies.
Akkaya, Serkan; Küçük, Bekir; Doğan, Hatice Karaköse; Can, Ertuğrul
2018-06-01
To compare the lamina cribrosa thickness and anterior lamina cribrosa depth between patients with and without diabetes mellitus and to investigate the effect of metabolic control and duration of diabetes mellitus on lamina cribrosa thickness and anterior lamina cribrosa depth using enhanced depth imaging spectral-domain optical coherence tomography. A total of 70 patients were enrolled in this cross-sectional study and were divided into the diabetes and control groups. Intraocular pressure, circumpapillary retinal nerve fibre layer thickness, anterior lamina cribrosa depth and lamina cribrosa thickness were compared between the groups. In the control group, the mean intraocular pressure was 14.6 ± 3.1 (mean ± standard deviation) mmHg, mean circumpapillary retinal nerve fibre layer thickness was 105.41 ± 5.86 μm, mean anterior lamina cribrosa depth was 420.3 ± 90.2 μm and mean lamina cribrosa thickness was 248.5 ± 5.4 μm. In the diabetes group, the mean intraocular pressure was 13.9 ± 2.2 mmHg, mean circumpapillary retinal nerve fibre layer thickness was 101.37 ± 10.97 μm, mean anterior lamina cribrosa depth was 351.4 ± 58.6 μm and mean lamina cribrosa thickness was 271.6 ± 33.9 μm. Lamina cribrosa thickness was significantly higher ( p < 0.001) and anterior lamina cribrosa depth was significantly lower ( p = 0.003) in the diabetes group. There was no statistical difference between the groups with regard to age, spherical equivalent, axial length, circumpapillary retinal nerve fibre layer thickness and intraocular pressure ( p = 0.69, 0.26, 0.47, 0.06 and 0.46, respectively). Lamina cribrosa thickness and anterior lamina cribrosa depth were not significantly correlated with duration of diabetes mellitus (lamina cribrosa thickness: r = -0.078, p = 0.643; anterior lamina cribrosa depth: r = -0.062, p = 0.710) or HbA1c levels (lamina cribrosa thickness: r = -0.078, p = 0.596; anterior lamina cribrosa depth: r = -0.228, p = 0.169). The results of this study showed that the optical coherence tomography measurement of lamina cribrosa revealed thicker and more anteriorly positioned lamina cribrosa for patients with diabetes mellitus compared with those for healthy controls.
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-07-09
This paper presents the preparation of high-quality vanadium dioxide (VO₂) thermochromic thin films with enhanced visible transmittance (T vis ) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO₂ thin films with high T vis and excellent optical switching efficiency (E os ) were successfully prepared by employing SiO₂ as a passivation layer. After SiO₂ deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO₂ coating, the phase transition temperature (T c ) of the prepared films was not affected. Compared with pristine VO₂, the total layer thickness after SiO₂ coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO₂ thin films showed a higher T vis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of T vis while maintaining high E os is meaningful for VO₂-based smart window applications.
Topical meeting on optical interference coatings (OIC'2001): manufacturing problem.
Dobrowolski, J A; Browning, Stephen; Jacobson, Michael; Nadal, Maria
2002-06-01
Measurements are presented of the experimental filters submitted to the first optical thin-film manufacturing problem posed in conjunction with the Topical Meeting on Optical Interference Coatings, in which the object was to produce multilayers with spectral transmittance and reflectance curves that were as close as possible to the target values that were specified in the 400- to 600-nm spectral region. No limit was set on the overall thickness of the solutions or the number of layers used in their construction. The participants were free to use the coating materials of their choice. Six different groups submitted a total of 11 different filters for evaluation. Three different physical vapor deposition processes were used for the manufacture of the coatings: magnetron sputtering, ion-beam sputtering, and plasma-ion-assisted, electron-beam gun evaporation. The solutions ranged in metric thickness from 758 to 4226 nm and consisted of between 8 and 27 layers. For all but two of the samples submitted, the average rms departure of the measured transmittances and reflectances from the target values in the spectral region of interest was between 0.98% and 1.55%.
Optical properties of Ag nanoclusters formed by irradiation and annealing of SiO2/SiO2:Ag thin films
NASA Astrophysics Data System (ADS)
Güner, S.; Budak, S.; Gibson, B.; Ila, D.
2014-08-01
We have deposited five periodic SiO2/SiO2 + Ag multi-nano-layered films on fused silica substrates using physical vapor deposition technique. The co-deposited SiO2:Ag layers were 2.7-5 nm and SiO2 buffer layers were 1-15 nm thick. Total thickness was between 30 and 105 nm. Different concentrations of Ag, ranging from 1.5 to 50 molecular% with respect to SiO2 were deposited to determine relevant rates of nanocluster formation and occurrence of interaction between nanoclusters. Using interferometry as well as in situ thickness monitoring, we measured the thickness of the layers. The concentration of Ag in SiO2 was measured with Rutherford Backscattering Spectrometry (RBS). To nucleate Ag nanoclusters, 5 MeV cross plane Si ion bombardments were performed with fluence varying between 5 × 1014 and 1 × 1016 ions/cm2 values. Optical absorption spectra were recorded in the range of 200-900 nm in order to monitor the Ag nanocluster formation in the thin films. Thermal annealing treatment at different temperatures was applied as second method to form varying size of nanoclusters. The physical properties of formed super lattice were criticized for thermoelectric applications.
Kanamori, Akiyasu; Nakamura, Makoto; Matsui, Noriko; Nagai, Azusa; Nakanishi, Yoriko; Kusuhara, Sentaro; Yamada, Yuko; Negi, Akira
2004-12-01
To analyze retinal nerve fiber layer (RNFL) thickness in eyes with band atrophy by use of optical coherence tomography (OCT) and to evaluate the ability of OCT to detect this characteristic pattern of RNFL loss. Cross-sectional, retrospective study. Thirty-four eyes of 18 patients with bitemporal hemianopia caused by optic chiasm compression by chiasmal tumors were studied. All eyes were divided into 3 groups according to visual field loss grading after Goldmann perimetry. Retinal nerve fiber layer thickness measurements with OCT. Retinal nerve fiber layer thickness around the optic disc was measured by OCT (3.4-mm diameter circle). Calculation of the changes in OCT parameters, including the horizontal (nasal + temporal quadrant RNFL thickness) and vertical values (superior + inferior quadrant RNFL thickness) was based on data from 160 normal eyes. Comparison between the 3 visual field grading groups was done with the analysis of variance test. The receiver operating characteristic (ROC) curve for the horizontal and vertical value were calculated, and the areas under the curve (AUC) were compared. Retinal nerve fiber layer thickness in eyes with band atrophy decreased in all OCT parameters. The reduction rate in average and temporal RNFL thickness and horizontal value was correlated with visual field grading. The AUC of horizontal value was 0.970+/-0.011, which was significantly different from AUC of vertical value (0.903+/-0.022). The degree of RNFL thickness reduction correlated with that of visual field defects. Optical coherence tomography was able to identify the characteristic pattern of RNFL loss in these eyes.
Threshold thickness for applying diffusion equation in thin tissue optical imaging
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2014-08-01
We investigated the suitability of the semi-infinite model of the diffusion equation when using diffuse optical imaging (DOI) to image thin tissues with double boundaries. Both diffuse approximation and Monte Carlo methods were applied to simulate light propagation in the thin tissue model with variable optical parameters and tissue thicknesses. A threshold value of the tissue thickness was defined as the minimum thickness in which the semi-infinite model exhibits the same reflected intensity as that from the double-boundary model and was generated as the final result. In contrast to our initial hypothesis that all optical properties would affect the threshold thickness, our results show that only absorption coefficient is the dominant parameter and the others are negligible. The threshold thickness decreases from 1 cm to 4 mm as the absorption coefficient grows from 0.01 mm-1 to 0.2 mm-1. A look-up curve was derived to guide the selection of the appropriate model during the optical diagnosis of thin tissue cancers. These results are useful in guiding the development of the endoscopic DOI for esophageal, cervical and colorectal cancers, among others.
Performance Evaluation of 40 cm Ion Optics for the NEXT Ion Engine
NASA Technical Reports Server (NTRS)
Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.
2002-01-01
The results of performance tests with two 40 cm ion optics sets are presented and compared to those of 30 cm ion optics with similar aperture geometries. The 40 cm ion optics utilized both NSTAR and TAG (Thick-Accelerator-Grid) aperture geometries. All 40 cm ion optics tests were conducted on a NEXT (NASA's Evolutionary Xenon Thruster) laboratory model ion engine. Ion optics performance tests were conducted over a beam current range of 1.20 to 3.52 A and an engine input power range of 1.1 to 6.9 kW. Measured ion optics' performance parameters included near-field radial beam current density profiles, impingement-limited total voltages, electron backstreaming limits, screen grid ion transparencies, beam divergence angles, and start-up transients. Impingement-limited total voltages for 40 cm ion optics with the NSTAR aperture geometry were 60 to 90 V lower than those with the TAG aperture geometry. This difference was speculated to be due to an incomplete burn-in of the TAG ion optics. Electron backstreaming limits for the 40 cm ion optics with the TAG aperture geometry were 8 to 19 V higher than those with the NSTAR aperture geometry due to the thicker accelerator grid of the TAG geometry. Because the NEXT ion engine provided beam flatness parameters that were 40 to 63 percent higher than those of the NSTAR ion engine, the 40 cm ion optics outperformed the 30 cm ion optics.
Photovoltaic device having light transmitting electrically conductive stacked films
Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.
1990-07-10
A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.
Thickness and microstructure effects in the optical and electrical properties of silver thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Guowen, E-mail: gding@intermolecular.com; Clavero, César; Schweigert, Daniel
The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅more » fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.« less
Choroidal Thinning Associated With Hydroxychloroquine Retinopathy.
Ahn, Seong Joon; Ryu, So Jung; Joung, Joo Young; Lee, Byung Ro
2017-11-01
To investigate choroidal thickness in patients using hydroxychloroquine (HCQ) and compare choroidal thickness between eyes with and without HCQ retinopathy. Retrospective case series. Setting: Institutional. We included 124 patients with systemic lupus erythematosus or rheumatoid arthritis who were treated with HCQ. The patients were divided into an HCQ retinopathy group and a control group, according to the presence or absence of HCQ retinopathy. Total choroidal thickness and choriocapillaris-equivalent thickness were measured manually by 2 independent investigators using swept-source optical coherence tomography (SS-OCT; DRI-OCT, Topcon Inc, Tokyo, Japan). These measurements were made at the fovea and at nasal and temporal locations 0.5, 1.5, and 3 mm from the fovea. Medium-to-large vessel layer thickness was calculated accordingly. The thicknesses were compared between the HCQ retinopathy and control groups. We performed correlation analyses between choroidal thicknesses and details regarding HCQ use. Total choroidal thickness and choriocapillaris-equivalent thickness. Choroidal thicknesses were significantly decreased (P < .05) in the HCQ retinopathy group compared to the control group, except at the temporal choroid 1.5 mm from the fovea. Choriocapillaris-equivalent thicknesses were significantly different in all choroidal locations between the groups. In contrast, the medium-to-large vessel layer thickness was only significantly different at a few locations. The cumulative dose/body weight was significantly correlated with subfoveal choroidal and choriocapillaris-equivalent thicknesses (both P = .001). The association between presence of HCQ retinopathy and choroidal thicknesses was also statistically significant after adjusting for age, diagnosis for HCQ use, refractive errors, and duration of HCQ use (P = .001 and P = .003 for subfoveal choroidal and choriocapillaris-equivalent thickness, respectively). These results all suggest that HCQ retinopathy is associated with choroidal thinning, especially in the choriocapillaris. Our results may suggest choroidal involvement of HCQ toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
Bae, Hyoung Won; Ji, Yongwoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun
2015-01-01
Normal-tension glaucoma (NTG) is a heterogenous disease, and there is still controversy about subclassifications of this disorder. On the basis of spectral-domain optical coherence tomography (SD-OCT), we subdivided NTG with hierarchical cluster analysis using optic nerve head (ONH) parameters and retinal nerve fiber layer (RNFL) thicknesses. A total of 200 eyes of 200 NTG patients between March 2011 and June 2012 underwent SD-OCT scans to measure ONH parameters and RNFL thicknesses. We classified NTG into homogenous subgroups based on these variables using a hierarchical cluster analysis, and compared clusters to evaluate diverse NTG characteristics. Three clusters were found after hierarchical cluster analysis. Cluster 1 (62 eyes) had the thickest RNFL and widest rim area, and showed early glaucoma features. Cluster 2 (60 eyes) was characterized by the largest cup/disc ratio and cup volume, and showed advanced glaucomatous damage. Cluster 3 (78 eyes) had small disc areas in SD-OCT and were comprised of patients with significantly younger age, longer axial length, and greater myopia than the other 2 groups. A hierarchical cluster analysis of SD-OCT scans divided NTG patients into 3 groups based upon ONH parameters and RNFL thicknesses. It is anticipated that the small disc area group comprised of younger and more myopic patients may show unique features unlike the other 2 groups.
The influence of sea fog inhomogeneity on its microphysical characteristics retrieval
NASA Astrophysics Data System (ADS)
Hao, Zengzhou; Pan, Delu; Gong, Fang; He, Xianqiang
2008-10-01
A study on the effect of sea fog inhomogeneity on its microphysical parameters retrieval is presented. On the condition that the average liquid water content is linear vertically and the power spectrum spectral index sets 2.0, we generate a 3D sea fog fields by controlling the total liquid water contents greater than 0.04g/m3 based on the iterative method for generating scaling log-normal random field with an energy spectrum and a fragmentized cloud algorithm. Based on the fog field, the radiance at the wavelengths of 0.67 and 1.64 μm are simulated with 3D radiative transfer model SHDOM, and then the fog optical thickness and effective particle radius are simultaneously retrieved using the generic look-up-table AVHRR cloud algorithm. By comparing those fog optical thickness and effective particle radius, the influence of sea fog inhomogeneity on its properties retrieval is discussed. It exhibits the system bias when inferring sea fog physical properties from satellite measurements based on the assumption of plane parallel homogeneous atmosphere. And the bias depends on the solar zenith angel. The optical thickness is overrated while the effective particle radius is under-estimated at two solar zenith angle 30° and 60°. Those results show that it is necessary for sea fog true characteristics retrieval to develop a new algorithm using the 3D radiative transfer.
NASA Astrophysics Data System (ADS)
Melnikova, I.; Mukai, S.; Vasilyev, A.
Data of remote measurements of reflected radiance with the POLDER instrument on board of ADEOS satellite are used for retrieval of the optical thickness, single scattering albedo and phase function parameter of cloudy and clear atmosphere. The method of perceptron neural network that from input values of multiangle radiance and Solar incident angle allows to obtain surface albedo, the optical thickness, single scattering albedo and phase function parameter in case of clear sky. Two last parameters are determined as optical average for atmospheric column. The calculation of solar radiance with using the MODTRAN-3 code with taking into account multiple scattering is accomplished for neural network learning. All mentioned parameters were randomly varied on the base of statistical models of possible measured parameters variation. Results of processing one frame of remote observation that consists from 150,000 pixels are presented. The methodology elaborated allows operative determining optical characteristics as cloudy as clear atmosphere. Further interpretation of these results gives the possibility to extract the information about total contents of atmospheric aerosols and absorbing gases in the atmosphere and create models of the real cloudiness An analytical method of interpretation that based on asymptotic formulas of multiple scattering theory is applied to remote observations of reflected radiance in case of cloudy pixel. Details of the methodology and error analysis were published and discussed earlier. Here we present results of data processing of pixel size 6x6 km In many studies the optical thickness is evaluated earlier in the assumption of the conservative scattering. But in case of true absorption in clouds the large errors in parameter obtained are possible. The simultaneous retrieval of two parameters at every wavelength independently is the advantage comparing with earlier studies. The analytical methodology is based on the transfer theory asymptotic formula inversion for optically thick stratus clouds. The model of horizontally infinite layer is considered. The slight horizontal heterogeneity is approximately taken into account. Formulas containing only the measured values of two-direction radiance and functions of solar and view angles were derived earlier. The 6 azimuth harmonics of reflection function are taken into account. The simple approximation of the cloud top boarder heterogeneity is used. The clouds, projecting upper the cloud top plane causes the increase of diffuse radiation in the incident flux. It is essential for calculation of radiative characteristics, which depends on lighting conditions. Escape and reflection functions describe this dependence for reflected radiance and local albedo of semi-infinite medium - for irradiance. Thus the functions depending on solar incident angle is to replace by their modifications. Firstly optical thickness of every pixel is obtained with simple formula assuming conservative scattering for all available view directions. Deviations between obtained values may be taken as a measure of the cloud top deviation from the plane. The special parameter is obtained, which takes into account the shadowing effect. Then single scattering albedo and optical thickness (with the true absorption assuming) are obtained for pairs of view directions with equal optical thickness. After that the averaging of values obtained and relative error evaluation is accomplished for all viewing directions of every pixel. The procedure is repeated for all wavelengths and pixels independently.
Graphene based resonance structure to enhance the optical pressure between two planar surfaces.
Hassanzadeh, Abdollah; Azami, Darya
2015-12-28
To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.
Vizzeri, Gianmarco; Bowd, Christopher; Medeiros, Felipe A; Weinreb, Robert N; Zangwill, Linda M
2008-08-01
Misalignment of the Stratus optical coherence tomograph scan circle placed by the operator around the optic nerve head (ONH) during each retinal nerve fiber layer (RNFL) examination can affect the instrument reproducibility and its theoretical ability to detect true structural changes in the RNFL thickness over time. We evaluated the effect of scan circle placement on RNFL measurements. Observational clinical study. Sixteen eyes of 8 normal participants were examined using the Stratus optical coherence tomograph Fast RNFL thickness acquisition protocol (software version 4.0.7; Carl Zeiss Meditec, Dublin, CA). Four consecutive images were taken by the same operator with the circular scan centered on the optic nerve head. Four images each with the scan displaced superiorly, inferiorly, temporally, and nasally were also acquired. Differences in average and sectoral RNFL thicknesses were determined. For the centered scans, the coefficients of variation (CV) and the intraclass correlation coefficient for the average RNFL thickness measured were calculated. When the average RNFL thickness of the centered scans was compared with the average RNFL thickness of the displaced scans individually using analysis of variance with post-hoc analysis, no difference was found between the average RNFL thickness of the nasally (105.2 microm), superiorly (106.2 microm), or inferiorly (104.1 microm) displaced scans and the centered scans (106.4 microm). However, a significant difference (analysis of variance with Dunnett's test: F=8.82, P<0.0001) was found between temporally displaced scans (115.8 microm) and centered scans. Significant differences in sectoral RNFL thickness measurements were found between centered and each displaced scan. The coefficient of variation for average RNFL thickness was 1.75% and intraclass correlation coefficient was 0.95. In normal eyes, average RNFL thickness measurements are robust and similar with significant superior, inferior, and nasal scan displacement, but average RNFL thickness is greater when scans are displaced temporally. Parapapillary scan misalignment produces significant changes in RNFL assessment characterized by an increase in measured RNFL thickness in the quadrant in which the scan is closer to the disc, and a significant decrease in RNFL thickness in the quadrant in which the scan is displaced further from the optic disc.
Optic nerve head cupping in glaucomatous and non-glaucomatous optic neuropathy.
Fard, Masoud Aghsaei; Moghimi, Sasan; Sahraian, Alireza; Ritch, Robert
2018-05-23
Enlargement of optic disc cupping is seen both in glaucoma and in neurological disorders. We used enhanced depth imaging with spectral-domain optical coherence tomography to differentiate glaucoma from non-glaucomatous optic neuropathy. The optic discs were scanned in this prospective comparative study, and the lamina cribrosa (LC) thickness and anterior laminar depth (ALD) in the central, superior and inferior optic nerve head, and peripapillary choroidal thicknesses, were measured. There were 31 eyes of 31 patients with severe glaucoma and 33 eyes of 19 patients with non-glaucomatous cupping. Eyes of 29 healthy controls were also enrolled. There was no significant difference in the cup-to-disc ratio and in the average peripapillary nerve fibre layer thickness between the glaucoma and non-glaucomatous cupping groups (p>0.99). The average peripapillary choroidal thickness was thinner in glaucoma eyes than in the control eyes after adjusting for age and axial length. Glaucomatous and non-glaucomatous eyes had greater ALD and thinner LC than the control eyes (p<0.001 for both). ALDs of glaucoma eyes were deeper than non-glaucomatous eyes (p=0.01 for central ALD) when age, axial length and peripapillary choroidal thickness were included in the linear mixed model. Prelaminar thickness and LC thickness of glaucoma eyes were not different from non-glaucomatous eyes after adjusting. Deeper ALD was observed in glaucoma than non-glaucomatous cupping after adjusting for choroidal thickness. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Properties of thin silver films with different thickness
NASA Astrophysics Data System (ADS)
Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan
2009-01-01
In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.
Antireflection coating on metallic substrates for solar energy and display applications
NASA Astrophysics Data System (ADS)
Hsiao, Wei-Yuan; Tang, Chien-Jen; Lee, Kun-Hsien; Jaing, Cheng-Chung; Kuo, Chien-Cheng; Chen, Hsi-Chao; Chang, Hsing-Hua; Lee, Cheng-Chung
2010-08-01
Normally metallic films are required for solar energy and display related coatings. To increase the absorbing efficiency or contrast, it is necessary to apply an antireflection coating (ARC) on the metal substrate. However, the design of a metal substrate is very different from the design of a dielectric substrate, since the optical constant of metallic thin film is very dependent on its thickness and microstructure. In this study, we design and fabricate ARCs on Al substrates using SiO2 and Nb2O5 as the dielectric materials and Nb for the metal films. The ARC successfully deposited on the Al substrate had the following structure: air/SiO2/Nb2O5/Metal/Nb2O5/Al. The measured average reflectance of the ARC is less than 1% in the visible region. We found that it is better to use a highly refractive material than a low refractive material. The thickness of the metallic film can be thicker with the result that it is easier to control and has a lesser total thickness. The total thickness of the ARC is less than 200 nm. We successfully fabricated a solar absorber and OLED device with the ARC structure were successfully fabricated.
NASA Technical Reports Server (NTRS)
Croke, E. T.; Wang, K. L.; Heyd, A. R.; Alterovitz, S. A.; Lee, C. H.
1996-01-01
Variable angle spectroscopic ellipsometry (VASE) has been used to characterize Si(x)Ge(1-x)/Ge superlattices (SLs) grown on Ge substrates and thick Si(x)Ge(1-x)/Ge heterostructures grown on Si substrates. Our VASE analysis yielded the thicknesses and alloy compositions of all layers within the optical penetration depth of the surface. In addition, strain effects were observed in the VASE results for layers under both compressive and tensile strain. Results for the SL structures were found to be in close agreement with high resolution x-ray diffraction measurements made on the same samples. The VASE analysis has been upgraded to characterize linearly graded Si(x)Ge(1-x) buffer layers. The algorithm has been used to determine the total thickness of the buffer layer along with the start and end alloy composition by breaking the total thickness into many (typically more than 20) equal layers. Our ellipsometric results for 1 (mu)m buffer layers graded in the ranges 0.7 less than or = x less than or = 1.0, and 0.5 less than or = x less than or = 1.0 are presented, and compare favorably with the nominal values.
Electro-optic device with gap-coupled electrode
Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.
2013-08-20
An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.
Dysli, Chantal; Enzmann, Volker; Sznitman, Raphael; Zinkernagel, Martin S.
2015-01-01
Purpose Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. Methods Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b+Prph2Rd2/J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. Results Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. Conclusions Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. Translational Relevance The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions. PMID:26336634
Macular slippage after macular hole surgery with internal limiting membrane peeling.
Nakagomi, Tomomi; Goto, Teruhiko; Tateno, Yasushi; Oshiro, Tomohiro; Iijima, Hiroyuki
2013-12-01
To describe macular slippage toward the optic disc after macular hole surgery with internal limiting membrane (ILM) peeling. A total of 27 eyes of 27 patients with idiopathic macular hole were included in this retrospective study. The fovea-to-disc distance (FDD) was measured from digital color fundus images before and at least six months after surgery. The position of the fovea was determined as the center of the macular hole before surgery and the center of the macular pigment area after surgery. The thickness of the nasal and temporal macula was measured using spectral-domain optical coherence tomography. The difference in thickness between the nasal and temporal macula was determined as the degree of parafoveal asymmetry (PFA). The postoperative FDD was significantly shorter than the preoperative FDD: 4.00 ± 0.33 mm and 3.82 ± 0.34 mm, respectively (p < 0.0001). The mean decreased ratio of FDD was 4.68% (range, 0.38-9.24%). The appearance of the dissociated optic nerve fiber layer (DONFL) was finally found in 21 eyes (78%). The decreased FDD ratio was significantly larger in eyes with the DONFL appearance than in those without it: 5.61 ± 1.74% and 1.44 ± 1.12%, respectively (p < 0.0001). The decreased ratio of FDD was correlated with the postoperative PFA (r = 0.63, p = 0.0004). A macula in which the ILM has peeled off would slip toward the optic disc after macular hole surgery. Macular slippage can be a reasonable cause for the macular alterations such as an appearance of DONFL and changes in asymmetrical parafoveal thickness.
Optical clearing of articular cartilage: a comparison of clearing agents
NASA Astrophysics Data System (ADS)
Bykov, Alexander; Hautala, Tapio; Kinnunen, Matti; Popov, Alexey; Karhula, Sakari; Saarakkala, Simo; Nieminen, Miika T.; Tuchin, Valery
2015-07-01
Optical clearing technique was applied to the problem of OCT imaging of articular cartilage and subchondral bone. We show that optical clearing significantly enhances visualization of articular cartilage and cartilage-bone interface. The effect of different clearing agents was analyzed. For the clearing, iohexol solution and propylene glycol (PG) were used. Clearing was performed in vitro at room temperature by immersion method. Cylindrical osteochondral samples (d=4.8mm) were drilled from bovine lateral femur and stored in phosphate-buffered saline at -20°C until clearing. Monitoring of clearing process was performed using high-speed spectral-domain OCT system providing axial resolution of 5.8μm at 930nm. Total duration of experiment was 90-100min to ensure saturation of clearing. We have shown that iohexol solution and PG are capable to optically clear articular cartilage enabling reliable characterization of cartilagebone interface with OCT. Being a low osmolarity agent, iohexol provides minimal changes to the thickness of cartilage sample. Clearing saturation time for the cartilage sample with the thickness of 0.9 mm measured with OCT is of 50 min. However, less than 15 min is enough to reliably detect the rear cartilage boundary. Alternatively, PG significantly (60%) reduces the cartilage thickness enabling better visualization of subchondral bone. It was observed that PG has higher clearing rate. The clearing saturation time is of 30 min, however less than 5 min is enough to detect cartilage-bone interface. We conclude that iohexol solution is superior for OCT imaging of cartilage and cartilage-bone interface, while PG suits better for subhondral bone visualization.
NASA Technical Reports Server (NTRS)
Ding, Jiachen; Yang, Ping; Kattawar, George W.; King, Michael D.; Platnick, Steven; Meyer, Kerry G.
2017-01-01
Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If t(1v) and t(1vg) are conserved where t is optical thickness, v the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1wg)factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1w)(1(exp. 1/2)wg)]12, also tend to be similar.
Huang, David; Chopra, Vikas; Lu, Ake Tzu-Hui; Tan, Ou; Francis, Brian; Varma, Rohit
2012-01-01
Purpose. To determine the relationship between retinal nerve fiber layer (RNFL) thickness, optic disc size, and image magnification. Methods. The cohort consisted of 196 normal eyes of 101 participants in the Advanced Imaging for Glaucoma Study (AIGS), a multicenter, prospective, longitudinal study to develop advanced imaging technologies for glaucoma diagnosis. Scanning laser tomography was used to measure disc size. Optical coherence tomography (OCT) was used to perform circumpapillary RNFL thickness measurements using the standard fixed 3.46-mm nominal scan diameter. A theoretical model of magnification effects was developed to relate RNFL thickness (overall average) with axial length and magnification. Results. Multivariate regression showed no significant correlation between RNFL thickness and optic disc area (95% confidence interval [CI] = −0.9 to 4.1 μm/mm2, P = 0.21). Linear regression showed that RNFL thickness depended significantly on axial length (slope = −3.1 μm/mm, 95% CI = −4.9 to −1.3, P = 0.001) and age (slope = −0.3 μm/y, 95% CI = −0.5 to −0.2, P = 0.0002). The slope values agreed closely with the values predicted by the magnification model. Conclusions. There is no significant association between RNFL thickness and optic disc area. Previous publications that showed such an association may have been biased by the effect of axial length on fundus image magnification and, therefore, both measured RNFL thickness and apparent disc area. The true diameter of the circumpapillary OCT scan is larger for a longer eye (more myopic eye), leading to a thinner RNFL measurement. Adjustment of measured RNFL thickness by axial length, in addition to age, may lead to a tighter normative range and improve the detection of RNFL thinning due to glaucoma. PMID:22743319
Likelihood ratios for glaucoma diagnosis using spectral-domain optical coherence tomography.
Lisboa, Renato; Mansouri, Kaweh; Zangwill, Linda M; Weinreb, Robert N; Medeiros, Felipe A
2013-11-01
To present a methodology for calculating likelihood ratios for glaucoma diagnosis for continuous retinal nerve fiber layer (RNFL) thickness measurements from spectral-domain optical coherence tomography (spectral-domain OCT). Observational cohort study. A total of 262 eyes of 187 patients with glaucoma and 190 eyes of 100 control subjects were included in the study. Subjects were recruited from the Diagnostic Innovations Glaucoma Study. Eyes with preperimetric and perimetric glaucomatous damage were included in the glaucoma group. The control group was composed of healthy eyes with normal visual fields from subjects recruited from the general population. All eyes underwent RNFL imaging with Spectralis spectral-domain OCT. Likelihood ratios for glaucoma diagnosis were estimated for specific global RNFL thickness measurements using a methodology based on estimating the tangents to the receiver operating characteristic (ROC) curve. Likelihood ratios could be determined for continuous values of average RNFL thickness. Average RNFL thickness values lower than 86 μm were associated with positive likelihood ratios (ie, likelihood ratios greater than 1), whereas RNFL thickness values higher than 86 μm were associated with negative likelihood ratios (ie, likelihood ratios smaller than 1). A modified Fagan nomogram was provided to assist calculation of posttest probability of disease from the calculated likelihood ratios and pretest probability of disease. The methodology allowed calculation of likelihood ratios for specific RNFL thickness values. By avoiding arbitrary categorization of test results, it potentially allows for an improved integration of test results into diagnostic clinical decision making. Copyright © 2013. Published by Elsevier Inc.
Upper limit set for level of lightning activity on Titan
NASA Technical Reports Server (NTRS)
Desch, M. D.; Kaiser, M. L.
1990-01-01
Because optically thick cloud and haze layers prevent lightning detection at optical wavelength on Titan, a search was conducted for lightning-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument aboard Voyager 1. Given the maximum ionosphere density of about 3000/cu cm, lightning spherics should be detectable above an observing frequency of 500 kHz. Since no evidence for spherics is found, an upper limit to the total energy per flash in Titan lightning of about 10 to the 6th J, or about 1000 times weaker than that of typical terrestrial lightning, is inferred.
Huseyinoglu, Nergiz; Ekinci, Metin; Ozben, Serkan; Buyukuysal, Cagatay
2014-01-01
Abstract Studies that explored the anterior visual pathway in the patients with multiple sclerosis (MS) have demonstrated contradictory results about the correlation between structural and functional status of optic nerve and retina. We aimed to investigate the functional and structural findings in our cohort of mildly disabled relapsing-remitting MS patients. A total of 134 eyes (80 eyes of the patients with MS and 54 eyes of the control group) were investigated. Eyes of MS patients were divided into two groups—as eyes with history of optic neuritis (ON group) and without history of optic neuritis (NON group). Ophthalmological investigation including visual evoked potentials, standard automated perimetry, and optical coherence tomography were performed for all participants. Retinal and macular thicknesses were significantly decreased in ON and NON groups compared with controls. Also, visual evoked potential latencies and visual field loss were worse in the both MS groups compared with control group. We did not find any correlation between visual evoked potentials and retinal or macular thickness values but visual field parameters were correlated between retinal and macular layer loss in the NON group. According to our results and some previous studies, although both functional and structural changes were detected in patients with MS, functional status markers do not always show parallelism (or synchrony) with structural changes, especially in eyes with history of optic neuritis. PMID:27928266
Willoughby, Alex S.; Chiu, Stephanie J.; Silverman, Rachel K.; Farsiu, Sina; Bailey, Clare; Wiley, Henry E.; Ferris, Frederick L.; Jaffe, Glenn J.
2017-01-01
Purpose We determine whether the automated segmentation software, Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP), can measure, in a platform-independent manner, retinal thickness on Cirrus and Spectralis spectral domain optical coherence tomography (SD-OCT) images in eyes with diabetic macular edema (DME) under treatment in a clinical trial. Methods Automatic segmentation software was used to segment the internal limiting membrane (ILM), inner retinal pigment epithelium (RPE), and Bruch's membrane (BM) in SD-OCT images acquired by Cirrus and Spectralis commercial systems, from the same eye, on the same day during a clinical interventional DME trial. Mean retinal thickness differences were compared across commercial and DOCTRAP platforms using intraclass correlation (ICC) and Bland-Altman plots. Results The mean 1 mm central subfield thickness difference (standard error [SE]) comparing segmentation of Spectralis images with DOCTRAP versus HEYEX was 0.7 (0.3) μm (0.2 pixels). The corresponding values comparing segmentation of Cirrus images with DOCTRAP versus Cirrus software was 2.2 (0.7) μm. The mean 1 mm central subfield thickness difference (SE) comparing segmentation of Cirrus and Spectralis scan pairs with DOCTRAP using BM as the outer retinal boundary was −2.3 (0.9) μm compared to 2.8 (0.9) μm with inner RPE as the outer boundary. Conclusions DOCTRAP segmentation of Cirrus and Spectralis images produces validated thickness measurements that are very similar to each other, and very similar to the values generated by the corresponding commercial software in eyes with treated DME. Translational Relevance This software enables automatic total retinal thickness measurements across two OCT platforms, a process that is impractical to perform manually. PMID:28180033
Lee, Joo Yong; Chiu, Stephanie J.; Srinivasan, Pratul P.; Izatt, Joseph A.; Toth, Cynthia A.; Farsiu, Sina; Jaffe, Glenn J.
2013-01-01
Purpose. To determine whether a novel automatic segmentation program, the Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP), can be applied to spectral-domain optical coherence tomography (SD-OCT) images obtained from different commercially available SD-OCT in eyes with diabetic macular edema (DME). Methods. A novel segmentation framework was used to segment the retina, inner retinal pigment epithelium, and Bruch's membrane on images from eyes with DME acquired by one of two SD-OCT systems, Spectralis or Cirrus high definition (HD)-OCT. Thickness data obtained by the DOCTRAP software were compared with those produced by Spectralis and Cirrus. Measurement agreement and its dependence were assessed using intraclass correlation (ICC). Results. A total of 40 SD-OCT scans from 20 subjects for each machine were included in the analysis. Spectralis: the mean thickness in the 1-mm central area determined by DOCTRAP and Spectralis was 463.8 ± 107.5 μm and 467.0 ± 108.1 μm, respectively (ICC, 0.999). There was also a high level agreement in surrounding areas (out to 3 mm). Cirrus: the mean thickness in the 1-mm central area was 440.8 ± 183.4 μm and 442.7 ± 182.4 μm by DOCTRAP and Cirrus, respectively (ICC, 0.999). The thickness agreement in surrounding areas (out to 3 mm) was more variable due to Cirrus segmentation errors in one subject (ICC, 0.734–0.999). After manual correction of the errors, there was a high level of thickness agreement in surrounding areas (ICC, 0.997–1.000). Conclusions. The DOCTRAP may be useful to compare retinal thicknesses in eyes with DME across OCT platforms. PMID:24084089
Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility
Lucy, Katie A.; Wang, Bo; Schuman, Joel S.; Bilonick, Richard A.; Ling, Yun; Kagemann, Larry; Sigal, Ian A.; Grulkowski, Ireneusz; Liu, Jonathan J.; Fujimoto, James G.; Ishikawa, Hiroshi; Wollstein, Gadi
2017-01-01
Purpose Evaluation of the effect of prelaminar tissue thickness on visualization of the lamina cribrosa (LC) using optical coherence tomography (OCT). Methods The optic nerve head (ONH) region was scanned using OCT. The quality of visible LC microstructure was assessed subjectively using a grading system and objectively by analyzing the signal intensity of each scan's superpixel components. Manual delineations were made separately and in 3-dimensions quantifying prelaminar tissue thickness, analyzable regions of LC microstructure, and regions with a visible anterior LC (ALC) boundary. A linear mixed effect model quantified the association between tissue thickness and LC visualization. Results A total of 17 healthy, 27 glaucoma suspect, and 47 glaucomatous eyes were included. Scans with thicker average prelaminar tissue measurements received worse grading scores (P = 0.007), and superpixels with low signal intensity were associated significantly with regions beneath thick prelaminar tissue (P < 0.05). The average prelaminar tissue thickness in regions of scans where the LC was analyzable (214 μm) was significantly thinner than in regions where the LC was not analyzable (569 μm; P < 0.001). Healthy eyes had significantly thicker average prelaminar tissue measurements than glaucoma or glaucoma suspect eyes (both P < 0.001), and glaucoma suspect eyes had significantly thicker average prelaminar tissue measurements than glaucoma eyes (P = 0.008). Significantly more of the ALC boundary was visible in glaucoma eyes (63% of ONH) than in healthy eyes (41%; P = 0.005). Conclusions Thick prelaminar tissue was associated with impaired visualization of the LC. Healthy subjects generally had thicker prelaminar tissue, which potentially could create a selection bias against healthy eyes when comparing LC structures. PMID:28324116
Bai, Yuqiang; Nichols, Jason J
2017-05-01
The thickness of tear film has been investigated under both invasive and non-invasive methods. While invasive methods are largely historical, more recent noninvasive methods are generally based on optical approaches that provide accurate, precise, and rapid measures. Optical microscopy, interferometry, and optical coherence tomography (OCT) have been developed to characterize the thickness of tear film or certain aspects of the tear film (e.g., the lipid layer). This review provides an in-depth overview on contemporary optical techniques used in studying the tear film, including both advantages and limitations of these approaches. It is anticipated that further developments of high-resolution OCT and other interferometric methods will enable a more accurate and precise measurement of the thickness of the tear film and its related dynamic properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Infinite optical thickness of dentine porcelain of IPS E.max A color series].
Sun, Ting; Shao, Long-quan; Yi, Yuan-fu; Deng, Bin; Wen, Ning; Zhang, Wei-wei
2011-02-01
To determine the infinite optical thickness of dentine porcelain of IPS E.max A color series. Cylindrical dentine porcelain specimens of the IPS E.max A color series were prepared with a diameter of 13 mm and thickness of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 mm. The chromatic value of all the specimens was determined with CM-5 spectrometer against standard black and white background. The chromatic aberration (deltaE) was calculated by regression equation. The infinite optical thickness of dentine porcelain of the IPS E.max A color series ranged from 2.341 to 3.333 mm for a deltaE of 1.0, and from 2.064 to 2.904 mm for a deltaE of 1.5. As the chromaticity or thickness increased, the influence by the background color decreased, and the color of specimens became gradually close to the intrinsic color. The thickness of the background dentine porcelain specimens must exceed its infinite optical thickness to represent the intrinsic color and avoid the influence by the extrinsic color.
NASA Astrophysics Data System (ADS)
Chaudhary, Sushank; Amphawan, Angela
2017-11-01
In an attempt to meet the goal of distributing millimeter-wave (mm-wave) signals, recent years have witnessed significant relevance being given to combining radio frequency with optical fiber technologies. The future of radio-over-free-space-optics technology aims to build a universal platform for distributing millimeter waves for wireless local area networks without using expensive optical fibers. This work is focused on simultaneous transmission of four independent OFDM-based channels, each carrying 20 Gbps to 40 GHz data, by mode-division multiplexing of Laguerre-Gaussian mode with vortex lens and Hermite-Gaussian mode to realize a total transmission of 80 Gbps to 160 GHz data over 50-km free-space optical link. Moreover, the performance of the proposed system is also evaluated under the influence of various atmospheric turbulences, such as light fog, thin fog, and thick fog.
Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk
2014-01-01
Purpose To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. Methods A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initialintravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Results Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. Conclusions IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism. PMID:25120338
Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk; Sohn, Joonhong
2014-08-01
To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initial intravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism.
Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness
NASA Technical Reports Server (NTRS)
Tegen, Ina; Fung, Inez
1994-01-01
A global three-dimensional model of the atmospheric mineral dust cycle is developed for the study of its impact on the radiative balance of the atmosphere. The model includes four size classes of minearl dust, whose source distributions are based on the distributions of vegetation, soil texture and soil moisture. Uplift and deposition are parameterized using analyzed winds and rainfall statistics that resolve high-frequency events. Dust transport in the atmosphere is simulated with the tracer transport model of the Goddard Institute for Space Studies. The simulated seasonal variations of dust concentrations show general reasonable agreement with the observed distributions, as do the size distributions at several observing sites. The discrepancies between the simulated and the observed dust concentrations point to regions of significant land surface modification. Monthly distribution of aerosol optical depths are calculated from the distribution of dust particle sizes. The maximum optical depth due to dust is 0.4-0.5 in the seasonal mean. The main uncertainties, about a factor of 3-5, in calculating optical thicknesses arise from the crude resolution of soil particle sizes, from insufficient constraint by the total dust loading in the atmosphere, and from our ignorance about adhesion, agglomeration, uplift, and size distributions of fine dust particles (less than 1 micrometer).
Ghassemi, Fariba; Mirshahi, Reza; Bazvand, Fatemeh; Fadakar, Kaveh; Faghihi, Houshang; Sabour, Siamak
2017-12-01
To provide normative data of foveal avascular zone (FAZ) and thickness. In this cross-sectional study both eyes of each normal subject were scanned with optical coherence tomography angiography (OCTA) for foveal superficial and deep avascular zone (FAZ) and central foveal thickness (CFT) and parafoveal thickness (PFT). Out of a total of 224 eyes of 112 volunteers with a mean age of 37.03 (12-67) years, the mean superficial FAZ area was 0.27 mm 2 , and deep FAZ area was 0.35 mm 2 ( P < 0.001), with no difference between both eyes. Females had a larger superficial (0.32 ± 0.11 mm 2 versus 0.23 ± 0.09 mm 2 ) and deep FAZ (0.40 ± 0.14 mm 2 versus 0.31 ± 0.10 mm 2 ) ( P < 0.001) than males. By multivariate linear regression analysis, in normal eyes, superficial FAZ area varied significantly with the gender, CFT, and deep FAZ. Deep FAZ varied with the gender and CFT. The gender and CFT influence the size of normal superficial and deep FAZ of capillary network.
NASA Astrophysics Data System (ADS)
De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Rao, K. Divakar; Singh, Ranveer; Som, T.; Sahoo, N. K.
2017-09-01
Along with other transition metal doped titanium dioxide materials, Ni-TiO2 is considered to be one of the most efficient materials for catalytic applications due to its suitable energy band positions in the electronic structure. The present manuscript explores the possibility of improving the photocatalytic activity of RF magnetron sputtered Ni-TiO2 films upon heat treatment. Optical, structural and morphological and photocatalytic properties of the films have been investigated in detail for as deposited and heat treated samples. Evolution of refractive index (RI) and total film thickness as estimated from spectroscopic ellipsometry characterization are found to be in agreement with the trend in density and total film thickness estimated from grazing incidence X-ray reflectivity measurement. Interestingly, the evolution of these macroscopic properties were found to be correlated with the corresponding microstructural modifications realized in terms of anatase to rutile phase transformation and appearance of a secondary phase namely NiTiO3 at high temperature. Corresponding morphological properties of the films were also found to be temperature dependent which leads to modifications in the grain structure. An appreciable reduction of optical band gap from 2.9 to 2.5 eV of Ni-TiO2 thin films was also observed as a result of post deposition heat treatment. Testing of photocatalytic activity of the films performed under UV illumination demonstrates heat treatment under atmospheric ambience to be an effective means to enhance the photocatalytic efficiency of transition metal doped titania samples.
Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication
NASA Astrophysics Data System (ADS)
Rubin, Binyamin; George, Jason; Singhal, Riju
2018-04-01
Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.
Optical contrast for identifying the thickness of two-dimensional materials
NASA Astrophysics Data System (ADS)
Bing, Dan; Wang, Yingying; Bai, Jing; Du, Ruxia; Wu, Guoqing; Liu, Liyan
2018-01-01
One of the most intriguing properties of two-dimensional (2D) materials is their thickness dependent properties. A quick and precise technique to identify the layer number of 2D materials is therefore highly desirable. In this review, we will introduce the basic principle of using optical contrast to determine the thickness of 2D material and also its advantage as compared to other modern techniques. Different 2D materials, including graphene, graphene oxide, transitional metal dichalcogenides, black phosphorus, boron nitride, have been used as examples to demonstrate the capability of optical contrast methods. A simple and more efficient optical contrast image technique is also emphasized, which is suitable for quick and large-scale thickness identification. We have also discussed the factors that could affect the experimental results of optical contrast, including incident light angle, anisotropic nature of materials, and also the twisted angle between 2D layers. Finally, we give perspectives on future development of optical contrast methods for the study and application of 2D materials.
NASA Astrophysics Data System (ADS)
Kim, MinSuk; Ham, Won Kyu; Kim, Wonyoung; Hwangbo, Chang Kwon; Choi, Eun Ha; Lee, Geon Joon
2018-04-01
Optical properties of nucleobase thin films were studied by attenuated total reflection (ATR) and surface-enhanced Raman spectroscopy (SERS). Adenine and guanine films were deposited on fused silica and silver at room temperature by thermal evaporation, and the normal dispersion of refractive indices of transparent adenine and guanine films in the visible and near-infrared regions were analyzed. The measured ATR spectra of adenine (guanine) films and numerical simulations by optical transfer matrix formalism demonstrate that the shift of surface plasmon resonance (SPR) wavelength is approximately linearly proportional to the adenine (guanine) film thickness, indicating that SPR can be used for quantitative measurements of biomaterials. The Raman spectra indicated that the adenine (guanine) films can be deposited by thermal evaporation. The adenine (guanine) films on silver exhibited Raman intensity enhancement as compared to those on glass, which was attributed to the SPR effect of silver platform and might play a role as a hot plate for SERS detection of biomaterials.
