Sample records for total ozone levels

  1. Total ozone influence on the surface UV-B radiation in the late spring-summer 1963-1997: An analysis of multiple timescales

    NASA Astrophysics Data System (ADS)

    KrzyśCin, Janusz W.

    2000-02-01

    Monthly means and minima of total ozone for the late springs and summers (May-August) of 1963-1997 have been examined for the European Dobson stations (Arosa, Belsk, Hohenpeissenberg, Hradec Kralove, Uccle). It is shown that long-term tendencies in total ozone means were almost similar to those in the total ozone minima. Analyses of the late spring/summer means of UV daily doses, total ozone, and global solar radiation (proxy for the overall atmospheric transparency), measured at Belsk (52°N, 21°E) for the period 1976-1996, show that an importance of the total ozone changes for the UV-B level increases with the timescale. Decadal variations in total ozone are the main source of the UV trend at Belsk. Frequency of appearance of extreme daily total ozone values in the selected late spring/summer season seems to be important for analyses of the ozone forcing in the interannual timescale. Regional and temporal differences in the number of days with extreme low ozone values are discussed using the total ozone extrema taken at Arosa, Belsk, and Hradec Kralove in the 1963-1997 period. A statistical model is developed for diagnosis of the next day value of the UV-B level. The changes in the overall atmospheric transparency are essential for the UV-B level when the day-to-day variations in the UV forcing factors are examined.

  2. Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Bhartia, P. K.; Krueger, Arlin J.; Herman, Jay R.; Schlesinger, Barry M.; Wellemeyer, Charles G.; Seftor, Colin J.; Jaross, Glen; Taylor, Steven L.; Swissler, Tom; hide

    1996-01-01

    Two data products from the Total Ozone Mapping Spectrometer (TOMS) onboard Nimbus-7 have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio is used in ozone retrievals. Changes in the instrument sensitivity are monitored by a spectral discrimination technique using measurements of the intrinsically stable wavelength dependence of derived surface reflectivity. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and drift is less than 1.0 percent per decade. The Level-2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level-3 product contains daily total ozone amount and reflectivity in a I - degree latitude by 1.25 degrees longitude grid. The Level-3 product also is available on CD-ROM. Detailed descriptions of both HDF data files and the CD-ROM product are provided.

  3. Fine-Scale Comparison of TOMS Total Ozone Data with Model Analysis of an Intense Midwestern Cyclone

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Gallus, William A., Jr.; Stanford, John L.; Brown, John M.

    2000-01-01

    High-resolution (approx. 40 km) along-track total column ozone data from the Total Ozone Mapping Spectrometer (TOMS) instrument are compared with a high-resolution mesoscale numerical model analysis of an intense cyclone in the Midwestern United States. Total ozone increased by 100 DU (nearly 38%) as the TOMS instrument passed over the associated tropopause fold region. Complex structure is seen in the meteorological fields and compares well with the total ozone observations. Ozone data support the meteorological analysis showing that stratospheric descent was confined to levels above approx. 600 hPa; significant positive potential vorticity at lower levels is attributable to diabetic processes. Likewise, meteorological fields show that two pronounced ozone streamers extending north and northeastward into Canada at high levels are not bands of stratospheric air feeding into the cyclone; one is a channel of exhaust downstream from the system, and the other apparently previously connected the main cyclonic circulation to a southward intrusion of polar stratospheric air and advected eastward as the cut-off cyclone evolved. Good agreement between small-scale features in the model output and total ozone data underscores the latter's potential usefulness in diagnosing upper tropospheric/lower stratospheric dynamics and kinematics.

  4. Operational Production of the Total Ozone Essential Climate Variable as Part of the Copernicus Climate Change Service (C3S)

    NASA Astrophysics Data System (ADS)

    Lerot, C.; Danckaert, T.; van Gent, J.; Coldewey-Egbers, M.; Loyola, D. G.; Errera, Q.; Spurr, R. J. D.; Garane, K.; Koukouli, M.; Balis, D.; Verhoelst, T.; Granville, J.; Lambert, J. C.; Van Roozendael, M.

    2017-12-01

    Total ozone is one of the Essential Climate Variables (ECV) operationally produced within the European Copernicus Climate Change Service (C3S), which aims at providing the geophysical information needed to monitor and study our climate system. The C3S total ozone processing chain relies on algorithmic developments realized for the last six years as part of the ESA's Ozone Climate Change Initiative (Ozone_cci) project. The C3S Climate Data Store currently contains a total ozone record based on observations from the nadir UV-Vis hyperspectral spectrometers GOME/ERS-2, SCIAMACHY/Envisat, GOME-2/Metop-A, GOME-2/Metop-B and OMI/Aura, spanning more than 23 years.Individual level-2 datasets were generated with the retrieval algorithm GODFIT (GOME-type Direct FITting). The retrievals are based on a non-linear least squares adjustment of reflectances simulated with radiative transfer tools from the LIDORT suite, to the measured spectra in the Huggins bands (325-335 nm). The inter-sensor consistency and the time stability of those data sets is significantly enhanced with the application of a soft-calibration procedure to the level-1 reflectances, in which GOME and OMI are used together as a long-term reference. Level-2 data sets are then combined to produce the level-3 GOME-type Total Ozone (GTO-ECV) record consisting of homogenized 1°x1° monthly mean grids. The merging procedure corrects for subsisting inter-satellite biases and temporal drifts. Some developments for minimizing sampling errors have also been recently investigated and will be discussed. Total ozone level-2 and level-3 data sets are regularly verified and validated by independent measurements both from space (independent algorithms and/or instruments) and ground (Brewer/Dobson/SAOZ) and their excellent quality and stability, as well as their consistency with other long-term total ozone data sets will be illustrated here. In future, in addition to be continuously extended in time, the C3S total ozone record will also incorporate new sensors such as OMPS aboard Suomi NPP or TROPOMI/S5p.

  5. Long-term ozone and temperature correlations above SANAE, Antarctica

    NASA Technical Reports Server (NTRS)

    Bodeker, Gregory E.; Scourfield, Malcolm W. J.

    1994-01-01

    A significant decline in Antarctic total column ozone and upper air temperatures has been observed in recent years. Furthermore, high correlations between monthly mean values of ozone and stratospheric temperature have been measured above Syowa, Antarctica. For the observations reported here, data from TOMS (Total Ozone Mapping Spectrometer) aboard the Nimbus 7 satellite have been used to examine the 1980 to 1990 decrease in total column ozone above the South African Antarctic base of SANAE (70 deg 18 min S, 2 deg 21 min W). The cooling of the Antarctic stratosphere above SANAE during this period has been investigated by examining upper air temperatures at the 150, 100, 70, 50, and 30 hPa levels obtained from daily radiosonde balloon launches. Furthermore, these two data sets have been used to examine long-term, medium-term, and short-term correlations between total column ozone and the temperatures at each of the five levels. The trend in SANAE total column ozone has been found to be -4.9 DU/year, while upper air temperatures have been found to decrease at around 0.3 C/year. An analysis of monthly average SANAE total column ozone has shown the decrease to be most severe during the month of September with a trend of -7.7 DU/year. A strong correlation (r(exp 2) = 0.92) has been found between yearly average total column ozone and temperature at the 100 hPa level. Daily ozone and temperature correlations show high values from September to November, at a time when the polar vortex is breaking down.

  6. ADEOS Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide

    NASA Technical Reports Server (NTRS)

    Krueger, A.; Bhartia, P. K.; McPeters, R.; Herman, J.; Wellemeyer, C.; Jaross, G.; Seftor, C.; Torres, O.; Labow, G.; Byerly, W.; hide

    1998-01-01

    Two data products from the Total Ozone Mapping Spectrometer (ADEOS/TOMS) have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The ADEOS/ TOMS began taking measurements on September 11, 1996, and ended on June 29, 1997. The instrument measured backscattered Earth radiance and incoming solar irradiance; their ratio was used in ozone retrievals. Changes in the reflectivity of the solar diffuser used for the irradiance measurement were monitored using a carousel of three diffusers, each exposed to the degrading effects of solar irradiation at different rates. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and the drift is less than 0.5 percent over the 9-month data record. The Level 2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level 3 product contains daily total ozone and reflectivity in a 1-degree latitude by 1.25 degrees longitude grid. The Level 3 files containing estimates of UVB at the Earth surface and tropospheric aerosol information will also be available. Detailed descriptions of both HDF data files and the CDROM product are provided.

  7. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Product User's Guide

    NASA Technical Reports Server (NTRS)

    McPeters, R.; Bhartia, P. K.; Krueger, A.; Herman, J.; Wellemeyer, C.; Seftor, C.; Jaross, G.; Torres, O.; Moy, L.; Labow, G.; hide

    1998-01-01

    Two data products from the Earth Probe Total Ozone Mapping Spectrometer (EP/TOMS) have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The EP/ TOMS began taking measurements on July 15, 1996. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio is used in ozone retrievals. Changes in the reflectivity of the solar diffuser used for the irradiance measurement are monitored using a carousel of three diffusers, each exposed to the degrading effects of solar irradiation at different rates. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and the drift is less than 0.5 percent over the first year of data. The Level-2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level-3 product contains daily total ozone and reflectivity in a 1-degree latitude by 1.25 degrees longitude grid. Level-3 files containing estimates of LTVB at the Earth surface and tropospheric aerosol information are also available, Detailed descriptions of both HDF data-files and the CD-ROM product are provided.

  8. Ozone Trend Detectability

    NASA Technical Reports Server (NTRS)

    Campbell, J. W. (Editor)

    1981-01-01

    The detection of anthropogenic disturbances in the Earth's ozone layer was studied. Two topics were addressed: (1) the level at which a trend in total ozoning is detected by existing data sources; and (2) empirical evidence in the prediction of the depletion in total ozone. Error sources are identified. The predictability of climatological series, whether empirical models can be trusted, and how errors in the Dobson total ozone data impact trend detectability, are discussed.

  9. Use of Ozone to Treat Ileostomy Dermatitis in an Experimental Rat Model.

    PubMed

    Biçer, Şenol; Sayar, İlyas; Gürsul, Cebrail; Işık, Arda; Aydın, Merve; Peker, Kemal; Demiryilmaz, İsmail

    2016-03-07

    Dermatitis associated with ileostomy is an important problem that affects many people, especially children. The aim of this study was to investigate the therapeutic effects of ozone on dermatitis due to ileostomy, and to develop an alternative treatment option. A total of 28 rats were divided into 4 groups: control, ileostomy, ozone, and zinc oxide. Ileostomy was performed in all rats except the control group. After a 1-week waiting time, the ozone group was administered ozone therapy and the zinc oxide group was administered zinc oxide cream locally once a day for a total of 7 days. All rats were sacrificed at the end of this period. The efficacy of treatment was examined by biochemical, histopathological, and immunohistochemical parameters. The levels of malondialdehyde (MDA), total glutathione (tGSH), total antioxidant capacity (TAC), and total oxidant status (TOS) were measured from tissue. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) were examined immunohistochemically. Dermatitis occurred pathologically in all rats that underwent ileostomy surgery. The lowest dermatitis score was in the ozone treatment group (p<0.05). Ileostomy dermatitis caused increased levels of MDA and TOS. Ozone treatment resulted in reduced MDA and TOS levels, while the levels of tGSH and TAC were increased (p<0.05). Both VEGF and PCNA immunostaining were augmented in the ozone treatment group (p<0.05). Local ozone application may be a good alternative compared to the conventional treatment methods for the prevention of skin lesions that develop after ileostomy.

  10. Total ozone derived from UV spectrophotometer measurements on the NASA CV-990 aircraft for the fall 1976 latitude survey flights

    NASA Technical Reports Server (NTRS)

    Hanser, F. A.

    1977-01-01

    An ultraviolet interference filter spectrophotometer was modified to use a photodiode and was flown on latitude survey flights in the fall of 1976. Comparison with Dobson station total ozone values shows agreement between UVS and Dobson total ozone of + or - 2 percent. The procedure used to convert UVS measured ozone above the aircraft altitude to total ozone above ground level introduces an additional 2 percent deviation for very high altitude UVS ozone data. Under stable aircraft operating conditions, the UVS derived ozone values have a variability, or reproducibility, of better than + or -1 percent. The UVS data from the latitude survey flights yield a detailed latitude profile of total ozone over the Pacific Ocean during November 1976. Significant latitudinal structure in total ozone is found at the middle latitudes (30 deg to 40 deg N and S).

  11. Use of Ozone to Treat Ileostomy Dermatitis in an Experimental Rat Model

    PubMed Central

    Biçer, Şenol; Sayar, İlyas; Gürsul, Cebrail; Işık, Arda; Aydın, Merve; Peker, Kemal; Demiryilmaz, İsmail

    2016-01-01

    Background Dermatitis associated with ileostomy is an important problem that affects many people, especially children. The aim of this study was to investigate the therapeutic effects of ozone on dermatitis due to ileostomy, and to develop an alternative treatment option. Material/Methods A total of 28 rats were divided into 4 groups: control, ileostomy, ozone, and zinc oxide. Ileostomy was performed in all rats except the control group. After a 1-week waiting time, the ozone group was administered ozone therapy and the zinc oxide group was administered zinc oxide cream locally once a day for a total of 7 days. All rats were sacrificed at the end of this period. The efficacy of treatment was examined by biochemical, histopathological, and immunohistochemical parameters. The levels of malondialdehyde (MDA), total glutathione (tGSH), total antioxidant capacity (TAC), and total oxidant status (TOS) were measured from tissue. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) were examined immunohistochemically. Results Dermatitis occurred pathologically in all rats that underwent ileostomy surgery. The lowest dermatitis score was in the ozone treatment group (p<0.05). Ileostomy dermatitis caused increased levels of MDA and TOS. Ozone treatment resulted in reduced MDA and TOS levels, while the levels of tGSH and TAC were increased (p<0.05). Both VEGF and PCNA immunostaining were augmented in the ozone treatment group (p<0.05). Conclusions Local ozone application may be a good alternative compared to the conventional treatment methods for the prevention of skin lesions that develop after ileostomy. PMID:26947591

  12. The characterization of an air pollution episode using satellite total ozone measurements

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Shipham, Mark C.; Vukovich, Fred M.; Cahoon, Donald R.

    1987-01-01

    A case study is presented which demonstrates that measurements of total ozone from a space-based platform can be used to study a widespread air pollution episode over the southeastern U.S. In particular, the synoptic-scale distribution of surface-level ozone obtained from an independent analysis of ground-based monitoring stations appears to be captured by the synoptic-scale distribution of total ozone, even though about 90 percent of the total ozone is in the stratosphere. Additional analyses of upper air meteorological data, other satellite imagery, and in situ aircraft measurements of ozone likewise support the fact that synoptic-scale variability of tropospheric ozone is primarily responsible for the observed variability in total ozone under certain conditions. The use of the type of analysis discussed in this study may provide an important technique for understanding the global budget of tropospheric ozone.

  13. Antarctic Ozone Hole, 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  14. Multimodel Assessment of the Factors Driving Stratospheric Ozone Evolution over the 21st Century

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Plummer, D. A.; Waugh, D. W.; Austin, J.; Scinocca, J. F.; Douglass, A. R.; Salawitch, R. J.; Canty, T.; Akiyoshi, H.; Bekki, S.; hide

    2010-01-01

    The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from 14 chemistry-climate models, driven by prescribed levels of halogens and greenhouse gases. There is general agreement among the models that total column ozone reached a minimum around year 2000 at all latitudes, projected to be followed by an increase over the first half of the 21st century. In the second half of the 21st century, ozone is projected to continue increasing, level off, or even decrease depending on the latitude. Separation into partial columns above and below 20 hPa reveals that these latitudinal differences are almost completely caused by differences in the model projections of ozone in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and is projected to return to 1960 levels well before the end of the century, although there is a spread among models in the dates that ozone returns to specific historical values. We find decreasing halogens and declining upper atmospheric temperatures, driven by increasing greenhouse gases, contribute almost equally to increases in upper stratospheric ozone. In the tropical lower stratosphere, an increase in upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in most of the models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century, returning to 1960 levels well before the end of the century in most models.

  15. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    NASA Technical Reports Server (NTRS)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  16. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing

    PubMed Central

    Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing

    2018-01-01

    Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m3, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00–4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively. PMID:29596366

  17. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing.

    PubMed

    Zhao, Hui; Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing

    2018-03-29

    Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m³, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00-4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively.

  18. An extreme anomaly in stratospheric ozone over Europe in 1940-1942

    NASA Astrophysics Data System (ADS)

    Brönnimann, S.; Luterbacher, J.; Staehelin, J.; Svendby, T. M.

    2004-04-01

    Reevaluated historical total ozone data reveal extraordinarily high values over several European sites in 1940-1942, concurrent with extreme climatic anomalies at the Earth's surface. Using historical radiosonde data, reconstructed upper-level fields, and total ozone data from Arosa (Switzerland), Dombås, and Tromsø (Norway), this unusual case of stratosphere-troposphere coupling is analyzed. At Arosa, numerous strong total ozone peaks in all seasons were due to unusually frequent upper troughs over central Europe and related ozone redistribution in the lower stratosphere. At the Norwegian sites, high winter total ozone was most likely caused by major stratospheric warmings in Jan./Feb. 1940, Feb./Mar. 1941, and Feb. 1942. Results demonstrate that the dynamically driven interannual variability of total ozone can be much larger than that estimated based on the past 25-40 years.

  19. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    PubMed Central

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage. PMID:23969972

  20. Evaluating a New Homogeneous Total Ozone Climate Data Record from GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A

    NASA Technical Reports Server (NTRS)

    Koukouli, M.E.; Lerot, C.; Granville, J.; Goutail, F.; Lambert, J.-C.; Pommereau, J.-P.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Coldewey-Egbers, M.; hide

    2015-01-01

    The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D'Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 plus or minus 1 percent level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1-3 percent requirement of the European Space Agency's Ozone Climate Change Initiative project.

  1. The Application of TOMS Ozone, Aerosol and UV-B Data to Madagascar Air Quality Determination

    NASA Technical Reports Server (NTRS)

    Aikin, A.C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Total Ozone Mapping Spectrometer (TOMS) data products for the area of Madagascar are presented. In addition to total ozone, aerosols and UV-B tropospheric ozone results are shown from 1979 to the present. Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods. The potential of TOMS and other space data for use in public education and research on Madagascar air quality is demonstrated.

  2. A preliminary comparison between TOVS and GOME level 2 ozone data

    NASA Astrophysics Data System (ADS)

    Rathman, William; Monks, Paul S.; Llewellyn-Jones, David; Burrows, John P.

    1997-09-01

    A preliminary comparison between total column ozone concentration values derived from TIROS Operational Vertical Sounder (TOVS) and Global Ozone Monitoring Experiment (GOME) has been carried out. Two comparisons of ozone datasets have been made: a) TOVS ozone analysis maps vs. GOME level 2 data; b) TOVS data located at Northern Hemisphere Ground Ozone Stations (NHGOS) vs. GOME data. Both analyses consistently showed an offset in the value of the total column ozone between the datasets [for analyses a) 35 Dobson Units (DU); and for analyses b) 10 DU], despite a good correlation between the spatial and temporal features of the datasets. A noticeably poor correlation in the latitudinal bands 10°/20° North and 10°/20° South was observed—the reasons for which are discussed. The smallest region which was statistically representative of the ozone value correlation dataset of TOVS data at NHGOS and GOME level-2 data was determined to be a region that was enclosed by effective radius of 0.75 arc-degrees (83.5km).

  3. On the Relation between Atmospheric Ozone and Sunspot Number.

    NASA Astrophysics Data System (ADS)

    Angell, J. K.

    1989-11-01

    Based on data from the Dobson network, between 1960 and 1987 there has been a zero-lag correlation of 0.48 between the 112 unsmoothed seasonal values of sunspot number and global total ozone, significant at the 1% level taking into account the considerable serial correlation in these data. The maximum correlation of 0.54 is found when sunspot number lags total ozone by two seasons, the result mainly of a phase difference early in the record. On the basis of only 2 1/2 solar cycles, the global total ozone has increased by 1.4% for an increase in sunspot number of 100. The correlation between sunspot number and total ozone has been significant at the 5% level in north temperate and tropical zones-the zones with the most representative data. In the north temperate zone, the correlation between sunspot number and total ozone has been much higher in the west-wind phase of the 50 mb equatorial QBO than in the east-wind phase, but in the tropics the correlation has been much higher in the east-wind phase. Umkehr measurements between 1966 and 1987 in the north temperate zone indicate that the correlation between sunspot number and ozone amount has been higher (0.35, almost significant at the 5% level) in the low stratosphere where transport processes dominate than in the high stratosphere where photochemical processes dominate. During 1932-60 there was a significant correlation of 0.35 between sunspot number and Arosa total ozone 14 seasons later, very different from the nearly in-phase relation found after 1960. Considered is the possible impact of long-term change in transport processes in the low stratosphere on the total-ozone record at a single station such as Arosa.Between 1966 and 1985 there has been very good agreement between observed global total ozone, and global total ozone calculated from three 2-D stratospheric models that take into account the solar cycle, the time variation in trace gases, and nuclear tests; both observed and calculated variations are closely related to the variation in sunspot number. Between 1960 and 1966, however, the agreement between observation and calculation is poor, the models indicating a pronounced minimum in global total ozone in 1963 due to the nuclear tests of the early 1960s-a minimum not found in this analysis. The observed variation in global total ozone has been compared with the variation predicted by one of the models up to the sunspot maximum in 1990, and the agreement is shown to be good through the northern summer of 1988 if the impact of the QBO on global total ozone is taken into account. On the basis of the present analysis, there has been a 1.0 ± 0.9% decrease in global total ozone between solar cycles 20 and 21, a decrease 70% larger than that indicated by the three stratospheric models.

  4. Discussion of the 60 year total ozone record at Arosa based on measurements of the vertical distribution and a meteorological parameter

    NASA Astrophysics Data System (ADS)

    Duetsch, H. U.; Staehelin, J.

    1989-12-01

    This paper discusses the longest total ozone record in the world, started by Goetz (using a simple cadmium cell) at Arosa, Switzerland, in 1926 and supplemented by later measurements at Arosa with modern instruments and by ozone soundings at Payerne, Switzerland. These data yield the concurrent vertical distribution which makes it possible to distinguish between regional and hemispheric scale processes influencing total ozone. These measurements also make it possible to derive the height distribution of the ozone loss since 1970 and to derive indications of the extent of anthropogenic contribution to the changes. The most intense negative trends are found around the level of the ozone peak and in the upper stratosphere, whereby the former yields the dominant contribution to the total ozone loss.

  5. Multi-Model Assessment of the Factors Driving Stratospheric Ozone Evolution Over the 21st Century

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Plummer, D. A.; Waugh, D. W.; Austin, J.; Scinocca, J.; Douglass, A. R.; Salawitch, R. J.; Canty, T.; Akiyoshi, H.; Bekki, S.; hide

    2010-01-01

    The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from fourteen chemistry-climate models. There is general agreement among the models at the broadest levels, showing column ozone decreasing at all latitudes from 1960 to around 2000, then increasing at all latitudes over the first half of the 21st century, and latitudinal variations in the rate of increase and date of return to historical values. In the second half of the century, ozone is projected to continue increasing, level off or even decrease depending on the latitude, resulting in variable dates of return to historical values at latitudes where column ozone has declined below those levels. Separation into partial column above and below 20 hPa reveals that these latitudinal differences are almost completely due to differences in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and returns to 1960 levels before the end of the century, although there is a spread among the models in dates that ozone returns to historical values. Using multiple linear regression, we find decreasing halogens and increasing greenhouse gases contribute almost equally to increases in the upper stratospheric ozone. In the tropical lower stratosphere an increase in tropical upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in all models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century and returns to 1960 levels.

  6. Acute effect of ozone exposure on daily mortality in seven cities of Jiangsu Province, China: No clear evidence for threshold.

    PubMed

    Chen, Kai; Zhou, Lian; Chen, Xiaodong; Bi, Jun; Kinney, Patrick L

    2017-05-01

    Few multicity studies have addressed the health effects of ozone in China due to the scarcity of ozone monitoring data. A critical scientific and policy-relevant question is whether a threshold exists in the ozone-mortality relationship. Using a generalized additive model and a univariate random-effects meta-analysis, this research evaluated the relationship between short-term ozone exposure and daily total mortality in seven cities of Jiangsu Province, China during 2013-2014. Spline, subset, and threshold models were applied to further evaluate whether a safe threshold level exists. This study found strong evidence that short-term ozone exposure is significantly associated with premature total mortality. A 10μg/m 3 increase in the average of the current and previous days' maximum 8-h average ozone concentration was associated with a 0.55% (95% posterior interval: 0.34%, 0.76%) increase of total mortality. This finding is robust when considering the confounding effect of PM 2.5 , PM 10 , NO 2 , and SO 2 . No consistent evidence was found for a threshold in the ozone-mortality concentration-response relationship down to concentrations well below the current Chinese Ambient Air Quality Standard (CAAQS) level 2 standard (160μg/m 3 ). Our findings suggest that ozone concentrations below the current CAAQS level 2 standard could still induce increased mortality risks in Jiangsu Province, China. Continuous air pollution control measures could yield important health benefits in Jiangsu Province, China, even in cities that meet the current CAAQS level 2 standard. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Acute effect of ozone exposure on daily mortality in seven cities of Jiangsu Province, China: No clear evidence for threshold

    PubMed Central

    Chen, Kai; Zhou, Lian; Chen, Xiaodong; Bi, Jun; Kinney, Patrick L.

    2017-01-01

    Background Few multicity studies have addressed the health effects of ozone in China due to the scarcity of ozone monitoring data. A critical scientific and policy-relevant question is whether a threshold exists in the ozone-mortality relationship. Methods Using a generalized additive model and a univariate random-effects meta-analysis, this research evaluated the relationship between short-term ozone exposure and daily total mortality in seven cities of Jiangsu Province, China during 2013–2014. Spline, subset, and threshold models were applied to further evaluate whether a safe threshold level exists. Results This study found strong evidence that short-term ozone exposure is significantly associated with premature total mortality. A 10 μg/m3 increase in the average of the current and previous days’ maximum 8-h average ozone concentration was associated with a 0.55% (95% posterior interval: 0.34%, 0.76%) increase of total mortality. This finding is robust when considering the confounding effect of PM2.5, PM10, NO2, and SO2. No consistent evidence was found for a threshold in the ozone-mortality concentration-response relationship down to concentrations well below the current Chinese Ambient Air Quality Standard (CAAQS) level 2 standard (160 μg/m3). Conclusions Our findings suggest that ozone concentrations below the current CAAQS level 2 standard could still induce increased mortality risks in Jiangsu Province, China. Continuous air pollution control measures could yield important health benefits in Jiangsu Province, China, even in cities that meet the current CAAQS level 2 standard. PMID:28231551

  8. Differences between recalculated and original Dobson total ozone data from Hradec Kralove, Czechoslovakia, 1962-1990

    NASA Technical Reports Server (NTRS)

    Vanicek, Karel

    1994-01-01

    Backward reevaluation of long-term total ozone measurements from the Solar and Ozone Observatory of Czech Hydrometeorological Institute at Hradec Kralove, Czechoslovakia, was performed for the period 1962-1990. The homogenization was carried out with respect to the calibration level of the World Primary Standard Spectrophotometer No. 83 - WPSS by means of day-by-day recalculations of more than 25,000 individual measurements using the R-N tables reconstructed after international comparisons and regular standard lamp tests of the Dobson spectrophotometer No. 74. The results showed significant differences among the recalculated data and those original ones published in the bulletins Ozone Data for the World. In the period 1962-1979 they reached 10-19 D.U. (3.0-5.5%) for annual averages and even 26 D.U. (7.0%) for monthly averages of total ozone. Such differences exceed several times accuracy of measuring and can significantly influence character of trends of total ozone in Central Europe. Therefore the results from Hradec Kralove support the calls for reevaluation of all historical Dobson total ozone data sets at individual stations of Global Ozone Observing System.

  9. Tropospheric Ozone from the TOMS TDOT (TOMS-Direct-Ozone-in-Troposphere) Technique During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.

  10. Results of the measurement of atmospheric ozone and hydrocarbons in Baden-Wurttemburg

    NASA Technical Reports Server (NTRS)

    Blander, W.; Siegel, D.

    1978-01-01

    Data are presented on the diurnal variations of the levels of ozone, ethylene, ethane, and acetylene. The measurement procedures used are described. Variations in monthly ozone levels are given, and measurements from different stations are compared. Data on the total monthly concentrations of NO and NO2 are compared with similar data for ozone. Problems in determining interrelationships among the concentrations of the various substances are discussed.

  11. Historical Analysis and Charaterization of Ground Level Ozone for Canada and United State

    NASA Astrophysics Data System (ADS)

    Lin, H.; Li, H.; Auld, H.

    2003-12-01

    Ground-level ozone has long been recognized as an important health and ecosystem-related air quality concern in Canada and the United States. In this work we seek to understand the characteristics of ground level ozone conditions for Canada and United States to support the Ozone Annex under the Canada-U.S. Air Quality Agreement. Our analyses are based upon the data collected by Canadian National Air Pollution Surveillance (NAPS, the NAPS database has also been expanded to include U.S. EPA ground level ozone data) network. Historical ozone data from 1974 to 2002 at a total of 538 stations (253 Canadian stations and 285 U.S. stations) were statistically analyzed using several methodologies including the Canada Wide Standard (CWS). A more detailed analysis including hourly, daily, monthly, seasonally and yearly ozone concentration distributions and trends was undertaken for 54 stations.

  12. The unusual persistence of an ozone hole over a southern mid-latitude station during the Antarctic spring 2009: a multi-instrument study

    NASA Astrophysics Data System (ADS)

    Wolfram, E. A.; Salvador, J.; Orte, F.; D'Elia, R.; Godin-Beekmann, S.; Kuttippurath, J.; Pazmiño, A.; Goutail, F.; Casiccia, C.; Zamorano, F.; Paes Leme, N.; Quel, E. J.

    2012-10-01

    Record-low ozone column densities (with a minimum of 212 DU) persisted over three weeks at the Río Gallegos NDACC (Network for the Detection of Atmospheric Composition Change) station (51.5° S, 69.3° W) in November 2009. Total ozone remained two standard deviations below the climatological mean for five consecutive days during this period. The statistical analysis of 30 years of satellite data from the Multi Sensor Reanalysis (MSR) database for Río Gallegos revealed that such a long-lasting low-ozone episode is a rare occurrence. The event is examined using height-resolved ozone lidar measurements at Río Gallegos, and observations from satellite and ground-based instruments. The computed relative difference between the measured total ozone and the climatological monthly mean shows reductions varying between 10 and 30% with an average decrease of 25%. The mean absolute difference of total ozone column with respect to climatological monthly mean ozone column is around 75 DU. Extreme values of the UV index (UVI) were measured at the ground for this period, with the daily maximum UVI of around 13 on 15 and 28 November. The high-resolution MIMOSA-CHIM (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection) model was used to interpret the ozone depletion event. An ozone decrease of about 2 ppmv was observed in mid-November at the 550 K isentropic level (~22 km). The position of Río Gallegos relative to the polar vortex was classified using equivalent latitude maps. During the second week of November, the vortex was over the station at all isentropic levels, but after 20 November and until the end of the month, only the 10 lower levels in the stratosphere were affected by vortex overpasses with ozone poor air masses. A rapid recovery of the ozone column density was observed later, due to an ozone rich filament moving over Río Gallegos between 18 and 24 km in the first two weeks of December 2009.

  13. Total ozone changes in the 1987 Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald

    1988-01-01

    The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.

  14. An observational study of the ozone dilution effect: Ozone transport in the austral spring stratosphere

    NASA Technical Reports Server (NTRS)

    Atkinson, Roger J.; Plumb, R. Alan

    1994-01-01

    In a previous observational analysis, Atkinson et al (1989) ascribed a sudden decrease in Southern Hemisphere midlatitude total ozone during December 1987 to an 'ozone dilution effect' brought about by the breakup of the polar stratospheric vortex at that time. A question alluded to but unanswered by that study was the degree to which the observed total ozone decrease might have been caused by the quasi-horizontal equatorward transport of 'ozone hold' air from within the vortex, and to what degree by the vertical advection from lower levels of air naturally low in ozone, a dynamical adjustment process which must accompany the equatorward outbreak of a discrete high-latitude airmass. In the present study, analyses of Ertel potential vorticity, TOMS total ozone, and SAGE and ozone sonde vertical profile data are employed using a novel technique to examine the 1987 event in greater detail, to answer this question. Recent progress is then reported in refining the technique and extending the investigation to examine the dynamical evolution of the austral spring stratosphere during other recent years, to shed more light on the precise nature, frequency, and severity of such 'ozone dilution' events, and the effect that this process may have on long term ozone behavior in the Southern Hemisphere.

  15. The Ecophysiology Of A Pinus Ponderosa Ecosystem Exposed To High Tropospheric Ozone: Implications For Stomatal And Non-Stomatal Ozone Fluxes

    NASA Astrophysics Data System (ADS)

    Fares, S.; McKay, M.; Goldstein, A.

    2008-12-01

    Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.

  16. Ozone profile measurements at McMurdo Station Antarctica during the spring of 1987

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Harder, J. W.; Rosen, J. M.; Hereford, J.; Carpenter, J. R.

    1988-01-01

    During the Antarctic spring of 1986, 33 ozone soundings were conducted from McMurdo Station. These data indicated that the springtime decrease in ozone occurred rapidly between the altitudes of 12 and 20 km. During 1987, these measurements were repeated with 50 soundings between 29 August and 9 November. Digital conversions of standard electrochemical cell ozonesondes were again employed. The ozonesonde pumps were individually calibrated for flow rate as the high altitude performance of these pumps have been in question. While these uncertainties are not large in the region of the ozone hole, they are significant at high altitude and apparently resulted in an underestimate of total ozone of about 7 percent (average) as compared to the Total Ozone Mapping Spectrometer (TOMS) in 1986, when the flow rate recommended by the manufacturer was used. At the upper altitudes (approx. 30 km) the flow rate may be overestimated by as much as 15 percent using recommended values (see Harder et al., The UW Digital Ozonesonde: Characteristics and Flow Rate Calibration, poster paper, this workshop). These upper level values are used in the extrapolation, at constant mixing ratio, required to complete the sounding for total ozone. The first sounding was on 29 August, prior to major ozone depletion, when 274 DU total ozone (25 DU extrapolated) was observed. By early October total ozone had decreased to the 150 DU range; it then increased during mid-October owing to motion of the vortex and returned to a value of 148 DU (29 DU extrapolated) on 27 October.

  17. Ozone Pollution, Transport and Variability: Examples from Satellite and In-Situ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    2003-01-01

    Regional and intercontinental transport of ozone has been observed from satellite, aircraft and sounding data. Over the past several years, we have developed new tropospheric ozone retrieval techniques from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique uses Level 2 total ozone and was used to follow the 1997 fires in the wake of the El-Nino-related fires in southeast Asia and the Indonesian maritime continent. The TOMS-direct method ('TDOT' = TOMS Direct Ozone in the Troposphere) is a newer algorithm that uses TOMS radiances directly to extract tropospheric ozone. Ozonesonde data that have been taken in campaigns (e.g. TRACE-P) and more consistently in the SHADOZ (Southern Hemisphere Additional Ozonesondes) project, reveal layers of pollution traceable with trajectories. Examples will be shown of long-range transport and recirculation over Africa during SAFARI-2000.

  18. Analysis and interpretation of variabilities in ozone and temperature fields

    NASA Technical Reports Server (NTRS)

    Chandra, S.

    1990-01-01

    The temporal and spatial variabilities were studied of short and long term fluctuations in stratospheric ozone and temperature at various pressure levels using several years of ozone, temperature, and solar flux data from Nimbus 4, Nimbus 7, and SME satellites. Some results are as follows: (1) the solar UV flux and various indices of solar activity indicate a strong period at about 5 months; (2) satellite total ozone observations were analyzed using 17 years of data from the Nimbus 4 BUV and the Nimbus 7 SBUV experiments, which show very similar seasonal variations and quasibiennial oscillation (QBO) with some indication of a 4 year component; and (3) the zonal characteristics of both the ozone and temperature trends were derived from ten years of total ozone and 50 mb temperature based on the Nimbus 7 TOMS measurements and the NMC analyses respectively.

  19. Small-Scale Tropopause Dynamics and TOMS Total Ozone

    NASA Technical Reports Server (NTRS)

    Stanford, John L.

    2002-01-01

    This project used Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) along-track ozone retrievals, in conjunction with ancillary meteorological fields and modeling studies, for high resolution investigations of upper troposphere and lower stratosphere dynamics. Specifically, high resolution along-track (Level 2) EP TOMS data were used to investigate the beautiful fine-scale structure in constituent and meteorological fields prominent in the evolution of highly non-linear baroclinic storm systems. Comparison was made with high resolution meteorological models. The analyses provide internal consistency checks and validation of the EP TOMS data which are vital for monitoring ozone depletion in both polar and midlatitude regions.

  20. Attribution of Recovery in Lower-Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Yang, Eun-Su; Cunnold, Derek M.; Salawitch, Ross J.; McCormick, M. Patrick; Russell, James, III; Zawodny, Joseph M.; Oltmans, Samuel; Newchurch, Michael J.

    2005-01-01

    Multiple satellite and ground-based observations provide consistent evidence that the thickness of Earth's protective ozone layer has stopped declining since 1997, close to the time of peak stratospheric halogen loading. Regression analyses with Effective Equivalent Stratospheric Chlorine (EESC) in conjunction with further analyses using more sophisticated photochemical model calculations constrained by satellite data demonstrate that the cessation of ozone depletion between 18-25 km altitude is consistent with a leveling off of stratospheric abundances of chlorine and bromine, due to the Montreal Protocol and its amendments. However, ozone increases in the lowest part of the stratosphere, from the tropopause to 18 km, account for about half of the improvement in total column ozone during the past 9 years at northern hemisphere mid-latitudes. The increase in ozone for altitudes below 18 km is most likely driven by changes in transport, rather than driven by declining chlorine and bromine. Even with this evidence that the Montreal Protocol and its amendments are having the desired, positive effect on ozone above 18 km, total column ozone is recovering faster than expected due to the apparent transport driven changes at lower altitudes. Accurate prediction of future levels of stratospheric ozone will require comprehensive understanding of the factors that drive temporal changes at various altitudes, and partitioning of the recent transport-driven increases between natural variability and changes in atmospheric structure perhaps related to anthropogenic climate change.

  1. Attribution of Recovery in Lower-stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Yang, Eun-Su; Cunnold, Derek M.; Salawitch, Ross J.; McCormick, M. Patrick; Russell, James, III; Zawodny, Joseph M.; Oltmans, Samuel; Newchurch, Michael J.

    2006-01-01

    Multiple satellite and ground-based observations provide consistent evidence that the thickness of Earth's protective ozone layer has stopped declining since 1997, close to the time of peak stratospheric halogen loading. Regression analyses with Effective Equivalent Stratospheric Chlorine (EESC) in conjunction with further analyses using more sophisticated photochemical model calculations constrained by satellite data demonstrate that the cessation of ozone depletion between 18-25 km altitude is consistent with a leveling off of stratospheric abundances of chlorine and bromine, due to the Montreal Protocol and its amendments. However, ozone increases in the lowest part of the stratosphere, from the tropopause to 18 km, account for about half of the improvement in total column ozone during the past 9 years at northern hemisphere mid-latitudes. The increase in ozone for altitudes below 18 km is most likely driven by changes in transport, rather than driven by declining chlorine and bromine. Even with this evidence that the Montreal Protocol and its amendments are having the desired, positive effect on ozone above 18 km, total column ozone is recovering faster than expected due to the apparent transport driven changes at lower altitudes. Accurate prediction of future levels of stratospheric ozone will require comprehensive understanding of the factors that drive temporal changes at various altitudes, and partitioning of the recent transport-driven increases between natural variability and changes in atmospheric structure perhaps related to anthropogenic climate change.

  2. Evaluation of ozone emissions and exposures from consumer products and home appliances.

    PubMed

    Zhang, Q; Jenkins, P L

    2017-03-01

    Ground-level ozone can cause serious adverse health effects and environmental impacts. This study measured ozone emissions and impacts on indoor ozone levels and associated exposures from 17 consumer products and home appliances that could emit ozone either intentionally or as a by-product of their functions. Nine products were found to emit measurable ozone, one up to 6230 ppb at a distance of 5 cm (2 inches). One use of these products increased room ozone concentrations by levels up to 106 ppb (mean, from an ozone laundry system) and personal exposure concentrations of the user by 12-424 ppb (mean). Multiple cycles of use of one fruit and vegetable washer increased personal exposure concentrations by an average of 2550 ppb, over 28 times higher than the level of the 1-h California Ambient Air Quality Standard for ozone (0.09 ppm). Ozone emission rates ranged from 1.6 mg/h for a refrigerator air purifier to 15.4 mg/h for a fruit and vegetable washer. The use of some products was estimated to contribute up to 87% of total daily exposures to ozone. The results show that the use of some products may result in potential health impacts. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  3. Ambient ozone effects on gas exchange and total non-structural carbohydrate levels in cutleaf coneflower (Rudbeckia laciniata L.) growing in Great Smoky Mountains National Park

    USDA-ARS?s Scientific Manuscript database

    Ozone-sensitive and -tolerant individuals of the perennial herbaceous cutleaf coneflower (Rudbeckia laciniata L.) were compared for their gas exchange characteristics and total non-structural carbohydrates in the Great Smoky Mountains National Park USA. Net photosynthesis decreased with increased f...

  4. Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean

    USDA-ARS?s Scientific Manuscript database

    The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 nL L-1 was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amin...

  5. Ozone photochemical production in urban Shanghai, China: Analysis based on ground level observations

    NASA Astrophysics Data System (ADS)

    Ran, Liang; Zhao, Chunsheng; Geng, Fuhai; Tie, Xuexi; Tang, Xu; Peng, Li; Zhou, Guangqiang; Yu, Qiong; Xu, Jianmin; Guenther, Alex

    2009-08-01

    Ozone and its precursors were measured from 15 June 2006 to 14 June 2007 at an urban site in Shanghai and used to characterize photochemical oxidant production in this region. During the observation period, ozone displays a seasonal variation with a maximum in spring. Observed nitrogen oxides (NOx) and carbon monoxide (CO) reached a maximum in winter and a minimum in summer. NOx and CO has a similar double-peak diurnal cycle, implying that they are largely of motor vehicle origin. Total nonmethane organic compounds (NMOC) concentrations averaged over the morning, and the 24-hour periods have a large day-to-day variation with no apparent seasonal cycle. Aromatics play a dominant role in contributing to total NMOC reactivity and ozone-forming potential. Anthropogenic NMOC of diverse sources are major components of total NMOC and consist mainly of moderate and low reactivity species. In contrast, relatively low levels of biogenic NMOC concentrations were observed in urban Shanghai. The early morning NMOC/NOx ratios are typically below 8:1 with an average of around 4:1, indicating that the sampling location is situated in a NMOC-limited regime. Model simulations confirm that potential photochemical ozone production in Shanghai is NMOC-sensitive. It is presently difficult to predict the impact of future human activities, such as the increase of automobiles and vegetation-covered landscapes and the reduction of aerosol on ozone pollution in the fast developing megacities of China, and additional studies are needed to better understand the highly nonlinear ozone problem.

  6. Comparison of Profile Total Ozone from SBUV (v8.6) with GOME-Type and Ground-Based Total Ozone for a 16-Year Period (1996 to 2011)

    NASA Technical Reports Server (NTRS)

    Chiou, E. W.; Bhartia, P. K.; McPeters, R. D.; Loyola, D. G.; Coldewey-Egbers, M.; Fioletov, V. E.; Van Roozendael, M.; Spurr, R.; Lerot, C.; Frith, S. M.

    2014-01-01

    This paper describes the comparison of the variability of total column ozone inferred from the three independent multi-year data records, namely, (i) Solar Backscatter Ultraviolet Instrument (SBUV) v8.6 profile total ozone, (ii) GTO (GOME-type total ozone), and (iii) ground-based total ozone data records covering the 16-year overlap period (March 1996 through June 2011). Analyses are conducted based on area-weighted zonal means for 0-30degS, 0-30degN, 50-30degS, and 30-60degN. It has been found that, on average, the differences in monthly zonal mean total ozone vary between -0.3 and 0.8% and are well within 1 %. For GTO minus SBUV, the standard deviations and ranges (maximum minus minimum) of the differences regarding monthly zonal mean total ozone vary between 0.6-0.7% and 2.8-3.8% respectively, depending on the latitude band. The corresponding standard deviations and ranges regarding the differences in monthly zonal mean anomalies show values between 0.4-0.6% and 2.2-3.5 %. The standard deviations and ranges of the differences ground-based minus SBUV regarding both monthly zonal means and anomalies are larger by a factor of 1.4-2.9 in comparison to GTO minus SBUV. The ground-based zonal means demonstrate larger scattering of monthly data compared to satellite-based records. The differences in the scattering are significantly reduced if seasonal zonal averages are analyzed. The trends of the differences GTO minus SBUV and ground-based minus SBUV are found to vary between -0.04 and 0.1%/yr (-0.1 and 0.3DU/yr). These negligibly small trends have provided strong evidence that there are no significant time-dependent differences among these multiyear total ozone data records. Analyses of the annual deviations from pre-1980 level indicate that, for the 15-year period of 1996 to 2010, all three data records show a gradual increase at 30-60degN from -5% in 1996 to -2% in 2010. In contrast, at 50-30degS and 30degS- 30degN there has been a leveling off in the 15 years after 1996. The deviations inferred from GTO and SBUV show agreement within 1 %, but a slight increase has been found in the differences during the period 1996-2010.

  7. Distribution and urban-suburban differences in ground-level ozone and its precursors over Shenyang, China

    NASA Astrophysics Data System (ADS)

    Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun

    2018-03-01

    Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.

  8. The total ozone and UV solar radiation over Stara Zagora, Bulgaria

    NASA Astrophysics Data System (ADS)

    Mendeva, B. D.; Gogosheva, Ts. N.; Petkov, B. H.; Krastev, D. G.

    The results from direct ground-based solar UV irradiance measurements and the total ozone content (TOC) over Stara Zagora (42° 25'N, 25° 37'E), Bulgaria are presented. During the period 1999-2003 the TOC data show seasonal variations, typical for the middle latitudes - maximum in the spring and minimum in the autumn. The comparison between TOC ground-based data and Global Ozone Monitoring Experiment (GOME) satellite-borne ones shows a seasonal dependence of the differences between them. A strong negative relationship between the total ozone and the 305 nm wavelength irradiance was found. The dependence between the two variables is significant ( r = -0.62 ± 0.18) at 98% confidence level. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2.3%. The eye-damaging doses are more influenced by the TOC changes and in this case RAF = -2.7%. The amount of these biological doses depended on the solar altitude over the horizon. This dependence was not so strong when the total ozone content in the atmosphere was lower.

  9. Ozone Profiles and Tropospheric Ozone from Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Liu, X.; Chance, K.; Sioris, C. E.; Sparr, R. J. D.; Kuregm, T. P.; Martin, R. V.; Newchurch, M. J.; Bhartia, P. K.

    2003-01-01

    Ozone profiles are derived from backscattered radiances in the ultraviolet spectra (290-340 nm) measured by the nadir-viewing Global Ozone Monitoring Experiment using optimal estimation. Tropospheric O3 is directly retrieved with the tropopause as one of the retrieval levels. To optimize the retrieval and improve the fitting precision needed for tropospheric O3, we perform extensive wavelength and radiometric calibrations and improve forward model inputs. Retrieved O3 profiles and tropospheric O3 agree well with coincident ozonesonde measurements, and the integrated total O3 agrees very well with Earth Probe TOMS and Dobson/Brewer total O3. The global distribution of tropospheric O3 clearly shows the influences of biomass burning, convection, and air pollution, and is generally consistent with our current understanding.

  10. Estimating when the Antarctic Ozone Hole will Recover

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Douglass, Anne R.; Nielsen, J. Eric; Pawson, Steven; Stolarski, Richard S.

    2007-01-01

    The Antarctic ozone hole develops each year and culminates by early spring (late September - early October). The severity of the hole has been assessed from satellites using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average area coverage during this September-October period. Profile information shows that ozone is completely destroyed in the 14-2 1 km layer by early October. Ozone is mainly destroyed by halogen (chlorine and bromine) catalytic cycles, and these losses are modulated by temperature variations. Because atmospheric halogen levels are responding to international a'greements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We estimate that the ozone hole will begin to show first signs of size decrease in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. Estimates of the ozone hole's recovery from models reveal important differences that will be discussed.

  11. Estimating When the Antarctic Ozone Hole Will Recover

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Douglass, Anne R.; Nielsen, J. Eric; Pawson, Steven; Stolarski, Richard S.

    2007-01-01

    The Antarctic ozone hole develops each year and culminates by early spring (late September - early October). The severity of the hole has been assessed from satellites using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average area coverage during this September-October period. Profile information shows that ozone is completely destroyed in the 14-21 km layer by early October. Ozone is mainly destroyed by halogen (chlorine and bromine) catalytic cycles, and these losses are modulated by temperature variations. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We estimate that the ozone hole will begin to show first signs of size decrease in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. Estimates of the ozone hole's recovery from models reveal important differences that will be discussed.

  12. Quality assessment of the Ozone_cci Climate Research Data Package (release 2017) - Part 1: Ground-based validation of total ozone column data products

    NASA Astrophysics Data System (ADS)

    Garane, Katerina; Lerot, Christophe; Coldewey-Egbers, Melanie; Verhoelst, Tijl; Elissavet Koukouli, Maria; Zyrichidou, Irene; Balis, Dimitris S.; Danckaert, Thomas; Goutail, Florence; Granville, Jose; Hubert, Daan; Keppens, Arno; Lambert, Jean-Christopher; Loyola, Diego; Pommereau, Jean-Pierre; Van Roozendael, Michel; Zehner, Claus

    2018-03-01

    The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting) v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate-chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC) at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°), whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between -0.2 ± 0.9 % (for GOME-2B) and 1.0 ± 1.4 % (for SCIAMACHY). Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between -0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ˜ 1 % for GOME and OMI to ˜ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a negligible drift per decade of the differences in the Northern Hemisphere of -0.11 ± 0.10 % decade-1 for Dobson and +0.22 ± 0.08 % decade-1 for Brewer collocations. The exceptional quality of the level-3 GTO-ECV v3 TOC record temporal stability satisfies well the requirements for the total ozone measurement decadal stability of 1-3 % and the short-term and long-term accuracy requirements of 2 and 3 %, respectively, showing a remarkable inter-sensor consistency, both in the level-2 GODFIT v4 and in the level-3 GTO-ECV v3 datasets, and thus can be used for longer-term analysis of the ozone layer, such as decadal trend studies, chemistry-climate model evaluation and data assimilation applications.

  13. A major event of Antarctic ozone hole influence in southern Brazil in October 2016: an analysis of tropospheric and stratospheric dynamics

    NASA Astrophysics Data System (ADS)

    Dornelles Bittencourt, Gabriela; Bresciani, Caroline; Kirsch Pinheiro, Damaris; Valentin Bageston, José; Schuch, Nelson Jorge; Bencherif, Hassan; Paes Leme, Neusa; Vaz Peres, Lucas

    2018-03-01

    The Antarctic ozone hole is a cyclical phenomenon that occurs during the austral spring where there is a large decrease in ozone content in the Antarctic region. Ozone-poor air mass can be released and leave through the Antarctic ozone hole, thus reaching midlatitude regions. This phenomenon is known as the secondary effect of the Antarctic ozone hole. The objective of this study is to show how tropospheric and stratospheric dynamics behaved during the occurrence of this event. The ozone-poor air mass began to operate in the region on 20 October 2016. A reduction of ozone content of approximately 23 % was observed in relation to the climatology average recorded between 1992 and 2016. The same air mass persisted over the region and a drop of 19.8 % ozone content was observed on 21 October. Evidence of the 2016 event occurred through daily mean measurements of the total ozone column made with a surface instrument (Brewer MkIII no. 167 Spectrophotometer) located at the Southern Space Observatory (29.42° S, 53.87° W) in São Martinho da Serra, Rio Grande do Sul. Tropospheric dynamic analysis showed a post-frontal high pressure system on 20 and 21 October 2016, with pressure levels at sea level and thickness between 1000 and 500 hPa. Horizontal wind cuts at 250 hPa and omega values at 500 hPa revealed the presence of subtropical jet streams. When these streams were allied with positive omega values at 500 hPa and a high pressure system in southern Brazil and Uruguay, the advance of the ozone-poor air mass that caused intense reductions in total ozone content could be explained.

  14. Improved hurricane forecasting from a variational bogus and ozone data assimilation (BODA) scheme: case study

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Zhang, Wei

    2016-12-01

    This study develops a proper way to incorporate Atmospheric Infrared Sounder (AIRS) ozone data into the bogus data assimilation (BDA) initialization scheme for improving hurricane prediction. First, the observation operator at some model levels with the highest correlation coefficients is established to assimilate AIRS ozone data based on the correlation between total column ozone and potential vorticity (PV) ranging from 400 to 50 hPa level. Second, AIRS ozone data act as an augmentation to a BDA procedure using a four-dimensional variational (4D-Var) data assimilation system. Case studies of several hurricanes are performed to demonstrate the effectiveness of the bogus and ozone data assimilation (BODA) scheme. The statistical result indicates that assimilating AIRS ozone data at 4, 5, or 6 model levels can produce a significant improvement in hurricane track and intensity prediction, with reasonable computation time for the hurricane initialization. Moreover, a detailed analysis of how BODA scheme affects hurricane prediction is conducted for Hurricane Earl (2010). It is found that the new scheme developed in this study generates significant adjustments in the initial conditions (ICs) from the lower levels to the upper levels, compared with the BDA scheme. With the BODA scheme, hurricane development is found to be much more sensitive to the number of ozone data assimilation levels. In particular, the experiment with the assimilation of AIRS ozone data at proper number of model levels shows great capabilities in reproducing the intensity and intensity changes of Hurricane Earl, as well as improve the track prediction. These results suggest that AIRS ozone data convey valuable meteorological information in the upper troposphere, which can be assimilated into a numerical model to improve hurricane initialization when the low-level bogus data are included.

  15. Diverse policy implications for future ozone and surface UV in a changing climate

    NASA Astrophysics Data System (ADS)

    Butler, A. H.; Daniel, J. S.; Portmann, R. W.; Ravishankara, A. R.; Young, P. J.; Fahey, D. W.; Rosenlof, K. H.

    2016-06-01

    Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.

  16. Detection and Attribution of the Recovery of Polar Ozone

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, E. R.; Douglass, A. R.; Nielsen, J. E.; Pawson, S.; Stolarski, R. S.

    2008-01-01

    The Antarctic ozone hole develops each year and culminates by early spring (late September - early October). The severity of the hole has been assessed from satellites using the minimum total ozone value from the October monthly mean (depth of the hole), calculating the average area coverage during this September-October period, and by estimating ozone mass deficit. Profile information shows that ozone is completely destroyed in the 14-2 1 km layer by early October. Ozone is mainly destroyed by halogen (chlorine and bromine) catalytic cycles, and these losses are modulated by temperature variations. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Both models and projections of ozone depleting substances (ODSs) into the 21St century reveal that polar ozone levels should recover in the 2060- 2070 period. In this talk, we will review current projections of polar ozone recovery. Using models and ODs projections, we explore both the past, near future (2008-2025), and far future (> 2025) levels of polar ozone. Finally, we will discuss various factors that complicate recovery such as greenhouse gas changes (e.g., cooling in the upper stratosphere) and the acceleration of the Brewer-Dobson circulation.

  17. Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011.

    PubMed

    Reed, Andra J; Thompson, Anne M; Kollonige, Debra E; Martins, Douglas K; Tzortziou, Maria A; Herman, Jay R; Berkoff, Timothy A; Abuhassan, Nader K; Cede, Alexander

    An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of D eriving I nformation on S urface CO nditions from Column and VER tically Resolved Observations Relevant to A ir Q uality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NO x Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.

  18. A comparison of SAGE 1, SBUV, and Umkehr ozone profiles including a search for Umkehr aerosol effects

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Grams, G. W.; Cunnold, D. M.; Deluisi, J. J.

    1987-01-01

    Using a spatially weighted average for the stratospheric aerosol and gas experiment 1 (SAGE 1) events derived from an autocorrelation analysis, 337 colocated SAGE 1 and Umkehr ozone profiles are found. The total column ozone in layers two through nine measured by SAGE 1 is found to be 4.6 + or - 1.3 percent higher at the 95 percent confidence level than the approximate total column ozone measured by Umkehr. Average layer ozone differences indicate that most of this discrepancy resides in the lower layers. Intercomparison of SAGE 1, Nimbus 7 solar backscattered ultraviolet (SBUV), and Umkehr ozone at stations north of 30 deg indicates that, in layer six, Umkehr values are consistently higher than both SAGE 1 and SBUV by about 10 percent. In layer eight, SBUV ozone is higher than both SAGE 1 and SBUV by about 10 percent. In the upper stratosphere, the SAGE 1-Umkehr ozone differences are small for low stratospheric aerosol optical depth cases, but vary from -3 percent in layer six to -8 percent in layer nine for high optical depth cases.

  19. Clinical antibacterial effectiveness and biocompatibility of gaseous ozone after incomplete caries removal.

    PubMed

    Krunić, Jelena; Stojanović, Nikola; Đukić, Ljiljana; Roganović, Jelena; Popović, Branka; Simić, Ivana; Stojić, Dragica

    2018-06-01

    To evaluate local effect of gaseous ozone on bacteria in deep carious lesions after incomplete caries removal, using chlorhexidine as control, and to investigate its effect on pulp vascular endothelial growth factor (VEGF), neuronal nitric oxide synthase (nNOS), and superoxide dismutase (SOD). Antibacterial effect was evaluated in 48 teeth with diagnosed deep carious lesion. After incomplete caries removal, teeth were randomly allocated into two groups regarding the cavity disinfectant used: ozone (open system) or 2% chlorhexidine. Dentin samples were analyzed for the presence of total bacteria and Lactobacillus spp. by real-time quantitative polymerase chain reaction. For evaluation of ozone effect on dental pulp, 38 intact permanent teeth indicated for pulp removal/tooth extraction were included. After cavity preparation, teeth were randomly allocated into two groups: ozone group and control group. VEGF/nNOS level and SOD activity in dental pulp were determined by enzyme-linked immunosorbent assay and spectrophotometric method, respectively. Ozone application decreased number of total bacteria (p = 0.001) and Lactobacillus spp. (p < 0.001), similarly to chlorhexidine. The VEGF (p < 0.001) and nNOS (p = 0.012) levels in dental pulp after ozone application were higher, while SOD activity was lower (p = 0.001) comparing to those in control pulp. Antibacterial effect of ozone on residual bacteria after incomplete caries removal was similar to that of 2% chlorhexidine. Effect of ozone on pulp VEGF, nNOS, and SOD indicated its biocompatibility. Ozone appears as effective and biocompatible cavity disinfectant in treatment of deep carious lesions by incomplete caries removal technique.

  20. A Total Ozone Dependent Ozone Profile Climatology Based on Ozone-Sondes and Aura MLS Data

    NASA Astrophysics Data System (ADS)

    Labow, G. J.; McPeters, R. D.; Ziemke, J. R.

    2014-12-01

    A new total ozone-based ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining data from the Microwave Limb Sounder (MLS) with data from balloon sondes and binned by zone and total ozone. Because profile shape varies with total column ozone, this climatology better captures the ozone variations than the previously used seasonal climatologies, especially near the tropopause. This is significantly different than ozone climatologies used in the past as there is no time component. The MLS instrument on Aura has excellent latitude coverage and measures ozone profiles daily from the upper troposphere to the lower mesosphere at ~3.5 km resolution. Almost a million individual MLS ozone measurements are merged with data from over 55,000 ozonesondes which are then binned as a function of total ozone. The climatology consists of average ozone profiles as a function of total ozone for six 30 degree latitude bands covering altitudes from 0-75 km (in Z* pressure altitude coordinates). This new climatology better represents the profile shape as a function of total ozone than previous climatologies and shows some remarkable and somewhat unexpected correlations between total ozone and ozone in the lower altitudes, particularly in the lower and middle troposphere. These data can also be used to infer biases and errors in either the MLS retrievals or ozone sondes.

  1. Medical ozone therapy reduces oxidative stress and testicular damage in an experimental model of testicular torsion in rats.

    PubMed

    Tusat, Mustafa; Mentese, Ahmet; Demir, Selim; Alver, Ahmet; Imamoglu, Mustafa

    2017-01-01

    Testicular torsion (TT) refers to rotation of the testis and twisting of the spermatic cord. TT results in ischemia-reperfusion (I/R) injury involving increased oxidative stress, inflammation and apoptosis, and can even lead to infertility. The aim of this study was to investigate the effect of ozone therapy on testicular damage due to I/R injury in an experimental torsion model. 24 male Sprague-Dawley rats were divided into 3 groups; sham-operated, torsion/detorsion (T/D), and T/D+ozone. Ozone (1mg/kg) was injected intraperi-toneally 120 minutes before detorsion and for the following 24h. Blood and tissue samples were collected at the end of 24h. Johnsen score, ischemia modified albumin (IMA), total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels were determined. Levels of IMA, TOS, OSI, and histopathological scores increased in the serum/tissue of the rats in the experimental T/D group. Serum IMA, TOS, and OSI levels and tissue histo-pathological scores were lower in the rats treated with ozone compared with the T/D group. Our study results suggest that ozone therapy may exhibit beneficial effects on both biochemical and histopathological findings. Clinical trials are now necessary to confirm this. Copyright® by the International Brazilian Journal of Urology.

  2. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2005-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We will show estimates of both when the ozone hole will begin to show first signs of recovery, and when the hole will fully recover to pre-1980 levels.

  3. Detecting the Recovery of the Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2004-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We will show estimates of both when the ozone hole will begin to show first signs of recovery, and when the hole will fully recover to pre-1980 levels.

  4. A Hybrid Model for Spatially and Temporally Resolved Ozone Exposures in the Continental United States

    PubMed Central

    Di, Qian; Rowland, Sebastian; Koutrakis, Petros; Schwartz, Joel

    2017-01-01

    Ground-level ozone is an important atmospheric oxidant, which exhibits considerable spatial and temporal variability in its concentration level. Existing modeling approaches for ground-level ozone include chemical transport models, land-use regression, Kriging, and data fusion of chemical transport models with monitoring data. Each of these methods has both strengths and weaknesses. Combining those complementary approaches could improve model performance. Meanwhile, satellite-based total column ozone, combined with ozone vertical profile, is another potential input. We propose a hybrid model that integrates the above variables to achieve spatially and temporally resolved exposure assessments for ground-level ozone. We used a neural network for its capacity to model interactions and nonlinearity. Convolutional layers, which use convolution kernels to aggregate nearby information, were added to the neural network to account for spatial and temporal autocorrelation. We trained the model with AQS 8-hour daily maximum ozone in the continental United States from 2000 to 2012 and tested it with left out monitoring sites. Cross-validated R2 on the left out monitoring sites ranged from 0.74 to 0.80 (mean 0.76) for predictions on 1 km×1 km grid cells, which indicates good model performance. Model performance remains good even at low ozone concentrations. The prediction results facilitate epidemiological studies to assess the health effect of ozone in the long term and the short term. PMID:27332675

  5. Ozone Layer Observations

    NASA Technical Reports Server (NTRS)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  6. Elevated tropospheric ozone increased grain protein and amino acid content of a hybrid rice without manipulation by planting density.

    PubMed

    Zhou, Xiaodong; Zhou, Juan; Wang, Yunxia; Peng, Bin; Zhu, Jianguo; Yang, Lianxin; Wang, Yulong

    2015-01-01

    Rising tropospheric ozone affects crop yield and quality. Rice protein concentration, which is closely associated with eating/cooking quality, is of critical importance to nutritional quality. The ozone effect on amino acids of rice grains was little known, especially grown under different cultivation conditions. A hybrid rice cultivar Shanyou 63 was grown in 2010 and 2011 to investigate the interactive effect of ozone exposure and planting density on rice protein quality in a free-air ozone enrichment system. The content of protein, total amino acids (TAA), total essential (TEAA) and non-essential amino acids (TNEAA) in rice grain was increased by 12-14% with elevated ozone. A similar significant response to ozone was observed for concentrations of the seven essential and eight non-essential amino acids. In contrast, elevated ozone caused a small but significant decrease in percentage of TEAA to TAA. The year effect was significant for all measured traits; however, interactions of ozone with year or planting density were not detected. The study suggested that season-long elevation of ozone concentration to projected 2050 levels will increase protein and amino acids of Shanyou 63, and crop management such as changing planting density might not alter the impact. © 2014 Society of Chemical Industry.

  7. Northern hemisphere total ozone values from 1989-1993 determined with the NOAA-11 Solar Backscatter Ultraviolet (SBUV/2) instrument

    NASA Technical Reports Server (NTRS)

    Planet, W. G.; Lienesch, J. H.; Miller, A. J.; Nagatani, R.; Mcpeters, R. D.; Hilsenrath, E.; Cebula, R. P.; Deland, M. T.; Wellemeyer, C. G.; Horvath, K.

    1994-01-01

    Determinations of global total ozone amounts have been made from recently reprocessed measurements with the SBUV/2 on the NOAA-11 environmental satellite since January 1989. This data set employs a new algorithm and an updated calibration. Comparisons with total ozone amounts derived from a significant subset of the global network of Dobson spectrophotometers shows a 0.3% bias between the satellite and ground measurements for the period January 1989-May 1993. Comparisons with the data from individual stations exhibit differing degrees of agreement which could be due to the matchup procedures and also to the uncertainties in the Dobson data. The SBUV/2 data set discussed here traces the Northern Hemisphere total ozone from 1989 to the present, showing a marked decrease from the average of those years starting in the summer of 1992 and continuing into 1993, with an apparent returning to more normal levels in late 1993.

  8. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris.

    PubMed

    Li, Shuai; Harley, Peter C; Niinemets, Ülo

    2017-09-01

    Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre-exposure to lower O 3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol -1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol -1 O 3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O 3 priming than in light and without priming. After low O 3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. © 2017 John Wiley & Sons Ltd.

  9. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris

    PubMed Central

    Li, Shuai; Harley, Peter C.; Niinemets, Ülo

    2018-01-01

    Acute ozone exposure triggers major emissions of volatile organic compounds (VOC), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e., pre-exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol-1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol-1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. PMID:28623868

  10. The long-term changes in total ozone, as derived from Dobson measurements at Arosa (1948-2001)

    NASA Astrophysics Data System (ADS)

    Krzyscin, J. W.

    2003-04-01

    The longest possible total ozone time series (Arosa, Switzerland) is examined for a detection of trends. Two-step procedure is proposed to estimate the long-term (decadal) variations in the ozone time series. The first step consists of a standard least-squares multiple regression applied to the total ozone monthly means to parameterize "natural" (related to the oscillations in the atmospheric dynamics) variations in the analyzed time series. The standard proxies for the dynamical ozone variations are used including; the 11-year solar activity cycle, and indices of QBO, ENSO and NAO. We use the detrended time series of temperature at 100 hPa and 500 hPa over Arosa to parameterize short-term variations (with time periods<1 year) in total ozone related to local changes in the meteorological conditions over the station. The second step consists of a smooth-curve fitting to the total ozone residuals (original minus modeled "natural" time series), the time derivation applied to this curve to obtain local trends, and bootstrapping of the residual time series to estimate the standard error of local trends. Locally weighted regression and the wavelet analysis methodology are used to extract the smooth component out of the residual time series. The time integral over the local trend values provides the cumulative long-term change since the data beginning. Examining the pattern of the cumulative change we see the periods with total ozone loss (the end of 50s up to early 60s - probably the effect of the nuclear bomb tests), recovery (mid 60s up to beginning of 70s), apparent decrease (beginning of 70s lasting to mid 90s - probably the effect of the atmosphere contamination by anthropogenic substances containing chlorine), and with a kind of stabilization or recovery (starting in the mid of 90s - probably the effect of the Montreal protocol to eliminate substances reducing the ozone layer). We can also estimate that a full ozone recovery (return to the undisturbed total ozone level from the beginning of 70s) is expected around 2050. We propose to calculate both time series of local trends and the cumulative long-term change instead single trend value derived as a slope of straight line fit to the data.

  11. Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone, 1958-1987 (1991)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angell, J. K.; Korshover, J.; Planet, W. G.

    For 1958 through 1987, this data base presents total ozone variations and layer mean ozone variations expressed as percent deviations from the 1958 to 1977 mean. The total ozone variations were derived from mean monthly ozone values published in Ozone Data for the World by the Atmospheric Environment Service in cooperation with the World Meteorological Organization. The layer mean ozone variations are derived from ozonesonde and Umkehr observations. The data records include year, seasonal and annual total ozone variations, and seasonal and annual layer mean ozone variations. The total ozone data are for four regions (Soviet Union, Europe, North America,more » and Asia); five climatic zones (north and south polar, north and south temperate, and tropical); both hemispheres; and the world. Layer mean ozone data are for four climatic zones (north and south temperate and north and south polar) and for the stratosphere, troposphere, and tropopause layers. The data are in two files [seasonal and year-average total ozone (13.4 kB) and layer mean ozone variations (24.2 kB)].« less

  12. Detection and measurement of total ozone from stellar spectra: Paper 2. Historic data from 1935 1942

    NASA Astrophysics Data System (ADS)

    Griffin, R. E. M.

    2005-10-01

    Atmospheric ozone columns are derived from historic stellar spectra observed between 1935 and 1942 at Mount Wilson Observatory, California. Comparisons with contemporary measurements in the Arosa database show a generally close correspondence. The results of the analysis indicate that astronomy's archives command considerable potential for investigating the natural levels of ozone and its variability during the decades prior to anthropogenic interference.

  13. Spatial distribution of ozone over Indonesia (Study case: Forest fire event 2015)

    NASA Astrophysics Data System (ADS)

    Muslimah, Sri; Buce Saleh, Muhamad; Hidayat, Rahmat

    2018-05-01

    Tropospheric ozone is known as surface ozone and caused several health impact. The objective of this study was to analysis spatial distribution of tropospheric ozone over Indonesia case study forest fire event in 2015. Monthly observation measured by Ozone Monitoring Instrument (OMI) have been analysed from January – December 2015 to study spatial distribution of tropospheric ozone related to forest fire event 2015. The study discovered high level of tropospheric column ozone (TCO) from October to November 2015. The result shows increasing average of TCO from September to October almost 6 DU. Meanwhile, monthly number of hotspot is higher in September 2015 with total number 257 hotspot which is acquired by Moderate Resolution Imaging Spectrometer (MODIS) Terra version 6.1 with confidence level same or more than 90%. The hotspot distribution compared with spatial TCO distribution and shows interesting time lag with respect to hotspot distribution, one month. Further study for daily comparison of TCO and forest fire event needed. This result suggested that the tropospheric ozone over the Indonesian region increases in 2015 were remarkable and corresponded to forest fire event.

  14. Ozone disintegration of excess biomass and application to nitrogen removal.

    PubMed

    Park, Ki Young; Lee, Jae Woo; Ahn, Kyu-Hong; Maeng, Sung Kyu; Hwang, Jong Hyuk; Song, Kyung-Guen

    2004-01-01

    A pilot-scale facility integrated with an ozonation unit was built to investigate the feasibility of using ozone-disintegration byproducts of wasted biomass as a carbon source for denitrification. Ozonation of biomass resulted in mass reduction by mineralization as well as by ozone-disintegrated biosolids recycling. Approximately 50% of wasted solids were recovered as available organic matter (ozonolysate), which included nonsettleable microparticles and soluble fractions. Microparticles were observed in abundance at relatively low levels of ozone doses, while soluble fractions became dominant at higher levels of ozone doses in ozone-disintegrated organics. Batch denitrification experiments showed that the ozonolysate could be used as a carbon source with a maximum denitrification rate of 3.66 mg nitrogen (N)/g volatile suspended solids (VSS) x h. Ozonolysate was also proven to enhance total nitrogen removal efficiency in the pilot-scale treatment facility. An optimal chemical oxygen demand (COD)-to-nitrogen ratio for complete denitrification was estimated as 5.13 g COD/g N. The nitrogen-removal performance of the modified intermittently decanted extended aeration process dependent on an external carbon supply could be described as a function of solids retention time.

  15. A reanalysis of ozone on Mars from assimilation of SPICAM observations

    NASA Astrophysics Data System (ADS)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.; Lefèvre, Franck

    2018-03-01

    We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S-10°S from LS = 135-180° and at northern polar (60°N-90°N) latitudes during northern fall (LS = 150-195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S-10°S from LS = 135-180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.

  16. Identifying and forecasting deep stratospheric ozone intrusions over the western United States from space

    NASA Astrophysics Data System (ADS)

    Lin, M.; Fiore, A. M.; Horowitz, L. W.; Cooper, O. R.; Langford, A. O.; Pan, L.; Liu, X.; Reddy, P. J.

    2012-12-01

    Recent studies have shown that deep stratospheric ozone intrusions can episodically enhance ground-level ozone above the health-based standard over the western U.S. in spring. Advanced warning of incoming intrusions could be used by state agencies to inform the public about poor air quality days. Here we explore the potential for using total ozone retrievals (version 5.2, level 3) at twice daily near global coverage from the AIRS instrument aboard the NASA Aqua satellite to identify stratospheric intrusions and forecast the eventual surface destination of transported stratospheric ozone. The method involves the correlation of AIRS daily total ozone columns at each 1ox1o grid box ~1-3 days prior to stratospheric enhancements to daily maximum 8-hour average ozone at a selected surface site using datasets from April to June in 2003-2011. The surface stratospheric enhancements are estimated by the GFDL AM3 chemistry-climate model which includes full stratospheric and tropospheric chemistry and is nudged to reanalysis winds. Our earlier work shows that the model presents deep stratospheric intrusions over the Western U.S. consistently with observations from AIRS, surface networks, daily ozone sondes, and aircraft lidar available in spring of 2010 during the NOAA CalNex field campaign. For the 15 surface sites in the U.S. Mountain West considered, a correlation coefficient of 0.4-0.7 emerges with AIRS ozone columns over 30o-50oN latitudes and 125o-105oW longitudes - variability in the AIRS column within this spatial domain indicates incoming intrusions. For each "surface receptor site", the spatial domain can narrow to an area ~5ox5o northwest of the individual site, with the strong correlation (0.5-0.7) occurring when the AIRS data is lagged by 1 day from the AM3 stratospheric enhancements in surface air. The spatial pattern of correlations is consistent with our process-oriented understanding developed from case studies of extreme intrusions. Surface observations during these events show that the sites experiencing elevated ozone levels are typically located over the southeastern side of the enhanced ozone columns captured by AIRS ~12 hours to 1 day prior. This first scoping study suggests there is potential to use near-daily global coverage of ozone in total column or in UT/LS levels from the space-based instruments (e.g. AIRS, OMI, MLS) to serve as a qualitative early-warning indicator of incoming stratospheric intrusions with a lead time of ~1-3 days. There is more skill in ~12 hours to 1 day as to where the intrusion will reach the surface, particularly during the ENSO years (i.e. 2003, 2008, 2010, 2011) when deep intrusions are more likely to occur as compared to other years. These space-based ozone products can also provide some indication of whether a historic exceedance was caused by an intrusion.

  17. Trend and variability of atmospheric ozone over middle Indo-Gangetic Plain: impacts of seasonality and precursor gases.

    PubMed

    Shukla, K; Srivastava, Prashant K; Banerjee, T; Aneja, Viney P

    2017-01-01

    Ozone dynamics in two urban background atmospheres over middle Indo-Gangetic Plain (IGP) were studied in two contexts: total columnar and ground-level ozone. In terms of total columnar ozone (TCO), emphases were made to compare satellite-based retrieval with ground-based observation and existing trend in decadal and seasonal variation was also identified. Both satellite-retrieved (Aura Ozone Monitoring Instrument-Differential Optical Absorption Spectroscopy (OMI-DOAS)) and ground-based observations (IMD-O 3 ) revealed satisfying agreement with OMI-DOAS observation over predicting TCO with a positive bias of 7.24 % under all-sky conditions. Minor variation between daily daytime (r = 0.54; R 2  = 29 %; n = 275) and satellite overpass time-averaged TCO (r = 0.58; R 2  = 34 %; n = 208) was also recognized. A consistent and clear seasonal trend in columnar ozone (2005-2015) was noted with summertime (March-June) maxima (Varanasi, 290.9 ± 8.8; Lucknow, 295.6 ± 9.5 DU) and wintertime (December-February) minima (Varanasi, 257.4 ± 10.1; Lucknow, 258.8 ± 8.8 DU). Seasonal trend decomposition based on locally weighted regression smoothing technique identified marginally decreasing trend (Varanasi, 0.0084; Lucknow, 0.0096 DU year -1 ) especially due to reduction in monsoon time minima and summertime maxima. In continuation to TCO, variation in ground-level ozone in terms of seasonality and precursor gases were also analysed from September 2014 to August 2015. Both stations registered similar pattern of variation with Lucknow representing slightly higher annual mean (44.3 ± 30.6; range, 1.5-309.1 μg/m 3 ) over Varanasi (38.5 ± 17.7; range, 4.9-104.2 μg/m 3 ). Variation in ground-level ozone was further explained in terms water vapour, atmospheric boundary layer height and solar radiation. Ambient water vapour content was found to associate negatively (r = -0.28, n = 284) with ground-level ozone with considerable seasonal variation in Varanasi. Implication of solar radiation on formation of ground-level ozone was overall positive (Varanasi, 0.60; Lucknow, 0.26), while season-specific association was recorded in case of atmospheric boundary layer.

  18. When will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the .TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to, both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. The ozone hole will begin to show first signs of recovery in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. This 2070 recovery is 20 years later than recent projections.

  19. An investigation into the causes of stratospheric ozone loss in the southern Australasian region

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Karoly, D. J.; Newmann, P. A.; Clarkson, T. S.; Matthews, W. A.

    1992-07-01

    Measurements of total ozone at Macquarie Island (55 deg S, 159 deg E) reveal statistically significant reductions of approximately twelve percent during July to September when comparing the mean levels for 1987-90 with those in the seventies. In order to investigate the possibility that these ozone changes may not be a result of dynamic variability of the stratosphere, a simple linear model of ozone was created from statistical analysis of tropopause height and isentropic transient eddy heat flux, which were assumed representative of the dominant dynamic influences. Comparison of measured and modeled ozone indicates that the recent downward trend in ozone at Macquarie Island is not related to stratospheric dynamic variability and therefore suggests another mechanism, possibly changes in photochemical destruction of ozone.

  20. Impact of asymmetry in the total ozone distribution in Antarctic region to the South Ocean ecosystem

    NASA Astrophysics Data System (ADS)

    Kovalenok, S.; Evtushevsky, A.; Grytsai, A.; Milinevsky, G.

    2009-04-01

    Impact of asymmetry in the total ozone distribution in Antarctic region to South Ocean ecosystem is studied. The existence of the considerable zonal asymmetry in total ozone distribution over Antarctica observed last decades based on the satellite TOMS measurements in 1979-2005 due to existence of quasi-stationary planetary waves in a polar stratosphere. As was shown by authors earlier in the latitudinal interval of 55-75°S in Antarctic spring months (Sep-Nov) the region of zonal total ozone minimum experienced the systematic spatial drift to the east. In the same period a minimum and maximum of quasi-stationary wave in TOC distribution are located: minimum over the Antarctic Peninsula and Weddell Sea area, and maximum in the Ross Sea area. We expect that zonal asymmetry in total ozone distribution and its long-term spatial changes should impact to South Ocean ecosystem food chain, especially in primary level. The systematic eastern shift of the quasi-stationary minimum in ozone distribution over north Weddell Sea area should cause the increased UV radiation on sea surface in comparison to Ross Sea area, where the lack of UVR should exist in spring month. To study this influence the available data of phytoplankton distribution in South Ocean in 1997-2007 were analyzed. The results of analysis in connections with Antarctic Peninsula regional climate warming are discussed. The research was partly supported by project 06BF051-12 of the National Taras Shevchenko University of Kyiv.

  1. Recovery of the Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve; Schauffler, Sue; Stolarski, Richard S.; Douglass, Anne R.; Pawson, Steven; Nielsen, J. Eric

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS and OMI instruments. The severity of the hole has been assessed using the minimum total ozone value from the October monthly mean (depth of the hole), the average size during the September-October period, and the ozone mass deficit. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. We use two methods to estimate ozone hole recovery. First, we use projections of halogen levels combined with age-of-air estimates in a parametric model. Second, we use a coupled chemistry climate model to assess recovery. We find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. Furthermore, full recovery to 1980 levels will not occur until approximately 2068. We will also show some error estimates of these dates and the impact of climate change on the recovery.

  2. The measurement of ultraviolet radiation and sunburn time over southern Ontario

    NASA Technical Reports Server (NTRS)

    Evans, W. F. J.

    1994-01-01

    Studies of the depletion of ozone which have been conducted from the TOMS instrument on the NIMBUS 7 satellite indicate that total ozone has declined by 5 percent over the last 12 years at most mid-latitudes in the Northern Hemisphere typical of southern Ontario. The measurement of the actual resultant increases in UVB is now important. A monitoring program of UVB (biologically active solar ultraviolet radiation) has been conducted for the last 24 months at a site near Bolton, Ontario. The sunburn time varies from less than 17 minutes in late July, to over 4 hours in December on clear days. The levels depend on solar insolation and total ozone column. The ultraviolet levels are strongly affected by cloud and sky conditions. The implications of present and future depletion on the sunburn time are discussed.