Hindman, Holly B.; Huxlin, Krystel R.; Pantanelli, Seth M.; Callan, Christine L.; Sabesan, Ramkumar; Ching, Steven S.T.; Miller, Brooke E.; Martin, Tim; Yoon, Geunyoung
2014-01-01
Purpose To assess the visual impact of ocular wavefront aberrations, corneal thickness, and corneal light scatter prospectively after Descemet’s Stripping Automated Endothelial Keratoplasty (DSAEK) in humans. Methods Data were obtained prospectively from 20 eyes pre-operatively and at 1, 3, 6, and 12 months post- DSAEK. At each visit, best spectacle corrected visual acuity (BSCVA) and visual acuity with glare (Brightness Acuity Testing - BAT) were recorded and ocular wavefront measurements and corneal Optical Coherence Tomography (OCT) performed. Magnitude and sign of individual Zernike terms (higher order aberrations HOA) were determined. Epithelial, host stromal, donor stromal, and total corneal thickness were quantified. Brightness, intensity profiles of OCT images were generated to quantify light scatter in the whole cornea, subepithelial region, anterior and posterior host stroma, interface, and donor stroma. Results Mean BSCVA and glare disability at low light levels improved from 1 to 12 months post-DSAEK. All corneal thicknesses and ocular lower- and HOAs were stable from 1 through 12 months, whereas total corneal, host stromal, and interface brightness intensities decreased significantly over the same period. A repeated measures ANOVA across the follow up period found that the change in scatter, but not the change in higher order aberrations, could account for the variability occurring in acuity from 1 to 12 months post-DSAEK. Conclusions While ocular HOAs and scatter are both elevated over normal post-DSAEK, our results demonstrate that improvements in visual performance occurring over the first year post-DSAEK are associated with decreasing light scatter. In contrast, there were no significant changes in ocular HOAs during this time. Because corneal light scatter decreased between 1 and 12 months despite stable corneal thicknesses over the same period, we conclude that factors that induced light scatter, other than tissue thickness or swelling (corneal edema), significantly impacted the visual improvements that occurred over time post-DSAEK. A better understanding of the cellular and extracellular matrix changes of the subepithelial region and interface, incurred by the surgical creation of a lamellar host -graft interface, and the subsequent healing of these tissues, is warranted. PMID:24162748
Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks
NASA Astrophysics Data System (ADS)
Strandgren, Johan; Bugliaro, Luca; Sehnke, Frank; Schröder, Leon
2017-09-01
Cirrus clouds play an important role in climate as they tend to warm the Earth-atmosphere system. Nevertheless their physical properties remain one of the largest sources of uncertainty in atmospheric research. To better understand the physical processes of cirrus clouds and their climate impact, enhanced satellite observations are necessary. In this paper we present a new algorithm, CiPS (Cirrus Properties from SEVIRI), that detects cirrus clouds and retrieves the corresponding cloud top height, ice optical thickness and ice water path using the SEVIRI imager aboard the geostationary Meteosat Second Generation satellites. CiPS utilises a set of artificial neural networks trained with SEVIRI thermal observations, CALIOP backscatter products, the ECMWF surface temperature and auxiliary data. CiPS detects 71 and 95 % of all cirrus clouds with an optical thickness of 0.1 and 1.0, respectively, that are retrieved by CALIOP. Among the cirrus-free pixels, CiPS classifies 96 % correctly. With respect to CALIOP, the cloud top height retrieved by CiPS has a mean absolute percentage error of 10 % or less for cirrus clouds with a top height greater than 8 km. For the ice optical thickness, CiPS has a mean absolute percentage error of 50 % or less for cirrus clouds with an optical thickness between 0.35 and 1.8 and of 100 % or less for cirrus clouds with an optical thickness down to 0.07 with respect to the optical thickness retrieved by CALIOP. The ice water path retrieved by CiPS shows a similar performance, with mean absolute percentage errors of 100 % or less for cirrus clouds with an ice water path down to 1.7 g m-2. Since the training reference data from CALIOP only include ice water path and optical thickness for comparably thin clouds, CiPS also retrieves an opacity flag, which tells us whether a retrieved cirrus is likely to be too thick for CiPS to accurately derive the ice water path and optical thickness. By retrieving CALIOP-like cirrus properties with the large spatial coverage and high temporal resolution of SEVIRI during both day and night, CiPS is a powerful tool for analysing the temporal evolution of cirrus clouds including their optical and physical properties. To demonstrate this, the life cycle of a thin cirrus cloud is analysed.
Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong
2018-01-01
Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356
The MODIS Aerosol Algorithm, Products and Validation
NASA Technical Reports Server (NTRS)
Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.
2003-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.
Method to adjust multilayer film stress induced deformation of optics
Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.
2000-01-01
Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.
Fallahi Motlagh, Behzad; Sadeghi, Ali
2017-01-01
The aim of this study was to correlate macular thickness and visual field parameters in early glaucoma. A total of 104 eyes affected with early glaucoma were examined in a cross-sectional, prospective study. Visual field testing using both standard automated perimetry (SAP) and shortwave automated perimetry (SWAP) was performed. Global visual field parameters, including mean deviation (MD) and pattern standard deviation (PSD), were recorded and correlated with spectral domain optical coherence tomography (SD-OCT)-measured macular thickness and asymmetry. Average macular thickness correlated significantly with all measures of visual field including MD-SWAP (r = 0.42), MD-SAP (r = 0.41), PSD-SWAP (r = -0.23), and PSD-SAP (r = -0.21), with P-values <0.001 for all correlations. The mean MD scores (using both SWAP and SAP) were significantly higher in the eyes with thin than in those with intermediate average macular thickness. Intraeye (superior macula thickness - inferior macula thickness) asymmetries correlated significantly with both PSD-SWAP (r = 0.63, P < 0.001) and PSD-SAP (r = 0.26, P = 0.01) scores. This study revealed a significant correlation between macular thickness and visual field parameters in early glaucoma. The results of this study should make macular thickness measurements even more meaningful to glaucoma specialists.
Retrieval of sea ice thickness during Arctic summer using melt pond color
NASA Astrophysics Data System (ADS)
Istomina, L.; Nicolaus, M.; Heygster, G.
2016-12-01
The thickness of sea ice is an important climatic variable. Together with the ice concentration, it defines the total sea ice volume, is linked within the climatic feedback mechanisms and affects the Arctic energy balance greatly. During Arctic summer, the sea ice cover changes rapidly, which includes the presence of melt ponds, as well as reduction of ice albedo and ice thickness. Currently available remote sensing retrievals of sea ice thickness utilize data from altimeter, microwave, thermal infrared sensors and their combinations. All of these methods are compromised in summer in the presence of melt. This only leaves in situ and airborne sea ice thickness data available in summer. At the same time, data of greater coverage is needed for assimilation in global circulation models and correct estimation of ice mass balance.This study presents a new approach to estimate sea ice thickness in summer in the presence of melt ponds. Analysis of field data obtained during the RV "Polarstern" cruise ARK27/3 (August - October 2012) has shown a clear connection of ice thickness under melt ponds to their measured spectral albedo and to melt pond color in the hue-saturation-luminance color space from field photographs. An empirical function is derived from the HSL values and applied to aerial imagery obtained during various airborne campaigns. Comparison to in situ ice thickness shows a good correspondence to the ice thickness value retrieved in the melt ponds. A similar retrieval is developed for satellite spectral bands using the connection of the measured pond spectral albedo to the ice thickness within the melt ponds. Correction of the retrieved ice thickness in ponds to derive total thickness of sea ice is discussed. Case studies and application to very high resolution optical data are presented, as well as a concept to transfer the method to satellite data of lower spatial resolution where melt ponds become subpixel features.
Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto
2017-12-19
We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.
Kim, Seokhan; Na, Jihoon; Kim, Myoung Jin; Lee, Byeong Ha
2008-04-14
We propose and demonstrate novel methods that enable simultaneous measurements of the phase index, the group index, and the geometrical thickness of an optically transparent object by combining optical low-coherence interferometer and confocal optics. The low-coherence interferometer gives information relating the group index with the thickness, while the confocal optics allows access to the phase index related with the thickness of the sample. To relate these, two novel methods were devised. In the first method, the dispersion-induced broadening of the low-coherence envelop signal was utilized, and in the second method the frequency derivative of the phase index was directly obtained by taking the confocal measurements at several wavelengths. The measurements were made with eight different samples; B270, CaF2, two of BK7, two of fused silica, cover glass, and cigarette cover film. The average measurement errors of the first and the second methods were 0.123% and 0.061% in the geometrical thickness, 0.133% and 0.066% in the phase index, and 0.106% and 0.057% in the group index, respectively.
Turan, Kadriye Erkan; Sekeroglu, Hande Taylan; Baytaroglu, Ata; Bezci, Figen; Karahan, Sevilay
2018-01-01
To (a) determine the normative values for optical coherence tomography (OCT) parameters such as central macular thickness, retinal nerve fiber layer thickness, and choroidal thickness in healthy children; (b) investigate the relationships of these parameters with axial length, central corneal thickness, refractive errors, and intraocular pressure; and (c) determine interexaminer agreement for choroidal thickness measurements. In this cross-sectional study, 120 healthy children aged 8-15 years underwent detailed ophthalmological examination and OCT measurements. Choroidal thickness was measured at three separate locations by two independent examiners. The mean global retinal nerve fiber layer thickness was 98.75 ± 9.45 μm (79.0-121.0). The mean central macular thickness was 232.29 ± 29.37 μm (190.0-376.0). The mean subfoveal choroidal thickness obtained by examiner 1 was 344.38 ± 68.83 μm and that obtained by examiner 2 was 344.04 ± 68.92 μm. Interexaminer agreement was between 99.6%-99.8% for choroidal thickness at three separate locations. Central macular thickness increased with axial length (r=0.245, p=0.007). Choroidal thickness increased with age (r=0.291, p=0.001) and decreased with axial length (r=-0.191, p=0.037). Global retinal nerve fiber layer thickness decreased with axial length (r=-0.247, p=0.007) and increased with central corneal thickness (r=0.208, p=0.022). Global retinal nerve fiber layer thickness positively correlated with choroidal thickness (r=0.354, p<0.001). Global retinal nerve fiber layer thickness (r=0.223, p=0.014) and choroidal thickness (r=0.272, p=0.003) increased with the spherical equivalent (D). Optical coherence tomography parameters showed a wide range of variability in children. Retinal nerve fiber layer thickness, central macular thickness, and choroidal thickness were found to be either inter-related or correlated with age, central corneal thickness, axial length, and refractive errors. Furthermore, manual measurements of choroidal thickness showed high interexaminer agreement. Because normative values for optical coherence tomography parameters differed in children, the measurements should be interpreted according to an age-appropriate database.
Lamina Cribrosa Changes after Laser In Situ Keratomileusis in Myopic Eyes
Lee, Soomin; Choi, Da-Ye Diana; Lim, Dong Hui; Chung, Tae Young; Han, Jong Chul
2018-01-01
Purpose To determine deep optic nerve head structure changes after transient intraocular pressure elevation during laser in situ keratomileusis (LASIK) for myopia. Methods Enhanced depth imaging-optical coherence tomography was performed in each myopic eye that underwent LASIK surgery. Enhanced depth imaging-optical coherence tomography images were created at postoperative 1 day, 1 week, 2 weeks, and 1 month. Lamina cribrosa (LC) thickness, LC depth and prelaminar thickness at the superior, middle and inferior portions of the optic nerve head were measured by two investigators. Results Forty eyes in 40 patients were included in the present study. During follow-up, there were no significant differences in prelaminar thickness or LC depth. The LC demonstrated increased thickness at postoperative 1 day at all three locations (superior, middle, and inferior) (p < 0.001, p < 0.001, p < 0.001, respectively). However, no significant changes were observed at postoperative 1 week, 2 weeks, and 1 month. Conclusions The LC thickness could increase at 1 day after LASIK surgery. However, the thickness will gradually return to baseline morphology. Temporary intraocular pressure increase during LASIK does not appear to induce irreversible LC thickness changes. PMID:29611373
Lamina Cribrosa Changes after Laser In Situ Keratomileusis in Myopic Eyes.
Lee, Soomin; Choi, Da Ye Diana; Lim, Dong Hui; Chung, Tae Young; Han, Jong Chul; Kee, Changwon
2018-04-01
To determine deep optic nerve head structure changes after transient intraocular pressure elevation during laser in situ keratomileusis (LASIK) for myopia. Enhanced depth imaging-optical coherence tomography was performed in each myopic eye that underwent LASIK surgery. Enhanced depth imaging-optical coherence tomography images were created at postoperative 1 day, 1 week, 2 weeks, and 1 month. Lamina cribrosa (LC) thickness, LC depth and prelaminar thickness at the superior, middle and inferior portions of the optic nerve head were measured by two investigators. Forty eyes in 40 patients were included in the present study. During follow-up, there were no significant differences in prelaminar thickness or LC depth. The LC demonstrated increased thickness at postoperative 1 day at all three locations (superior, middle, and inferior) (p < 0.001, p < 0.001, p < 0.001, respectively). However, no significant changes were observed at postoperative 1 week, 2 weeks, and 1 month. The LC thickness could increase at 1 day after LASIK surgery. However, the thickness will gradually return to baseline morphology. Temporary intraocular pressure increase during LASIK does not appear to induce irreversible LC thickness changes. © 2018 The Korean Ophthalmological Society.
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-01-01
This paper presents the preparation of high-quality vanadium dioxide (VO2) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO2 thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc) of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications. PMID:28773679
Halbach array type focusing actuator for small and thin optical data storage device
NASA Astrophysics Data System (ADS)
Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul
2004-09-01
The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.
Hua, Zanmei; Fang, Qiuyun; Sha, Xiangyin; Yang, Ruiming; Hong, Zuopeng
2015-03-01
Glaucoma is an eye disease that can lead to irreversible optic nerve damage and cause blindness. Optical coherence tomography (OCT) allows an early diagnosis of glaucoma by the measurements of the retinal nerve fiber and optic disc parameters. A retrospective study was designed to analyze the effects of the measurement of the retinal nerve fiber layer (RNFL) thickness and the optic disc tomography by spectral-domain OCT on the early diagnosis of suspected glaucoma and primary open angle glaucoma (POAG). This was a clinical case-control study. The RNFL thickness around the optic disc and optic disk tomographic parameters of the control (n = 51, 98 eyes), suspected glaucoma (n = 81, 146 eyes), and POAG groups (n = 55, 106 eyes) were measured by OCT. The parameters included superior, inferior, nasal and temporal mean RNFL thickness, disc area (DA), cup area (CA), rim area (RA), disc volume (DV), cup volume (CV), rim volume (RV), cup/disc area ratio (CA/DA), rim/disc area ratio (RA/DA), cup/disc volume ratio (CV/DV) and rim/disc volume ratio (RV/DV). Superior, nasal, and mean RNFL parameters, DA, CA,RA, DV, CV, CA/DA, RA/DA, CV/DV and RV/DV significantly differed among three groups by single-factorial ANOVA. Inferior and temporal RNFL thickness significantly differed between the control and POAG groups. No significant difference was observed in RV among three groups. In the POAG group, the maximum area under the ROC curve (AROC) of mean RNFL thickness was 0.845. The maximum AROC of optic disk parameters was RA/DA (0.998), followed by CA/DA (0.997). The AROC of CA, RA, CV, and DV were all > 0.900. OCT may serve as a useful diagnostic modality in distinguishing suspected glaucoma from POAG.
Simplified design of thin-film polarizing beam splitter using embedded symmetric trilayer stack.
Azzam, R M A
2011-07-01
An analytically tractable design procedure is presented for a polarizing beam splitter (PBS) that uses frustrated total internal reflection and optical tunneling by a symmetric LHL trilayer thin-film stack embedded in a high-index prism. Considerable simplification arises when the refractive index of the high-index center layer H matches the refractive index of the prism and its thickness is quarter-wave. This leads to a cube design in which zero reflection for the p polarization is achieved at a 45° angle of incidence independent of the thicknesses of the identical symmetric low-index tunnel layers L and L. Arbitrarily high reflectance for the s polarization is obtained at subwavelength thicknesses of the tunnel layers. This is illustrated by an IR Si-cube PBS that uses an embedded ZnS-Si-ZnS trilayer stack.
NASA Technical Reports Server (NTRS)
Devasthale, Abhya; Tjernstrom, Michael; Omar, Ali H.
2010-01-01
Influx of aerosols from the mid-latitudes has a wide range of impacts on the Arctic atmosphere. In this study, the capability of the CALIPSO-CALIOP instrument to provide accurate observations of aerosol layers is exploited to characterize their vertical distribution, probability density functions (PDFs) of aerosol layer thickness, base and top heights, and optical depths over the Arctic for the 4-yr period from June 2006 to May 2010. It is shown that the bulk of aerosols, from about 65% in winter to 45% in summer, are confined below the lowermost kilometer of the troposphere. In the middle troposphere (3-5 km), spring and autumn seasons show slightly higher aerosol amounts compared to other two seasons. The relative vertical distribution of aerosols shows that clean continental aerosol is the largest contributor in all seasons except in summer, when layers of polluted continental aerosols are almost as large. In winter and spring, polluted continental aerosols are the second largest contributor to the total number of observed aerosol layers, whereas clean marine aerosol is the second largest contributor in summer and autumn. The PDFs of the geometrical thickness of the observed aerosol layers peak about 400-700 m. Polluted continental and smoke aerosols, which are associated with the intrusions from mid-latitudes, have much broader distributions of optical and geometrical thicknesses, suggesting that they appear more often optically thicker and higher up in the troposphere.
NASA Technical Reports Server (NTRS)
Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.;
2002-01-01
During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).
NASA Astrophysics Data System (ADS)
Mateos, David; di Sarra, Alcide; Meloni, Daniela; di Biagio, Claudia; Sferlazzo, Damiano M.
2011-08-01
Measurements of UV spectra, total ozone, cloud cover, and cloud optical thickness, obtained at Lampedusa (central Mediterranean), are used to investigate the influence of clouds on the spectral UV irradiance, through the cloud modification factor (CMF), and on five biological processes. The CMF decreases with cloud optical thickness (COT), from about 0.5 for COT˜15 to 0.25 for COT˜45, and decreases with increasing wavelength above 315-320-nm. Observations display an increase in the CMF from 295 to 320-nm, which is related to enhanced absorption by tropospheric ozone due to the long photon path lengths under cloudy conditions. The use of a wavelength independent CMF instead of the experimentally determined spectral curves produces an overestimation of the biological effects of UV irradiance. The overestimation may be as large as 30% for the DNA damage, 20% for vitamin D synthesis, 12% for plant damage, and 8-10% for phytoplankton inhibition and erythema.
NASA Astrophysics Data System (ADS)
Pfeiffer, K.; Schulz, U.; Tünnermann, A.; Szeghalmi, A.
2017-02-01
Antireflective coatings are essential to improve transmittance of optical elements. Most research and development of AR coatings has been reported on a wide variety of plane optical surfaces; however, antireflection is also necessary on nonplanar optical surfaces. Physical vapor deposition (PVD), a common method for optical coatings, often results in thickness gradients on strongly curved surfaces, leading to a failure of the desired optical function. In this work, optical thin films of tantalum pentoxide, aluminum oxide and silicon dioxide were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions. The results demonstrate that ALD optical layers can be deposited on both vertical and horizontal substrate surfaces with uniform thicknesses and the same optical properties. A Ta2O5/Al2O3/ SiO2 multilayer AR coating (400-700 nm) was successfully applied to a curved aspheric glass lens with a diameter of 50 mm and a center thickness of 25 mm.
Yu, Ji-Guo; Huang, Qing; Zhou, Xiao-Fang; Ding, Yi; Li, Jing; Xiang, Yi
2018-01-01
To evaluate and compare changes in retinal nerve fiber layer (RNFL) thickness in patients with the pseudoexfoliation syndrome (PXS) and healthy controls. Case-control studies were selected through an electronic search of the Cochrane Controlled Trials Register, PubMed, and Embase. Results were reviewed to ensure that the included studies met prespecified inclusion/exclusion criteria, and the quality of each study was assessed using the Newcastle-Ottawa Scale. All included studies measured average and 4-quadrant (temporal, superior, nasal, and inferior) RNFL thickness using optical coherence tomography (OCT). For the continuous outcomes, we calculated the weighted mean difference (WMD) and 95% confidence intervals (CIs). Eight case-control studies were included in this meta-analysis involving 225 eyes of PXS patients and 208 eyes of healthy controls in total. Statistical analysis revealed that the average RNFL thickness in PXS patients was significantly reduced compared to healthy controls (WMD = -6.91, 95% CI: -9.99 to -3.82, p < 0.0001). Additionally, differences in RNFL thickness in the superior quadrant (WMD = -10.68, 95% CI: -16.40 to -4.95, p = 0.0003), inferior quadrant (WMD = -8.20, 95% CI: -10.85 to -5.55, p < 0.00001), nasal quadrant (WMD = -3.05, 95% CI: -5.21 to -0.90, p = 0.005), and temporal quadrant (WMD = -6.39, 95% CI: -9.98 to -2.80, p = 0.0005) were all significant between the two groups. These results suggest that it is important to evaluate RNFL thickness and the optic nerve head through OCT in patients with PXS in order to determine early glaucomatous damage and start timely intervention prior to visual field loss. © 2017 S. Karger AG, Basel.
Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition
Ali, Rizwan; Saleem, Muhammad Rizwan; Pääkkönen, Pertti; Honkanen, Seppo
2015-01-01
We investigate the optical and thermo-optical properties of amorphous TiO2–Al2O3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples of TiO2–Al2O3 bilayers are fabricated by growing Al2O3 films of different thicknesses on the surface of TiO2 films of constant thickness (100 nm). Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO2 films. The effects of TiO2 surface defects on the films’ thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al2O3 diffusion barrier layers. Increasing the ALD-Al2O3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO2. The thermo-optic coefficients of the 100 nm-thick ALD-TiO2 film and 30 nm-thick ALD-Al2O3 film in a bilayer are (0.048 ± 0.134) × 10−4 °C−1 and (0.680 ± 0.313) × 10−4 °C−1, respectively, at a temperature T = 62 °C.
NASA Technical Reports Server (NTRS)
Guo, Yanjuan; Tian, Baijun; Kahn, Ralph A.; Kalashnikova, Olga; Wong, Sun; Waliser, Duane E.
2013-01-01
In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) fine mode fraction and Multi-angle Imaging SpectroRadiometer (MISR) nonspherical fraction data are used to derive dust and smoke aerosol optical thickness (T(sub dust) and T(sub smoke)) over the tropical Atlantic in a complementary way: due to its wider swath, MODIS has 3-4 times greater sampling than MISR, but MISR dust discrimination is based on particle shape retrievals, whereas an empirical scheme is used for MODIS. MODIS and MISR show very similar dust and smoke winter climatologies. T(sub dust) is the dominant aerosol component over the tropical Atlantic, accounting for 40-70 percent of the total aerosol optical thickness (AOT), whereas T(sub smoke) is significantly smaller than T(sub dust). The consistency and high correlation between these climatologies and their daily variations lends confidence to their use for investigating the relative dust and smoke contributions to the total AOT variation associated with the Madden-Julian Oscillation (MJO). The temporal evolution and spatial patterns of the tdus anomalies associated with the MJO are consistent between MODIS and MISR: the magnitude of MJO-realted T(sub dust) anomalies is comparable to or even larger than that of the total T, while the T(sub smoke) anomaly represents about 15 percent compared to the total, which is quite different from their relative magnitudes to the total T on the climatological time scale. This suggests that dust and smoke are not influenced by the MJO in the same way. Based on correlation analysis, dust is strongly influenced by the MJO-modulated trade wind and precipitation anomalies, and can last as long as one MJO phase, whereas smoke is less affected.
NASA Astrophysics Data System (ADS)
Low, B. C.; Berger, T.; Casini, R.; Liu, W.
2012-08-01
This series of papers investigates the dynamic interiors of quiescent prominences revealed by recent Hinode and SDO/AIA high-resolution observations. This first paper is a study of the static equilibrium of the Kippenhahn-Schlüter diffuse plasma slab, suspended vertically in a bowed magnetic field, under the frozen-in condition and subject to a theoretical thermal balance among an optically thin radiation, heating, and field-aligned thermal conduction. The everywhere-analytical solutions to this nonlinear problem are an extremely restricted subset of the physically admissible states of the system. For most values of the total mass frozen into a given bowed field, force balance and steady energy transport cannot both be met without a finite fraction of the total mass having collapsed into a cold sheet of zero thickness, within which the frozen-in condition must break down. An exact, resistive hydromagnetic extension of the Kippenhahn-Schlüter slab is also presented, resolving the mass-sheet singularity into a finite-thickness layer of steadily falling dense fluid. Our hydromagnetic result suggests that the narrow, vertical prominence Hα threads may be falling across magnetic fields, with optically thick cores much denser and ionized to much lower degrees than conventionally considered. This implication is discussed in relation to (1) the recent SDO/AIA observations of quiescent prominences that are massive and yet draining mass everywhere in their interiors, (2) the canonical range of 5-60 G determined from spectral polarimetric observations of prominence magnetic fields over the years, and (3) the need for a more realistic multi-fluid treatment.
Magnetic properties influenced by interfaces in ultrathin Co/Ge(1 0 0) and Co/Ge(1 1 1) films
NASA Astrophysics Data System (ADS)
Tsay, J. S.; Yao, Y. D.; Cheng, W. C.; Tseng, T. K.; Wang, K. C.; Yang, C. S.
2003-10-01
Magnetic properties influenced by interfaces in ultrathin Co/Ge(1 0 0) and Co/Ge(1 1 1) films with thickness below 28 monolayers (ML) have been studied using the surface magneto-optic Kerr effect (SMOKE) technique. In both systems, the nonferromagnetic layer, as an interface between Co and Ge, plays an important role during annealing. In general, ultrathin Co films with fixed total thickness but fabricated at different temperatures on the same substrate, their Kerr hysteresis loops disappear roughly at the same temperature. This suggests that the thickness of the interfacial layer could inversely prevent the diffusion between Co and Ge substrate. From the annealing studies for both systems with total film thickness of 28 monolayers, we have found that Kerr signal disappears at 375 K for Co/Ge(1 1 1) and 425 K for Co/Ge(1 0 0) films. This suggests that Co/Ge(1 1 1) films possess a lower thermal stability than that of the Co/Ge(1 0 0) films. Our experimental data could be explained by different interfacial condition between Ge(1 0 0) and Ge(1 1 1), the different onset of interdiffusion, and the surface structure condition of Ge(1 0 0) and Ge(1 1 1).
NASA Astrophysics Data System (ADS)
Koshelev, O. A.; Nechaev, D. V.; Sitnikova, A. A.; Ratnikov, V. V.; Ivanov, S. V.; Jmerik, V. N.
2017-11-01
The paper describes experimental results on low temperature plasma-assisted molecular beam epitaxy of GaN/AlN heterostructures on both 6H-SiC and Si(111) substrates. We demonstrate that application of migration enhanced epitaxy and metal-modulated epitaxy for growth of AlN nucleation and buffer layers lowers the screw and edge(total)threading dislocation (TD) densities down to 1.7·108 and 2·109 cm-2, respectively, in a 2.8-μm-thick GaN buffer layer grown atop of AlN/6H-SiC. The screw and total TD densities of 1.2·109 and 7.4·109 cm-2, respectively, were achieved in a 1-μm-thickGaN/AlNheterostructure on Si(111). Stress generation and relaxation in GaN/AlN heterostructures were investigated by using multi-beam optical stress sensor (MOSS) to achieve zero substrate curvature at room temperature. It is demonstrated that a 1-μm-thick GaN/AlN buffer layer grown by PA MBE provides planar substrate morphology in the case of growth on Si substrates whereas 5-μm-thick GaN buffer layers have to be used to achieve the same when growing on 6H-SiC substrates.
NASA Technical Reports Server (NTRS)
Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.
2005-01-01
The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.
NASA Astrophysics Data System (ADS)
Antony, Bhavna J.; Abràmoff, Michael D.; Lee, Kyungmoo; Sonkova, Pavlina; Gupta, Priya; Kwon, Young; Niemeijer, Meindert; Hu, Zhihong; Garvin, Mona K.
2010-03-01
Optical coherence tomography (OCT), being a noninvasive imaging modality, has begun to find vast use in the diagnosis and management of ocular diseases such as glaucoma, where the retinal nerve fiber layer (RNFL) has been known to thin. Furthermore, the recent availability of the considerably larger volumetric data with spectral-domain OCT has increased the need for new processing techniques. In this paper, we present an automated 3-D graph-theoretic approach for the segmentation of 7 surfaces (6 layers) of the retina from 3-D spectral-domain OCT images centered on the optic nerve head (ONH). The multiple surfaces are detected simultaneously through the computation of a minimum-cost closed set in a vertex-weighted graph constructed using edge/regional information, and subject to a priori determined varying surface interaction and smoothness constraints. The method also addresses the challenges posed by presence of the large blood vessels and the optic disc. The algorithm was compared to the average manual tracings of two observers on a total of 15 volumetric scans, and the border positioning error was found to be 7.25 +/- 1.08 μm and 8.94 +/- 3.76 μm for the normal and glaucomatous eyes, respectively. The RNFL thickness was also computed for 26 normal and 70 glaucomatous scans where the glaucomatous eyes showed a significant thinning (p < 0.01, mean thickness 73.7 +/- 32.7 μm in normal eyes versus 60.4 +/- 25.2 μm in glaucomatous eyes).
Influence of ground level SO2 on the diffuse to direct irradiance ratio in the middle ultraviolet
NASA Technical Reports Server (NTRS)
Klenk, K. F.; Green, A. E. S.
1977-01-01
The dependence of the ratio of the diffuse to direct irradiances at the ground were examined for a wavelength of 315.1 nm. A passive remote sensing method based on ratio measurements for obtaining the optical thickness of SO2 in the vertical column was proposed. If, in addition to the ratio measurements, the SO2 density at the ground is determining using an appropriate point-sampling technique then some inference on the vertical extent of SO2 can be drawn. An analytic representation is presented of the ratio for a wide range of SO2 and aerosol optical thicknesses and solar zenith angles which can be inverted algebraically to give the SO2 optical thickness in terms of the measured ratio, aerosol optical thickness and solar zenith angle.
Debuc, Delia Cabrera; Salinas, Harry M; Ranganathan, Sudarshan; Tátrai, Erika; Gao, Wei; Shen, Meixiao; Wang, Jianhua; Somfai, Gábor M; Puliafito, Carmen A
2010-01-01
We demonstrate quantitative analysis and error correction of optical coherence tomography (OCT) retinal images by using a custom-built, computer-aided grading methodology. A total of 60 Stratus OCT (Carl Zeiss Meditec, Dublin, California) B-scans collected from ten normal healthy eyes are analyzed by two independent graders. The average retinal thickness per macular region is compared with the automated Stratus OCT results. Intergrader and intragrader reproducibility is calculated by Bland-Altman plots of the mean difference between both gradings and by Pearson correlation coefficients. In addition, the correlation between Stratus OCT and our methodology-derived thickness is also presented. The mean thickness difference between Stratus OCT and our methodology is 6.53 microm and 26.71 microm when using the inner segment/outer segment (IS/OS) junction and outer segment/retinal pigment epithelium (OS/RPE) junction as the outer retinal border, respectively. Overall, the median of the thickness differences as a percentage of the mean thickness is less than 1% and 2% for the intragrader and intergrader reproducibility test, respectively. The measurement accuracy range of the OCT retinal image analysis (OCTRIMA) algorithm is between 0.27 and 1.47 microm and 0.6 and 1.76 microm for the intragrader and intergrader reproducibility tests, respectively. Pearson correlation coefficients demonstrate R(2)>0.98 for all Early Treatment Diabetic Retinopathy Study (ETDRS) regions. Our methodology facilitates a more robust and localized quantification of the retinal structure in normal healthy controls and patients with clinically significant intraretinal features.
NASA Astrophysics Data System (ADS)
Cabrera Debuc, Delia; Salinas, Harry M.; Ranganathan, Sudarshan; Tátrai, Erika; Gao, Wei; Shen, Meixiao; Wang, Jianhua; Somfai, Gábor M.; Puliafito, Carmen A.
2010-07-01
We demonstrate quantitative analysis and error correction of optical coherence tomography (OCT) retinal images by using a custom-built, computer-aided grading methodology. A total of 60 Stratus OCT (Carl Zeiss Meditec, Dublin, California) B-scans collected from ten normal healthy eyes are analyzed by two independent graders. The average retinal thickness per macular region is compared with the automated Stratus OCT results. Intergrader and intragrader reproducibility is calculated by Bland-Altman plots of the mean difference between both gradings and by Pearson correlation coefficients. In addition, the correlation between Stratus OCT and our methodology-derived thickness is also presented. The mean thickness difference between Stratus OCT and our methodology is 6.53 μm and 26.71 μm when using the inner segment/outer segment (IS/OS) junction and outer segment/retinal pigment epithelium (OS/RPE) junction as the outer retinal border, respectively. Overall, the median of the thickness differences as a percentage of the mean thickness is less than 1% and 2% for the intragrader and intergrader reproducibility test, respectively. The measurement accuracy range of the OCT retinal image analysis (OCTRIMA) algorithm is between 0.27 and 1.47 μm and 0.6 and 1.76 μm for the intragrader and intergrader reproducibility tests, respectively. Pearson correlation coefficients demonstrate R2>0.98 for all Early Treatment Diabetic Retinopathy Study (ETDRS) regions. Our methodology facilitates a more robust and localized quantification of the retinal structure in normal healthy controls and patients with clinically significant intraretinal features.
Impact of Scanning Density on Measurements from Spectral Domain Optical Coherence Tomography
Keane, Pearse A.; Ouyang, Yanling; Updike, Jared F.; Walsh, Alexander C.
2010-01-01
Purpose. To investigate the relationship between B-scan density and retinal thickness measurements obtained by spectral domain optical coherence tomography (SDOCT) in eyes with retinal disease. Methods. Data were collected from 115 patients who underwent volume OCT imaging with Cirrus HD-OCT using the 512 × 128 horizontal raster protocol. Raw OCT data, including the location of the automated retinal boundaries, were exported from the Cirrus HD-OCT instrument and imported into the Doheny Image Reading Center (DIRC) OCT viewing and grading software, termed “3D-OCTOR.” For each case, retinal thickness maps similar to those produced by Cirrus HD-OCT were generated using all 128 B-scans, as well as using less dense subsets of scans, ranging from every other scan to every 16th scan. Retinal thickness measurements derived using only a subset of scans were compared to measurements using all 128 B-scans, and differences for the foveal central subfield (FCS) and total macular volume were computed. Results. The mean error in FCS retinal thickness measurement increased as the density of B-scans decreased, but the error was small (<2 μm), except at the sparsest densities evaluated. The maximum error at a density of every fourth scan (32 scans spaced 188 μm apart) was <1%. Conclusions. B-scan density in volume SDOCT acquisitions can be reduced to 32 horizontal B-scans (spaced 188 μm apart) with minimal change in calculated retinal thickness measurements. This information may be of value in design of scanning protocols for SDOCT for use in future clinical trials. PMID:19797199
Arifoglu, Hasan Basri; Simavli, Huseyin; Midillioglu, Inci; Berk Ergun, Sule; Simsek, Saban
2017-01-01
To evaluate the ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL) thickness in pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG) with RTVue spectral domain optical coherence tomography (SD-OCT). A total of 102 subjects were enrolled: 29 with PDS, 18 with PG, and 55 normal subjects. Full ophthalmic examination including visual field analysis was performed. SD-OCT was used to analyze GCC superior, GCC inferior, and average RNFL thickness. To compare the discrimination capabilities, the areas under the receiver operating characteristic curves were assessed. Superior GCC, inferior GCC, and RNFL thickness values of patients with PG were statistically signicantly lower than those of patients with PDS (p < 0.001) and healthy individuals (p < 0.001 for all). No statistically significant difference was found between PDS and normal subjects in same parameters (p > 0.05). The SD-OCT-derived GCC and RNFL thickness parameters can be useful to discriminate PG from both PDS and normal subjects.
Magnetic and magneto-optical properties and domain structure of Co/Pd multilayers
NASA Technical Reports Server (NTRS)
Gadetsky, S.; Wu, Teho; Suzuki, T.; Mansuripur, M.
1993-01-01
The domain structure of Co/Pd(1.6/6.3 A)xN multilayers and its relation to the bulk magnetic properties of the samples were studied. The Co/Pd multilayers were deposited by rf and dc magnetron sputtering onto different substrates. It was found that magnetic and magnetooptical properties and domain structure of the multilayers were affected by total film thickness and substrate condition. Magnetization, coercivity, and anisotropy of the films decreased significantly as the film thickness dropped below 100 A. However, Kerr rotation angle had a maximum at the same thickness. The width of the domain structure increased with the decrease of the film thickness attaining the single domain state at N = 10. The initial curves in Co/Pd multilayers were found to depend on demagnetization process. The samples demagnetized by inplane field showed the largest difference between initial curves and the corresponding parts of the loops. Different domain structures were observed in the samples demagnetized by perpendicular and in-plane magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng
Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less
NASA Astrophysics Data System (ADS)
Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.
2016-08-01
Optical phase conjugation (OPC)-based wavefront shaping techniques focus light through or within scattering media, which is critically important for deep-tissue optical imaging, manipulation, and therapy. However, to date, the sample thickness in OPC experiments has been limited to only a few millimeters. Here, by using a laser with a long coherence length and an optimized digital OPC system that can safely deliver more light power, we focused 532-nm light through tissue-mimicking phantoms up to 9.6 cm thick, as well as through ex vivo chicken breast tissue up to 2.5 cm thick. Our results demonstrate that OPC can be achieved even when photons have experienced on average 1000 scattering events. The demonstrated penetration of nearly 10 cm (˜100 transport mean free paths) has never been achieved before by any optical focusing technique, and it shows the promise of OPC for deep-tissue noninvasive optical imaging, manipulation, and therapy.
Optical-mechanical properties of diseased cells measured by interferometry
NASA Astrophysics Data System (ADS)
Shaked, Natan T.; Bishitz, Y.; Gabai, H.; Girshovitz, P.
2013-04-01
Interferometric phase microscopy (IPM) enables to obtain quantitative optical thickness profiles of transparent samples, including live cells in-vitro, and track them in time with sub-nanometer accuracy without any external labeling, contact or force application on the sample. The optical thickness measured by IPM is a multiplication between the cell integral refractive index differences and its physical thickness. Based on the time-dependent optical thickness profile, one can generate the optical thickness fluctuation map. For biological cells that are adhered to the surface, the variance of the physical thickness fluctuations in time is inversely proportional to the spring factor indicating on cell stiffness, where softer cells are expected fluctuating more than more rigid cells. For homogenous refractive index cells, such as red blood cells, we can calculate a map indicating on the cell stiffness per each spatial point on the cell. Therefore, it is possible to obtain novel diagnosis and monitoring tools for diseases changing the morphology and the mechanical properties of these cells such as malaria, certain types of anaemia and thalassemia. For cells with a complex refractive-index structure, such as cancer cells, decoupling refractive index and physical thickness is not possible in single-exposure mode. In these cases, we measure a closely related parameter, under the assumption that the refractive index does not change much within less than a second of measurement. Using these techniques, we lately found that cancer cells fluctuate significantly more than healthy cells, and that metastatic cancer cells fluctuate significantly more than primary cancer cells.
C+/H2 gas in star-forming clouds and galaxies
NASA Astrophysics Data System (ADS)
Nordon, Raanan; Sternberg, Amiel
2016-11-01
We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.
Kremmer, Stephan; Keienburg, Marcus; Anastassiou, Gerasimos; Schallenberg, Maurice; Steuhl, Klaus-Peter; Selbach, J Michael
2012-01-01
To compare the performance of scanning laser topography (SLT) and scanning laser polarimetry (SLP) on the rim of the optic nerve head and its surrounding area and thereby to evaluate whether these imaging technologies are influenced by other factors beyond the thickness of the retinal nerve fiber layer (RNFL). A total of 154 eyes from 5 different groups were examined: young healthy subjects (YNorm), old healthy subjects (ONorm), patients with normal tension glaucoma (NTG), patients with open-angle glaucoma and early glaucomatous damage (OAGE) and patients with open-angle glaucoma and advanced glaucomatous damage (OAGA). SLT and SLP measurements were taken. Four concentric circles were superimposed on each of the images: the first one measuring at the rim of the optic nerve head (1.0 ONHD), the next measuring at 1.25 optic nerve head diameters (ONHD), at 1.5 ONHD and at 1.75 ONHD. The aligned images were analyzed using GDx/NFA software. Both methods showed peaks of RNFL thickness in the superior and inferior segments of the ONH. The maximum thickness, registered by the SLT device was at the ONH rim where the SLP device tended to measure the lowest values. SLT measurements at the ONH were influenced by other tissues besides the RNFL like blood vessels and glial tissues. SLT and SLP were most strongly correlated at distances of 1.25 and 1.5 ONHD. While both imaging technologies are valuable tools in detecting glaucoma, measurements at the ONH rim should be interpreted critically since both methods might provide misleading results. For the assessment of the retinal nerve fiber layer we would like to recommend for both imaging technologies, SLT and SLP, measurements in 1.25 and 1.5 ONHD distance of the rim of the optic nerve head.
Evaluation of osteoarthritis progression using polarization-sensitive optical coherence tomography
NASA Astrophysics Data System (ADS)
Nassif, Nader A.; Pierce, Mark C.; Park, B. Hyle; Cense, Barry; de Boer, Johannes F.
2004-07-01
Osteoarthritis is a prevalent medical condition that presents a diagnostic and therapeutic challenge to physicians today because of the inability to assess the integrity of the articular cartilage early in the disease. Polarization sensitive optical coherence tomography (PS-OCT) is a high resolution, non-contact imaging modality that provides cross-sectional images with additional information regarding the integrity of the collagen matrix. Using PS-OCT to image provides information regarding thickness of the articular cartilage and gives an index of biochemical changes based on alterations in optical properties (i.e. birefringence) of the tissue. We demonstrate initial experiments performed on specimens collected following total knee replacement surgery. Articular cartilage was imaged using a 1310 nm PS-OCT system where both intensity and phase images were acquired. PS-OCT images were compared with histology, and the changes in tissue optical properties were characterized. Analysis of the intensity images demonstrates differences between healthy and diseased cartilage surface and thickness. Phase maps of the tissue demonstrated distinct differences between healthy and diseased tissue. PS-OCT was able to image a gradual loss of birefringence as the tissue became more diseased. In this way, determining the rate of change of the phase provides a quantitative measure of pathology. Thus, imaging and evaluation of osteoarthritis using PS-OCT can be a useful means of quantitative assessment of the disease.
LASE measurements of aerosols and water vapor during TARFOX
NASA Technical Reports Server (NTRS)
Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.;
1998-01-01
The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.
Park, Kyung-Ah; Kim, Yoon-Duck; Woo, Kyung In
2018-06-01
The purpose of our study was to assess changes in peripapillary retinal nerve fiber layer (RNFL) thickness after orbital wall decompression in eyes with dysthyroid optic neuropathy (DON). We analyzed peripapillary optical coherence tomography (OCT) images (Cirrus HD-OCT) from controls and patients with DON before and 1 and 6 months after orbital wall decompression. There was no significant difference in mean preoperative peripapillary retinal nerve fiber layer thickness between eyes with DON and controls. The superior and inferior peripapillary RNFL thickness decreased significantly 1 month after decompression surgery compared to preoperative values (p = 0.043 and p = 0.022, respectively). The global average, superior, temporal, and inferior peripapillary RNFL thickness decreased significantly 6 months after decompression surgery compared to preoperative values (p = 0.015, p = 0.028, p = 0.009, and p = 0.006, respectively). Patients with greater preoperative inferior peripapillary RNFL thickness tended to have better postoperative visual acuity at the last visit (p = 0.024, OR = 0.926). Our data revealed a significant decrease in peripapillary RNFL thickness postoperatively after orbital decompression surgery in patients with DON. We also found that greater preoperative inferior peripapillary RNFL thickness was associated with better visual outcomes. We suggest that RNFL thickness can be used as a prognostic factor for DON before decompression surgery.
Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.
Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz
2015-01-01
To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.
Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy
Francis, Andrew W.; Wanek, Justin; Lim, Jennifer I.; Shahidi, Mahnaz
2015-01-01
Purpose To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. Methods High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. Results In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Conclusions Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR. PMID:26699878
Retrieval of the atmospheric compounds using a spectral optical thickness information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioltukhovski, A.A.
A spectral inversion technique for retrieval of the atmospheric gases and aerosols contents is proposed. This technique based upon the preliminary measurement or retrieval of the spectral optical thickness. The existence of a priori information about the spectral cross sections for some of the atmospheric components allows to retrieve the relative contents of these components in the atmosphere. Method of smooth filtration makes possible to estimate contents of atmospheric aerosols with known cross sections and to filter out other aerosols; this is done independently from their relative contribution to the optical thickness.
Malik, Rizwan; Belliveau, Anne C; Sharpe, Glen P; Shuba, Lesya M; Chauhan, Balwantray C; Nicolela, Marcelo T
2016-06-01
Ruling out glaucoma in myopic eyes often poses a diagnostic challenge because of atypical optic disc morphology and visual field defects that can mimic glaucoma. We determined whether neuroretinal rim assessment based on Bruch's membrane opening (BMO), rather than conventional optic disc margin (DM)-based assessment or retinal nerve fiber layer (RNFL) thickness, yielded higher diagnostic accuracy in myopic patients with glaucoma. Case-control, cross-sectional study. Myopic patients with glaucoma (n = 56) and myopic normal controls (n = 74). Myopic subjects with refraction error greater than -2 diopters (D) (spherical equivalent) and typical myopic optic disc morphology, with and without glaucoma, were recruited from a glaucoma clinic and a local optometry practice. The final classification of myopic glaucoma or myopic control was based on consensus assessment by 3 clinicians of visual fields and optic disc photographs. Participants underwent imaging with confocal scanning laser tomography for measurement of DM rim area (DM-RA) and with spectral domain optical coherence tomography (SD OCT) for quantification of a BMO-based neuroretinal rim parameter, minimum rim width (BMO-MRW), and RNFL thickness. Sensitivity of DM-RA, BMO-MRW, and RNFL thickness at a fixed specificity of 90% and partial area under the curves (pAUCs) for global and sectoral parameters for specificities ≥90%. Sensitivities at 90% specificity were 30% for DM-RA and 71% for both BMO-MRW and RNFL thickness. The pAUC was higher for the BMO-MRW compared with DM-RA (P < 0.001), but similar to RNFL thickness (P > 0.5). Sectoral values of BMO-MRW tended to have a higher, but nonsignificant, pAUC across all sectors compared with RNFL thickness. Bruch's membrane opening MRW is more sensitive than DM-RA and similar to RNFL thickness for the identification of glaucoma in myopic eyes and offers a valuable diagnostic tool for patients with glaucoma with myopic optic discs. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Nanoparticles based fiber optic SPR sensor
NASA Astrophysics Data System (ADS)
Shah, Kruti; Sharma, Navneet K.
2018-05-01
Localized surface plasmon resonance based fiber optic sensor using platinum nanoparticles is proposed and theoretically analyzed. Increase in thickness of nanoparticles layer increases the sensitivity of sensor. 50 nm thick platinum nanoparticles layer based sensor reveals highest sensitivity.
Rushford, Michael C.
2002-01-01
An optical monitoring instrument monitors etch depth and etch rate for controlling a wet-etching process. The instrument provides means for viewing through the back side of a thick optic onto a nearly index-matched interface. Optical baffling and the application of a photoresist mask minimize spurious reflections to allow for monitoring with extremely weak signals. A Wollaston prism enables linear translation for phase stepping.
Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)
2001-01-01
Satellite Measurements of the global distribution of aerosol and their effect on climate should be viewed in respect to a baseline aerosol. In this concept, concentration of fine mode aerosol particles is elevated above the baseline by man-made activities (smoke or urban pollution), while coarse mode by natural processes (e.g. dust or sea-spray). Using 1-3 years of measurements in 10 stations of the Aerosol Robotic network (ACRONET we develop a methodology and derive the optical thickness and properties of this baseline aerosol for the Pacific and Atlantic Oceans. Defined as the median for periods of stable optical thickness (standard deviation < 0.02) during 2-6 days, the median baseline aerosol optical thickness over the Pacific Ocean is 0.052 at 500 am with Angstrom exponent of 0.77, and 0.071 and 1.1 respectively, over the Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong
2018-03-01
The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.
NASA Astrophysics Data System (ADS)
Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L.; Peter, Jörg
2015-09-01
A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.
Paar, Steffen; Umathum, Reiner; Jiang, Xiaoming; Majer, Charles L; Peter, Jörg
2015-09-01
A noncontact optical detector for in vivo imaging has been developed that is compatible with magnetic resonance imaging (MRI). The optical detector employs microlens arrays and might be classified as a plenoptic camera. As a resulting of its design, the detector possesses a slim thickness and is self-shielding against radio frequency (RF) pulses. For experimental investigation, a total of six optical detectors were arranged in a cylindrical fashion, with the imaged object positioned in the center of this assembly. A purposely designed RF volume resonator coil has been developed and is incorporated within the optical imaging system. The whole assembly was placed into the bore of a 1.5 T patient-sized MRI scanner. Simple-geometry phantom studies were performed to assess compatibility and performance characteristics regarding both optical and MR imaging systems. A bimodal ex vivo nude mouse measurement was conducted. From the MRI data, the subject surface was extracted. Optical images were projected on this surface by means of an inverse mapping algorithm. Simultaneous measurements did not reveal influences from the magnetic field and RF pulses onto optical detector performance (spatial resolution, sensitivity). No significant influence of the optical imaging system onto MRI performance was detectable.
Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections
Messinger, Jeffrey D.; Sloan, Kenneth R.; Mitra, Arnab; McGwin, Gerald; Spaide, Richard F.
2011-01-01
Purpose. To provide a comprehensive description of chorioretinal layer thicknesses in the normal human macula, including two-layer pairs that can produce a combined signal in some optical coherence tomography (OCT) devices (ganglion cell [GCL] and inner plexiform [IPL] layers and outer plexiform [OPL] and outer nuclear [ONL] layers). Methods. In 0.8-μm-thick, macula-wide sections through the foveola of 18 donors (age range, 40–92 years), 21 layers were measured at 25 locations by a trained observer and validated by a second observer. Tissue volume changes were assessed by comparing total retinal thickness in ex vivo OCT and in sections. Results. Median tissue shrinkage was 14.5% overall and 29% in the fovea. Histologic laminar boundaries resembled those in SD-OCT scans, but the shapes of the foveolar OPL and ONL differed. Histologic GCL, IPL, and OPLHenle were thickest at 0.8. to 1, 1.5, and 0.4 mm eccentricity, respectively. ONL was thickest in an inward bulge at the foveal center. At 1 mm eccentricity, GCL, INL, and OPLHenle represented 17.3% to 21.1%, 18.0% to 18.5%, and 14.2% to 16.6% of total retinal thickness, respectively. In donors ≥70 years of age, the RPE and choroid were 17.1% and 29.6% thinner and OPLHenle was 20.8% thicker than in donors <70 years. Conclusions. In this study, the first graphic representation and thickness database of chorioretinal layers in normal macula were generated. Newer OCT systems can separate GCL from IPL and OPLHenle from ONL, with good agreement for the proportion of retinal thickness occupied by OPLHenle in OCT and histology. The thickening of OPLHenle in older eyes may reflect Müller cell hypertrophy associated with rod loss. PMID:21421869
The budget of biologically active ultraviolet radiation in the earth-atmosphere system
NASA Technical Reports Server (NTRS)
Frederick, John E.; Lubin, Dan
1988-01-01
This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.
Yang, Liu; Qu, Yuanzhen; Lu, Wen; Liu, Fengjun
2016-07-03
BACKGROUND The aim of this study was to compare the differences in macular ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer (pRNFL) in child and adult patients with primary craniopharyngioma by Fourier-domain optical coherence tomography (FD-OCT) and to evaluate their significance in the diagnosis of primary craniopharyngioma. MATERIAL AND METHODS Ninety-six participants were divided into 3 groups: 32 in the child craniopharyngioma group (CCG) and 32 in the adult craniopharyngioma group (ACG) who were treated in Beijing Tiantan Hospital between November 2013 and October 2014, and 32 in the normal group (NG). All subjects were scanned by FD-OCT to map GCC and pRNFL thicknesses. Spearman correlation coefficient was used to assess the correlation between GCC and pRNFL thickness, and pRNFL thickness and optic nerve head (ONH) parameters, including horizontal cup-disc ratio (HCDR), vertical cup-disc ratio (VCDR), optic disc area (ODA), and cup area (CA), respectively. RESULTS The correlation between GCC and pRNFL thickness in the CCG was slightly stronger compared with the ACG. A significant difference in GCC thickness was observed among the CCG, ACG, and NG. Although the pRNFL thickness in both the CCG and ACG was significantly higher than that in NG, no significant difference in pRNFL thickness was detected between the 2 craniopharyngioma groups. The average, superior, and inferior pRNFL thicknesses were negatively correlated with VCDR in the CCG (in double eyes) and ACG (only in left eyes). CONCLUSIONS GCC was more sensitive than pRNFL in detecting optic nerve damage in the eyes of craniopharyngioma patients. A thinner pRNFL was especially correlated with VCDR in child craniopharyngioma patients.
Yang, Liu; Qu, Yuanzhen; Lu, Wen; Liu, Fengjun
2016-01-01
Background The aim of this study was to compare the differences in macular ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer (pRNFL) in child and adult patients with primary craniopharyngioma by Fourier-domain optical coherence tomography (FD-OCT) and to evaluate their significance in the diagnosis of primary craniopharyngioma. Material/Methods Ninety-six participants were divided into 3 groups: 32 in the child craniopharyngioma group (CCG) and 32 in the adult craniopharyngioma group (ACG) who were treated in Beijing Tiantan Hospital between November 2013 and October 2014, and 32 in the normal group (NG). All subjects were scanned by FD-OCT to map GCC and pRNFL thicknesses. Spearman correlation coefficient was used to assess the correlation between GCC and pRNFL thickness, and pRNFL thickness and optic nerve head (ONH) parameters, including horizontal cup-disc ratio (HCDR), vertical cup-disc ratio (VCDR), optic disc area (ODA), and cup area (CA), respectively. Results The correlation between GCC and pRNFL thickness in the CCG was slightly stronger compared with the ACG. A significant difference in GCC thickness was observed among the CCG, ACG, and NG. Although the pRNFL thickness in both the CCG and ACG was significantly higher than that in NG, no significant difference in pRNFL thickness was detected between the 2 craniopharyngioma groups. The average, superior, and inferior pRNFL thicknesses were negatively correlated with VCDR in the CCG (in double eyes) and ACG (only in left eyes). Conclusions GCC was more sensitive than pRNFL in detecting optic nerve damage in the eyes of craniopharyngioma patients. A thinner pRNFL was especially correlated with VCDR in child craniopharyngioma patients. PMID:27372909
NASA Astrophysics Data System (ADS)
Zahran, H. Y.; Yahia, I. S.; Alamri, F. H.
2017-05-01
Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV-vis-NIR spectrophotometer in the wavelength range 350-2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300-2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV-vis regions and it is suitable for nonlinear optical applications.
Measuring Thicknesses of Coatings on Metals
NASA Technical Reports Server (NTRS)
Cotty, Glenn M., Jr.
1986-01-01
Digital light sensor and eddy-current sensor measure thickness without contact. Surface of Coating reflects laser beam to optical sensor. Position of reflected spot on sensor used by microcomputer to calculate coating thickness. Eddy-current sensor maintains constant distance between optical sensor and metal substrate. When capabilities of available components fully exploited, instrument measures coatings from 0.001 to 6 in. (0.0025 to 15 cm) thick with accuracy of 1 part in 4,000. Instrument readily incorporated in automatic production and inspection systems. Used to inspect thermal-insulation layers, paint, and protective coatings. Also used to control application of coatings to preset thicknesses.
Multiplexed Holographic Optical Data Storage In Thick Bacteriorhodopsin Films
NASA Technical Reports Server (NTRS)
Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Ozcan, Meric; Smithey, Daniel T.; Crew, Marshall
1998-01-01
The optical data storage capacity of photochromic bacteriorhodopsin films is investigated by means of theoretical calculations, numerical simulations, and experimental measurements on sequential recording of angularly multiplexed diffraction gratings inside a thick D85N BR film.
Optical caliper with compensation for specimen deflection and method
Bernacki, B.E.
1997-12-09
An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors. 2 figs.
Optical caliper with compensation for specimen deflection and method
Bernacki, Bruce E.
1997-01-01
An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.
An Analytical Model for the Evolution of the Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khajenabi, Fazeleh; Kazrani, Kimia; Shadmehri, Mohsen, E-mail: f.khajenabi@gu.ac.ir
We obtain a new set of analytical solutions for the evolution of a self-gravitating accretion disk by holding the Toomre parameter close to its threshold and obtaining the stress parameter from the cooling rate. In agreement with the previous numerical solutions, furthermore, the accretion rate is assumed to be independent of the disk radius. Extreme situations where the entire disk is either optically thick or optically thin are studied independently, and the obtained solutions can be used for exploring the early or the final phases of a protoplanetary disk evolution. Our solutions exhibit decay of the accretion rate as amore » power-law function of the age of the system, with exponents −0.75 and −1.04 for optically thick and thin cases, respectively. Our calculations permit us to explore the evolution of the snow line analytically. The location of the snow line in the optically thick regime evolves as a power-law function of time with the exponent −0.16; however, when the disk is optically thin, the location of the snow line as a function of time with the exponent −0.7 has a stronger dependence on time. This means that in an optically thin disk inward migration of the snow line is faster than an optically thick disk.« less
Jeong, Jae Hoon; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung; Jeoung, Jin Wook
2016-01-01
To evaluate the effect of multiple covariates on the diagnostic performance of the Cirrus high-definition optical coherence tomography (HD-OCT) for glaucoma detection. A prospective case-control study was performed and included 173 recently diagnosed glaucoma patients and 63 unaffected individuals from the Macular Ganglion Cell Imaging Study. Regression analysis of receiver operating characteristic were conducted to evaluate the influence of age, spherical equivalent, axial length, optic disc size, and visual field index on the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) measurements. Disease severity, as measured by visual field index, had a significant effect on the diagnostic performance of all Cirrus HD-OCT parameters. Age, axial length and optic disc size were significantly associated with diagnostic accuracy of average peripapillary RNFL thickness, whereas axial length had a significant effect on the diagnostic accuracy of average GCIPL thickness. Diagnostic performance of the Cirrus HD-OCT may be more accurate in the advanced stages of glaucoma than at earlier stages. A smaller optic disc size was significantly associated with improved the diagnostic ability of average RNFL thickness measurements; however, GCIPL thickness may be less affected by age and optic disc size.
Magneto-optical Kerr rotation and color in ultrathin lossy dielectric
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yun song; Li, Li na
2017-05-01
Ultra-thin optical coating comprising nanometer-thick silicon absorbing films on iron substrates can display strong optical interference effects. A resonance peak of ∼1.6^\\circ longitudinal Kerr rotation with the silicon thickness of ∼47 \\text{nm} was found at the wavelength of 660 nm. The optical properties of silicon thin films were well controlled by the sputtering power. Non-iridescence color exhibition and Kerr rotation enhancement can be manipulated and encoded individually.
Simple approach for high-contrast optical imaging and characterization of graphene-based sheets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, I.; Pelton, M.; Piner, R.
2007-12-01
A simple optical method is presented for identifying and measuring the effective optical properties of nanometer-thick, graphene-based materials, based on the use of substrates consisting of a thin dielectric layer on silicon. High contrast between the graphene-based materials and the substrate is obtained by choosing appropriate optical properties and thickness of the dielectric layer. The effective refractive index and optical absorption coefficient of graphene oxide, thermally reduced graphene oxide, and graphene are obtained by comparing the predicted and measured contrasts.
Gerendas, Bianca S; Waldstein, Sebastian M; Simader, Christian; Deak, Gabor; Hajnajeeb, Bilal; Zhang, Li; Bogunovic, Hrvoje; Abramoff, Michael D; Kundi, Michael; Sonka, Milan; Schmidt-Erfurth, Ursula
2014-11-01
To measure choroidal thickness on spectral-domain optical coherence tomography (SD OCT) images using automated algorithms and to correlate choroidal pathology with retinal changes attributable to diabetic macular edema (DME). Post hoc analysis of multicenter clinical trial baseline data. SD OCT raster scans/fluorescein angiograms were obtained from 284 treatment-naïve eyes of 142 patients with clinically significant DME and from 20 controls. Three-dimensional (3D) SD OCT images were evaluated by a certified independent reading center analyzing retinal changes associated with diabetic retinopathy. Choroidal thicknesses were analyzed using a fully automated algorithm. Angiograms were assessed manually. Multiple endpoint correction according to Bonferroni-Holm was applied. Main outcome measures were average retinal/choroidal thickness on fovea-centered or peak of edema (thickest point of edema)-centered Early Treatment Diabetic Retinopathy Study grid, maximum area of leakage, and the correlation between retinal and choroidal thicknesses. Total choroidal thickness is significantly reduced in DME (175 ± 23 μm; P = .0016) and nonedematous fellow eyes (177 ± 20 μm; P = .009) of patients compared with healthy control eyes (190 ± 23 μm). Retinal/choroidal thickness values showed no significant correlation (1-mm: P = .27, r(2) = 0.01; 3-mm: P = .96, r(2) < 0.0001; 6-mm: P = .42, r(2) = 0.006). No significant difference was found in the 1- or 3-mm circle of a retinal peak of edema-centered grid. All other measurements of choroidal/retinal thickness (DME vs healthy, DME vs peak of edema-centered, DME vs fellow, healthy vs fellow, peak of edema-centered vs healthy, peak of edema-centered vs fellow eyes) were compared but no statistically significant correlation was found. By tendency a thinner choroid correlates with larger retinal leakage areas. Automated algorithms can be used to reliably assess choroidal thickness in eyes with DME. Choroidal thickness was generally reduced in patients with diabetes if DME is present in 1 eye; however, no correlation was found between choroidal/retinal pathologies, suggesting different pathogenetic pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
Structure/Psychophysical Relationships in X-Linked Retinoschisis.
Bennett, Lea D; Wang, Yi-Zhong; Klein, Martin; Pennesi, Mark E; Jayasundera, Thiran; Birch, David G
2016-02-01
To compare structural properties from spectral-domain optical coherence tomography (SDOCT) and psychophysical measures from a subset of patients enrolled in a larger multicenter natural history study of X-linked retinoschisis (XLRS). A subset of males (n = 24) participating in a larger natural history study of XLRS underwent high-resolution SDOCT. Total retina (TR) thickness and outer segment (OS) thickness were measured manually. Shape discrimination hyperacuity (SDH) and contour integration perimetry (CIP) were performed on an iPad with the myVisionTrack application. Sensitivity was measured with fundus-guided perimetry (4-2 threshold testing strategy; 10-2 grid, spot size 3, 68 points). Correlation was determined with Pearson's r correlation. Values are presented as the mean ± SD. Mean macular OS thickness was less in XLRS patients (17.2 ± 8.1 μm) than in controls (37.1 ± 5.7 μm; P < 0.0001) but mean TR thickness was comparable (P = 0.5884). For patients, total sensitivity was lower (13.2 ± 6.6 dB) than for controls (24.2 ± 2.4 dB; P = 0.0008) and had a strong correlation with photoreceptor OS (R(2) = 0.55, P = 0.0001) and a weak correlation with TR thickness (R(2) = 0.22, P = 0.0158). The XLRS subjects had a logMAR best corrected visual acuity (BCVA) of 0.5 ± 0.3 that was associated with OS (R(2) = 0.79, P < 0.0001) but not TR thickness (R(2) = 0.01, P = 0.6166). Shape DH and CIP inner ring correlated with OS (R(2) = 0.33, P = 0.0085 and R(2) = 0.47, P = 0.0001, respectively) but not TR thickness (R(2) = 0.0004, P = 0.93; R(2) = 0.0043, P = 0.75, respectively). When considered from a single visit, OS thickness within the macula is more closely associated with macular function than TR thickness within the macula in patients with XLRS.
Structure/Psychophysical Relationships in X-Linked Retinoschisis
Bennett, Lea D.; Wang, Yi-Zhong; Klein, Martin; Pennesi, Mark E.; Jayasundera, Thiran; Birch, David G.
2016-01-01
Purpose To compare structural properties from spectral-domain optical coherence tomography (SDOCT) and psychophysical measures from a subset of patients enrolled in a larger multicenter natural history study of X-linked retinoschisis (XLRS). Methods A subset of males (n = 24) participating in a larger natural history study of XLRS underwent high-resolution SDOCT. Total retina (TR) thickness and outer segment (OS) thickness were measured manually. Shape discrimination hyperacuity (SDH) and contour integration perimetry (CIP) were performed on an iPad with the myVisionTrack application. Sensitivity was measured with fundus-guided perimetry (4-2 threshold testing strategy; 10-2 grid, spot size 3, 68 points). Correlation was determined with Pearson's r correlation. Values are presented as the mean ± SD. Results Mean macular OS thickness was less in XLRS patients (17.2 ± 8.1 μm) than in controls (37.1 ± 5.7 μm; P < 0.0001) but mean TR thickness was comparable (P = 0.5884). For patients, total sensitivity was lower (13.2 ± 6.6 dB) than for controls (24.2 ± 2.4 dB; P = 0.0008) and had a strong correlation with photoreceptor OS (R2 = 0.55, P = 0.0001) and a weak correlation with TR thickness (R2 = 0.22, P = 0.0158). The XLRS subjects had a logMAR best corrected visual acuity (BCVA) of 0.5 ± 0.3 that was associated with OS (R2 = 0.79, P < 0.0001) but not TR thickness (R2 = 0.01, P = 0.6166). Shape DH and CIP inner ring correlated with OS (R2 = 0.33, P = 0.0085 and R2 = 0.47, P = 0.0001, respectively) but not TR thickness (R2 = 0.0004, P = 0.93; R2 = 0.0043, P = 0.75, respectively). Conclusions When considered from a single visit, OS thickness within the macula is more closely associated with macular function than TR thickness within the macula in patients with XLRS. PMID:26830370
Powerful radiative jets in supercritical accretion discs around non-spinning black holes
NASA Astrophysics Data System (ADS)
Sądowski, Aleksander; Narayan, Ramesh
2015-11-01
We describe a set of simulations of supercritical accretion on to a non-rotating supermassive black hole (BH). The accretion flow takes the form of a geometrically thick disc with twin low-density funnels around the rotation axis. For accretion rates {gtrsim } 10 dot{M}_Edd, there is sufficient gas in the funnel to make this region optically thick. Radiation from the disc first flows into the funnel, after which it accelerates the optically thick funnel gas along the axis. The resulting jet is baryon loaded and has a terminal density-weighted velocity ≈0.3c. Much of the radiative luminosity is converted into kinetic energy by the time the escaping gas becomes optically thin. These jets are not powered by BHrotation or magnetic driving, but purely by radiation. Their characteristic beaming angle is ˜0.2 rad. For an observer viewing down the axis, the isotropic equivalent luminosity of total energy is as much as 1048 erg s- 1 for a 107 M⊙ BH accreting at 103 Eddington. Therefore, energetically, the simulated jets are consistent with observations of the most powerful tidal disruption events, e.g. Swift J1644. The jet velocity is, however, too low to match the Lorentz factor γ > 2 inferred in J1644. There is no such conflict in the case of other tidal disruption events. Since favourably oriented observers see isotropic equivalent luminosities that are highly super-Eddington, the simulated models can explain observations of ultraluminous X-ray sources, at least in terms of luminosity and energetics, without requiring intermediate-mass BHs.
NASA Astrophysics Data System (ADS)
Dong, Guobo; Zhang, Ming; Wang, Mei; Li, Yingzi; Gao, Fangyuan; Yan, Hui; Diao, Xungang
2014-07-01
CuAlO2 films with different thickness were prepared by the radio frequency magnetron sputtering technique. The structural, electrical and optical properties of CuAlO2 were studied by X-ray diffraction, atomic force microscope, UV-Vis double-beam spectrophotometer and Hall measurements. The results indicate that the single phase hexagonal CuAlO2 is formed and the average grain size of CuAlO2 films increases with increasing film thickness. The results also exhibit that the lowering of bandgap and the increase of electrical conductivity of CuAlO2 films with the increase of their thickness, which are attributed to the improvement of the grain size and the anisotropic electrical property. According to the electrical and optical properties, the biggest figure of merit is achieved for the CuAlO2 film with the appropriate thickness of 165 nm.
Almahmoud, Safieh; Vahdati, Nader; Rostron, Paul
2018-01-01
A monitoring solution was developed for detection of material loss in metals such as carbon steel using the force generated by permanent magnets in addition to the optical strain sensing technology. The working principle of the sensing system is related to the change in thickness of a steel plate, which typically occurs due to corrosion. As thickness decreases, the magnetostatic force between the magnet and the steel structure also decreases. This, in turn, affects the strain measured using the optical fiber. The sensor prototype was designed and built after verifying its sensitivity using a numerical model. The prototype was tested on steel plates of different thicknesses to establish the relationship between the metal thickness and measured strain. The results of experiments and numerical models demonstrate a strong relationship between the metal thickness and the measured strain values. PMID:29518006
Hong, Seung Woo; Lee, Seung Bum; Jee, Dong-Hyun; Ahn, Myung Douk
2016-09-01
The purpose of study was to measure the diagnostic utility of interocular retinal nerve fiber layer (RNFL) symmetry and interocular RNFL thickness comparison. Both eyes of 103 normal subjects and 106 glaucoma patients (31 patients with early glaucoma and 75 patients with moderate to severe glaucoma) received comprehensive ophthalmologic evaluation including visual field testing and optic disc scanning using optical coherence tomography. RNFL thickness values for 256 measurement points were rearranged according to a new reference line connecting the optic disc center and the foveola. The interocular RNFL thickness symmetry value and absolute and fractional interocular difference in RNFL thickness were calculated and compared between groups. Area under the receiver operating characteristic curves (AUROCs) were calculated and compared. Among the parameters reflecting whole RNFL status, the corrected interocular RNFL thickness symmetry exhibited the largest AUROCs at all glaucoma stages. RNFL thickness and absolute and fractional interocular difference in RNFL thickness exhibited largest AUROC in the inferotemporal area, regardless of glaucoma stage. In the early glaucoma group, absolute and fractional interocular RNFL thickness differences in the temporal and superotemporal areas exhibited equal to or larger AUROCs than RNFL thickness. The AUROCs for RNFL thickness were greater than those for absolute and fractional interocular RNFL thickness differences in the moderate to severe glaucoma group except in the nasal and temporal area. The corrected interocular RNFL thickness symmetry value is an effective diagnostic tool for glaucoma. Interocular comparison of RNFL thickness has good diagnostic performance and gives information about the RNFL beyond just the RNFL thickness itself.
Turan-Vural, Ece; Halili, Elvin; Serin, Didem
2014-06-01
We aimed to evaluate the efficacy of topical ketorolac 0.5 % solution and oral acetazolamide 250 mg/day delivery during the first month after uneventful phacoemulsification surgery by measuring the macular thickness using optical coherence tomography. Our nonmasked randomized prospective study comprised 87 eyes of 80 patients. Complete follow-up was achieved on 84 eyes of 77 eligible patients. Postoperatively, the patients were divided into three groups. One group received ketorolac 0.5 %, the other group received acetazolamide 250 mg/day, and the control group was given no agent. Macular thickness and volume were measured at 1 week and 1 month after surgery by optical coherence tomography. Foveal thickness, parafoveal thickness, and perifoveal thickness were determined to be significantly elevated at postoperative 1 week and 1 month in the control group. Foveal, perifoveal, and parafoveal volumes were also significantly high at postoperative week 1 and month 1 in the control group. There was no significant difference between the ketorolac and acetazolamide groups. The correlation analysis between best-corrected visual acuity, and volume and thickness revealed a negative correlation in the acetazolamide group. Use of acetazolamide after cataract surgery is as effective as ketorolac on macular thickness and volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Anjna, E-mail: anjna56@gmail.com; Thakur, Priya; Yadav, Kamlesh, E-mail: kamlesh.yadav001@gmail.com
2016-05-06
In this paper, poly (ethyl methacrylate) (PEMA) and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films for 2, 3, 4 and 5 minutes have been deposited by spray pyrolysis technique on indium tin oxide (ITO) coated substrate. The effect of thickness of the film on the morphological and optical properties of PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are studied. The morphological and optical properties of pure PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are compared. The field emission scanning electron microscopy (FESEM) shows that as the thickness of film increases, uniformity of films increases. It is found from UV-Visible spectra that themore » energy band gap decreases with increasing the deposition time and refractive index increases with increasing the thickness of the film. The band gap of the nanocomposites is found less than the pure polymer film and opposite trend is observed for refractive index. The optical absorption of PEMA/ZnO nanocomposite films is higher than pure PEMA film. The thickness of the nanocomposite film plays a significant role in the tunability of the optical properties.« less
NASA Technical Reports Server (NTRS)
Ye, B.; DelGenio, A. D.
1999-01-01
Areally extensive, optically thick anvil clouds associated with mesoscale convective clusters dominate the shortwave cloud forcing in the tropics and provide longwave forcing comparable to that of thin cirrus. Changes in the cover and optical thickness of tropical anvils as climate warms can regulate the sign of cloud feedback. As a prelude to the study of MMCR data from the ARM TWP sites, we analyze ISCCP-derived radiative characteristics of anvils observed in the tropical west Pacific during the TOGA-COARE IOP. Anvils with radius greater than 100 km were identified and tracked from inception to decay using the Machado-Rossow algorithm. Corresponding environmental conditions just prior to the start of the convectove event were diagnosed using the Lin-Johnson objective analysis product. Small clusters (100-200 km radius) are observed to have a broad range of optical thicknesses (10-50), while intermediate optical thickness clusters are observed to range in size from 100 km to almost 1000 km. Large-size clusters appear to be favored by strong pre-storm large scale upward motion throughout the troposphere, moist low-to-midlevel relative humidities, environments with slightly higher CAPE than those for smaller clusters, and strong front-to-rear flow. Optically thick anvils are favored in situations of strong low-level moisture convergence and strong upper-level shear.
The effect of spatial resolution upon cloud optical property retrievals. I - Optical thickness
NASA Technical Reports Server (NTRS)
Feind, Rand E.; Christopher, Sundar A.; Welch, Ronald M.
1992-01-01
High spectral and spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery is used to study the effects of spatial resolution upon fair weather cumulus cloud optical thickness retrievals. As a preprocessing step, a variation of the Gao and Goetz three-band ratio technique is used to discriminate clouds from the background. The combination of the elimination of cloud shadow pixels and using the first derivative of the histogram allows for accurate cloud edge discrimination. The data are progressively degraded from 20 m to 960 m spatial resolution. The results show that retrieved cloud area increases with decreasing spatial resolution. The results also show that there is a monotonic decrease in retrieved cloud optical thickness with decreasing spatial resolution. It is also demonstrated that the use of a single, monospectral reflectance threshold is inadequate for identifying cloud pixels in fair weather cumulus scenes and presumably in any inhomogeneous cloud field. Cloud edges have a distribution of reflectance thresholds. The incorrect identification of cloud edges significantly impacts the accurate retrieval of cloud optical thickness values.
NASA Technical Reports Server (NTRS)
Meier, D. L.
1982-01-01
A general analytic theory is presented of winds driven by super-Eddington luminosities. The relevant parameters are the mass of the central object, the radius at which the luminosity and matter are injected, the ratio of the free-fall time to the heating time at this radius, and the total luminosity injected at the radius. Several different regimes of dynamical wind structure are identified, and the analytic expressions are shown to agree with the numerical results in Meier (1979) in the appropriate case. It is noted that, in its general form, the theory is the optically thick (to electron scattering) counterpart to optically thin radiation pressure-driven stellar winds.
Metasurface Freeform Nanophotonics.
Zhan, Alan; Colburn, Shane; Dodson, Christopher M; Majumdar, Arka
2017-05-10
Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their size. Unfortunately, these high curvatures and complex forms are often difficult to manufacture with current technologies, especially at the micron scale. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a silicon nitride based metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 micron along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm corresponding to a change in optical power of ~1600 diopters with 100 micron of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for further miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.
Thickness Measurement, Rate Control And Automation In Thin Film Coating Technology
NASA Astrophysics Data System (ADS)
Pulker, H. K.
1983-11-01
There are many processes known for fabricating thin films/1, 2.Among them the group of physical vapor deposition processes comprising evaporation, sputtering and ion plating has received special attention.Especially evaporation but also the other PVD techniques are widely used to deposit various single and multilayer coatings for optical and electrical thin film applications/3,4/.A large number of parameters is important in obtaining the required film properties in a reproducible manner when depositing thin films by such processes.Amongst the many are the film thickness, the condensation rate,the substrate temperature,as well as the qualitative and the quantitative composition of the residual gas of primary importance.First of all the film thickness is a dimension which enters in practically all equations used to characterize a thin film. However,when discussing film thickness,definitions are required since there one has to distinguish between various types of thicknesses e.g.geometrical thickness,mass thickness and optical thickness.The geometrical thickness,often also called physical thickness,is defined as the step height between the substrate surface and the film surface.This step height multiplied by the refractive index of the film is termed the optical thickness and is expressed generally in integer multiples of fractional parts of a desired wavelength.The mass thickness finally is defined as the film mass per unit area obtained by weighing.Knowing the density and the optical data of a thin film its mass thickness can be converted into the corresponding geometrical as well as optical thickness.However,with ultrathin films ranging between a few and several atomic or molecular "layers"the concept of a film thickness may become senseless since often no closed film exists of such minor deposits.Although film thickness is a length,the measurement of it can,obviously,not be accomplished with conventional methods for length determinations but requires special methods.The great efforts made to overcome this problem led to a remarkable number of different,often highly sophisticated film thickness measuring methods reviewed in various articles such ase.g./5,6/.With some of the methods,it is possible to carry out measurement under vacuum during and after the film formation other determinations have to be undertaken outside the deposition chamber only after the film has been produced.Many of the methods cannot be employed for all film substances,and there are varying limits as regards the range of thickness and measuring accuracy.Furthermore, with these methods the film to be measured is often specially prepared or dissolved during measurement and therefore becomes useless for additional investigations or applications.If only those methods which can be employed during the film deposition are considered,then the very large number of methods is considerably reduced.Insitu measurements,however,are highly desired since many basic investigations and practically all industrial applications require a precise knowledge of thefilm thickness at any instant to enable termination of the deposition process at the predetermined right moment.Apartfrom few exceptions in practical film deposition only optical measuring units andmass determination monitors are used.
Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca
2010-07-01
This study provides a systematic and quantitative approach to the analysis and optimization of solar photocatalytic reactors utilized in environmental applications such as pollutant remediation and conversion of biomass (waste) to hydrogen. Ray tracing technique was coupled with the six-flux absorption scattering model (SFM) to analyze the complex radiation field in solar compound parabolic collectors (CPC) and tubular photoreactors. The absorption of solar radiation represented by the spatial distribution of the local volumetric rate of photon absorption (LVRPA) depends strongly on catalyst loading and geometry. The total radiation absorbed in the reactors, the volumetric rate of absorption (VRPA), was analyzed as a function of the optical properties (scattering albedo) of the photocatalyst. The VRPA reached maxima at specific catalyst concentrations in close agreement with literature experimental studies. The CPC has on average 70% higher photon absorption efficiency than a tubular reactor and requires 39% less catalyst to operate under optimum conditions. The "apparent optical thickness" is proposed as a new dimensionless parameter for optimization of CPC and tubular reactors. It removes the dependence of the optimum catalyst concentration on tube diameter and photocatalyst scattering albedo. For titanium dioxide (TiO(2)) Degussa P25, maximum photon absorption occurs at apparent optical thicknesses of 7.78 for CPC and 12.97 for tubular reactors.
Magnetic Rayleigh-Taylor instability in radiative flows
NASA Astrophysics Data System (ADS)
Yaghoobi, Asiyeh; Shadmehri, Mohsen
2018-06-01
We present a linear analysis of the radiative Rayleigh-Taylor (RT) instability in the presence of magnetic field for both optically thin and thick regimes. When the flow is optically thin, magnetic field not only stabilizes perturbations with short wavelengths, but also growth rate of the instability at long wavelengths is reduced compared to a non-magnetized case. Then, we extend our analysis to the optically thick flows with a conserved total specific entropy, and properties of the unstable perturbations are investigated in detail. Growth rate of the instability at short wavelengths is suppressed due to the presence of the magnetic field; however, growth rate is nearly constant at long wavelengths because of the radiation field. Since the radiative bubbles around massive protostars are subject to the RT instability, we also explore implications of our results in this context. In the non-magnetized case, the growth time-scale of the instability for a typical bubble is found to be less than 1000 yr, which is very short compared to the typical star formation time-scale. Magnetic field with a reasonable strength significantly increases the growth time-scale to more than hundreds of thousand years. The instability, furthermore, is more efficient at large wavelengths, whereas in the non-magnetized case, growth rate at short wavelengths is more significant.
NASA Astrophysics Data System (ADS)
Doradla, Pallavi; Villiger, Martin; Tshikudi, Diane M.; Bouma, Brett E.; Nadkarni, Seemantini K.
2016-02-01
Acute myocardial infarction, caused by the rupture of vulnerable coronary plaques, is the leading cause of death worldwide. Collagen is the primary extracellular matrix macromolecule that imparts the mechanical stability to a plaque and its reduction causes plaque instability. Intracoronary polarization sensitive optical coherence tomography (PS-OCT) measures the polarization states of the backscattered light from the tissue to evaluate plaque birefringence, a material property that is elevated in proteins such as collagen with an ordered structure. Here we investigate the dependence of the PS-OCT parameters on the quantity of the plaque collagen and fiber architecture. In this study, coronary arterial segments from human cadaveric hearts were evaluated with intracoronary PS-OCT and compared with Histopathological assessment of collagen content and architecture from picrosirius-red (PSR) stained sections. PSR sections were visualized with circularly-polarized light microscopy to quantify collagen birefringence, and the additional assessment of color hue indicated fibril thickness. Due to the ordered architecture of thick collagen fibers, a positive correlation between PS-OCT retardation and quantity of thick collagen fibers (r=0.54, p=0.04), and similarly with the total collagen content (r=0.51, p=0.03) was observed. In contrast, there was no perceivable relationship between PS-OCT retardation and the presence of thin collagen fibers (r=0.08, p=0.07), suggesting that thin and disorganized collagen fiber architecture did not significantly contribute to the PS-OCT retardation. Further analysis will be performed to assess the relationship between PS-OCT retardation and collagen architecture based on immunohistochemical analysis of collagen type. These results suggest that intracoronary PS-OCT may open the opportunity to assess collagen architecture in addition total collagen content, potentially enabling an improved understanding of coronary plaque rupture.
Association of ABO blood groups and Rh factor with retinal and choroidal thickness.
Teberik, Kuddusi; Eski, Mehmet Tahir
2018-06-01
To evaluate if ABO blood group and Rh factor have an effect on retinal and choroidal thickness. This study was designed prospectively. Retinal nerve fiber layer, retinal, and choroidal thicknesses were measured with spectral-domain optical coherence tomography. Retinal and choroidal thickness measurements (one subfoveal, three temporal, and three nasal) were obtained at 500-μm intervals up to 1500 μm with the caliper system. In this study, 109 male and 151 female, 260 individuals in total were included. There were 125 subjects in group A, 29 in group B, 34 in group AB, and 72 in group O. Rh factor was positive in 194 subjects and negative in 66. There was no significant difference between the groups regarding age (p = 0.667). The groups did not show any statistical difference in retinal nerve fiber layer thickness. There was significant difference found for mean retinal thickness at temporal 1000 μm when four groups were compared (p = 0.037). No statistically significant difference was detected for the remaining retinal and choroidal sectoral regions. The groups did not statistically significantly differ concerning Rh factor (p > 0.05). Although we found a significant difference in retinal thickness in the temporal retina between group B with group A and group O, we suggest that both blood group and Rh factor have no effect on retinal and choroidal thickness.
Central corneal thickness and progression of the visual field and optic disc in glaucoma
Chauhan, B C; Hutchison, D M; LeBlanc, R P; Artes, P H; Nicolela, M T
2005-01-01
Aims: To determine whether central corneal thickness (CCT) is a significant predictor of visual field and optic disc progression in open angle glaucoma. Methods: Data were obtained from a prospective study of glaucoma patients tested with static automated perimetry and confocal scanning laser tomography every 6 months. Progression was determined using a trend based approach called evidence of change (EOC) analysis in which sectoral ordinal scores based on the significance of regression coefficients of visual field pattern deviation and neuroretinal rim area over time are summed. Visual field progression was also determined using the event based glaucoma change probability (GCP) analysis using both total and pattern deviation. Results: The sample contained 101 eyes of 54 patients (mean (SD) age 56.5 (9.8) years) with a mean follow up of 9.2 (0.7) years and 20.7 (2.3) sets of examinations every 6 months. Lower CCT was associated with worse baseline visual fields and lower mean IOP in the follow up. In the longitudinal analysis CCT was not correlated with the EOC scores for visual field or optic disc change. In the GCP analyses, there was a tendency for groups classified as progressing to have lower CCT compared to non-progressing groups. In a multivariate analyses accounting for IOP, the opposite was found, whereby higher CCT was associated with visual field progression. None of the independent factors were predictive of optic disc progression. Conclusions: In this cohort of patients with established glaucoma, CCT was not a useful index in the risk assessment of visual field and optic disc progression. PMID:16024855
NASA Astrophysics Data System (ADS)
Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm
2017-04-01
The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is <10% from 30 to 75° at 514.5 nm, and <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.
Masking technique for coating thickness control on large and strongly curved aspherical optics.
Sassolas, B; Flaminio, R; Franc, J; Michel, C; Montorio, J-L; Morgado, N; Pinard, L
2009-07-01
We discuss a method to control the coating thickness deposited onto large and strongly curved optics by ion beam sputtering. The technique uses an original design of the mask used to screen part of the sputtered materials. A first multielement mask is calculated from the measured two-dimensional coating thickness distribution. Then, by means of an iterative process, the final mask is designed. By using such a technique, it has been possible to deposit layers of tantalum pentoxide having a high thickness gradient onto a curved substrate 500 mm in diameter. Residual errors in the coating thickness profile are below 0.7%.
Huang, Jehn-Yu; Pekmezci, Melike; Mesiwala, Nisreen; Kao, Andrew; Lin, Shan
2011-02-01
To evaluate the capability of the optic disc, peripapillary retinal nerve fiber layer (P-RNFL), macular inner retinal layer (M-IRL) parameters, and their combination obtained by Fourier-domain optical coherent tomography (OCT) in differentiating a glaucoma suspect from perimetric glaucoma. Two hundred and twenty eyes from 220 patients were enrolled in this study. The optic disc morphology, P-RNFL, and M-IRL were assessed by the Fourier-domain OCT (RTVue OCT, Model RT100, Optovue, Fremont, CA). A linear discriminant function was generated by stepwise linear discriminant analysis on the basis of OCT parameters and demographic factors. The diagnostic power of these parameters was evaluated with receiver operating characteristic (ROC) curve analysis. The diagnostic power in the clinically relevant range (specificity ≥ 80%) was presented as the partial area under the ROC curve (partial AROC). The individual OCT parameter with the largest AROC and partial AROC in the high specificity (≥ 80%) range were cup/disc vertical ratio (AROC = 0.854 and partial AROC = 0.142) for the optic disc parameters, average thickness (AROC = 0.919 and partial AROC = 0.147) for P-RNFL parameters, inferior hemisphere thickness (AROC = 0.871 and partial AROC = 0.138) for M-IRL parameters, respectively. The linear discriminant function further enhanced the ability in detecting perimetric glaucoma (AROC = 0.970 and partial AROC = 0.172). Average P-RNFL thickness is the optimal individual OCT parameter to detect perimetric glaucoma. Simultaneous evaluation on disc morphology, P-RNFL, and M-IRL thickness can improve the diagnostic accuracy in diagnosing glaucoma.
Influence of PEG coating on optical and thermal response of gold nanoshperes and nanorods
NASA Astrophysics Data System (ADS)
Chen, Qin; Ren, Yatao; Qi, Hong; Ruan, Liming
2018-06-01
PEGylation is widely applied as a surface modification method for nanoparticles in biomedical applications to improve their biological properties, including biocompatibility and immunogenicity. In most of its biomedical applications, nanoparticles are served as optical or thermal contrast agents. Therefore, the impact of poly (ethylene glycol) (PEG) coating thickness on the optical and thermal properties of nanoparticles needs to be further investigated. In the present work, we studied two kinds of commonly used nanoparticles, including nanosphere and nanorod. The temperature and electric fields are obtained for nanoparticles with different PEG coating thicknesses. It is found that the change of PEG coating thickness on gold nanospheres only has impact on the absolute value of maximum absorption and scattering efficiencies, which barely influences the LSPR wavelength λmax and other optical and thermal characteristics. In contrast, for nanorod, the maximum efficiencies are barely influenced by the variation of PEG coating thickness. On the other hand, the localized surface plasmon resonance wavelength has an evident red shift with the increasing of PEG coating thickness. The maximum absorption efficiency is a way to evaluate the energy dissipation rate, which decides the scale of the heat source induced by nanoparticles. These findings are crucial for the accurate prediction of optical and thermal properties of nanoparticles in biomedical application. The present work also presents a possible way to manipulate the optical and thermal behaviors of nanoparticles in the application of biomedicine without changing the morphology of nanoparticles.
Thickness dependent optical and electrical properties of CdSe thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, A., E-mail: anuradha.purohit34@gmail.com; Chander, S.; Nehra, S. P.
2016-05-06
The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows thatmore » the electrical resistivity is observed to be decreased with thickness.« less
NASA Astrophysics Data System (ADS)
Mohamed, S. H.; Ali, H. M.
2011-01-01
Structural, optical, and photoluminescence investigations of ZnS capped with CdSe films prepared by electron beam evaporation are presented. X-ray diffraction analysis revealed that the ZnS/CdSe nanoparticles films contain cubic cadmium selenide and hexagonal zinc sulfide crystals and the ZnS grain sizes increased with increasing ZnS thickness. The refractive index was evaluated in terms of envelope method, which has been suggested by Swanepoel in the transparent region. The refractive index values were found to increase with increasing ZnS thickness. However, the optical band gap and the extinction coefficient were decreased with increasing ZnS thickness. Photoluminescence (PL) investigations revealed the presence of two broad emission bands. The ZnS thickness significantly influenced the PL intensities.
Park, Kwangwook; Kang, Seokjin; Ravindran, Sooraj; ...
2016-12-26
Double-hetero structure lateral composition modulated (LCM) GaInP and sandwiched LCM GaInP having the same active layer thickness were grown and their optical properties were compared. Sandwiched LCM GaInP showed robust optical properties due to periodic potential nature of the LCM structure, and the periodicity was undistorted even for thickness far beyond the critical layer thickness. A thick LCM GaInP structure with undistorted potential that could preserve the properties of native LCM structure was possible by stacking thin LCM GaInP structures interspaced with strain compensating GaInP layers. Furthermore, the sandwiched structure could be beneficial in realizing the LCM structure embedded highmore » efficiency solar cells.« less
Aleman, Tomas S.; Huang, Jiayan; Garrity, Sean T.; Carter, Stuart B.; Aleman, Wendy D.; Ying, Gui-shuang; Tamhankar, Madhura A.
2014-01-01
Purpose To study the relationship between the appearance of the optic nerve and the retinal nerve fiber layer (RNFL) thickness determined by spectral domain optical coherence tomography (OCT). Methods Records from patients with spectral domain-OCT imaging in a neuro-ophthalmology practice were reviewed. Eyes with glaucoma/glaucoma suspicion, macular/optic nerve edema, pseudophakia, and with refractive errors > 6D were excluded. Optic nerve appearance by slit lamp biomicroscopy was related to the RNFL thickness by spectral domain-OCT and to visual field results. Results Ninety-one patients (176 eyes; mean age: 49 ± 15 years) were included. Eighty-three eyes (47%) showed optic nerve pallor; 89 eyes (50.6%) showed RNFL thinning (sectoral or average peripapillary). Average peripapillary RNFL thickness in eyes with pallor (mean ± SD = 76 ± 17 μm) was thinner compared to eyes without pallor (91 ± 14 μm, P < 0.001). Optic nerve pallor predicted RNFL thinning with a sensitivity of 69% and a specificity of 75%. Optic nerve appearance predicted RNFL thinning (with a sensitivity and specificity of 81%) when RNFL had thinned by ∼ 40%. Most patients with pallor had RNFL thinning with (66%) or without (25%) visual field loss; the remainder had normal RNFL and fields (5%) or with visual field abnormalities (4%). Conclusions Optic nerve pallor as a predictor of RNFL thinning showed fair sensitivity and specificity, although it is optimally sensitive/specific only when substantial RNFL loss has occurred. Translational Relevance Finding an acceptable relationship between the optic nerve appearance by ophthalmoscopy and spectral domain-OCT RNFL measures will help the clinician's interpretation of the information provided by this technology, which is gaining momentum in neuro-ophthalmic research. PMID:25374773
The Case for Optically Thick High-Velocity Broad-Line Region Gas in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Snedden, Stephanie A.; Gaskell, C. Martin
2007-11-01
A combined analysis of the profiles of the main broad quasar emission lines in both Hubble Space Telescope and optical spectra shows that while the profiles of the strong UV lines are quite similar, there is frequently a strong increase in the Lyα/Hα ratio in the high-velocity gas. We show that the suggestion that the high-velocity gas is optically thin presents many problems. We show that the relative strengths of the high-velocity wings arise naturally in an optically thick BLR component. An optically thick model successfully explains the equivalent widths of the lines, the Lyα/Hα ratios and flatter Balmer decrements in the line wings, the strengths of C III] and the λ1400 blend, and the strong variability in flux of high-velocity, high-ionization lines (especially He II and He I).
NASA Astrophysics Data System (ADS)
Mok, Tat M.; O'Leary, Stephen K.
2007-12-01
Using a model for the optical spectrum associated with hydrogenated amorphous silicon, explicitly taking into account fundamental experimental limitations encountered, we theoretically determine the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the thickness of the film. We compare these results with that obtained from experiment. We find that the curvature in the Tauc plot plays a significant role in influencing the determination of the Tauc optical gap associated with hydrogenated amorphous silicon, thus affirming an earlier hypothesis of Cody et al. We also find that the spectral dependence of the refractive index plays an important role in influencing the determination of the Cody optical gap. It is thus clear that care must be exercised when drawing conclusions from the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the thickness of the film.