  3. Trends in total column ozone measurements

    NASA Technical Reports Server (NTRS)

    Rowland, F. S.; Angell, J.; Attmannspacher, W.; Bloomfield, P.; Bojkov, R. D.; Harris, N.; Komhyr, W.; Mcfarland, M.; Mcpeters, R.; Stolarski, R. S.

    1989-01-01

    It is important to ensure the best available data are used in any determination of possible trends in total ozone in order to have the most accurate estimates of any trends and the associated uncertainties. Accordingly, the existing total ozone records were examined in considerable detail. Once the best data set has been produced, the statistical analysis must examine the data for any effects that might indicate changes in the behavior of global total ozone. The changes at any individual measuring station could be local in nature, and herein, particular attention was paid to the seasonal and latitudinal variations of total ozone, because two dimensional photochemical models indicate that any changes in total ozone would be most pronounced at high latitudes during the winter months. The conclusions derived from this detailed examination of available total ozone can be split into two categories, one concerning the quality and the other the statistical analysis of the total ozone record.

  4. Prediction possibilities of Arosa total ozone

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    1987-01-01

    Using the periodicities obtained by a Maximum Entropy Spectral Analysis (MESA) of the Arosa total ozone data ( CC') series for 1932 1971, the values predicted for 1972 onwards were compared with the observed values of the ( AD) series. A change of level was noticed, with the observed ( AD) values lower by about 7 D.U. Also, the matching was poor in 1980, 1981, 1982. In the monthly values, the most prominent periodicity was the annual wave, comprising some 80% variance. In the 12 month running averages, the annual wave was eliminated and the most prominent periodicity was T=3.7 years, encompassing roundly 20% variance. This and other periodicities at T=4.7, 5.4, 6.2, 10 and 16 years were all statistically significant at a 3.5δ a priori i.e., 2δ a posteriori level. However, the predictions from these were unsatisfactory, probably because some of these periodicities may be transient i.e., changing amplitudes and/or phases with time. Thus, no meaningful prediction seem possible for Arosa total ozone.

  5. An Analytical Investigation of Ozone Episodes in Bangu, Rio de Janeiro.

    PubMed

    Geraldino, Claudio Gabriel Pinheiro; Martins, Eduardo Monteiro; da Silva, Cleyton Martins; Arbilla, Graciela

    2017-05-01

    This study investigated the potential factors that contribute to frequent high levels of ozone as well as ozone episodes in Bangu, one of the most critical areas in the city of Rio de Janeiro regarding ozone levels. For 74 days in a two-year period (10.3%), the national air quality standard was exceeded. For the same period, a total of 378 days (51.8%) had ozone concentrations that were between 80 and 160 µg m -3 . A statistical analysis of pollutant concentrations and meteorological data as well as a kinetic and mechanistic analysis of VOC reactivity showed that the high ozone concentrations did not seem to be closely related to local emissions but, rather, were related to pollutant transport and triggered by photochemical activity. The mountains in the southern and northern part of the district contribute to the increase of surface temperatures and the accumulation of pollutants. The VOC/NO x ratios corresponded to a VOC-limited process.

  6. NASA satellite helps airliners avoid ozone concentrations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Results from a test to determine the effectiveness of satellite data for helping airlines avoid heavy concentrations of ozone are reported. Information from the Total Ozone Mapping Spectrometer, aboard the Nimbus-7 was transmitted, for use in meteorological forecast activities. The results show: (1) Total Ozone Mapping Spectrometer profile of total ozone in the atmosphere accurately represents upper air patterns and can be used to locate meteorological activity; (2) route forecasting of highly concentrated ozone is feasible; (3) five research aircraft flights were flown in jet stream regions located by the Total Ozone Mapping Spectrometer to determine winds, temperatures, and air composition. It is shown that the jet stream is coincides with the area of highest total ozone gradient, and low total ozone amounts are found where tropospheric air has been carried along above the tropopause on the anticyclonic side of the subtropical jet stream.

  7. Selected Measurements of Total Arctic Column Ozone Amounts from Aura Ozone Monitoring Instrument, 2004-2005 Arctic Winter

    NASA Image and Video Library

    2005-06-02

    Images from the Ozone Monitoring Instrument onboard NASA Aura spacecraft shows the average total column ozone during the months of January and March, and the total column ozone on the single day of 11 March, 2005.

  8. Ozone depletion following future volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  9. Near-ground ozone source attributions and outflow in central eastern China during MTX2006

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Tanimoto, H.; Kanaya, Y.

    2008-12-01

    A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was used to study the source of the near-ground (<1.5 km above ground level) ozone at Mt. Tai (36.25° N, 117.10° E, 1534 m a.s.l.) in Central Eastern China (CEC) during the Mount Tai eXperiment 2006 (MTX2006). The model reproduced the temporal and spatial variations of near-ground ozone and other pollutants, and it captured highly polluted and clean cases well. The simulated near-ground ozone level over CEC was 60-85 ppbv (parts per billion by volume), which was higher than values in Japan and over the North Pacific (20-50 ppbv). The simulated tagged tracer data indicated that the regional-scale transport of chemically produced ozone over other areas in CEC contributed to the greatest fraction (49%) of the near-ground mean ozone at Mt. Tai in June; in situ photochemistry contributed only 12%. Due to high anthropogenic and biomass burning emissions that occurred in the southern part of the CEC, the contribution to ground ozone levels from this area played the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai; values reached 59 ppbv (62%) on 6-7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various ozone production regions indicated that photochemical reactions controlled the spatial distribution of O3 over CEC. The regional-scale transport of pollutants also played an important role in the spatial and temporal distribution of ozone over CEC. Chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC; the mean contribution was 5-10 ppbv, and it reached 25 ppbv during high ozone events. Studies of the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries, revealed that the contribution of CEC ozone to mean ozone mixing ratios over the Korean Peninsula and Japan was 5-15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was produced locally by ozone precursors transported from CEC.

  10. Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts.

    PubMed

    de Alencar, Ernandes Rodrigues; Faroni, Lêda Rita D'Antonino; Soares, Nilda de Fátima Ferreira; da Silva, Washington Azevedo; Carvalho, Marta Cristina da Silva

    2012-03-15

    Peanut contamination by fungi is a concern of processors and consumers owing to the association of these micro-organisms with quality deterioration and aflatoxin production. In this study the fungicidal and detoxifying effects of ozone on aflatoxins in peanuts was investigated. Peanut kernels were ozonated at concentrations of 13 and 21 mg L⁻¹ for periods of 0, 24, 48, 72 and 96 h. Ozone was effective in controlling total fungi and potentially aflatoxigenic species in peanuts, with a reduction in colony-forming units per gram greater than 3 log cycles at the concentration of 21 mg L⁻¹ after 96 h of exposure. A reduction in the percentage of peanuts with internal fungal populations was also observed, particularly after exposure to ozone at 21 mg L⁻¹. A reduction in the concentrations of total aflatoxins and aflatoxin B1 of approximately 30 and 25% respectively was observed for kernels exposed to ozone at 21 mg L⁻¹ for 96 h. It was concluded that ozone is an important alternative for peanut detoxification because it is effective in controlling potentially aflatoxigenic fungi and also acts in the reduction of aflatoxin levels in kernels. Copyright © 2011 Society of Chemical Industry.

  11. Ozone and nitrogen dioxide above the northern Tien Shan

    NASA Technical Reports Server (NTRS)

    Arefev, Vladimir N.; Volkovitsky, Oleg A.; Kamenogradsky, Nikita E.; Semyonov, Vladimir K.; Sinyakov, Valery P.

    1994-01-01

    The results of systematic perennial measurements of the total ozone (since 1979) and nitrogen dioxide column (since 1983) in the atmosphere in the European-Asian continent center above the mountainmass of the Tien Shan are given. This region is distinguished by a great number of sunny days during a year. The observation station is at the Northern shore of Issyk Kul Lake (42.56 N 77.04 E 1650 m above the sea level). The measurement results are presented as the monthly averaged atmospheric total ozone and NO2 stratospheric column abundances (morning and evening). The peculiarities of seasonal variations of ozone and nitrogen dioxide atmospheric contents, their regular variances with a quasi-biennial cycles and trends have been noticed. Irregular variances of ozone and nitrogen dioxide atmospheric contents, i.e. their positive and negative anomalies in the monthly averaged contents relative to the perennial averaged monthly means, have been analyzed. The synchronous and opposite in phase anomalies in variations of ozone and nitrogen dioxide atmospheric contents were explained by the transport and zonal circulation in the stratosphere (Kamenogradsky et al., 1990).

  12. Impact of parameterization choices on the restitution of ozone deposition over vegetation

    NASA Astrophysics Data System (ADS)

    Le Morvan-Quéméner, Aurélie; Coll, Isabelle; Kammer, Julien; Lamaud, Eric; Loubet, Benjamin; Personne, Erwan; Stella, Patrick

    2018-04-01

    Ozone is a potentially phyto-toxic air pollutant, which can cause leaf damage and drastically alter crop yields, causing serious economic losses around the world. The VULNOZ (VULNerability to OZone in Anthropised Ecosystems) project is a biology and modeling project that aims to understand how plants respond to the stress of high ozone concentrations, then use a set of models to (i) predict the impact of ozone on plant growth, (ii) represent ozone deposition fluxes to vegetation, and finally (iii) estimate the economic consequences of an increasing ozone background the future. In this work, as part of the VULNOZ project, an innovative representation of ozone deposition to vegetation was developed and implemented in the CHIMERE regional chemistry-transport model. This type of model calculates the average amount of ozone deposited on a parcel each hour, as well as the integrated amount of ozone deposited to the surface at the regional or country level. Our new approach was based on a refinement of the representation of crop types in the model and the use of empirical parameters specific to each crop category. The results obtained were compared with a conventional ozone deposition modeling approach, and evaluated against observations from several agricultural areas in France. They showed that a better representation of the distribution between stomatal and non-stomatal ozone fluxes was obtained in the empirical approach, and they allowed us to produce a new estimate of the total amount of ozone deposited on the subtypes of vegetation at the national level.

  13. Evaluation of energetic particle effects on BUV data and atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1977-01-01

    To aid investigations of energetic particle effects on the backscattered ultraviolet (BUV) instrumentation aboard Nimbus 4, solar proton events characterized as polar cap absorption events occurring in the period April 1970 to April 1976 were summarized. Energetic particle effects on total ozone above the 4 mb pressure level measured by Nimbus 4 were analyzed. Proceedings of a workshop meeting of operation aurorozone are included as background material for possible effects of bremsstrahlung on atmospheric ozone.

  14. Acute Ozone-Induced Pulmonary and Systemic Metabolic ...

    EPA Pesticide Factsheets

    Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1ppm), 4h/day for 1 or 2 days. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to air-exposed SHAM. Corticosterone levels tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (p=0.15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX>DMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not obser

  15. Acute Ozone-Induced Pulmonary and Systemic Metabolic ...

    EPA Pesticide Factsheets

    Acute ozone exposure increases circulating stress hormones and induces peripheral metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for ozone-induced systemic metabolic effects and lung injury. Male Wistar-Kyoto rats (12 week-old) underwent total bilateral adrenalectomy (ADREX), adrenal demedullation (DEMED) or sham surgery (SHEM). After 4 day recovery, rats were exposed to air or ozone (1ppm), 4h/day for 1 or 2 days. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to air-exposed SHAM. Corticosterone levels tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids and branched-chain amino acids tended to increase after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX>DMED). Ozone-mediated decrease in circulating WBC in SHAM was not

  16. Recent Advances in Ozone Data Assimilation at the GMAO - Towards a New Reanalysis

    NASA Technical Reports Server (NTRS)

    Krzysztof, Wargan; Pawson, S.; Nielsen, J. E.; Witte, J.; Douglass, A.; Strahan, S.; Joiner, J.; Bhartia, P. K.; Livesey, N.; Read, W.; hide

    2012-01-01

    This presentation summarized ongoing work on improving the representation of ozone in the GEOS Data Assimilation Systems. Data from two EOS Aura sensors was used: the total column ozone from the Ozone Monitoring Instrument (OMI) and high vertical resolution stratospheric profiles from Microwave Limb Sounder (MLS, version 3.3). As several previous studies have demonstrated, assimilation of this data can constrain the stratospheric and tropospheric ozone columns with relatively good accuracy. However, the representation of the vertical structures in the troposphere and near tropopause region is often deficient. Since both these layers of the atmosphere are critical to the understanding of the radiative forcing as well as the ozone budget in the troposphere, current work will focus on improving the assimilated product between the surface and the 50 hPa pressure level. The discussion included recent steps that have been taken towards refining the treatment of ozone in GEOS-5. Impacts of improved tropospheric chemistry model were discussed including the introduction of efficiency factors ("averaging kernels") for OMI total ozone, and direct assimilation of radiances from the MLS instrument. In particular, advantages and challenges involved in assimilating limb radiances rather than retrieved product were discussed. This work is, in part, a preparation for a planned reanalysis of the EOS Aura data from 2005 to present.

  17. User's guide for SBUV/TOMS ozone derivative products

    NASA Technical Reports Server (NTRS)

    Fleig, A. J.; Wellemeyer, C.; Oslik, N.; Lee, D.; Miller, J.; Magatani, R.

    1984-01-01

    A series of products are available derived from the total-ozone and ozone vertical profile results for the Solar Backscattered Ultraviolet/Total-Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus-7 operation. Products available are (1) orbital height-latitude cross sections of the SBUV profile data, (2) daily global total ozone contours in polar coordinates, (3) daily averages of total ozone in global 5x5 degree latitude-longitude grid, (4) daily, monthly and quarterly averages of total ozone and profile data in 10 degree latitude zones, (5) tabular presentation of zonal means, (6) daily global total ozone and profile contours in polar coordinates. The ""Derivative Products User's Guide'' describes each of these products in detail, including their derivation and presentation format. Information is provided on how to order the tapes and microfilm from the National Space Science Data Center.

  18. Variational Assimilation of GOME Total-Column Ozone Satellite Data in a 2D Latitude-Longitude Tracer-Transport Model.

    NASA Astrophysics Data System (ADS)

    Eskes, H. J.; Piters, A. J. M.; Levelt, P. F.; Allaart, M. A. F.; Kelder, H. M.

    1999-10-01

    A four-dimensional data-assimilation method is described to derive synoptic ozone fields from total-column ozone satellite measurements. The ozone columns are advected by a 2D tracer-transport model, using ECMWF wind fields at a single pressure level. Special attention is paid to the modeling of the forecast error covariance and quality control. The temporal and spatial dependence of the forecast error is taken into account, resulting in a global error field at any instant in time that provides a local estimate of the accuracy of the assimilated field. The authors discuss the advantages of the 4D-variational (4D-Var) approach over sequential assimilation schemes. One of the attractive features of the 4D-Var technique is its ability to incorporate measurements at later times t > t0 in the analysis at time t0, in a way consistent with the time evolution as described by the model. This significantly improves the offline analyzed ozone fields.

  19. Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean.

    PubMed

    Sun, Jindong; Feng, Zhaozhong; Ort, Donald R

    2014-09-01

    The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 ppb was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amino acids (TAA) decreased linearly with increasing O3 levels in both cultivars with average decrease of 7% for an increase in O3 levels by 10 ppb. Ozone interacted with developmental stages and leaf ages, and caused higher damage at later reproductive stages and in older leaves. Ozone affected yield mainly via reduction of maximum rate of Rubisco carboxylation (Vcmax) and maximum rates of electron transport (Jmax) as well as a shorter growing season due to earlier onset of canopy senescence. For all parameters investigated the critical O3 levels (∼50 ppb) for detectable damage fell within O3 levels that occur routinely in soybean fields across the US and elsewhere in the world. Strong correlations were observed in O3-induced changes among yield, photosynthesis, TNC, TAA and many metabolites. The broad range of metabolites that showed O3 dose dependent effect is consistent with multiple interaction loci and thus multiple targets for improving the tolerance of soybean to O3. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. African Equatorial and Subtropical Ozone Plumes: Recurrences Timescales of the Brown Cloud Trans-African Plumes and Other Plumes

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.

    2004-01-01

    We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into either easterly equatorial plumes or westerly mid- troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.

  1. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  2. Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques.

    PubMed

    Lüddeke, Frauke; Heß, Stefanie; Gallert, Claudia; Winter, Josef; Güde, Hans; Löffler, Herbert

    2015-02-01

    Elimination of bacteria by ozonation in combination with charcoal or slow sand filtration for advanced sewage treatment to improve the quality of treated sewage and to reduce the potential risk for human health of receiving surface waters was investigated in pilot scale at the sewage treatment plant Eriskirch, Baden-Wuerttemberg/Germany. To determine the elimination of sewage bacteria, inflowing and leaving wastewater of different treatment processes was analysed in a culture-based approach for its content of Escherichia coli, enterococci and staphylococci and their resistance against selected antibiotics over a period of 17 month. For enterococci, single species and their antibiotic resistances were identified. In comparison to the established flocculation filtration at Eriskirch, ozonation plus charcoal or sand filtration (pilot-scale) reduced the concentrations of total and antibiotic resistant E. coli, enterococci and staphylococci. However, antibiotic resistant E. coli and staphylococci apparently survived ozone treatment better than antibiotic sensitive strains. Neither vancomycin resistant enterococci nor methicillin resistant Staphylococcus aureus (MRSA) were detected. The decreased percentage of antibiotic resistant enterococci after ozonation may be explained by a different ozone sensitivity of species: Enterococcus faecium and Enterococcus faecalis, which determined the resistance-level, seemed to be more sensitive for ozone than other Enterococcus-species. Overall, ozonation followed by charcoal or sand filtration led to 0.8-1.1 log-units less total and antibiotic resistant E. coli, enterococci and staphylococci, as compared to the respective concentrations in treated sewage by only flocculation filtration. Thus, advanced wastewater treatment by ozonation plus charcoal or sand filtration after common sewage treatment is an effective tool for further elimination of microorganisms from sewage before discharge in surface waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. An intercomparison of multidecadal observational and reanalysis data sets for global total ozone trends and variability analysis

    NASA Astrophysics Data System (ADS)

    Bai, Kaixu; Chang, Ni-Bin; Shi, Runhe; Yu, Huijia; Gao, Wei

    2017-07-01

    A four-step adaptive ozone trend estimation scheme is proposed by integrating multivariate linear regression (MLR) and ensemble empirical mode decomposition (EEMD) to analyze the long-term variability of total column ozone from a set of four observational and reanalysis total ozone data sets, including the rarely explored ERA-Interim total ozone reanalysis, from 1979 to 2009. Consistency among the four data sets was first assessed, indicating a mean relative difference of 1% and root-mean-square error around 2% on average, with respect to collocated ground-based total ozone observations. Nevertheless, large drifts with significant spatiotemporal inhomogeneity were diagnosed in ERA-Interim after 1995. To emphasize long-term trends, natural ozone variations associated with the solar cycle, quasi-biennial oscillation, volcanic aerosols, and El Niño-Southern Oscillation were modeled with MLR and then removed from each total ozone record, respectively, before performing EEMD analyses. The resulting rates of change estimated from the proposed scheme captured the long-term ozone variability well, with an inflection time of 2000 clearly detected. The positive rates of change after 2000 suggest that the ozone layer seems to be on a healing path, but the results are still inadequate to conclude an actual recovery of the ozone layer, and more observational evidence is needed. Further investigations suggest that biases embedded in total ozone records may significantly impact ozone trend estimations by resulting in large uncertainty or even negative rates of change after 2000.

  4. Vertical distribution of ozone and the variation of tropopause heights based on ozonesonde and satellite observations. [Contract title: Internal Wave Motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.

    1986-01-01

    The distribution of atmospheric ozone is nonuniform both in space and time. Local ozone concentration vary with altitude, latitude, longitude, and season. Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations and 2.5 year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five American stations were used to study the relationship between the total ozone, vertical height distribution of the ozone mixing ratio, vertical height distribution of half total ozone, and the local tropopause height. The results show that there is a postive correlation between total ozone in Dobson Units and the tropopause height in terms of atmospheric pressure. This result suggests that local intrusion of the statosphere into the troposphere, or the local decreasing of tropopause height could occur if there is a local increasing of total ozone. A comparison of the vertical height distribution of the ozone mixing ratio, the modified pressure height of half total ozone and the tropopause height shows that the pressure height of an ozone mixing ratio of 0.3 micrograms/g, and the modified pressure height of half total ozone are very well correlated with the tropopause pressure height.

  5. On the link between martian total ozone and potential vorticity

    NASA Astrophysics Data System (ADS)

    Lewis, S.; Holmes, J.; Patel, M.

    2016-12-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable.The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone can be of use to investigate the origin of potential vorticity filaments.

  6. On the link between martian total ozone and potential vorticity

    NASA Astrophysics Data System (ADS)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  7. The nature of the data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The locations of total ozone stations and of stratospheric ozone samplings were presented. The samplings are concentrated in three areas: Japan, Europe, and India. Approximately 75% of the total ozone measurements are made with Dobson instruments which offer the best international measurements. When well calibrated their accuracy is on the order of a few percent. It is found that although the total ozone percent is similar in both hemispheres, the northern hemisphere has 3 to 10% more ozone than the southern hemisphere. The close association between total ozone distribution and pressure distribution in the atmosphere is noted.

  8. UV controlling factors and trends derived from the ground-based measurements taken at Belsk, Poland, 1976-1994

    NASA Astrophysics Data System (ADS)

    KrzyśCin, Janusz W.

    1996-07-01

    Monthly means of UV erythemal dose at ground level from the Robertson-Berger (RB) sunburn meter (1976-1992) and the UV-Biometer model 501 MED meter (1993-1994) located at Belsk (21°E, 52°N), Poland, are examined. The monthly means are calculated from all-sky daily means of UV erythemal dose. Ancillary measurements of column ozone (by Dobson spectrophotometer), sunshine duration (by Campbell-Stokes heliograph), and total (sun and sky) radiation (by a pyranometer) are considered to explain variations in the UV data. A multiple regression model is proposed to study trends in the UV data. The model accounts for the UV erythemal dose changes induced by total ozone, sunshine duration (surrogate for cloud cover variations), or total solar radiation (surrogate for combined cloud cover and atmospheric turbidity impact on the UV radiation), trends due to instrument drift, step changes in the data, and serial correlations. A strong relationship between monthly all-sky UV erythemal dose changes and total ozone (and total solar radiation) is found. Calculations show that an erythemal radiative amplification factor (RAF) due to ozone under all skies is close to its clear-sky value (about 1). However, the model gives evidence that the RAF due to ozone is smaller for cloudier (and/or more turbid) atmospheres than long-term reference. Total solar radiation change of 1% is associated with a change of 0.7% in the UV erythemal dose. Modeled trends in the Belsk's UV data, inferred from the model using ozone and total solar radiation as the UV forcing factors, are 2.3% ± 0.4% (1σ) per decade in the period 1976-1994. The large increase in the UV erythemal dose, of the order of 4% per decade due to ozone depletion (-3.2% per decade), is partially compensated by a decreasing tendency (-2.8% per decade) in total solar radiation. The model estimates the trend in the UV data of the order of 0.1% per decade (not statistically significant) due to superposition of the instrument drift and long-term effects related to other UV influencing factors (not parameterized by the model).

  9. The photochemical pollution episode of 5-16 July 1983 in North-West England

    NASA Astrophysics Data System (ADS)

    Colbeck, I.; Harrison, Roy M.

    Ground level ozone, NO x and specific C 2-C 6 hydrocarbon measurements from a rural site in N-W England during a photochemical pollution episode are presented. Maximum hourly ozone concentrations exceeded 80 ppb for ten consecutive days with a maximum of 156 ppb. Mid-morning ozone concentrations were found to be indicative of the amount of ozone from continental sources. The air mass trajectories, total NMHC and alkane : alkene ratios all indicate that in the early to middle stages of the episode the air had been exposed to recent precursor emissions relative to more aged air before and after this period. The measurements are compared with the predictions of recent theoretical models of ozone formation over England.

  10. Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1926-1996

    NASA Astrophysics Data System (ADS)

    Staehelin, Johannes; Kegel, Rainer; Harris, Neil R. P.

    1998-04-01

    Total ozone measurements have been made at Arosa, Switzerland (47°N), from 1926 through the present day, forming the longest total ozone series in the world. The record has been recently homogenized. Ozone trends are calculated to be -(2.3±0.6)% per decade for annual means (larger losses are found in winter and spring, approximately -4% per decade for trends in January, February, and March) when a simple linear change from 1970 to 1996 is assumed. In addition, total ozone trends are calculated using multiple regression models involving combinations of explanatory variables for the 11-year solar cycle, local meteorological conditions (the Mount Säntis high-altitude temperature record), stratospheric aerosol loading from volcanoes, and stratospheric chlorine loading. When the terms for the solar cycle, the stratospheric aerosol loading and the high mountain temperature record were included, the annually averaged ozone trends were found to be -(1.9±0.6)% per decade. While a statistically significant relation is found between total ozone and indices of aerosol loadings of the stratosphere, the recent decrease in total ozone cannot be accounted for by the higher average aerosol content in the second half of the century. Finally, the decrease in ozone in the stratosphere is estimated to be approximately 30% larger than that found for total ozone, when a crude estimate of the increase in tropospheric ozone is included. The acceleration observed in total ozone trends between the 1970s and the 1980s over northern midlatitudes [e.g., Harris et al., 1997] might be partially attributed to the larger increase in tropospheric ozone in the 1970s.

  11. Vertical ozone characteristics in urban boundary layer in Beijing.

    PubMed

    Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi

    2013-07-01

    Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.

  12. Enhanced ozone loss by active inorganic bromine chemistry in the tropical troposphere

    NASA Astrophysics Data System (ADS)

    Le Breton, Michael; Bannan, Thomas J.; Shallcross, Dudley E.; Khan, M. Anwar; Evans, Mathew J.; Lee, James; Lidster, Richard; Andrews, Stephen; Carpenter, Lucy J.; Schmidt, Johan; Jacob, Daniel; Harris, Neil R. P.; Bauguitte, Stephane; Gallagher, Martin; Bacak, Asan; Leather, Kimberley E.; Percival, Carl J.

    2017-04-01

    Bromine chemistry, particularly in the tropics, has been suggested to play an important role in tropospheric ozone loss although a lack of measurements of active bromine species impedes a quantitative understanding of its impacts. Recent modelling and measurements of bromine monoxide (BrO) by Wang et al. (2015) have shown current models under predict BrO concentrations over the Pacific Ocean and allude to a missing source of BrO. Here, we present the first simultaneous aircraft measurements of atmospheric bromine monoxide, BrO (a radical that along with atomic Br catalytically destroys ozone) and the inorganic Br precursor compounds HOBr, BrCl and Br2 over the Western Pacific Ocean from 0.5 to 7 km. The presence of 0.17-1.64 pptv BrO and 3.6-8 pptv total inorganic Br from these four species throughout the troposphere causes 10-20% of total ozone loss, and confirms the importance of bromine chemistry in the tropical troposphere; contributing to a 6 ppb decrease in ozone levels due to halogen chemistry. Observations are compared with a global chemical transport model and find that the observed high levels of BrO, BrCl and HOBr can be reconciled by active multiphase oxidation of halide (Br- and Cl-) by HOBr and ozone in cloud droplets and aerosols. Measurements indicate that 99% of the instantaneous free Br in the troposphere up to 8 km originates from inorganic halogen photolysis rather than from photolysis of organobromine species.

  13. Ground-level ozone pollution and its health impacts in China

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Liu, Shuai; Xue, Boru; Lv, Zhaofeng; Meng, Zhihang; Yang, Xiaofan; Xue, Tao; Yu, Qiao; He, Kebin

    2018-01-01

    In recent years, ground-level ozone pollution in China has become an increasingly prominent problem. This study simulated and analyzed spatiotemporal distribution of ozone and exposure level by the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models and monitoring data from 1516 national air quality monitoring stations in China during 2015. The simulation results show that the Sichuan Basin, Shandong, Shanxi, Henan, Anhui, Qinghai-Tibetan Plateau, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) region had relatively high average annual concentrations of ozone. The regions with more than 10% nonattainment days of 160 μg/m3 (daily maximum 8-h) are mainly concentrated in BTH, Shandong Peninsula and YRD, where large seasonal variations were also found. Exposure levels were calculated based on population data and simulated ozone concentrations. The cumulative population exposed to daily maximum 8-h concentration greater than or equal to 100 μg/m3 was 816.04 million, 61.17% of the total. Three methods were used to estimate the mortality of chronic obstructive pulmonary disease (COPD) attributable to ozone. A comparative study using different exposure concentrations and threshold concentrations found large variations among these methods, although they were all peer-reviewed methods. The estimated mortality of COPD caused by ozone in China in 2015 ranged from 55341 to 80280, which mainly distributed in Beijing, Shandong, Henan, Hubei and Sichuan Province, the YRD and PRD region.

  14. The search for signs of recovery of the ozone layer.

    PubMed

    Weatherhead, Elizabeth C; Andersen, Signe Bech

    2006-05-04

    Evidence of mid-latitude ozone depletion and proof that the Antarctic ozone hole was caused by humans spurred policy makers from the late 1980s onwards to ratify the Montreal Protocol and subsequent treaties, legislating for reduced production of ozone-depleting substances. The case of anthropogenic ozone loss has often been cited since as a success story of international agreements in the regulation of environmental pollution. Although recent data suggest that total column ozone abundances have at least not decreased over the past eight years for most of the world, it is still uncertain whether this improvement is actually attributable to the observed decline in the amount of ozone-depleting substances in the Earth's atmosphere. The high natural variability in ozone abundances, due in part to the solar cycle as well as changes in transport and temperature, could override the relatively small changes expected from the recent decrease in ozone-depleting substances. Whatever the benefits of the Montreal agreement, recovery of ozone is likely to occur in a different atmospheric environment, with changes expected in atmospheric transport, temperature and important trace gases. It is therefore unlikely that ozone will stabilize at levels observed before 1980, when a decline in ozone concentrations was first observed.

  15. Scientific Studies in Association with the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mickley, Lorretta J.; Frederick, John E.

    1996-01-01

    This work examines measurements of ozone, NO, NO2, and HCl made by the Halogen Occultation Experiment (HALOE) to track chemical change in the stratosphere. In addition, HALOE observations of two long-lived species, HF and CH4, are used as tracers to distinguish between change due to transport processes and change due to chemistry. The first study investigates the response of NO(x), (NO and NO2) and ozone to the presence of large amounts of sulfate aerosol in the stratosphere following the 1991 eruption of Mount Pinatubo. As the Pinatubo aerosol cleared the atmosphere at 17 mb (about 27-28 km), the partitioning of total reactive nitrogen shifted more toward NO(x), and ozone amounts declined. This trend is opposite that observed at lower altitudes. The second study examines the chemical aftermath of severe ozone depletion over Antarctica in spring. When ozone levels drop to a threshold amount (about 1 ppm near 20 km), the partitioning of the total chlorine family shifts rapidly from reactive species to the reservoir molecule HCl. This sudden repartitioning shuts down further ozone loss and may be significant as filaments of air peel off the polar vortex and mix with mid-latitude air.

  16. Atmospheric carbon dioxide and chlorofluoromethanes - Combined effects on stratospheric ozone, temperature, and surface temperature

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Natarajan, M.

    1981-01-01

    The effects of combined CO2 and CFCl3 and CF2Cl2 time-dependent scenarios on atmospheric O3 and temperature are described; the steady-state levels of O3 and surface temperature, to which the chlorofluoromethane scenario tends in the presence of twice and four time ambient CO2, are examined; and surface temperature changes, caused by the combined effects, are established. A description of the model and of the experiments is presented. Results indicate that (1) the total ozone time history is significantly different from that due to the chlorofluoromethane alone; (2) a local ozone minimum occurs in the upper stratosphere about 45 years from the present with a subsequent ozone increase, then decline; and (3) steady-state solutions indicate that tropospheric temperature and water vapor increases, associated with increased infrared opacity, cause significant changes in tropospheric ozone levels for 2 x CO2 and 4 x CO2, without the addition of chlorofluoromethanes.

  17. Free-air fumigation of mature trees. A novel system for controlled ozone enrichment in grown-up beech and spruce canopies.

    PubMed

    Werner, Herbert; Fabian, Peter

    2002-01-01

    A novel system for continuous and controlled free-air fumigation of mature tree canopies with ozone is described. Ozone generated from oxygen is diluted with air in a pressurized tank and conducted into the canopies by a system of 100 PTFE tubes hanging down from a grid fixed above the crowns. With 45 calibrated outlets per tube providing a constant flow of 0.3 l/min each, a total volume of about 10*10*15 m3 comprising 5 beech and 5 spruce canopies is fumigated. The spatial ozone distribution in the fumigated volume as well as surrounding reference tree canopies is controlled by continuous measuring instruments installed at 4 levels and a dense array of passive samplers. The system will later be used for CO2 fumigation as well. Results of the first year of continuous operation, with 2 * ambient ozone levels having been achieved, are reported.

  18. Record low total ozone during northern winters of 1992 and 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojkov, R.D.

    1993-07-09

    The authors look at recorded ozone data over the northern hemisphere during the winters of 1992 and 1993. They use data from the World Meteorological Organization data base. During both of these winter, there have been marked decreases in the column ozone levels over North America, Europe, and Siberia, in the latitude belt from 45[degrees]N to 65[degrees]N. During these winters there have been ten times as many days with ozone levels deviated more than 2[sigma] below the 35 year average. They seek explanations for these observations by looking at meterological information. Evidences indicate that there was transport of ozone deficientmore » air masses during these winters. In addition cold air masses with excess ClO show evidence of having transported into the more southern latitudes. The authors conclude there is evidence for both displacement of large air masses, and increased chemical destruction potential, to have contributed to these observed decreases.« less

  19. Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.

    2014-12-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (≤35 ppbv).

  20. On the interannual oscillations in the northern temperate total ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krzyscin, J.W.

    1994-07-01

    The interannual variations in total ozone are studied using revised Dobson total ozone records (1961-1990) from 17 stations located within the latitude band 30 deg N - 60 deg N. To obtain the quasi-biennial oscillation (QBO), El Nino-Southern Oscillation (ENSO), and 11-year solar cycle manifestation in the `northern temperate` total ozone data, various multiple regression models are constructed by the least squares fitting to the observed ozone. The statistical relationships between the selected indices of the atmospheric variabilities and total ozone are described in the linear and nonlinear regression models. Nonlinear relationships to the predictor variables are found. That is,more » the total ozone variations are statistically modeled by nonlinear terms accounting for the coupling between QBO and ENSO, QBO and solar activity, and ENSO and solar activity. It is suggested that large reduction of total ozone values over the `northern temperate` region occurs in cold season when a strong ENSO warm event meets the west phase of the QBO during the period of high solar activity.« less

  1. High ozone levels in the northeast of Portugal: Analysis and characterization

    NASA Astrophysics Data System (ADS)

    Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A. I.; Borrego, C.; Saavedra, S.; Souto, J. A.; Casares, J. J.

    2010-03-01

    Each summer period extremely high ozone levels are registered at the rural background station of Lamas d'Olo, located in the Northeast of Portugal. In average, 30% of the total alert threshold registered in Portugal is detected at this site. The main purpose of this study is to characterize the atmospheric conditions that lead to the ozone-rich episodes at this site. Synoptic patterns anomalies and back trajectories cluster analysis were performed, for the period between 2004 and 2007, considering 76 days when ozone maximum hourly concentrations were above 200 μg m -3. The obtained atmospheric anomaly fields suggested that a positive temperature anomaly is visible above the Iberian Peninsula. A strong wind flow pattern from NE is observable in the North of Portugal and Galicia, in Spain. These two features may lead to an enhancement of the photochemical production and to the transport of pollutants from Spain to Portugal. In addition, the 3D mean back trajectories associated to the ozone episode days were analysed. A clustering method has been applied to the obtained back trajectories. Four main clusters of ozone-rich episodes were identified, with different frequencies of occurrence: north-westerly flows (11%); north-easterly flows (45%), southern flow (4%) and westerly flows (40%). Both analyses highlight the NE flow as a dominant pattern over the North of Portugal during summer. The analysis of the ozone concentrations for each selected cluster indicates that this northeast circulation pattern, together with the southern flow, are responsible for the highest ozone peak episodes. This also suggests that long-range transport of atmospheric pollutants is the main contributor to the ozone levels registered at Lamas d'Olo. This is also highlighted by the correlation of the ozone time-series with the meteorological parameters analysed in the frequency domain.

  2. The Total Ozone Series of Arosa: History, Homogenization and new results using statistical extreme value theory

    NASA Astrophysics Data System (ADS)

    Staehelin, J.; Rieder, H. E.; Maeder, J. A.; Ribatet, M.; Davison, A. C.; Stübi, R.

    2009-04-01

    Atmospheric ozone protects the biota living at the Earth's surface from harmful solar UV-B and UV-C radiation. The global ozone shield is expected to gradually recover from the anthropogenic disturbance of ozone depleting substances (ODS) in the coming decades. The stratospheric ozone layer at extratropics might significantly increase above the thickness of the chemically undisturbed atmosphere which might enhance ozone concentrations at the tropopause altitude where ozone is an important greenhouse gas. At Arosa, a resort village in the Swiss Alps, total ozone measurements started in 1926 leading to the longest total ozone series of the world. One Fery spectrograph and seven Dobson spectrophotometers were operated at Arosa and the method used to homogenize the series will be presented. Due to its unique length the series allows studying total ozone in the chemically undisturbed as well as in the ODS loaded stratosphere. The series is particularly valuable to study natural variability in the period prior to 1970, when ODS started to affect stratospheric ozone. Concepts developed by extreme value statistics allow objective definitions of "ozone extreme high" and "ozone extreme low" values by fitting the (daily mean) time series using the Generalized Pareto Distribution (GPD). Extreme high ozone events can be attributed to effects of ElNino and/or NAO, whereas in the chemically disturbed stratosphere high frequencies of extreme low total ozone values simultaneously occur with periods of strong polar ozone depletion (identified by statistical modeling with Equivalent Stratospheric Chlorine times Volume of Stratospheric Polar Clouds) and volcanic eruptions (such as El Chichon and Pinatubo).

  3. Largest-ever Ozone Hole over Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA instrument has detected an Antarctic ozone 'hole' (what scientists call an 'ozone depletion area') that is three times larger than the entire land mass of the United States-the largest such area ever observed. The 'hole' expanded to a record size of approximately 11 million square miles (28.3 million square kilometers) on Sept. 3, 2000. The previous record was approximately 10.5 million square miles (27.2 million square km) on Sept. 19, 1998. The ozone hole's size currently has stabilized, but the low levels in its interior continue to fall. The lowest readings in the ozone hole are typically observed in late September or early October each year. 'These observations reinforce concerns about the frailty of Earth's ozone layer. Although production of ozone-destroying gases has been curtailed under international agreements, concentrations of the gases in the stratosphere are only now reaching their peak. Due to their long persistence in the atmosphere, it will be many decades before the ozone hole is no longer an annual occurrence,' said Dr. Michael J. Kurylo, manager of the Upper Atmosphere Research Program, NASA Headquarters, Washington, DC. Ozone molecules, made up of three atoms of oxygen, comprise a thin layer of the atmosphere that absorbs harmful ultraviolet radiation from the Sun. Most atmospheric ozone is found between approximately six miles (9.5 km) and 18 miles (29 km) above the Earth's surface. Scientists continuing to investigate this enormous hole are somewhat surprised by its size. The reasons behind the dimensions involve both early-spring conditions, and an extremely intense Antarctic vortex. The Antarctic vortex is an upper-altitude stratospheric air current that sweeps around the Antarctic continent, confining the Antarctic ozone hole. 'Variations in the size of the ozone hole and of ozone depletion accompanying it from one year to the next are not unexpected,' said Dr. Jack Kaye, Office of Earth Sciences Research Director, NASA Headquarters. 'At this point we can only wait to see how the ozone hole will evolve in the coming few months and see how the year's hole compares in all respects to those of previous years.' 'Discoveries like these demonstrate the value of our long-term commitment to providing key observations to the scientific community,' said Dr. Ghassem Asrar, Associate Administrator for NASA's Office of Earth Sciences at Headquarters. 'We will soon launch QuickTOMS and Aura, two spacecraft that will continue to gather these important data.' The measurements released today were obtained using the Total Ozone Mapping Spectrometer (TOMS) instrument aboard NASA's Earth Probe (TOMS-EP) satellite. NASA instruments have been measuring Antarctic ozone levels since the early 1970s. Since the discovery of the ozone 'hole' in 1985, TOMS has been a key instrument for monitoring ozone levels over the Earth. TOMS ozone data and more pictures are available at: http://toms.gsfc.nasa.gov/ TOMS-EP and other ozone-measurement programs are important parts of a global environmental effort of NASA's Earth Science enterprise, a long-term research program designed to study Earth's land, oceans, atmosphere, ice and life as a total integrated system. For more information about ozone and ozone loss, visit: Ozone in the Stratosphere. Image courtesy the TOMS science team and and the Scientific Visualization Studio, NASA GSFC

  4. Analysis of the breakdown of the Antarctic circumpolar vortex using TOMS ozone data

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    1987-01-01

    Climatological analysis of data from the Total Ozone Mapping Spectrometer (TOMS) on the Nimbus 7 satellite has shown that the annual cycles of ozone are very different in the Arctic and Antarctic. The annual cycle in the Arctic is a relatively smooth annual sine wave; but in the Antarctic the circumpolar vortex breaks down rapidly during the Southern Hemisphere spring (September through November), producing a rapid rise in total ozone and a sawtooth-shaped annual cycle. The evolution of the Antarctic total ozone field during the vortex breakdown was studied by computing areally-integrated ozone amounts from the TOMS data. This technique avoids substantial difficulties with using zonally-averaged ozone amounts to study the asymmetric breakdown phenomenon. Variability of total ozone is found to be large both within an individual year and between different years. During the last decade monthly-mean total ozone values in the Antarctic during the springtime vortex breakdown period have decreased dramatically. The ozone-area statistics indicate that the decrease has resulted in part from changes in the timing of the vortex breakdown and resultant ozone increase, which have occurred later during recent years. Analysis of the spatial scales involved in the ozone transport and mixing that occur during the vortex breakdown is now underway. Reliable calculation of diagnostic quantities like areally-integrated ozone is possible only with the high-resolution, two-dimensional, daily coverage provided by the TOMS instrument.

  5. The total ozone and UV solar radiation over Stara Zagora, Bulgaria

    NASA Astrophysics Data System (ADS)

    Mendeva, B.; Gogosheva, Ts.; Petkov, B.; Krastev, D.

    Direct ground-based UV measurements and the total ozone content (TOC) over Stara Zagora, Bulgaria are presented. The observations are conducted by a scanning spectrophotometer, which measures the direct solar radiation in the range 290 - 360 nm with 1 nm resolution. For the time period 1998 -- 2003 the TOC data show seasonal variations, typical for the middle latitudes -- maximum in the spring and minimum in the autumn. The comparison of these TOC ground-based data to TOC satellite-borne data from the Global Ozone Monitoring Experiment (GOME) shows a seasonal dependence of the differences between the ground-based and satellite data. The relation between the UV radiation and TOC is investigated. Clear negative relationship is recognized between the total ozone and the irradiance of the wavelength 305 nm. The opposition of the two variables is significant ( r = - 0,62 ± 0,18) at 98 % confidence level. Yet, for 325 nm it is almost independent with the total ozone. The dependence of the UV-B radiation on the solar zenith angle at given TOC is also analyzed. A decrease of all wavelengths intensities with increase of the solar zenith angle is obtained but with different rate for each of them. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained as the integral in the wavelength interval 290-330 nm of the measured UV solar spectrum, weighted with an action spectrum, typical for each effect. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2,3 %.The eye-damaging doses are more influenced by the TOC changes and in this case RAF=-2,7%. The amount of these biological doses is in a direct ratio with the solar altitude over the horizon. This dependence is more markedly expressed at lower total ozone content in the atmosphere.

  6. Highlights from a Decade of OMI-TOMS Total Ozone Observations on EOS Aura

    NASA Technical Reports Server (NTRS)

    Haffner, David P.; Bhartia, Pawan K.; McPeters, Richard D.; Joiner, Joanna; Ziemke, Jerald R.; Vassilkov, Alexander; Labow, Gordon J.; Chiou, Er-Woon

    2014-01-01

    Total ozone measurements from OMI have been instrumental in meeting Aura science objectives. In the last decade, OMI has extended the length of the TOMS total ozone record to over 35 years to monitor stratospheric ozone recovery. OMI-TOMS total ozone measurements have also been combined synergistically with measurements from other Aura instruments and MLS in particular, which provides vertically resolved information that complements the total O3 mapping capability of OMI. With this combined approach, the EOS Aura platform has produced more accurate and detailed measurements of tropospheric ozone. This has led in turn to greater understanding of the sources and transport of tropospheric ozone as well as its radiative forcing effect. The combined use of OMI and MLS data was also vital to the analysis of the severe Arctic ozone depletion event of 2011. The quality of OMI-TOMS total O3 data used in these studies is the result of several factors: a mature and well-validated algorithm, the striking stability of the OMI instrument, and OMI's hyperspectral capabilities used to derive cloud pressures. The latter has changed how we think about the effects of clouds on total ozone retrievals. We will discuss the evolution of the operational V8.5 algorithm and provide an overview and motivation for V9. After reviewing results and developments of the past decade, we finally highlight how ozone observations from EOS Aura are playing an important role in new ozone mapping missions.

  7. Copernicus stratospheric ozone service, 2009-2012: validation, system intercomparison and roles of input data sets

    NASA Astrophysics Data System (ADS)

    Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.

    2015-03-01

    This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA) systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART); the Belgian Assimilation System for Chemical ObsErvations (BASCOE); the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA); and the Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases < 5%) and have a realistic seasonal cycle, except for BASCOE analyses, which underestimate total ozone in the tropics all year long by 7 to 10%, and SACADA analyses, which overestimate total ozone in polar night regions by up to 30%. The validation of the vertical distribution is based on independent observations from ozonesondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. It cannot be performed with TM3DAM, which is designed only to deliver analyses of total ozone columns. Vertically alternating positive and negative biases are found in the IFS-MOZART analyses as well as an overestimation of 30 to 60% in the polar lower stratosphere during polar ozone depletion events. SACADA underestimates lower stratospheric ozone by up to 50% during these events above the South Pole and overestimates it by approximately the same amount in the tropics. The three-dimensional (3-D) analyses delivered by BASCOE are found to have the best quality among the three systems resolving the vertical dimension, with biases not exceeding 10% all year long, at all stratospheric levels and in all latitude bands, except in the tropical lowermost stratosphere. The northern spring 2011 period is studied in more detail to evaluate the ability of the analyses to represent the exceptional ozone depletion event, which happened above the Arctic in March 2011. Offline sensitivity tests are performed during this month and indicate that the differences between the forward models or the assimilation algorithms are much less important than the characteristics of the assimilated data sets. They also show that IFS-MOZART is able to deliver realistic analyses of ozone both in the troposphere and in the stratosphere, but this requires the assimilation of observations from nadir-looking instruments as well as the assimilation of profiles, which are well resolved vertically and extend into the lowermost stratosphere.

  8. Measuring Heterogeneous Reaction Rates with ATR-FTIR Spectroscopy to Evaluate Chemical Fates in an Atmospheric Environment: A Physical Chemistry and Environmental Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Roberts, Jason E.; Zeng, Guang; Maron, Marta K.; Mach, Mindy; Dwebi, Iman; Liu, Yong

    2016-01-01

    This paper reports an undergraduate laboratory experiment to measure heterogeneous liquid/gas reaction kinetics (ozone-oleic acid and ozone-phenothrin) using a flow reactor coupled to an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. The experiment is specially designed for an upper-level undergraduate Physical…

  9. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    NASA Astrophysics Data System (ADS)

    Fernandez, Rafael Pedro; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Saiz-Lopez, Alfonso

    2017-04-01

    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSLBr) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSLBr), we show that the maximum Antarctic ozone hole depletion increases by up to 14% when natural VSLBr are considered, in better agreement with ozone observations. The impact of the additional 5 pptv VSLBr on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSLBr in CAM-Chem does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affect the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by year 2070, and indicates that natural VSLBr chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.

  10. An unusual stratospheric ozone decrease in the Southern Hemisphere subtropics linked to isentropic air-mass transport as observed over Irene (25.5° S, 28.1° E) in mid-May 2002

    NASA Astrophysics Data System (ADS)

    Semane, N.; Bencherif, H.; Morel, B.; Hauchecorne, A.; Diab, R. D.

    2006-06-01

    A prominent ozone minimum of less than 240 Dobson Units (DU) was observed over Irene (25.5° S, 28.1° E), a subtropical site in the Southern Hemisphere, by the Total Ozone Mapping Spectrometer (TOMS) during May 2002 with an extremely low ozone value of less than 219 DU recorded on 12 May, as compared to the climatological mean value of 249 DU for May between 1999 and 2005. In this study, the vertical structure of this ozone minimum is examined using ozonesonde measurements performed over Irene on 15 May 2002, when the total ozone (as given by TOMS) was about 226 DU. It is shown that this ozone minimum is of Antarctic polar origin with a low-ozone layer in the middle stratosphere above 625 K (where the climatological ozone gradient points equatorward), and is of tropical origin with a low-ozone layer in the lower stratosphere between the 400-K and 450-K isentropic levels (where the climatological ozone gradient is reversed). The upper and lower depleted parts of the ozonesonde profile for 15 May are then respectively attributed to equatorward and poleward transport of low-ozone air toward the subtropics in the Southern Hemisphere. The tropical air moving over Irene and the polar one passing over the same area associated with enhanced planetary-wave activity are successfully simulated using the high-resolution advection contour model of Ertel's potential vorticity MIMOSA. The unusual distribution of ozone over Irene during May 2002 in the middle stratosphere is connected to the anomalously pre-conditioned structure of the polar vortex at that time of the year. The winter stratospheric wave driving leading to the ozone minimum is investigated by means of the Eliassen-Palm flux computed from the European Center for Medium-range Weather Forecasts (ECMWF) ERA40 re-analyses.

  11. Ozone dose-response relationships for spring oilseed rape and broccoli

    NASA Astrophysics Data System (ADS)

    De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine

    2011-03-01

    Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p < 0.001) for the accumulated hourly O 3 exposure over a threshold of 40 ppb (AOT40) and the phytotoxic ozone dose above a threshold of 6 nmol m -2 s -1 (POD 6) respectively. Estimated critical levels, above which 5% yield reduction is expected, were 3.7 ppm h and 4.4 mmol m -2 respectively. Our results also confirm that a threshold value of 6 nmol s -1 m -2 projected leaf area, as recommended for agricultural crops (UNECE, Mills, 2004), can indeed be applied for spring oilseed rape. The reduction of oilseed rape yield showed the highest correlation with the ozone uptake during the vegetative growth stage: when only the first 47 days after emergence were used to calculate POD 6, R2 values increased up to 0.476 or even 0.545 when the first 23 days were excluded. The highest ozone treatments, corresponding to the future ambient level by 2100 (IPCC, Meehl et al., 2007), led to a reduction of approximately 30% in oilseed rape seed yield in comparison to the current ozone concentrations. Oil percentage was also significantly reduced in response to ozone ( p < 0.001). As a consequence oil yield was even more severely affected by elevated ozone exposure compared to seed yield: critical levels for oil yield dropped to 3.2 ppm h and 3.9 mmol m -2. For broccoli the applied ozone doses had no effect on yield.

  12. Ozone response to a CO2 doubling - Results from a stratospheric circulation model with heterogeneous chemistry

    NASA Technical Reports Server (NTRS)

    Pitari, G.; Palermi, S.; Visconti, G.; Prinn, R. G.

    1992-01-01

    A spectral 3D model of the stratosphere has been used to study the sensitivity of polar ozone with respect to a carbon dioxide increase. The lower stratospheric cooling associated with an imposed CO2 doubling may increase the probability of polar stratospheric cloud (PSC) formation and this affect ozone. The ozone perturbation obtained with the inclusion of a simple parameterization for heterogeneous chemistry on PSCs is compared to that relative to a pure homogeneous chemistry. In both cases the temperature perturbation is determined by a CO2 doubling, while the total chlorine content is kept at the present level. It is shown that the lower temperature may increase the depth and the extension of the ozone hole by extending the area amenable to PSC formation. It may be argued that this effect, coupled with an increasing amount of chlorine, may produce a positive feedback on the ozone destruction.

  13. The 1988 Antarctic ozone monitoring Nimbus-7 TOMS data atlas

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Guimaraes, Patricia T.

    1989-01-01

    Because of the great environmental significance of ozone and to support continuing research at McMurdo, Syowa, and other Southern Hemisphere stations, the development of the 1988 ozone hole was monitored using data from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) instrument, produced in near-real-time. This Atlas provides a complete set of daily polar orthographic projections of the TOMS total ozone measurements over the Southern Hemisphere for the period August 1 through November 17, 1988. Although total ozone in mini-holes briefly dropped below 150 DU in late August, the main ozone hole is seen to be much less pronounced than in 1987. Minimum values, observed in late September and early October 1988, were seldom less than 175 DU. Compared with the same period in 1987, when a pronounced ozone hole whose minimum value of 109 Dobson Units (DU) was the lowest total ozone ever observed, the 1988 ozone hole is displaced from the South Pole, opposing a persistent maximum with values consistently above 500 DU. Daily ozone values above selected Southern Hemisphere stations are presented, along with comparisons of the 1988 ozone distribution to that of other years.

  14. Observations over Hurricanes from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A.; Yang, K.; Bhartia, P. K.

    2006-01-01

    There is an apparent inconsistency between the total column ozone derived from the total ozone mapping spectrometer (TOMS) and aircraft observations within the eye region of tropical cyclones. The higher spectral resolution, coverage, and sampling of the ozone monitoring instrument (OMI) on NASA s Aura satellite as compared with TOMS allows for improved ozone retrievals by including estimates of cloud pressure derived simultaneously using the effects of rotational Raman scattering. The retrieved cloud pressures from OM1 are more appropriate than the climatological cloud-top pressures based on infrared measurements used in the TOMS and initial OM1 algorithms. We find that total ozone within the eye of hurricane Katrina is significantly overestimated when we use climatological cloud pressures. Using OMI-retrieved cloud pressures, total ozone in the eye is similar to that in the surrounding area. The corrected total ozone is in better agreement with aircraft measurements that imply relatively small or negligible amounts of stratospheric intrusion into the eye region of tropical cyclones.

  15. External comparisons of reprocessed SBUV/TOMS ozone data

    NASA Technical Reports Server (NTRS)

    Wellemeyer, C. G.; Taylor, S. L.; Singh, R. R.; Mcpeters, R. D.

    1994-01-01

    Ozone Retrievals from the Solar Backscatter Ultraviolet (SBUV) Instrument on-board the Nimbus-7 Satellite have been reprocessed using an improved internal calibration. The resulting data set covering November, 1978 through January, 1987 has been archived at the National Space Science Data Center in Greenbelt, Maryland. The reprocessed SBUV total ozone data as well as recalibrated Total Ozone Mapping Spectrometer (TOMS) data are compared with total ozone measurements from a network of ground based Dobson spectrophotometers. The SBUV also measures the vertical distribution of ozone, and these measurements are compared with external measurements made by SAGE II, Umkehr, and Ozonesondes. Special attention is paid to long-term changes in ozone bias.

  16. Artificial neural network with backpropagation learning to predict mean monthly total ozone in Arosa, Switzerland

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Bandyopadhyay, Goutami

    2007-01-01

    Present study deals with the mean monthly total ozone time series over Arosa, Switzerland. The study period is 1932-1971. First of all, the total ozone time series has been identified as a complex system and then Artificial Neural Networks models in the form of Multilayer Perceptron with back propagation learning have been developed. The models are Single-hidden-layer and Two-hidden-layer Perceptrons with sigmoid activation function. After sequential learning with learning rate 0.9 the peak total ozone period (February-May) concentrations of mean monthly total ozone have been predicted by the two neural net models. After training and validation, both of the models are found skillful. But, Two-hidden-layer Perceptron is found to be more adroit in predicting the mean monthly total ozone concentrations over the aforesaid period.

  17. SHADOZ Comparisons with TOMS

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Labow, Gordon J.; Witte, Jacquelyn; Einaudi, Franco (Technical Monitor)

    2000-01-01

    One year of balloon-sonde profiles taken from the Southern Hemisphere ADditional OZonesondes (SHADOZ) archive have been compared with data from the Earth Probe Total Ozone Mapping Spectrometer (TOMS) by integrating the balloon profiles to obtain total column ozone. The TOMS backscattered ultraviolet measurement loses sensitivity to ozone in the lowest five to ten kilometers of the atmosphere, limiting the accuracy of the TOMS measurement of tropospheric ozone. This is shown by the increased deviation between TOMS total ozone and the sonde total in the tropical Pacific, where tropospheric ozone is known to be lower than the tropical climatological average. The TOMS underestimate is further confirmed by the correlation of deviations between TOMS and the sondes with changes in lower tropospheric ozone. After allowing for the TOMS offset, the sondes appear to underestimate ozone by three to five percent. This is confirmed by a limited number of comparisons with Dobson data.

  18. The Effect of Representing Bromine from VSLS on the Simulation and Evolution of Antarctic Ozone

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.; Salawitch, Ross J.; Canty, Timothy P.; Ziemke, Jerald R.; Manyin, Michael

    2016-01-01

    We use the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine(Br(sub y)) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Br(sub y) are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASAs Aura satellite. In addition, the near zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Br(sub y) source from VSLS.

  19. The Effect of Representing Bromine from VSLS on the Simulation and Evolution of Antarctic Ozone

    PubMed Central

    Oman, Luke D.; Douglass, Anne R.; Salawitch, Ross J.; Canty, Timothy P.; Ziemke, Jerald R.; Manyin, Michael

    2018-01-01

    We use the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine (Bry) from very short-lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Bry are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite. In addition, the near zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Bry source from VSLS. PMID:29551840

  20. DOAS-based total column ozone retrieval from Phaethon system

    NASA Astrophysics Data System (ADS)

    Gkertsi, F.; Bais, A. F.; Kouremeti, N.; Drosoglou, Th; Fountoulakis, I.; Fragkos, K.

    2018-05-01

    This study introduces the measurement of the total ozone column using Differential Optical Absorption Spectroscopy (DOAS) analysis of direct-sun spectra recorded by the Phaethon system. This methodology is based on the analysis of spectra relative to a reference spectrum that has been recorded by the same instrument. The slant column density of ozone associated with the reference spectrum is derived by Langley extrapolation. Total ozone data derived by Phaethon over two years in Thessaloniki are compared with those of a collocated, well-maintained and calibrated, Brewer spectrophotometer. When the retrieval of total ozone is based on the absorption cross sections of (Paur and Bass, 1984) at 228 K, Phaethon shows an average overestimation of 1.85 ± 1.86%. Taking into account the effect of the day-to-day variability of stratospheric temperature on total ozone derived by both systems, the bias is reduced to 0.94 ± 1.26%. The sensitivity of the total ozone retrieval to changes in temperature is larger for Phaethon than for Brewer.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, Rizwanul; Umstead, Todd M.; Ponnuru, Padmavathi

    Millions are exposed to ozone levels above recommended limits, impairing lung function, causing epithelial damage and inflammation, and predisposing some individuals to pneumonia, asthma, and other lung conditions. Surfactant protein-A (SP-A) plays a role in host defense, the regulation of inflammation, and repair of tissue damage. We tested the hypothesis that the lungs of SP-A(-/-) (KO) mice are more susceptible to ozone-induced damage. We compared the effects of ozone on KO and wild type (WT) mice on the C57BL/6 genetic background by exposing them to 2 parts/million of ozone for 3 or 6 h and sacrificing them 0, 4, andmore » 24 h later. Lungs were subject to bronchoalveolar lavage (BAL) or used to measure endpoints of oxidative stress and inflammation. Despite more total protein in BAL of KO mice after a 3 h ozone exposure, WT mice had increased oxidation of protein and had oxidized SP-A dimers. In KO mice there was epithelial damage as assessed by increased LDH activity and there was increased phospholipid content. In WT mice there were more BAL PMNs and elevated macrophage inflammatory protein (MIP)-2 and monocyte chemoattractant protein (MCP)-1. Changes in MIP-2 and MCP-1 were observed in both KO and WT, however mRNA levels differed. In KO mice MIP-2 mRNA levels changed little with ozone, but in WT levels they were significantly increased. In summary, several aspects of the inflammatory response differ between WT and KO mice. These in vivo findings appear to implicate SP-A in regulating inflammation and limiting epithelial damage in response to ozone exposure.« less

  2. Meteorology-induced variations in the spatial behavior of summer ozone pollution in Central California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ling; Harley, Robert A.; Brown, Nancy J.

    Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels inmore » different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.« less

  3. A flux-based assessment of above and below ground biomass of Holm oak (Quercus ilex L.) seedlings after one season of exposure to high ozone concentrations

    NASA Astrophysics Data System (ADS)

    Gerosa, Giacomo; Fusaro, Lina; Monga, Robert; Finco, Angelo; Fares, Silvano; Manes, Fausto; Marzuoli, Riccardo

    2015-07-01

    Young plants of Holm oak (Quercus ilex) were exposed in non-limiting water conditions to four different levels of ozone (O3) concentrations in Open-Top Chambers during one growing season to evaluate biomass losses on roots, stems and leaves in relation to O3 exposure (AOT40) and phytotoxical ozone dose (POD1) absorbed. The exposure-effect and dose-effect relationships for the total biomass were statistically significant and indicated a reduction of 4% and 5.2% of the total biomass for each increase step of 10000 ppb h of AOT40 and 10 mmol m-2 of POD1, respectively. The results indicate a critical level for Holm oak protection of 7 mmol m-2 of POD1, which corresponds to 4% of total biomass reduction. The linear regressions based on the POD1 were significant for roots and stem biomass losses, but not significant for leaf biomass. The biomass loss rate at increasing POD1 was higher for roots than for stems and leaves, suggesting that stem growth under high levels of O3 is less affected than root growth. Because of the scarcity of data from the Mediterranean area, these results can be relevant for the O3 risk assessment models and for the definition of new O3 critical levels for forests in Europe.

  4. [Radiance Simulation of BUV Hyperspectral Sensor on Multi Angle Observation, and Improvement to Initial Total Ozone Estimating Model of TOMS V8 Total Ozone Algorithm].

    PubMed

    Lü, Chun-guang; Wang, Wei-he; Yang, Wen-bo; Tian, Qing-iju; Lu, Shan; Chen, Yun

    2015-11-01

    New hyperspectral sensor to detect total ozone is considered to be carried on geostationary orbit platform in the future, because local troposphere ozone pollution and diurnal variation of ozone receive more and more attention. Sensors carried on geostationary satellites frequently obtain images on the condition of larger observation angles so that it has higher requirements of total ozone retrieval on these observation geometries. TOMS V8 algorithm is developing and widely used in low orbit ozone detecting sensors, but it still lack of accuracy on big observation geometry, therefore, how to improve the accuracy of total ozone retrieval is still an urgent problem that demands immediate solution. Using moderate resolution atmospheric transmission, MODT-RAN, synthetic UV backscatter radiance in the spectra region from 305 to 360 nm is simulated, which refers to clear sky, multi angles (12 solar zenith angles and view zenith angles) and 26 standard profiles, moreover, the correlation and trends between atmospheric total ozone and backward scattering of the earth UV radiation are analyzed based on the result data. According to these result data, a new modified initial total ozone estimation model in TOMS V8 algorithm is considered to be constructed in order to improve the initial total ozone estimating accuracy on big observation geometries. The analysis results about total ozone and simulated UV backscatter radiance shows: Radiance in 317.5 nm (R₃₁₇.₅) decreased as the total ozone rise. Under the small solar zenith Angle (SZA) and the same total ozone, R₃₁₇.₅ decreased with the increase of view zenith Angle (VZA) but increased on the large SZA. Comparison of two fit models shows: without the condition that both SZA and VZA are large (> 80°), exponential fitting model and logarithm fitting model all show high fitting precision (R² > 0.90), and precision of the two decreased as the SZA and VZA rise. In most cases, the precision of logarithm fitting mode is about 0.9% higher than exponential fitting model. With the increasing of VZA or SZA, the fitting precision gradually lower, and the fall is more in the larger VZA or SZA. In addition, the precision of fitting mode exist a plateau in the small SZA range. The modified initial total ozone estimating model (ln(I) vs. Ω) is established based on logarithm fitting mode, and compared with traditional estimating model (I vs. ln(Ω)), that shows: the RMSE of ln(I) vs. Ω and I vs. ln(Ω) all have the down trend with the rise of total ozone. In the low region of total ozone (175-275 DU), the RMSE is obvious higher than high region (425-525 DU), moreover, a RMSE peak and a trough exist in 225 and 475 DU respectively. With the increase of VZA and SZA, the RMSE of two initial estimating models are overall rise, and the upraising degree is ln(I) vs. Ω obvious with the growing of SZA and VZA. The estimating result by modified model is better than traditional model on the whole total ozone range (RMSE is 0.087%-0.537% lower than traditional model), especially on lower total ozone region and large observation geometries. Traditional estimating model relies on the precision of exponential fitting model, and modified estimating model relies on the precision of logarithm fitting model. The improvement of the estimation accuracy by modified initial total ozone estimating model expand the application range of TOMS V8 algorithm. For sensor carried on geostationary orbit platform, there is no doubt that the modified estimating model can help improve the inversion accuracy on wide spatial and time range This modified model could give support and reference to TOMS algorithm update in the future.

  5. Insights into Tropical Tropospheric Ozone from Satellite and Sonde Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2003-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The data reside at: http://code916.gsfc.nasa.gov/Data_services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this. In addition to leading the SHADOZ network, we have been producing near-real tropical tropospheric ozone ('TTO') data from the Total Ozone Mapping Spectrometer (TOMS) since 1997 with Prof. Hudson and students at the University of Maryland: http://metosrv2.umd.edu/tropo. Further perspective on the complexity of tropospheric ozone variability is shown using satellite observations.

  6. Long-term total ozone observations at Arosa (Switzerland) with Dobson and Brewer instruments (1988-2007)

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Stübi, R.; Schill, H.

    2010-07-01

    Dobson and Brewer spectrophotometers are the standard instruments for ground-based total ozone monitoring under the World Meteorological Organization's Global Atmosphere Watch program. Both types of instruments have been simultaneously used at Arosa station (Switzerland) since 1988; presently two Dobson and three Brewer instruments (one of which is type Mark III) are in operation. The large data set of quasi-simultaneous measurements (defined here as observations performed less than 10 min apart) allows for the determination of both inter- and intrainstrumental precision. The results for one standard deviation of total ozone are ±0.5% for Dobson standard wavelength pair observations and ±0.15% for Brewer total ozone measurements. To transform Dobson data into Brewer total ozone observations, empirical transfer functions are used to describe the observed difference in seasonal variations of total ozone data derived from the two types of instruments (amounting to a seasonal amplitude of approximately 2% with maximum deviation in winter). The statistical model (applied to quasi-simultaneous measurements) includes the ozone effective temperature and the air mass multiplied by total ozone (ozone slant path) as explanatory variables; it removes the seasonal cycle in the difference and it allows the significance of the proxies introduced and systematic errors in the data to be determined. However, even when these transfer functions are applied, a 3% drift over about a 10 year period (1988-1997) between Arosa's Dobson and Brewer derived total ozone data series remains unexplained, adding to the model an aerosol proxy for which only part of the drift can be removed (related to the period 1992-1996).

  7. Molecular and Immunological Characterization of Ragweed (Ambrosia artemisiifolia L.) Pollen after Exposure of the Plants to Elevated Ozone over a Whole Growing Season

    PubMed Central

    Kanter, Ulrike; Heller, Werner; Durner, Jörg; Winkler, J. Barbro; Engel, Marion; Behrendt, Heidrun; Holzinger, Andreas; Braun, Paula; Hauser, Michael; Ferreira, Fatima; Mayer, Klaus; Pfeifer, Matthias; Ernst, Dieter

    2013-01-01

    Climate change and air pollution, including ozone is known to affect plants and might also influence the ragweed pollen, known to carry strong allergens. We compared the transcriptome of ragweed pollen produced under ambient and elevated ozone by 454-sequencing. An enzyme-linked immunosorbent assay (ELISA) was carried out for the major ragweed allergen Amb a 1. Pollen surface was examined by scanning electron microscopy and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), and phenolics were analysed by high-performance liquid chromatography. Elevated ozone had no influence on the pollen size, shape, surface structure or amount of phenolics. ATR-FTIR indicated increased pectin-like material in the exine. Transcriptomic analyses showed changes in expressed-sequence tags (ESTs), including allergens. However, ELISA indicated no significantly increased amounts of Amb a 1 under elevated ozone concentrations. The data highlight a direct influence of ozone on the exine components and transcript level of allergens. As the total protein amount of Amb a 1 was not altered, a direct correlation to an increased risk to human health could not be derived. Additional, the 454-sequencing contributes to the identification of stress-related transcripts in mature pollen that could be grouped into distinct gene ontology terms. PMID:23637846

  8. Nimbus 7 solar backscatter ultraviolet (SBUV) ozone products user's guide

    NASA Technical Reports Server (NTRS)

    Fleig, Albert J.; Mcpeters, R. D.; Bhartia, P. K.; Schlesinger, Barry M.; Cebula, Richard P.; Klenk, K. F.; Taylor, Steven L.; Heath, Donald F.

    1990-01-01

    Three ozone tape products from the Solar Backscatter Ultraviolet (SBUV) experiment aboard Nimbus 7 were archived at the National Space Science Data Center. The experiment measures the fraction of incoming radiation backscattered by the Earth's atmosphere at 12 wavelengths. In-flight measurements were used to monitor changes in the instrument sensitivity. Total column ozone is derived by comparing the measurements with calculations of what would be measured for different total ozone amounts. The altitude distribution is retrieved using an optimum statistical technique for the inversion. The estimated initial error in the absolute scale for total ozone is 2 percent, with a 3 percent drift over 8 years. The profile error depends on latitude and height, smallest at 3 to 10 mbar; the drift increases with increasing altitude. Three tape products are described. The High Density SBUV (HDSBUV) tape contains the final derived products - the total ozone and the vertical ozone profile - as well as much detailed diagnostic information generated during the retrieval process. The Compressed Ozone (CPOZ) tape contains only that subset of HDSBUV information, including total ozone and ozone profiles, considered most useful for scientific studies. The Zonal Means Tape (ZMT) contains daily, weekly, monthly and quarterly averages of the derived quantities over 10 deg latitude zones.

  9. The role of polar stratospheric clouds on total ozone minihole events

    NASA Technical Reports Server (NTRS)

    Sabutis, Joseph L.

    1989-01-01

    Using seven years of data from tha SAM 2 (Stratospheric Aerosol Measurement 2) and TOMS (Total Ozone Mapping Spectrometer) instruments, along with 70 mbar temperatures extracted from an NMC analysis, the effect of the austral spring polar stratospheric clouds (PSC) on the formation of total ozone miniholes is investigated. A total ozone minihole event is designated as the rapid decrease of more than 20 DU of total ozone over a time period of a day and a spatial extent of approximately 1000 by 1000 km. The severe decrease of total ozone during these minihole events could be explained in part by PSC being formed at altitudes of 10 to 24 km and preventing scattered UV radiation from ozone below the cloud from reaching the TOMS instrument. A result of the cloud's opaqueness is that the total ozone retrieval from TOMS data would underestimate the ozone column in the vicinity of the PSC. The approach to investigate the effect of PSC on total ozone was to use SAM 2 aerosol extinction values in conjunction with NMC stratospheric temperatures to determine if PSC are present during total ozone minihole events occurring during August and September, 1979 to 1986. The minihole events during these seven years were divided into two types: type 1, where the minihole region of 24 hour darkness from regions exposed to sunlight, and type 2, where the minihole occurred 5 to 10 degrees north of the terminator. The presence of PSC in a given region was ascertained by a maximum aerosol extinction greater than .006/km occurring with a temperature less than 189 K. It is found that PSC are consistently present with type 2 minihole events. This is contrasted with PSC rarely occurring in the same vicinity of type 2 miniholes. Also observed of that type 1 minihole events have minimum total ozone values which are on the average 3 to 10 DU smaller than type 2 miniholes. It can be concluded that care must be taken when trying to deduce a dynamical explanation of minihole events near the polar terminator and the role of PSC must be accounted for in type 1 minihole formation.

  10. Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user's guide

    NASA Technical Reports Server (NTRS)

    Mcpeters, Richard D.; Krueger, Arlin J.; Bhartia, P. K.; Herman, Jay R.; Oaks, Arnold; Ahmad, Ziuddin; Cebula, Richard P.; Schlesinger, Barry M.; Swissler, Tom; Taylor, Steven L.

    1993-01-01

    Two tape products from the Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus-7 have been archived at the National Space Science Data Center. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio -- the albedo -- is used in ozone retrievals. In-flight measurements are used to monitor changes in the instrument sensitivity. The algorithm to retrieve total column ozone compares the observed ratios of albedos at pairs of wavelengths with pair ratios calculated for different ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard-deviation random error is 2 percent, and the drift is +/- 1.5 percent over 14.5 years. The High Density TOMS (HDTOMS) tape contains the measured albedos, the derived total ozone amount, reflectivity, and cloud-height information for each scan position. It also contains an index of SO2 contamination for each position. The Gridded TOMS (GRIDTOMS) tape contains daily total ozone and reflectivity in roughly equal area grids (110 km in latitude by about 100-150 km in longitude). Detailed descriptions of the tape structure and record formats are provided.

  11. Seasonal and Interannual Variabilities in Tropical Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.

    1999-01-01

    This paper presents a detailed characterization of seasonal and interannual variability in tropical tropospheric column ozone (TCO). TCO time series are derived from 20 years (1979-1998) of total ozone mapping spectrometer (TOMS) data using the convective cloud differential (CCD) method. Our study identifies three regions in the tropics with distinctly different zonal characteristics related to seasonal and interannual variability. These three regions are the eastern Pacific, Atlantic, and western Pacific. Results show that in both the eastern and western Pacific seasonal-cycle variability of northern hemisphere (NH) TCO exhibits maximum amount during NH spring whereas largest amount in southern hemisphere (SH) TCO occurs during SH spring. In the Atlantic, maximum TCO in both hemispheres occurs in SH spring. These seasonal cycles are shown to be comparable to seasonal cycles present in ground-based ozonesonde measurements. Interannual variability in the Atlantic region indicates a quasi-biennial oscillation (QBO) signal that is out of phase with the QBO present in stratospheric column ozone (SCO). This is consistent with high pollution and high concentrations of mid-to-upper tropospheric O3-producing precursors in this region. The out of phase relation suggests a UV modulation of tropospheric photochemistry caused by the QBO in stratospheric O3. During El Nino events there is anomalously low TCO in the eastern Pacific and high values in the western Pacific, indicating the effects of convectively-driven transport of low-value boundary layer O3 (reducing TCO) and O3 precursors including H2O and OH. A simplified technique is proposed to derive high-resolution maps of TCO in the tropics even in the absence of tropopause-level clouds. This promising approach requires only total ozone gridded measurements and utilizes the small variability observed in TCO near the dateline. This technique has an advantage compared to the CCD method because the latter requires high-resolution footprint measurements of both reflectivity and total ozone in the presence of tropopause-level cloud tops.

  12. Impact of Biogenic Emission Uncertainties on the Simulated Response of Ozone and Fine Particulate Matter to Anthropogenic Emission Reductions

    PubMed Central

    Hogrefe, Christian; Isukapalli, Sastry S.; Tang, Xiaogang; Georgopoulos, Panos G.; He, Shan; Zalewsky, Eric E.; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1–0.25 μg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1–2% of the value of the annual PM2.5 NAAQS of 15 μg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions. PMID:21305893

  13. The 1987 Airborne Antarctic Ozone Experiment: the Nimbus-7 TOMS Data Atlas

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Ardanuy, Philip E.; Sechrist, Frank S.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Galimore, Reginald N.

    1988-01-01

    Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the 1987 Airborne Antarctic Ozone Experiment. The near-real-time TOMS total ozone observations were suppled within hours of real time to the operations center in Punta Arenas, Chile, over a telecommunications network designed specifically for this purpose. The TOMS data preparation and method of transfer over the telecommunications links are reviewed. This atlas includes a complete set of the near-real-time TOMS orbital overpass data over regions around the Palmer Peninsula of Antarctica for the period of August 8 through September 29, 1987. Also provided are daily polar orthographic projections of TOMS total ozone measurements over the Southern Hemisphere from August through November 1987. In addition, a chronology of the salient points of the experiment, along with some latitudinal cross sections and time series at locations of interest of the TOMS total ozone observations are presented. The TOMS total ozone measurements are evaluated along the flight tracks of each of the ER-2 and DC-8 missions during the experiment. The ozone hole is shown here to develop in a monotonic progression throughout late August and September. The minimum total ozone amount was found on 5 October, when its all-time lowest value of 109 DU is recorded. The hole remains well defined, but fills gradually from mid-October through mid-November. The hole's dissolution is observed here to begin in mid-November, when it elongates and begins to rotate. By the end of November, the south pole is no longer located within the ozone hole.

  14. Spatial distribution of tropospheric ozone in western Washington, USA

    USGS Publications Warehouse

    Cooper, S.M.; Peterson, D.L.

    2000-01-01

    We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area a??6000 km2), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55a??67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.

  15. Ozone loss in the lower stratosphere over the United States in 1992-1993: Evidence for heterogeneous chemistry on the Pinatubo aerosol

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Oltmans, S. J.; Komhyr, W. D.; Harris, J. M.; Lathrop, J. A.; Langford, A. O.; Deshler, T.; Johnson, B. J.; Torres, A.; Matthews, W. A.

    1994-01-01

    Ozone profiles obtained at Boulder, Colorado and Wallops Island, Virginia indicate that ozone was about 25% below normal during the winter and spring of 1992-93 in the 12-22 km region. This large ozone reduction in the lower stratosphere, though sometimes partially compensated by higher than normal ozone above 24 km, was responsible for the low total column ozone values observed across the United States during this period. Normal temperatures throughout the low ozone region suggest that transport-related effects are probably not the most important cause of the ozone deficits. This region of low ozone at Boulder corresponds closely with the location of the enhanced H2SO4/H2O aerosol from the Pinatubo eruption of 1991 as measured near Boulder and at Laramie, Wyoming. Trajectory analyses suggest that except at low altitudes in spring, air parcels on the days of the ozone measurements generally arrived at Boulder from higher latitude, although seldom higher than 60 deg N, and hence may have been subjected to heterogeneous chemical processing on the surface of Pinatubo aerosol droplets resulting in chlorine-catalyzed ozone destruction, a process which is believed to be more effective under the lower winter temperatures and sunlight levels of higher latitudes.

  16. Ozone reaction with clothing and its initiated VOC emissions in an environmental chamber.

    PubMed

    Rai, A C; Guo, B; Lin, C-H; Zhang, J; Pei, J; Chen, Q

    2014-02-01

    Human health is adversely affected by ozone and the volatile organic compounds (VOCs) produced from its reactions in the indoor environment. Hence, it is important to characterize the ozone-initiated reactive chemistry under indoor conditions and study the influence of different factors on these reactions. This investigation studied the ozone reactions with clothing through a series of experiments conducted in an environmental chamber under various conditions. The study found that the ozone reactions with a soiled (human-worn) T-shirt consumed ozone and generated VOCs. The ozone removal rate and deposition velocity for the T-shirt increased with the increasing soiling level and air change rate, decreased at high ozone concentrations, and were relatively unaffected by the humidity. The deposition velocity for the soiled T-shirt ranged from 0.15 to 0.29 cm/s. The ozone-initiated VOC emissions included C6-C10 straight-chain saturated aldehydes, acetone, and 4-OPA (4-oxopentanal). The VOC emissions were generally higher at higher ozone, humidity, soiling of T-shirt, and air change rate. The total molar yield was approximately 0.5 in most cases, which means that for every two moles of ozone removed by the T-shirt surface, one mole of VOCs was produced. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    NASA Astrophysics Data System (ADS)

    Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Saiz-Lopez, Alfonso

    2017-02-01

    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSLBr) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSLBr), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSLBr are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSLBr on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ˜ 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSLBr in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSLBr chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.

  18. Retrieval of Total Ozone Amounts from Zenith-Sky Intensities in the Ultraviolet Region

    NASA Technical Reports Server (NTRS)

    Bojkov, B. R.; Bhartia, P. K.; Hilsenrath, E.; Labow, G. J.

    2004-01-01

    A new method to determine the total ozone column from zenith-sky intensities in the ultraviolet region has been developed for the Shuttle Solar Backscatter Ultraviolet Spectrometer (SSBUV) operating at the NASA Goddard Space Flight Center. The total ozone column amounts are derived by comparing the ratio of measured intensities from three wavelengths with the equivalent ratios calculated by a radiative transfer model. The differences between the retrieved ozone column amounts and the collocated Brewer double monochromator are within 2% for the measurement period beginning in April 2001. The methodology, as well as the influences of the ozone profiles, aerosols, surface albedo, and the solar zenith angle on the retrieved total ozone amounts will be presented.

  19. Detection and measurement of total ozone from stellar spectra: Paper 2. Historic data from 1935-1942

    NASA Astrophysics Data System (ADS)

    Griffin, R. E. M.

    2006-06-01

    Atmospheric ozone columns are derived from historic stellar spectra observed between 1935 and 1942 at Mount Wilson Observatory, California. Comparisons with contemporary measurements in the Arosa database show a generally close correspondence, while a similar comparison with more sparse data from Table Mountain reveals a difference of ~15-20%, as has also been found by other researches of the latter data. The results of the analysis indicate that astronomy's archives command considerable potential for investigating the natural levels of ozone and its variability during the decades prior to anthropogenic interference.

  20. Influence of equatorial QBO (quasi-biennial oscillation) and SST (sea-surface temperature) on polar total ozone, and the 1990 Antarctic ozone hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angell, J.K.