Mrugacz, Malgorzata; Bakunowicz-Lazarczyk, Alina
2005-01-01
The aim of this study was to quantitatively assess and compare the thickness of the retinal nerve fiber layer (RNFL) in normal and glaucomatous eyes of children using the optical coherence tomograph. The mean RNFL thickness of normal eyes (n=26) was compared with that of glaucomatous eyes (n=26). The eyes were classified into diagnostic groups based on conventional ophthalmological physical examination, Humphrey 30-2 visual fields, stereoscopic optic nerve head photography, and optical coherence tomography. The mean RNFL was significantly thinner in glaucomatous eyes than in normal eyes: 95+/-26.3 and 132+/-24.5 microm, respectively. More specifically, the RNFL was significantly thinner in glaucomatous eyes than in normal eyes in the inferior quadrant: 87+/-23.5 and 122+/-24.2 microm, respectively. The mean and inferior quadrant RFNL thicknesses as measured by the optical coherence tomograph showed a statistically significant correlation with glaucoma. Optical coherence tomography may contribute to tracking of juvenile glaucoma progression. Copyright (c) 2005 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Vermote, E.; Elsaleous, N.; Kaufman, Y. J.; Dutton, E.
1994-01-01
An operational stratospheric correction scheme used after the Mount Pinatubo (Phillipines) eruption (Jun. 1991) is presented. The stratospheric aerosol distribution is assumed to be only variable with latitude. Each 9 days the latitudinal distribution of the optical thickness is computed by inverting radiances observed in the NOAA AVHRR channel 1 (0.63 micrometers) and channel 2 (0.83 micrometers) over the Pacific Ocean. This radiance data set is used to check the validity of model used for inversion by checking consistency of the optical thickness deduced from each channel as well as optical thickness deduced from different scattering angles. Using the optical thickness profile previously computed and radiative transfer code assuming Lambertian boundary condition, each pixel of channel 1 and 2 are corrected prior to computation of NDVI (Normalized Difference Vegetation Index). Comparison between corrected, non corrected, and years prior to Pinatubo eruption (1989 to 1990) NDVI composite, shows the necessity and the accuracy of the operational correction scheme.
Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research.
Meixner, Eva; Michelson, Georg
2015-11-01
To measure the wall-to-lumen ratio (WLR) and the cross-sectional area of the vascular wall (WCSA) of retinal arterioles by an Adaptive Optics (AO) retinal camera. Forty-seven human subjects were examined and their medical history was explored. WLR and WCSA were measured on the basis of retinal arteriolar wall thickness (VW), lumen diameter (LD) and vessel diameter (VD) assessed by rtx1 Adaptive Optics retinal camera. WLR was calculated by the formula [Formula: see text]. Arterio-venous ratio (AVR) and microvascular abnormalities were attained by quantitative and qualitative assessment of fundus photographs. Influence of age, arterial hypertension, body mass index (BMI) and retinal microvascular abnormalities on the WLR was examined. An age-adjusted WLR was created to test influences on WLR independently of age. Considering WLR and WCSA, a distinction between eutrophic and hypertrophic retinal remodeling processes was possible. The intra-observer variability (IOV) was 6 % ± 0.9 for arteriolar wall thickness and 2 % ± 0.2 for arteriolar wall thickness plus vessel lumen. WLR depended significantly on the wall thickness (r = 0.715; p < 0.01) of retinal arterioles, but was independent of the total vessel diameter (r = 0.052; p = 0.728). WLR correlated significantly with age (r = 0.769; p < 0.01). Arterial hypertension and a higher BMI were significantly associated with an increased age-adjusted WLR. WLR correlated significantly with the stage of microvascular abnormalities. 55 % of the hypertensive subjects and 11 % of the normotensive subjects showed eutrophic remodeling, while hypertrophic remodeling was not detectable. WLR correlated inversely with AVR. AVR was independent of the arteriolar wall thickness, age and arterial hypertension. The technique of AO retinal imaging allows a direct measurement of the retinal vessel wall and lumen diameter with good intra-observer variability. Age, arterial hypertension and an elevated BMI level are significantly associated with an increased WLR. The wall-to-lumen ratio measured by AO can be used to detect structural retinal microvascular alterations in an early stage of remodeling processes.
Hirasawa, Kazunori; Shoji, Nobuyuki
2017-01-01
To evaluate the influence of corneal power on circumpapillary retinal nerve fiber layer (cpRNFL) and optic nerve head (ONH) measurements by spectral-domain optical coherence tomography (SD-OCT). Twenty-five eyes of 25 healthy participants (mean age 23.6±3.6y) were imaged by SD-OCT using horizontal raster scans. Disposable soft contact lenses of different powers (from -11 to +5 diopters including 0 diopter) were worn to induce 2-diopter changes in corneal power. Differences in the cpRNFL and ONH measurements per diopter of change in corneal power were analyzed. As corneal power increased by 1 diopter, total and quadrant cpRNFL thicknesses, except for the nasal sector, decreased by --0.19 to -0.32 µm ( P <0.01). Furthermore, the disc, cup, and rim areas decreased by -0.017, -0.007, and -0.015 mm 2 , respectively ( P <0.001); the cup and rim volumes decreased by -0.0013 and -0.006 mm 3 , respectively ( P <0.01); and the vertical and horizontal disc diameters decreased by -0.006 and -0.007 mm, respectively ( P <0.001). For more precise OCT imaging, the ocular magnification should be corrected by considering both the axial length and corneal power. However, the effect of corneal power changes on cpRNFL thickness and ONH topography are small when compare with those of the axial length.
Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.
Yarmohammadi, Adeleh; Zangwill, Linda M.; Diniz-Filho, Alberto; Suh, Min Hee; Manalastas, Patricia Isabel; Fatehee, Naeem; Yousefi, Siamak; Belghith, Akram; Saunders, Luke J.; Medeiros, Felipe A.; Huang, David; Weinreb, Robert N.
2016-01-01
Purpose The purpose of this study was to compare retinal nerve fiber layer (RNFL) thickness and optical coherence tomography angiography (OCT-A) retinal vasculature measurements in healthy, glaucoma suspect, and glaucoma patients. Methods Two hundred sixty-one eyes of 164 healthy, glaucoma suspect, and open-angle glaucoma (OAG) participants from the Diagnostic Innovations in Glaucoma Study with good quality OCT-A images were included. Retinal vasculature information was summarized as a vessel density map and as vessel density (%), which is the proportion of flowing vessel area over the total area evaluated. Two vessel density measurements extracted from the RNFL were analyzed: (1) circumpapillary vessel density (cpVD) measured in a 750-μm-wide elliptical annulus around the disc and (2) whole image vessel density (wiVD) measured over the entire image. Areas under the receiver operating characteristic curves (AUROC) were used to evaluate diagnostic accuracy. Results Age-adjusted mean vessel density was significantly lower in OAG eyes compared with glaucoma suspects and healthy eyes. (cpVD: 55.1 ± 7%, 60.3 ± 5%, and 64.2 ± 3%, respectively; P < 0.001; and wiVD: 46.2 ± 6%, 51.3 ± 5%, and 56.6 ± 3%, respectively; P < 0.001). For differentiating between glaucoma and healthy eyes, the age-adjusted AUROC was highest for wiVD (0.94), followed by RNFL thickness (0.92) and cpVD (0.83). The AUROCs for differentiating between healthy and glaucoma suspect eyes were highest for wiVD (0.70), followed by cpVD (0.65) and RNFL thickness (0.65). Conclusions Optical coherence tomography angiography vessel density had similar diagnostic accuracy to RNFL thickness measurements for differentiating between healthy and glaucoma eyes. These results suggest that OCT-A measurements reflect damage to tissues relevant to the pathophysiology of OAG. PMID:27409505
Noncontact optical measurement of lens capsule thickness ex vivo
NASA Astrophysics Data System (ADS)
Ziebarth, Noel M.; Manns, Fabrice; Uhlhorn, Stephen; Parel, Jean-Marie
2004-07-01
Purpose: To design a non-contact optical system to measure lens capsule thickness in cadaver eyes. Methods: The optical system uses a 670nm laser beam delivered to a single-mode fiber coupler. The output of the fiber coupler is focused onto the tissue using an aspheric lens (NA=0.68) mounted on a motorized translation stage. Light reflected from the sample is collected by the fiber coupler and sent to a silicon photodiode connected to a power meter. Peaks in the power signal are detected when the focal point of the aspheric lens coincides with the capsule boundaries. The capsule thickness is proportional to the distance between successive peaks. Anterior and posterior lens capsule thickness measurements were performed on 13 human, 10 monkey, and 34 New Zealand white rabbit lenses. The cadaver eyes were prepared for optical measurements by bonding a PMMA ring on the sclera. The posterior pole was sectioned, excess vitreous was removed, and the eye was placed on a Teflon slide. The cornea and iris were then sectioned. After the experiments, the lenses were excised, placed in 10% buffered formalin, and prepared for histology. Results: Central anterior lens capsule thickness was 9.4+/-2.9μm (human), 11.2+/-6.6μm (monkey), and 10.3+/-3.6μm (rabbit) optically and 14.9+/-1.6μm (human), 17.7+/-4.9μm (monkey), and 12.6+/-2.3μm (rabbit) histologically. The values for the central posterior capsule were 9.4+/-2.9μm (human), 6.6+/-2.5μm (monkey), and 7.9+/-2.3μm (rabbit) optically and 4.6+/-1.4μm (human), 4.5+/-1.2μm (monkey), and 5.7+/-1.7μm (rabbit) histologically. Conclusions: This study demonstrates that a non-contact optical system can successfully measure lens capsule thickness in cadaver eyes.
Chemistry in Infrared Dark Cloud Clumps: A Molecular Line Survey at 3 mm
NASA Astrophysics Data System (ADS)
Sanhueza, Patricio; Jackson, James M.; Foster, Jonathan B.; Garay, Guido; Silva, Andrea; Finn, Susanna C.
2012-09-01
We have observed 37 Infrared Dark Clouds (IRDCs), containing a total of 159 clumps, in high-density molecular tracers at 3 mm using the 22 m ATNF Mopra Telescope located in Australia. After determining kinematic distances, we eliminated clumps that are not located in IRDCs and clumps with a separation between them of less than one Mopra beam. Our final sample consists of 92 IRDC clumps. The most commonly detected molecular lines are (detection rates higher than 8%) N2H+, HNC, HN13C, HCO+, H13CO+, HCN, C2H, HC3N, HNCO, and SiO. We investigate the behavior of the different molecular tracers and look for chemical variations as a function of an evolutionary sequence based on Spitzer IRAC and MIPS emission. We find that the molecular tracers behave differently through the evolutionary sequence and some of them can be used to yield useful relative age information. The presence of HNC and N2H+ lines does not depend on the star formation activity. On the other hand, HC3N, HNCO, and SiO are predominantly detected in later stages of evolution. Optical depth calculations show that in IRDC clumps the N2H+ line is optically thin, the C2H line is moderately optically thick, and HNC and HCO+ are optically thick. The HCN hyperfine transitions are blended, and, in addition, show self-absorbed line profiles and extended wing emission. These factors combined prevent the use of HCN hyperfine transitions for the calculation of physical parameters. Total column densities of the different molecules, except C2H, increase with the evolutionary stage of the clumps. Molecular abundances increase with the evolutionary stage for N2H+ and HCO+. The N2H+/HCO+ and N2H+/HNC abundance ratios act as chemical clocks, increasing with the evolution of the clumps.
Schweitzer, Cedric; Korobelnik, Jean-Francois; Le Goff, Melanie; Rahimian, Olivier; Malet, Florence; Rougier, Marie-Benedicte; Delyfer, Marie-Noelle; Dartigues, Jean-Francois; Delcourt, Cecile
2016-11-01
To assess diagnostic accuracy of spectral-domain optical coherence tomography (SD-OCT) to discriminate glaucoma and control subjects in an elderly population. The antioxidants, essential lipids, nutrition and ocular maladies study (ALIENOR: "Antioxydants, Lipides Essentiels, Nutrition et Maladies Oculaires") is a population-based study. From 2009 to 2010, a total of 624 subjects, aged 74 years or older underwent a complete eye examination, including optic disc color photography and SD-OCT examination of the macula and the optic nerve head. Glaucoma diagnosis was made using retinophotography of the optic nerve head and International Society for Epidemiologic and Geographical Ophthalmology criteria. Average and sectorial peripapillary retinal nerve fiber layer thicknesses (RNFLT) were compared between glaucoma and control subjects using area under the receiver operating characteristic curves (AUC), positive and negative likelihood ratios (LR+/LR-), and diagnostic odds ratios (DOR). A total of 532 subjects had complete data, 492 were classified as controls and 40 were classified as glaucoma. Mean age was 82.1 ± 4.2 years and average RNFLT was significantly different between both groups (controls: 88.7 ± 12.2 μm, glaucoma: 65.4 ± 14.4 μm, P < 0.001). Highest AUC values were observed for average (0.895), temporal-inferior (0.874), and temporal-superior (0.868) RNFLT. Temporal-superior RNFLT had the highest DOR (25.31; LR+, 4.65; LR-, 0.18), followed by average RNFLT (DOR: 24.80; LR+, 6.36; LR-, 0.26). When using the normative database provided by the machine, DOR increased to 31.03 (LR+, 1.75; LR-, 0.06) if at least one parameter was considered abnormal (at P < 0.05). Parameters of SD-OCT RNFL may provide valuable information in a screening strategy to improve glaucoma detection in a general population of elderly people.
Jeong, Jae Hoon; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung
2016-01-01
Purpose To evaluate the effect of multiple covariates on the diagnostic performance of the Cirrus high-definition optical coherence tomography (HD-OCT) for glaucoma detection. Methods A prospective case-control study was performed and included 173 recently diagnosed glaucoma patients and 63 unaffected individuals from the Macular Ganglion Cell Imaging Study. Regression analysis of receiver operating characteristic were conducted to evaluate the influence of age, spherical equivalent, axial length, optic disc size, and visual field index on the macular ganglion cell-inner plexiform layer (GCIPL) and peripapillary retinal nerve fiber layer (RNFL) measurements. Results Disease severity, as measured by visual field index, had a significant effect on the diagnostic performance of all Cirrus HD-OCT parameters. Age, axial length and optic disc size were significantly associated with diagnostic accuracy of average peripapillary RNFL thickness, whereas axial length had a significant effect on the diagnostic accuracy of average GCIPL thickness. Conclusions Diagnostic performance of the Cirrus HD-OCT may be more accurate in the advanced stages of glaucoma than at earlier stages. A smaller optic disc size was significantly associated with improved the diagnostic ability of average RNFL thickness measurements; however, GCIPL thickness may be less affected by age and optic disc size. PMID:27490718
NASA Astrophysics Data System (ADS)
Gilliot, Mickaël; Hadjadj, Aomar
2015-08-01
Nano-granular ZnO layers have been grown using a sol-gel synthesis and spin-coating deposition process. Thin films with thicknesses ranging from 15 to 150 nm have been obtained by varying the number of deposition cycles and prepared with different synthesis conditions. Morphologies and optical properties have been carefully investigated by joint spectroscopic ellipsometry and atomic force microscopy. A correlation between the evolution of optical properties and grains morphology has been observed. It is shown that both synthesis temperature and concentration similarly allow us to change the correlated growth and properties evolution rate. Thickness variation associated to choice of synthesis parameters could be a useful way to tune morphology and optical properties of the nanostructured ZnO layers.
Satellite measurement of aerosol mass over land
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J.; Mahoney, R. L.
1984-01-01
The estimation of aerosol optical thickness and mass from satellite observations over land is demonstrated using data from the GOES Visible/IR Spin-Scan Radiometer for the eastern U.S. The post-launch calibration technique is described; the algorithm used to derive optical thickness from the radiance of scattered sunlight (by means of a radiative-transfer model in which the optical characteristics of the aerosol are assumed) is presented; and data on aerosol S for July 31, 1980 are analyzed. The results are presented in a series of graphs and maps and compared with ground-based data. The errors in the optical thickness and columnar mass are estimated as 15 and 40 percent, respectively, and the need for independent-data-set validation of satellite-based mass, transport, and divergence values is indicated.
Gender variations in the optical properties of skin in murine animal models
NASA Astrophysics Data System (ADS)
Calabro, Katherine; Curtis, Allison; Galarneau, Jean-Rene; Krucker, Thomas; Bigio, Irving J.
2011-01-01
Gender is identified as a significant source of variation in optical reflectance measurements on mouse skin, with variation in the thickness of the dermal layer being the key explanatory variable. For three different mouse strains, the thickness values of the epidermis, dermis, and hypodermis layers, as measured by histology, are correlated to optical reflectance measurements collected with elastic scattering spectroscopy (ESS). In all three strains, males are found to have up to a 50% increase in dermal thickness, resulting in increases of up to 80% in reflectance values and higher observed scattering coefficients, as compared to females. Collagen in the dermis is identified as the primary source of these differences due to its strong scattering nature; increased dermal thickness leads to a greater photon path length through the collagen, as compared to other layers, resulting in a larger scattering signal. A related increase in the observed absorption coefficient in females is also observed. These results emphasize the importance of considering gender during experimental design in studies that involve photon interaction with mouse skin. The results also elucidate the significant impact that relatively small thickness changes can have on observed optical measurements in layered tissue.
NASA Astrophysics Data System (ADS)
Fa, Wenzhe; Liu, Tiantian; Zhu, Meng-Hua; Haruyama, Junichi
2014-08-01
High-resolution optical images returned from recent lunar missions provide a new chance for estimation of lunar regolith thickness using morphology and the size-frequency distribution of small impact craters. In this study, regolith thickness over the Sinus Iridum region is estimated using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NACs) images. A revised relationship between crater geometry and regolith thickness is proposed based on old experimental data that takes into considering the effect of the illumination angle of the images. In total, 227 high-resolution LROC NAC images are used, and 378,556 impact craters with diameters from 4.2 to 249.8 m are counted, and their morphologies are identified. Our results show that 50% of the Sinus Iridum region has a regolith thickness between 5.1 and 10.7 m, and the mean and median regolith thicknesses are 8.5 and 8.0 m, respectively. There are substantial regional variations in the regolith thickness, with its median value varying from 2.6 to 12.0 m for most regions. Local variations of regolith thickness are found to be correlated with the lunar surface age: the older the surface, the greater the thickness. In addition, sporadically distributed impact ejecta and crater rays are associated with relatively larger regolith thickness, which might result from excavation and transport of materials during the formation of the secondaries of Copernican-aged craters. Our estimated regolith thickness can help with future analysis of Chang'E-3 lunar penetrating radar echoes and studies of the subsurface stratigraphic structure of the Moon.
Optical coherence tomography for glaucoma diagnosis: An evidence based meta-analysis.
Kansal, Vinay; Armstrong, James J; Pintwala, Robert; Hutnik, Cindy
2018-01-01
Early detection, monitoring and understanding of changes in the retina are central to the diagnosis of glaucomatous optic neuropathy, and vital to reduce visual loss from this progressive condition. The main objective of this investigation was to compare glaucoma diagnostic accuracy of commercially available optical coherence tomography (OCT) devices (Zeiss Stratus, Zeiss Cirrus, Heidelberg Spectralis and Optovue RTVue, and Topcon 3D-OCT). 16,104 glaucomatous and 11,543 normal eyes reported in 150 studies. Between Jan. 2017 and Feb 2017, MEDLINE®, EMBASE®, CINAHL®, Cochrane Library®, Web of Science®, and BIOSIS® were searched for studies assessing glaucoma diagnostic accuracy of the aforementioned OCT devices. Meta-analysis was performed pooling area under the receiver operating characteristic curve (AUROC) estimates for all devices, stratified by OCT type (RNFL, macula), and area imaged. 150 studies with 16,104 glaucomatous and 11,543 normal control eyes were included. Key findings: AUROC of glaucoma diagnosis for RNFL average for all glaucoma patients was 0.897 (0.887-0.906, n = 16,782 patient eyes), for macula ganglion cell complex (GCC) was 0.885 (0.869-0.901, n = 4841 eyes), for macula ganglion cell inner plexiform layer (GCIPL) was 0.858 (0.835-0.880, n = 4211 eyes), and for total macular thickness was 0.795 (0.754-0.834, n = 1063 eyes). The classification capability was similar across all 5 OCT devices. More diagnostically favorable AUROCs were demonstrated in patients with increased glaucoma severity. Diagnostic accuracy of RNFL and segmented macular regions (GCIPL, GCC) scans were similar and higher than total macular thickness. This study provides a synthesis of contemporary evidence with features of robust inclusion criteria and large sample size. These findings may provide guidance to clinicians when navigating this rapidly evolving diagnostic area characterized by numerous options.
NASA Astrophysics Data System (ADS)
Hammad, Ahmed H.; Abdel-wahab, M. Sh.; Vattamkandathil, Sajith; Ansari, Akhalakur Rahman
2018-07-01
Hexagonal nanocrystallites of ZnO in the form of thin films were prepared by radio frequency sputtering technique. X-ray diffraction analysis reveals two prominent diffraction planes (002) and (103) at diffraction angles around 34.3 and 62.8°, respectively. The crystallite size increases through (103) plane from 56.1 to 64.8 Å as film thickness changed from 31 nm up to 280 nm while crystallites growth through (002) increased from 124 to 136 Å as film thickness varies from 31 to 107 nm and dropped to 115.8 Å at thickness 280 nm. The particle shape changes from spherical to longitudinal form. The particle size is 25 nm for films of thickness below 107 nm and increases at higher thicknesses (134 and 280 nm) from 30 to 40 nm, respectively. Optical band gap is deduced to be direct with values varied from 3.22 to 3.28 eV and the refractive index are evaluated based on the optical band values according to Moss, Ravindra-Srivastava, and Dimitrov-Sakka models. All refractive index models gave values around 2.3.
Mugdha, Kumari; Kaur, Apjit; Sinha, Neha; Saxena, Sandeep
2016-01-01
AIM To evaluate retinal nerve fiber layer (RNFL) thickness profile in patients of thyroid ophthalmopathy with no clinical signs of optic nerve dysfunction. METHODS A prospective, case-control, observational study conducted at a tertiary care centre. Inclusion criteria consisted of patients with eyelid retraction in association with any one of: biochemical thyroid dysfunction, exophthalmos, or extraocular muscle involvement; or thyroid dysfunction in association with either exophthalmos or extra-ocular muscle involvement; or a clinical activity score (CAS)>3/7. Two measurements of RNFL thickness were done for each eye, by Cirrus HD-optical coherence tomography 6mo apart. RESULTS Mean age of the sample was 38.75y (range 13-70y) with 18 males and 22 females. Average RNFL thickness at first visit was 92.06±12.44 µm, significantly lower than control group (101.28±6.64 µm) (P=0.0001). Thickness of inferior quadrant decreased from 118.2±21.27 µm to 115.0±22.27 µm after 6mo (P=0.02). There was no correlation between the change in CAS and RNFL thickness. CONCLUSION Decreased RNFL thickness is an important feature of thyroid orbitopathy, which is an inherent outcome of compressive optic neuropathy of any etiology. Subclinical RNFL damage continues in the absence of clinical activity of the disease. RNFL evaluation is essential in Grave's disease and active intervention may be warranted in the presence of significant damage. PMID:27990368
THOR: Cloud Thickness from Off beam Lidar Returns
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken
2004-01-01
Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.
Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images
NASA Astrophysics Data System (ADS)
Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G.; Buchsbaum, Andreas
2015-03-01
Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm.
Nayek, Prasenjit; Li, Guoqiang
2015-01-01
A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701
NASA Astrophysics Data System (ADS)
Fischer, D.; Hertwig, A.; Beck, U.; Negendank, D.; Lohse, V.; Kormunda, M.; Esser, N.
2017-11-01
In this study, thickness related changes of the optical properties of doped tin oxide were studied. Two different sets of samples were prepared. The first set was doped with iron or nickel on silicon substrate with thicknesses of 29-56 nm, the second was iron doped on gold/glass substrate with 1.6-6.3 nm. The optical constants were determined by using spectral ellipsometry (SE) followed by modelling of the dielectric function with an oscillator model using Gaussian peaks. The analysis of the optical constants shows a dependence of the refraction and the absorption on the thickness of the doped tin oxide coating. In addition to the tin oxide absorption in the UV, one additional absorption peak was found in the near-IR/red which is related to plasmonic effects due to the doping. This peak shifts from the near-IR to the red part of the visible spectrum and becomes stronger by reducing the thickness, probably due to the formation of metal nanoparticles in this layer. These results were found for two different sets of samples by using the same optical model. Afterwards the second sample set was tested in the Surface Plasmon Resonance Enhanced Ellipsometric (SPREE) gas measurement with CO gas. It was found that the thickness has significant influence on the sensitivity and thus the adsorption of the CO gas. By increasing the thickness from 1.6 nm to 5.1 nm, the sensing ability is enhanced due to a higher coverage of the surface with the over coating. This is explained by the high affinity of CO molecules to the incorporated Fe-nanoparticles in the tin oxide coating. By increasing the thickness further to 6.3 nm, the sensing ability drops because the layer disturbs the SPR sensing effect too much.
Soler García, A; Padilla Parrado, F; Figueroa-Ortiz, L C; González Gómez, A; García-Ben, A; García-Ben, E; García-Campos, J M
2016-01-01
Quantitative assessment of macular and nerve fibre layer thickness in multiple sclerosis patients with regard to expanded disability status scale (EDSS) and presence or absence of previous optic neuritis episodes. We recruited 62 patients with multiple sclerosis (53 relapsing-remitting and 9 secondary progressive) and 12 disease-free controls. All patients underwent an ophthalmological examination, including quantitative analysis of the nerve fibre layer and macular thickness using optical coherence tomography. Patients were classified according to EDSS as A (lower than 1.5), B (between 1.5 and 3.5), and C (above 3.5). Mean nerve fibre layer thickness in control, A, B, and C groups was 103.35±12.62, 99.04±14.35, 93.59±15.41, and 87.36±18.75μm respectively, with statistically significant differences (P<.05). In patients with no history of optic neuritis, history of episodes in the last 3 to 6 months, or history longer than 6 months, mean nerve fibre layer thickness was 99.25±13.71, 93.92±13.30 and 80.07±15.91μm respectively; differences were significant (P<.05). Mean macular thickness in control, A, B, and C groups was 220.01±12.07, 217.78±20.02, 217.68±20.77, and 219.04±24.26μm respectively. Differences were not statistically significant. The mean retinal nerve fibre layer thickness in multiple sclerosis patients is related to the EDSS level. Patients with previous optic neuritis episodes have a thinner retinal nerve fibre layer than patients with no history of these episodes. Mean macular thickness is not correlated to EDSS level. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Lee, Ju-Yeun; Han, Jinu; Seo, Jeong Gi; Park, Kyung-Ah; Oh, Sei Yeul
2018-04-26
To evaluate the diagnostic value of macular ganglion cell-inner plexiform layer (mGCIPL) thickness versus peripapillary retinal nerve fibre layer (pRNFL) thickness for the early detection of ethambutol-induced optic neuropathy (EON). Twenty-eight eyes of 15 patients in the EON group and 100 eyes of 53 healthy subjects in the control group were included. All patients with EON demonstrated the onset of visual symptoms within 3 weeks. Diagnostic power for pRNFL and mGCIPL thicknesses measured by Cirrus spectral-domain optical coherence tomography was assessed by area under the receiver operating characteristic (AUROC) curves and sensitivity. All of the mGCIPL thickness measurements were thinner in the EON group than in the control group in early EON (p<0.001). All of pRNFL thicknesses except inferior RNFL showed AUROC curves above 0.5, and all of the mGCIPL thicknesses showed AUROC curves above 0.5. The AUROC of the average mGCIPL (0.812) thickness was significantly greater than that of the average pRNFL (0.507) thickness (p<0.001). Of all the mGCIPL-related parameters considered, the minimum thickness showed the greatest AUROC value (0.863). The average mGCIPL thickness showed a weak correlation with visual field pattern standard deviations (r 2 =0.158, p<0.001). In challenging cases of EON, the mGCIPL thickness has better diagnostic performance in detecting early-onset EON as compared with using pRNFL thickness. Among the early detection ability of mGCIPL thickness, minimum GCIPL thickness has high diagnostic ability. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Roberts, Kenneth F; Artes, Paul H; O'Leary, Neil; Reis, Alexandre S C; Sharpe, Glen P; Hutchison, Donna M; Chauhan, Balwantray C; Nicolela, Marcelo T
2012-08-01
To examine peripapillary choroidal thickness in healthy controls and in patients with glaucoma who have focal, diffuse, and sclerotic optic disc damage. Healthy controls (n=92) and patients with glaucoma who have focal (n=34), diffuse (n=35), and sclerotic (n=34) optic disc damage were imaged with spectral-domain optical coherence tomography (12° circular scan protocol centered on optic nerve head). Peripapillary choroidal thickness was measured as the distance between the automatically segmented retinal pigment epithelium/Bruch's membrane and the manually outlined interface between the posterior choroid and the anterior border of the sclera in eyes in which the anterior scleral border was visible over more than 85% of the scan circumference. The anterior scleral border was visible in 76 controls (83%) and 89 patients (86%). Peripapillary choroidal thickness in healthy controls decreased linearly with age (-11 μm/decade; P.001; r2=0.16), with a predicted value of 137 μm at age 70 years (95% prediction interval, 62-212 μm). While this value was similar in patients with focal and diffuse optic disc damage (126 and 130 μm, respectively; P=.22 compared with controls), it was approximately 30% lower in patients with sclerotic optic disc damage (96 μm; P.001 compared with controls). The peripapillary choroid of patients with glaucoma who have sclerotic optic disc damage was approximately 25% to 30% thinner compared with that in patients with focal and diffuse optic disc damage and with that in healthy controls. The role of the choroid in the pathophysiology of sclerotic glaucomatous optic disc damage needs further investigation.
PAH 8μm Emission as a Diagnostic of HII Region Optical Depth
NASA Astrophysics Data System (ADS)
Oey, M. S.; Lopez-Hernandez, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, Karl D.; Jameson, Katherine; Li, Aigen; Madden, Suzanne C.; Meixner, Margaret; Roman-Duval, Julia; Bot, Caroline; Rubio, Monica; Tielens, A. G. G. M.
2017-01-01
PAHs are easily destroyed by Lyman continuum radiation and so in optically thick Stromgren spheres, they tend to be found only on the periphery of HII regions, rather than in the central volume. We therefore expect that in HII regions that are optically thin to ionizing radiation, PAHs would be destroyed beyond the primary nebular structure. Using data from the Spitzer SAGE survey of the Magellanic Clouds, we test whether 8 μm emission can serve as a diagnostic of optical depth in HII regions. We find that 8 μm emission does provide valuable constraints in the Large Magellanic Cloud, where objects identified as optically thick by their atomic ionization structure have 6 times higher median 8 μm surface brightness than optically thin objects. However, in the Small Magellanic Cloud, this differentiation is not observed. This appears to be caused by extremely low PAH production in this low-metallicity environment, such that any differentiation between optically thick and thin objects is washed out by stochastic variations, likely driven by the interplay between dust production and UV destruction. Thus, PAH emission is sensitive to nebular optical depth only at higher metallicities.
Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.
Arcinue, Cheryl A; Bartsch, Dirk-Uwe; El-Emam, Sharif Y; Ma, Feiyan; Doede, Aubrey; Sharpsten, Lucie; Gomez, Maria Laura; Freeman, William R
2015-01-01
To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula) compared with age-matched HIV-negative controls. Cohort of patients with known HIV under CART (combination Antiretroviral Therapy) treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT) to assess retinal layers and retinal thickness. Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative) were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior), the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2). A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative) was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea). We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer) was also significantly thickened in all the different locations scanned compared with HIV-negative controls. Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.
Li, Shu-ting; Wang, Xiang-ning; Du, Xin-hua; Wu, Qiang
2017-01-01
Purpose To compare intra-retinal layer thickness measurements between eyes with no or mild diabetic retinopathy (DR) and age-matched controls using Spectralis spectral-domain optical coherence tomography (SD-OCT). Methods Cross-sectional observational analysis study. High-resolution macular volume scans (30° * 25°) were obtained for 133 type 2 diabetes mellitus (T2DM) patients with no DR, 42 T2DM patients with mild DR and 115 healthy controls. The mean thickness was measured in all 9 Early Treatment Diabetic Retinopathy Study (ETDRS) sectors for 8 separate layers, inner retinal layer (IRL), outer retinal layer (ORL) and total retina (TR), after automated segmentation. The ETDRS grid consisted of three concentric circles of 1-, 3-, and 6-mm diameter. The superior, inferior, temporal, and nasal sectors of the 3- and 6-mm circles were respectively designated as S3, I3, T3, and N3 and S6, I6, T6, and N6. Linear regression analyses were conducted to evaluate the associations between the intra-retinal layer thicknesses, age, diabetes duration, fasting blood glucose and HbA1c. Results The mean age and duration of T2DM were 61.1 and 13.7 years, respectively. Although no significant differences in the average TR and ORL volumes were observed among the groups, significant differences were found in the volume and sectorial thicknesses of the inner plexiform layer (IPL), outer plexiform layer (OPL) and IRL among the groups. In particular, the thicknesses of the IPL (S3, T3, S6, I6 and T6 sectors) and the IRL (S6 sector) were decreased in the no-DR group compared with the controls (P < 0.05). The thickness of the OPL (S3, N3, S6 and N6 sectors) was thinner in the no-DR group than in mild DR (P < 0.05). The average IPL thickness was significantly negatively correlated with age and the duration of diabetes. Conclusion The assessment of the intra-retinal layer thickness showed a significant decrease in the IPL and IRL thicknesses in Chinese adults with T2DM, even in the absence of visible microvascular signs of DR. PMID:28493982
Rebolleda, Gema; Pérez-Sarriegui, Ane; Díez-Álvarez, Laura; De Juan, Victoria; Muñoz-Negrete, Francisco J
2018-06-01
To compare the optic nerve head morphology among primary open-angle glaucoma, non-arteritic anterior ischemic optic neuropathy eyes, their fellow healthy eyes and control eyes, using spectral-domain optical coherence tomography with enhanced depth imaging. Observational cross-sectional study including 88 eyes of 68 patients. In this study, 23 non-arteritic anterior ischemic optic neuropathy eyes, 17 fellow unaffected eyes, 25 primary open-angle glaucoma eyes, and 23 age-matched control eyes were included. Peripapillary retinal nerve fiber layer thickness and optic disk area were evaluated. Bruch's membrane opening diameter, optic cup depth, anterior lamina cribrosa depth, and prelaminar tissue thickness were assessed. Non-arteritic anterior ischemic optic neuropathy and primary open-angle glaucoma eyes had similar visual field mean deviation and peripapillary retinal nerve fiber layer thickness (P = 0.6 and P = 0.56, respectively). Bruch's membrane opening diameter was significantly larger in primary open-angle glaucoma eyes than in control eyes (P = 0.02). Lamina cribrosa and disk cup were deeper in eyes with primary open-angle glaucoma than both control and non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Prelaminar tissue thickness was significantly thinner in primary open-angle glaucoma eyes than in non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Lamina cribrosa was shallower in both non-arteritic anterior ischemic optic neuropathy and unaffected fellow eyes compared to healthy eyes (P < 0.001 and P = 0.04, respectively). No differences were found in the optic disk area. A forward lamina cribrosa placement and not a smaller disk could be involved in the pathogenesis of non-arteritic anterior ischemic optic neuropathy. A significantly larger Bruch's membrane opening diameter was found in primary open-angle glaucoma eyes compared with control eyes. This issue has clinical implications because Bruch's membrane opening has been considered a stable reference for disk-related measures.
Kim, Young Kook; Yoo, Byeong Wook; Jeoung, Jin Wook; Kim, Hee Chan; Kim, Hae Jin; Park, Ki Ho
2016-11-01
To evaluate the glaucoma-diagnostic ability of the ganglion cell-inner plexiform layer (GCIPL) thickness difference across the temporal raphe in highly myopic eyes. We consecutively enrolled a total of 195 highly myopic eyes (axial length [AL] >26.5 mm) of 195 subjects: 93 glaucoma patients along with and 102 nonglaucomatous subjects. Cirrus high-definition optical coherence tomography (OCT) was employed to scan all of the subjects' macular and optic discs. Using a MATLAB-based customized program (the GCIPL hemifield test), a positive test result was automatically declared if the following two conditions were met: (1) the horizontal line is detected for longer than one-half of the distance from the temporal inner elliptical annulus to the outer elliptical annulus, and (2) the average GCIPL thickness difference within 10 pixels of the reference line, both above and below, is 5 μm or more. The glaucoma-diagnostic ability was computed using the area under the receiver operating characteristic curve (AUC). Among the glaucomatous eyes, GCIPL hemifield test positivity was shown in 92.5% (86 of 93), significantly higher than that for the nonglaucomatous eyes (4.90%, 5 of 102; P <0.001). The value of AUC for the GCIPL hemifield test was excellent (0.938; sensitivity 92.50%, specificity 95.10%) and was the best compared with those for any of OCT parameters. In highly myopic eyes, determination of the presence or absence of GCIPL thickness difference across the temporal raphe via OCT macula scan can be a useful means of distinguishing the glaucomatous damage.
Evaluation of choroidal thickness in psoriasis using optical coherence tomography.
Türkcü, Fatih Mehmet; Şahin, Alparslan; Yüksel, Harun; Akkurt, Meltem; Uçmak, Derya; Çınar, Yasin; Yıldırım, Adnan; Çaça, İhsan
2016-12-01
The purpose of this study was to evaluate choroidal thickness (CT) in patients with psoriasis using enhanced depth imaging optical coherence tomography (EDI-OCT) and to determine its relationship with psoriasis activity indices. In this prospective study, EDI-OCT images were obtained in consecutive patients with psoriasis and in age-gender-matched healthy individuals. Comprehensive ophthalmic examination and EDI-OCT evaluation were performed. CT was measured in the subfoveal area. Correlation analyses were performed to identify the relationship of the CT with disease duration and clinical disease activity score. In total, 65 individuals were evaluated in this study, 35 with psoriasis and 30 controls. The mean disease duration of the patients with psoriasis was 15.7 ± 8.8 years (0.3-34 years). There was no difference between groups with respect to age and gender (p = 0.695 and p = 0.628, respectively). Five of the 35 patients with psoriasis had anterior uveitis. None of the patients with psoriasis had signs of posterior uveitis. CT was significantly higher in the psoriasis group than that of control subjects (p < 0.001). The mean central foveal thickness was comparable between groups (p = 0.672). There was also no significant correlation between EDI-OCT, disease activity score, and disease duration (p < 0.05). Choroidal thickness is increased in psoriasis patients. Large serial and comparative studies are necessary to evaluate EDI-OCT, an examination that may be helpful in understanding the effects of psoriasis on the eye and its pathophysiology.
Epiretinal membrane: a treatable cause of visual disability in myotonic dystrophy type 1.
Kersten, Hannah M; Roxburgh, Richard H; Child, Nicholas; Polkinghorne, Philip J; Frampton, Chris; Danesh-Meyer, Helen V
2014-01-01
A wide range of ocular abnormalities have been documented to occur in patients with myotonic dystrophy type 1. The objectives of this study were to investigate the macular and optic nerve morphology using optical coherence tomography in patients with myotonic dystrophy type 1. A total of 30 myotonic dystrophy type 1 patients and 28 controls were recruited for participation. All participants underwent a thorough ophthalmologic examination, including spectral-domain optical coherence tomography of the macula and retinal nerve fibre layer. Images were reviewed by a retinal specialist ophthalmologist, masked to the diagnosis of the participants. Average macular thickness was significantly greater in the myotonic dystrophy group compared to controls [327.3 μm vs. 308.5 μm (p < 0.001)]. Macular thickness was significantly greater (p < 0.005) in five of the nine macular regions. The increase in macular thickness was due to the increased prevalence of epiretinal membranes in the myotonic dystrophy patient group (p = 0.0002): 48.2 % of myotonic dystrophy patient eyes had evidence of epiretinal membrane, compared with 12.5 % of control eyes. Examination revealed that 56.7 % of myotonic dystrophy patients had an epiretinal membrane in at least one eye. Visual acuity was reduced due to the presence of epiretinal membrane in six patient eyes and none of the control eyes. The presence of an epiretinal membrane was significantly correlated with increasing age in the patient group. We report an increased prevalence of epiretinal membrane in the myotonic dystrophy type 1 group. This may be a previously under-recognised form of visual impairment in this group. Epiretinal membranes can be treated surgically. We suggest that, in addition to a comprehensive clinical examination, optical coherence tomography examination is implemented as part of an ophthalmological assessment for the myotonic dystrophy type 1 patient with reduced visual acuity.
NASA Astrophysics Data System (ADS)
Pandithurai, G.; Takamura, T.; Yamaguchi, J.; Miyagi, K.; Takano, T.; Ishizaka, Y.; Dipu, S.; Shimizu, A.
2009-07-01
The effect of increased aerosol concentrations on the low-level, non-precipitating, ice-free stratus clouds is examined using a suite of surface-based remote sensing systems. Cloud droplet effective radius and liquid water path are retrieved using cloud radar and microwave radiometer. Collocated measurements of aerosol scattering coefficient, size distribution and cloud condensation nuclei (CCN) concentrations were used to examine the response of cloud droplet size and optical thickness to increased CCN proxies. During the episodic events of increase in aerosol accumulation-mode volume distribution, the decrease in droplet size and increase in cloud optical thickness is observed. The indirect effect estimates are made for both droplet effective radius and cloud optical thickness for different liquid water path ranges and they range 0.02-0.18 and 0.005-0.154, respectively. Data are also categorized into thin and thick clouds based on cloud geometric thickness (Δz) and estimates show IE values are relatively higher for thicker clouds.
Optical and structural properties of indium doped bismuth selenide thin films
NASA Astrophysics Data System (ADS)
Pavagadhi, Himanshu; Vyas, S. M.; Patel, Piyush; Patel, Vimal; Patel, Jaydev; Jani, M. P.
2015-08-01
In: Bi2Se3 crystals were grown by Bridgman method at a growth velocity of 0.5cm/h with temperature gradient of 650 C/cm in our laboratory. The thin films of In:Bi2se3 were grown on amorphous substrate (glass) at a room temperature under a pressure of 10-4Pa by thermal evaporation technique. Thin film were deposited at various thicknesses and optical absorption spectrum of such thin films, obtain in wave no. range 300 to 2600 cm-1. The optical energy gap calculated from this data were found to be inverse function of square of thickness, particularly for thickness about 1800 Å or less. This dependence is explained in terms of quantum size effect. For thicker films, the bandgap is found to be independent of film thickness. For the surface stud of the as grown thin film by using AFM, which shows continuous film with some step height and surface roughness found in terms of few nm and particle size varies with respect to thickness.
Indium oxide based fiber optic SPR sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in
2016-05-06
Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.
NASA Astrophysics Data System (ADS)
Yoshizawa, Nobuko; Ueda, Yukio; Mimura, Tetsuya; Ohmae, Etsuko; Yoshimoto, Kenji; Wada, Hiroko; Ogura, Hiroyuki; Sakahara, Harumi
2018-02-01
The purpose of this study was to evaluate the effects of the thickness and depth of tumors on hemoglobin measurements in breast cancer by optical spectroscopy and to demonstrate tissue oxygen saturation (SO2) and reduced scattering coefficient (μs‧) in breast tissue and breast cancer in relation to the skin-to-chest wall distance. We examined 53 tumors from 44 patients. Total hemoglobin concentration (tHb), SO2, and μs‧ were measured by time-resolved spectroscopy (TRS). The skin-to-chest wall distance and the size and depth of tumors were measured by ultrasonography. There was a positive correlation between tHb and tumor thickness, and a negative correlation between tHb and tumor depth. SO2 in breast tissue decreased when the skin-to-chest wall distance decreased, and SO2 in tumors tended to be lower than in breast tissue. In breast tissue, there was a negative correlation between μs‧ and the skin-to-chest wall distance, and μs‧ in tumors was higher than in breast tissue. Measurement of tHb in breast cancer by TRS was influenced by tumor thickness and depth. Although SO2 seemed lower and μs‧ was higher in breast cancer than in breast tissue, the skin-to-chest wall distance may have affected the measurements.
Torregrosa, A J; Maestre, H; Fernández-Pousa, C R; Pereda, J A; Capmany, J
2009-08-01
We present a simple technique to integrate an electro-optic Q switch in a periodically poled bulk lithium niobate crystal bounded by two unpoled (monodomain) regions. The technique exploits the high sensitivity to low applied electric fields of the total internal reflection condition in the periodic poled-unpoled boundary for the small grazing incidence angles associated with the diffraction of a focused Gaussian beam that propagates in the periodically poled region with its axis parallel to the boundary. When the arrangement is placed intracavity to a 1064 nm diode-pumped Nd(3+):YVO(4) laser, it performs simultaneously as a Q switch and as a second-harmonic generator, with Q switching starting at applied voltages as low as 1 V over a 500 microm thickness and with no additional optical elements.
NASA Technical Reports Server (NTRS)
Bremer, J. C.
1982-01-01
Physical models are developed for establishing criteria to decide on the acceptable contamination level of optical devices in space-borne conditions. Optical systems can be degraded in terms of decreased throughput, i.e., transmissivity or reflectivity, or increases in the total integrated scatter (TIS). Performance losses can be caused by particulate accretion, molecular film accretion, and impact cratering. A quantitative relationship is defined for film thickness and loss of throughput. Formulas are also developed for cases where induced surface defects are larger than the desired viewing wavelengths, or smaller or of the same order of the observed wavelengths. The techniques are used to quantify the degradation of a VUV solar coronagraph, a VUV stellar telescope, and a solar cell due to TIS. Applications are projected for estimating the contamination sensitivity of specific instruments, assessing the contamination hazard from known particulates, or to define clean room standards.
Thickness and topographic inspection of RPG contact lenses by optical triangulation
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.
2001-06-01
Optical triangulation as a non-destructive test method extensively proved its usefulness on the dimensional and topographic inspection of a large range of objects and surfaces. In this communication the issue of microtopographic and thickness inspection of hard contact lenses (RPG) is addressed. The use of optical triangulation is discussed based on the results of the application of our MICROTOP.03.MFC microtopographer to this kind of tasks will be presented.
Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang
2013-01-01
An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings. PMID:23881144
Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang
2013-07-23
An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.