    1990-09-01

    Based on data through 1989, comparisons are made between the variation of total ozone at Resolute, Canada (75{degree}N) and South Pole, and the variation of low-stratospheric temperature at Singapore (reflecting the equatorial QBO) and SST in eastern equatorial Pacific (reflecting the ENSO phenomenon). Total-ozone variations at Resolute have been more closely related to the QBO, whereas the total-ozone variations at South Pole appear to have been almost equally related to QBO and SST. When the average of 50 mb and 30 mb June-July-August (JJA) values of Singapore temperature ({bar T}) increased from one year to the next, the decrease inmore » South Pole springtime total ozone for the same years averaged 21 {plus minus} 14% greater than when {bar T} decreased. When the JJA values of equatorial SST increased from one year to the next, the decrease in South Pole springtime total ozone for the same years averaged 18 {plus minus} 12% greater than when SST decreased. In the 6 cases when JJA values of both Singapore {bar T} and equatorial SST increased from one year to the next, the spring values of South Pole total ozone have decreased, whereas in the 6 cases when both {bar T} and SST decreased from one year to the next, South Pole total ozone has increased. Both Singapore {bar T} and equatorial SST will probably be warmer in JJA of 1990 than they were in JJA of 1989 suggesting, based on these previous relations, an even deeper Antarctic ozone hole in 1990 than in 1989 and ending the biennial variation in depth of the hole of the last 6 years.« less

  1. Recent advances in satellite observations of solar variability and global atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Heath, D. F.

    1974-01-01

    A description is given of the temporal behavior of the sun as an ultraviolet variable star in relation to daily zonal means of atmospheric ozone from the total amount to that above the 10-mb and 4-mb pressure levels. A significant correlation has been observed between enhancements in the ultraviolet solar irradiances and terrestrial passages of the solar magnetic field sector boundary structure. However, it has not yet been possible to separate solar from the dynamical effects on the variability in the zonal means of ozone. Attention is given to global changes in ozone which have been derived from the satellite observations in terms of season, solar variability, and major stratospheric disturbances such as stratospheric warmings.

  2. Ozone climatology series. Volume 1: Atlas of total ozone, April 1970 - December 1976

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Fleig, A. J.; Miller, A. J.; Rogers, T. G.; Nagatani, R. M.; Bowman, H. D., II; Kaveeshwar, V. G.; Klenk, K. F.; Bhartia, P. K.; Lee, K. D.

    1982-01-01

    Contours and gridded values are given for seven years of monthly mean total ozone data derived from observations with the Backscattered Ultraviolet instrument on Nimbus-4 for the Northern and Southern Hemispheres. The instrument, algorithm, uncertainties in derived ozone and systematic changes in the bias with respect to the international groundbased ozone network of Dobson instruments, are discussed.

  3. Variability in total ozone associated with baroclinic waves

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.; Holton, James R.; Wallace, John M.

    1991-01-01

    One-point regression maps of total ozone formed by regressing the time series of bandpass-filtered geopotential height data have been analyzed against Total Ozone Mapping Spectrometer data. Results obtained reveal a strong signature of baroclinic waves in the ozone variability. The regressed patterns are found to be similar in extent and behavior to the relative vorticity patterns reported by Lim and Wallace (1991).

  4. Comparison of Tropical Ozone from SHADOZ with Remote Sensing Retrievals from Suomi-npp Ozone Mapping Profile Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Ziemke, Jerald R.; Wargan, Krzysztof

    2014-01-01

    The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data.

  5. [The two ozone problems: too much in the troposphere, too little in the stratosphere].

    PubMed

    Staehelin, J

    1992-03-10

    Trends analysis based on the long-term Swiss ozone measurements from Arosa and Payerne operationally performed by the Swiss Meteorological Institute are presented. These measurement include stratospheric ozone (approximately 90% of total ozone) and tropospheric ozone. The total ozone measurements from Arosa, the world longest series started at 1926, indicate, that total ozone has declined since about 1970 by approximately 5%. The ozone balloon soundings, operationally performed at Payerne since 1969 (2-3 ascents per week) show, that stratospheric ozone has decreased strongly in the last 20 years, whereas tropospheric ozone, remarkably has increased during this period. The relative change was strongest in the troposphere (more than 10% per decade, 3-4% increase per year during 1982-1988). However, on an absolute scale, changes in the stratosphere were strongest (relative decrease: 6 to 7% per decade at 20-22 km). The present scientific theories of the two ozone problems are reviewed: stratospheric ozone decrease was caused by the anthropogenic emissions of fluorochlorocarbons and other compounds mainly released from the earth surface. Tropospheric ozone has increased due to photochemical production of mainly anthropogenically emitted nitrogen oxides, volatile organic compounds and CO.

  6. Observations of tropospheric trace gases from GOSAT thermal infrared spectra

    NASA Astrophysics Data System (ADS)

    Ohyama, Hirofumi; Shiomi, Kei; Kawakami, Shuji; Nakajima, Masakatsu; Maki, Takashi; Deushi, Makoto

    2013-04-01

    Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS), which is one of the sensors onboard the Greenhouse gases Observing SATellite (GOSAT), measures the sunlight backscattered by the Earth's surface and atmosphere as well as the thermal radiance emitted from the Earth. Atmospheric trace gases such as ozone (O3), water vapor (H2O and HDO), methanol (CH3OH) and ammonia (NH3) are derived from the thermal infrared spectral radiance recorded with the TANSO-FTS by an optimal estimation retrieval approach. TANSO-FTS total ozone columns are compared with Dobson spectrophotometer and Ozone Monitoring Instrument (OMI) data. The TANSO-FTS total ozone retrievals exhibit a positive bias of 3-4% with a root-mean-square difference of 2-6% compared to the Dobson and OMI measurements. We compare TANSO-FTS tropospheric ozone columns to those from ozonesonde data as well as from a three-dimensional chemical-climate model (MRI-CCM2). The TANSO-FTS data have high correlations with the ozonesonde data. The seasonal trends of the retrieved tropospheric ozone are consistent with those of the ozonesonde data. The spatial distribution of the tropospheric ozone from the TANSO-FTS and MRI-CCM2 shows good agreement, especially in the high-level tropospheric ozone regions. We also retrieve tropospheric H2O and HDO profiles simultaneously, accounting for the cross correlations between the water isotopes. The joint retrieval results in precise estimation of the isotope ratio by partial cancellation of systematic errors common to both H2O and HDO. The retrieved profiles and columns are compared with radiosonde, GPS, and ground-based high-resolution FTS data. The temporal and spatial variations of the precipitable water and the isotope ratio are consistent with those of the validation data. Finally, air pollutants such as CH3OH and NH3 are retrieved using the retrieved ozone and water vapor. We present the latitudinal and seasonal variations of CH3OH related to plant growth and biomass burning, and the high-level NH3 in the hot spot areas.

  7. The Effects of Volcano-Induced Ozone Depletion on Short-lived Climate Forcing in the Arctic

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2012-12-01

    Photodissociation of oxygen maintains the stratopause ~50°C warmer than the tropopause. Photodissociation of ozone warms the lower stratosphere, preventing most of this high-energy DNA-damaging solar radiation from reaching the troposphere. Ozone depletion allows more UV energy to reach the lower troposphere causing photodissociation of anthropogenic ozone and nitrogen dioxide. UV energy also penetrates the ocean >10 m where it is absorbed more efficiently than infrared radiation that barely penetrates the surface. Manmade chlorofluorocarbons caused ozone depletion from 1965 to 1994 with slow recovery predicted over the next 50+ years. But the lowest levels of ozone followed the eruptions of Pinatubo (1991 VEI=6), Eyjafjallajökull (2010 VEI=4), and Grímsvötn (2011 VEI=4). Each of the relatively small, basaltic eruptions in Iceland caused more ozone depletion than the long-term effects of chlorofluorocarbons, although total ozone appears to return to pre-eruption levels within a decade. Ozone depletion by 20% increases energy flux thru the lowermost troposphere by 0.7 W m-2 for overhead sun causing temperatures in the lower stratosphere to drop >2°C since 1958 in steps after the 3 largest volcanic eruptions: Agung 1963, El Chichón 1982, and Pinatubo. Temperatures at the surface increased primarily in the regions and at the times of the greatest observed ozone depletion. The greatest warming observed was along the Western Antarctic Peninsula (65.4°S) where minimum temperatures rose 6.7°C from 1951 to 2003 while maximum temperatures remained relatively constant. Minimum total column ozone in September-October was 40-56% lower than in 1972 almost every year since 1987, strongly anti-correlated with observed minimum temperatures. Sea ice decreased 10%, 7 ice shelves separated, 87% of the glaciers retreated and the Antarctic Circumpolar Current warmed. Elsewhere under the ozone hole, warming of continental Antarctica was limited by the high albedo (0.86) of Antarctic snow and decreasing solar zenith angles at higher latitudes. The second largest ozone depletion was in the Arctic at the times and places of greatest winter warming. Average ozone at four stations in Canada (43-59°N) compared to the 1961-1970 mean were 6% lower in December 2010 after the eruption of Eyjafjallajökull and 11% lower in December 2011 after the eruption of Grímsvötn. In 2012, ozone levels were still 10% lower in March and 7% lower in July. The regions and timing of this depletion are the regions and times of unusually warm temperatures and drought in North America during 2011-2012. The Dust Bowl droughts in 1934 and 1936 show a similar temporal relationship to a highly unusual sequence of five VEI=4-5 eruptions around the Pacific in 1931-1933. Major increases in global pollution were from 1950-1970 while ozone-destroying tropospheric chlorine rose from 1970 to 1994, along with ocean heat content and mean temperature. Pollution does not seem to cause an increase in warming until ozone depletion allows more UV into the lower troposphere. Pollutants decrease surface solar radiation but also reduce Arctic-snow albedo. Widespread observations imply that ozone depletion and associated photodissociation cause substantial warming. Several issues regarding the microphysics of absorption and radiation by greenhouse gases must be resolved before we can quantify their relative importance.

  8. User's guide to the Nimbus-4 backscatter ultraviolet experiment data sets

    NASA Technical Reports Server (NTRS)

    Lowrey, B. E.

    1978-01-01

    The first year's data from the Nimbus 4 backscatter ultraviolet (BUV) experiment have been archived in the National Space Science Data Center (NSSDC). Backscattered radiances in the ultraviolet measured by the satellite were used to compute the global total ozone for the period April 1970 - April 1971. The data sets now in the NSSDC are the results obtained by the Ozone Processing Team, which has processed the data with the purpose of determining the best quality of the data. There are four basic sets of data available in the NSSDC representing various stages in processing. The primary data base contains organized and cleaned data in telemetry units. The radiance data has had most of the engineering calibrations performed. The detailed total ozone data is the result of computations to obtain the total ozone; the Compressed Total Ozone data is a convenient condensation of the detailed total ozone. Product data sets are also included.

  9. Tropospheric Ozone Pollution Transport Traced from the TOMS (Total Ozone Mapping Spectrometer) Instrument During the Nashville-1999 Campaign

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Frolov, A. D.; Hudson, R. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method [("TDOT" = TOMS Direct Ozone in the Troposphere; Frolov et al., 2000] represents a new algorithm that uses TOMS radiances directly (i.e., not previously processed for TOMS ozone) to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution. These events tend to occur in certain meteorological regimes. For example, mid-latitude pollution usually occurs on the backside of subtropical fronts, as low pv, usually moist air intrudes to the extra-tropics. July 1999 was a month characterized by robust pollution in the eastern US, with high ozone, as detected by TOMS, originating over south central states and moving up the Atlantic seaboard. This corresponds to 50-80 DU in tropospheric ozone column depth. In most cases, further transport occurred to the North Atlantic, with ozone plumes traveling to western Europe in 4-5 days. Examples of high ozone and transit across boundaries within the US, as well as US->Europe, give a regional context for model results and field measurements taken in the SE US during the Nashville-1999 campaign period. Validation of the TDOT maps is made with ozonesondes taken during that time. TDOT maps also show ozone pollution from Asia traveling to the western US in July 1999.

  10. Total ozone series at Arosa (Switzerland): Homogenization and data comparison

    NASA Astrophysics Data System (ADS)

    Staehelin, Johannes; Renaud, Anne; Bader, Jürg; McPeters, Richard; Viatte, Pierre; Hoegger, Bruno; Bugnion, Veronique; Giroud, Marianne; Schill, Herbert

    1998-03-01

    Five Dobson and two Brewer spectrophotometers were used for total ozone observations at Arosa, beginning in 1926 and providing the world's longest series. In this paper we present the results of our attempts to provide a homogeneous series and discuss the data quality problems of the record. From the mid-1950s to 1992, Dobson instrument D15 was calibrated by the statistical Langley plot method. In 1986 the calibration of another Dobson spectrometer at Arosa (D101) was changed by the intercomparison with the primary world Dobson instrument (D83). A statistical model based on simultaneous measurements of D101 and D15 of the period from 1987 to 1990 was used to obtain a total ozone series in line with the primary Dobson spectrophotometer, including a correction for an optical disalignment problem of D15. The series of Dl0l from 1990 to 1995 was corrected on the basis of data from the Dobson intercomparisons of 1990 and 1995 and comparisons with other total ozone measurements of Brewer and Dobson spectrophotometers at Arosa. A transfer function between Dobson and Brewer spectrophotometric measurements of Arosa is presented, and total ozone measurements of Arosa are compared with version 7 daily overpass data of the satellite instrument the total ozone mapping spectrometer (TOMS) which operated on board Nimbus 7 from autumn 1978 to spring 1993. Available information allowing us to track back the total ozone measurements of Arosa to the measurements of the primary Dobson spectrometer reveal that the total ozone series of Arosa fluctuated no more than approximately 1% against D83 in the period from 1978 to 1995. Average shift of Arosa total ozone data against the TOMS instrument was -1.12 (±0.1)% over the lifetime of the TOMS instrument.

  11. Ozone reactivity of biogenic volatile organic compound (BVOC) emissions during the Southeast Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Park, J.; Guenther, A. B.; Helmig, D.

    2013-12-01

    Recent studies on atmospheric chemistry in the forest environment showed that the total reactivity by biogenic volatile organic compound (BVOC) emission is still not well understood. During summer 2013, an intensive field campaign (Southeast Oxidant and Aerosol Study - SOAS) took place in Alabama, U.S.A. In this study, an ozone reactivity measurement system (ORMS) was deployed for the direct determination of the reactivity of foliage emissions. The ORMS is a newly developed measurement approach, in which a known amount of ozone is added to the ozone-free air sample stream, with the ORMS measuring ozone concentration difference between before and after a glass flask flow tube reaction vessel (2-3 minutes of residence time). Emissions were also collected onto adsorbent cartridges to investigate the discrepancy between total ozone reactivity observation and reactivity calculated from identified BVOC. Leaf and canopy level experiments were conducted by deploying branch enclosures on the three dominant tree species at the site (i.e. liquidambar, white oak, loblolly pine) and by sampling ambient air above the forest canopy. For the branch enclosure experiments, BVOC emissions were sampled from a 70 L Teflon bag enclosure, purged with air scrubbed for ozone, nitrogen oxides. Each branch experiment was performed for 3-5 days to collect at least two full diurnal cycle data. In addition, BVOCs were sampled using glass tube cartridges for 2 hours during daytime and 3 - 4 hours at night. During the last week of campaign, the inlet for the ORMS was installed on the top of scaffolding tower (~30m height). The ozone loss in the reactor showed distinct diurnal cycle for all three tree species investigated, and ozone reactivity followed patterns of temperature and light intensity.

  12. Spatial, temporal, and vertical variability of polar stratospheric ozone loss in the Arctic winters 2004/05-2009/10

    NASA Astrophysics Data System (ADS)

    Kuttippurath, J.; Godin-Beekmann, S.; Lefèvre, F.; Goutail, F.

    2010-06-01

    The stratospheric ozone loss during the Arctic winters 2004/05-2009/10 is investigated by using high resolution simulations from the chemical transport model Mimosa-Chim and observations from Microwave Limb Sounder (MLS) on Aura by the passive tracer technique. The winter 2004/05 was the coldest of the series with strongest chlorine activation. The ozone loss diagnosed from both model and measurements inside the polar vortex at 475 K ranges from ~1-0.7 ppmv in the warm winter 2005/06 to 1.7 ppmv in the cold winter 2004/05. Halogenated (chlorine and bromine) catalytic cycles contribute to 75-90% of the accumulated ozone loss at this level. At 675 K the lowest loss of ~0.4 ppmv is computed in 2008/09 from both simulations and observations and, the highest loss is estimated in 2006/07 by the model (1.3 ppmv) and in 2004/05 by MLS (1.5 ppmv). Most of the ozone loss (60-75%) at this level results from cycles catalysed by nitrogen oxides (NO and NO2) rather than halogens. At both 475 and 675 K levels the simulated ozone evolution inside the polar vortex is in reasonably good agreement with the observations. The ozone total column loss deduced from the model calculations at the MLS sampling locations inside the vortex ranges between 40 DU in 2005/06 and 94 DU in 2004/05, while that derived from observations ranges between 37 DU and 111 DU in the same winters. These estimates from both Mimosa-Chim and MLS are in general good agreement with those from the ground-based UV-VIS (ultra violet-visible) ozone loss analyses for the respective winters.

  13. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    PubMed Central

    Onal, Ozkan; Yetisir, Fahri; Sarer, A. Ebru Salman; Zeybek, N. Dilara; Onal, C. Oztug; Yurekli, Banu; Celik, H. Tugrul; Sirma, Ayse; Kılıc, Mehmet

    2015-01-01

    Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF) intraperitoneally (ip) for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR) group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD), catalase (CAT), glutathioneperoxidase (GSH-Px), malondyaldehide (MDA), and protein carbonyl (PCO) were analyzed in tissue samples. Total oxidant status (TOS), and total antioxidant capacity (TAC) were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy prevented intestine from ischemia reperfusion injury. It is thought that the therapeutic effect of ozone is associated with increase in antioxidant enzymes and protection of cells from oxidation and inflammation. PMID:26161005

  14. Convective Lofting Links Indian Ocean Air Pollution to Paradoxical South Atlantic Ozone Maxima

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Guan, Hong; Thompson, Anne M.; Witte, Jacquelyn C.

    2003-01-01

    We describe a broad resolution of the "Atlantic Paradox" concerning the seasonal and geographic distribution of tropical tropospheric ozone. We describe periods of significant maximum tropospheric O3 for Jan.-April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO)O3 maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.- March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 30 or 60 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  15. Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima

    NASA Technical Reports Server (NTRS)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.

    2005-01-01

    We describe a broad resolution of the Atlantic Parado concerning the seasonal and geographic distribution, of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.- April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  16. N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg; Snyder, Shane A

    2016-02-01

    N-Nitrosodimethylamine (NDMA) formation by ozonation was investigated in the effluents of four different wastewater treatment plants destined for alternative reuse. Very high levels of NDMA formation were observed in wastewaters from treatment plants non operating with biological nitrogen removal. Selected experiments showed that hydroxyl radical did not have a significant role in NDMA formation during ozonation of wastewater. Furthermore, ozonation of three different polymers used for water treatment, including polyDADMAC, anionic polyacrylamide, and cationic polyacrylamide, spiked in wastewater did not increase the NDMA formation. Effluent organic matter (EfOM) likely reduced the availability of ozone in water able to react with polymers and quenched the produced ·OH radicals which limited polymer degradation and subsequent NDMA production. Excellent correlations were observed between NDMA formation, UV absorbance at 254 nm, and total fluorescence reduction. These data provide evidence that UV and fluorescence surrogates could be used for monitoring and/or controlling NDMA formation during ozonation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Quality of tomato slices disinfected with ozonated water.

    PubMed

    Aguayo, Encarna; Escalona, Víctor; Silveira, Ana Cecilia; Artés, Francisco

    2014-04-01

    Fresh-cut industry needs novel disinfectant to replace the use of chlorine. Ozone is one of the most powerful oxidizing agents and is applied in gaseous or aqueous form for sanitation purposes. However, the strong oxidative effect could affect the nutritional and sensorial quality, in particular, when time of washing is extended. For that reason, the overall impact of ozonated water (0.4 mg/L) dipping applied during 1, 3 and 5 min compared to control washed in water during 5 min was studied in tomato slices stored during 14 days at 5 . According to the results, ozonated water treatment of 3 min achieved the best firmness retention, microbial quality (mesophilic, psychrotrophic and yeas load) and reduced the consumption of fructose and glucose. The use of ozonated water did not affect the total acidity, pH, total solid soluble, organic acid as ascorbic, fumaric or succinic acid and the sensorial parameters, which were only affected by storage time. However, the poor appearance, aroma and overall quality obtained in all treatments prevented shelf life of 14 days and the quality at acceptable levels was established in 10 days at 5 . It is recommended to wash tomato slices with 0.4 mg/L ozonated water for 3 min only. Extending treatment duration did not improve the microbiological quality, possibly due to the extra time permitting the ozone to react with other components of the fruit tissue, undermining the antimicrobial benefits.

  18. Impact of shipping emissions on ozone levels over Europe: assessing the relative importance of the Standard Nomenclature for Air Pollution (SNAP) categories.

    PubMed

    Tagaris, Efthimios; Stergiou, Ioannis; Sotiropoulou, Rafaella-Eleni P

    2017-06-01

    The impact of shipping emissions on ozone mixing ratio over Europe is assessed for July 2006 using the Community Multiscale Air Quality modeling system and the Netherlands Organization for Applied Scientific Research anthropogenic emission inventory. Results suggest that ship-induced ozone contribution to the total surface ozone exceeds 5% over the sea and near the coastline, while an increase up to 5% is simulated over a large portion of the European land. The largest impact (i.e., an increase up to 30%) is simulated over the Mediterranean Sea. In addition, shipping emissions are simulated to increase NO 2 mixing ratio more than 90%, locally, and to modify the oxidizing capacity of the atmosphere through hydroxyl radical formation (increase by 20-60% over the sea along the European coasts and near the coastal zone). Therefore, emissions from ships may counteract the benefits derived from the anthropogenic emissions reduction strategies over the continent. Simulations suggest regions where shipping emissions have a major impact on ozone mixing ratio compared to individual anthropogenic emission sector categories. Shipping emissions are estimated to play an important role on ozone levels compared to road transport sector near the coastal zone. The impact of shipping emissions on ozone formation is also profound over a great part of the European land compared to the rest of anthropogenic emission categories.

  19. Comparative Effects of Gamma Irradiation and Ozone Treatment on Hygienic Quality of Korean Red Ginseng Powder

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Yook, Hong-Sun; Kang, Il-Jun; Chung, Cha-Kwon; Kwon, Joong-Ho; Choi, Kang-Ju

    1998-06-01

    For the purpose of improving hygienic quality of Korean red ginseng powder, the comparative effects of gamma irradiation and ozone treatment on the microbial and physicochemical properties were investigated. Gamma irradiation at 7.5 kGy resulted in sterilization of total aerobic bacteria, molds and coliforms below detective levels, while ozone treatment for 8 hours up to 18 ppm did not sufficiently eliminate the microorganisms of the red ginseng powder. Physicochemical properties including compositions of the red ginseng saponin (ginsenosides) and fatty acids, pH and hydrogen doanting activity were not significantly changed by gamma irradiation, whereas, ozone treatment caused significant changes in fatty acid compositions, TBA value, pH, acidity and hydrogen donating activity. The results from this study led us to conclude that gamma irradiation was more effective than ozone treatment both for the improvement of hygienic quality and for the maintenance of physicochemical quality of red ginseng powder.

  20. The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.

    2009-01-01

    We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.

  1. An assessment of the stray light in 25 years of Dobson total ozone data at Athens, Greece

    NASA Astrophysics Data System (ADS)

    Christodoulakis, J.; Varotsos, C.; Cracknell, A. P.; Tzanis, C.; Neofytos, A.

    2015-07-01

    In this study, we investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray light interference. In this regard, a series of total ozone content measurements were carried out in Athens, Greece for air-mass values (μ) extending up to μ = 5. The monochromatic-heterochromatic stray light derived by Basher's model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the measurements made by the Dobson instrument of the Athens station for air mass values up to 2.5, underestimates the total ozone content by 3.5 DU in average, or about 1 % of the station's mean total ozone content (TOC). The comparison of the values of the same parameters measured 15 years ago with the present ones indicates the good maintenance of the Dobson spectrophotometer No. 118. This fact is of crucial importance because the variability of the daily total ozone observations collected by the Athens Dobson Station since 1989 has proved to be representative to the variability of the mean total ozone observed over the whole mid-latitude zone of the Northern Hemisphere. This stresses the point that the Athens total ozone station, being the unique Dobson station in south-eastern Europe, may be assumed as a ground truth station for the reliable conversion of the satellite radiance observations to total ozone measurements.

  2. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    PubMed Central

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. PMID:22915786

  3. Atmospheric Impacts of Emissions from Oil and Gas Development in the Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Boylan, P. J.; Hueber, J.; Van Dam, B. A.; Mauldin, L.; Parrish, D. D.

    2012-12-01

    In the Uintah Basin in northeast Utah, USA, surface ozone levels during winter months have approached and on occasion exceeded the US National Ambient Air Quality Standard (NAAQS). Emissions from the extensive oil and gas exploration in this region are suspected to be the cause of these ozone episodes; however emission rates and photochemical processes are uncertain. During February 2012 continuous surface measurements and vertical profiling from a tethered balloon platform at the Horsepool site yielded high resolution boundary layer profile data on ozone and ozone precursor compounds, i.e. nitrogen oxides and volatile organic compounds as well as methane. Findings from this study were: 1. Surface ozone during the study period, which had no snow cover, did not exceed the NAAQS. 2. Nitrogen oxides varied from 1-50 ppbv pointing towards significant emission sources, likely from oil and gas operations. 3. Methane concentrations were elevated, reaching up to ~10 times its Northern Hemisphere (NH) atmospheric background. 3. Light non-methane hydrocarbons (NMHC) constituted the main fraction of volatile organic compounds. NMHC concentrations were highly elevated, exceeding levels seen in urban areas. 4. Ozone, methane, NOx and VOC showed distinct diurnal cycles, with large concentration increases seen at night, except for ozone, which showed the opposite behavior. 5. During nighttime concentrations of NOx, NMHC, and methane built up near the surface to levels that were much higher than their daytime concentrations. 6. Comparing NMHC to methane concentrations indicates a mass flux ratio of ~30% for total VOC/methane emissions for the Uintah Basin.

  4. [Health impact of ozone in 13 Italian cities].

    PubMed

    Mitis, Francesco; Iavarone, Ivano; Martuzzi, Marco

    2007-01-01

    to estimate the health impact of ozone in 13 Italian cities over 200,000 inhabitants and to produce basic elements to permit the reproducibility of the study in other urban locations. the following data have been used: population data (2001), health data (2001 or from scientific literature), environmental data (2002-2004), from urban background monitoring station and concentration/response risk coefficients derived from recent metanalyses. The indicators SOMO35 and SOMO0 have been used as a proxi of the average exposure to calcolate attributable deaths (and years of life lost) and several causes of morbility for ozone concentrations over 70 microg/m3. acute mortality for all causes and for cardiovascular mortality, respiratory-related hospital admissions in elderly, asthma exacerbation in children and adults, minor restricted activity days, lower respiratory symptoms in children. over 500 (1900) deaths, the 0.6% (2.1%) of total mortality, equivalent to about 6000 (22,000) years of life lost are attributable to ozone levels over 70 microg/m3 in the 13 Italian cities under study. Larger figures, in the order of thousands, are attributable to less severe morbidity outcomes. The health impact of ozone in Italian towns is relevant in terms of acute mortality and morbidity, although less severe than PM10 impact. Background ozone levels are increasing. Abatement strategies for ozone concentrations should consider the whole summer and not only "peak" days and look at policies limiting the concentration of precursors produced by traffic sources. Relevant health benefits can be obtained also under levels proposed as guidelines in the present environmental regulations.

  5. Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts.

    PubMed Central

    Peeters, J E; Mazás, E A; Masschelein, W J; Villacorta Martiez de Maturana, I; Debacker, E

    1989-01-01

    Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable. PMID:2764564

  6. Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance

    NASA Astrophysics Data System (ADS)

    Staehelin, Johannes; Viatte, Pierre; Stübi, Rene; Tummon, Fiona; Peter, Thomas

    2018-05-01

    Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a super-recovery of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa site, due to the unique length of the observational record. This paper presents the evolution of the ozone layer, the history of international ozone research, and discusses the justification for the measurements in the past, present and into future.

  7. ANALYSIS AND CHARACTERIZATION OF OZONE-RICH EPISODES IN NORTHEAST PORTUGAL

    NASA Astrophysics Data System (ADS)

    Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A.; Borrego, C.; Saavedra, S.; Souto, J. A.; Casares, J. J.

    2009-12-01

    Each summer period extremely high ozone levels are registered at the rural background station of Lamas d’Olo, located in the Northeast of Portugal. In average, 30% of the total alert threshold registered in Portugal is detected at this site. The main purpose of this study is to characterize the atmospheric conditions that lead to the ozone-rich episodes. Synoptic patterns anomalies and back trajectories cluster analysis were performed for a period of 76 days where ozone maximum concentrations were above 200 µg.m-3. This analysis was performed for the period between 2004 and 2007. The obtained anomaly fields suggested that a positive temperature anomaly is visible above the Iberian Peninsula. In addition, a strong wind flow pattern from NE is visible in the North of Portugal and Galicia, in Spain. These two features may lead to an enhancement of the photochemical production and to the transport of pollutants from Spain to Portugal. In addition, the 3D mean back trajectories associated to the ozone episode days were analysed. A clustering method has been applied to the obtained back trajectories. Four main clusters of ozone-rich episodes were identified, with different frequencies of occurrence: north-westerly flows (11%); north-easterly flows (45%), southern flow (4%) and westerly flows (40%). Both analyses highlight the NE flow as a dominant pattern over the North of Portugal. The analysis of the ozone concentrations for each selected cluster indicates that this northeast circulation pattern, together with the southern flow, is responsible for the highest ozone peak episodes. This also suggests that long-range transport of atmospheric pollutants may be the main contributor to the ozone levels registered at Lamas d’Olo. This is also highlighted by the correlation of the ozone time series with the meteorological parameters analysed in the frequency domain.

  8. Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah.

    PubMed

    Helmig, D; Thompson, C R; Evans, J; Boylan, P; Hueber, J; Park, J-H

    2014-05-06

    Oil and natural gas production in the Western United States has grown rapidly in recent years, and with this industrial expansion, growing environmental concerns have arisen regarding impacts on water supplies and air quality. Recent studies have revealed highly enhanced atmospheric levels of volatile organic compounds (VOCs) from primary emissions in regions of heavy oil and gas development and associated rapid photochemical production of ozone during winter. Here, we present surface and vertical profile observations of VOC from the Uintah Basin Winter Ozone Studies conducted in January-February of 2012 and 2013. These measurements identify highly elevated levels of atmospheric alkane hydrocarbons with enhanced rates of C2-C5 nonmethane hydrocarbon (NMHC) mean mole fractions during temperature inversion events in 2013 at 200-300 times above the regional and seasonal background. Elevated atmospheric NMHC mole fractions coincided with build-up of ambient 1-h ozone to levels exceeding 150 ppbv (parts per billion by volume). The total annual mass flux of C2-C7 VOC was estimated at 194 ± 56 × 10(6) kg yr(-1), equivalent to the annual VOC emissions of a fleet of ∼100 million automobiles. Total annual fugitive emission of the aromatic compounds benzene and toluene, considered air toxics, were estimated at 1.6 ± 0.4 × 10(6) and 2.0 ± 0.5 × 10(6) kg yr(-1), respectively. These observations reveal a strong causal link between oil and gas emissions, accumulation of air toxics, and significant production of ozone in the atmospheric surface layer.

  9. Long-term changes in ozone mini-hole event frequency over the Northern Hemisphere derived from ground-based measurements

    NASA Astrophysics Data System (ADS)

    Krzycin, Janusz W.

    2002-10-01

    Decadal changes of ozone mini-hole event appearance over the Northern Hemisphere midlatitudes are examined based on daily total ozone data from seven stations having long records (four decades or more) of ozone observations. The various threshold methods for accepting and rejecting the ozone minima as mini-holes are examined. Mini-hole event activity is seen to be rather stable when averaged over a decadal time scale if the mini-holes are selected as large negative departures (exceeding 20%) relative to the moving long-term total ozone reference. The results are compared with a previous ozone mini-hole climatology derived from satellite data (TOMS measurements on board the Nimbus-7 satellite for the period 1978-93). A nonlinear statistical model (MARS), which takes into account various total ozone dynamical proxies (from NCEP-NCAR reanalysis), is used to study dynamical factors responsible for the ozone extremes over Arosa in the period 1950-99. The model explains as much as 95% of the total variance of the ozone extremes. The model-observation differences averaged over the decadal intervals are rather smooth throughout the whole period analysed. It is suggested that the short-term dynamical processes controlling the appearance of ozone extremes influenced the ozone field in a similar way before and after the onset of abrupt ozone depletion in the early 1980s. The analysis of the ozone profile and the tropopause pressure (from the ozonesondings over Hohenpeissenberg, 1966-99) during mini-hole events shows 60% ozone reduction in the lower stratosphere and an approximately 50 hPa upward shift of the thermal tropopause there.

  10. First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy

    2017-12-01

    The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.

  11. Highlights from the 1998-2000 SHADOZ (Southern Hemisphere Additional Ozonesondes) Satellite Validation Project

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Fortuin, P.; Einsudi, Franco (Technical Monitor)

    2001-01-01

    There are three years of data (more than 1000 individual ozone profiles) available from a network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project. Since late 1999, a tropical station in the northern hemisphere (Paramaribo, Surinam; lat/long) joined SHADOZ, providing coordinated weekly ozone and radiosonde data from the surface to approx. 7 hPa for satellite validation, process studies, and model evaluation. Profiles are also collected at: Ascension Island; Nairobi, Kenya; Irene, South Africa; R (union Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The archive, station characteristics and photos are available at http://code9l6.gsfc.nasa.gov/Data_ services/shadoz>. SHADOZ ozone time-series and profiles in 1998-2000 display highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Integrated total ozone column amounts from the sondes are lower than independent measurements from a ground-based network and from the TOMS (Total Ozone Mapping Spectrometer) satellite (version 7 data).

  12. The total ozone at mid latitudes

    NASA Astrophysics Data System (ADS)

    Mendeva, Bogdana

    The total ozone at mid latitudes B.D.Mendeva 1, D.G. Krastev 1, Ts.N.Gogosheva 2 1 Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences, Stara Zagora De-partment, Bulgaria, bmendeva@abv.bg 2 Institute of Astronomy, Bulgarian Academy of Sciences, Sofia, Bulgaria, This paper presents the total ozone content (TOC) behaviour over Bulgaria from satellite ex-periments (TOMS on the Earth Probe satellite and SCIAMACHY on board ENVISAT (ESA)). The long-term variations of the total ozone monthly means values in the period 1997-2009 are examined. The calculated linear ozone trend for this time interval is shown. An analysis of the total ozone over the Balkan region is also presented. For this purpose data from the SCIA-MACHY are used. The investigation is made for Athens (37o 59'N, 23o46'E), Thessaloniki (40o31'N, 22o58'E), Sofia (42o39'N, 23o23'E) and Bucharest (44o28'N, 26o17'E) in the period 2003-2009. A comparison between the courses of the monthly mean ozone values over these places is shown.

  13. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean -Francois

    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSL Br) enhances stratospheric ozone depletion. Based on a dual set of 1960–2100 coupled chemistry–climate simulations (i.e. with and without VSL Br), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSL Br are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSL Br on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ~5 million km 2, which is equivalentmore » in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSL Br in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSL Br chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. As a result, this work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.« less

  14. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    DOE PAGES

    Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean -Francois; ...

    2017-02-03

    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSL Br) enhances stratospheric ozone depletion. Based on a dual set of 1960–2100 coupled chemistry–climate simulations (i.e. with and without VSL Br), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSL Br are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSL Br on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ~5 million km 2, which is equivalentmore » in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSL Br in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSL Br chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. As a result, this work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.« less

  15. The High Altitude Pollution Program (1976-1982).

    DTIC Science & Technology

    1984-01-01

    ground, where air pollution problems arise due to ground level emissions from, for example, automobiles and power plants) to about 25 km above the...downward and poleward. Near the ground, in areas such as cities prone to air pollution , ozone is produced by nitrogen dioxide photolysis and reaction...Spectrophotcmeter Total Ozone Measurement Errors caused by Interfering Absorbing Species Such as SO2, NO2 and Photochemically Produced 03 IN Polluted Air ," NOAA

  16. Extreme events in total ozone over Arosa - Part 1: Application of extreme value theory

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.

    2010-10-01

    In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  17. Extreme events in total ozone over Arosa - Part 1: Application of extreme value theory

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.

    2010-05-01

    In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  18. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Grooß, Jens-Uwe

    2014-04-01

    Lu's "cosmic-ray-driven electron-induced reaction (CRE) theory" is based on the assumption that the CRE reaction of halogenated molecules (e.g., chlorofluorocarbons (CFCs), HCl, ClONO2) adsorbed or trapped in polar stratospheric clouds in the winter polar stratosphere is the key step in forming photoactive halogen species that are the cause of the springtime ozone hole. This theory has been extended to a warming theory of halogenated molecules for climate change. In this comment, we discuss the chemical and physical foundations of these theories and the conclusions derived from the theories. First, it is unclear whether the loss rates of halogenated molecules induced by dissociative electron attachment (DEA) observed in the laboratory can also be interpreted as atmospheric loss rates, but even if this were the case, the impact of DEA-induced reactions on polar chlorine activation and ozone loss in the stratosphere is limited. Second, we falsify several conclusions that are reported on the basis of the CRE theory: There is no polar ozone loss in darkness, there is no apparent 11-year periodicity in polar total ozone measurements, the age of air in the polar lower stratosphere is much older than 1-2 years, and the reported detection of a pronounced recovery (by about 20-25%) in Antarctic total ozone measurements by the year 2010 is in error. There are also conclusions about the future development of sea ice and global sea level which are fundamentally flawed because Archimedes' principle is neglected. Many elements of the CRE theory are based solely on correlations between certain datasets which are no substitute for providing physical and chemical mechanisms causing a particular behavior noticeable in observations. In summary, the CRE theory cannot be considered as an independent, alternative mechanism for polar stratospheric ozone loss and the conclusions on recent and future surface temperature and global sea level change do not have a physical basis.

  19. Impact of interannual variability (1979-1986) of transport and temperature on ozone as computed using a two-dimensional photochemical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackman, C.H.; Douglass, A.R., Chandra, S.; Stolarski, R.S.

    1991-03-20

    Eight years of NMC (National Meteorological Center) temperature and SBUV (solar backscattered ultraviolet) ozone data were used to calculate the monthly mean heating rates and residual circulation for use in a two-dimensional photochemical model in order to examine the interannual variability of modeled ozone. Fairly good correlations were found in the interannual behavior of modeled and measured SBUV ozone in the upper stratosphere at middle to low latitudes, where temperature dependent photochemistry is thought to dominate ozone behavior. The calculated total ozone is found to be more sensitive to the interannual residual circulation changes than to the interannual temperature changes.more » The magnitude of the modeled ozone variability is similar to the observed variability, but the observed and modeled year to year deviations are mostly uncorrelated. The large component of the observed total ozone variability at low latitudes due to the quasi-biennial oscillation (QBO) is not seen in the modeled total ozone, as only a small QBO signal is present in the heating rates, temperatures, and monthly mean residual circulation. Large interanual changes in tropospheric dynamics are believed to influence the interannual variability in the total ozone, especially at middle and high latitudes. Since these tropospheric changes and most of the QBO forcing are not included in the model formulation, it is not surprising that the interannual variability in total ozione is not well represented in the model computations.« less

  20. Tropospheric Ozone during the TRACE-P Mission: Comparison between TOMS Satellite Retrievals and Aircraft Lidar Data, March 2001

    NASA Technical Reports Server (NTRS)

    Frolov, A. D.; Thompson, A. M.; Hudson, R. D.; Browell, E. V.; Oltmans, S. J.; Witte, J. C.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method ('TDOT' = TOMS Direct Ozone in the Troposphere) represents a new algorithm that uses TOMS radiances directly to extract tropospheric ozone in regions of constant stratospheric ozone. It is not geographically restricted, using meteorological regimes as the basis for classifying TOMS radiances and for selecting appropriate comparison data. TDOT is useful where tropospheric ozone displays high mixing ratios and variability characteristic of pollution. Some of these episodes were observed downwind of Asian biomass burning during the TRACE-P (Transport and Atmospheric Chemical Evolution-Pacific) field experiment in March 2001. This paper features comparisons among TDOT tropospheric ozone column depth, integrated uv-DIAL measurements made from NASA's DC-8, and ozonesonde data.

  1. Total ozone and surface temperature correlations during 1972 - 1981

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.