How Small is too Small True Microrobots and Nanorobots for Military Applications in 2035
2010-04-01
field effect transistor or diode junction based.41 Additionally, NEMS sensors based on resonating thin films and nanowires42 and optical based...acoustic sensor is fabricated from piezoelectric thin films and measures 600 µm by 600 µm by 2.2 µm thick with a total volume of 0.0008 mm3.50 Since...microrobot systems by 2035. Reduction in thin film width dimensions (under 600 µm), in order to be able to physically incorporate this into a
Fortune, Brad; Reynaud, Juan; Cull, Grant; Burgoyne, Claude F.; Wang, Lin
2014-01-01
Purpose To evaluate the effect of age on optic nerve axon counts, spectral-domain optical coherence tomography (SDOCT) scan quality, and peripapillary retinal nerve fiber layer thickness (RNFLT) measurements in healthy monkey eyes. Methods In total, 83 healthy rhesus monkeys were included in this study (age range: 1.2–26.7 years). Peripapillary RNFLT was measured by SDOCT. An automated algorithm was used to count 100% of the axons and measure their cross-sectional area in postmortem optic nerve tissue samples (N = 46). Simulation experiments were done to determine the effects of optical changes on measurements of RNFLT. An objective, fully-automated method was used to measure the diameter of the major blood vessel profiles within each SDOCT B-scan. Results Peripapillary RNFLT was negatively correlated with age in cross-sectional analysis (P < 0.01). The best-fitting linear model was RNFLT(μm) = −0.40 × age(years) + 104.5 μm (R2 = 0.1, P < 0.01). Age had very little influence on optic nerve axon count; the result of the best-fit linear model was axon count = −1364 × Age(years) + 1,210,284 (R2 < 0.01, P = 0.74). Older eyes lost the smallest diameter axons and/or axons had an increased diameter in the optic nerve of older animals. There was an inverse correlation between age and SDOCT scan quality (R = −0.65, P < 0.0001). Simulation experiments revealed that approximately 17% of the apparent cross-sectional rate of RNFLT loss is due to reduced scan quality associated with optical changes of the aging eye. Another 12% was due to thinning of the major blood vessels. Conclusions RNFLT declines by 4 μm per decade in healthy rhesus monkey eyes. This rate is approximately three times faster than loss of optic nerve axons. Approximately one-half of this difference is explained by optical degradation of the aging eye reducing SDOCT scan quality and thinning of the major blood vessels. Translational Relevance Current models used to predict retinal ganglion cell losses should be reconsidered. PMID:24932430
Tamang, Asman; Hongsingthong, Aswin; Jovanov, Vladislav; Sichanugrist, Porponth; Khan, Bakhtiar A.; Dewan, Rahul; Konagai, Makoto; Knipp, Dietmar
2016-01-01
Light trapping and photon management of silicon thin film solar cells can be improved by a separate optimization of the front and back contact textures. A separate optimization of the front and back contact textures is investigated by optical simulations taking realistic device geometries into consideration. The optical simulations are confirmed by experimentally realized 1 μm thick microcrystalline silicon solar cells. The different front and back contact textures lead to an enhancement of the short circuit current by 1.2 mA/cm2 resulting in a total short circuit current of 23.65 mA/cm2 and an energy conversion efficiency of 8.35%. PMID:27481226
Yellow light generation by frequency doubling of a diode-pumped Nd:YAG laser
NASA Astrophysics Data System (ADS)
Jia, Fu-qiang; Zheng, Quan; Xue, Qing-hua; Bu, Yi-kun; Qian, Long-sheng
2006-03-01
We demonstrate the generation of TEM00 mode yellow light in critically type II phase-matched KTiOPO4 (KTP) with intracavity frequency doubling of a diode-pumped Nd:YAG laser at room temperature. After a 150 μm thick etalon have been inserted into the cavity, the stability and beam quality of the second harmonic generation (SHG) is enhanced. A continuous wave (CW) TEM00 mode output power of 1.67 W at 556 nm is obtained at a pump level of 16 W. The total optical to optical conversion efficiency is about 10.44%. To the best of our knowledge, this is the first Watt-level yellow light generation by frequency doubling of Nd:YAG laser.
Kinetic Characterization of Nonmuscle Myosin IIB at the Single Molecule Level*
Nagy, Attila; Takagi, Yasuharu; Billington, Neil; Sun, Sara A.; Hong, Davin K. T.; Homsher, Earl; Wang, Aibing; Sellers, James R.
2013-01-01
Nonmuscle myosin IIB (NMIIB) is a cytoplasmic myosin, which plays an important role in cell motility by maintaining cortical tension. It forms bipolar thick filaments with ∼14 myosin molecule dimers on each side of the bare zone. Our previous studies showed that the NMIIB is a moderately high duty ratio (∼20–25%) motor. The ADP release step (∼0.35 s−1) of NMIIB is only ∼3 times faster than the rate-limiting phosphate release (0.13 ± 0.01 s−1). The aim of this study was to relate the known in vitro kinetic parameters to the results of single molecule experiments and to compare the kinetic and mechanical properties of single- and double-headed myosin fragments and nonmuscle IIB thick filaments. Examination of the kinetics of NMIIB interaction with actin at the single molecule level was accomplished using total internal reflection fluorescence (TIRF) with fluorescence imaging with 1-nm accuracy (FIONA) and dual-beam optical trapping. At a physiological ATP concentration (1 mm), the rate of detachment of the single-headed and double-headed molecules was similar (∼0.4 s−1). Using optical tweezers we found that the power stroke sizes of single- and double-headed heavy meromyosin (HMM) were each ∼6 nm. No signs of processive stepping at the single molecule level were observed in the case of NMIIB-HMM in optical tweezers or TIRF/in vitro motility experiments. In contrast, robust motility of individual fluorescently labeled thick filaments of full-length NMIIB was observed on actin filaments. Our results are in good agreement with the previous steady-state and transient kinetic studies and show that the individual nonprocessive nonmuscle myosin IIB molecules form a highly processive unit when polymerized into filaments. PMID:23148220
Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics
NASA Technical Reports Server (NTRS)
Soulas, George C.; Shastry, Rohit
2016-01-01
A Long Duration Test (LDT) was initiated in June 2005 as a part of NASA's Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. The post-test inspection objectives for the ion optics were derived from the original NEXT LDT test objectives, such as service life model validation, and expanded to encompass other goals that included verification of in situ measurements, test issue root causes, and past design changes. The ion optics cold grid gap had decreased only by an average of 7% of pretest center grid gap, so efforts to stabilize NEXT grid gap were largely successful. The upstream screen grid surface exhibited a chamfered erosion pattern. Screen grid thicknesses were = 86% of the estimated pretest thickness, indicating that the screen grid has substantial service life remaining. Deposition was found on the screen aperture walls and downstream surfaces that was primarily composed of grid material and back-sputtered carbon, and this deposition likely caused the minor decreases in screen grid ion transparency during the test. Groove depths had eroded through up to 35% of the accelerator grid thickness. Minimum accelerator aperture diameters increased only by about 5-7% of the pretest values and downstream surface diameters increased by about 24-33% of the pretest diameters. These results suggest that increasing the accelerator aperture diameters, improving manufacturing tolerances, and masking down the perforated diameter to 36 cm were successful in reducing the degree of accelerator aperture erosion at larger radii.
Zhang, Xinbo; Dastiridou, Anna; Francis, Brian A; Tan, Ou; Varma, Rohit; Greenfield, David S; Schuman, Joel S; Sehi, Mitra; Chopra, Vikas; Huang, David
2016-12-01
To identify baseline structural parameters that predict the progression of visual field (VF) loss in patients with open-angle glaucoma. Multicenter cohort study. Participants from the Advanced Imaging for Glaucoma (AIG) study were enrolled and followed up. VF progression is defined as either a confirmed progression event on Humphrey Progression Analysis or a significant (P < .05) negative slope for VF index (VFI). Fourier-domain optical coherence tomography (FDOCT) was used to measure optic disc, peripapillary retinal nerve fiber layer (NFL), and macular ganglion cell complex (GCC) thickness parameters. A total of 277 eyes of 188 participants were followed up for 3.7 ± 2.1 years. VF progression was observed in 83 eyes (30%). Several baseline NFL and GCC parameters, but not disc parameters, were found to be significant predictors of progression on univariate Cox regression analysis. The most accurate single predictors were the GCC focal loss volume (FLV), followed closely by NFL-FLV. An abnormal GCC-FLV at baseline increased risk of progression by a hazard ratio of 3.1. Multivariate Cox analysis showed that combining age and central corneal thickness with GCC-FLV in a composite index called "Glaucoma Composite Progression Index" (GCPI) further improved the accuracy of progression prediction. GCC-FLV and GCPI were both found to be significantly correlated with the annual rate of change in VFI. Focal GCC and NFL loss as measured by FDOCT are the strongest predictors for VF progression among the measurements considered. Older age and thinner central corneal thickness can enhance the predictive power using the composite risk model. Copyright © 2016 Elsevier Inc. All rights reserved.
Subvisual Cirrus cloud properties derived from a FIRE IFO case study
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Griffin, M. K.; Dodd, G. C.
1990-01-01
From the central Wisconsin IFO field at Wausau, the Mobile Polarization Lidar and a surface radiation station from the Lamont-Doherty Geological Observatory observed two very tenuous cirrus clouds on 21 October 1986. The clouds were present just below the height of the tropopause, between -60 to -70 C. The first cloud was not detected visually, and is classified as subvisual cirrus. The second, a relatively narrow cloud band that was probably the remnants of an aircraft contrail, can be termed zenith-subvisual since, although it was invisible in the zenith direction, it could be discerned when viewed at lower elevation angles and also due to strong solar forward-scattering and corona effects. The observations provide an opportunity to assess the threshold cloud optical thickness associated with cirrus cloud visibility. Ruby lidar backscattered signals were converted to isotropic volume backscatter coefficients by applying the pure-molecular scattering assumption just below the cloud base. The backscattering coefficient due to the cloud is then obtained and expressed in relation to the molecular backscattering coefficient in terms of the scattering ratio R. The linear depolarization ratio for the cloud is computed after removing the essentially parallel-polarized scattering contribution from air molecules. The values are also applied to determine the cloud optical thickness through the use of backscatter-to-extinction ratio, and the concentration of cloud particles using the backscattering gain, and the effective diameter of the particles obtained from the analysis of solar corona photographs. The sizes of the particles generating the corona are related to the angular separations between the centers of the red bands and the sun, yielding diameters of approximately 25 microns. The direct and diffuse components of shortwave radiation fluxes, measured by full hemispheric pyranometers, were used to compute the nadir optical thickness of the total atmosphere.
Physical-mathematical model of optical radiation interaction with biological tissues
NASA Astrophysics Data System (ADS)
Kozlovska, Tetyana I.; Kolisnik, Peter F.; Zlepko, Sergey M.; Titova, Natalia V.; Pavlov, Volodymyr S.; Wójcik, Waldemar; Omiotek, Zbigniew; Kozhambardiyeva, Miergul; Zhanpeisova, Aizhan
2017-08-01
Remote photoplethysmography (PPG) imaging is an optical technique to remotely assess the local coetaneous microcirculation. In this paper, we present a model and supporting experiments confirming the contribution of skin inhomogeneity to the morphology of PPG waveforms. The physical-mathematical model of distribution of optical radiation in biological tissues was developed. It allows determining the change of intensity of optical radiation depending on such parameters as installation angle of the sensor, biological tissue thickness and the wavelength. We obtained graphics which represent changes of the optical radiation intensity that is registered by photodetector depending on installation angle of the sensor, biological tissue thickness and the extinction coefficient.
NASA Astrophysics Data System (ADS)
Franta, Daniel; Franta, Pavel; Vohánka, Jiří; Čermák, Martin; Ohlídal, Ivan
2018-05-01
Optical measurements of transmittance in the far infrared region performed on crystalline silicon wafers exhibit partially coherent interference effects appropriate for the determination of thicknesses of the wafers. The knowledge of accurate spectral and temperature dependencies of the optical constants of crystalline silicon in this spectral region is crucial for the determination of its thickness and vice versa. The recently published temperature dependent dispersion model of crystalline silicon is suitable for this purpose. Because the linear thermal expansion of crystalline silicon is known, the temperatures of the wafers can be determined with high precision from the evolution of the interference patterns at elevated temperatures.
NASA Technical Reports Server (NTRS)
Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick
2008-01-01
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Cloud Thickness from Offbeam Returns (THOR) Validation Campaign on NASA's P3B Over the ARM/SGP
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)
2002-01-01
Physical thickness of a cloud layer, sometimes multiple cloud layers, is a crucial controller of solar heating of the Earth- atmosphere system, which drives the convective processes that produce storm systems. Yet clouds of average optical thickness are opaque to conventional lidar, so their thickness is well estimated only by combining a lidar above and another below cloud, or a radar and lidar on the same side, dual facilities not widely available. Here we report initial observations of a new airborne multiple field of view lidar, capable of determining physical thickness of cloud layers from time signatures of off-beam returns from a I kHz micropulse lidar at 540 rim. For a single layer, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. This halo method requires cloud optical thickness exceeding 2, and improves with cloud thickness, thus complimenting conventional lidar, which cannot penetrate thick clouds. Results are presented from March 25, 2002, when THOR flew a butterfly pattern over the ARM site at 8.3 km, above a thin ice cloud at 5 km, and a thick boundary-layer stratus deck with top at 1.3 km, as shown by THOR channel 1, and a base at about 0.3 km as shown by the ground-based MPL. Additional information is included in the original extended abstract.
Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng
2016-03-04
Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less
Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.
Borja, David; Manns, Fabrice; Ho, Arthur; Ziebarth, Noel M; Acosta, Ana Carolina; Arrieta-Quintera, Esdras; Augusteyn, Robert C; Parel, Jean-Marie
2010-04-01
Purpose. To characterize the age dependence of shape, refractive power, and refractive index of isolated lenses from nonhuman primates. Methods. Measurements were performed on ex vivo lenses from cynomolgus monkeys (cyno: n = 120; age, 2.7-14.3 years), rhesus monkeys (n = 61; age, 0.7-13.3 years), and hamadryas baboons (baboon: n = 16; age, 1.7-27.3 years). Lens thickness, diameter, and surface curvatures were measured with an optical comparator. Lens refractive power was measured with a custom optical system based on the Scheiner principle. The refractive contributions of the gradient, the surfaces, and the equivalent refractive index were calculated with optical ray-tracing software. The age dependence of the optical and biometric parameters was assessed. Results. Over the measured age range isolated lens thickness decreased (baboon: -0.04, cyno: -0.05, and rhesus: -0.06 mm/y) and equatorial diameter increased (logarithmically for the baboon and rhesus, and linearly for cyno: 0.07 mm/y). The isolated lens surfaces flattened and the corresponding refractive power from the surfaces decreased with age (-0.33, -0.48, and -0.68 D/y). The isolated lens equivalent refractive index decreased (only significant for the baboon, -0.001 D/y), and as a result the total isolated lens refractive power decreased with age (baboon: -1.26, cyno: -0.97, and rhesus: -1.76 D/y). Conclusions. The age-dependent trends in the optical and biometric properties, growth, and aging, of nonhuman primate lenses are similar to those of the pre-presbyopic human lens. As the lens ages, the decrease in refractive contributions from the gradient refractive index causes a rapid age-dependent decrease in maximally accommodated lens refractive power.
Dissipation of circumstellar disks of Be stars
NASA Astrophysics Data System (ADS)
Sabogal, B. E.; Ubaque, K. Y.; García-Varela, A.; álvarez, M.; Salas, L.
2017-07-01
Studies of L-band spectra of Be stars are useful to set constraints to the models of formation and evolution mechanisms of the circumstellar disks around these stars. Because few such studies have been performed, more of them are needed to confirm the characteristics reported about the optical depth and evolution of these disks. In this work, we studied new L-band spectra of 7 bright galactic Be stars that were obtained by using CID-InSb spectrograph at the 2.1-m telescope at OAN/UNAM San Pedro Martir Observatory, Baja California, Mexico. We used these data to locate these stars, and the Be stars previously studied in the IR, on a flux ratio diagram (log Hu14/Pfγ vs log Hu14/Brα). We found that 28 Cyg has moved significantly along this diagram implying strong changes of its disk from optically thick to an optically thin one between 2001 and 2014. On the base of the absence of emission lines in the spectra, the circumstellar disks of θ CrB and 66 Oph have been almost totally dissipated. These three stars have decaying circumstellar disks. The other stars: γ Cas, φ Per, 28 Tau and o Her have optically thin disks, that have been almost stable in time. It will be important monitoring these and other Be stars in the L-band to observe the changes on their circumstellar disks, and to observe also in this band, the building-up stars, i.e. stars that create a new disk, or that change it from a very tenuous one to an optically thick circumstellar disk. Our spectra contribute to enlarge the infrared spectroscopic database of Be stars.
Microelectromechanical system pressure sensor integrated onto optical fiber by anodic bonding.
Saran, Anish; Abeysinghe, Don C; Boyd, Joseph T
2006-03-10
Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.
Arikan, Sedat; Gokmen, Ferhat; Ersan, Ismail; Akbal, Ayla; Resorlu, Hatice; Gencer, Baran; Ali Tufan, Hasan; Kara, Selcuk
2017-04-01
To evaluate the effect of systemically used anti-tumor necrosis factor alpha (TNF-α) medication on the thickness of corneal epithelium and stroma in patients with ankylosing spondylitis (AS). A total of 125 eyes of 69 participants were included in this retrospective study of three groups: healthy participants (Group 1), AS patients receiving anti-TNF-α medication (Group 2), and AS patients receiving a nonsteroidal anti-inflammatory medication (Group 3). According to anterior segment optical coherence tomography, the mean thickness of the corneal epithelium was significantly thicker in Group 2 than in Group 3 (51.6 ± 3.2 µm versus 50.4 ± 3 µm, p = 0.01), as was that of the stroma (475 ± 33 µm versus 443 ± 29 µm, p = 0.002). Anti-TNF-α medication and/or avoidance of nonsteroidal anti-inflammatory drugs could improve the thickness of both the corneal epithelium and stroma in AS patients.
We present a simple approach to estimating ground-level fine particle (PM2.5, particles smaller than 2.5 um in diameter) concentration using global atmospheric chemistry models and aerosol optical thickness (AOT) measurements from the Multi- angle Imaging SpectroRadiometer (MISR)...
MULTIPLICITY OF NOVA ENVELOPE SOLUTIONS AND OCCURRENCE OF OPTICALLY THICK WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Mariko; Hachisu, Izumi
2009-07-10
We revisit the occurrence condition of optically thick winds reported by Kato in 1985 and Kato and Hachisu in 1989 who mathematically examined nova envelope solutions with an old opacity and found that optically thick winds are accelerated only in massive white dwarfs (WDs) of {approx}>0.9 M{sub sun}. With the OPAL opacity we find that the optically thick wind occurs for {approx}>0.6 M{sub sun} WDs and that the occurrence of winds depends not only on the WD mass but also on the ignition mass. When the ignition mass is larger than a critical value, winds are suppressed by a density-inversionmore » layer. Such a static solution can be realized in WDs of mass {approx}0.6-0.7 M{sub sun}. We propose that sequences consisting only of static solutions correspond to slow evolutions in symbiotic novae like PU Vul because PU Vul shows no indication of strong winds in a long-lasted flat peak followed by a very slow decline in its light curve.« less
Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin
2017-02-24
We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films.
NASA Astrophysics Data System (ADS)
Prepelita, P.; Filipescu, M.; Stavarache, I.; Garoi, F.; Craciun, D.
2017-12-01
Using a fast and eco-friendly deposition method, ITO thin films with different thicknesses (0.5 μm-0.7 μm) were deposited on glass substrates by radio frequency magnetron sputtering technique. A comparative analysis of these oxide films was then carried out. AFM investigations showed that the deposited films were smooth, uniform and having a surface roughness smaller than 10 nm. X-ray diffraction investigations showed that all samples were polycrystalline and the grain sizes of the films, corresponding to (222) cubic reflection, were found to increase with the increasing film thickness. The optical properties, evaluated by UV-VIS-NIR (190-3000 nm) spectrophotometer, evidenced that the obtained thin films were highly transparent, with a transmission coefficient between 90 and 96%, depending on the film thickness. Various methods (Swanepoel and Drude) were employed to appreciate the optimal behaviour of transparent oxide films, in determining the dielectric optical parameters and refractive index dispersion for ITO films exhibiting interference patterns in the optical transmission spectra. The electrical conductivity also increased as the film thickness increased.
Development of X-ray Microscopy at IPOE
NASA Astrophysics Data System (ADS)
Zhu, J.; Mu, B.; Huang, Q.; Huang, C.; Yi, S.; Zhang, Z.; Wang, F.; Wang, Z.; Chen, L.
2011-09-01
In order to meet the different requirements of applications in synchrotron radiation and plasma diagnosis in China, focusing and imaging optics based on Kirkpatrick-Baez (KB) mirrors, compound refractive lenses (CRLs), and multilayer Laue lenses (MLLs) were studied in our lab. A one-dimensional KB microscope using mirrors with a dual-periodic multilayer coating was developed. The multilayer mirror can reflect both 4.75 keV (Ti K-line) and 8.05 keV (Cu K-line) simultaneously, which makes alignment easier. For hard x-ray microscopy, CRL was studied. Using a SU-8 resist planar parabolic CRL, a focal line of 28.8-μm width was obtained. To focus hard x-rays to nanometer levels efficiently, an MLL was fabricated using a WSi2/Si multilayer. The MLL consists of 324 alternating WSi2 and Si layers with a total thickness of 7.9 μm. (Recently, a much thicker multilayer has been deposited with a layer number of n = 1582 and a total thickness of 27 μm.) After deposition, the sample was sliced and polished into an approximate ideal aspect ratio (depth of the zone plate to outmost layer thickness); the measured results show an intact structure remains, and the surface roughness of the cross section is about 0.4 nm after grinding and polishing processes.
Thickness-dependence of optical constants for Ta2O5 ultrathin films
NASA Astrophysics Data System (ADS)
Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao
2012-09-01
An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.
(012)-cut chalcopyrite ZnGeP2 as a high-bandwidth terahertz electro-optic detection crystal
NASA Astrophysics Data System (ADS)
Carnio, B. N.; Greig, S. R.; Firby, C. J.; Zawilski, K. T.; Schunemann, P. G.; Elezzabi, A. Y.
2017-02-01
The detection properties of a chalcopyrite zinc germanium diphosphide (ZnGeP2, ZGP) electro-optic (EO) crystal, having thickness of 1080 μm and cut along the <012> plane, is studied in the terahertz (THz) frequency range. Outstanding phase matching is achieved between the optical probe pulse and the THz frequency components, leading to a large EO detection bandwidth. ZGP has the ability to measure frequencies that are 1.3 and 1.2 times greater than that of ZnTe for crystal thicknesses of 1080 and 500 μm, respectively. Furthermore, the ZGP crystal is able to detect frequency components that are >=4.6 times larger than both ZnSe and GaP (for crystal thicknesses of 1080 μm) and >=2.2 times larger than ZnSe and GaP (for crystal thicknesses of 500 μm).
Magneto-optical microcavity with Au plasmonic layer
NASA Astrophysics Data System (ADS)
Mikhailova, T. V.; Lyashko, S. D.; Tomilin, S. V.; Karavainikov, A. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Berzhansky, V. N.
2017-11-01
Optical and Faraday rotation spectra of magneto-optical microcavity coated with Au plasmonic layer of gradient thickness were investigated theoretically and experimentally. It was shown that the Tamm plasmon-polaritons mode forms near the long-wavelength edge of photonic band gap. The presence of Au coating of thickness of 90.4 nm increase the Faraday rotation at Tamm plasmon-polaritons and cavity resonances in 1.3 and 7 times, respectively. By transfer matrix method it were found that the incorporation of SiO2 buffer layer with a thickness in the range from 155 to 180 nm between microcavity and Au coating leads to the strong coupling between cavity mode and Tamm plasmon-polaritons. In this case, one or two resonances arise in the vicinity of the cavity mode depending on the thickness of plasmonic layer. The Faraday rotation for coupled mode in twice less than the value of rotation for single cavity mode.
NASA Astrophysics Data System (ADS)
Li, Zhongjun; Chen, Shi; Sun, Jiuyu; Li, Xingxing; Qiu, Huaili; Yang, Jinlong
2018-02-01
Coupling interaction between the bottom and top surface electronic states and the influence on transport and optical properties of Bi2Se3 thin films with 1-8 quintuple layers (QLs) have been investigated by first principles calculations. Obvious spatial and thickness dependences of coupling interaction are found by analyzing hybridization of two surface states. In the thin film with a certain thickness, from the outer to inner atomic layers, the coupling interaction exhibits an increasing trend. On the other hand, as thickness increases, the coupling interaction shows a disproportionate decrease trend. Moreover, the system with 3 QLs exhibits stronger interaction than that with 2 QLs. The presence of coupling interaction would suppress destructive interference of surface states and enhance resistance in various degrees. In view of the inversely proportional relation to transport channel width, the resistance of thin films should show disproportionate thickness dependence. This prediction is qualitatively consistent with the transport measurements at low temperature. Furthermore, the optical properties also exhibit obvious thickness dependence. Especially as the thickness increases, the coupling interaction results in red and blue shifts of the multiple-peak structures in low and high energy regions of imaginary dielectric function, respectively. The red shift trend is in agreement with the recent experimental observation and the blue shift is firstly predicted by the present calculation. The present results give a concrete understanding of transport and optical properties in devices based on Bi2Se3 thin films with few QLs.
Retinal nerve fiber layer changes after LASIK evaluated with optical coherence tomography.
Dementyev, Dmitriy D; Kourenkov, Vyacheslav V; Rodin, Alexander S; Fadeykina, Tatyana L; Diaz Martines, Tatyana E
2005-01-01
To determine whether the increase in intraocular pressure (IOP) during LASIK suction can induce a decrease in retinal nerve fiber layer thickness assessed by optical coherence tomography (OCT). Nineteen patients (38 eyes) were enrolled in the study. Intraocular pressure was normal at all pre- and postoperative examinations. Retinal nerve fiber layer thickness was measured using OCT-3 Stratus prior to and 1 week and 3 months after LASIK. Laser in situ keratomileusis was performed using the Bausch & Lomb Hansatome microkeratome and the NIDEK EC-5000 excimer laser. Optical coherence tomography mean retinal nerve fiber layer thickness values before and after LASIK were compared using the Student paired t test. Mean patient age was 27.8 years (range: 18 to 33 years). Mean preoperative spherical equivalent refractive error was -4.9 diopters (D) (range: -2.0 to -8.5 D). Mean time of microkeratome suction was 30 seconds (range: 20 to 50 seconds). Preoperatively, the mean retinal nerve fiber layer thickness obtained by OCT was 104.2+/-9.0 microm; at 1 week postoperatively the mean thickness was 101.9+/-6.9 microm, and 106.7+/-6.1 microm at 3 months postoperatively. Mean retinal nerve fiber layer thicknesses obtained by OCT were not significantly different between preoperative and 1 week and 3 months after LASIK (P > or = .05). Laser in situ keratomileusis performed on young myopic patients does not have a significant effect on retinal nerve fiber layer thickness determined by OCT. Further studies are required to reveal the risk of possible optic nerve or retinal nerve fiber layer damage by elevated IOP during LASIK.
Suh, Min Hee; Zangwill, Linda M; Manalastas, Patricia Isabel C; Belghith, Akram; Yarmohammadi, Adeleh; Medeiros, Felipe A; Diniz-Filho, Alberto; Saunders, Luke J; Weinreb, Robert N
2016-12-01
To investigate factors associated with dropout of the parapapillary deep retinal layer microvasculature assessed by optical coherence tomography angiography (OCTA) in glaucomatous eyes. Cross-sectional study. Seventy-one eyes from 71 primary open-angle glaucoma (POAG) patients with β-zone parapapillary atrophy (βPPA) enrolled in the Diagnostic Innovations in Glaucoma Study. Parapapillary deep-layer microvasculature dropout was defined as a complete loss of the microvasculature located within the deep retinal layer of the βPPA from OCTA-derived optic nerve head vessel density maps by standardized qualitative assessment. Circumpapillary vessel density (cpVD) within the retinal nerve fiber layer (RNFL) also was calculated using OCTA. Choroidal thickness and presence of focal lamina cribrosa (LC) defects were determined using swept-source optical coherence tomography. Presence of parapapillary deep-layer microvasculature dropout. Parameters including age, systolic and diastolic blood pressure, axial length, intraocular pressure, disc hemorrhage, cpVD, visual field (VF) mean deviation (MD), focal LC defects βPPA area, and choroidal thickness were analyzed. Parapapillary deep-layer microvasculature dropout was detected in 37 POAG eyes (52.1%). Eyes with microvasculature dropout had a higher prevalence of LC defects (70.3% vs. 32.4%), lower cpVD (52.7% vs. 58.8%), worse VF MD (-9.06 dB vs. -3.83 dB), thinner total choroidal thickness (126.5 μm vs. 169.1 μm), longer axial length (24.7 mm vs. 24.0 mm), larger βPPA (1.2 mm 2 vs. 0.76 mm 2 ), and lower diastolic blood pressure (74.7 mmHg vs. 81.7 mmHg) than those without dropout (P < 0.05, respectively). In the multivariate logistic regression analysis, higher prevalence of focal LC defects (odds ratio [OR], 6.27; P = 0.012), reduced cpVD (OR, 1.27; P = 0.002), worse VF MD (OR, 1.27; P = 0.001), thinner choroidal thickness (OR, 1.02; P = 0.014), and lower diastolic blood pressure (OR, 1.16; P = 0.003) were associated significantly with the dropout. Systemic and ocular factors including focal LC defects more advanced glaucoma, reduced RNFL vessel density, thinner choroidal thickness, and lower diastolic blood pressure were factors associated with the parapapillary deep-layer microvasculature dropout in glaucomatous eyes. Longitudinal studies are required to elucidate the temporal relationship between parapapillary deep-layer microvasculature dropout and systemic and ocular factors. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, H. M.; Mohamed, H. A.; Mohamed, S. H.
2005-08-01
Indium tin oxide (ITO) is widely utilized in numerous industrial applications due to its unique combined properties of transparency to visible light and electrical conductivity. ITO films were deposited on glass substrates by an electron beam evaporation technique at room temperature from bulk samples, with different thicknesses. The film with 1500 Å thick was selected to perform annealing in the temperature range of 200 400 °C and annealing for varying times from 15 to 120 min at 400 °C. The X-ray diffraction of the films was analyzed in order to investigate its dependence on thickness, and annealing. Electrical and optical measurements were also carried out. Transmittance, optical energy gap, refractive index, carrier concentration, thermal emissivity and resistivity were investigated. It was found that the as-deposited films with different thicknesses were highly absorbing and have relatively poor electrical properties. The films become opaque with increasing the film thickness. After thermal annealing, the resistance decreases and a simultaneous variation in the optical transmission occurs. A transmittance value of 85.5% in the IR region and 82% in the visible region of the spectrum and a resistivity of 2.8 × 10-4 Ω Cm were obtained at annealing temperature of 400 °C for 120 min.
Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.
Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin
2015-03-01
Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.
NASA Astrophysics Data System (ADS)
Liu, Guannan; Liu, Dong
2018-06-01
An improved inverse reconstruction model with consideration of self-absorption effect for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames was proposed based on the flame emission spectrometry. The effects of self-absorption on the temperature profile and concentration fields were investigated for various measurement errors, flame optical thicknesses and detecting lines numbers. The model neglecting the self-absorption caused serious reconstruction errors especially in the nanofluid fuel flames with large optical thicknesses, while the improved model was used to successfully recover the temperature distribution and concentration fields of soot and metal-oxide nanoparticles for the flames regardless of the optical thickness. Through increasing detecting lines number, the reconstruction accuracy can be greatly improved due to more flame emission information received by the spectrometer. With the adequate detecting lines number, the estimations for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in flames with large optical thicknesses were still satisfying even from the noisy radiation intensities with signal to noise ratio (SNR) as low as 46 dB. The results showed that the improved reconstruction model was effective and robust to concurrently retrieve the temperature distribution and volume fraction fields of soot and metal-oxide nanoparticles for the exact and noisy data in nanofluid fuel sooting flames with different optical thicknesses.
The Community Cloud retrieval for CLimate (CC4CL) - Part 2: The optimal estimation approach
NASA Astrophysics Data System (ADS)
McGarragh, Gregory R.; Poulsen, Caroline A.; Thomas, Gareth E.; Povey, Adam C.; Sus, Oliver; Stapelberg, Stefan; Schlundt, Cornelia; Proud, Simon; Christensen, Matthew W.; Stengel, Martin; Hollmann, Rainer; Grainger, Roy G.
2018-06-01
The Community Cloud retrieval for Climate (CC4CL) is a cloud property retrieval system for satellite-based multispectral imagers and is an important component of the Cloud Climate Change Initiative (Cloud_cci) project. In this paper we discuss the optimal estimation retrieval of cloud optical thickness, effective radius and cloud top pressure based on the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm. Key to this method is the forward model, which includes the clear-sky model, the liquid water and ice cloud models, the surface model including a bidirectional reflectance distribution function (BRDF), and the "fast" radiative transfer solution (which includes a multiple scattering treatment). All of these components and their assumptions and limitations will be discussed in detail. The forward model provides the accuracy appropriate for our retrieval method. The errors are comparable to the instrument noise for cloud optical thicknesses greater than 10. At optical thicknesses less than 10 modeling errors become more significant. The retrieval method is then presented describing optimal estimation in general, the nonlinear inversion method employed, measurement and a priori inputs, the propagation of input uncertainties and the calculation of subsidiary quantities that are derived from the retrieval results. An evaluation of the retrieval was performed using measurements simulated with noise levels appropriate for the MODIS instrument. Results show errors less than 10 % for cloud optical thicknesses greater than 10. Results for clouds of optical thicknesses less than 10 have errors up to 20 %.
NASA Astrophysics Data System (ADS)
Kuzmanoski, M.; Box, M.; Box, G. P.; Schmidt, B.; Russell, P. B.; Redemann, J.; Livingston, J. M.; Wang, J.; Flagan, R. C.; Seinfeld, J. H.
2002-12-01
As part of the ACE-Asia experiment, conducted off the coast of China, Korea and Japan in spring 2001, measurements of aerosol physical, chemical and radiative characteristics were performed aboard the Twin Otter aircraft. Of particular importance for this paper were spectral measurements of aerosol optical thickness obtained at 13 discrete wavelengths, within 354-1558 nm wavelength range, using the AATS-14 sunphotometer. Spectral aerosol optical thickness can be used to obtain information about particle size distribution. In this paper, we use sunphotometer measurements to retrieve size distribution of aerosols during ACE-Asia. We focus on four cases in which layers influenced by different air masses were identified. Aerosol optical thickness of each layer was inverted using two different techniques - constrained linear inversion and multimodal. In the constrained linear inversion algorithm no assumption about the mathematical form of the distribution to be retrieved is made. Conversely, the multimodal technique assumes that aerosol size distribution is represented as a linear combination of few lognormal modes with predefined values of mode radii and geometric standard deviations. Amplitudes of modes are varied to obtain best fit of sum of optical thicknesses due to individual modes to sunphotometer measurements. In this paper we compare the results of these two retrieval methods. In addition, we present comparisons of retrieved size distributions with in situ measurements taken using an aerodynamic particle sizer and differential mobility analyzer system aboard the Twin Otter aircraft.
[Macula study in Stargardt's disease].
Maia, Otacílio de Oliveira; Takahashi, Walter Yukihiko; Arantes, Tiago Eugênio Faria e; Barreto, Raquel Barbosa Paes; Andrade Neto, João Lins de
2008-01-01
To evaluate de macular structural damage in Stargardt's disease by optical coherence tomography, correlating with visual acuity and disease duration. Patients with Stargardt's disease were included and submitted to visual acuity (logMAR) measurement and complementary examinations performed were color fundus photographs, fluorescein angiography and optical coherence tomography. All cases were reexamined for diagnostic confirmation and the duration of symptoms was determined. The control group was composed of the same number of subjects, matched by sex and age, without any ophthalmologic alteration. The sample was composed of 22 patients (44 eyes) with Stargardt's disease, 11 (50%) males and 11 (50%) females. The duration of the disease varied from 3 to 21 years (mean of 11.4 +/- 5.3 years). The groups did not show significant differences in age (p= 0.98) and sex. Concerning the macular thickness in optical coherence tomography, the variation in the study group differed significantly from the control group, presenting smaller values of thickness (p<0.001). There was negative and significant correlation between the duration of disease and the macular thickness assessed by optical coherence tomography (r=-0.57 and p=0.005). There was positive correlation between the duration of the disease and the visual acuity (r=0.50 and p=0.0167) and negative correlation between the visual acuity and the macular thickness in optical coherence tomography (r=-0.83 and p=0.0001). It was evidenced that patients with Stargardt's disease have a thinner macular thickness when compared to normal subjects, and this reduction is related to the duration of symptoms of the disease. Additionally, the thickness and also the duration of the disease influence the visual prognosis of the patients.
Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai
2015-05-01
A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.
Kattawar, G W; Plass, G N; Hitzfelder, S J
1976-03-01
The complete radiation field including polarization is calculated by the matrix operator method for scattering layers of various optical thicknesses. Results obtained for Rayleigh scattering are compared with those for scattering from a continental haze. Radiances calculated using Stokes vectors show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are only of the order of 0.1% for a continental haze phase function. The polarization of the reflected and transmitted radiation is given for a wide range of optical thicknesses of the scattering layer, for various solar zenith angles, and various surface albedos. Two entirely different types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points (RNP) arise from the zero polarization in single scattering that occurs for all phase functions at scattering angles of 0 degrees and 180 degrees . For Rayleigh phase functions, the position of the RNP varies appreciably with the optical thickness of the scattering layer. At low solar elevations there may be four RNP. For a continental haze phase function the position of the RNP in the reflected radiation shows only a small variation with the optical thickness, and the RNP exists in the transmitted radiation only for extremely small optical thicknesses. Another type of neutral point (NRNP) exists for aerosol phase functions. It is associated with the zeros of the single scattered polarization, which occur between the end points of the curve; these are called non-Rayleigh neutral points (NRNP). There may be from zero to four of these neutral points associated with each zero of the single scattering curve. They occur over a range of azimuthal angles, unlike the RNP that are in the principal plane only. The position of these neutral points is given as a function of solar angle and optical thickness.
Chiral photonic crystals with an anisotropic defect layer.
Gevorgyan, A H; Harutyunyan, M Z
2007-09-01
In the present paper we consider some properties of defect modes in chiral photonic crystals with an anisotropic defect layer. We solved the problem by Ambartsumian's layer addition method. We investigated the influence of the defect layer thickness variation and its location in the chiral photonic crystal (CPC) and also its optical axes orientation, as well as of CPC thickness variation on defect mode properties. Variations of the optical thickness of the defect layer have its impact on the defect mode linewidth and the light accumulation in the defect. We obtain that CPCs lose their base property at certain defect layer thicknesses; namely, they lose their diffraction reflection dependence on light polarization. We also show that the circular polarization handedness changes from right-handed to left-handed if the defect layer location is changed, and therefore, such systems can be used to create sources of elliptically polarized light with tunable ellipticity. Some nonreciprocity properties of such systems are investigated, too. In particular, it is also shown that such a system can work as a practically ideal wide band optical diode for circularly polarized incident light provided the defect layer thickness is properly chosen, and it can work as a narrow band diode at small defect layer thicknesses.
Bellocq, David; Maucort-Boulch, Delphine; Kodjikian, Laurent; Denis, Philippe
2017-03-01
To evaluate the correlation of retinal nerve fibre layer (RNFL) thickness measured using spectral domain optical coherence tomography (SD-OCT) and scanning laser polarimetry (SLP) in uveitic eyes compared with healthy eyes. A descriptive, observational, prospective, consecutive, cross-sectional, controlled, monocentre case series was conducted from May to October 2015. Clinical characteristics, best-corrected visual acuity, intraocular pressure, RNFL thickness measurement with SD-OCT and SLP using GDx variable corneal compensation (GDx VCC) were performed for each patient. An evaluation of anterior chamber inflammation with laser flare-cell meter was also carried out. Correlations between SD-OCT and GDx VCC RNFL measurement were evaluated by linear regression analysis. Fifty-four patients were included and divided into two groups: 50 healthy eyes in 29 patients and 42 uveitic eyes in 25 patients. The mean RNFL thickness was 98.08(±8.42) and 113.21(±20.53) μm in the healthy group and the uveitic group, respectively, when measured with SD-OCT (p<0.001); and 56.43(±5.24) and 58.77(±6.67) μm, respectively, when measured with GDx VCC (p=0.078). There was a strong correlation between total average RNFL thickness measured using SD-OCT and GDX (r=0.48, p<0.001) in healthy eyes but there was no correlation in the uveitic eyes (r=0.2, p=0.19). RNFL thickness was significantly greater when measured using SD-OCT in active uveitis as compared with GDx. There was no correlation between the RNFL thickness measurements obtained using the two techniques in uveitic eyes. The discrepancies between the results suggest that for these patients both techniques should be used in conjunction to obtain an accurate measurement of RNFL. IRB 00008855 Société Française d'Ophtalmologie IRB#1. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei
2015-01-01
Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090
Zarranz-Ventura, Javier; Sim, Dawn A; Keane, Pearse A; Patel, Praveen J; Westcott, Mark C; Lee, Richard W; Tufail, Adnan; Pavesio, Carlos E
2014-09-01
To perform qualitative and quantitative analyses of retinal and choroidal morphology in patients with punctate inner choroidopathy (PIC) using enhanced depth imaging optical coherence tomography (EDI-OCT). Cross-sectional, consecutive series. A total of 2242 patients attending 2 tertiary referral uveitis clinics at Moorfields Eye Hospital were screened; 46 patients with PIC diagnosis were identified, and 35 eyes (35 patients) had clinically inactive PIC had EDI-OCT images that met the inclusion criteria. Punctate inner choroidopathy lesions were qualitatively assessed for retinal features, such as (1) focal elevation of the retinal pigment epithelium (RPE), (2) focal atrophy of the outer retina/RPE, and (3) presence of sub-RPE hyperreflective deposits and choroidal features: (a) presence of focal hyperreflective dots in the inner choroid and (b) focal thinning of the choroid adjacent to PIC lesions. Quantitative analyses of the retina, choroid, and choroidal sublayers were performed, and associations with clinical and demographic data were examined. Prevalence of each lesion pattern and thickness of retinal and choroidal layers. A total of 90 discrete PIC lesions were captured; 46.6% of PIC lesions consisted of focal atrophy of the outer retina and RPE; 34.4% consisted of sub-RPE hyperreflective deposits; and 18.8% consisted of localized RPE elevation with underlying hyporeflective space. Focal hyperreflective dots were seen in the inner choroid of 68.5% of patients, with 17.1% of eyes presenting focal choroidal thinning underlying PIC lesions. By excluding high myopes, patients with "atypical" PIC had reduced retinal thickness compared with patients with "typical" PIC (246.65±30.2 vs. 270.05±24.6 μm; P = 0.04), and greater disease duration was associated with decreases in retinal thickness (r = -0.53; P = 0.01). A significant correlation was observed between best-corrected visual acuity and foveal retinal thickness (r = -0.40; P = 0.03). In a large series of patients with clinically inactive PIC, one fifth of the lesions analyzed revealed RPE elevation with underlying hyporeflective space, described before as a sign of activity and suggesting subclinical inflammation. Retinal thickness seems to be associated with disease type and duration of disease in non-highly myopic eyes. Improved visualization of the inner choroid using EDI-OCT may allow noninvasive assessment of inflammatory status. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
African Descent and Glaucoma Evaluation Study (ADAGES)
Girkin, Christopher A.; Sample, Pamela A.; Liebmann, Jeffrey M.; Jain, Sonia; Bowd, Christopher; Becerra, Lida M.; Medeiros, Felipe A.; Racette, Lyne; Dirkes, Keri A.; Weinreb, Robert N.; Zangwill, Linda M.
2010-01-01
Objective To define differences in optic disc, retinal nerve fiber layer, and macular structure between healthy participants of African (AD) and European descent (ED) using quantitative imaging techniques in the African Descent and Glaucoma Evaluation Study (ADAGES). Methods Reliable images were obtained using stereoscopic photography, confocal scanning laser ophthalmoscopy (Heidelberg retina tomography [HRT]), and optical coherence tomography (OCT) for 648 healthy subjects in ADAGES. Findings were compared and adjusted for age, optic disc area, and reference plane height where appropriate. Results The AD participants had significantly greater optic disc area on HRT (2.06 mm2; P<.001) and OCT (2.47 mm2; P<.001) and a deeper HRT cup depth than the ED group (P<.001). Retinal nerve fiber layer thickness was greater in the AD group except within the temporal region, where it was significantly thinner. Central macular thickness and volume were less in the AD group. Conclusions Most of the variations in optic nerve morphologic characteristics between the AD and ED groups are due to differences in disc area. However, differences remain in HRT cup depth, OCT macular thickness and volume, and OCT retinal nerve fiber layer thickness independent of these variables. These differences should be considered in the determination of disease status. PMID:20457974
Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell
NASA Astrophysics Data System (ADS)
Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.
2013-03-01
We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.
NASA Astrophysics Data System (ADS)
Gersch, Alan; A'Hearn, M. F.
2012-05-01
We have adapted the Coupled Escape Probability method of radiative transfer calculations for use in asymmetrical spherical situations and applied it to modeling molecular emission spectra of potentially optically thick cometary comae. Recent space missions (e.g. Deep Impact & EPOXI) have provided spectra from comets of unprecedented spatial resolution of the regions of the coma near the nucleus, where the coma may be optically thick. Currently active missions (e.g. Rosetta) and hopefully more in the future will continue the trend and demonstrate the need for better modeling of comae with optical depth effects included. Here we present a brief description of our model and results of interest for cometary studies, especially for space based observations. Although primarily motivated by the need for comet modeling, our (asymmetric spherical) radiative transfer model could be used for studying other astrophysical phenomena as well.
The relative importance of aerosol scattering and absorption in remote sensing
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J.
1983-01-01
The relative importance of aerosol optical thickness and absorption is illustrated through computing radiances for radiative transfer models. The radiance of sunlight reflected from models of the earth-atmosphere system is computed as a function of the aerosol optical thickness and its albedo of single scattering; it is noted that the albedo varies from 0.6 in urban environment to nearly 1 in areas with low graphitic carbon content. The calculations are applied to the example of satellite measurements of biomass. It is found that when surface classifications are made by means of clustering techniques the presence of gradients in the aerosol optical properties results in the dispersion of points in the plot correlating radiances viewed in two different directions. Finally, though such a remote sensing parameter as contrast is weakly affected by aerosol absorption, it is highly dependent on its optical thickness.
Mansouri, Kaweh; Medeiros, Felipe A.; Tatham, Andrew J.; Marchase, Nicholas; Weinreb, Robert N.