    1983-01-01

    Ten years of Dobson spectrophotometer total ozone measurements and surface temperature observations were used to construct monthly mean values of the two parameters. The variability of both parameters is greatest in the months of January and February. Indeed, in January there is an apparent correlation between high total ozone values and abnormally low surface temperatures. However, the correlation does not hold in February. By reviewing the history of stratospheric warmings during this period, it is argued that the ozone and surface temperature correlation is influenced by the advection or lack of advection of ozone rich arctic air resulting from sudden stratospheric warmings.

  2. Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Antón, M.; Loyola, D.; López, M.; Vilaplana, J. M.; Bañón, M.; Zimmer, W.; Serrano, A.

    2009-04-01

    The main objective of this article is to compare the total ozone data from the new Global Ozone Monitoring Experiment instrument (GOME-2/MetOp) with reliable ground-based measurement recorded by five Brewer spectroradiometers in the Iberian Peninsula. In addition, a similar comparison for the predecessor instrument GOME/ERS-2 is described. The period of study is a whole year from May 2007 to April 2008. The results show that GOME-2/MetOp ozone data already has a very good quality, total ozone columns are on average 3.05% lower than Brewer measurements. This underestimation is higher than that obtained for GOME/ERS-2 (1.46%). However, the relative differences between GOME-2/MetOp and Brewer measurements show significantly lower variability than the differences between GOME/ERS-2 and Brewer data. Dependencies of these relative differences with respect to the satellite solar zenith angle (SZA), the satellite scan angle, the satellite cloud cover fraction (CF), and the ground-based total ozone measurements are analyzed. For both GOME instruments, differences show no significant dependence on SZA. However, GOME-2/MetOp data show a significant dependence on the satellite scan angle (+1.5%). In addition, GOME/ERS-2 differences present a clear dependence with respect to the CF and ground-based total ozone; such differences are minimized for GOME-2/MetOp. The comparison between the daily total ozone values provided by both GOME instruments shows that GOME-2/MetOp ozone data are on average 1.46% lower than GOME/ERS-2 data without any seasonal dependence. Finally, deviations of a priori climatological ozone profile used by the satellite retrieval algorithm from the true ozone profile are analyzed. Although excellent agreement between a priori climatological and measured partial ozone values is found for the middle and high stratosphere, relative differences greater than 15% are common for the troposphere and lower stratosphere.

  3. Physiological and genotype-specific factors associated with grain quality changes in rice exposed to high ozone.

    PubMed

    Jing, Liquan; Dombinov, Vitalij; Shen, Shibo; Wu, Yanzhen; Yang, Lianxin; Wang, Yunxia; Frei, Michael

    2016-03-01

    Rising tropospheric ozone concentrations in Asia affect the yield and quality of rice. This study investigated ozone-induced changes in rice grain quality in contrasting rice genotypes, and explored the associated physiological processes during the reproductive growth phase. The ozone sensitive variety Nipponbare and a breeding line (L81) containing two tolerance QTLs in Nipponbare background were exposed to 100 ppb ozone (8 h per day) or control conditions throughout their growth. Ozone affected grain chalkiness and protein concentration and composition. The percentage of chalky grains was significantly increased in Nipponbare but not in L81. Physiological measurements suggested that grain chalkiness was associated with a drop in foliar carbohydrate and nitrogen levels during grain filling, which was less pronounced in the tolerant L81. Grain total protein concentration was significantly increased in the ozone treatment, although the albumin fraction (water soluble protein) decreased. The increase in protein was more pronounced in L81, due to increases in the glutelin fraction in this genotype. Amino acids responded differently to the ozone treatment. Three essential amino acids (leucine, methionine and threonine) showed significant increases, while seven showed significant treatment by genotype interactions, mostly due to more positive responses in L81. The trend of increased grain protein was in contrast to foliar nitrogen levels, which were negatively affected by ozone. A negative correlation between grain protein and foliar nitrogen in ozone stress indicated that higher grain protein cannot be explained by a concentration effect in all tissues due to lower biomass production. Rather, ozone exposure affected the nitrogen distribution, as indicated by altered foliar activity of the enzymes involved in nitrogen metabolism, such as glutamine synthetase and glutamine-2-oxoglutarate aminotransferase. Our results demonstrate differential responses of grain quality to ozone due to the presence of tolerance QTL, and partly explain the underlying physiological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Spatial, temporal, and vertical variability of polar stratospheric ozone loss in the Arctic winters 2004/2005-2009/2010

    NASA Astrophysics Data System (ADS)

    Kuttippurath, J.; Godin-Beekmann, S.; Lefèvre, F.; Goutail, F.

    2010-10-01

    The polar stratospheric ozone loss during the Arctic winters 2004/2005-2009/2010 is investigated by using high resolution simulations from the chemical transport model Mimosa-Chim and observations from Aura Microwave Limb Sounder (MLS), by applying the passive tracer technique. The winter 2004/2005 shows the coldest temperatures, highest area of polar stratospheric clouds and strongest chlorine activation in 2004/2005-2009/2010. The ozone loss diagnosed from both simulations and measurements inside the polar vortex at 475 K ranges from 0.7 ppmv in the warm winter 2005/2006 to 1.5-1.7 ppmv in the cold winter 2004/2005. Halogenated (chlorine and bromine) catalytic cycles contribute to 75-90% of the ozone loss at this level. At 675 K the lowest loss of 0.3-0.5 ppmv is computed in 2008/2009, and the highest loss of 1.3 ppmv is estimated in 2006/2007 by the model and in 2004/2005 by MLS. Most of the ozone loss (60-75%) at this level results from nitrogen catalytic cycles rather than halogen cycles. At both 475 and 675 K levels the simulated ozone and ozone loss evolution inside the vortex is in reasonably good agreement with the MLS observations. The ozone partial column loss in 350-850 K deduced from the model calculations at the MLS sampling locations inside the polar vortex ranges between 43 DU in 2005/2006 and 109 DU in 2004/2005, while those derived from the MLS observations range between 26 DU and 115 DU for the same winters. The partial column ozone depletion derived in that vertical range is larger than that estimated in 350-550 K by 19±7 DU on average, mainly due to NOx chemistry. The column ozone loss estimates from both Mimosa-Chim and MLS in 350-850 K are generally in good agreement with those derived from ground-based ultraviolet-visible spectrometer total ozone observations for the respective winters, except in 2010.

  5. Development of pollution reduction strategies for Mexico City: Estimating cost and ozone reduction effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, G.R.; Hardie, R.W.; Barrera-Roldan, A.

    1993-12-31

    This reports on the collection and preparation of data (costs and air quality improvement) for the strategic evaluation portion of the Mexico City Air Quality Research Initiative (MARI). Reports written for the Mexico City government by various international organizations were used to identify proposed options along with estimates of cost and emission reductions. Information from appropriate options identified by SCAQMD for Southem California were also used in the analysis. A linear optimization method was used to select a group of options or a strategy to be evaluated by decision analysis. However, the reduction of ozone levels is not a linearmore » function of the reduction of hydrocarbon and NO{sub x} emissions. Therefore, a more detailed analysis was required for ozone. An equation for a plane on an isopleth calculated with a trajectory model was obtained using two endpoints that bracket the expected total ozone precursor reductions plus the starting concentrations for hydrocarbons and NO{sub x}. The relationship between ozone levels and the hydrocarbon and NO{sub x} concentrations was assumed to lie on this plane. This relationship was used in the linear optimization program to select the options comprising a strategy.« less

  6. Development of a Climate Record of Tropospheric and Stratospheric Column Ozone from Satellite Remote Sensing: Evidence of an Early Recovery of Global Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerald R.; Chandra, Sushil

    2012-01-01

    Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979-2010) long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS) and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30- 40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.

  7. Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.

  8. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  9. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology: Ozonesonde Precision, Accuracy and Station-to-Station Variability

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, Anne M.; McPeters, R. D.; Oltmans, S. J.; Schmidlin, F. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    As part of the SAFARI-2000 campaign, additional launches of ozonesondes were made at Irene, South Africa and at Lusaka, Zambia. These represent campaign augmentations to the SHADOZ database described in this paper. This network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project and established from operational sites, provided over 1000 profiles from ozonesondes and radiosondes during the period 1998-2000. (Since that time, two more stations, one in southern Africa, have joined SHADOZ). Archived data are available at: http://code9l6.gsfc.nasa.gov/Data-services/shadoz>. Uncertainties and accuracies within the SHADOZ ozone data set are evaluated by analyzing: (1) imprecisions in stratospheric ozone profiles and in methods of extrapolating ozone above balloon burst; (2) comparisons of column-integrated total ozone from sondes with total ozone from the Earth-Probe/TOMS (Total Ozone Mapping Spectrometer) satellite and ground-based instruments; (3) possible biases from station-to-station due to variations in ozonesonde characteristics. The key results are: (1) Ozonesonde precision is 5%; (2) Integrated total ozone column amounts from the sondes are in good agreement (2-10%) with independent measurements from ground-based instruments at five SHADOZ sites and with overpass measurements from the TOMS satellite (version 7 data). (3) Systematic variations in TOMS-sonde offsets and in groundbased-sonde offsets from station to station reflect biases in sonde technique as well as in satellite retrieval. Discrepancies are present in both stratospheric and tropospheric ozone. (4) There is evidence for a zonal wave-one pattern in total and tropospheric ozone, but not in stratospheric ozone.

  10. Total Ozone from the Ozone Monitoring System (OMI) using TOMS and DOAS Methods

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Bhartia, P. K.; Gleason, J.; deHaan, J. F.; Wellemeyer, C.; Levelt, P. F.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to NASA's EOS-Aura satellite scheduled for launch in January 2004. OMI is an imaging spectrometer that will measure the back-scattered Solar radiance in the wavelength range of 270 to 500 nm. The instrument provides near global coverage in one day with a spatial resolution of 13x24 square kilometers. OMI is a new instrument, with a heritage from TOMS, SBW, GOME, GOMOS and SCIAMACHY. OMI'S unique capabilities for measuring important trace gases and aerosols with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will provide data continuity with the 23-year ozone record of TOMS. There are three ozone products planned for OMI: total column ozone, ozone profile and tropospheric column ozone. We are developing two different algorithms for total column ozone: one similar to the algorithm currently being used to process the TOMS data, and the other an improved version of the differential optical absorption spectroscopy (DOAS) method, which has been applied to GOME and SCIAMACHY data. The main reasons for starting with two algorithms for total ozone have to do with heritage and past experience; our long-term goal is to combine the two to develop a more accurate and reliable total ozone product for OMI. We will compare the performance of these two algorithms by applying both of them to the GOME data. We will examine where and how the results differ, and use the extensive TOMS-Dobson comparison studies to assess the performance of the DOAS algorithm.

  11. Extreme events in total ozone over the Northern mid-latitudes: an analysis based on long-term data sets from five European ground-based stations

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Jancso, Leonhardt M.; Rocco, Stefania Di; Staehelin, Johannes; Maeder, Joerg A.; Peter, Thomas; Ribatet, Mathieu; Davison, Anthony C.; de Backer, Hugo; Koehler, Ulf; Krzyścin, Janusz; Vaníček, Karel

    2011-11-01

    We apply methods from extreme value theory to identify extreme events in high (termed EHOs) and low (termed ELOs) total ozone and to describe the distribution tails (i.e. very high and very low values) of five long-term European ground-based total ozone time series. The influence of these extreme events on observed mean values, long-term trends and changes is analysed. The results show a decrease in EHOs and an increase in ELOs during the last decades, and establish that the observed downward trend in column ozone during the 1970-1990s is strongly dominated by changes in the frequency of extreme events. Furthermore, it is shown that clear ‘fingerprints’ of atmospheric dynamics (NAO, ENSO) and chemistry [ozone depleting substances (ODSs), polar vortex ozone loss] can be found in the frequency distribution of ozone extremes, even if no attribution is possible from standard metrics (e.g. annual mean values). The analysis complements earlier analysis for the world's longest total ozone record at Arosa, Switzerland, confirming and revealing the strong influence of atmospheric dynamics on observed ozone changes. The results provide clear evidence that in addition to ODS, volcanic eruptions and strong/moderate ENSO and NAO events had significant influence on column ozone in the European sector.

  12. Atmospheric Chemistry Insights from the SHADOZ Data: An IGAC Paradigm

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from ten sites comprising the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a Trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: http://code9l6.gsfc.nasa.gov/ Data-services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  13. Tropical Tropospheric Ozone from SHADOZ (Southern Hemisphere ADditional Ozonesondes) Network: A Project for Satellite Research, Process Studies, Education

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Coetzee, G. J. R.; Hoegger, Bruno; Kirchhoff, V. W. J. H.; Ogawa, Toshihiro; Kawakami, Shuji; Posny, Francoise

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole and convective mixing. Pollution transport from Africa and South America is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  14. Copernicus atmospheric service for stratospheric ozone: validation and intercomparison of four near real-time analyses, 2009-2012

    NASA Astrophysics Data System (ADS)

    Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.

    2014-05-01

    This paper evaluates the performance of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3 year period between September 2009 and September 2012. Ozone analyses produced by four different chemistry transport models and data assimilation techniques are examined: the ECMWF Integrated Forecast System (IFS) coupled to MOZART-3 (IFS-MOZART), the BIRA-IASB Belgian Assimilation System for Chemical ObsErvations (BASCOE), the DLR/RIU Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA), and the KNMI Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system: SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. The stratospheric ozone analyses are compared to independent ozone observations from ground-based instruments, ozone sondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. All analyses show total column values which are generally in good agreement with groundbased observations (biases <5%) and a realistic seasonal cycle. The only exceptions are found for BASCOE which systematically underestimates total ozone in the Tropics with about 7-10% at Chengkung (Taiwan, 23.1° N/121.365° E), resulting from the fact that BASCOE does not include any tropospheric processes, and for SACADA which overestimates total ozone in the absence of UV observations for the assimilation. Due to the large weight given to column observations in the assimilation procedure, IFS-MOZART is able to reproduce total column observations very well, but alternating positive and negative biases compared to ozonesonde and ACE-FTS satellite data are found in the vertical as well as an overestimation of 30 to 60% in the polar lower stratosphere during ozone depletion events. The assimilation of near real-time (NRT) Microwave Limb Sounder (MLS) profiles which only go down to 68 hPa is not able to correct for the deficiency of the underlying MOZART model, which may be related to the applied meteorological fields. Biases of BASCOE compared to ozonesonde or ACE-FTS ozone profiles do not exceed 10% over the entire vertical stratospheric range, thanks to the good performance of the model in ozone hole conditions and the assimilation of offline MLS profiles going down to 215 hPa. TM3DAM provides very realistic total ozone columns, but is not designed to provide information on the vertical distribution of ozone. Compared to ozonesondes and ACE-FTS satellite data, SACADA performs best in the Arctic, but shows large biases (>50%) for ozone in the lower stratosphere in the Tropics and in the Antarctic, especially during ozone hole conditions. This study shows that ozone analyses with realistic total ozone column densities do not necessarily yield good agreement with the observed ozone profiles. It also shows the large benefit obtained from the assimilation of a single limb-scanning instrument (Aura MLS) with a high density of observations. Hence even state-of-the-art models of stratospheric chemistry still require the assimilation of limb observations for a correct representation of the vertical distribution of ozone in the stratosphere.

  15. Total ozone trend significance from space time variability of daily Dobson data

    NASA Technical Reports Server (NTRS)

    Wilcox, R. W.

    1981-01-01

    Estimates of standard errors of total ozone time and area means, as derived from ozone's natural temporal and spatial variability and autocorrelation in middle latitudes determined from daily Dobson data are presented. Assessing the significance of apparent total ozone trends is equivalent to assessing the standard error of the means. Standard errors of time averages depend on the temporal variability and correlation of the averaged parameter. Trend detectability is discussed, both for the present network and for satellite measurements.

  16. Data Validation for Earth Probe-Total Ozone Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Stanford, John L.

    1995-01-01

    This presentation represents the final report for the NASA grant project. The goal of this project was to provide scientific analysis to aid in validation fo data sets used in detection of long term global trends of total ozone. Ozone data from the Earth Probe Total Ozone Mapping Spectrometer instrument was compared for validation purposes with features in previous TOMS data. Atmospheric dynamic concepts were used in the analysis. The publications sponsored by the grant are listed along with abstracts.

  17. SHADOZ (Southern Hemisphere ADditional Ozonesondes): A Look at the First Three Years' (1998-2000) Tropospheric Ozone Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere ADditional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natai, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at an open archive: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, ENSO, and Madden-Julian circulation on convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude.

  18. SHADOZ (Southern Hemisphere ADditional Ozonesondes}: What Have We Learned About Tropical Tropospheric Ozone from the First Three Years (1998-2000) Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on an Trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approximately 7 hPa and relative humidity to approximately 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  19. SHADOZ (Southern Hemisphere ADditional Ozonesondes): What Have We Learned About Tropical Tropospheric Ozone from the First Three Years' (1998-2000) Data?

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, Pawan (Technical Monitor)

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  20. Early physiological responses of Pinus pinea L. seedlings infected by Heterobasidion sp.pl. in an ozone-enriched atmospheric environment.

    PubMed

    Pollastrini, Martina; Luchi, Nicola; Michelozzi, Marco; Gerosa, Giacomo; Marzuoli, Riccardo; Bussotti, Filippo; Capretti, Paolo

    2015-03-01

    The presence of the American root-rot disease fungus Heterobasidion irregulare Garbel. & Otrosina was detected in Italian coastal pine forests (Pinus pinea L.) in addition to the common native species Heterobasidion annosum (Fries) Brefeld. High levels of tropospheric ozone (O3) as an atmospheric pollutant are usually experienced in Mediterranean pine forests. To explore the effect of interaction between the two Heterobasidion species and ozone pollution on P. pinea, an open-top chamber (OTC) experiment was carried out. Five-year-old P. pinea seedlings were inoculated with the fungal species considered (H. irregulare, H. annosum and mock-inoculation as control), and then exposed in charcoal-filtered open-top chambers (CF-OTC) and non-filtered ozone-enriched chambers (NF+) from July to the first week of August 2010 at the experimental facilities of Curno (North Italy). Fungal inoculation effects in an ozone-enriched environment were assessed as: (i) the length of the inoculation lesion; (ii) chlorophyll a fluorescence (ChlF) responses; and (iii) analysis of resin terpenes. Results showed no differences on lesion length between fungal and ozone treatments, whereas the short-term effects of the two stress factors on ChlF indicate an increased photosynthetic efficiency, thus suggesting the triggering of compensation/repair processes. The total amount of resin terpenes is enhanced by fungal infection of both species, but depressed by ozone to the levels observed in mock-inoculated plants. Variations in terpene profiles were also induced by stem base inoculations and ozone treatment. Ozone might negatively affect terpene defences making plants more susceptible to pathogens and insects. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The effect of bandwidth on filter instrument total ozone accuracy

    NASA Technical Reports Server (NTRS)

    Basher, R. E.

    1977-01-01

    The effect of the width and shape of the New Zealand filter instrument's passbands on measured total-ozone accuracy is determined using a numerical model of the spectral measurement process. The model enables the calculation of corrections for the 'bandwidth-effect' error and shows that highly attenuating passband skirts and well-suppressed leakage bands are at least as important as narrow half-bandwidths. Over typical ranges of airmass and total ozone, the range in the bandwidth-effect correction is about 2% in total ozone for the filter instrument, compared with about 1% for the Dobson instrument.

  2. Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements

    NASA Astrophysics Data System (ADS)

    Antón, M.; Koukouli, M. E.; Kroon, M.; McPeters, R. D.; Labow, G. J.; Balis, D.; Serrano, A.

    2010-10-01

    This article focuses on the global-scale validation of the empirically corrected Version 8 total ozone column data set acquired by the NASA Total Ozone Mapping Spectrometer (TOMS) during the period 1996-2004 when this instrument was flying aboard the Earth Probe (EP) satellite platform. This analysis is based on the use of spatially co-located, ground-based measurements from Dobson and Brewer spectrophotometers. The original EP-TOMS V8 total ozone column data set was also validated with these ground-based measurements to quantify the improvements made by the empirical correction that was necessary as a result of instrumental degradation issues occurring from the year 2000 onward that were uncorrectable by normal calibration techniques. EP-TOMS V8-corrected total ozone data present a remarkable improvement concerning the significant negative bias of around ˜3% detected in the original EP-TOMS V8 observations after the year 2000. Neither the original nor the corrected EP-TOMS satellite total ozone data sets show a significant dependence on latitude. In addition, both EP-TOMS satellite data sets overestimate the Brewer measurements for small solar zenith angles (SZA) and underestimate for large SZA, explaining a significant seasonality (˜1.5%) for cloud-free and cloudy conditions. Conversely, relative differences between EP-TOMS and Dobson present almost no dependence on SZA for cloud-free conditions and a strong dependence for cloudy conditions (from +2% for small SZA to -1% for high SZA). The dependence of the satellite ground-based relative differences on total ozone shows good agreement for column values above 250 Dobson units. Our main conclusion is that the upgrade to TOMS V8-corrected total ozone data presents a remarkable improvement. Nevertheless, despite its quality, the EP-TOMS data for the period 2000-2004 should not be used as a source for trend analysis since EP-TOMS ozone trends are empirically corrected using NOAA-16 and NOAA-17 solar backscatter ultraviolet/2 data as external references, and therefore, they are no longer considered as independent observations.

  3. Regional-scale modeling of near-ground ozone in the Central East China, source attributions and an assessment of outflow to East Asia The role of regional-scale transport during MTX2006

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Kanaya, Y.

    2008-07-01

    A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was applied to study the source of the near-ground (<1.5 km above ground level) ozone at Mt. Tai (36.25°N, 117.10°E, 1534 m a.s.l.) in Central East China (CEC) during the Mount Tai eXperiment 2006 (MTX2006): regional ozone photochemistry and aerosol studies in Central East China in June, 2006. The model reproduced the temporal and spatial variations of near-ground ozone and other pollutants. In particular, the model captured highly polluted and clean cases well. The simulated near-ground ozone over CEC is 60 85 ppbv (parts per billion by volume), higher than those (20 50 ppbv) in Japan and over the North Pacific. The simulated tagged tracer indicates that the regional-scale transport of chemically produced ozone over other areas in CEC contributes to the most fractions (49%) of the near-ground mean ozone at Mt. Tai in June, rather than the in-situ photochemistry (12%). Due to high anthropogenic and biomass burning emissions, the contributions of the ground ozone from the southern part of CEC plays the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai, which even reached 59 ppbv (62%) on 6 7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various source regions indicates that the spatial distribution of O3 over CEC is controlled by the photochemical reactions. In addition, the regional-scale transport of pollutants also plays an important role in the spatial and temporal distribution of ozone over CEC. The chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC. The mean contribution is 5 10 ppbv, and it can reach 25 ppbv during high ozone events. This work also studied the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries. It shows that the contribution of CEC ozone to mean ozone mixing ratios over Korea Peninsula and Japan is 5 15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was contributed by the ozone produced locally by the transported ozone precursors from CEC.

  4. Extreme Events: low and high total ozone over Arosa, Switzerland

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.

    2009-04-01

    The frequency distribution of days with extreme low (termed ELOs) and high (termed EHOs) total ozone is analyzed for the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al.,1998a,b), with new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007). A heavy-tail focused approach is used through the fitting of the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a high (or below a low) enough threshold (Coles, 2001). The analysis shows that the GPD is appropriate for modeling the frequency distribution in total ozone above or below a mathematically well-defined threshold. While previous studies focused on so termed ozone mini-holes and mini-highs (e.g. Bojkov and Balis, 2001, Koch et al., 2005), this study is the first to present a mathematical description of extreme events in low and high total ozone for a northern mid-latitudes site (Rieder et al., 2009). The results show (a) an increase in days with extreme low (ELOs) and (b) a decrease in days with extreme high total ozone (EHOs) during the last decades, (c) that the general trend in total ozone is strongly determined by these extreme events and (d) that fitting the GPD is an appropriate method for the estimation of the frequency distribution of so-called ozone mini-holes. Furthermore, this concept allows one to separate the effect of Arctic ozone depletion from that of in situ mid-latitude ozone loss. As shown by this study, ELOs and EHOs have a strong influence on mean values in total ozone and the "extremes concept" could be further used also for validation of Chemistry-Climate-Models (CCMs) within the scientific community. References: Bojkov, R. D., and Balis, D.S.: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1975-2000, Ann. Geophys., 19, 797-807, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Koch, G., H. Wernli, C. Schwierz, J. Staehelin, and T. Peter (2005), A composite study on the structure and formation of ozone miniholes and minihighs over central Europe, Geophys. Res. Lett., 32, L12810, doi:10.1029/2004GL022062. Pickands, J.: Statistical-Inference using extreme order Statistics, Ann. Stat., 3, 1, 119-131, 1975. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  5. Comprehensive Analyzer for Biogenic Volatile Organic Compounds Detected as Total Ozone Reactivity

    NASA Astrophysics Data System (ADS)

    Matsumoto, J.

    2011-12-01

    Volatile organic compounds, VOCs, are emitted from various sources into the atmosphere. Through the reactions of VOCs with atmospheric radicals (eg. daytime OH, nighttime NO3, and all-day O3), formation of photochemical oxidants and secondary organic aerosols, SOA, are important. To investigate the mechanisms of reactions in the atmosphere and to control such secondary products effectively, it is essential to capture the behavior of VOC emission with the radical reactivity of VOCs considered. Recently, in addition to OH reactions of anthropogenic VOCs, SOA formation due to ozonolysis of biogenic VOCs (BVOCs) is one of the hottest topics in the atmospheric chemistry. It is difficult to analyze all the species individually due to the great number of VOCs. In this study, a comprehensive tool for capturing the total reactivity of BVOCs with ozone is realized utilizing a chemiluminescence ozone analyzer. A sensitive and fast-response ozone analyzer was developed based on an existing chemiluminescent NO analyzer (CLD). The CLD-O3 analyzer was used to monitor the fast variation of O3 in the sample of the VOC + O3 experiment. When O3 was added to the VOC sample, the reduction of O3 due to VOC was monitored and the O3 reactivity RO3 was determined with the reaction time considered. Dependence of the response of analyzer on the reaction time and the reactivity of sample was examined and confirmed as reasonable. As a result, VOCs can be detected at the level of ppbv (as limonene, S/N = 3). The detection limit of RO3 was 0.0002 s-1. For the test of ozone reactivity measurement of BVOCs emitted from the real vegetation, variation of ozone reactivity was significantly observed after the nursery was put into a closed chamber. In addition, just after the leaves of the plant were physically stimulated, observed reactivity increased. It was experimentally confirmed that stimulus to the leaves of the plant resulted in the increase of total BVOC emission. Consequently, it was confirmed that the analyzer be useful to investigate the real-time analysis of BVOC emission from the vegetation at the level of ppbv.

  6. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    NASA Astrophysics Data System (ADS)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city, however, vehicle emission was less important as compared with sources from petrochemical industries, as characterized by relatively higher ethane (C2H4)/ ethyne (acetylene) and propene (C3H6)/ethyne ratios which ruled out tailpipes emission as major contributors to the VOCs sources.

  7. Atmospheric Ozone Response to the Disrupted 2015-2016 Quasi-Biennial Oscillation

    NASA Technical Reports Server (NTRS)

    Kramarova, N. A.; Tweedy, O. V.; Strahan, S. E.; Newman, P. A.; Coy, L.; Randel, W. J.; Park, M.; Waugh, D. W.; Frith, S.

    2017-01-01

    The quasi-biennial oscillation (QBO) - a quasi-periodic alternation between easterly and westerly zonal winds in the tropical stratosphere - is a main driver of inter-annual ozone variability in the stratosphere. During the late-2015 through 2016 time period, the QBO experienced a major disruption unlike any observed since wind measurements began in 1953. We examined the ozone response to this QBO disruption using profile ozone measurements from the Aura Microwave Limb Sounder (MLS) and Ozone Mapping and Profiler Suite Limb Profiler and total column measurements from the Solar Backscatter Ultraviolet (SBUV) Merged Ozone Data Set (MOD). Positive anomalies in stratospheric equatorial O3 developed between 50 and 30 hPa in May-September of 2016, and negative ozone anomalies were observed in the subtropics of both hemispheres. As a consequence of this QBO disruption, extratropical total ozone values during the spring-summer 2016 were at or near seasonal record lows over the more than 40 years of the total ozone record, resulting in an increase of surface UV index during northern hemisphere summer. We found very consistent responses in all considered ozone observations in terms of time, amplitude and spatial patterns. We will show the ozone changes associated with this disrupted QBO throughout the winter and spring 2017.

  8. Variability of total ozone at Arosa, Switzerland, since 1931 related to atmospheric circulation indices

    NASA Astrophysics Data System (ADS)

    Brönnimann, S.; Luterbacher, J.; Schmutz, C.; Wanner, H.; Staehelin, J.

    2000-08-01

    Atmospheric circulation determines to a considerable extent the variability of lower stratospheric ozone and can modulate its long-term trends in Europe and the North Atlantic Region. Due to dynamical stratosphere-troposphere coupling, important features of the variability of the surface pressure field are reflected in the long-term total ozone record from Arosa, Switzerland. Significant (p<0.01) correlations between total ozone and different atmospheric circulation indices (NAOI, AOI, EU1, EU2) are found in all months except for April, June, July, and November for the period 1931 to 1997. An analysis of geopotential heights for the period 1958 to 1997 shows that these circulation anomaly patterns have upper tropospheric features over the North Atlantic-European sector that are consistent with a dynamical influence on total ozone.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, R; Kanter, H J; Sladkovic, R

    The study of the balance of the tropospheric ozone as a function of atmospheric pollutants and tropospheric transport has been started. Continuous recordings are available of ozone concentration at three levels (3000 m, 1800 m, and 700 m a.s.l.) and of the concentration of the cosmogenic radionuclides /sup 7/Be, /sup 32/P, /sup 33/P, and the CO/sub 2/-concentration. Ozone concentrations >70 ppB have been observed after stratospheric intrusions as well as in consequence of photochemical reactions in the boundary layer. An observation sequence, covering now a period of 20 months, is presented of the stratospheric aerosol layer by means of lidarmore » monitoring. Possible errors in the measuring technique are discussed. A filter photospectrometer for the measurement of the atmospheric total ozone is described, its suitability is checked by a direct intercomparison with a Dobson spectrometer.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, R; Kanter, H J; Poetzl, K

    The balance of the tropospheric ozone as a function of atmospheric pollutants, tropospheric transport, and stratospheric intrusions is under active investigation. Continuous recordings of the ozone concentration at three levels (3000 m, 1800 m, and 700 m a.s.l.) and of the cosmogenic radionuclides Be/sup 7/, P/sup 32/, P/sup 33/, and the CO/sub 2/ are available and used for subject purposes. Results of a statistical evaluation concerning the frequency of high concentrations (> 70 ppB) of the tropospheric ozone are presented and possible sources discussed. Observations of changes in the fine structure of the ozone profile in the lower stratosphere aftermore » solar events are shown by balloon-borne ozone soundings up to 35 km altitude and discussed in connection with parameters of the stratospheric-tropospheric exchange. Monitoring of the stratospheric aerosol layer by lidar was continued. The accuracy of these measurements was considerably enhanced by significant system improvements. Intercomparisons with the results of nearby Dobson stations allowed conclusions to be drawn on the suitability of a filter spectrophotometer for the determination of the total ozone. Solar-terrestrial relationships were investigated and are discussed.« less

  11. Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation.

    PubMed

    Weng, Jingxia; Jia, Huichao; Wu, Bing; Pan, Bingcai

    2018-01-01

    Ozonation is a promising option to treat reverse osmosis concentrate (ROC). However, a systematic understanding and assessment of ozonation on toxicity reduction is insufficient. In this study, ROC sampled from a typical industrial park wastewater treatment plant of China was fractionated into hydrophobic acid (HOA), hydrophobic base (HOB), hydrophobic neutral (HON), and hydrophilic fraction (HI). Systematic bioassays covering bacteria, algae, fish, and human cell lines were conducted to reveal the role of ozonation in toxicity variation of the four ROC fractions. HOA in the raw ROC exhibited the highest toxicity, followed by HON and HI. Ozonation significantly reduced total organic carbon (TOC) and UV 254 values in HOA, HON, and HI and their toxicity except in HOB. Correlation analysis indicated that chemical data (TOC and UV 254 ) of HOA and HON correlated well with their toxicities; however, poor correlations were observed for HOB and HI, suggesting that a battery of toxicity assays is necessary. This study indicates that TOC reduction during ozonation could not fully reflect the toxicity issue, and toxicity assessment is required in conjunction with the chemical data to evaluate the effectiveness of ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Extreme events in total ozone over Arosa: Application of extreme value theory and fingerprints of atmospheric dynamics and chemistry and their effects on mean values and long-term changes

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Staehelin, Johannes; Maeder, Jörg A.; Peter, Thomas; Ribatet, Mathieu; Davison, Anthony C.; Stübi, Rene; Weihs, Philipp; Holawe, Franz

    2010-05-01

    In this study tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied for the first time in the field of stratospheric ozone research, as statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not address the internal data structure concerning extremes adequately. The study illustrates that tools based on extreme value theory are appropriate to identify ozone extremes and to describe the tails of the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al., 1998a,b) (Rieder et al., 2010a). A daily moving threshold was implemented for consideration of the seasonal cycle in total ozone. The frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone and the influence of those on mean values and trends is analyzed for Arosa total ozone time series. The results show (a) an increase in ELOs and (b) a decrease in EHOs during the last decades and (c) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Furthermore, it is shown that the fitted model represents the tails of the total ozone data set with very high accuracy over the entire range (including absolute monthly minima and maxima). Also the frequency distribution of ozone mini-holes (using constant thresholds) can be calculated with high accuracy. Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight in time series properties. Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading in ozone depleting substances lead to a continuous modification of column ozone in the northern hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). It is shown that application of extreme value theory allows the identification of many more such fingerprints than conventional time series analysis of annual and seasonal mean values. Especially, the analysis shows the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone (Rieder et al., 2010b). Overall the presented new extremes concept provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder ,H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998a. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998b.

  13. Is Ozone Going Up Now?

    NASA Astrophysics Data System (ADS)

    Steinbrecht, W.; Froidevaux, L.; Davis, S. M.; Degenstein, D. A.; Wild, J.; Roth, C.; Kaempfer, N.; Leblanc, T.; Godin-Beekmann, S.; Vigouroux, C.; Swart, D. P. J.; Querel, R.; Harris, N.; Nedoluha, G. E.

    2016-12-01

    The last WMO ozone assessment (WMO, 2014) concluded that observations show significant ozone increase, 3% per decade (±2% per decade, 2σ), in the upper stratosphere since 2000. At other levels, or for total ozone, increases were not found or not significant. Overall, this is consistent with expectations from model simulations, (e.g. CCMVal2, Eyring et al., 2010). These simulations indicate that declining chlorine levels and stratospheric cooling due to CO2 increase should contribute roughly equal parts to ozone increase in the upper stratosphere. Shortly after the assessment, results from the SI2N initiative (Harris et al., 2015) confirmed increasing ozone in the upper stratosphere. However, the SI2N results indicated smaller increases (+1.5% per decade) than the WMO assessment, and substantially larger uncertainties (±5% per decade, 2σ). Differences can be attributed to time period, 1998 to 2012, compared to 2000 to 2013/14 for the assessment, and to larger assumed instrumental drift uncertainties, 6% per decade, (only 1 to 2% per decade in WMO 2014, see also Hubert et al., 2016). Here, we explore how additional ground-based and satellite data since 2013, as well as new and improved records, affect ozone trends and uncertainties. The focus will be on ozone in the upper stratosphere, because this is the region where the earliest signs of beginning ozone recovery are expected. ReferencesEyring, V., et al.: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451-9472, doi:10.5194/acp-10-9451-2010, 2010. Harris, N. R. P., et al.: Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, doi:10.5194/acp-15-9965-2015, 2015. Hubert, D., et al.: Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records, Atmos. Meas. Tech., 9, 2497-2534, doi:10.5194/amt-9-2497-2016, 2016. WMO 2014: Pawson, S., Steinbrecht, W. et al.: Update on global ozone: Past, present, and future, Chapter 2 in: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project - Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014.

  14. Reactive nitrogen partitioning and its relationship to winter ozone events in Utah

    NASA Astrophysics Data System (ADS)

    Wild, R. J.; Edwards, P. M.; Bates, T. S.; Cohen, R. C.; de Gouw, J. A.; Dubé, W. P.; Gilman, J. B.; Holloway, J.; Kercher, J.; Koss, A.; Lee, L.; Lerner, B.; McLaren, R.; Quinn, P. K.; Roberts, J. M.; Stutz, J.; Thornton, J. A.; Veres, P. R.; Warneke, C.; Williams, E.; Young, C. J.; Yuan, B.; Brown, S. S.

    2015-08-01

    High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation. Measurements were taken during three field campaigns in the winters of 2012, 2013, and 2014, which experienced varying climatic conditions. Average concentrations of ozone and total reactive nitrogen were observed to be 2.5 times higher in 2013 than 2012, with 2014 an intermediate year in most respects. However, photochemically active NOx(NO+NO2), remained remarkably similar all three years. Roughly half of the more oxidized forms of nitrogen were composed of nitric acid in 2013, with nighttime nitric acid formation through heterogeneous uptake of N2O5 contributing approximately 6 times more than daytime formation. The nighttime N2O5 lifetime between the high-ozone year 2013 and the low-ozone year 2012 is lower by a factor 2.6, and much of this is due to higher aerosol surface area in the high ozone year of 2013. A box-model simulation supports the importance of nighttime chemistry on the reactive nitrogen budget, showing a large sensitivity of NOx and ozone concentrations to nighttime processes.

  15. Spectral analyses, climatology, and interannual variability of Nimbus-7 TOMS version 6 total column ozone

    NASA Technical Reports Server (NTRS)

    Stanford, J. L.; Ziemke, J. R.; Mcpeters, R. D.; Krueger, A. J.; Bhartia, P. K.

    1995-01-01

    This reference publication presents selected results from space-time spectral analyses of 13 years of version 6 daily global ozone fields from the Total Ozone Mapping Spectrometer (TOMS). One purpose is to illustrate more quantitatively the well-known richness of structure and variation in total ozone. A second purpose is to provide, for use by modelers and for comparison with other analysts' work, quantitative measures of zonal waves 1, 2, 3, and medium-scale waves 4-7 in total ozone. Their variations throughout the year and at a variety of latitudes are presented, from equatorial to polar regions. The 13-year averages are given, along with selected individual years which illustrate year-to-year variability. The largest long wave amplitudes occur in the polar winters and early springs of each hemisphere, and are related to strong wave amplification during major warning events. In low attitudes total ozone wave amplitudes are an order of magnitude smaller than at high latitudes. However, TOMS fields contain a number of equatorial dynamical features, including Rossby-gravity and Kelvin waves.

  16. Isoprene Emissions and Ozone Formation in Urban Conditions: A Case Study in the City of Rio de Janeiro.

    PubMed

    da Silva, Cleyton Martins; Corrêa, Sergio Machado; Arbilla, Graciela

    2018-01-01

    The potential role of isoprene oxidative processes, as well as the possible impact of air pollution on isoprene emissions, are more important in tropical cities, surrounded by rainforests. In this study, the contribution of isoprene to ozone formation was determined considering different scenarios, mainly volatile organic compounds/NO x (VOC/NO x ) ratios, and typical atmospheric conditions for the city of Rio de Janeiro, where more than 36% of the urbanized area is covered by vegetation. Ozone isopleths and incremental reactivity coefficients (IR) were evaluated to understand the direct contribution of isoprene to ground-level ozone formation and the negative impact of anthropogenic NO x emissions on the natural atmospheric balance. Although isoprene accounted for only 2.7% of the total VOC mass, excluding the isoprene concentration from the model reduced the maximum ozone value by 14.1%. The calculated IR coefficient (grams of O 3 formed per gram of added isoprene) was 2.2 for a VOC/NO x ratio of 8.86.

  17. Comparison of recalculated Dobson and TOMS total ozone at Hradec Kralove, Czechoslovakia, 1978-1990

    NASA Technical Reports Server (NTRS)

    Stanek, Martin; Vanicek, Karel

    1994-01-01

    The reevaluated Dobson total ozone data from Hradec Kralove, Czechoslovakia were compared with independent Total Ozone Mapping Spectrophotometer (TOMS) 'version 6' data set. The comparison was performed by means of the parallel daily averages of ground-based and satellite total ozone pairs of the period November 1978 to December 1990. The comparison showed slight differences between both data series. Their average relative difference is 0.48 percent. The similar results have been reached for subsets of direct sun and zenith types of measurements as well. Their relative differences are 0.61 percent and 0.11 percent respectively. These facts indicate not only good mutual relation of both data sources but also reliability and accuracy of the zenith charts of the spectrophotometer No. 74 used at Hradec Kralove. Preliminary assessment of seasonal MU-dependence of the differences between Dobson and TOMS data was made while using total ozones of winter and summer months representing values of MU=2.70-5.20 and MU = 1.12-1.30 respectively. The results did not show systematic underestimation or overestimation of total ozone due to MU-dependence of the instrument at Hradec Kralove in both seasons.