2017-01-01
PURPOSE To determine the repeatability of automated retinal and choroidal thickness measurements with swept-source optical coherence tomography (SS OCT) and the frequency and type of scan artifacts. DESIGN Prospective evaluation of new diagnostic technology. METHODS Thirty healthy subjects were recruited prospectively and underwent imaging with a prototype SS OCT instrument. Undilated scans of 54 eyes of 27 subjects (mean age, 35.1 ± 9.3 years) were obtained. Each subject had 4 SS OCT protocols repeated 3 times: 3-dimensional (3D) 6 × 6-mm raster scan of the optic disc and macula, radial, and line scan. Automated measurements were obtained through segmentation software. Interscan repeatability was assessed by intraclass correlation coefficients (ICCs). RESULTS ICCs for choroidal measurements were 0.92, 0.98, 0.80, and 0.91, respectively, for 3D macula, 3D optic disc, radial, and line scans. ICCs for retinal measurements were 0.39, 0.49, 0.71, and 0.69, respectively. Artifacts were present in up to 9% scans. Signal loss because of blinking was the most common artifact on 3D scans (optic disc scan, 7%; macula scan, 9%), whereas segmentation failure occurred in 4% of radial and 3% of line scans. When scans with image artifacts were excluded, ICCs for choroidal thickness increased to 0.95, 0.99, 0.87, and 0.93 for 3D macula, 3D optic disc, radial, and line scans, respectively. ICCs for retinal thickness increased to 0.88, 0.83, 0.89, and 0.76, respectively. CONCLUSIONS Improved repeatability of automated choroidal and retinal thickness measurements was found with the SS OCT after correction of scan artifacts. Recognition of scan artifacts is important for correct interpretation of SS OCT measurements. PMID:24531020
NASA Astrophysics Data System (ADS)
Lediju Bell, Muyinatu A.; Ostrowski, Anastasia K.; Li, Ke; Kaanzides, Peter; Boctor, Emad
2015-03-01
We previously introduced photoacoustic imaging to detect blood vessels surrounded by bone and thereby eliminate the deadly risk of carotid artery injury during endonasal, transsphenoidal surgeries. Light would be transmitted through an optical fiber attached to the surgical drill, while a transcranial probe placed on the temporal region of the skull receives photoacoustic signals. This work quantifies changes in photoacoustic image contrast as the sphenoid bone is drilled. Frontal bone from a human adult cadaver skull was cut into seven 3 cm x 3 cm chips and sanded to thicknesses ranging 1-4 mm. For 700-940 nm wavelengths, the average optical transmission through these specimens increased from 19% to 44% as bone thickness decreased, with measurements agreeing with Monte Carlo simulations within 5%. These skull specimens were individually placed in the optical pathway of a 3.5 mm diameter, cylindrical, vessel-mimicking photoacoustic target, as the laser wavelength was varied between 700-940 nm. The mean optical insertion loss and photoacoustic image contrast loss due to the bone specimens were 56-80% and 46-79%, respectively, with the majority of change observed when the bone was <=2 mm thick. The decrease in contrast is directly proportional to insertion loss over this thickness range by factors of 0.8-1.1 when multiple wavelengths are considered. Results suggest that this proportional relationship may be used to determine the amount of bone that remains to be drilled when the thickness is 2 mm or less.
Reinholz, Markus; Schwaiger, Hannah; Poetschke, Julian; Epple, Andreas; Ruzicka, Thomas; Von Braunmühl, Tanja; Gauglitz, Gerd G
2016-12-01
Currently, different types of treatments for pathological scars are available, however, to date, there is no established method of measurement to objectively assess therapeutic outcome. Treatment success is usually evaluated clinically by the physician and patient. Non-invasive imaging techniques, such as HD-OCT (high-definition optical coherence tomography), may represent a valuable diagnostic tool to objectively measure therapeutic outcome. To compare HD-OCT with ultrasound and subjective evaluation tools, such as questionnaires. In total, eight patients with pathological scars were treated in this pilot study with cryotherapy and intralesional steroid injections, and evaluated pre- and post-treatment using clinical examination, photography, sonography, and HD-OCT. The analysis of objective and subjective measuring methods was used to draw direct comparisons. HD-OCT revealed reduced epidermal and dermal thickness of the scar after four treatments with triamcinolone acetonide and cryotherapy. Based on sonography, a total reduction in scar height and reduction in scar depth was demonstrated. Both methods correlated well with the injected amount of triamcinolone acetonide. In addition, a positive correlation between well-established subjective and objective evaluation methods was found. We demonstrate that HD-OCT may be used as an objective diagnostic instrument to evaluate skin thickness under therapy for pathological scars, and serves as a valuable adjunctive device in combination with ultrasound and subjective evaluation tools. This provides additional information for the therapist concerning the quality and success of the applied treatment.
Esquivel, K; Arriaga, L G; Rodríguez, F J; Martínez, L; Godínez, Luis A
2009-08-01
Electrochemical advanced oxidation processes (EAOPs) are used to chemically burn non biodegradable complex organic compounds that are present in polluted effluents. A common approach involves the use of TiO2 semiconductor substrates as either photocatalytic or photoelectrocatalytic materials in reactors that produce a powerful oxidant (hydroxyl radical) that reacts with pollutant species. In this context, the purpose of this work is to develop a new TiO2 based photoanode using an optic fiber support. The novel arrangement of a TiO2 layer positioned on top of a surface modified optical fiber substrate, allowed the construction of a photoelectrochemical reactor that works on the basis of an internally illuminated approach. In this way, a semi-conductive optical fiber modified surface was prepared using 30 microm thickness SnO2:Sb films on which the photoactive TiO2 layer was electrophoretically deposited. UV light transmission experiments were conducted to evaluate the transmittance along the optical fiber covered with SnO2:Sb and TiO2 showing that 43% of UV light reached the optical fiber tip. With different illumination configurations (external or internal), it was possible to get an increase in the amount of photo-generated H(2)O(2) close to 50% as compared to different types of TiO2 films. Finally, the electro-Fenton photoelectrocatalytic Oxidation process studied in this work was able to achieve total color removal of Azo orange II dye (15 mg L(-1)) and a 57% removal of total organic carbon (TOC) within 60 min of degradation time.
Warenghem, Marc; Henninot, Jean François; Blach, Jean François; Buchnev, Oleksandr; Kaczmarek, Malgosia; Stchakovsky, Michel
2012-03-01
Spectroscopic ellipsometry is a technique especially well suited to measure the effective optical properties of a composite material. However, as the sample is optically thick and anisotropic, this technique loses its accuracy for two reasons: anisotropy means that two parameters have to be determined (ordinary and extraordinary indices) and optically thick means a large order of interference. In that case, several dielectric functions can emerge out of the fitting procedure with a similar mean square error and no criterion to discriminate the right solution. In this paper, we develop a methodology to overcome that drawback. It combines ellipsometry with refractometry. The same sample is used in a total internal reflection (TIR) setup and in a spectroscopic ellipsometer. The number of parameters to be determined by the fitting procedure is reduced in analysing two spectra, the correct final solution is found by using the TIR results both as initial values for the parameters and as check for the final dielectric function. A prefitting routine is developed to enter the right initial values in the fitting procedure and so to approach the right solution. As an example, this methodology is used to analyse the optical properties of BaTiO(3) nanoparticles embedded in a nematic liquid crystal. Such a methodology can also be used to analyse experimentally the validity of the mixing laws, since ellipsometry gives the effective dielectric function and thus, can be compared to the dielectric function of the components of the mixture, as it is shown on the example of BaTiO(3)/nematic composite.
An all-optical fiber optic photoacoustic transducer
NASA Astrophysics Data System (ADS)
Thathachary, Supriya V.; Motameni, Cameron; Ashkenazi, Shai
2018-02-01
A highly sensitive fiber-optic Fabry-Perot photoacoustic transducer is proposed in this work. The transducer will consist of separate transmit and receive fibers. The receiver will be composed of a Fabry-Perot Ultrasound sensor with a selfwritten waveguide with all-optical ultrasound detection with high sensitivity. In previous work, we have shown an increase in resonator Q-factor from 1900 to 3200 for a simulated Fabry-Perot ultrasound detector of 45 μm thickness upon including a waveguide to limit lateral power losses. Subsequently, we demonstrated a prototype device with 30nm gold mirrors and a cavity composed of the photosensitive polymer Benzocyclobutene. This 80 µm thick device showed an improvement in its Q-factor from 2500 to 5200 after a selfaligned waveguide was written into the cavity using UV exposure. Current work uses a significantly faster fabrication technique using a combination of UV-cured epoxies for the cavity medium, and the waveguide within it. This reduces the fabrication time from several hours to a few minutes, and significantly lowers the cost of fabrication. We use a dip-coating technique to deposit the polymer layer. Future work will include the use of Dielectric Bragg mirrors in place of gold to achieve better reflectivity, thereby further improving the Q-factor of the device. The complete transducer presents an ideal solution for intravascular imaging in cases where tissue differentiation is desirable, an important feature in interventional procedures where arterial perforation is a risk. The final design proposed comprises the transducer within a guidewire to guide interventions for Chronic Total Occlusions, a disease state for which there are currently no invasive imaging options.
NASA Astrophysics Data System (ADS)
Tonny, Kaniz Naila; Rafique, Rosaleena; Sharmin, Afrina; Bashar, Muhammad Shahriar; Mahmood, Zahid Hasan
2018-06-01
Al doped ZnO (AZO) films are fabricated by using sol-gel spin coating method and changes in electrical, optical and structural properties due to variation in film thickness is studied. AZO films provide c-axis orientation along the (002) plane and peak sharpness increased with film thickness is evident from XRD analysis. Conductivity (σ) of AZO films has increased from 2.34 (Siemens/cm) to 20156.27 (Siemens/cm) whereas sheet resistance (Rsh) decreases from 606300 (ohms/sq.) to 2.08 (ohm/sq.) with increase of film thickness from 296 nm to 1030 nm. Optical transmittance (T%) of AZO films is decreased from around 82% to 62% in the visible region. And grain size (D) of AZO thin films has been found to increase from 19.59 nm to 25.25 nm with increase of film thickness. Figure of Merit is also calculated for prepared sample of AZO. Among these four sample of AZO thin films, L-15 sample (having thickness in 895 nm) has provided highest figure of merit which is 5.49*10^-4 (Ω-1).
NASA Astrophysics Data System (ADS)
Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.
2018-04-01
We present observations of an Hα-emitting knot in the thick disk of NGC 4013, demonstrating it is an H II region surrounding a cluster of young hot stars z = 860 pc above the plane of this edge-on spiral galaxy. With LBT/MODS spectroscopy we show that this H II region has an Hα luminosity ∼4–7 times that of the Orion nebula, with an implied ionizing photon production rate log Q 0 ≈ 49.4 (photons s‑1). HST/WFPC2 imaging reveals an associated blue continuum source with M V = ‑8.21 ± 0.24. Together, these properties demonstrate that the H II region is powered by a young cluster of stars formed in situ in the thick disk, with an ionizing photon flux equivalent to ∼6 O7 V stars. If we assume ≈6 other extraplanar Hα-emitting knots are H II regions, the total thick disk star formation rate of NGC 4013 is ∼5 × 10‑4 M ⊙ yr‑1. The star formation likely occurs in the dense clouds of the interstellar thick disk seen in optical images of dust extinction and CO emission.
Structural and functional correlates in color vision deficiency
Gupta, A; Laxmi, G; Nittala, M G; Raman, R
2011-01-01
Purpose The aim of this study is to assess the photoreceptor integrity, using spectral domain optical coherence tomography (SD-OCT), and to measure the retinal sensitivity of patients with congenital red–green color vision deficiency (CVD). Methods In all, 14 eyes from 7 patients with congenital red–green CVD (diagnosed by Farnsworth Munsell 100 hue test), and 14 eyes from 7 control subjects were examined by SD-OCT and microperimetry. Radial scans (7-mm) were taken of the macula. The center of the fovea was defined. The thickness of different retinal layers, at the foveal center, and at multiple defined points along all six radial scans, was measured. The median readings were compared between the two groups using Mann–Whitney U-test. Results SD-OCT demonstrated normal total retinal thickness, normal thickness of the photoreceptor layer, normal thickness of the outer nuclear layer, normal vertical thickness of the outer segments (OSs), and normal vertical thickness of the inner segments. OS horizontal diameter was less in left eye in cases with CVD when compared with controls. The mean retinal and foveal sensitivity was similar between cases and controls. Conclusions In subjects with congenital red–green CVD, there are no discernible anatomical abnormalities seen on SD-OCT in various retinal layers, except for a narrower foveal pit. However, further studies with larger sample size are required. PMID:21494280
NASA Technical Reports Server (NTRS)
Grund, Christian John; Eloranta, Edwin W.
1990-01-01
Cirrus clouds reflect incoming solar radiation and trap outgoing terrestrial radiation; therefore, accurate estimation of the global energy balance depends upon knowledge of the optical and physical properties of these clouds. Scattering and absorption by cirrus clouds affect measurements made by many satellite-borne and ground based remote sensors. Scattering of ambient light by the cloud, and thermal emissions from the cloud can increase measurement background noise. Multiple scattering processes can adversely affect the divergence of optical beams propagating through these clouds. Determination of the optical thickness and the vertical and horizontal extent of cirrus clouds is necessary to the evaluation of all of these effects. Lidar can be an effective tool for investigating these properties. During the FIRE cirrus IFO in Oct. to Nov. 1986, the High Spectral Resolution Lidar (HSRL) was operated from a rooftop site on the campus of the University of Wisconsin at Madison, Wisconsin. Approximately 124 hours of fall season data were acquired under a variety of cloud optical thickness conditions. Since the IFO, the HSRL data set was expanded by more than 63.5 hours of additional data acquired during all seasons. Measurements are presented for the range in optical thickness and backscattering phase function of the cirrus clouds, as well as contour maps of extinction corrected backscatter cross sections indicating cloud morphology. Color enhanced images of range-time indicator (RTI) displays a variety of cirrus clouds with approximately 30 sec time resolution are presented. The importance of extinction correction on the interpretation of cloud height and structure from lidar observations of optically thick cirrus are demonstrated.
Solar system for exploitation of the whole collected energy
NASA Astrophysics Data System (ADS)
Ciamberlini, C.; Francini, F.; Longobardi, G.; Piattelli, M.; Sansoni, P.
2003-09-01
An innovative architecture for the exploitation of the whole collected solar energy is described. A sun pointing optical concentrator focuses the received energy, containing the part of the required solar spectrum, in a low loss optical fibre transmission line. The optical panel is small in size and able to follow the sun in order to collect the maximum of its energy. The support is flat, 5 mm thick and includes four optical concentrators. The efficiency of the optical system depends on the optical configuration and on the material utilised for the optical components. Single commercial connector to the fixed fibres connects the fibre optics' four free ends. The energy is therefore properly transported to any user's end with an easy installation. The system was experimented for lightening, during the day, dissipated in a dark load in order to produce heat in some equipment and for photovoltaic applications. The total efficiency of the system was between 68% and 72%. Once the solar energy reaches the end of the transmission line, it can be addressed to the required utilisation by means of an optical switch, which redirects the sunlight towards the desired applicator. This procedure allows utilising the 100% of the sun-collected energy. Since the size of the panel was small, it can be placed, on the roof, on the garden, on the window-sill, on the field and on all sides exposed to sunlight.
Estimating DXA total body fat percentage by lipometer subcutaneous adipose tissue thicknesses.
Tafeit, Erwin; Greilberger, Joachim; Cvirn, Gerhard; Lipp, Rainer Walther; Schnedl, Wolfgang Johann; Jürimäe, Toivo; Jürimäe, Jaak; Wallner-Liebmann, Sandra Johanna
2009-06-01
DXA is an accepted reference method to estimate body composition. However several difficulties in the applicability exist. The equipment is rather expensive, not portable, impractical for measurement of big study populations and it provides a minimal amount of ionizing radiation exposure. The optical device Lipometer (EU Pat.No. 0516251) provides non-invasive, quick, precise and safe measurements of subcutaneous adipose tissue (SAT) layer thicknesses at any site of the human body. Compared to DXA there are some advantages in the Lipometer approach, because this device is portable, quick, not expensive and no radiation is involved. To use these advantages in the field of total body fat% (TBF%) assessment, an acceptable estimation of DXA TBF% by Lipometer SAT thicknesses is necessary, which was the aim of this study. Height, weight, waist and hip circumferences, DXA TBF% and Lipometer SAT thicknesses at fifteen defined body sites were measured in 28 healthy men (age: 33.9 +/- 16.6 years) and 52 healthy women (age: 40.1 +/- 10.7 years). To estimate Lipometer TBF% stepwise multiple regression analysis was applied, using DXA TBF% as dependent variable. Using the fifteen Lipometer SAT thicknesses together with age, height, weight and BMI as independent variables provided the best estimations of Lipometer TBF% for both genders with strong correlations to DXA TBF% (R = 0.985 for males and R = 0.953 for females). The limits of agreement were -2.48% to +2.48% for males and -4.28% to + 4.28% for females. For both genders we received a bias of 0.00%. The results of this paper extend the abilities of the Lipometer by a precise estimation of TBF% using DXA as golden standard.
NASA Astrophysics Data System (ADS)
Lappalainen, Jyrki; Lantto, Vilho; Frantti, Johannes; Hiltunen, Jussi
2006-06-01
Microstructure, film orientation, and optical transmission spectra of polycrystalline Nd-modified Pb(ZrxTi1-x)O3 films were studied as a function of film thickness. Pulsed laser deposition was used for the fabrication of films with thickness from 80to465nm on single-crystal MgO(100) substrates. Raman spectroscopy, x-ray diffraction, and spectrophotometry measurements were utilized in the film characterization. With the decreasing film thickness, films first oriented with c axis perpendicular to film surface, and then, after some critical thickness, changed to a-axis orientation. At the same time, compressive stress increased up to 1.3GPa and a clear blueshift of the optical absorption edge was found in transmission spectra.
Poly-SiGe MEMS actuators for adaptive optics
NASA Astrophysics Data System (ADS)
Lin, Blake C.; King, Tsu-Jae; Muller, Richard S.
2006-01-01
Many adaptive optics (AO) applications require mirror arrays with hundreds to thousands of segments, necessitating a CMOS-compatible MEMS process to integrate the mirrors with their driving electronics. This paper proposes a MEMS actuator that is fabricated using low-temperature polycrystalline silicon-germanium (poly-SiGe) surface-micromaching technology (total thermal budget is 6 hours at or below 425°C). The MEMS actuator consists of three flexures and a hexagonal platform, on which a micromirror is to be assembled. The flexures are made of single-layer poly-SiGe with stress gradient across thickness of the film, making them bend out-of-plane after sacrificial-layer release to create a large nominal gap. The platform, on the other hand, has an additional stress-balancing SiGe layer deposited on top, making the dual-layer stack stay flat after release. Using this process, we have successfully fabricated the MEMS actuator which is lifted 14.6 μm out-of-plane by 290-μm-long flexures. The 2-μm-thick hexagonal mirror-platform exhibits a strain gradient of -5.5×10 -5 μm -1 (equivalent to 18 mm radius-of-curvature), which would be further reduced once the micromirror is assembled.
NASA Technical Reports Server (NTRS)
Jeong, Myeong-Jae; Li, Zhanqing
2010-01-01
Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.
Lee, Min Gyu; Kim, Sang Jin; Ham, Don-Il; Kang, Se Woong; Kee, Changwon; Lee, Jaejoon; Cha, Hoon-Suk; Koh, Eun-Mi
2014-11-25
We evaluated macular ganglion cell-inner plexiform layer (GC-IPL) thickness using spectral-domain optical coherence tomography (SD-OCT) in patients with chronic exposure to hydroxychloroquine (HCQ). This study included 130 subjects, who were divided into three groups: Group 1A, 55 patients with HCQ use ≥5 years; Group 1B, 46 patients with HCQ use <5 years; and Group 2, 29 normal controls. In all patients with exposure to HCQ, fundus examination, automated threshold perimetry, fundus autofluorescence photography, SD-OCT, and GC-IPL thickness measurement using the Cirrus HD-OCT ganglion cell analysis algorithm were performed. Average and minimum macular GC-IPL thickness were compared between subjects groups, and correlations between GC-IPL thickness and duration or total dose of HCQ use were analyzed. Among the 101 patients of Group 1, six patients who showed clinically evident HCQ retinopathy also showed markedly thin macular GC-IPL. In addition, weak but significant negative correlations were observed between the average and minimum GC-IPL thickness of Group 1 patients and cumulative dose of HCQ, even when analyzing without the six patients with HCQ retinopathy. However, when analyzing after exclusion of patients with high cumulative doses (>1000 g), significant correlations were not observed. This study revealed that macular GC-IPL thickness did not show definite correlations with HCQ use. However, some patients, especially with HCQ retinopathy or high cumulative doses, showed thin GC-IPL. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Retinal Ganglion Cell Layer Thickness and Local Visual Field Sensitivity in Glaucoma
Raza, Ali S.; Cho, Jungsuk; de Moraes, Carlos G. V.; Wang, Min; Zhang, Xian; Kardon, Randy H.; Liebmann, Jeffrey M.; Ritch, Robert; Hood, Donald C.
2015-01-01
Objective To compare loss in sensitivity measured using standard automated perimetry (SAP) with local retinal ganglion cell layer (RGC) thickness measured using frequency-domain optical coherence tomography in the macula of patients with glaucoma. Methods To compare corresponding locations of RGC thickness with total deviation (TD) of 10-2 SAP for 14 patients with glaucoma and 19 controls, an experienced operator hand-corrected automatic segmentation of the combined RGC and inner plexiform layer (RGC + IPL) of 128 horizontal B-scans. To account for displacement of the RGC bodies around the fovea, the location of the SAP test points was adjusted to correspond to the location of the RGC bodies rather than to the photoreceptors, based on published histological findings. For analysis, RGC + IPL thickness vs SAP (TD) data were grouped into 5 eccentricities, from 3.4° to 9.7° radius on the retina with respect to the fovea. Results The RGC + IPL thickness correlated well with SAP loss within approximately 7.2° of the fovea (Spearman ρ = 0.71–0.74). Agreement was worse (0.53–0.65) beyond 7.2°, where the normal RGC layer is relatively thin. A linear model relating RGC + IPL thickness to linear SAP loss provided a reasonable fit for eccentricities within 7.2°. Conclusion In the central 7.2°, local RGC + IPL thickness correlated well with local sensitivity loss in glaucoma when the data were adjusted for RGC displacement. PMID:22159673
Choroidal Thickness in 3001 Chinese Children Aged 6 to 19 Years Using Swept-Source OCT
Xiong, Shuyu; He, Xiangui; Deng, Junjie; Lv, Minzhi; Jin, Jiali; Sun, Sifei; Yao, Chunxia; Zhu, Jianfeng; Zou, Haidong; Xu, Xun
2017-01-01
The purpose of the cross-sectional study is to describe the values and distribution of choroidal thickness and to explore its related factors, especially age, in Chinese children. A total of 3001 Chinese school children aged 6 to 19 years underwent comprehensive ophthalmic examinations, including axial length and cycloplegic refraction. Choroidal thickness was measured by swept-source optical coherence tomography (SS-OCT). There was a greater difference in the more central regions between the myopes and emmetropes. Multiple regression analysis was performed to determine the associated factors of choroidal thickness. The results demonstrated that age was independently positively related to choroidal thickness for emmetropes (β = 3.859, p < 0.001), and mild myopes with spherical equivalent greater than −2.00 D (−1.25 D < spherical equivalent ≤ −0.50 D: β = 3.476, p = 0.006; −2.00 D < spherical equivalent ≤ −1.25 D: β = 3.232, p = 0.020). However, no significant relationship between age and choroidal thickness was found in children with spherical equivalent ≤ −2.00 D, suggesting that the protective effect of physiologic choroidal growth with age against rapid axial elongation disappeared while axial elongation becomes the dominant determinant of choroidal thickness among children with myopia worse than −2.00 D. PMID:28327553
Arikan, Sedat; Gokmen, Ferhat; Comez, Arzu Taskiran; Gencer, Baran; Kara, Selcuk; Akbal, Ayla
2015-01-01
The contrast sensitivity (CS) function in patients with primary Sjögren's syndrome (pSS) may be impaired either frequently as a result of dry eye diseases or rarely as a result of optic neuropathy. In this study, we aimed to evaluate the CS function in pSS patients as well as to assess corneal aberrations and thickness of the peripapillary retinal nerve fiber layer (pRNFL). Fourteen eyes of 14 pSS patients (pSS group) and 14 eyes of 14 healthy participants (control group) were subjected to assessment of CS at the spatial frequencies of 1.5, 3.0, 6.0, 12, and 18 cycles/degree (cpd) using a functional visual acuity contrast test (FACT); measurement of corneal high-order aberrations (HOAs) in terms of coma-like, spherical-like, and total HOAs using Scheimpflug corneal topography; and measurement of the thickness of both the macular ganglion cell-inner plexiform layer (mGCIPL) and pRNFL in all quadrants using optical coherence tomography. None of the participants were under treatment with artificial tears. The results of the CS test did not differ between the 2 groups at all spatial frequencies (p>0.05). In addition, there were no statistically significant differences between the 2 groups in terms of corneal HOAs (p>0.05) and thickness of mGCIPL (p>0.05). However, among all quadrants, only the inferior quadrant of pRNFL in pSS patients was statistically significantly thinner than that in the healthy participants (p=0.04). The CS function in pSS patients can be maintained with normal thickness of both pRNFL and mGCIPL and with lack of increased corneal HOAs, which may be present even in the absence of artificial tear usage.
NASA Astrophysics Data System (ADS)
Jalili, S.; Hajakbari, F.; Hojabri, A.
2018-03-01
Silver (Ag) nanolayers were deposited on nickel oxide (NiO) thin films by DC magnetron sputtering. The thickness of Ag layers was in range of 20-80 nm by variation of deposition time between 10 and 40 s. X-ray diffraction results showed that the crystalline properties of the Ag/NiO films improved by increasing the Ag film thickness. Also, atomic force microscopy and field emission scanning electron microscopy images demonstrated that the surface morphology of the films was highly affected by film thickness. The film thickness and the size of particles change by elevating the Ag deposition times. The composition of films was determined by Rutherford back scattering spectroscopy. The transmission of light was gradually reduced by augmentation of Ag films thickness. Furthermore; the optical band gap of the films was also calculated from the transmittance spectra.
Thick lens chromatic effective focal length variation versus bending
NASA Astrophysics Data System (ADS)
Sparrold, Scott
2017-11-01
Longitudinal chromatic aberration (LCA) can limit the optical performance in refractive optical systems. Understanding a singlet's chromatic change of effective focal leads to insights and methods to control LCA. Long established, first order theory, shows the chromatic change in focal length for a zero thickness lens is proportional to it's focal length divided by the lens V number or inverse dispersion. This work presents the derivation of an equation for a thick singlet's chromatic change in effective focal length as a function of center thickness, t, dispersion, V, index of refraction, n, and the Coddington shape factor, K. A plot of bending versus chromatic focal length variation is presented. Lens thickness does not influence chromatic variation of effective focal length for a convex plano or plano convex lens. A lens's center thickness'influence on chromatic focal length variation is more pronounced for lower indices of refraction.
Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil
2017-08-01
Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul
2004-01-01
Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
NASA Technical Reports Server (NTRS)
Chin, Mian; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul
2003-01-01
Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
NASA Technical Reports Server (NTRS)
Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul
2004-01-01
Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
Farnesi, D; Chiavaioli, F; Baldini, F; Righini, G C; Soria, S; Trono, C; Conti, G Nunzi
2015-08-10
A novel all-in-fiber method for coupling light to high-Q silica whispering gallery mode (WGM) optical micro-resonators is presented, which is based on a pair of long period fiber gratings (LPGs) written in the same silica fiber, along with a thick fiber taper (15-18 μm in waist) in between the LPGs. The proposed coupling structure is robust and can be replicated many times along the same fiber simply cascading LPGs with different bands. Typical Q-factors of the order of 10(8) and total coupling efficiency up to 60% were measured collecting the resonances of microspheres or microbubbles at the fiber end. This approach uniquely allows quasi-distributed and wavelength selective addressing of different micro-resonators along the same fiber.
Investigation of percolation thickness of sputter coated thin NiCr films on clear float glass
NASA Astrophysics Data System (ADS)
Erkan, Selen; Arpat, Erdem; Peters, Sven
2017-11-01
Percolation thickness of reactively sputtered nickel chromium (NiCr) thin films is reported in this study. Nickel-chromium films with the thicknesses in between 1 and 10 nm were deposited on 4 mm clear glass substrate by dc magnetron sputtering. Optical properties such as refractive index, extinction coefficient and also sheet resistance, carrier concentration and mobility of NiCr films were determined by a combination of variable-angle spectroscopic ellipsometry and four point probe measurements. We show both the percolation phenomena in atmosphere and critical percolation thickness for thin NiCr films by both electrical and optical techniques. The two techniques gave consistent results with each other.
Klein, Barbara E K; Johnson, Chris A; Meuer, Stacy M; Lee, Kyungmoo; Wahle, Andreas; Lee, Kristine E; Kulkarni, Amruta; Sonka, Milan; Abràmoff, Michael D; Klein, Ronald
2017-04-01
To examine the associations of nerve fiber layer (NFL) thickness with other ocular characteristics in older adults. Participants in the Beaver Dam Eye Study (2008-2010) underwent spectral domain optical coherence tomography (SD-OCT) scans of the optic nerve head, imaging of optic discs, frequency doubling technology (FDT) perimetry, measurement of intraocular pressure (IOP), and an interview concerning their history of glaucoma and use of drops to lower eye pressure. Self-reported histories of glaucoma and the use of drops to lower eye pressure were obtained at follow-up examinations (2014-2016). NFL thickness measured on OCTs varied by location around the optic nerve. Age was associated with mean NFL thickness. Mean NFL was thinnest in eyes with larger cup/disc (C/D) ratios. Horizontal hemifield defects or other optic nerve-field defects were associated with thinner NFL. NFL in persons who reported taking eye drops for high intraocular pressure was thinner compared to those not taking drops. After accounting for the presence of high intraocular pressure, large C/D ratios or hemifield defects, eyes with thinner NFL in the arcades were more likely (OR = 2.3 for 30 micron thinner NFL, p = 0.04) to have incident glaucoma at examination 5 years later. Retinal NFL thickness was associated with a new history of self-reported glaucoma 5 years later. A trial testing the usefulness of NFL as part of a screening battery for predicting glaucoma in those previously undiagnosed might lead to improved case finding and, ultimately, to diminishing the risk of visual field loss.
NASA Astrophysics Data System (ADS)
Junda, Maxwell M.; Karki Gautam, Laxmi; Collins, Robert W.; Podraza, Nikolas J.
2018-04-01
Virtual interface analysis (VIA) is applied to real time spectroscopic ellipsometry measurements taken during the growth of hydrogenated amorphous silicon (a-Si:H) thin films using various hydrogen dilutions of precursor gases and on different substrates during plasma enhanced chemical vapor deposition. A procedure is developed for optimizing VIA model configurations by adjusting sampling depth into the film and the analyzed spectral range such that model fits with the lowest possible error function are achieved. The optimal VIA configurations are found to be different depending on hydrogen dilution, substrate composition, and instantaneous film thickness. A depth profile in the optical properties of the films is then extracted that results from a variation in an optical absorption broadening parameter in a parametric a-Si:H model as a function of film thickness during deposition. Previously identified relationships are used linking this broadening parameter to the overall shape of the optical properties. This parameter is observed to converge after about 2000-3000 Å of accumulated thickness in all layers, implying that similar order in the a-Si:H network can be reached after sufficient thicknesses. In the early stages of growth, however, significant variations in broadening resulting from substrate- and processing-induced order are detected and tracked as a function of bulk layer thickness yielding an optical property depth profile in the final film. The best results are achieved with the simplest film-on-substrate structures while limitations are identified in cases where films have been deposited on more complex substrate structures.
Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography.
Benoit a la Guillaume, Emilie; Bortolozzo, Umberto; Huignard, Jean-Pierre; Residori, Stefania; Ramaz, Francois
2013-02-01
Photorefractive Bi(12)SiO(20) single crystal is used for acousto-optic imaging in thick scattering media in the green part of the spectrum, in an adaptive speckle correlation configuration. Light fields at the output of the scattering sample exhibit typical speckle grains of 1 μm size within the volume of the nonlinear crystal. This heterogeneous illumination induces a complex refractive index structure without applying a reference beam on the crystal, leading to a self-referenced diffraction correlation scheme. We demonstrate that this simple and robust configuration is able to perform axially resolved ultrasound modulated optical tomography of thick scattering media with an improved optical etendue.
Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong
2014-11-07
We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.
Stress Compensating Multilayers
NASA Technical Reports Server (NTRS)
Broadway, David M.; Ramsey, Brian D.; O'dell, Stephen; Gurgew, Danielle
2017-01-01
We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.
Jonnal, Ravi S; Gorczynska, Iwona; Migacz, Justin V; Azimipour, Mehdi; Zawadzki, Robert J; Werner, John S
2017-09-01
Optical coherence tomography's (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT. Using AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject. Band 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements. Band 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length.
Jonnal, Ravi S.; Gorczynska, Iwona; Migacz, Justin V.; Azimipour, Mehdi; Zawadzki, Robert J.; Werner, John S.
2017-01-01
Purpose Optical coherence tomography's (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT. Methods Using AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject. Results Band 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements. Conclusions Band 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length. PMID:28877320
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, V I; Glebov, V N; Malyutin, A M
2015-09-30
A method based on resonant excitation of waveguide modes with a prism coupler is proposed for measuring the thickness and refractive index of thin-film layers in multilayer dielectric structures. The peculiarities of reflection of TE- and TM-polarised light beams from a structure comprising eleven alternating layers of zinc sulfide (ZnS) and magnesium barium fluoride (MgBaF{sub 4}), whose thicknesses are much less than the wavelength of light, are investigated. Using the mathematical model developed, we have calculated the coefficients of reflection of collimated TE and TM light beams from a multilayer structure and determined the optical constants and thicknesses of themore » structure layers. The refractive indices of the layers, obtained for TE and TM polarisation of incident light, are in good agreement. The thicknesses of ZnS and MgBaF{sub 4} layers, found for different polarisations, coincide with an accuracy of ±1%. Thus, we have demonstrated for the first time that the prism-coupling technique allows one to determine the optical properties of thin-film structures when the number of layers in the structure exceeds ten layers. (integrated optics)« less
Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin
2017-01-01
We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films. PMID:28772586
Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Li, Dahai; Song, Xiongfei; Xu, Jiping; Wang, Ziyi; Zhang, Rongjun; Zhou, Peng; Zhang, Hao; Huang, Renzhong; Wang, Songyou; Zheng, Yuxiang; Zhang, David Wei; Chen, Liangyao
2017-11-01
As a promising candidate for applications in future electronic and optoelectronic devices, MoS2 has been a research focus in recent years. Therefore, investigating its optical properties is of practical significance. Here we synthesized different MoS2 thin films with quantitatively controlled thickness and sizable thickness variation, which is vital to find out the thickness-dependent regularity. Afterwards, several characterization methods, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Raman spectroscopy, photoluminescence (PL), optical absorption spectra, and spectroscopic ellipsometry (SE), were systematically performed to character the optical properties of as-grown samples. Accurate dielectric constants of MoS2 are obtained by fitting SE data using point-by-point method, and precise energies of interband transitions are directly extracted from the Lorentz dispersion model. We assign these energies to different interband electronic transitions between the valence bands and conduction bands in the Brillouin zone. In addition, the intrinsic physical mechanisms existing in observed phenomena are discussed in details. Results derived from this work are reliable and provide a better understanding of MoS2, which can be expected to help people fully employ its potential for wider applications.
NASA Astrophysics Data System (ADS)
El-Gendy, Y. A.
2017-12-01
Tin monoxide (SnO) films of different thickness have been deposited onto glass substrates at vacuum pressure of ∼ 8 × 10-6 mbar using an e-beam evaporation system. A hot probe test revealed that the deposited films showed p-type conduction. The structure characterization and phase purity of the deposited films was confirmed using X-ray diffraction (XRD) and Raman spectroscopy. The optical transmission and reflection spectra of the deposited films recorded in the wavelength range 190-2500 nm were used to calculate the optical constants employing the Murmann's exact equations. The refractive index dispersion was adequately described by the well-known effective-single-oscillator model proposed by Wemple-DiDomenico, whereby the dispersion parameters were calculated. The nonlinear refractive index and nonlinear optical susceptibility of the deposited films were successfully evaluated using the Miller empirical relations. The lattice dielectric constant and the carrier concentration to the effective mass ratio were also calculated as a function of film thickness using the Spitzer and Fan model. The variation of the optical band gap of the deposited films as a function of film thickness was also presented.
NASA Technical Reports Server (NTRS)
Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.
2004-01-01
Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.
Analysis of Polder Polarization Measurements During Astex and Eucrex Experiments
NASA Technical Reports Server (NTRS)
Chen, Hui; Han, Qingyuan; Chou, Joyce; Welch, Ronald M.
1997-01-01
Polarization is more sensitive than intensity to cloud microstructure such as the particle size and shape, and multiple scattering does not wash out features in polarization as effectively as it does in the intensity. Polarization measurements, particularly in the near IR, are potentially a valuable tool for cloud identification and for studies of the microphysics of clouds. The POLDER instrument is designed to provide wide field of view bidirectional images in polarized light. During the ASTEX-SOFIA campaign on June 12th, 1992, over the Atlantic Ocean (near the Azores Islands), images of homogeneous thick stratocumulus cloud fields were acquired. During the EUCREX'94 (April, 1994) campaign, the POLDER instrument was flying over the region of Brittany (France), taking observations of cirrus clouds. This study involves model studies and data analysis of POLDER observations. Both models and data analysis show that POLDER can be used to detect cloud thermodynamic phases. Model results show that polarized reflection in the Lamda =0.86 micron band is sensitive to cloud droplet sizes but not to cloud optical thickness. Comparison between model and data analysis reveals that cloud droplet sizes during ASTEX are about 5 microns, which agrees very well with the results of in situ measurements (4-5 microns). Knowing the retrieved cloud droplet sizes, the total reflected intensity of the POLDER measurements then can be used to retrieve cloud optical thickness. The close agreement between data analysis and model results during ASTEX also suggests the homogeneity of the cloud layer during that campaign.
Surface plasmon-assisted microscope.
Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal; Joshi, Chaitanya R; Borgmann, Kathleen; Ghorpade, Anuja; Gryczynski, Ignacy
2018-06-01
Total internal reflection microscopy (TIRF) has been a powerful tool in biological research. The most valuable feature of the method has been the ability to image 100- to 200-nm-thick layer of cell features adjacent to a coverslip, such as membrane lipids, membrane receptors, and structures proximal-to-basal membranes. Here, we demonstrate an alternative method of imaging thin-layer proximal-to-basal membranes by placing a sample on a high refractive index coverslip covered by a thin layer of gold. The sample is illuminated using the Kretschmann method (i.e., from the top to an aqueous medium). Fluorophores that are close to the metal surface induce surface plasmons in the metal film. Fluorescence from fluorophores near the metal surface couple with surface plasmons allowing them to penetrate the metal surface and emerge at a surface plasmon coupled emission angle. The thickness of the detection layer is further reduced in comparison with TIRF by metal quenching of fluorophores at a close proximity (below 10 nm) to a surface. Fluorescence is collected by a high NA objective and imaged by EMCCD or converted to a signal by avalanche photodiode fed by a single-mode optical fiber inserted in the conjugate image plane of the objective. The system avoids complications of through-the-objective TIRF associated with shared excitation and emission light path, has thin collection thickness, produces excellent background rejection, and is an effective method to study molecular motion. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Prediction of the limit of detection of an optical resonant reflection biosensor.
Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong
2007-07-09
A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.
2007-01-01
3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.
120nm resolution in thick samples with structured illumination and adaptive optics
NASA Astrophysics Data System (ADS)
Thomas, Benjamin; Sloan, Megan; Wolstenholme, Adrian J.; Kner, Peter
2014-03-01
μLinear Structured Illumination Microscopy (SIM) provides a two-fold increase over the diffraction limited resolution. SIM produces excellent images with 120nm resolution in tissue culture cells in two and three dimensions. For SIM to work correctly, the point spread function (PSF) and optical transfer function (OTF) must be known, and, ideally, should be unaberrated. When imaging through thick samples, aberrations will be introduced into the optical system which will reduce the peak intensity and increase the width of the PSF. This will lead to reduced resolution and artifacts in SIM images. Adaptive optics can be used to correct the optical wavefront restoring the PSF to its unaberrated state, and AO has been used in several types of fluorescence microscopy. We demonstrate that AO can be used with SIM to achieve 120nm resolution through 25m of tissue by imaging through the full thickness of an adult C. elegans roundworm. The aberrations can be corrected over a 25μm × 45μm field of view with one wavefront correction setting, demonstrating that AO can be used effectively with widefield superresolution techniques.
Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model
NASA Technical Reports Server (NTRS)
Baker, P. L.; Burton, W. B.
1975-01-01
High-resolution 21-cm hydrogen line observations at low galactic latitude are analyzed to determine the large-scale distribution of galactic hydrogen. Distribution parameters are found by model fitting, optical depth effects are computed using a two-component gas model suggested by the observations, and calculations are made for a one-component uniform spin-temperature gas model to show the systematic departures between this model and data obtained by incorrect treatment of the optical depth effects. Synthetic 21-cm line profiles are computed from the two-component model, and the large-scale trends of the observed emission profiles are reproduced together with the magnitude of the small-scale emission irregularities. Values are determined for the thickness of the galactic hydrogen disk between half density points, the total observed neutral hydrogen mass of the galaxy, and the central number density of the intercloud hydrogen atoms. It is shown that typical hydrogen clouds must be between 1 and 13 pc in diameter and that optical thinness exists on large-scale despite the presence of optically thin gas.
Resonant optical tunneling-induced enhancement of the photonic spin Hall effect
NASA Astrophysics Data System (ADS)
Jiang, Xing; Wang, Qingkai; Guo, Jun; Zhang, Jin; Chen, Shuqing; Dai, Xiaoyu; Xiang, Yuanjiang
2018-04-01
Due to the quantum analogy with optics, the resonant optical tunneling effect (ROTE) has been proposed to investigate both the fundamental physics and the practical applications of optical switches and liquid refractive index sensors. In this paper, the ROTE is used to enhance the spin Hall effect (SHE) of transmitted light. It is demonstrated that sandwiching a layer of a high-refractive-index medium (boron nitride crystal) between two low-refractive-index layers (silica) can effectively enhance the photonic SHE due to the increased refractive index gradient and an enhanced evanescent field near the interface between silica and boron nitride. A maximum transverse shift of the horizontal polarization state in the ROTE structure of about 22.25 µm has been obtained, which is at least three orders of magnitude greater than the transverse shift in the frustrated total internal reflection structure. Moreover, the SHE can be manipulated by controlling the component materials and the thickness of the ROTE structure. These findings open the possibility for future applications of photonic SHE in precision metrology and spin-based photonics.
Lin, Zhongjing; Huang, Shouyue; Huang, Ping; Guo, Lei; Shen, Xi; Zhong, Yisheng
2017-01-01
To evaluate the quantitative characteristics of choroidal thickness in primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) and in normal eyes using spectral-domain optical coherence tomography (SD-OCT). To evaluate the diagnostic ability of choroidal thickness in glaucoma and to determine the correlation between choroidal thickness and visual field parameters in glaucoma. A total of 116 subjects including 40 POAG, 30 NTG and 46 healthy subjects were enrolled in this study. Choroidal thickness measurements were acquired in the macular and peripapillary regions using SD-OCT. All subjects underwent white-on-white (W/W) and blue-on-yellow (B/Y) visual field tests using Humphrey Field Analyzer. The receiver operating characteristic (ROC) curve and the area under curve (AUC) were generated to assess the discriminating power of choroidal thickness for glaucoma. Pearson's correlation coefficients were calculated to assess the structure function correlation for glaucoma patients. No significant differences were observed for macular choroidal thickness among the different groups (all P > 0.05). Regarding the peripapillary choroidal thickness (PPCT), significant differences were observed among the three groups (all P < 0.05). Post hoc tests for multiple comparisons revealed a significant difference in the NTG-normal comparison group (all P < 0.01). The inferior and temporal PPCT in POAG patients were significantly thinner than those in normal subjects (P = 0.007, P = 0.002, respectively). Different parameters of PPCT showed significantly low diagnostic values to detect POAG from normal subjects (AUC: 0.555 to 0.652) and to discriminate NTG from POAG (AUC: 0.462 to 0.702), but moderate diagnostic power to detect NTG from normal subjects (AUC: 0.708 to 0.771). Regarding the diagnosis of early glaucoma, different parameters of PPCT showed relatively low diagnostic power (AUC: 0.606 to 0.698). In all the glaucoma subjects, PPCT was not significantly correlated with W/W mean deviation (MD) (all P > 0.05), but showed significant correlations with B/Y MD (all P < 0.05). In the early glaucomatous eyes, PPCT showed significant correlations with W/W MD and B/Y MD (all P < 0.05). In our study, peripapillary choroidal thickness measured on OCT showed a low to moderate but statistically significant diagnostic power and a significant correlation with blue-on-yellow visual field indices in glaucoma. This may indicate a potential adjunct for peripapillary choroidal thickness in glaucoma diagnosis.
Influence of wildfires in the boreal forests of Eastern Siberia on atmospheric aerosol parameters
NASA Astrophysics Data System (ADS)
Tomshin, Oleg A.; Solovyev, Vladimir S.
2017-11-01
The results of studies of the dynamics of forest fires in the boreal forests of Yakutia (Eastern Siberia) for 2001-2016 are presented. Variations of aerosol optical thickness (AOT), aerosol index (AI) and total carbon monoxide content during May-September were studied depending on the different forest fire activity level. It is shown that the seasonal variations of AOT, AI and CO in the most fire-dangerous years differ significantly from the fire seasons when forest fire activity was medium or low.
Sung, Mi-Sun; Kang, Byung-Wan; Kim, Hwang-Gyun; Heo, Hwan; Park, Sang-Woo
2014-08-01
To evaluate the repeatability and diagnostic power of macular ganglion cell complex (mGCC) thickness and peripapillary retinal nerve fiber layer (pRNFL) thickness using a spectral domain-optical coherence tomography in advanced glaucoma. Forty advanced glaucoma patients were enrolled. Patients were divided into 2 groups of 20 patients each, according to the MD between -20 and -10 dB, and <-20 dB. The thickness of mGCC and pRNFL were measured with spectral domain-optical coherence tomography in both the groups. The repeatability of each parameter was assessed in both the groups, and the diagnostic power of each parameter was compared with the normal controls. Comparison of diagnostic power between the pRNFL and mGCC parameters revealed that the area under the receiver operating characteristic curve was not significantly different in patients with advanced glaucoma. The repeatability of pRNFL parameters was similar, irrespective of the severity of glaucoma. However, the repeatability of mGCC parameters became lower as the severity increased in patients with advanced glaucoma. In advanced glaucoma, the measurement of mGCC thickness has similar diagnostic power as the measurement of pRNFL thickness. However, the measurement of mGCC thickness showed a lower repeatability as MD decreased.