  18. Trends in total ozone over southern African stations between 1979 and 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalicharran, S.; Diab, R.D.; Sokolic, F.

    1993-12-01

    Trends in total ozone for the period 1979 to 1991 over the southern African subcontinent and the southern ocean islands of Marion and Gough and the South African Antarctic base of SANAE are examined. Version 6 Total Ozone Mapping Spectrometer (TOMS) data are used. With the exception of the low latitude stations (Nairobi and Harare), where a marginally increasing trend (+0.2% and +0.3%, respectively) was observed, the other stations all exhibited a decreasing trend in total ozone over the 13 year period, ranging between -1.1 and -2.6% over most of South Africa, increasing with latitude to reach -20.6% at SANAE.more » Inter-annual fluctuations at Nairobi are dominated by a Quasi-Biennial Oscillation (QBO), with maximum ozone occurring during the westerly phase of the QBO. At the extratropical locations, ozone peaks and troughs are anti-correlated with those at Nairobi and the QBO signal is less well developed and modulated by the seasonal cycle.« less

  19. Ozone exposure thresholds and foliar injury on forest plants in Switzerland.

    PubMed

    VanderHeyden, D; Skelly, J; Innes, J; Hug, C; Zhang, J; Landolt, W; Bleuler, P

    2001-01-01

    Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.

  20. Enhanced treatment of secondary municipal wastewater effluent: comparing (biological) filtration and ozonation in view of micropollutant removal, unselective effluent toxicity, and the potential for real-time control.

    PubMed

    Chys, Michael; Demeestere, Kristof; Ingabire, Ange Sabine; Dries, Jan; Van Langenhove, Herman; Van Hulle, Stijn W H

    2017-07-01

    Ozonation and three (biological) filtration techniques (trickling filtration (TF), slow sand filtration (SSF) and biological activated carbon (BAC) filtration) have been evaluated in different combinations as tertiary treatment for municipal wastewater effluent. The removal of 18 multi-class pharmaceuticals, as model trace organic contaminants (TrOCs), has been studied. (Biological) activated carbon filtration could reduce the amount of TrOCs significantly (>99%) but is cost-intensive for full-scale applications. Filtration techniques mainly depending on biodegradation mechanisms (TF and SSF) are found to be inefficient for TrOCs removal as a stand alone technique. Ozonation resulted in 90% removal of the total amount of quantified TrOCs, but a post-ozonation step is needed to cope with an increased unselective toxicity. SSF following ozonation showed to be the only technique able to reduce the unselective toxicity to the same level as before ozonation. In view of process control, innovative correlation models developed for the monitoring and control of TrOC removal during ozonation, are verified for their applicability during ozonation in combination with TF, SSF or BAC. Particularly for the poorly ozone reactive TrOCs, statistically significant models were obtained that correlate TrOC removal and reduction in UVA 254 as an online measured surrogate parameter.

  1. Vitamin D Synthesis by UV Radiation: the Importance of Ozone Monitoring

    NASA Astrophysics Data System (ADS)

    Olds, W. J.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    The majority of humans rely on incidental sun exposure to maintain vitamin D sufficiency. Depending on where thresholds of vitamin D "sufficiency" are defined, it was recently stated that up to one billion people worldwide have suboptimal vitamin D levels (Bouillon, R., University of Leuven). Even in sunny southeast Queensland, the world's skin cancer capital, a 2006 study uncovered deficiency rates of up to 78% (at a threshold of 75 nmol/L of circulating 25-hydroxyvitamin D). Vitamin D regulates calcium absorption and inadequate levels are proven to result in osteomalacia, osteoporosis, rickets, bone pain and general skeletal weakness. Recent evidence also suggests vitamin D plays a preventative role in autoimmune diseases including numerous cancers, diabetes, schizophrenia, coronary heart disease, depression and other disorders. The most promising means of alleviating the worldwide burden of vitamin D deficiency seems to be by increased UV exposure. However, a much more mature understanding of UV exposures encountered in everyday life is required. This understanding is fundamentally founded in geophysics. UV exposures are strongly influenced by season/time of year, time of day, climate, location, pollution, aerosols and, importantly, ozone. In this work, we use computer simulations to obtain daily totals of vitamin D producing UV at numerous latitudes during one year. The ozone concentration is varied from 260 DU to 360 DU to determine the role of ozone variability on the ambient levels of vitamin D UV. Vitamin D synthesis is highly dependent on UVB. In our results, we demonstrate that this has important implications. Namely, vitamin D is strongly affected by ozone variability, since ozone filters UVB more strongly than UVA. Moreover, since erythema (sunburn) can occur at UVA wavelengths, ozone variation will more strongly affect vitamin D synthesis than erythema. Our results highlight that ozone monitoring is essential for understanding appropriate UV exposures for vitamin D health. We finally discuss implications for population health and how geophysics continues to play a vital role in addressing the widespread dilemma of vitamin D deficiency.

  2. Total ozone determination by spectroradiometry in the middle ultraviolet

    NASA Technical Reports Server (NTRS)

    Garrison, L. M.; Doda, D. D.; Green, A. E. S.

    1979-01-01

    A method has been developed to determine total ozone from multispectral measurements of the direct solar irradiance. The total ozone is determined by a least squares fit to the spectrum between 290 nm and 380 nm. The aerosol extinction is accounted for by expanding it in a power series in wavelength; use of the linear term proved adequate. A mobile laboratory incorporating a sky scanner has been developed and used to obtain data to verify the method. Sun tracking, wavelength setting of the double monochromator, and data acquisition are under control of a minicomputer. Results obtained at Wallops Island, Virginia, and Palestine, Texas, agree well with simultaneous Dobson and Canterbury spectrometer and balloon ECC ozonesonde values. The wavelength calibration of the monochromator and the values for the normalized ozone absorption are the most important factors in an accurate determination of total ozone.

  3. The QBO and interannual variation in total ozone

    NASA Technical Reports Server (NTRS)

    Lait, Leslie R.; Schoeberl, Mark R.; Newman, Paul A.; Stolarski, Richard S.

    1988-01-01

    Garcia and Soloman (1987) have noted that the October monthly mean minimum total ozone amounts south of 30 S were modulated by a quasibiennial oscillation (QBO) signal. The precise mechanism behind this effect, however, is unclear. Is the modulation brought about by the circulation-produced QBO signal in the ozone concentration itself, or does the temperature QBO modulate the formation of polar stratospheric clouds (PSCs), leading to changes in the chemically induced Antarctic spring ozone decline rate. Or is some other phenomenon involved. To investigate the means through which the QBO effect occurs, a series of correlation studies has been made between polar ozone and QBO signal in ozone and temperature.

  4. Total ozone patterns over the southern mid-latitudes: spatial correlations, extreme events and dynamical contributions

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; di Rocco, Stefania; Staehelin, Johannes; Maeder, Jörg A.; Ribatet, Mathieu; Peter, Thomas; Davison, Anthony C.

    2010-05-01

    Tools from geostatistics and extreme value theory are applied to analyze spatial correlations in total ozone for the southern mid-latitudes. The dataset used in this study is the NIWA-assimilated total ozone dataset (Bodeker et al., 2001; Müller et al., 2008). Recently new tools from extreme value theory (Coles, 2001; Ribatet, 2007) have been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b) and 5 other long-term ground based stations to describe extreme events in low and high total ozone (Rieder et al., 2010a,b,c). Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading in ozone depleting substances lead to a continuous modification of column ozone in the northern hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). It is shown that application of extreme value theory allows the identification of many more of such fingerprints than conventional time series analysis on basis of annual and seasonal mean values. Especially, the analysis shows the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone (Rieder et al., 2010b,c). Within the current study patterns in spatial correlation and frequency distributions of extreme events (e.g. ELOs and EHOs) are studied for the southern mid-latitudes. It is analyzed if "fingerprints"found for features in the northern hemisphere occur also in the southern mid-latitudes. New insights in spatial patterns of total ozone for the southern mid-latitudes are presented. Within this study the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems, ENSO) as well as influence of major volcanic eruptions (e.g. Mt. Pinatubo) and ozone depleting substances (ODS) on column ozone over the southern mid-latitudes is analyzed for the time period 1979-2007. References: Bodeker, G.E., J.C. Scott, K. Kreher, and R.L. McKenzie, Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978-1998, J. Geophys. Res., 106 (D19), 23029-23042, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., and Bodeker, G.: Simple measures of ozone depletion in the polar stratosphere, Atmos. Chem. Phys., 8, 251-264, 2008. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder ,H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD. Rieder, H.E., Jancso, L.M., Staehelin, J., Maeder, J.A., Ribatet, Peter, T., and A.D., Davison (2010): Extreme events in total ozone over the northern mid-latitudes: A case study based on long-term data sets from 5 ground-based stations, in preparation. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  5. Large scale variability, long-term trends and extreme events in total ozone over the northern mid-latitudes based on satellite time series

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Davison, A. C.

    2009-04-01

    Various generations of satellites (e.g. TOMS, GOME, OMI) made spatial datasets of column ozone available to the scientific community. This study has a special focus on column ozone over the northern mid-latitudes. Tools from geostatistics and extreme value theory are applied to analyze variability, long-term trends and frequency distributions of extreme events in total ozone. In a recent case study (Rieder et al., 2009) new tools from extreme value theory (Coles, 2001; Ribatet, 2007) have been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b), in order to describe extreme events in low and high total ozone. Within the current study this analysis is extended to satellite datasets for the northern mid-latitudes. Further special emphasis is given on patterns and spatial correlations and the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems) on column ozone. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  6. The Connection between Model Performance on the CCMVal Transport Diagnostics and Simulated Sensitivity of Ozone to Chlorine Change

    NASA Technical Reports Server (NTRS)

    Douglass, Anne; Stolarski, Richard; Oman, Luke; Strahan, Susan

    2012-01-01

    The chemistry climate models that contributed simulations for past and future ozone evolution to the 2010 Scientific Assessment of Ozone Depletion were subject to extensive evaluation by the SPARC (Stratospheric Processes and their Role in Climate) CCMVal (Chemistry-Climate Model Validation) activity. The sensitivity of ozone to changes in composition and climate varies among the models, but the relationship between these variations and the model evaluations of CCMVal is not obvious. We have learned that the transport evaluation can be used to interpret the comparisons between observed and simulated columns of chlorine reservoirs, hydrochloric acid (HCl) and chlorine nitrate (ClONO2); these comparisons were part of the CCMVal evaluation of chemistry. The simulations with best performance on the transport diagnostics most faithfully reproduce the evolution and seasonal variation of the chlorine reservoirs as observed at NDACC (Network for Detection of Atmospheric Composition Change) stations (NyAlesund 78.9N, Kiruna 67.8N, Harestua 60.2N, Jungfraujoch 46.6N, Toronto 43.6N, Kitt Peak 31.9N, Izana 28.3N, Mauna Loa 19.5N, Lauder 45S and Arrival Heights 77.8S). In the simulations, the HCl in the lower stratosphere depends on total inorganic chlorine (Cly) and partitioning between HCl and ClON02. Total inorganic chlorine depends on the fractional release of chlorine from source gases, and ratio of ClON02 to HCl is inversely dependent on methane and varies quadratically with ozone. Simulated HCl from various models may agree with observations even though Cly is in error, partitioning is in error, or both. Simulated ozone sensitivity to chlorine is shown to be greater for models that produce larger values of chlorine nitrate for background chlorine levels, and vice versa. Comparisons with the NDACC data show why the models with 'best' transport have similar sensitivity to chlorine change. The realistic evolution of the simulated HCl and ClONO2 columns suggests realistic levels of Cly in the lower atmosphere. In addition, the wide range values for the sensitivity of ozone to chlorine obtained from the CCMVal simulations is explained by the wide range in lower atmospheric columns of ClONO2 and the concomitant wide range of levels for chlorine monoxide.

  7. Implications of Version 8 TOMS and SBUV Data for Long-Term Trend Analysis

    NASA Technical Reports Server (NTRS)

    Frith, Stacey M.

    2004-01-01

    Total ozone data from the Total Ozone Mapping Spectrometer (TOMS) and profile/total ozone data from the Solar Backscatter Ultraviolet (SBUV; SBW/2) series of instruments have recently been reprocessed using new retrieval algorithms (referred to as Version 8 for both) and updated calibrations. In this paper, we incorporate the Version 8 data into a TOMS/SBW merged total ozone data set and an S B W merged profile ozone data set. The Total Merged Ozone Data (Total MOD) combines data from multiple TOMS and SBW instruments to form an internally consistent global data set with virtually complete time coverage from October 1978 through December 2003. Calibration differences between instruments are accounted for using external adjustments based on instrument intercomparisons during overlap periods. Previous results showed errors due to aerosol loading and sea glint are significantly reduced in the V8 TOMS retrievals. Using SBW as a transfer standard, calibration differences between V8 Nimbus 7 and Earth Probe TOMS data are approx. 1.3%, suggesting small errors in calibration remain. We will present updated total ozone long-term trends based on the Version 8 data. The Profile Merged Ozone Data (Profile MOD) data set is constructed using data from the SBUV series of instruments. In previous versions, SAGE data were used to establish the long-term external calibration of the combined data set. The SBW Version 8 we assess the V8 profile data through comparisons with SAGE and between SBW instruments in overlap periods. We then construct a consistently-calibrated long term time series. Updated zonal mean trends as a function of altitude and season from the new profile data set will be shown, and uncertainties in determining the best long-term calibration will be discussed.

  8. Total ozone trend over Cairo

    NASA Technical Reports Server (NTRS)

    Hassan, G. K. Y.

    1994-01-01

    A world wide interest in protecting ozone layer against manmade effects is now increasing. Assessment of the ozone depletion due to these activities depends on how successfully we can separate the natural variabilities from the data. The monthly mean values of total ozone over Cairo (30 05N) for the period 1968-1988, have been analyzed using the power spectral analysis technique. The technique used in this analysis does not depend on a pre-understanding of the natural fluctuations in the ozone data. The method depends on increasing the resolution of the spectral peaks in order to obtain the more accurate sinusoidal fluctuations with wavelength equal to or less than record length. Also it handles the possible sinusoidal fluctuations with wavelength equal to or less than record length. The results show that it is possible to detect some of the well known national fluctuations in the ozone record such as annual, semiannual, quasi-biennial and quasi-quadrennial oscillations. After separating the natural fluctuations from the ozone record, the trend analysis of total ozone over Cairo showed that a decrease of about -1.2% per decade has occurred since 1979.

  9. Highlights of TOMS Version 9 Total Ozone Algorithm

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan; Haffner, David

    2012-01-01

    The fundamental basis of TOMS total ozone algorithm was developed some 45 years ago by Dave and Mateer. It was designed to estimate total ozone from satellite measurements of the backscattered UV radiances at few discrete wavelengths in the Huggins ozone absorption band (310-340 nm). Over the years, as the need for higher accuracy in measuring total ozone from space has increased, several improvements to the basic algorithms have been made. They include: better correction for the effects of aerosols and clouds, an improved method to account for the variation in shape of ozone profiles with season, latitude, and total ozone, and a multi-wavelength correction for remaining profile shape errors. These improvements have made it possible to retrieve total ozone with just 3 spectral channels of moderate spectral resolution (approx. 1 nm) with accuracy comparable to state-of-the-art spectral fitting algorithms like DOAS that require high spectral resolution measurements at large number of wavelengths. One of the deficiencies of the TOMS algorithm has been that it doesn't provide an error estimate. This is a particular problem in high latitudes when the profile shape errors become significant and vary with latitude, season, total ozone, and instrument viewing geometry. The primary objective of the TOMS V9 algorithm is to account for these effects in estimating the error bars. This is done by a straightforward implementation of the Rodgers optimum estimation method using a priori ozone profiles and their error covariances matrices constructed using Aura MLS and ozonesonde data. The algorithm produces a vertical ozone profile that contains 1-2.5 pieces of information (degrees of freedom of signal) depending upon solar zenith angle (SZA). The profile is integrated to obtain the total column. We provide information that shows the altitude range in which the profile is best determined by the measurements. One can use this information in data assimilation and analysis. A side benefit of this algorithm is that it is considerably simpler than the present algorithm that uses a database of 1512 profiles to retrieve total ozone. These profiles are tedious to construct and modify. Though conceptually similar to the SBUV V8 algorithm that was developed about a decade ago, the SBUV and TOMS V9 algorithms differ in detail. The TOMS algorithm uses 3 wavelengths to retrieve the profile while the SBUV algorithm uses 6-9 wavelengths, so TOMS provides less profile information. However both algorithms have comparable total ozone information and TOMS V9 can be easily adapted to use additional wavelengths from instruments like GOME, OMI and OMPS to provide better profile information at smaller SZAs. The other significant difference between the two algorithms is that while the SBUV algorithm has been optimized for deriving monthly zonal means by making an appropriate choice of the a priori error covariance matrix, the TOMS algorithm has been optimized for tracking short-term variability using month and latitude dependent covariance matrices.

  10. Analysis of year-to-year ozone variation over the subtropical western Pacific region using EP_TOMS data and CCSR/NIES nudging CTM

    NASA Astrophysics Data System (ADS)

    Zhou, L. B.; Akiyoshi, H.; Kawahira, K.

    2003-10-01

    The year-to-year ozone variation over the subtropical western Pacific region is studied, especially the ozone lows in the 1996/1997, 1998/1999, and 2001/2002 winters, using the Earth Probe Total Ozone Mapping Spectrometer (EP_TOMS) ozone data from August 1996 to July 2002. Regression analyses show that dynamical signals, such as the quasi-biennial oscillation, play an important role in determining total ozone variation. A nudging chemical transport model (CTM) is used to simulate the year-to-year ozone variation and explain the mechanism for producing ozone lows in a three-dimensional distribution of ozone. The CTM was developed using the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) atmospheric general circulation model and introducing a nudging process for temperature and horizontal wind velocity. The year-to-year ozone variation, especially the winter ozone low, is well simulated by the model excluding heterogeneous reaction processes between 45°S and 45°N latitude. Results show that the year-to-year ozone variation is mainly controlled by dynamical transport processes.

  11. Observed and theoretical variations of atmospheric ozone

    NASA Technical Reports Server (NTRS)

    London, J.

    1976-01-01

    Results are summarized from three areas of ozone research: (1) continued analysis of the global distribution of total ozone to extend the global ozone atlas to summarize 15 years (1957-72) of ground based observations; (2) analysis of balloon borne ozonesonde observations for Arosa, Switzerland, and Hohenpeissenberg, Germany (GFR); (3) contined processing of the (Orbiting Geophysical Observatory-4) satellite data to complete the analysis of the stratospheric ozone distribution from the available OGO-4 data. Results of the analysis of the total ozone observations indicated that the long term ozone variation have marked regional patterns and tend to alternate with season and hemisphere. It is becoming increasingly clear that these long period changes are associated with large scale variations in the general upper atmosphere circulation patterns.

  12. Long-term variation of total ozone

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    1988-03-01

    The long-term variation of total ozone is studied for 1957 up to date for different latitude zones. The 3-year running averages show that, apart from a small portion showing parallelism with sunspot cycles, the trends in different latitude zones are dissimilar. In particular, where northern latitudes show a rising trend, the southern latitudes show an opposite (decreasing) trend. In the north-temperate group, Europe, North America and Asia show dissimilar trends. The longer data series (1932 ownards) for Arosa shows, besides a solar-cycle-dependent component, a steady level during 1932 1953 and a down-trend thereafter up to date. Very localised but long-lasting circulation patterns, different in different geographical regions, are indicated.

  13. Extreme events in total ozone: Spatio-temporal analysis from local to global scale

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Staehelin, Johannes; Maeder, Jörg A.; Ribatet, Mathieu; di Rocco, Stefania; Jancso, Leonhardt M.; Peter, Thomas; Davison, Anthony C.

    2010-05-01

    Recently tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) have been applied for the first time in the field of stratospheric ozone research, as statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not address the internal data structure concerning extremes adequately (Rieder et al., 2010a,b). A case study the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al., 1998a,b) illustrates that tools based on extreme value theory are appropriate to identify ozone extremes and to describe the tails of the total ozone record. Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading in ozone depleting substances led to a continuous modification of column ozone in the northern hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). It is shown that application of extreme value theory allows the identification of many more such fingerprints than conventional time series analysis of annual and seasonal mean values. Especially, the extremal analysis shows the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone (Rieder et al., 2010b). Overall the extremes concept provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values. Findings described above could be proven also for the total ozone records of 5 other long-term series (Belsk, Hohenpeissenberg, Hradec Kralove, Potsdam, Uccle) showing that strong influence of atmospheric dynamics (NAO, ENSO) on total ozone is a global feature in the northern mid-latitudes (Rieder et al., 2010c). In a next step frequency distributions of extreme events are analyzed on global scale (northern and southern mid-latitudes). A specific focus here is whether findings gained through analysis of long-term European ground based stations can be clearly identified as a global phenomenon. By showing results from these three types of studies an overview of extreme events in total ozone (and the dynamical and chemical features leading to those) will be presented from local to global scales. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD. Rieder, H.E., Jancso, L., Staehelin, J., Maeder, J.A., Ribatet, Peter, T., and A.D., Davison (2010): Extreme events in total ozone over the northern mid-latitudes: A case study based on long-term data sets from 5 ground-based stations, in preparation. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998a. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998b.

  14. Total ozone variations at Reykjavik since 1957

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjarnason, G.G.; Rognvaldsson, O.E.; Sigfusson, T.I.

    1993-12-01

    Total ozone measurements using a Dobson spectrophotometer have been performed on a regular basis at Reykjavik (65 deg 08 min N, 21 deg 54 min W), Iceland, since 1957. The data set for the entire period of observations has been critically examined. Due to problems related to the calibration of the instrument the data record of ozone observations is divided into two periods in the following analysis (1957-1977 and 1977-1990). A statistical model was developed to fit the data and estimate long-term changes in total ozone. The model includes seasonal variations, solar cycle influences, quasi-biennial oscillation (QBO) effects, and linearmore » trends. Some variants of the model are applied to investigate to what extent the estimated trends depend on the form of the model. Trend analysis of the revised data reveals a statistically significant linear decrease of 0.11 +/- 0.07% per year in the annual total ozone amount during the earlier period and 0.30 +/- 0.11% during the latter. The annual total ozone decline since 1977 is caused by a 0.47 +/- 0.14% decrease per year during the summer with no significant change during the winter or fall. On an annual basis, ozone varies by 3.5 +/- 0.8% over a solar cycle and by 2.1 +/- 0.6% over a QBO for the whole observation period. The effect of the 11-year solar cycle is particularly strong in the data during the early months of the year and in the westerly phase of the QBO. The data also suggest a strong response of total ozone to major solar proton events.« less

  15. On Relations Between the Ozonosphere and the General Atmospheric Circulation in Tropics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. I.; Kramarova, N. A.

    2006-05-01

    The main features of temporal and spatial ozone distribution over tropics and their relations with peculiarities of the general atmospheric circulation are obtained using the total ozone data for the tropical region (Ozone Data for the World and TOMS (version 8)). Among the factors influencing ozone regime in tropics the properties of the region, like intertropical convergence zone and a structure of tropical tropopause, and processes such as stratosphere-troposphere exchange, migration of ozone equator, Quasi Biennial Oscillation are analyzed. To investigate the long term variability of tropical ozone detrended and de-seasonalized fields of TOMS observations are analyzed by means of EOF method. The first four EOFs explain about 75% of residual total ozone variability in tropical region. Spatial patterns of EOFs and corresponding time coefficients are closely connected with the Quasi-Biennial Oscillation (EOF-1), the 11-years Solar Cycle (EOF-2), the QBO-annual beat (EOF-3) and with the South Oscillation (EOF-4) correspondingly. The detailed analyses of temporal and spatial distribution of ozone EOF patterns reveals a distinct change of ozone fields to the both sides of equator at 10-15 latitude as well as at the zones of tropical tropopause break. A time delay of ozone QBO phase is observed while moving towards higher latitudes. Some features of the tropical ozone regime manifest themselves in the peculiarities of Antarctic Ozone Anomalies. A time variability of ozone QBO passes three months ahead of the Singapore 30 mbar zonal wind. Obtained relations let us to construct a linear regression model based on EOF decomposition to estimate total ozone monthly means over tropics. This model is successfully applied to predict 30 mbar zonal wind in dependence on tropical ozone behavior.

  16. Associations among plasma metabolite levels and short-term exposure to PM2.5 and ozone in a cardiac catheterization cohort.

    PubMed

    Breitner, Susanne; Schneider, Alexandra; Devlin, Robert B; Ward-Caviness, Cavin K; Diaz-Sanchez, David; Neas, Lucas M; Cascio, Wayne E; Peters, Annette; Hauser, Elizabeth R; Shah, Svati H; Kraus, William E

    2016-12-01

    Exposure to ambient particulate matter (PM) and ozone has been associated with cardiovascular disease (CVD). However, the mechanisms linking PM and ozone exposure to CVD remain poorly understood. This study explored associations between short-term exposures to PM with a diameter <2.5μm (PM 2.5 ) and ozone with plasma metabolite concentrations. We used cross-sectional data from a cardiac catheterization cohort at Duke University, North Carolina (NC), USA, accumulated between 2001 and 2007. Amino acids, acylcarnitines, ketones and total non-esterified fatty acid plasma concentrations were determined in fasting samples. Daily concentrations of PM 2.5 and ozone were obtained from a Bayesian space-time hierarchical model, matched to each patient's residential address. Ten metabolites were selected for the analysis based on quality criteria and cluster analysis. Associations between metabolites and PM 2.5 or ozone were analyzed using linear regression models adjusting for long-term trend and seasonality, calendar effects, meteorological parameters, and participant characteristics. We found delayed associations between PM 2.5 or ozone and changes in metabolite levels of the glycine-ornithine-arginine metabolic axis and incomplete fatty acid oxidation associated with mitochondrial dysfunction. The strongest association was seen for an increase of 8.1μg/m 3 in PM 2.5 with a lag of one day and decreased mean glycine concentrations (-2.5% [95% confidence interval: -3.8%; -1.2%]). Short-term exposures to ambient PM 2.5 and ozone is associated with changes in plasma concentrations of metabolites in a cohort of cardiac catheterization patients. Our findings might help to understand the link between air pollution and cardiovascular disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Investigation of olive mill wastewater (OMW) ozonation efficiency with the use of a battery of selected ecotoxicity and human toxicity assays.

    PubMed

    Siorou, Sofia; Vgenis, Theodoros T; Dareioti, Margarita A; Vidali, Maria-Sophia; Efthimiou, Ioanna; Kornaros, Michael; Vlastos, Dimitris; Dailianis, Stefanos

    2015-07-01

    The effects of olive mill wastewater (OMW) on a battery of biological assays, before and during the ozonation process, were investigated in order to assess ozone's efficiency in removing phenolic compounds from OMW and decreasing the concomitant OMW toxicity. Specifically, ozonated-OMW held for 0, 60, 120, 300, 420, 540min in a glass bubble reactor, showed a drastic reduction of OMW total phenols (almost 50%) after 300min of ozonation with a concomitant decrease of OMW toxicity. In particular, the acute toxicity test primarily performed in the fairy shrimp Thamnocephalus platyurus (Thamnotoxkit F™ screening toxicity test) showed a significant attenuation of OMW-induced toxic effects, after ozonation for a period of 120 and in a lesser extent 300min, while further treatment resulted in a significant enhancement of ozonated-OMW toxic effects. Furthermore, ozonated-OMW-treated mussel hemocytes showed a significant attenuation of the ability of OMW to cause cytotoxic (obtained by the use of NRRT assay) effects already after an ozonation period of 120 and to a lesser extent 300min. In accordance with the latter, OMW-mediated oxidative (enhanced levels of superoxide anions and lipid peroxidation by-products) and genotoxic (induction of DNA damage) effects were diminished after OMW ozonation for the aforementioned periods of time. The latter was also revealed by the use of cytokinesis block micronucleus (CBMN) assay in human lymphocytes exposed to different concentrations of both raw- and ozonated-OMW for 60, 120 and 300min. Those findings revealed for a first time the existence of a critical time point during the OMW ozonation process that could be fundamentally used for evaluating OMW ozonation as a pretreatment method of OMW. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Reactive Nitrogen Partitioning and its Relationship to Winter Ozone Events in Utah

    NASA Astrophysics Data System (ADS)

    Wild, R. J.; Cohen, R. C.; Dube, W. P.; Edwards, P. M.; Holloway, J.; Kercher, J. P.; Lee, L.; McLaren, R.; Roberts, J. M.; Stutz, J.; Veres, P. R.; Warneke, C.; Williams, E. J.; Yuan, B.; Brown, S. S.

    2013-12-01

    Recent air quality measurements have shown anomalously large concentrations of wintertime ozone in Utah's Uintah Basin, host to intensive oil and gas operations. As part of the Uintah Basin Winter Ozone Studies (UBWOS) in January-February of 2012 and 2013, a variety of instruments were deployed to measure speciated reactive nitrogen and ozone. Here we present an analysis and comparison of reactive nitrogen data for the two years. We also describe a recently developed measurement of total reactive nitrogen (NOy) by cavity ring-down spectroscopy, which was deployed for the first time in 2013. Compared to 2012, which had very different meteorological conditions, ozone production rates in 2013 were roughly three times faster, leading to numerous and substantial exceedances of national air quality standards. Furthermore, despite considerably higher NOy levels in 2013 compared to 2012, levels of photochemically active NOx was remarkably similar between the two years. Much of the reactive nitrogen oxidation occurred at night, suggesting that nighttime processes played an important role in defining the conditions for daytime photochemistry. Our findings regarding the reactive nitrogen budget help us understand the role different NOx oxidation processes in O3 photochemistry, as well as the overall sensitivity of O3 production to nitrogen oxides in this environment.

  19. Report of the International Ozone Trends Panel 1988, volume 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Chapters on the following topics are presented: spacecraft instrument calibration and stability; information content of ozone retrieval algorithms; trends in total column ozone measurements; and trends in ozone profile measurement.

  20. A Madden-Julian Oscillation in Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.

    2003-01-01

    This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5-10 Dobson Unit (DU) peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.

  1. Ozone risk assessment for an Alpine larch forest in two vegetative seasons with different approaches: comparison of POD1 and AOT40.

    PubMed

    Finco, Angelo; Marzuoli, Riccardo; Chiesa, Maria; Gerosa, Giacomo

    2017-12-01

    The upper vegetation belts like larch forests are supposed to be under great pressure because of climate change in the next decades. For this reason, the evaluation of the risks due to abiotic stressors like ozone is a key step. Two different approaches were used here: mapping AOT40 index by means of passive samplers and direct measurements of ozone deposition.Measurements of ozone fluxes using the eddy-correlation technique were carried out for the first time over a larch forest in Paspardo (I) at 1750 m a.s.l. Two field campaigns were run: the first one in 2010 from July to October and the second one in the following year from June to September. Vertical exchange of ozone, energy, and momentum were measured on a tower platform at 26 m above ground level to study fluxes dynamics over this ecosystem. Since the tower was located on a gentle slope, an "ad hoc" methodology was developed to minimize the effects of the terrain inclination. The larch forest uptake was estimated by means of a two-layer model to separate the understorey uptake from the larch one. Even if the total ozone fluxes were generally high, up to 30-40 nmol O 3  m -2  s -1 in both years, the stomatal uptake by the larch forest was relatively low (around 15% of the total deposition).Ozone risk was assessed considering the POD 1 received by the larch forest and the exposure index AOT40 estimated with both local data and data from the map obtained by the passive samplers monitoring.

  2. Homogenized total ozone data records from the European sensors GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A

    NASA Astrophysics Data System (ADS)

    Lerot, C.; Van Roozendael, M.; Spurr, R.; Loyola, D.; Coldewey-Egbers, M.; Kochenova, S.; van Gent, J.; Koukouli, M.; Balis, D.; Lambert, J.-C.; Granville, J.; Zehner, C.

    2014-02-01

    Within the European Space Agency's Climate Change Initiative, total ozone column records from GOME (Global Ozone Monitoring Experiment), SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY), and GOME-2 have been reprocessed with GODFIT version 3 (GOME-type Direct FITting). This algorithm is based on the direct fitting of reflectances simulated in the Huggins bands to the observations. We report on new developments in the algorithm from the version implemented in the operational GOME Data Processor v5. The a priori ozone profile database TOMSv8 is now combined with a recently compiled OMI/MLS tropospheric ozone climatology to improve the representativeness of a priori information. The Ring procedure that corrects simulated radiances for the rotational Raman inelastic scattering signature has been improved using a revised semi-empirical expression. Correction factors are also applied to the simulated spectra to account for atmospheric polarization. In addition, the computational performance has been significantly enhanced through the implementation of new radiative transfer tools based on principal component analysis of the optical properties. Furthermore, a soft-calibration scheme for measured reflectances and based on selected Brewer measurements has been developed in order to reduce the impact of level-1 errors. This soft-calibration corrects not only for possible biases in backscattered reflectances, but also for artificial spectral features interfering with the ozone signature. Intersensor comparisons and ground-based validation indicate that these ozone data sets are of unprecedented quality, with stability better than 1% per decade, a precision of 1.7%, and systematic uncertainties less than 3.6% over a wide range of atmospheric states.

  3. Ozone maxima over Southern Africa: A mid-latitude link

    NASA Technical Reports Server (NTRS)

    Barsby, Jane; Diab, Roseanne D.

    1994-01-01

    The relationship between patterns of total ozone and day-to-day weather was explored over South Africa for the period 1987 to 1988. Generally, there was a fairly poor relationship (variance less than 20 percent) between total ozone and the heights of the 100, 300 and 500 hPa geopotential heights at 5 South African stations. However, over a shorter period, October to December 1988, fluctuations in the height of the 300 hPa surface accounted for 53 percent of the variance in total ozone at Cape Town. High ozone amounts are associated with the lowering of the 300 hPa surface in the presence of an upper-air trough. The role of the mid-latitude westerly waves in this respect is discussed.

  4. Effects of ozone on the respiratory health, allergic sensitization, and cellular immune system in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwick, H.; Popp, W.; Wagner, C.

    1991-11-01

    To investigate the lasting effects of high ozone concentrations under environmental conditions, we examined the respiratory health, pulmonary function, bronchial hyperresponsiveness to methacholine, allergic sensitization, and lymphocyte subpopulations of 10- to 14-yr-old children. A total of 218 children recruited from an area with high ozone concentrations (Group A) were tested against 281 children coming from an area with low ozone concentrations (Group B). As to subjective complaints, categorized as 'usually cough with or without phlegm,' 'breathlessness,' and 'susceptibility to chest colds,' there was no difference between the two groups. The lung function parameters were similar, but in Group A subjects'more » bronchial hyperresponsiveness occurred more frequently and was found to be more severe than in Group B (29.4 versus 19.9%, p less than 0.02; PD20 2,100 {plus minus} 87 versus 2,350 {plus minus} 58 micrograms, p less than 0.05). In both groups the number of children who had been suffering from allergic diseases and sensitization to aeroallergens, found by means of the skin test, was the same. Comparison of the total IgE levels showed no difference at all between the two groups. As far as the white blood cells are concerned, the total and differential cell count was the same, whereas lymphocyte subpopulations showed readily recognizable changes.« less

  5. Ozone and UV-B variations at Ispra from 1993 to 1997

    NASA Astrophysics Data System (ADS)

    Cappellani, F.; Kochler, C.

    An analysis of the variability of the total ozone column at Ispra (Italy) has been performed to ascertain if, even in a short-time interval of 5 years (1993-1997), a decline of the monthly mean ozone values could be demonstrated. A linear fit of the data displays a decrease of 0.21% per year with a mean value equal to 319±2 D.U. and an amplitude of the annual cycle of about 10% of the mean. A linear regression of the surface monthly mean ozone values has also been performed showing a decreasing trend (-1% per year) that could contribute, even if for a very small amount, to the decline of the total ozone values. Ispra monthly mean total ozone data have been compared with those of three stations located within 2° latitude and 3° longitude from Ispra (Haute Provence, Hohenpeissenberg and Arosa). A linear fit of the data shows some discrepancies in the ozone changes, which can be attributed to the limited length of the observational period. An analysis has been performed to verify if the variation of ozone at Ispra is in agreement with that of the solar UV measured at a wavelength (305 nm) where the ozone absorption is still remarkable. The results, taken at a fixed solar zenith angle of 68°, show a clear anticorrelation between the monthly mean values of UV and the corresponding values of the total ozone column; the linear fit of the UV data displays an increase of 2.0% per year, much higher than expected from the ozone decrease, and a mean value of 1.4±0.1 mW m -2 nm -1.

  6. Precooling and ozone treatments affects postharvest quality of black mulberry (Morus nigra) fruits.

    PubMed

    Han, Qiang; Gao, Haiyan; Chen, Hangjun; Fang, Xiangjun; Wu, Weijie

    2017-04-15

    Mulberry (Morus spp.) fruits are delicious and nutritious, but they are highly perishable and have a very short shelf-life for sale in the market. This study investigated the effect and mechanisms of 2ppm ozone and precooling treatments on the postharvest quality of mulberry fruit during refrigerated storage. The results revealed that mulberry fruit subjected to ozone and precooling treatment had higher levels of titratable acidity and total soluble solids content, better retention in firmness and color, and lower decay rate, respiratory intensity, and polyphenol oxidase activity compared to the control. From the analysis of cell ultrastructure and cell wall components of fruit, ozone and precooling treatments also induced shrinkage of the stomata in the epidermis, inhibited bacteria invasion, reduced water transpiration, and delayed the decomposition of the cell walls and the degradation of epidermal tissues. Copyright © 2016. Published by Elsevier Ltd.

  7. Error in total ozone measurements arising from aerosol attenuation

    NASA Technical Reports Server (NTRS)

    Thomas, R. W. L.; Basher, R. E.

    1979-01-01

    A generalized least squares method for deducing both total ozone and aerosol extinction spectrum parameters from Dobson spectrophotometer measurements was developed. An error analysis applied to this system indicates that there is little advantage to additional measurements once a sufficient number of line pairs have been employed to solve for the selected detail in the attenuation model. It is shown that when there is a predominance of small particles (less than about 0.35 microns in diameter) the total ozone from the standard AD system is too high by about one percent. When larger particles are present the derived total ozone may be an overestimate or an underestimate but serious errors occur only for narrow polydispersions.

  8. Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.

    1980-01-01

    Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.

  9. On ozone trend detection: using coupled chemistry-climate simulations to investigate early signs of total column ozone recovery

    NASA Astrophysics Data System (ADS)

    Keeble, James; Brown, Hannah; Abraham, N. Luke; Harris, Neil R. P.; Pyle, John A.

    2018-06-01

    Total column ozone values from an ensemble of UM-UKCA model simulations are examined to investigate different definitions of progress on the road to ozone recovery. The impacts of modelled internal atmospheric variability are accounted for by applying a multiple linear regression model to modelled total column ozone values, and ozone trend analysis is performed on the resulting ozone residuals. Three definitions of recovery are investigated: (i) a slowed rate of decline and the date of minimum column ozone, (ii) the identification of significant positive trends and (iii) a return to historic values. A return to past thresholds is the last state to be achieved. Minimum column ozone values, averaged from 60° S to 60° N, occur between 1990 and 1995 for each ensemble member, driven in part by the solar minimum conditions during the 1990s. When natural cycles are accounted for, identification of the year of minimum ozone in the resulting ozone residuals is uncertain, with minimum values for each ensemble member occurring at different times between 1992 and 2000. As a result of this large variability, identification of the date of minimum ozone constitutes a poor measure of ozone recovery. Trends for the 2000-2017 period are positive at most latitudes and are statistically significant in the mid-latitudes in both hemispheres when natural cycles are accounted for. This significance results largely from the large sample size of the multi-member ensemble. Significant trends cannot be identified by 2017 at the highest latitudes, due to the large interannual variability in the data, nor in the tropics, due to the small trend magnitude, although it is projected that significant trends may be identified in these regions soon thereafter. While significant positive trends in total column ozone could be identified at all latitudes by ˜ 2030, column ozone values which are lower than the 1980 annual mean can occur in the mid-latitudes until ˜ 2050, and in the tropics and high latitudes deep into the second half of the 21st century.

  10. Application of Aura OMI L2G Products Compared with NASA MERRA-2 Assimilation

    NASA Technical Reports Server (NTRS)

    Zeng, Jian; Shen, Suhung; Wei, Jennifer; Johnson, James E.; Su, Jian; Meyer, David J.

    2018-01-01

    The Ozone Monitoring Instrument (OMI) is one of the instruments aboard NASA's Aura satellite. It measures ozone total column and vertical profile, aerosols, clouds, and trace gases including NO2, SO2, HCHO, BrO, and OClO using absorption in the ultraviolet electromagnetic spectrum (280 - 400 nm). OMI Level-2G (L2G) products are based on the pixel-level OMI granule satellite measurements stored within global 0.25 deg. X 0.25 deg. grids, therefore they conserve all the Level 2 (L2) spatial and temporal details for 24 hours of scientific data in one file. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis, using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. MERRA-2 includes aerosol data reanalysis and improved representations of stratospheric ozone, compared with its predecessor MERRA, in both instantaneous and time-averaged collections. It is found that simply comparing satellite Level-3 products might cause biases, due to lack of detailed temporal and original retrieval information. It is therefore preferable to inter-compare or implement satellite derived physical quantities directly with/to model assimilation with as high temporal and spatial resolutions as possible. This study will demonstrate utilization of OMI L2G daily aerosol and ozone products by comparing them with MERRA-2 hourly aerosol/ozone simulations, matched in both space and time aspects. Both OMI and MERRA-2 products are accessible online through NASA Goddard Earth Sciences Data Information Services Center (GES DISC, https://disc.gsfc.nasa.gov/).