NASA Astrophysics Data System (ADS)
Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Harsha, Cirandur Sri; Reddy, V. Rajagopal; Lee, Sung-Nam; Won, Jonghan; Choi, Chel-Jong
2018-02-01
Effects of the thickness of copper phthalocyanine (CuPc) film (2, 5, 10, 15, 20, 30 and 40 nm) on the surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction have been investigated. The optical band gap of CuPc film was increased with increase in the thickness of the CuPc film. The electrical properties of the Au/n-Si Schottky junction and Au/CuPc/n-Si heterojunctions were characterized by current-voltage ( I-V) and capacitance-voltage ( C-V) measurements. The barrier height, ideality factor and series resistance were estimated based on the I-V, Cheung's and Norde's methods. The barrier heights increased with increasing CuPc interlayer thickness up to 15 nm and remained constant for thickness above 20 nm, associated with the incapability of the generated carriers to reach the interface. The discrepancy in the barrier heights obtained from I-V and C-V measurements indicates the presence of barrier inhomogeneity at the interface as evidenced by higher ideality factor values. It can be concluded that the electrical properties of Au/n-Si Schottky junction can be significantly altered with the variation of CuPc thickness as interlayer.
NASA Astrophysics Data System (ADS)
Huang, Jinxin; Yuan, Qun; Tankam, Patrice; Clarkson, Eric; Kupinski, Matthew; Hindman, Holly B.; Aquavella, James V.; Rolland, Jannick P.
2015-03-01
In biophotonics imaging, one important and quantitative task is layer-thickness estimation. In this study, we investigate the approach of combining optical coherence tomography and a maximum-likelihood (ML) estimator for layer thickness estimation in the context of tear film imaging. The motivation of this study is to extend our understanding of tear film dynamics, which is the prerequisite to advance the management of Dry Eye Disease, through the simultaneous estimation of the thickness of the tear film lipid and aqueous layers. The estimator takes into account the different statistical processes associated with the imaging chain. We theoretically investigated the impact of key system parameters, such as the axial point spread functions (PSF) and various sources of noise on measurement uncertainty. Simulations show that an OCT system with a 1 μm axial PSF (FWHM) allows unbiased estimates down to nanometers with nanometer precision. In implementation, we built a customized Fourier domain OCT system that operates in the 600 to 1000 nm spectral window and achieves 0.93 micron axial PSF in corneal epithelium. We then validated the theoretical framework with physical phantoms made of custom optical coatings, with layer thicknesses from tens of nanometers to microns. Results demonstrate unbiased nanometer-class thickness estimates in three different physical phantoms.
Retinal thickness changes after phacoemulsification
Pardianto, Gede; Moeloek, Nila; Reveny, Julia; Wage, Sutarman; Satari, Imsyah; Sembiring, Rosita; Srisamran, Nuttamon
2013-01-01
Purpose To determine the effect of phacoemulsification on macular volume and thickness using spectral domain optical coherence tomography examinations. Methods Twenty-seven eyes of 27 subjects who underwent phacoemulsification were studied. All nine areas of the macula were examined by spectral domain optical coherence tomography preoperatively and 2 months postoperatively. Effective phacoemulsification time and absolute phacoemulsification time were also recorded. Results There were statistically significant differences in macular thickness between preoperative and postoperative spectral domain optical coherence tomography examinations in nine areas including macular volume. In the paracentral macular area, the thickness of three quadrants significantly increased (superior P=0.015; temporal P=0.001; and nasal P=0.023). Peripheral macular thickness also increased significantly in the superior (P=0.05) and temporal macular areas (P<0.001). The macular volume increased significantly after phacoemulsification (P<0.001). There were no correlations between absolute/effective phacoemulsification time and macular cellular structures (P>0.05), but a significant correlation (P=0.011) was found between absolute phacoemulsification time and change in macular volume. Conclusion Macular thickness changes in the nasal, superior, and temporal quadrants of the paracentral area and the superior and temporal quadrants of the peripheral area, as well as macular volume, may be used as detailed biomarkers to measure the effects of intraocular pressure fluctuations and maneuvers in phacoemulsification intraocular surgeries. PMID:24235812
Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks
NASA Technical Reports Server (NTRS)
Somerville, Richard C. J.; Iacobellis, Sam
1987-01-01
The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.
NASA Astrophysics Data System (ADS)
Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio
2010-07-01
In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.
NASA Astrophysics Data System (ADS)
Matinfar, Mehdi D.; Salehi, Jawad A.
2009-11-01
In this paper we analytically study and evaluate the performance of a Spectral-Phase-Encoded Optical CDMA system for different parameters such as the user's code length and the number of users in the network. In this system an advanced receiver structure in which the Second Harmonic Generation effect imposed in a thick crystal is employed as the nonlinear pre-processor prior to the conventional low speed photodetector. We consider ASE noise of the optical amplifiers, effective in low power conditions, besides the multiple access interference (MAI) noise which is the dominant source of noise in any OCDMA communications system. We use the results of the previous work which we analyzed the statistical behavior of the thick crystals in an optically amplified digital lightwave communication system to evaluate the performance of the SPE-OCDMA system with thick crystals receiver structure. The error probability is evaluated using Saddle-Point approximation and the approximation is verified by Monte-Carlo simulation.
NASA Astrophysics Data System (ADS)
Teh, Yen Chin; Saif, Ala'eddin A.; Azhar Zahid Jamal, Zul; Poopalan, Prabakaran
2017-11-01
Ba0.9Gd0.1TiO3 thin films have been fabricated on SiO2/Si and fused silica by sol-gel method. The films are prepared through a spin coating process and annealed at 900 °C to obtain crystallized films. The effect of film thickness on the microstructure and optical band gap has been investigated using X-ray diffractometer, atomic force microscope and ultraviolet-visible spectroscopy, respectively. XRD patterns confirm that the films crystallized with tetragonal phase perovskite structure. The films surface morphology is analysed through amplitude parameter analysis to find out that the grain size and surface roughness are increased with the increase of films thickness. The transmittance and absorbance spectra reveal that all films exhibit high absorption in UV region. The evaluated optical band gap is obtained in the range of 3.67 - 3.78 eV and is found to be decreased as the thickness increase.
Measurement of refractive index of photopolymer for holographic gratings
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Mizuno, Jun; Fujikawa, Chiemi; Kodate, Kashiko
2007-02-01
We have made attempts to measure directly the small-scale variation of optical path lengths in photopolymer samples. For those with uniform thickness, the measured quantity is supposed to be proportional to the refractive index of the photopolymer. The system is based on a Mach-Zehnder interferometer using phase-locking technique and measures the change in optical path length during the sample is scanned across the optical axis. The spatial resolution is estimated to be 2μm, which is limited by the sample thickness. The path length resolution is estimated to be 6nm, which corresponds to the change in refractive index less than 10 -3 for the sample of 10μm thick. The measurement results showed clearly that the refractive index of photopolymer is not simply proportional to the exposure energy, contrary to the conventional photosensitive materials such as silver halide emulsion and dichromated gelatine. They also revealed the refractive index fluctuation in uniformly exposed photopolymer sample, which explains the milky appearance that sometimes observed in thick samples.
Coman, Laurenţiu; Costescu, Monica; Alecu, Mihail; Coman, Oana Andreia
2014-01-01
The purpose of this study was to evaluate the relationship between central corneal thickness (CCT) and optic disc morphology in normal tension glaucoma (NTG). Patients with NTG underwent eye examination, optic disc imaging with Heildelberg Retina Tomograph II (HRT II) and ultrasound corneal pachymetry. The morphological parameters of the optic discs were used to classify the eyes into four groups: generalized enlargement (GE) type, myopic glaucomatous (MY) type, focal ischemic (FI) type and senile sclerotic (SS) type. A correlation between CCT and optic disc morphology obtained by HRT II was calculated. Multiple comparison and post hoc tests were performed in order to determine the significance of the differences between the four groups. The strongest correlation was between CCT and the parameters of optic disc imaging obtained at HRT II in the GE type of optic disc.
Akçam, H T; Capraz, I Y; Aktas, Z; Batur Caglayan, H Z; Ozhan Oktar, S; Hasanreisoglu, M; Irkec, C
2014-01-01
Purpose To compare both retinal nerve fiber layer thickness and orbital color Doppler ultrasonography parameters in patients with multiple sclerosis (MS) versus healthy controls. Methods This is an observational case–control study. Forty eyes from MS patients and twenty eyes from healthy volunteers were examined. Eyes were classified into three groups as group 1, eyes from MS patients with previous optic neuritis (n=20); group 2, eyes from MS patients without previous optic neuritis (n=20); and group 3, eyes from healthy controls (n=20). Following complete ophthalmologic examination and retinal nerve fiber layer thickness measurement for each group, blood flow velocities of posterior ciliary arteries, central retinal artery, ophthalmic artery, and superior ophthalmic vein were measured. Pourcelot index (resistive index), an indicator of peripheral vascular resistance, was also calculated. The statistical assessment was performed with the assistance of Pearson's Chi-square test, Mann–Whitney U-test, Kruskal–Wallis test, and Spearman's correlation test. Results The studied eyes exposed similar values in terms of intraocular pressure and central corneal thickness, implying no evidence in favor of glaucoma. All nerve fiber layer thickness values, except superior nasal quadrants, in group 1 were found to be significantly thinner than groups 2 and 3. Blood flow velocity and mean resistivity index parameters were similar in all the groups. Conclusions In MS patients, especially with previous optic neuritis, diminished retinal nerve fiber layer thickness was observed. Contrary to several studies in the current literature, no evidence supporting potential vascular origin of ocular involvement in MS was found. PMID:25081285
NASA Astrophysics Data System (ADS)
Gorgolis, S.; Giannopoulou, A.; Anastassopoulos, D.; Kounavis, P.
2012-07-01
Photocurrent response, optical absorption, and x-ray diffraction (XRD) measurements in pentacene films grown on glass substrates are performed in order to obtain an insight into the mobile photocarriers generation mechanism. For film thickness of the order of 50 nm and lower, the photocurrent response spectra are found to follow the optical absorption spectra demonstrating the so-called symbatic response. Upon increasing the film thickness, the photoresponse demonstrates a transition to the so-called antibatic response, which is characterized by a maximum and minimum photocurrent for photon energies of minimum and maximum optical absorption, respectively. The experimental results are not in accordance with the model of important surface recombination rate. By taking into account the XRD patterns, the experimental photoresponse spectra can be reproduced by model simulations assuming efficient exciton dissociation at a narrow layer of the order of 20 nm near the pentacene-substrate interface. The simulated spectra are found sensitive to the film thickness, the absolute optical absorption coefficient, and the diffusion exciton length. By comparing the experimental with the simulated spectra, it is deduced that the excitons, which are created by optical excitation in the spectral region of 1.7-2.2 eV, diffuse with a diffusion length of the order of 10-80 nm to the pentacene-substrate interface where efficiently dissociate into mobile charge carriers.
FIBER AND INTEGRATED OPTICS: Optimization of optical film waveguides
NASA Astrophysics Data System (ADS)
Adamson, P. V.
1990-10-01
Theoretical investigations were made of the possibility of optimization of the effective thickness, of the optical confinement factor Γ1, and of the birefringence of a planar dielectric waveguide as a function of the waveguide parameter V and the waveguide asymmetry. For a given value of V it is possible to ensure higher values of Γ1, for an asymmetric waveguide than for a symmetric one. An approximate expression is proposed for the factor Γ1, of an asymmetric waveguide directly in terms of its thickness and the refractive indices of the layers.
NASA Astrophysics Data System (ADS)
Park, Jeong Yeon; Lee, Jeong Won; Heo, Young Moo; Won, Si Tae; Yoon, Gil Sang
2016-03-01
The conventional method of making a phosphor layer on the LED package by using a dispensing method is difficult to implement the specific color coordinate, color temperature and optical efficiency because the thickness of the phosphor layer is non-uniform due to precipitation of the phosphor. Besides, the dispensing method consume a large amount of phosphor and silicone to fill the LED package. Thus, studies that manufacture phosphor layer with a uniform thickness such as spray coating, screen printing, electrophoresis are active recently. The purpose of this study is to perform the basic research about the change of the characteristics of phosphor film that is molded with uniform thickness using the phosphor slurry according to various silicone resin and phosphor composition ratio. It is expected to be used as useful information for the fabricating properties when production environment of phosphor layer is changed dispensing method into phosphor film fabrication. In the experiment, it was selected three kinds of methyl-phenyl silicone based resin as the phosphor slurry constituents, and mixed with phosphor various amount of 20 ˜ 60wt% content per one silicone resin. Using this mixed phosphor slurry, it was molded the phosphor film with 300 μm thickness and analyzed the mechanical properties and optical properties of the phosphor film. Finally, the results of this study are presented below: (a) As the phenyl group content is increased, the total heat of reaction need to cure the silicone resin is decrease, and also lower the durometer hardness of the phosphor sheet. On the other hand, it was confirmed that there is no relationship between the phenyl group content in the phosphor film and optical characteristics of the phosphor film. (b) If the amount of the phosphor within the film are increased, then the values of shore hardness and CIE color coordinates are increased gradually but the value of CIE color temperature is decreased gradually in case of being applied same silicone resin to the phosphor film.
El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N
2003-11-01
To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.
A polarization measurement method for the quantification of retardation in optic nerve fiber layer
NASA Astrophysics Data System (ADS)
Fukuma, Yasufumi; Okazaki, Yoshio; Shioiri, Takashi; Iida, Yukio; Kikuta, Hisao; Ohnuma, Kazuhiko
2008-02-01
The thickness measurement of the optic nerve fiber layer is one of the most important evaluations for carrying out glaucoma diagnosis. Because the optic nerve fiber layer has birefringence, the thickness can be measured by illuminating eye optics with circular polarized light and analyzing the elliptical rate of the detected polarized light reflected from the optic nerve fiber layer. In this method, the scattering light from the background and the retardation caused by the cornea disturbs the precise measurement. If the Stokes vector expressing the whole state of polarization can be detected, we can eliminate numerically the influence of the background scattering and of the retardation caused by the cornea. Because the retardation process of the eye optics can be represented by a numerical equation using the retardation matrix of each component and also the nonpolarized background scattering light, it can be calculated by using the Stokes vector. We applied a polarization analysis system that can detect the Stokes vector onto the fundus camera. The polarization analysis system is constructed with a CCD area image sensor, a linear polarizing plate, a micro phase plate array, and a circularly polarized light illumination unit. With this simply constructed system, we can calculate the retardation caused only by the optic nerve fiber layer and it can predict the thickness of the optic nerve fiber layer. We report the method and the results graphically showing the retardation of the optic nerve fiber layer without the retardation of the cornea.
NASA Astrophysics Data System (ADS)
Karlsson, Karl-Göran; Håkansson, Nina
2018-02-01
The sensitivity in detecting thin clouds of the cloud screening method being used in the CM SAF cloud, albedo and surface radiation data set from AVHRR data (CLARA-A2) cloud climate data record (CDR) has been evaluated using cloud information from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite. The sensitivity, including its global variation, has been studied based on collocations of Advanced Very High Resolution Radiometer (AVHRR) and CALIOP measurements over a 10-year period (2006-2015). The cloud detection sensitivity has been defined as the minimum cloud optical thickness for which 50 % of clouds could be detected, with the global average sensitivity estimated to be 0.225. After using this value to reduce the CALIOP cloud mask (i.e. clouds with optical thickness below this threshold were interpreted as cloud-free cases), cloudiness results were found to be basically unbiased over most of the globe except over the polar regions where a considerable underestimation of cloudiness could be seen during the polar winter. The overall probability of detecting clouds in the polar winter could be as low as 50 % over the highest and coldest parts of Greenland and Antarctica, showing that a large fraction of optically thick clouds also remains undetected here. The study included an in-depth analysis of the probability of detecting a cloud as a function of the vertically integrated cloud optical thickness as well as of the cloud's geographical position. Best results were achieved over oceanic surfaces at mid- to high latitudes where at least 50 % of all clouds with an optical thickness down to a value of 0.075 were detected. Corresponding cloud detection sensitivities over land surfaces outside of the polar regions were generally larger than 0.2 with maximum values of approximately 0.5 over the Sahara and the Arabian Peninsula. For polar land surfaces the values were close to 1 or higher with maximum values of 4.5 for the parts with the highest altitudes over Greenland and Antarctica. It is suggested to quantify the detection performance of other CDRs in terms of a sensitivity threshold of cloud optical thickness, which can be estimated using active lidar observations. Validation results are proposed to be used in Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulation Package (COSP) simulators for cloud detection characterization of various cloud CDRs from passive imagery.
Fiber-Optic Sensor Would Monitor Growth of Polymer Film
NASA Technical Reports Server (NTRS)
Beamesderfer, Michael
2005-01-01
A proposed optoelectronic sensor system would measure the increase in thickness of a film of parylene (a thermoplastic polymer made from para-xylene) during growth of the film in a vapor deposition process. By enabling real-time monitoring of film thickness, the system would make it possible to identify process conditions favorable for growth and to tailor the final thickness of the film with greater precision than is now possible. The heart of the sensor would be a pair of fiber-optic Fabry-Perot interferometers, depicted schematically in the figure. (In principle, a single such interferometer would suffice. The proposal calls for the use of two interferometers for protective redundancy and increased accuracy.) Each interferometer would include a light source, a fiber-optic coupler, and photodetectors in a control box outside the deposition chamber. A single-mode optical fiber for each interferometer would run from inside the control box to a fused-silica faceplate in a sensor head. The sensory tips of the optical fibers would be polished flush with the free surface of the faceplate. In preparation for use, the sensor head would be mounted with a hermetic seal in a feed-through port in the deposition chamber, such that free face of the faceplate and the sensory tips of the optical fibers would be exposed to the deposition environment. During operation, light would travel along each optical fiber from the control box to the sensor head. A small portion of the light would be reflected toward the control box from the end face of each fiber. Once growth of the parylene film started, a small portion of the light would also be reflected toward the control box from the outer surface of the film. In the control box, the two reflected portions of the light beam would interfere in one of the photodetectors. The difference between the phases of the interfering reflected portions of the light beam would vary in proportion to the increasing thickness of the film and the known index of refraction of the film, causing the photodetector reading to vary in proportion to a known sinusoidal function of film thickness. Electronic means of monitoring this variation and the corresponding variation in phase and thickness are well established in the art of interferometry. Hence, by tracking the cumulative change in phase difference from the beginning of deposition, one could track the growing thickness of the film to within a small fraction of a wavelength of light.
Knight, O'Rese J; Girkin, Christopher A; Budenz, Donald L; Durbin, Mary K; Feuer, William J
2012-03-01
To determine the effect of race, demographic, and ocular variables on optic nerve head and retinal nerve fiber layer (RNFL) thickness measurements using spectral-domain optical coherence tomography. In a cross-sectional observational study, 284 normal subjects aged 18 to 84 years were evaluated at 7 sites using Cirrus HD-OCT. Disc area, rim area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and average, temporal, superior, nasal, and inferior RNFL thicknesses were calculated. The main outcome measures were associations between Cirrus HD-OCT optic nerve head and RNFL measurements and age, sex, and race. The 284 subjects self-identified as being of European (122), Chinese (63), African (51), or Hispanic (35) descent. After adjusting for the effect of age, there was a statistically significant difference among racial groups for all optic nerve head and RNFL parameters (all P ≤ .005) except rim area (P = .22). Rim area, average cup-disc ratio, vertical cup-disc ratio, and cup volume were moderately associated with disc area (r(2) = 0.15, 0.33, 0.33, and 0.37, respectively). After a linear adjustment for disc area, there was no statistically significant difference among racial groups for any optic nerve head parameter. Individuals of European descent had thinner RNFL measurements except in the temporal quadrant. There are racial differences in optic disc area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and RNFL thickness as measured by Cirrus HD-OCT. These differences should be considered when using Cirrus HD-OCT to assess for glaucomatous damage in differing population groups.
Knight, O’Rese J.; Girkin, Christopher A.; Budenz, Donald L.; Durbin, Mary K.; Feuer, William J.
2017-01-01
Objective To determine the effect of race, demographic, and ocular variables on optic nerve head and retinal nerve fiber layer (RNFL) thickness measurements using spectral-domain optical coherence tomography. Methods In a cross-sectional observational study, 284 normal subjects aged 18 to 84 years were evaluated at 7 sites using Cirrus HD-OCT. Disc area, rim area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and average, temporal, superior, nasal, and inferior RNFL thicknesses were calculated. The main outcome measures were associations between Cirrus HD-OCT optic nerve head and RNFL measurements and age, sex, and race. Results The 284 subjects self-identified as being of European (122), Chinese (63), African (51), or Hispanic (35) descent. After adjusting for the effect of age, there was a statistically significant difference among racial groups for all optic nerve head and RNFL parameters (all P≤.005) except rim area (P=.22). Rim area, average cup-disc ratio, vertical cup-disc ratio, and cup volume were moderately associated with disc area (r2=0.15, 0.33, 0.33, and 0.37, respectively). After a linear adjustment for disc area, there was no statistically significant difference among racial groups for any optic nerve head parameter. Individuals of European descent had thinner RNFL measurements except in the temporal quadrant. Conclusions There are racial differences in optic disc area, average cup-disc ratio, vertical cup-disc ratio, cup volume, and RNFL thickness as measured by Cirrus HD-OCT. These differences should be considered when using Cirrus HD-OCT to assess for glaucomatous damage in differing population groups. PMID:22411660
FIBER AND INTEGRATED OPTICS: Waveguide characteristics of real optical strip waveguides
NASA Astrophysics Data System (ADS)
Shmal'ko, A. V.; Frolov, V. V.
1990-01-01
A study is reported of the influence of the parameters of real thin-film optical strip waveguides on their waveguide characteristics (propagation constants, localization of the mode field, etc.) allowing for the presence of transition layers in a transverse cross section of the base planar waveguide, for the real geometry of this section (which is nearly trapezoidal), and for the thickness of the guiding strip. Analytic expressions are obtained for the optical confinement coefficient and the effective mode format of a weakly guiding symmetric strip waveguide. It is shown that the coefficient representing the fundamental E11x(y) mode is practically independent of the relative thickness t /h (h is the thickness of the base planar waveguide) of the guiding strip provided t /h>=0.5. The corrections to the normalized effective refractive indices of the base planar and strip waveguides are found in order to allow for the real geometry and for the refractive index profile in the strip waveguide.
Fiber optic interferometry for industrial process monitoring and control applications
NASA Astrophysics Data System (ADS)
Marcus, Michael A.
2002-02-01
Over the past few years we have been developing applications for a high-resolution (sub-micron accuracy) fiber optic coupled dual Michelson interferometer-based instrument. It is being utilized in a variety of applications including monitoring liquid layer thickness uniformity on coating hoppers, film base thickness uniformity measurement, digital camera focus assessment, optical cell path length assessment and imager and wafer surface profile mapping. The instrument includes both coherent and non-coherent light sources, custom application dependent optical probes and sample interfaces, a Michelson interferometer, custom electronics, a Pentium-based PC with data acquisition cards and LabWindows CVI or LabView based application specific software. This paper describes the development evolution of this instrument platform and applications highlighting robust instrument design, hardware, software, and user interfaces development. The talk concludes with a discussion of a new high-speed instrument configuration, which can be utilized for high speed surface profiling and as an on-line web thickness gauge.
Optical performances of the FM JEM-X masks
NASA Astrophysics Data System (ADS)
Reglero, V.; Rodrigo, J.; Velasco, T.; Gasent, J. L.; Chato, R.; Alamo, J.; Suso, J.; Blay, P.; Martínez, S.; Doñate, M.; Reina, M.; Sabau, D.; Ruiz-Urien, I.; Santos, I.; Zarauz, J.; Vázquez, J.
2001-09-01
The JEM-X Signal Multiplexing Systems are large HURA codes "written" in a pure tungsten plate 0.5 mm thick. 24.247 hexagonal pixels (25% open) are spread over a total area of 535 mm diameter. The tungsten plate is embedded in a mechanical structure formed by a Ti ring, a pretensioning system (Cu-Be) and an exoskeleton structure that provides the required stiffness. The JEM-X masks differ from the SPI and IBIS masks on the absence of a code support structure covering the mask assembly. Open pixels are fully transparent to X-rays. The scope of this paper is to report the optical performances of the FM JEM-X masks defined by uncertainties on the pixel location (centroid) and size coming from the manufacturing and assembly processes. Stability of the code elements under thermoelastic deformations is also discussed. As a general statement, JEM-X Mask optical properties are nearly one order of magnitude better than specified in 1994 during the ESA instrument selection.
Lee, Sang-Yoon; Lee, Eun Kyoung; Park, Ki Ho; Kim, Dong Myung; Jeoung, Jin Wook
2016-01-01
To report an asymmetry analysis of macular inner retinal layers using swept-source optical coherence tomography (OCT) and to evaluate the utility for glaucoma diagnosis. Observational, cross-sectional study. Seventy normal healthy subjects and 62 glaucoma patients. Three-dimensional scans were acquired from 70 normal subjects and 62 open angle glaucoma patients by swept-source OCT. The thickness of the retinal nerve fiber layer, ganglion cell-inner plexiform layer (GCIPL), ganglion cell complex, and total retina were calculated within a 6.2×6.2 mm macular area divided into a 31×31 grid of 200×200 μm superpixels. For each of the corresponding superpixels, the thickness differences between the subject eyes and contra-lateral eyes and between the upper and lower macula halves of the subject eyes were determined. The negative differences were displayed on a gray-scale asymmetry map. Black superpixels were defined as thickness decreases over the cut-off values. The negative inter-ocular and inter-hemisphere differences in GCIPL thickness (mean ± standard deviation) were -2.78 ± 0.97 μm and -3.43 ± 0.71 μm in the normal group and -4.26 ± 2.23 μm and -4.88 ± 1.46 μm in the glaucoma group. The overall extent of the four layers' thickness decrease was larger in the glaucoma group than in the normal group (all Ps<0.05). The numbers of black superpixels on all of the asymmetry maps were larger in the glaucoma group than in the normal group (all Ps<0.05). The area under receiver operating characteristic curves of average negative thickness differences in macular inner layers for glaucoma diagnosis ranged from 0.748 to 0.894. The asymmetry analysis of macular inner retinal layers showed significant differences between the normal and glaucoma groups. The diagnostic performance of the asymmetry analysis was comparable to that of previous methods. These findings suggest that the asymmetry analysis can be a potential ancillary diagnostic tool.
Lee, Sang-Yoon; Lee, Eun Kyoung; Park, Ki Ho; Kim, Dong Myung
2016-01-01
Purpose To report an asymmetry analysis of macular inner retinal layers using swept-source optical coherence tomography (OCT) and to evaluate the utility for glaucoma diagnosis. Design Observational, cross-sectional study. Participants Seventy normal healthy subjects and 62 glaucoma patients. Methods Three-dimensional scans were acquired from 70 normal subjects and 62 open angle glaucoma patients by swept-source OCT. The thickness of the retinal nerve fiber layer, ganglion cell-inner plexiform layer (GCIPL), ganglion cell complex, and total retina were calculated within a 6.2×6.2 mm macular area divided into a 31×31 grid of 200×200 μm superpixels. For each of the corresponding superpixels, the thickness differences between the subject eyes and contra-lateral eyes and between the upper and lower macula halves of the subject eyes were determined. The negative differences were displayed on a gray-scale asymmetry map. Black superpixels were defined as thickness decreases over the cut-off values. Results The negative inter-ocular and inter-hemisphere differences in GCIPL thickness (mean ± standard deviation) were -2.78 ± 0.97 μm and -3.43 ± 0.71 μm in the normal group and -4.26 ± 2.23 μm and -4.88 ± 1.46 μm in the glaucoma group. The overall extent of the four layers’ thickness decrease was larger in the glaucoma group than in the normal group (all Ps<0.05). The numbers of black superpixels on all of the asymmetry maps were larger in the glaucoma group than in the normal group (all Ps<0.05). The area under receiver operating characteristic curves of average negative thickness differences in macular inner layers for glaucoma diagnosis ranged from 0.748 to 0.894. Conclusions The asymmetry analysis of macular inner retinal layers showed significant differences between the normal and glaucoma groups. The diagnostic performance of the asymmetry analysis was comparable to that of previous methods. These findings suggest that the asymmetry analysis can be a potential ancillary diagnostic tool. PMID:27764166
Variable angle spectroscopic ellipsometric characterization of HfO2 thin film
NASA Astrophysics Data System (ADS)
Kumar, M.; Kumari, N.; Karar, V.; Sharma, A. L.
2018-02-01
Hafnium Oxide film was deposited on BK7 glass substrate using reactive oxygenated E-Beam deposition technique. The film was deposited using in-situ quartz crystal thickness monitoring to control the film thickness and rate of evaporation. The thin film was grown with a rate of deposition of 0.3 nm/s. The coated substrate was optically characterized using spectrophotometer to determine its transmission spectra. The optical constants as well as film thickness of the hafnia film were extracted by variable angle spectroscopic ellipsometry with Cauchy fitting at incidence angles of 65˚, 70˚ and 75˚.
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Shao, Wen; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2018-06-01
Silver thin films with linear variable thickness were deposited at room temperature. The corresponding tunability of optical properties and Raman scattering intensity were realized by thermal annealing process. With the thickness increasing, the topography of as-annealed silver thin films was observed to develop from discontinued nanospheres into continuous structure with a redshift of the surface plasmon resonance wavelength in visible region. Both the various nanosphere sizes and states of aggregation of as-annealed silver thin films contributed to significantly increasing the sensitivity of surface enhanced Raman scattering (SERS).
High-throughput measurement of polymer film thickness using optical dyes
NASA Astrophysics Data System (ADS)
Grunlan, Jaime C.; Mehrabi, Ali R.; Ly, Tien
2005-01-01
Optical dyes were added to polymer solutions in an effort to create a technique for high-throughput screening of dry polymer film thickness. Arrays of polystyrene films, cast from a toluene solution, containing methyl red or solvent green were used to demonstrate the feasibility of this technique. Measurements of the peak visible absorbance of each film were converted to thickness using the Beer-Lambert relationship. These absorbance-based thickness calculations agreed within 10% of thickness measured using a micrometer for polystyrene films that were 10-50 µm. At these thicknesses it is believed that the absorbance values are actually more accurate. At least for this solvent-based system, thickness was shown to be accurately measured in a high-throughput manner that could potentially be applied to other equivalent systems. Similar water-based films made with poly(sodium 4-styrenesulfonate) dyed with malachite green oxalate or congo red did not show the same level of agreement with the micrometer measurements. Extensive phase separation between polymer and dye resulted in inflated absorbance values and calculated thickness that was often more than 25% greater than that measured with the micrometer. Only at thicknesses below 15 µm could reasonable accuracy be achieved for the water-based films.
Wall thickness measuring method and apparatus
Salzer, L.J.; Bergren, D.A.
1987-10-06
An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.
Wall thickness measuring method and apparatus
Salzer, Leander J.; Bergren, Donald A.
1989-01-01
An apparatus for measuring the wall thickness of a nonmagnetic article having a housing supporting a magnet and a contiguous supporting surface. The tubular article and the housing are releasably secured to the supporting surface and a support member of an optical comparator, respectively. To determine the wall thickness of the article at a selected point, a magnetically responsive ball is positioned within the tubular article over said point and retained therein by means of a magnetic field produced by the magnet. Thereafter, an optical comparator is employed to project a magnified image of the ball on a screen and the wall thickness at the selected point is calculated by using a ball surface measurement taken with the comparator in conjunction with a previously determined base line measurement.
Rapidly Evolving Transients in the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pursiainen, M.; et al.
We present the results of a search for rapidly evolving transients in the Dark Energy Survey Supernova Programme. These events are characterized by fast light curve evolution (rise to peak inmore » $$\\lesssim 10$$ d and exponential decline in $$\\lesssim30$$ d after peak). We discovered 72 events, including 37 transients with a spectroscopic redshift from host galaxy spectral features. The 37 events increase the total number of rapid optical transients by more than factor of two. They are found at a wide range of redshifts ($0.05M_\\mathrm{g}>-22.25$$). The multiband photometry is well fit by a blackbody up to few weeks after peak. The events appear to be hot ($$T\\approx10000-30000$$ K) and large ($$R\\approx 10^{14}-2\\cdot10^{15}$$ cm) at peak, and generally expand and cool in time, though some events show evidence for a receding photosphere with roughly constant temperature. Spectra taken around peak are dominated by a blue featureless continuum consistent with hot, optically thick ejecta. We compare our events with a previously suggested physical scenario involving shock breakout in an optically thick wind surrounding a core-collapse supernova (CCSNe), we conclude that current models for such a scenario might need an additional power source to describe the exponential decline. We find these transients tend to favor star-forming host galaxies, which could be consistent with a core-collapse origin. However, more detailed modeling of the light curves is necessary to determine their physical origin.« less
NASA Astrophysics Data System (ADS)
Marszalek, K.; Jaglarz, J.; Sahraoui, B.; Winkowski, P.; Kanak, J.
2015-01-01
The aim of this paper is to study antireflective properties of the tree-layer systems LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 deposited on heated optical glass substrates. The films were evaporated by the use two deposition techniques. In first method oxide films were prepared by means of e-gun evaporation in vacuum of 5 × 10-5 mbar in the presence of oxygen. The second was used for the deposition of fluoride films. They were obtained by means of thermal source evaporation. Simulation of reflectance was performed for 1M2H1L (Quarter Wavelength Optical Thickness) film stack on an optical quartz glass with the refractive index n = 1.46. The layer thickness was optimized to achieve the lowest light scattering from glass surface covered with dioxide and fluoride films. The values of the interface roughness were determined through atomic force microscopy measurements. The essence of performed calculation was to find minimum reflectance of light in wide ultraviolet region. The spectral dispersion of the refractive index needed for calculations was determined from ellipsometric measurements using the spectroscopic ellipsometer M2000. Additionally, the total reflectance measurements in integrating sphere coupled with Perkin Elmer 900 spectrophotometer were performed. These investigations allowed to determine the influence of such film features like surface and interface roughness on light scattering.
Ice Cloud Optical Thickness and Extinction Estimates from Radar Measurements.
NASA Astrophysics Data System (ADS)
Matrosov, Sergey Y.; Shupe, Matthew D.; Heymsfield, Andrew J.; Zuidema, Paquita
2003-11-01
A remote sensing method is proposed to derive vertical profiles of the visible extinction coefficients in ice clouds from measurements of the radar reflectivity and Doppler velocity taken by a vertically pointing 35-GHz cloud radar. The extinction coefficient and its vertical integral, optical thickness τ, are among the fundamental cloud optical parameters that, to a large extent, determine the radiative impact of clouds. The results obtained with this method could be used as input for different climate and radiation models and for comparisons with parameterizations that relate cloud microphysical parameters and optical properties. An important advantage of the proposed method is its potential applicability to multicloud situations and mixed-phase conditions. In the latter case, it might be able to provide the information on the ice component of mixed-phase clouds if the radar moments are dominated by this component. The uncertainties of radar-based retrievals of cloud visible optical thickness are estimated by comparing retrieval results with optical thicknesses obtained independently from radiometric measurements during the yearlong Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. The radiometric measurements provide a robust way to estimate τ but are applicable only to optically thin ice clouds without intervening liquid layers. The comparisons of cloud optical thicknesses retrieved from radar and from radiometer measurements indicate an uncertainty of about 77% and a bias of about -14% in the radar estimates of τ relative to radiometric retrievals. One possible explanation of the negative bias is an inherently low sensitivity of radar measurements to smaller cloud particles that still contribute noticeably to the cloud extinction. This estimate of the uncertainty is in line with simple theoretical considerations, and the associated retrieval accuracy should be considered good for a nonoptical instrument, such as radar. This paper also presents relations between radar-derived characteristic cloud particle sizes and effective sizes used in models. An average relation among τ, cloud ice water path, and the layer mean value of cloud particle characteristic size is also given. This relation is found to be in good agreement with in situ measurements. Despite a high uncertainty of radar estimates of extinction, this method is useful for many clouds where optical measurements are not available because of cloud multilayering or opaqueness.
NASA Astrophysics Data System (ADS)
Shinbo, Kazunari; Uno, Akihiro; Hirakawa, Ryo; Baba, Akira; Ohdaira, Yasuo; Kato, Keizo; Kaneko, Futao
2013-05-01
In this study, we fabricated a novel quartz-crystal-microbalance (QCM)/optical-waveguide hybrid sensor. An in situ observation of a lead phthalocyanine (PbPc) thin-film deposition was conducted during vacuum evaporation, and the effectiveness of the sensor was demonstrated. The film thickness was obtained from the QCM frequency, and the optical absorption of the film was observed by optical waveguide spectroscopy using part of the QCM substrate without the electrode. The film absorption depends on the polarization direction, substrate temperature and deposition rate, owing to aggregate formation. The thickness dependence of the absorption property was also investigated.
NASA Astrophysics Data System (ADS)
Erken, Ozge; Gunes, Mustafa; Gumus, Cebrail
2017-04-01
Transparent ZnS:Mn thin films were produced by chemical bath deposition (CBD) technique at 80 °C for 4h, 6h and 8h durations. The optical properties such as optical transmittance (T %), reflectance (R %), extinction coefficient (k) and refractive index (n) were deeply investigated in terms of contribution ratio, wavelength and film thickness. The optical properties of ZnS:Mn thin films were determined by UV/vis spectrophotometer transmittance measurements in the range of λ=300-1100 nm. Optical transmittances of the films were found from 12% to 92% in the visible region. The refractive index (n) values for visible region were calculated as 1.34-5.09. However, film thicknesses were calculated between 50 and 901 nm by gravimetric analysis.
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir
2016-10-01
We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.
Shin, Il-Hwan; Lee, Woo-Hyuk; Lee, Jong-Joo; Jo, Young-Joon; Kim, Jung-Yeul
2018-02-01
To determine the repeatability of measuring the thickness of the central macula, retinal nerve fiber layer, and ganglion cell-inner plexiform layer (GC-IPL) using spectral domain optical coherence tomography (Cirrus HD-OCT) in eyes with age-related macular degeneration. One hundred and thirty-four eyes were included. The measurement repeatability was assessed by an experienced examiner who performed two consecutive measurements using a 512 × 128 macular cube scan and a 200 × 200 optic disk cube scan. To assess changes in macular morphology in patients with age-related macular degeneration, the patients were divided into the following three groups according to the central macular thickness (CMT): A group, CMT < 200 μm; B group, 200 μm ≤ CMT < 300 μm; and C group, CMT > 300 μm. Measurement repeatability was assessed using test-retest variability, a coefficient of variation, and an intraclass correlation coefficient. The mean measurement repeatability for the central macular, retinal nerve fiber layer, and GC-IPL thickness was high in the B group. The mean measurement repeatability for both the central macula and retinal nerve fiber layer thickness was high in the A and C groups, but was lower for the GC-IPL thickness. The measurement repeatability for GC-IPL thickness was high in the B group, but low in the A group and in the C group. The automated measurement repeatability for GC-IPL thickness was significantly lower in patients with age-related macular degeneration with out of normal CMT range. The effect of changes in macular morphology should be considered when analyzing GC-IPL thicknesses in a variety of ocular diseases.
NASA Astrophysics Data System (ADS)
Wyatt, M. C.; van Lieshout, R.; Kennedy, G. M.; Boyajian, T. S.
2018-02-01
This paper shows how the dips and secular dimming in the KIC8462852 light curve can originate in circumstellar material distributed around a single elliptical orbit (e.g. exocomets). The expected thermal emission and wavelength dependent dimming is derived for different orbital parameters and geometries, including dust that is optically thick to stellar radiation, and for a size distribution of dust with realistic optical properties. We first consider dust distributed evenly around the orbit, then show how to derive its uneven distribution from the optical light curve and to predict light curves at different wavelengths. The fractional luminosity of an even distribution is approximately the level of dimming times stellar radius divided by distance from the star at transit. Non-detection of dust thermal emission for KIC8462852 thus provides a lower limit on the transit distance to complement the 0.6 au upper limit imposed by 0.4 d dips. Unless the dust distribution is optically thick, the putative 16 per cent century-long secular dimming must have disappeared before the WISE 12 μm measurement in 2010, and subsequent 4.5 μm observations require transits at >0.05 au. However, self-absorption of thermal emission removes these constraints for opaque dust distributions. The passage of dust clumps through pericentre is predicted to cause infrared brightening lasting tens of days and dimming during transit, such that total flux received decreases at wavelengths <5 μm, but increases to potentially detectable levels at longer wavelengths. We suggest that lower dimming levels than seen for KIC8462852 are more common in the Galactic population and may be detected in future transit surveys.
Hong, Samin; Kim, Chan Yun; Lee, Won Seok; Seong, Gong Je
2010-01-01
To assess the reproducibility of the new spectral domain Cirrus high-definition optical coherence tomography (HD-OCT; Carl Zeiss Meditec, Dublin, CA, USA) for analysis of peripapillary retinal nerve fiber layer (RNFL) thickness in healthy eyes. Thirty healthy Korean volunteers were enrolled. Three optic disc cube 200 x 200 Cirrus HD-OCT scans were taken on the same day in discontinuous sessions by the same operator without using the repeat scan function. The reproducibility of the calculated RNFL thickness and probability code were determined by the intraclass correlation coefficient (ICC), coefficient of variation (CV), test-retest variability, and Fleiss' generalized kappa (kappa). Thirty-six eyes were analyzed. For average RNFL thickness, the ICC was 0.970, CV was 2.38%, and test-retest variability was 4.5 microm. For all quadrants except the nasal, ICCs were 0.972 or higher and CVs were 4.26% or less. Overall test-retest variability ranged from 5.8 to 8.1 microm. The kappa value of probability codes for average RNFL thickness was 0.690. The kappa values of quadrants and clock-hour sectors were lower in the nasal areas than in other areas. The reproducibility of Cirrus HD-OCT to analyze peripapillary RNFL thickness in healthy eyes was excellent compared with the previous reports for time domain Stratus OCT. For the calculated RNFL thickness and probability code, variability was relatively higher in the nasal area, and more careful analyses are needed.
NASA Astrophysics Data System (ADS)
Chander, Subhash; Dhaka, M. S.
2016-10-01
The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.
Optical coherence tomography for glaucoma diagnosis: An evidence based meta-analysis
Armstrong, James J.; Pintwala, Robert; Hutnik, Cindy
2018-01-01
Purpose Early detection, monitoring and understanding of changes in the retina are central to the diagnosis of glaucomatous optic neuropathy, and vital to reduce visual loss from this progressive condition. The main objective of this investigation was to compare glaucoma diagnostic accuracy of commercially available optical coherence tomography (OCT) devices (Zeiss Stratus, Zeiss Cirrus, Heidelberg Spectralis and Optovue RTVue, and Topcon 3D-OCT). Patients 16,104 glaucomatous and 11,543 normal eyes reported in 150 studies. Methods Between Jan. 2017 and Feb 2017, MEDLINE®, EMBASE®, CINAHL®, Cochrane Library®, Web of Science®, and BIOSIS® were searched for studies assessing glaucoma diagnostic accuracy of the aforementioned OCT devices. Meta-analysis was performed pooling area under the receiver operating characteristic curve (AUROC) estimates for all devices, stratified by OCT type (RNFL, macula), and area imaged. Results 150 studies with 16,104 glaucomatous and 11,543 normal control eyes were included. Key findings: AUROC of glaucoma diagnosis for RNFL average for all glaucoma patients was 0.897 (0.887–0.906, n = 16,782 patient eyes), for macula ganglion cell complex (GCC) was 0.885 (0.869–0.901, n = 4841 eyes), for macula ganglion cell inner plexiform layer (GCIPL) was 0.858 (0.835–0.880, n = 4211 eyes), and for total macular thickness was 0.795 (0.754–0.834, n = 1063 eyes). Conclusion The classification capability was similar across all 5 OCT devices. More diagnostically favorable AUROCs were demonstrated in patients with increased glaucoma severity. Diagnostic accuracy of RNFL and segmented macular regions (GCIPL, GCC) scans were similar and higher than total macular thickness. This study provides a synthesis of contemporary evidence with features of robust inclusion criteria and large sample size. These findings may provide guidance to clinicians when navigating this rapidly evolving diagnostic area characterized by numerous options. PMID:29300765
NASA Astrophysics Data System (ADS)
Nandur, Abhishek S.
Thin film solar cells are gaining momentum as a renewable energy source. Reduced material requirements (< 2 mum in total film thickness) coupled with fast, low-cost production processes make them an ideal alternative to Si (>15 mum in total thickness) solar cells. Among the various thin film solar absorbers that have been proposed, CZTS (Cu2ZnSnS4) has become the subject of intense interest because of its optimal band gap (1.45 eV), high absorption coefficient (104 cm--1 ) and abundant elemental components. Pulsed Laser Deposition (PLD) provides excellent control over film composition since films are deposited under high vacuum with excellent stoichiometry transfer from the target. Defect-free, near-stoichiometric poly-crystalline CZTS thin films were deposited using PLD from a stoichiometrically close CZTS target (Cu2.6Zn1.1Sn0.7S3.44). The effects of fabrication parameters such as laser energy density, deposition time, substrate temperature and sulfurization (annealing in sulfur) on the surface morphology, composition and optical absorption of the CZTS thin films were examined. The results show that the presence of secondary phases, present both in the bulk and on the surface, affected the electrical and optical properties of the CZTS thin films and the CZTS based TFSCs. After selectively etching away the secondary phases with DIW, HCl and KCN, it was observed that their removal improved the performance of CZTS based TFSCs. Optimal CZTS thin films exhibited an optical band gap of 1.54 eV with an absorption coefficient of 4x10 4cm-1 with a low volume of secondary phases. A TFSC fabricated with the best CZTS thin film obtained from the experimental study done in this thesis showed a conversion efficiency of 6.41% with Voc = 530 mV, Jsc= 27.5 mA/cm2 and a fill factor of 0.44.
Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays.
Visser, D; Choudhury, B Dev; Krasovska, I; Anand, S
2017-05-29
Si nanopillar (NP) arrays are investigated as refractive index sensors in the visible/NIR wavelength range, suitable for Si photodetector responsivity. The NP arrays are fabricated by nanoimprint lithography and dry etching, and coated with thin dielectric layers. The reflectivity peaks obtained by finite-difference time-domain (FDTD) simulations show a linear shift with coating layer thickness. At 730 nm wavelength, sensitivities of ~0.3 and ~0.9 nm/nm of SiO 2 and Si 3 N 4 , respectively, are obtained; and the optical thicknesses of the deposited surface coatings are determined by comparing the experimental and simulated data. The results show that NP arrays can be used for sensing surface bio-layers. The proposed method could be useful to determine the optical thickness of surface coatings, conformal and non-conformal, in NP-based optical devices.
Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.
Inoue, Ryo; Hangai, Masanori; Kotera, Yuriko; Nakanishi, Hideo; Mori, Satoshi; Morishita, Shiho; Yoshimura, Nagahisa
2009-02-01
To evaluate the appearance of the optic nerve head and lamina cribrosa in patients with glaucoma using spectral/Fourier-domain optical coherence tomography (SD-OCT) and to test for a correlation between lamina cribrosa thickness measured on SD-OCT images and visual field loss. Observational case series. We evaluated 52 eyes of 30 patients with glaucoma or ocular hypertension. The high-speed SD-OCT equipment used was a prototype system developed for 3-dimensional (3D) imaging. It had a sensitivity of 98 decibels (dB), a tissue axial resolution of 4.3 mum, and an acquisition rate of approximately 18,700 axial scans per second. For 3D analyses, a raster scan protocol of 256 x 256 axial scans covering a 2.8 x 2.8 mm disc area was used. Lamina cribrosa thickness was measured on 3D images using 3D image processing software. Correlation between lamina cribrosa thickness and mean deviation (MD) values obtained using static automatic perimetry were tested for statistical significance. Clarity of lamina cribrosa features, lamina cribrosa thickness, and MD values on static automatic perimetry. On 3D images, the lamina cribrosa appeared clearly as a highly reflective plate that was bowed posteriorly and contained many circular areas of low reflectivity. The dots of low reflectivity visible just beneath the anterior surface of the lamina cribrosa in en face cross-sections corresponded with dots representing lamina pores in color fundus photographs. The mean (+/-1 standard deviation) thickness of the lamina cribrosa was 190.5+/-52.7 mum (range, 80.5-329.0). Spearman rank testing and linear regression analysis showed that lamina cribrosa thickness correlated significantly with MD (Spearman sigma = 0.744; P<0.001; r(2) = 0.493; P<0.001). Different observers performed measurements of the lamina cribrosa thickness in SD-OCT cross-sectional images with high reproducibility (intraclass correlation coefficient = 0.784). These 3D SD-OCT imaging clearly demonstrated the 3D structure of the lamina cribrosa and allowed measurement of its thickness, which correlated significantly with visual field loss, in living patients with glaucoma. This noninvasive imaging technique should facilitate investigations of structural changes in the optic nerve head lamina cribrosa in eyes with optic nerve damage due to glaucoma. The authors have no proprietary or commercial interest in any materials discussed in this article.
Lupidi, Marco; Coscas, Florence; Cagini, Carlo; Fiore, Tito; Spaccini, Elisa; Fruttini, Daniela; Coscas, Gabriel
2016-09-01
To describe a new automated quantitative technique for displaying and analyzing macular vascular perfusion using optical coherence tomography angiography (OCT-A) and to determine a normative data set, which might be used as reference in identifying progressive changes due to different retinal vascular diseases. Reliability study. A retrospective review of 47 eyes of 47 consecutive healthy subjects imaged with a spectral-domain OCT-A device was performed in a single institution. Full-spectrum amplitude-decorrelation angiography generated OCT angiograms of the retinal superficial and deep capillary plexuses. A fully automated custom-built software was used to provide quantitative data on the foveal avascular zone (FAZ) features and the total vascular and avascular surfaces. A comparative analysis between central macular thickness (and volume) and FAZ metrics was performed. Repeatability and reproducibility were also assessed in order to establish the feasibility and reliability of the method. The comparative analysis between the superficial capillary plexus and the deep capillary plexus revealed a statistically significant difference (P < .05) in terms of FAZ perimeter, surface, and major axis and a not statistically significant difference (P > .05) when considering total vascular and avascular surfaces. A linear correlation was demonstrated between central macular thickness (and volume) and the FAZ surface. Coefficients of repeatability and reproducibility were less than 0.4, thus demonstrating high intraobserver repeatability and interobserver reproducibility for all the examined data. A quantitative approach on retinal vascular perfusion, which is visible on Spectralis OCT angiography, may offer an objective and reliable method for monitoring disease progression in several retinal vascular diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Fabrication of large diffractive optical elements in thick film on a concave lens surface.
Xie, Yongjun; Lu, Zhenwu; Li, Fengyou
2003-05-05
We demonstrate experimentally the technique of fabricating large diffractive optical elements (DOEs) in thick film on a concave lens surface (mirrors) with precise alignment by using the strategy of double exposure. We adopt the method of double exposure to overcome the difficulty of processing thick photoresist on a large curved substrate. A uniform thick film with arbitrary thickness on a concave lens can be obtained with this technique. We fabricate a large concentric circular grating with a 10-ìm period on a concave lens surface in film with a thickness of 2.0 ìm after development. It is believed that this technique can also be used to fabricate larger DOEs in thicker film on the concave or convex lens surface with precise alignment. There are other potential applications of this technique, such as fabrication of micro-optoelectromechanical systems (MOEMS) or microelectromechanical systems (MEMS) and fabrication of microlens arrays on a large concave lens surface or convex lens surface with precise alignment.
Measurement of compressed breast thickness by optical stereoscopic photogrammetry.
Tyson, Albert H; Mawdsley, Gordon E; Yaffe, Martin J
2009-02-01
The determination of volumetric breast density (VBD) from mammograms requires accurate knowledge of the thickness of the compressed breast. In attempting to accurately determine VBD from images obtained on conventional mammography systems, the authors found that the thickness reported by a number of mammography systems in the field varied by as much as 15 mm when compressing the same breast or phantom. In order to evaluate the behavior of mammographic compression systems and to be able to predict the thickness at different locations in the breast on patients, they have developed a method for measuring the local thickness of the breast at all points of contact with the compression paddle using optical stereoscopic photogrammetry. On both flat (solid) and compressible phantoms, the measurements were accurate to better than 1 mm with a precision of 0.2 mm. In a pilot study, this method was used to measure thickness on 108 volunteers who were undergoing mammography examination. This measurement tool will allow us to characterize paddle surface deformations, deflections and calibration offsets for mammographic units.
Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning
Silva, Susana F.; Domingues, José Paulo
2018-01-01
Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed. PMID:29599938
Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.
Silva, Susana F; Domingues, José Paulo; Morgado, António Miguel
2018-01-01
Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)
2002-01-01
Based on the single-scattering optical properties that are pre-computed using an improve geometric optics method, the bulk mass absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the mean effective particle size of a mixture of ice habits. The parameterization has been applied to compute fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. Compared to the parameterization for a single habit of hexagonal column, the solar heating of clouds computed with the parameterization for a mixture of habits is smaller due to a smaller cosingle-scattering albedo. Whereas the net downward fluxes at the TOA and surface are larger due to a larger asymmetry factor. The maximum difference in the cloud heating rate is approx. 0.2 C per day, which occurs in clouds with an optical thickness greater than 3 and the solar zenith angle less than 45 degrees. Flux difference is less than 10 W per square meters for the optical thickness ranging from 0.6 to 10 and the entire range of the solar zenith angle. The maximum flux difference is approximately 3%, which occurs around an optical thickness of 1 and at high solar zenith angles.
NASA Astrophysics Data System (ADS)
Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.
2017-10-01
We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.
The light transmission and distribution in an optical fiber coated with TiO2 particles.
Wang, Wen; Ku, Young
2003-03-01
The light delivery and distribution phenomena along the optical fiber coated with the P-25 TiO(2) particles by dipping was investigated. The surface properties (coverage, roughness and thickness) of the TiO(2) layer coated on the optical fiber were characterized by SEM micrographs. For TiO(2) layer prepared from solutions containing less than 20 wt.% of TiO(2) slurry, the thickness of layer was increased linearly with the TiO(2) slurry content in solutions. The UV light intensity transmitted along a TiO(2)-coated optical fiber decreased more rapidly than that transmitted along a non-coated fiber. Based on the experimental results, the light intensity distribution around a coated optical fiber was modeled to determine the optimum configuration for the design of optical fiber reactors under various operational conditions. Copyright 2002 Elsevier Science Ltd.
McEachron, D L; Nissanov, J; Tretiak, O J
1997-06-01
Tritium quenching refers to the situation in which estimates of tritium content generated by film autoradiography depend on the chemical composition of the tissue as well as on the concentration of the radioisotope. When analysing thin brain sections, for example, regions rich in lipid content generate reduced optical densities on x-ray film compared with lipid-poor regions even when the total tissue concentration of tritium in those regions is identical. We hypothesize that the dried thickness of regions within sections depends upon the relative concentrations and types of lipid within the regions. Areas low in white matter dry thinner than areas high in white matter, leading to a relative enrichment of tritium in the thinner regions. To test this model, a series of brain pastes were made with different concentrations of grey and white matter and impregnated with equal amounts of tritium. The thickness of dried sections was compared with percentage of white matter and apparent radioactive content as determined by autoradiogram analysis. The results demonstrated that thickness increased, and apparent radioactivity decreased, with higher percentages of white matter. In the second experiment, thickness measurements from dried sections were successfully used to correct the apparent radioisotope content of autoradiograms created from tritium containing white- and grey-matter tissue slices. We conclude that within-section thickness variation is the major physical cause for 'tritium quenching'.
Liu, Lin; Zou, Jun; Huang, Hui; Yang, Jian-guo; Chen, Shao-rong
2012-05-23
To evaluate the influence of corneal astigmatism (CA) on retinal nerve fiber layer (RNFL) thickness and optic nerve head(ONH) parameters measured with spectral-domain optical coherence tomography (OCT) in high myopes patients before refractive surgery. Seventy eyes of 35 consecutive refractive surgery candidates were included in this study. The mean age of the subjects was 26.42 ± 6.95 years, the average CA was -1.17 diopters (D; SD 0.64; range -0.2 to-3.3D), All subjects in this study were WTR CA. 34 eyes were in the normal CA group with a mean CA was -0.67 ± 0.28D, 36 eyes were in the high CA group with an average CA of -1.65 ± 0.49D. All subjects underwent ophthalmic examination and imaging with the Cirrus HD OCT. No significant difference was noted in the average cup-to-disk ratio, vertical cup-to-disk ratio and cup volume (all P values > 0.05). Compared with the normal CA group, the high CA group had a larger disc area and rim area, thinner RNFL thickness in the temporal quadrant, and the superotemporal and inferotemporal peaks were farther to the temporal horizon (All P values < 0.05). There were no significant differences between the two groups in global average RNFL thickness, as well as superior, nasal and inferior quadrant RNFL thickness (all P values > 0.05). The degree of with-the-rule CA should be considered when interpreting ONH parameters and peripapillary RNFL thickness measured by the Cirrus HD OCT. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1148475676881895.
O'Brien, Daniel B; Massari, Aaron M
2015-01-14
In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.
NASA Astrophysics Data System (ADS)
Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.
2016-06-01
The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.
Study of Receptor-Chaperone Interactions Using the Optical Technique of Spectroscopic Ellipsometry
Kriechbaumer, Verena; Tsargorodskaya, Anna; Mustafa, Mohd K.; Vinogradova, Tatiana; Lacey, Joanne; Smith, David P.; Abell, Benjamin M.; Nabok, Alexei
2011-01-01
This work describes a detailed quantitative interaction study between the novel plastidial chaperone receptor OEP61 and isoforms of the chaperone types Hsp70 and Hsp90 using the optical method of total internal reflection ellipsometry (TIRE). The receptor OEP61 was electrostatically immobilized on a gold surface via an intermediate layer of polycations. The TIRE measurements allowed the evaluation of thickness changes in the adsorbed molecular layers as a result of chaperone binding to receptor proteins. Hsp70 chaperone isoforms but not Hsp90 were shown to be capable of binding OEP61. Dynamic TIRE measurements were carried out to evaluate the affinity constants of the above reactions and resulted in clear discrimination between specific and nonspecific binding of chaperones as well as differences in binding properties between the highly similar Hsp70 isoforms. PMID:21767504
Corneal thickness: measurement and implications.
Ehlers, Niels; Hjortdal, Jesper
2004-03-01
The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.
NASA Technical Reports Server (NTRS)
Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Van Diedenhoven, Bastiaan; Iwabuchi, Hironobu
2014-01-01
A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TMþIGOM are considered as a benchmark because the IITM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TMþIGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 micrometers) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical thickness and effective diameter. In the MODIS infrared window bands centered at 8.5, 11, and 12 micrometers biases in the optical thickness and effective diameter are up to 12% and 10%, respectively. The CGOM-based simulation errors in ice cloud radiative forcing calculations are on the order of 10Wm(exp 2).
Tear film measurement by optical reflectometry technique
Lu, Hui; Wang, Michael R.; Wang, Jianhua; Shen, Meixiao
2014-01-01
Abstract. Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519
NASA Technical Reports Server (NTRS)
King, M. D.
1983-01-01
Computational results are presented for the separate terms in the Fourier expansion of the phase function and the reflection function of a semiinfinite, conservatively scattering atmosphere composed of cloud particles. The calculations involve successive applications of invariant imbedding, doubling, and asymptotic fitting methods to cover the range from very thin to very thick atmospheres. From the results, the ratio of the total reflection function to the first-order reflection function is determined as well as the number of terms required to describe the reflection function to an accuracy of 0.1 percent. The number of terms required depends strongly on the zenith angles of incidence and reflection as well as on details of the phase function. These results are compared with similar results obtained for a Henyey-Greenstein phase function having the same asymmetry factor as in the cloud model.
Tuning nonlinear optical absorption properties of WS₂ nanosheets.
Long, Hui; Tao, Lili; Tang, Chun Yin; Zhou, Bo; Zhao, Yuda; Zeng, Longhui; Yu, Siu Fung; Lau, Shu Ping; Chai, Yang; Tsang, Yuen Hong
2015-11-14
To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, F(ON), and optical limiting threshold, F(OL), of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The F(ON) and F(OL) show a rapid decline with the decrease of size and thickness. Due to the edge and quantum confinement effect, WS2 quantum dots (2.35 nm) exhibit the lowest F(ON) (0.01 J cm(-2)) and F(OL) (0.062 J cm(-2)) among all the samples, which are comparable to the lowest threshold achieved in graphene based materials, showing great potential as NOA materials with tunable properties.
Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R; Zhao, Wei
2017-03-01
Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e., variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε¯(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε¯(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150-1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε¯(z) were used to calculate each scintillator's optical Swank factor. For scintillators of the same optical design, only minor differences in light escape efficiency were observed between samples with different thickness. As thickness increased, escape efficiency decreased by up to 20% for interactions furthest away from light collection. Optical design (i.e., backing and FOP) predominantly affected the magnitude and relative variation in ε¯(z). Depending on interaction depth and scintillator thickness, samples with an absorptive backing and FOP were estimated to yield 4.1-13.4 photons/keV. Samples with a reflective backing and FOP yielded 10.4-18.4 keV -1 , while those with a reflective backing and no FOP yielded 29.5-52.0 keV -1 . Optical Swank factors were approximately 0.9 and near-unity in samples featuring an absorptive or reflective backing, respectively. This work uses a modeling approach to remove the noise introduced by the measurement apparatus from measured PHS. This method allows absolute quantification of ε¯(z) and more accurate estimation of the optical Swank factor of scintillators. The method was applied to CsI scintillators with different thickness and optical design, and determined that optical design more strongly affects ε¯(z) and Swank factor than differences in CsI thickness. Despite large variations in ε¯(z) between optical designs, the Swank factor of all evaluated samples is above 0.9. Information provided by this methodology can help validate Monte Carlo simulations of structured CsI and optimize scintillator design for x-ray imaging applications. © 2016 American Association of Physicists in Medicine.
Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R.; Zhao, Wei
2017-01-01
Purpose Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e. variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε̄(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε̄(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. Methods The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically-reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150–1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε̄(z) were used to calculate each scintillator’s optical Swank factor. Results For scintillators of the same optical design, only minor differences in light escape efficiency were observed between samples with different thickness. As thickness increased, escape efficiency decreased by up to 20% for interactions furthest away from light collection. Optical design (i.e. backing and FOP) predominantly affected the magnitude and relative variation in ε̄(z). Depending on interaction depth and scintillator thickness, samples with an absorptive backing and FOP were estimated to yield 4.1–13.4 photons/keV. Samples with a reflective backing and FOP yielded 10.4–18.4 keV−1, while those with a reflective backing and no FOP yielded 29.5–52.0 keV−1. Optical Swank factors were approximately 0.9 and near-unity in samples featuring an absorptive or reflective backing, respectively. Conclusions This work uses a modeling approach to remove the noise introduced by the measurement apparatus from measured PHS. This method allows absolute quantification of ε̄(z) and more accurate estimation of the optical Swank factor of scintillators. The method was applied to CsI scintillators with different thickness and optical design, and determined that optical design more strongly affects ε̄(z) and Swank factor than differences in CsI thickness. Despite large variations in ε̄(z) between optical designs, the Swank factor of all evaluated samples is above 0.9. Information provided by this methodology can help validate Monte Carlo simulations of structured CsI and optimize scintillator design for x-ray imaging applications. PMID:28039881
NASA Astrophysics Data System (ADS)
Brake, Joshua; Jang, Mooseok; Yang, Changhuei
2016-03-01
The optical opacity of biological tissue has long been a challenge in biomedical optics due to the strong scattering nature of tissue in the optical regime. While most conventional optical techniques attempt to gate out multiply scattered light and use only unscattered light, new approaches in the field of wavefront shaping exploit the time reversible symmetry of optical scattering in order to focus light inside or through scattering media. While these approaches have been demonstrated effectively on static samples, it has proven difficult to apply them to dynamic biological samples since even small changes in the relative positions of the scatterers within will cause the time symmetry that wavefront shaping relies upon to decorrelate. In this paper we investigate the decorrelation curves of acute rat brain slices for thicknesses in the range 1-3 mm (1/e decorrelation time on the order of seconds) using multi-speckle diffusing wave spectroscopy (MSDWS) and compare the results with theoretical predictions. The results of this study demonstrate that the 1/L^2 relationship between decorrelation time and thickness predicted by diffusing wave spectroscopy provides a good rule of thumb for estimating how the decorrelation of a sample will change with increasing thickness. Understanding this relationship will provide insight to guide the future development of biophotonic wavefront shaping tools by giving an estimate of how fast wavefront shaping systems need to operate to overcome the dynamic nature of biological samples.
Hudry, Damien; Busko, Dmitry; Popescu, Radian; ...
2017-11-02
Core@shell design represents an important class of architectures because of its capability to dramatically increase the absolute upconversion quantum yield (UCQY) of upconverting nanocrystals (UCNCs) but also to tune energy migration pathways. A relatively new trend towards the use of very thick optically inert shells affording significantly higher absolute UCQYs raises the question of the crystallographic and chemical characteristics of such nanocrystals (NCs). In this article, local chemical analyses performed by scanning transmission electron microscopy (STEM) combined with energy dispersive x-ray spectroscopy (EDXS) and x-ray total scattering experiments together with pair distribution function (PDF) analyses were used to probe themore » local chemical and structural characteristics of hexagonal β-NaGd0.78Yb0.2Er0.02F4@NaYF4 core@shell UCNCs. The investigations lead to a new crystallochemical model to describe core@shell UCNCs that considerably digresses from the commonly accepted epitaxial growth concept with sharp interfaces. The results obtained on ultra-small (4.8 ± 0.5 nm) optically active cores (β-NaGd0.78Yb0.2Er0.02F4) surrounded by an optically inert shell (NaYF4) of tunable thickness (roughly 0, 1, 2, and 3.5 nm) clearly indicate the massive dissolution of the starting seeds and the inter-diffusion of the shell element (such as Y) into the Gd/Yb/Er-containing core giving rise to the formation of a non-homogeneous solid solution characterized by concentration gradients and the lack of sharp interfaces. Independently of the inert shell thickness, core/interface/shell architectures were observed for all synthesized UCNCs. The presented results constitute a significant step towards the comprehensive understanding of the “structure - property” relationship of upconverting core@shell architectures, which is of prime interest not only in the development of more efficient structures but also to provide new physical insights at the nanoscale to better explain upconversion (UC) properties alterations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudry, Damien; Busko, Dmitry; Popescu, Radian
Core@shell design represents an important class of architectures because of its capability to dramatically increase the absolute upconversion quantum yield (UCQY) of upconverting nanocrystals (UCNCs) but also to tune energy migration pathways. A relatively new trend towards the use of very thick optically inert shells affording significantly higher absolute UCQYs raises the question of the crystallographic and chemical characteristics of such nanocrystals (NCs). In this article, local chemical analyses performed by scanning transmission electron microscopy (STEM) combined with energy dispersive x-ray spectroscopy (EDXS) and x-ray total scattering experiments together with pair distribution function (PDF) analyses were used to probe themore » local chemical and structural characteristics of hexagonal β-NaGd0.78Yb0.2Er0.02F4@NaYF4 core@shell UCNCs. The investigations lead to a new crystallochemical model to describe core@shell UCNCs that considerably digresses from the commonly accepted epitaxial growth concept with sharp interfaces. The results obtained on ultra-small (4.8 ± 0.5 nm) optically active cores (β-NaGd0.78Yb0.2Er0.02F4) surrounded by an optically inert shell (NaYF4) of tunable thickness (roughly 0, 1, 2, and 3.5 nm) clearly indicate the massive dissolution of the starting seeds and the inter-diffusion of the shell element (such as Y) into the Gd/Yb/Er-containing core giving rise to the formation of a non-homogeneous solid solution characterized by concentration gradients and the lack of sharp interfaces. Independently of the inert shell thickness, core/interface/shell architectures were observed for all synthesized UCNCs. The presented results constitute a significant step towards the comprehensive understanding of the “structure - property” relationship of upconverting core@shell architectures, which is of prime interest not only in the development of more efficient structures but also to provide new physical insights at the nanoscale to better explain upconversion (UC) properties alterations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Wei; Li Dan; Reznik, Alla
2005-09-15
An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoidmore » pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.« less
Kim, Eun Kyoung; Park, Hae-Young Lopilly; Park, Chan Kee
2017-01-01
To evaluate the changes of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and ganglion cell-inner plexiform layer (GCIPL) thicknesses and compare structure-function relationships of 4 retinal layers using spectral-domain optical coherence tomography (SD-OCT) in macular region of glaucoma patients. In cross-sectional study, a total of 85 eyes with pre-perimetric to advanced glaucoma and 26 normal controls were enrolled. The glaucomatous eyes were subdivided into three groups according to the severity of visual field defect: a preperimetric glaucoma group, an early glaucoma group, and a moderate to advanced glaucoma group. RNFL, GCL, IPL, and GCIPL thicknesses were measured at the level of the macula by the Spectralis (Heidelberg Engineering, Heidelberg, Germany) SD-OCT with automated segmentation software. For functional evaluation, corresponding mean sensitivity (MS) values were measured using 24-2 standard automated perimetry (SAP). RNFL, GCL, IPL, and GCIPL thicknesses were significantly different among 4 groups (P < .001). Macular structure losses were positively correlated with the MS values of the 24-2 SAP for RNFL, GCL, IPL, and GCIPL (R = 0.553, 0.636, 0.648 and 0.646, respectively, P < .001). In regression analysis, IPL and GCIPL thicknesses showed stronger association with the corresponding MS values of 24-2 SAP compared with RNFL and GCL thicknesses (R2 = 0.420, P < .001 for IPL; R2 = 0.417, P< .001 for GCIPL thickness). Segmented IPL thickness was significantly associated with the degree of glaucoma. Segmental analysis of the inner retinal layer including the IPL in macular region may provide valuable information for evaluating glaucoma.
Sun, Qian; Deng, Zheng-Zheng; Zhou, Yue-Hua; Zhang, Jing; Peng, Xiao-Yan
2016-01-01
AIM To compare the corneal biomechanical outcomes at one year after laser in situ keratomileusis (LASIK) with the flaps created by Ziemer and Moria M2 microkeratome with 110 head and -20 blade. METHODS Totally 100 eyes of 50 consecutive patients were enrolled in this prospective study and divided into two groups for corneal flaps created by ZiemerFemto LDV and Moria M2 microkeratome with 110 head and -20 blade. Corneal biomechanical properties including cornea resistance factor (CRF) and cornea hysteresis (CH) were measured before and 1, 3, 6, 12mo after surgery by ocular response analyzer. Central cornea thickness and corneal flap thickness were measured by optical coherence tomography. RESULTS The ablation depth (P=0.693), residual corneal thickness (P=0.453), and postoperative corneal curvature (P=0.264) were not significant different between Ziemer group and Moria 110-20 group after surgery. The residual stromal bed thickness, corneal flap thickness, CH and CRF at 12mo after surgery were significant different between Ziemer group and Moria 110-20 group (P<0.01);Ziemer group gained better corneal biomechanical results. The CRF and CH increased gradually from 1 to 12mo after surgery in Ziemer group, increased from 1 to 6mo but decreased from 6 to 12mo in Moria 110-20 group. Both CRF and CH at one year after surgery increased with the increasing of residual cornea thickness; pre-LASIK CRF, CRF also increased with residual stromal bed thickness, while CH decreased with the increasing of pre-LASIK intraocular pressure and cornea flap thickness (P<0.01). CONCLUSION In one year follow-up, femtosecond laser can provide better cornea flaps with stable cornea biomechanics than mechanical microkeratome. PMID:27803856
Comparison of laser in situ keratomileusis flaps created by 2 femtosecond lasers.
Zheng, Yan; Zhou, Yuehua; Zhang, Jing; Liu, Qian; Zhai, Changbin; Wang, Yonghua
2015-03-01
To compare flap morphology created by the WaveLight FS200 femtosecond laser and the VisuMax femtosecond laser, assessing the uniformity, accuracy, and predictability of flap creation. A total of 400 eyes had corneal flaps created with the WaveLight FS200 femtosecond laser (200 eyes) or the VisuMax femtosecond laser (200 eyes). The desired flap thickness was 110 μm. At 1 week postoperatively, all eyes were evaluated with RTVue Fourier-domain optical coherence tomography. Dimensions of the flaps were tested for their regularity, uniformity, accuracy, and predictability comparison. One week after surgery, the central flap thickness and the mean flap thickness of the FS200 group were 105.4 ± 3.4 μm and 105.7 ± 2.6 μm, respectively. They were both thinner than those of the VisuMax group, which were 110.8 ± 3.9 μm and 111.3 ± 2.3 μm, respectively. The mean deviation between the achieved and attempted flap thickness of the FS200 group (5.2 ± 1.9 μm) was greater than that of the VisuMax group (3.2 ± 1.8 μm). Flap thickness measurements at 36 points in both groups were close to the intended thickness. Morphology of the flaps in the 0-, 45-, 90-, and 135-degree lines created by the FS200 femtosecond laser and VisuMax femtosecond laser were uniform and regular. Flap dimensions created by the WaveLight FS200 femtosecond laser and VisuMax femtosecond laser were uniform and regular. Although the flap thickness created by the FS200 was less than that created by the VisuMax, measurements of both femtosecond lasers were close to the intended thickness.
Dichromated-gelatin hologram process for improved optical quality
NASA Technical Reports Server (NTRS)
Stewart, W. C.
1975-01-01
Optical distortions are eliminated by use of wetting agency followed by sequential immersion in several alcohol-water baths of increasing alcohol concentration. Dehydration proceeds uniformly over surface of gelatin. Dried plate is free of optically-distorting thickness variations.
NASA Astrophysics Data System (ADS)
Abe, Masanori; Nakagawa, Hidenobu; Gomi, Manabu; Nomura, Shoichiro
1982-01-01
The film thickness allowance and the waveguide length in a 3-layer (substrate/film/air) magneto-optical unidirectional TE-TM mode converter which utilizes the intrinsic birefringence in an anisotropic material are calculated at λ0{=}1.55 μm. The film material should be gyrotropic in order to make the waveguide length short, and the film thickness allowance is relaxed by reducing the ratio of the dielectric constant of the film to that of the substrate. When the waveguide is made of an isotropic gyrotropic film of YIG deposited on an anisotropic substrate (which may be gyrotropic or not), the restriction on the film thickness can in practice be removed, but this requires precise control of the dielectric constant of the film and the substrate instead.
Non-imaging ray-tracing for sputtering simulation with apodization
NASA Astrophysics Data System (ADS)
Ou, Chung-Jen
2018-04-01
Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.
Kim, Min Su; Kim, Do Yeob; Kim, Sung-O; Leem, Jae-Young
2013-05-01
ZnO nanorods were grown on the Mg0.2Zn0.8O seed layers with different thickness by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of the Mg0.2Zn0.8O seed layer thickness on the structural and the optical properties of the ZnO nanorods. The residual stress in the Mg0.2Zn0.8O seed layers was depended on the thickness while the texture coefficient of the Mg0.2Zn0.8O seed layers was not affected significantly. The smaller full width at half maximum (FWHM) of the ZnO (002) diffraction and near-band-edge emission (NBE) peak and the larger average grain size were observed from the ZnO nanorods grown on the Mg0.2Zn0.8O seed layers with 5 layers (thickness of 350 nm), which indicate the enhancement the structural and the optical properties of the ZnO nanorods.
Non-imaging ray-tracing for sputtering simulation with apodization
NASA Astrophysics Data System (ADS)
Ou, Chung-Jen
2018-06-01
Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.
Nondestructive analysis of automotive paints with spectral domain optical coherence tomography.
Dong, Yue; Lawman, Samuel; Zheng, Yalin; Williams, Dominic; Zhang, Jinke; Shen, Yao-Chun
2016-05-01
We have demonstrated for the first time, to our knowledge, the use of optical coherence tomography (OCT) as an analytical tool for nondestructively characterizing the individual paint layer thickness of multiple layered automotive paints. A graph-based segmentation method was used for automatic analysis of the thickness distribution for the top layers of solid color paints. The thicknesses measured with OCT were in good agreement with the optical microscope and ultrasonic techniques that are the current standard in the automobile industry. Because of its high axial resolution (5.5 μm), the OCT technique was shown to be able to resolve the thickness of individual paint layers down to 11 μm. With its high lateral resolution (12.4 μm), the OCT system was also able to measure the cross-sectional area of the aluminum flakes in a metallic automotive paint. The range of values measured was 300-1850 μm2. In summary, the proposed OCT is a noncontact, high-resolution technique that has the potential for inclusion as part of the quality assurance process in automobile coating.
Exciton-polariton state in nanocrystalline SiC films
NASA Astrophysics Data System (ADS)
Semenov, A. V.; Lopin, A. V.
2016-05-01
We studied the features of optical absorption in the films of nanocrystalline SiC (nc-SiC) obtained on the sapphire substrates by the method of direct ion deposition. The optical absorption spectra of the films with a thickness less than ~500 nm contain a maximum which position and intensity depend on the structure and thickness of the nc-SiC films. The most intense peak at 2.36 eV is observed in the nc-SiC film with predominant 3C-SiC polytype structure and a thickness of 392 nm. Proposed is a resonance absorption model based on excitation of exciton polaritons in a microcavity. In the latter, under the conditions of resonance, there occurs strong interaction between photon modes of light with λph=521 nm and exciton of the 3С polytype with an excitation energy of 2.36 eV that results in the formation of polariton. A mismatch of the frequencies of photon modes of the cavity and exciton explains the dependence of the maximum of the optical absorption on the film thickness.
Cho, Heeyoon; Pillai, Parvathy; Nicholson, Laura; Sobrin, Lucia
2016-01-01
To describe the clinical course of uveitis-associated inflammatory papillitis and evaluate the utility and reproducibility of optic nerve spectral domain optical coherence tomography (SD-OCT). Data on 22 eyes of 14 patients with uveitis-related papillitis and optic nerve imaging were reviewed. SD-OCT measure reproducibility was determined and parameters were compared in active vs. inactive uveitis. Papillitis resolution lagged behind uveitis resolution in three patients. For SD-OCT measures, the intraclass correlation coefficients were 99.1-100% and 86.9-100% for intraobserver and interobserver reproducibility, respectively. All SD-OCT optic nerve measures except inferior and nasal peripapillary retinal thicknesses were significantly higher in active vs. inactive uveitis after correction for multiple hypotheses testing. Mean optic nerve central thickness decreased from 545.1 to 362.9 µm (p = 0.01). Resolution of inflammatory papillitis can lag behind resolution of uveitis. SD-OCT assessment of papillitis is reproducible and correlates with presence vs. resolution of uveitis.
NASA Astrophysics Data System (ADS)
Kim, Yumi; Kim, Sang-Woo; Kim, Man-Hae; Yoon, Soon-Chang
2014-03-01
This study examines cirrus cloud top and bottom heights (CTH and CBH, respectively) and the associated optical properties revealed by ground-based lidar in Seoul (SNU-L), Korea, and space-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which were obtained during a three-year measurement period between July 2006 and June 2009. From two selected cases, we determined good agreement in CTH and CBH with cirrus cloud optical depth (COD) between ground-based lidar and space-borne CALIOP. In particular, CODs at a wavelength of 532 nm calculated from the three years of SNU-L and CALIOP measurements were 0.417 ± 0.394 and 0.425 ± 0.479, respectively. The fraction of COD lower than 0.1 was approximately 17% and 25% of the total SNU-L and CALIOP profiles, respectively, and approximately 50% of both lidar profiles were classified as sub-visual or optically thin such that COD was < 0.3. The mean depolarization ratio was estimated to be 0.30 ± 0.06 for SNU-L and 0.34 ± 0.08 for CALIOP. The monthly variation of CODs from SNU-L and CALIOP measurements was not distinct, whereas cirrus altitudes from both SNU-L and CALIOP showed distinct monthly variation. CALIOP observations showed that cirrus clouds reached the tropopause level in all months, whereas the up-looking SNU-L did not detect cirrus clouds near the tropopause in summer due to signal attenuation by underlying optically thick clouds. The cloud layer thickness (CLT) and COD showed a distinct linear relationship up to approximately 2 km of the CLT; however, the COD did not increase, but remained constant when the CLT was greater than 2.0 km. The ice crystal content, lidar signal attenuation, and the presence of multi-layered cirrus clouds may have contributed to this tendency.
Park, Bum Jun; Furst, Eric M
2014-09-23
We present the optical trapping forces that are generated when a single laser beam strongly focuses on a coated dielectric microsphere. On the basis of geometrical optics approximation (GOA), in which a particle intercepts all of the rays that make up a single laser beam, we calculate the trapping forces with varying coating thickness and refractive index values. To increase the optical trapping efficiency, the refractive index (n(b)) of the coating is selected such that n(a) < n(b) < n(c), where na and nc are the refractive indices of the medium and the core material, respectively. The thickness of the coating also increases trapping efficiency. Importantly, we find that trapping forces for the coated particles are predominantly determined by two rays: the incident ray and the first refracted ray to the medium.
NASA Astrophysics Data System (ADS)
Choowitsakunlert, Salinee; Takagiwa, Kenji; Kobashigawa, Takuya; Hosoya, Nariaki; Silapunt, Rardchawadee; Yokoi, Hideki
2018-05-01
A photosensitive adhesive bonding process for a magnetooptic waveguide for an optical isolator employing a nonreciprocal guided-radiation mode conversion is investigated at 1.55 µm. The magnetooptic waveguide is a straight rib type, and it is fabricated by bonding the Si guiding layer to a magnetic garnet. In the fabrication process, an adhesive material is diluted to obtain a certain thickness before depositing on a silicon-on-insulator (SOI) substrate. The relationship between the percent dilution ratio and the thickness of the adhesive layer is considered. The smallest gap thickness is found to be 0.66 µm at a dilution ratio of 2%.
NASA Astrophysics Data System (ADS)
Sun, Jianing; Pribil, Greg K.
2017-11-01
We investigated the optical behaviors of vanadium dioxide (VO2) films through the semiconductor-to-metal (STM) phase transition using spectroscopic ellipsometry. Correlations between film thickness and refractive index were observed resulting from the absorbing nature of these films. Simultaneously analyzing data at multiple temperatures using Kramers-Kronig consistent oscillator models help identify film thickness. Nontrivial variations in resulting optical constants were observed through STM transition. As temperature increases, a clear increase is observed in near infrared absorption due to Drude losses that accompany the transition from semiconducting to metallic phases. Thin films grown on silicon and sapphire substrate present different optical properties and thermal hysteresis due to lattice stress and compositional differences.
Surface figure control for coated optics
Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.
2001-01-01
A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.
NASA Astrophysics Data System (ADS)
Girouard, Peter D.
The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.
Infrared detection of chlorinated hydrocarbons in water at ppb levels of concentrations.
Roy, Gilles; Mielczarski, Jerzy A
2002-04-01
Infrared sensor, based on attenuated total reflection phenomenon, for the detection of chlorinated hydrocarbons (CHCs) represents a big advantage compared to chromatographic and mass spectroscopic techniques since it is a one step detector. Pre-concentration and separation take place in the polymer film with simultaneous identification of pollutants by the infrared beam. The analysis is rapid, sample does not require any initial preparation, and can be easily performed in the field. The main default of the latest version of the sensor was a low sensibility (above 1 ppm) compared to the threshold levels of the contaminants. In the present work, it is documented that the response dynamics of the optical sensor and its sensitivity depend strongly on the diffusion of pollutants through a boundary layer formed between polymer film and the monitored solution and in the polymer film. The reduction of thickness of the boundary layer through a controlled high flow rate, and the optimization of thickness (volume) of polymer films result in a tremendous improvement of the response dynamics. It is demonstrated that the sensor can detect simultaneously six CHCs: monochlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, chloroform, trichloroethylene, and perchloroethylene in their mixture with a sensitivity as low as a few ppb. This level of detection opens up numerous applications for the optical sensor.
VanDenBerg, Ryan; Diakonis, Vasilios F; Bozung, Alison; Gameiro, Gustavo Rosa; Fischer, Oliver; El Dakkak, Ahmed; Ulloa-Padilla, Jan Paul; Anagnostopoulos, Apostolos; Dubovy, Sander; Abou Shousha, Mohamed
2017-12-01
To disclose, using an ex vivo study, the histopathological mechanism behind in vivo thickening of the endothelium/Descemet membrane complex (En/DM) observed in rejected corneal grafts (RCGs). Descemet membrane (DM), endothelium, and retrocorneal membranes make up the total En/DM thickness. These layers are not differentiable by high-definition optical coherence tomography; therefore, the source of thickening is unclear from an in vivo perspective. A retrospective ex vivo study (from September 2015 to December 2015) was conducted to measure the thicknesses of DM, endothelium, and retrocorneal membrane in 54 corneal specimens (31 RCGs and 23 controls) using light microscopy. Controls were globes with posterior melanoma without corneal involvement. There were 54 corneas examined ex vivo with mean age 58.1 ± 12.2 in controls and 51.7 ± 27.9 years in RCGs. The ex vivo study uncovered the histopathological mechanism of En/DM thickening to be secondary to significant thickening (P < 0.001) of DM (6.5 ± 2.4 μm) in RCGs compared with controls (3.9 ± 1.5 μm). Our ex vivo study shows that DM is responsible for thickening of the En/DM in RCGs observed in vivo by high-definition optical coherence tomography and not the endothelium or retrocorneal membrane.
Doping-Induced Interband Gain in InAs/AlSb Quantum Wells
NASA Technical Reports Server (NTRS)
Kolokolov, K. I.; Ning, C. Z.
2005-01-01
A paper describes a computational study of effects of doping in a quantum well (QW) comprising a 10-nm-thick layer of InAs sandwiched between two 21-nm-thick AlSb layers. Heretofore, InAs/AlSb QWs have not been useful as interband gain devices because they have type-II energy-band-edge alignment, which causes spatial separation of electrons and holes, thereby leading to weak interband dipole matrix elements. In the doping schemes studied, an interior sublayer of each AlSb layer was doped at various total areal densities up to 5 X 10(exp 12) / square cm. It was found that (1) proper doping converts the InAs layer from a barrier to a well for holes, thereby converting the heterostructure from type II to type I; (2) the resultant dipole matrix elements and interband gains are comparable to those of typical type-I heterostructures; and (3) dipole moments and optical gain increase with the doping level. Optical gains in the transverse magnetic mode can be almost ten times those of other semiconductor material systems in devices used to generate medium-wavelength infrared (MWIR) radiation. Hence, doped InAs/AlSb QWs could be the basis of an alternative material system for devices to generate MWIR radiation.
NASA Technical Reports Server (NTRS)
Chin, Mian; Ginoux, Paul; Flatau, Piotr; Anderson, Tad; Masonis, Sarah; Russell, Phil; Schmid, Beat; Livingston, John; Redemann, Jens; Kahn, Ralph;
2001-01-01
The Aerosol Characterization Experiment-Asia (ACE-Asia) took place in Spring 2001 in the East Asia-West Pacific Ocean. During the ACE-Asia intensive field operation period, high concentrations of dust and anthropogenic aerosols were observed over the Yellow Sea and the Sea of Japan, which were transported out from the Asian continent, with the plume often extending to 6-8 km altitude. The multi-component aerosols originated from Asia are expected to exert a significant radiative forcing over the Pacific region. We present here results from the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model of aerosol transport and radiative forcing in the context of ACE-Asia. The model calculated aerosol concentrations, extinctions, optical thickness, size distributions, and vertical profiles are compared with the aircraft and ship measurements, and the distributions of aerosols are compared with satellite data. The model will be used to understand the origins of the aerosols observed in ACE-Asia, estimate the contributions from anthropogenic and natural aerosols to the total aerosol optical thickness, investigate the effects of humidification and clouds on aerosol properties, and assess the radiative forcing of Asian aerosols over the Pacific region and in the northern hemisphere.
Park, Jongkwan; Lee, Sungyun; You, Jeongyeop; Park, Sanghun; Ahn, Yujin; Jung, Woonggyu; Cho, Kyung Hwa
2018-06-12
Resistance-in-series models have been applied to investigate fouling behavior. However, it is difficult to model the influence of morphology on fouling behavior because resistance is indirectly calculated from the water flux and transmembrane pressure. In this study, optical coherence tomography (OCT) was applied to evaluate the resistance of the fouling layer based on fouling morphology. Sodium alginate, humic acid, and bovine serum albumin (BSA) with high salts concentrations (conductivity: 23 mS/cm) were used as model foulants. At the same total fouling resistance, BSA showed the highest cake layer thickness (BSA (114.5 μm) > humic acid (53.5 μm) > sodium alginate (20.0 μm)). However, a different order was found for the cake layer resistance (BSA > sodium alginate > humic acid). This indicates that fouling thickness is not correlated with cake layer resistance. According to the Carman-Kozeny equation, fouling layer porosity decreased in the following order: humic acid (0.30) > BSA (0.21) > sodium alginate (0.20). In addition, we provided a specific value that was calculated using the ratio between the fouling thickness and cake layer resistance. The results show that alginic acid induced a stronger cake layer resistance, despite its thin fouling layer, whereas BSA showed a relatively low potential for inducing cake layer resistance. The results obtained in this study could be used for estimating and predicting fouling behavior. Copyright © 2018 Elsevier B.V. All rights reserved.
THz and mm-Wave Sensing of Corneal Tissue Water Content: Electromagnetic Modeling and Analysis
Taylor, Zachary D.; Garritano, James; Sung, Shijun; Bajwa, Neha; Bennett, David B.; Nowroozi, Bryan; Tewari, Priyamvada; Sayre, James; Hubschman, Jean-Pierre; Deng, Sophie; Brown, Elliott R.; Grundfest, Warren S.
2015-01-01
Terahertz (THz) spectral properties of human cornea are explored as a function of central corneal thickness (CCT) and corneal water content, and the clinical utility of THz-based corneal water content sensing is discussed. Three candidate corneal tissue water content (CTWC) perturbations, based on corneal physiology, are investigated that affect the axial water distribution and total thickness. The THz frequency reflectivity properties of the three CTWC perturbations were simulated and explored with varying system center frequency and bandwidths (Q-factors). The modeling showed that at effective optical path lengths on the order of a wavelength the cornea presents a lossy etalon bordered by air at the anterior and the aqueous humor at the posterior. The simulated standing wave peak-to-valley ratio is pronounced at lower frequencies and its effect on acquired data can be modulated by adjusting the bandwidth of the sensing system. These observations are supported with experimental spectroscopic data. The results suggest that a priori knowledge of corneal thickness can be utilized for accurate assessments of corneal tissue water content. The physiologic variation of corneal thickness with respect to the wavelengths spanned by the THz band is extremely limited compared to all other structures in the body making CTWC sensing unique amongst all proposed applications of THz medical imaging. PMID:26322247
Sun, Ming-Hui; Liao, Yaping Joyce
2017-09-01
The optic nerve head is vulnerable to ischemia leading to anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in those older than 50 years of age. We performed a cross-sectional study of 55 nonarteritic anterior ischemic optic neuropathy (NAION) eyes in 34 patients to assess clinical outcome and perform structure-function correlations. The peak age of NAION onset was between 50 and 55 years. Sixty-seven percent of patients presented with their first event between the ages of 40 and 60 years, and 32% presented at ≤50 years. Those with NAION onset at age ≤50 years did not have significantly better visual outcome per logMAR visual acuity, automated perimetric mean deviation (PMD) or optical coherence tomography (OCT) measurements. Kaplan-Meier survival curve and multivariate Cox proportional regression analysis showed that age >50 years at NAION onset was associated with greater risk of second eye involvement, with hazard ratio of 20. Older age at onset was significantly correlated with greater thinning of the ganglion cell complex (GCC) (P = 0.022) but not with logMAR visual acuity, PMD, or thinning of retinal nerve fiber layer (RNFL). Using area under receiver operating characteristic curve analyses, we found that thinning of RNFL and GCC was best able to predict visual outcome, and that mean RNFL thickness >65 μm or macular GCC thickness >55 μm significantly correlated with good visual field outcome. We showed that NAION onset at age >50 years had a greater risk of second eye involvement. Patients with OCT mean RNFL thickness >65 μm and mean macular ganglion cell complex thickness >55 μm had better visual outcomes.
Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, Takahiro; Okuzumi, Satoshi; Flock, Mario, E-mail: t_ueda@geo.titech.ac.jp
We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyondmore » the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ∼1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ∼2–3 times larger than that expected from the classical optically thick temperature.« less
Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Ueda, Takahiro; Okuzumi, Satoshi; Flock, Mario
2017-07-01
We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyond the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ˜1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ˜2-3 times larger than that expected from the classical optically thick temperature.
Quiescent Prominences in the Era of ALMA. II. Kinetic Temperature Diagnostics
NASA Astrophysics Data System (ADS)
Gunár, Stanislav; Heinzel, Petr; Anzer, Ulrich; Mackay, Duncan H.
2018-01-01
We provide the theoretical background for diagnostics of the thermal properties of solar prominences observed by the Atacama Large Millimeter/submillimeter Array (ALMA). To do this, we employ the 3D Whole-Prominence Fine Structure (WPFS) model that produces synthetic ALMA-like observations of a complex simulated prominence. We use synthetic observations derived at two different submillimeter/millimeter (SMM) wavelengths—one at a wavelength at which the simulated prominence is completely optically thin and another at a wavelength at which a significant portion of the simulated prominence is optically thick—as if these were the actual ALMA observations. This allows us to develop a technique for an analysis of the prominence plasma thermal properties from such a pair of simultaneous high-resolution ALMA observations. The 3D WPFS model also provides detailed information about the distribution of the kinetic temperature and the optical thickness along any line of sight. We can thus assess whether the measure of the kinetic temperature derived from observations accurately represents the actual kinetic temperature properties of the observed plasma. We demonstrate here that in a given pixel the optical thickness at the wavelength at which the prominence plasma is optically thick needs to be above unity or even larger to achieve a sufficient accuracy of the derived information about the kinetic temperature of the analyzed plasma. Information about the optical thickness cannot be directly discerned from observations at the SMM wavelengths alone. However, we show that a criterion that can identify those pixels in which the derived kinetic temperature values correspond well to the actual thermal properties in which the observed prominence can be established.
NASA Astrophysics Data System (ADS)
Patel, Japan
Short mean free paths are characteristic of charged particles. High energy charged particles often have highly forward peaked scattering cross sections. Transport problems involving such charged particles are also highly optically thick. When problems simultaneously have forward peaked scattering and high optical thickness, their solution, using standard iterative methods, becomes very inefficient. In this dissertation, we explore Fokker-Planck-based acceleration for solving such problems.