  11. Impact of Ozone Radiative Feedbacks on Global Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Ivanova, I.; de Grandpré, J.; Rochon, Y. J.; Sitwell, M.

    2017-12-01

    A coupled Chemical Data Assimilation system for ozone is being developed at Environment and Climate Change Canada (ECCC) with the goals to improve the forecasting of UV index and the forecasting of air quality with the Global Environmental Multi-scale (GEM) Model for Air quality and Chemistry (MACH). Furthermore, this system provides an opportunity to evaluate the benefit of ozone assimilation for improving weather forecasting with the ECCC Global Deterministic Prediction System (GDPS) for Numerical Weather Prediction (NWP). The present UV index forecasting system uses a statistical approach for evaluating the impact of ozone in clear-sky and cloudy conditions, and the use of real-time ozone analysis and ozone forecasts is highly desirable. Improving air quality forecasting with GEM-MACH further necessitates the development of integrated dynamical-chemical assimilation system. Upon its completion, real-time ozone analysis and ozone forecasts will also be available for piloting the regional air quality system, and for the computation of ozone heating rates, in replacement of the monthly mean ozone distribution currently used in the GDPS. Experiments with ozone radiative feedbacks were run with the GDPS at 25km resolution and 84 levels with a lid at 0.1 hPa and were initialized with ozone analysis that has assimilated total ozone column from OMI, OMPS, and GOME satellite instruments. The results show that the use of prognostic ozone for the computation of the heating/cooling rates has a significant impact on the temperature distribution throughout the stratosphere and upper troposphere regions. The impact of ozone assimilation is especially significant in the tropopause region, where ozone heating in the infrared wavelengths is important and ozone lifetime is relatively long. The implementation of the ozone radiative feedback in the GDPS requires addressing various issues related to model biases (temperature and humidity) and biases in equilibrium state (ozone mixing ratio, air temperature and overhead column ozone) used for the calculation of the linearized photochemical production and loss of ozone. Furthermore the radiative budget in the tropopause region is strongly affected by water vapor cooling, which impact requires further evaluation for the use in chemically coupled operational NWP systems.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showedmore » good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971 (preliminary data--299 m.atm.cm).« less

  13. Total ozone patterns over the northern mid-latitudes: spatial correlations, extreme events and dynamical contributions

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Bodeker, G. E.; Davison, A. C.

    2009-04-01

    Tools from geostatistics and extreme value theory are applied to analyze spatial correlations in total ozone for the northern mid-latitudes. The dataset used in this study is the NIWA combined total ozone dataset (Bodeker et al., 2001; Müller et al., 2008). New tools from extreme value theory (Coles, 2001; Ribatet, 2007) have recently been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b), in order to describe extreme events in low and high total ozone (Rieder et al., 200x). Within the current study, patterns in spatial correlation and frequency distributions of extreme events (e.g. ELOs and EHOs) are studied for the northern mid-latitudes. New insights in spatial patterns of total ozone for the northern mid-latitudes are presented. Koch et al. (2005) found that the increase in fast isentropic transport of tropical air to northern mid-latitudes contributed significantly to ozone changes between 1980 and 1989. Within this study the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems) on column ozone over the northern mid-latitudes is analyzed for the time period 1979-2007. References: Bodeker, G.E., J.C. Scott, K. Kreher, and R.L. McKenzie, Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978-1998, J. Geophys. Res., 106 (D19), 23029-23042, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Koch, G., H. Wernli, C. Schwierz, J. Staehelin, and T. Peter (2005), A composite study on the structure and formation of ozone miniholes and minihighs over central Europe, Geophys. Res. Lett., 32, L12810, doi:10.1029/2004GL022062. Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., and Bodeker, G.: Simple measures of ozone depletion in the polar stratosphere, Atmos. Chem. Phys., 8, 251-264, 2008. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 200x. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  14. An assessment of the stray-light in 25 years Dobson total ozone data at Athens, Greece

    NASA Astrophysics Data System (ADS)

    Christodoulakis, J.; Varotsos, C.; Cracknell, A. P.; Tzanis, C.; Neofytos, A.

    2015-02-01

    In this study, we investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray-light interference. In this regard, a series of total ozone content measurements were carried out in Athens, Greece for airmass values (μ) extending up to μ = 5. The monochromatic-heterochromatic stray-light derived by Basher's model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the Athens Dobson instrument appears to have an insignificant stray-light error. The comparison of the values of the same parameters measured 15 years ago with the present ones indicates the good maintenance of the Dobson spectrophotometer No. 118. This fact is of crucial importance because the variability of the daily total ozone observations collected by the Athens Dobson Station since 1989 has proved to be representative to the variability of the mean total ozone observed over the whole mid-latitude zone of the Northern Hemisphere. This stresses the point that the Athens total ozone station, being the unique Dobson station in south eastern Europe, may be assumed as a ground-truth station for the reliable conversion of the satellite radiance observations to total ozone measurements.

  15. Tropospheric Ozone Pollution from Space: New Views from the TOMS (Total Ozone Mapping Spectrometer) Instrument

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets ("paradoxes") in tropical tropospheric ozone and smoke aerosol in regions of greatest tropical biomass burning [Thompson et at., 1996;2000b]. (4) Trans-boundary pollution tracking. With an air parcel (trajectory) model, smoke aerosol and ozone and dust plumes can be tracked across oceans (e.g., Asia to North America; North America to Europe) and national boundaries, e.g. Indonesia to Singapore and Malaysia during the 1997 ENSO fires.

  16. User's guide for the Solar Backscattered Ultraviolet (SBUV) instrument first year ozone-S data set

    NASA Technical Reports Server (NTRS)

    Fleig, A. J.; Klenk, K. F.; Bhartia, P. K.; Gordon, D.; Schneider, W. H.

    1982-01-01

    Total-ozone and ozone vertical profile results for Solar Backscattered Ultraviolet/Total Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus 7 operation from November 1978 to November 1979 are available. The algorithm used have been thoroughly tested, the instrument performance has been examined in details, and the ozone results have been compared with Dobson, Umkehr, balloon, and rocket observations. The accuracy and precision of the satellite ozone data are good to at least within the ability of the ground truth to check and are self-consistent to within the specifications of the instrument. The 'SBUV User's Guide' describes the SBUV experiment and algorithms used. Detailed information on the data available on computer tape is provided including how to order tapes from the National Space Science Data Center.

  17. Global distribution of ozone for various seasons

    NASA Technical Reports Server (NTRS)

    Koprova, L. I.

    1979-01-01

    A technique which was used to obtain a catalog of the seasonal global distribution of ozone is presented. The technique is based on the simultaneous use of 1964-1975 data on the total ozone content from a worldwide network of ozonometric stations and on the vertical ozone profile from ozone sounding stations.

  18. Inhaled ozone as a mutagen. II - Effect on the frequency of chromosome aberrations observed in irradiated Chinese hamsters.

    NASA Technical Reports Server (NTRS)

    Zelac, R. E.; Cromroy, H. L.; Bolch, W. E., Jr.; Dunavant, B. G.; Bevis, H. A.

    1971-01-01

    Exposure-adjusted break frequencies for chromosome aberrations produced in Chinese hamster circulating blood lymphocytes were the quantitative indicator of damage from 5 hrs of exposure to X-radiation and/or to ozone. Radiation produced 5.51 x 0.0001 breaks/cell rad for cells withdrawn 2 weeks after exposure, a reasonable value when compared with data from in vivo exposure of human lymphocytes and Chinese hamster bone marrow cells. Animals exposed to the two agents simultaneously exhibited more than 70% of the total breaks anticipated assuming the expected equal contributions to be additive. Extending to humans, at presently permitted levels, exposure to ozone would be much more detrimental than exposure to radiati*n.

  19. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats

    PubMed Central

    Miller, Desinia B.; Snow, Samantha J.; Schladweiler, Mette C.; Richards, Judy E.; Ghio, Andrew J.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2016-01-01

    Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent bilateral adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1 ppm), 4 h/day for 1 or 2 days and responses assessed immediately postexposure. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to SHAM. Corticosterone tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (P = .15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX > DEMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not observed in DEMED and ADREX rats. We demonstrate that ozone-induced peripheral metabolic effects and lung injury/inflammation are mediated through adrenal-derived stress hormones likely via the activation of stress response pathway. PMID:26732886

  20. Contribution of long-range transport to the ozone levels recorded in the Northeast of Portugal

    NASA Astrophysics Data System (ADS)

    Gama, C.; Nunes, T.; Marques, M. C.; Ferreira, F.

    2009-04-01

    In the past four years (2004-2007), measurements carried out at Lamas de Olo, the only air quality monitoring background station in the Northeast of Portugal, showed high ozone concentrations (97,7±29,7 g.m-3). This remote site, located in the middle of Alvão Natural Park, in Portugal, 1086 m asl, plays a significant role on the total amount of exceedances registered in the national air quality network. The analysis of the data recorded at this monitoring station revealed an annual cycle of ozone concentrations similar to the ones observed in other background sites of the Northern Hemisphere (Monks, 2000; Vingarzan and Taylor, 2003). This common feature comprises a distinct maximum during spring (peaking during the month of April). Nevertheless it is during the summer that the hourly concentrations are higher, due to the typical atmospheric and meteorological conditions that promote photochemical pollution episodes. Photochemical pollution episodes can be related with production of ozone in a local scale or in a global scale due to the transportation of polluted air masses. For this reason analysing these events is crucial to fully understand the behaviour of ozone in the Northeast of Portugal, in order to adopt the correct long-term policies. With the purpose of studying the influence of long-range transport on the ozone levels recorded at Lamas de Olo, a cluster analysis was performed on 96-hour back trajectories air masses. Different trajectory clusters represent air masses with different source regions of atmospheric pollutants and the influence of these regions on the atmospheric composition at the arrival point (receptor) of the trajectories can therefore be assessed (EMPA, 2008). The back trajectories were simulated 4 times per day, using HYSPLIT model. A "bottom-up" cluster methodology was used to group trajectories into clusters according to their characteristics, for several time periods with similar ozone levels and/or distributions. Ozone average levels were calculated for each cluster and the differences between the groups were validated using the Kruskal-Wallis statistical test. The results have shown a significant influence of the transport path on ozone concentrations, which is more noticeable when the probability of occurring photochemical pollution phenomena is higher. Air masses from Europe (Spain, France, United Kingdom, etc.) generally originate higher ozone levels than the ones arriving from the Atlantic Ocean. This feature shows the role of photochemical production along long-range transport phenomena, and the input of pollutants into air masses, along their path. A more detailed analysis at local/regional scale, supported mainly by an intensive field campaign performed during spring/summer of 2006 in the vicinity of Alvão Natural Park (FOTONET Project), at different altitudes, together with pollutant measurements from rural air quality stations in the north of Portugal and one from Spain (Peñausende) was carried out in order to evaluate the extension of photochemical pollution in the Northeast of Portugal. Ozone concentrations measurements in the region showed a noticeable decrease with altitude, mainly at night. In resume back trajectories based analysis has demonstrated that other countries, mainly Spain, contribute decisively to the ozone levels registered in the station used for this study. Backed on this knowledge we point out towards the need of considering common international policies when dealing with controlling ozone levels in the environment. References: Monks, P. (2000): A review of the observations and origins of the spring ozone maximum. Atmospheric Environment 34, 3545-3561. Vingarzan, R., Taylor, B. (2003): Trend analysis of ground level ozone in the greater Vancouver / Fraser Valley area of British Columbia. Atmospheric Environment 37, 2159-2171. EMPA (2008): Air mass trajectory clustering. Retrieved 01 November 2008 from: http://www.empa.ch/plugin/template/empa/*/63288/—/l=1

  1. Long-term changes (1980-2003) in total ozone time series over Northern Hemisphere midlatitudes

    NASA Astrophysics Data System (ADS)

    Białek, Małgorzata

    2006-03-01

    Long-term changes in total ozone time series for Arosa, Belsk, Boulder and Sapporo stations are examined. For each station we analyze time series of the following statistical characteristics of the distribution of daily ozone data: seasonal mean, standard deviation, maximum and minimum of total daily ozone values for all seasons. The iterative statistical model is proposed to estimate trends and long-term changes in the statistical distribution of the daily total ozone data. The trends are calculated for the period 1980-2003. We observe lessening of negative trends in the seasonal means as compared to those calculated by WMO for 1980-2000. We discuss a possibility of a change of the distribution shape of ozone daily data using the Kolmogorov-Smirnov test and comparing trend values in the seasonal mean, standard deviation, maximum and minimum time series for the selected stations and seasons. The distribution shift toward lower values without a change in the distribution shape is suggested with the following exceptions: the spreading of the distribution toward lower values for Belsk during winter and no decisive result for Sapporo and Boulder in summer.

  2. Study nonlinear dynamics of stratospheric ozone concentration at Pakistan Terrestrial region

    NASA Astrophysics Data System (ADS)

    Jan, Bulbul; Zai, Muhammad Ayub Khan Yousuf; Afradi, Faisal Khan; Aziz, Zohaib

    2018-03-01

    This study investigates the nonlinear dynamics of the stratospheric ozone layer at Pakistan atmospheric region. Ozone considered now the most important issue in the world because of its diverse effects on earth biosphere, including human health, ecosystem, marine life, agriculture yield and climate change. Therefore, this paper deals with total monthly time series data of stratospheric ozone over the Pakistan atmospheric region from 1970 to 2013. Two approaches, basic statistical analysis and Fractal dimension (D) have adapted to study the nature of nonlinear dynamics of stratospheric ozone level. Results obtained from this research have shown that the Hurst exponent values of both methods of fractal dimension revealed an anti-persistent behavior (negatively correlated), i.e. decreasing trend for all lags and Rescaled range analysis is more appropriate as compared to Detrended fluctuation analysis. For seasonal time series all month follows an anti-persistent behavior except in the month of November which shown persistence behavior i.e. time series is an independent and increasing trend. The normality test statistics also confirmed the nonlinear behavior of ozone and the rejection of hypothesis indicates the strong evidence of the complexity of data. This study will be useful to the researchers working in the same field in the future to verify the complex nature of stratospheric ozone.

  3. Ozone reference models for the middle atmosphere (new CIRA)

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Pitts, M. C.; Young, D. F.

    1989-01-01

    Models of ozone vertical structure were generated that were based on multiple data sets from satellites. The very good absolute accuracy of the individual data sets allowed the data to be directly combined to generate these models. The data used for generation of these models are from some of the most recent satellite measurements over the period 1978 to 1983. A discussion is provided of validation and error analyses of these data sets. Also, inconsistencies in data sets brought about by temporal variations or other factors are indicated. The models cover the pressure range from from 20 to 0.003 mb (25 to 90 km). The models for pressures less than 0.5 mb represent only the day side and are only provisional since there was limited longitudinal coverage at these levels. The models start near 25 km in accord with previous COSPAR international reference atmosphere (CIRA) models. Models are also provided of ozone mixing ratio as a function of height. The monthly standard deviation and interannual variations relative to zonal means are also provided. In addition to the models of monthly latitudinal variations in vertical structure based on satellite measurements, monthly models of total column ozone and its characteristic variability as a function of latitude based on four years of Nimbus 7 measurements, models of the relationship between vertical structure and total column ozone, and a midlatitude annual mean model are incorporated in this set of ozone reference atmospheres. Various systematic variations are discussed including the annual, semiannual, and quasibiennial oscillations, and diurnal, longitudinal, and response to solar activity variations.

  4. Reactive nitrogen partitioning and its relationship to winter ozone events in Utah

    NASA Astrophysics Data System (ADS)

    Wild, R. J.; Edwards, P. M.; Bates, T. S.; Cohen, R. C.; de Gouw, J. A.; Dubé, W. P.; Gilman, J. B.; Holloway, J.; Kercher, J.; Koss, A. R.; Lee, L.; Lerner, B. M.; McLaren, R.; Quinn, P. K.; Roberts, J. M.; Stutz, J.; Thornton, J. A.; Veres, P. R.; Warneke, C.; Williams, E.; Young, C. J.; Yuan, B.; Zarzana, K. J.; Brown, S. S.

    2016-01-01

    High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation. Measurements were taken during three field campaigns in the winters of 2012, 2013 and 2014, which experienced varying climatic conditions. Average concentrations of ozone and total reactive nitrogen were observed to be 2.5 times higher in 2013 than 2012, with 2014 an intermediate year in most respects. However, photochemically active NOx (NO + NO2) remained remarkably similar all three years. Nitric acid comprised roughly half of NOz ( ≡ NOy - NOx) in 2013, with nighttime nitric acid formation through heterogeneous uptake of N2O5 contributing approximately 6 times more than daytime formation. In 2012, N2O5 and ClNO2 were larger components of NOz relative to HNO3. The nighttime N2O5 lifetime between the high-ozone year 2013 and the low-ozone year 2012 is lower by a factor of 2.6, and much of this is due to higher aerosol surface area in the high-ozone year of 2013. A box-model simulation supports the importance of nighttime chemistry on the reactive nitrogen budget, showing a large sensitivity of NOx and ozone concentrations to nighttime processes.

  5. Source Attribution of Tropospheric Ozone using a Global Model

    NASA Astrophysics Data System (ADS)

    Coates, J.; Lupascu, A.; Butler, T. M.; Zhu, S.

    2016-12-01

    Tropospheric ozone is both a short-lived climate forcing pollutant and a radiatively active greenhouse gas. Ozone is not directly emitted into the troposphere but photochemically produced from chemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). Emissions of ozone precursors (NOx and VOCs) have both natural and anthropogenic sources and may be transported away from their sources to produce ozone downwind. Also, transport of ozone from the stratosphere into the troposphere also influences tropospheric ozone levels in some regions. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used to inform the emission reduction strategies of ozone precursors by indicating which emission sources could be targeted for effective reductions thus reducing the burden of ozone pollution. We use a "tagging" approach within the CESM global model to attribute ozone levels to their source emissions. We use different tags to quantify the impact from natural (soils, lightning, stratospheric transport) and anthropogenic (aircraft, biomass burning) sources of NOx and VOCs (including methane) on ozone levels. These source sectors of different global regions are assigned based on the global emissions specified by HTAPv2.2. Using these results, we develop a transboundary source-receptor relationship of ozone concentration to its precursor emission regions. Additionally, the transport of ozone precursors from regional anthropogenic sources is analysed to illustrate the extent to which mitigation strategies of regional emissions aid in mitigating global ozone levels.

  6. Peroxidase Release Induced by Ozone in Sedum album Leaves

    PubMed Central

    Castillo, Federico J.; Penel, Claude; Greppin, Hubert

    1984-01-01

    The effect of ozone was studied on the peroxidase activity from various compartments of Sedum album leaves (epidermis, intercellular fluid, residual cell material, and total cell material). The greatest increase following a 2-hour ozone exposure (0.4 microliters O3 per liter) was observed in extracellular peroxidases. Most of the main bands of peroxidase activity separated by isoelectric focusing exhibited an increase upon exposure to ozone. Incubation experiments with isolated peeled or unpeeled leaves showed that leaves from ozone-treated plants release much more peroxidases in the medium than untreated leaves. The withdrawal of Ca2+ ions reduced the level of extracellular peroxidase activity either in whole plants or in incubation experiments. This reduction and the activation obtained after addition of Ca2+ resulted from a direct requirement of Ca2+ by the enzyme and from an effect of Ca2+ on peroxidase secretion. The ionophore A23187 promoted an increase of extracellular peroxidase activity only in untreated plants. The release of peroxidases by untreated and ozone-treated leaves is considerably lowered by metabolic inhibitors (3-(3,4-dichlorophenyl)-1,1-dimethylurea and sodium azide) and by puromycin. Images Fig. 1 PMID:16663520

  7. Characterization of Vertical Ozonesonde Measurements in Equatorial Regions Utilizing the Cooperative Enterprise SHADOZ

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Thompson, A. M.; Holdren, D. H.; Northam, E. T.; Witte, J. C.; Oltmans, S. J.; Hoegger, B.; Levrat, G. M.; Kirchhoff, V.

    2000-01-01

    Vertical ozone profiles between the Equator and 10 S latitude available from the Southern Hemisphere Additional Ozone (SHADOZ) program provide consistent data Ozone sets from up to 10 sounding locations. SHADOZ designed to provide independent ozone profiles in the tropics for evaluation of satellite ozone data and models has made available over 600 soundings over the period 1998-1999. These observations provide an ideal data base for the detailed description of ozone and afford differential comparison between sites. TOMS total ozone when compared with correlative integrated total ozone overburden from the sondes is found to be negatively biased when using the classical constant mixing ratio procedure to determine residual ozone. On the other hand, the climatological method proposed by McPeters and Labow appears to give consistent results but is positively biased. The longer then two years series of measurements also was subjected to harmonic analysis to examine data cycles. These will be discussed as well.

  8. Nimbus-7 TOMS Antarctic ozone atlas: August through November, 1989

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Guimaraes, Patricia T.

    1990-01-01

    Because of the great environmental significance of ozone and to support continuing research at the Antarctic and other Southern Hemisphere stations, the development of the 1989 ozone hole was monitored using data from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) instrument, produced in near-real-time. This Atlas provides a complete set of daily polar orthographic projections of the TOMS total ozone measurements over the Southern Hemisphere for the period August 1 through November 30, 1989. The 1989 ozone hole developed in a manner similar to that of 1987, reaching a comparable depth in early October. This was in sharp contrast to the much weaker hole of 1988. The 1989 ozone hole remained at polar latitudes as it filled in November, in contrast to other recent years when the hole drifted to mid-latitudes before disappearing. Daily ozone values above selected Southern Hemisphere stations are presented, along with comparisons of the 1989 ozone distribution to that of other years.

  9. The Version 8.6 SBUV Ozone Data Record: An Overview

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Bhartia, P. K.; Haffner, D.; Labow, Gordon J.; Flynn, Larry

    2013-01-01

    Under a NASA program to produce long-term data records from instruments on multiple satellites, data from a series of nine Solar Backscatter Ultraviolet (SBUV and SBUV2) instruments have been re-processed to create a coherent ozone time series. Data from the BUV instrument on Nimbus 4, SBUV on Nimbus 7, and SBUV2 instruments on NOAA 9, 11, 14, 16, 17, 18, and 19 covering the period 1970-1972 and 1979-2011 were used to create a long-term data set. The goal is an ozone Earth Science Data Record - a consistent, calibrated ozone time series that can be used for trend analyses and other studies. In order to create this ozone data set, the radiances were adjusted and used to re-process the entire data records for each of the nine instruments. Inter-instrument comparisons during periods of overlap as well as comparisons with data from other satellite and ground-based instruments were used to evaluate the consistency of the record and make calibration adjustments as needed. Additional improvements in this version 8.6 processing included the use of the Brion, Daumont, and Malicet ozone cross sections, and a cloud-height climatology derived from Aura OMI measurements. Validation of the re-processed ozone shows that total column ozone is consistent with the Brewer Dobson network to within about 1 for the new time series. Comparisons with MLS, SAGE, sondes, and lidar show that ozone at individual levels in the stratosphere is generally consistent to within 5 percent.

  10. Increased growth factors play a role in wound healing promoted by noninvasive oxygen-ozone therapy in diabetic patients with foot ulcers.

    PubMed

    Zhang, Jing; Guan, Meiping; Xie, Cuihua; Luo, Xiangrong; Zhang, Qian; Xue, Yaoming

    2014-01-01

    Management of diabetic foot ulcers (DFUs) is a great challenge for clinicians. Although the oxygen-ozone treatment improves the diabetic outcome, there are few clinical trials to verify the efficacy and illuminate the underlying mechanisms of oxygen-ozone treatment on DFUs. In the present study, a total of 50 type 2 diabetic patients complicated with DFUs, Wagner stage 2~4, were randomized into control group treated by standard therapy only and ozone group treated by standard therapy plus oxygen-ozone treatment. The therapeutic effects were graded into 4 levels from grade 0 (no change) to grade 3 (wound healing). The wound sizes were measured at baseline and day 20, respectively. Tissue biopsies were performed at baseline and day 11. The expressions of vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and platelet-derived growth factor (PDGF) proteins in the pathologic specimens were determined by immunohistochemical examinations. The effective rate of ozone group was significantly higher than that of control group (92% versus 64%, P < 0.05). The wound size reduction was significantly more in ozone group than in control group (P < 0.001). After treatment, the expressions of VEGF, TGF-β, and PDGF proteins at day 11 were significantly higher in ozone group than in control group. Ozone therapy promotes the wound healing of DFUs via potential induction of VEGF, TGF-β, and PDGF at early stage of the treatment. (Clinical trial registry number is ChiCTR-TRC-14004415).

  11. From ozone mini-holes and mini-highs towards extreme value theory: New insights from extreme events and non-stationarity

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.

    2009-04-01

    Over the last few decades negative trends in stratospheric ozone have been studied because of the direct link between decreasing stratospheric ozone and increasing surface UV-radiation. Recently a discussion on ozone recovery has begun. Long-term measurements of total ozone extending back earlier than 1958 are limited and only available from a few stations in the northern hemisphere. The world's longest total ozone record is available from Arosa, Switzerland (Staehelin et al., 1998a,b). At this site total ozone measurements have been made since late 1926 through the present day. Within this study (Rieder et al., 2009) new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied to select mathematically well-defined thresholds for extreme low and extreme high total ozone. A heavy-tail focused approach is used by fitting the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a sufficiently high (or below a sufficiently low) threshold (Coles, 2001). More precisely, the GPD is the limiting distribution of normalized excesses over a threshold, as the threshold approaches the endpoint of the distribution. In practice, GPD parameters are fitted, to exceedances by maximum likelihood or other methods - such as the probability weighted moments. A preliminary step consists in defining an appropriate threshold for which the asymptotic GPD approximation holds. Suitable tools for threshold selection as the MRL-plot (mean residual life plot) and TC-plot (stability plot) from the POT-package (Ribatet, 2007) are presented. The frequency distribution of extremes in low (termed ELOs) and high (termed EHOs) total ozone and their influence on the long-term changes in total ozone are analyzed. Further it is shown that from the GPD-model the distribution of so-called ozone mini holes (e.g. Bojkov and Balis, 2001) can be precisely estimated and that the "extremes concept" provides new information on the data distribution and variability within the Arosa record as well as on the influence of ELOs and EHOs on the long-term trends of the ozone time series. References: Bojkov, R. D., and Balis, D.S.: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1975-2000, Ann. Geophys., 19, 797-807, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Pickands, J.: Statistical inference using extreme order statistics, Ann. Stat., 3, 1, 119-131, 1975. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Stübi, R., Weihs, P., Holawe, F., and M. Ribatet: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  12. Total ozone observation by sun photometry at Arosa, Switzerland

    NASA Astrophysics Data System (ADS)

    Staehelin, Johannes; Schill, Herbert; Hoegger, Bruno; Viatte, Pierre; Levrat, Gilbert; Gamma, Adrian

    1995-07-01

    The method used for ground-based total ozone observations and the design of two instruments used to monitor atmospheric total ozone at Arosa (Dobson spectrophotometer and Brewer spectrometer) are briefly described. Two different procedures of the calibration of the Dobson spectrometer, both based on the Langley plot method, are presented. Data quality problems that occured in recent years in the measurements of one Dobson instrument at Arosa are discussed, and two different methods to reassess total ozone observations are compared. Two partially automated Dobson spectrophotometers and two completely automated Brewer spectrometers are currently in operation at Arosa. Careful comparison of the results of the measurements of the different instruments yields valuable information of possible small long- term drifts of the instruments involved in the operational measurements.

  13. A statistical probe into variability within total ozone time series over Arosa, Switzerland (9.68°E, 46.78°N)

    NASA Astrophysics Data System (ADS)

    Chakraborthy, Parthasarathi; Chattopadhyay, Surajit

    2013-02-01

    Endeavor of the present paper is to investigate the statistical properties of the total ozone concentration time series over Arosa, Switzerland (9.68°E, 46.78°N). For this purpose, different statistical data analysis procedures have been employed for analyzing the mean monthly total ozone concentration data, collected over a period of 40 years (1932-1971), at the above location. Based on the computations on the available data set, the study reports different degrees of variations in different months. The month of July is reported as the month of lowest variability. April and May are found to be the most correlated months with respect to total ozone concentration.

  14. RNA-Seq study reveals genetic responses of diverse wild soybean accessions to increased ozone levels.

    PubMed

    Waldeck, Nathan; Burkey, Kent; Carter, Thomas; Dickey, David; Song, Qijian; Taliercio, Earl

    2017-06-29

    Ozone is an air pollutant widely known to cause a decrease in productivity in many plant species, including soybean (Glycine max (L.) Merr). While the response of cultivated soybean to ozone has been studied, very little information is available regarding the ozone response of its wild relatives. Ozone-resistant wild soybean accessions were identified by measuring the response of a genetically diverse group of 66 wild soybean (Glycine soja Zucc. and Sieb.) accessions to elevated ozone levels. RNA-Seq analyses were performed on leaves of different ages from selected ozone-sensitive and ozone-resistant accessions that were subjected to treatment with an environmentally relevant level of ozone. Many more genes responded to elevated ozone in the two ozone-sensitive accessions than in the ozone-resistant accessions. Analyses of the ozone response genes indicated that leaves of different ages responded differently to ozone. Older leaves displayed a consistent reduction in expression of genes involved in photosynthesis in response to ozone, while changes in expression of defense genes dominated younger leaf tissue in response to ozone. As expected, there is a substantial difference between the response of ozone-sensitive and ozone-resistant accessions. Genes associated with photosystem 2 were substantially reduced in expression in response to ozone in the ozone-resistant accessions. A decrease in peptidase inhibitors was one of several responses specific to one of the ozone resistant accessions. The decrease in expression in genes associated with photosynthesis confirms that the photosynthetic apparatus may be an early casualty in response to moderate levels of ozone. A compromise of photosynthesis would substantially impact plant growth and seed production. However, the resistant accessions may preserve their photosynthetic apparatus in response to the ozone levels used in this study. Older leaf tissue of the ozone-resistant accessions showed a unique down-regulation of genes associated with endopeptidase inhibitor activity. This study demonstrates the existence of significant diversity in wild soybean for ozone response. Wild soybean accessions characterized in this study can be used by soybean breeders to enhance ozone tolerance of this important food crop.

  15. On the Quality of the Nimbus 7 LIMS Version 6 Ozone for Studies of the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis; Lingenfelser, Gretchen; Natarajan, Murali; Gordley, Larry; Thompson, Earl

    2006-01-01

    The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) radiance profile dataset of 1978/79 was reconditioned and reprocessed to Version 6 (V6) profiles of temperature and species that are improved significantly over those from Version 5 (V5). The LIMS V6 dataset was archived for public use in 2002. Improvements for its ozone include: (1) a more accurate accounting for instrument and spacecraft motion effects in the radiances, (2) the use of better spectroscopic line parameters for its ozone forward model, (3) retrievals of all its scans, (4) more accurate and compatible temperature versus pressure profiles (or T(p)), which are needed for the registration of the ozone radiances and for the removal of temperature effects from them, and (5) a better accounting for interfering species in the lower stratosphere. The retrieved V6 ozone profiles extend from near cloud top altitudes to about 80 km and from 64S to 84N latitude with better sampling along the orbit than for the V5 dataset. Calculated estimates of the single-profile precision and accuracy are provided for the V6 ozone from this study. Precision estimates based on the data themselves are of order 3% or better from 1 to 30 hPa. Estimates of total systematic error for a single profile are hard to generalize because the separate sources of error may not all be of the same sign and they depend somewhat on the atmospheric state. It is estimated that the V6 zonal mean ozone distributions are accurate to within 9% to 7% from 50 hPa to 3 hPa, respectively. Effects of a temperature bias can be significant and may be present at 1 to 2 hPa though. There may be ozone biases of order 10% at those levels due to possible biases of up to +2 K, but there is no indication of a similar problem elsewhere in the stratosphere. Simulation studies show that the LIMS retrievals are also underestimating slightly the small amplitudes of the atmospheric temperature tides, which affect its retrieved day/night ozone differences. There are small biases in the middle to lower stratosphere for the ascending versus descending node LIMS ozone, due principally to not accounting for the asymmetric weighting of its radiances across the tangent layer. The estimates of total accuracy were assessed by comparing the daily zonal mean LIMS ozone distributions against those from the Nimbus 7 SBUV Version 8 (V8) dataset for the same period. Generally, the LIMS V6 ozone agrees well with SBUV, except perhaps in the tropical lower stratosphere where the LIMS ozone is less. Still, the accuracy for LIMS V6 ozone in the lower stratosphere is improved over that found for LIMS V5, as indicated by several LIMS comparisons with ECC ozonesonde profiles. The LIMS V6 ozone is considered especially suitable for detailed studies of large-scale stratospheric processes above the 100-hPa level. Comparison of diurnal, photochemical model calculations with the monthly-averaged, upper stratospheric ozone observed from LIMS V6 indicates only a slight ozone deficit for the model at about 2 hPa. However, that deficit exhibits little to no seasonal variation and is in good agreement with similar model comparisons for a seasonal time series of ozone obtained with ground-based microwave instruments. Because the LIMS V6 ozone in the lower stratosphere has improved accuracy and sampling versus that of V5, it should now be possible to conduct quantitative studies of ozone transport and chemistry for the northern hemisphere, polar stratospheric winter of 1978/79 a time period when the catalytic loss of ozone due to reactive chlorine should not have been a major factor for the Arctic region.

  16. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration.

    PubMed

    Botondi, Rinaldo; De Sanctis, Federica; Moscatelli, Niccolò; Vettraino, Anna Maria; Catelli, Cesare; Mencarelli, Fabio

    2015-12-01

    This paper proposes postharvest ozone fumigation (as a method) to control microorganisms and evaluate the effect on polyphenols, anthocyanins, carotenoids and cell wall enzymes during the grape dehydration for wine production. Pignola grapes were ozone-treated (1.5 g/h) for 18 h (A=shock treatment), then dehydrated or ozone-treated (1.5 g/h) for 18 h and at 0.5 g/h for 4 h each day (B=long-term treatment) during dehydration. Treatment and dehydration were performed at 10 °C. No significant difference was found for total carotenoid, total phenolic and total anthocyanin contents after 18 h of O3 treatment. A significant decrease in phenolic and anthocyanin contents occurred during treatment B. Also carotenoids were affected by B ozone treatment. Pectin methylesterase (PME) and polygalacturonase (PG) activities were higher in A-treated grapes during dehydration. Finally, ozone reduced fungi and yeasts by 50%. Shock ozone fumigation (A treatment) before dehydration can be used to reduce the microbial count during dehydration without affecting polyphenol and carotenoid contents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A technique for evaluating the influence of spatial sampling on the determination of global mean total columnar ozone

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.

    1981-01-01

    A technique is described for providing a means of evaluating the influence of spatial sampling on the determination of global mean total columnar ozone. A finite number of coefficients in the expansion are determined, and the truncated part of the expansion is shown to contribute an error to the estimate, which depends strongly on the spatial sampling and is relatively insensitive to data noise. First and second order statistics are derived for each term in a spherical harmonic expansion which represents the ozone field, and the statistics are used to estimate systematic and random errors in the estimates of total ozone.

  18. Impact of near-surface atmospheric composition on ozone formation in Russia

    NASA Astrophysics Data System (ADS)

    Berezina, Elena; Moiseenko, Konstantin; Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Elansky, Nikolai

    2017-04-01

    One of the consequences of the human impact on the atmosphere is increasing in tropospheric ozone concentration, with the highest ozone level being observed in industrially developed and highly populated regions of the world. In these regions, main anthropogenic sources of carbon monoxide (CO), methane (CH4) and volatile organic compounds (VOCs) are concentrated. The oxidation of these compounds, when interacting with hydroxyl and nitrogen oxides at rather high temperature and sunlight, leads to ozone formation. CO and CH4 are slowly oxidized in the atmosphere and cause an increase in global and regional background ozone. However, the oxidation of some VOCs occurs during daylight hours and is accompanied by an increase in ozone concentration near VOCs sources, particularly in urban and industrial areas. The contribution of biogenic VOCs to ozone generation is estimated to be from 40 to 70% of the total contribution of all chemical ozone precursors in the troposphere [1], with isoprene playing the main role in ozone formation [2]. The impact of aromatic hydrocarbons to ozone formation is reported to be about 40% of the total ozone generation from the oxidation of anthropogenic VOCs [3]. In this study, the results of VOCs measurements (isoprene, benzene, toluene, phenol, styrene, xylene and propilbenzene) by proton mass spectrometry in different regions of Russia along the Trans-Siberian railway from Moscow to Vladivostok from TROICA-12 campaign on a mobile laboratory in summer 2008 are analyzed. It is shown that the TROICA-12 measurements were carried out mostly in moderately polluted (2≤NOx<20 ppb) environment ( 78% of measurements) with the remaining part of the measurements divided between weakly polluted (NOx≤2 ppb) and highly polluted (NOx>20 ppb) conditions ( 20 and 2% of measurements, correspondingly). The lower troposphere chemical regime in the campaign is found to be mainly NOx sensitive, both in rural and urban environments, with typical morning NMHC/NOx ratios being well above 20. Hence, ozone production rates are expected to be controlled by regional NOx emissions and their complex interplay with both natural and anthropogenic sources of VOCs. The quantitative contribution of aromatic VOCs to ozone formation in urban areas and in Russian regions along the railway is estimated. The greatest impact of aromatic VOCs to ozone formation (up to 7.5 ppb of O3) is obtained in the large cities along the Trans-Siberian Railway, with the highest concentrations of aromatic VOCs (1-1.7 ppb) and nitrogen oxides (> 20 ppb) being observed. The results show a significant contribution of anthropogenic emissions of VOCs to the photochemical ozone generation (30-50%) in the large cities along the Trans-Siberian railway in hot and dry weather conditions against natural isoprene emissions determining the regional balance of ground-level ozone in summer. This study was supported by the Russian Science Foundation (grant no. 14-47-00049) and by the Russian Foundation for Basic Research (grant no. 16-35-00158). References: 1. Xie, X., Shao, M., Liu, Y., Lu, S., Chang, C. C., and Chen, Z. M. // Atmos. Environ., 2008, 42, pp. 6000-6010. 2. Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., Fall, R. // Atmospheric Environment, 2000, 34, pp. 2205-2230. 3. Dreyfus, G. B., Schade G. W., Goldstein A. H. // J. Geophys. Res., 2002, 107(D19): 4365, doi:10.1029/2001JD001490.

  19. Understanding Ozone: Exploring the Good and Bad Facets of a Famous Gas.

    ERIC Educational Resources Information Center

    Hanif, Muhammad

    1995-01-01

    Presents activities that help students distinguish between the beneficial layer of stratospheric ozone and the dangerous ground-level or tropospheric ozone, understand the chemical processes of ozone breakdown in the stratosphere, find the sources of ground-level ozone, and explore the differences in the patterns of ozone concentration over the…

  20. Studies of young female responses to acute ozone exposure. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, W.C.

    The primary purposes of this research were to determine if: (1) young adult females respond with greater acute effects of ozone (O3) than their male counterparts at a dose relative to lung size as well as at the same total dose; (2) O3 response in females is influenced by the disparate levels of progesterone (a steroid hormone) that they experience during the various phases of their menstrual cycles; and (3) O3 exposure has an effect on the integrity of normal menstrual cycles of healthy young adult females.

  1. Relationships between organic nitrates and surface ozone destruction during Polar Sunrise Experiment 1992

    NASA Astrophysics Data System (ADS)

    Muthuramu, K.; Shepson, P. B.; Bottenheim, J. W.; Jobson, B. T.; Niki, H.; Anlauf, K. G.

    1994-12-01

    Concurrent measurements of total reactive odd nitrogen species (i.e., NOy) and its major components, including organic nitrates, were carried out during 1992 Polar Sunrise Experiment (PSE92) at Alert, Northwest Territories, Canada, to investigate the episodic depletion of surface level ozone following polar sunrise. A series of C3-C7 alkyl nitrates formed from the atmospheric oxidation of hydrocarbons was measured daily during the 13-week study period (January 22 to April 22). In addition, a large number of gas chromatography/electron capture detector (GC/ECD) peaks with retention times greater than those of the hexyl nitrates were also identified as species containing -ONO2 group(s), using a nitrogen specific detector. The total concentrations of these organic nitrates ranged from 34 to 128 parts per trillion by volume and the distribution in the dark period was found to be similar to that found for rural lower-latitude air masses. In contrast to observations made at lower latitudes where alkyl nitrates make a relatively small contribution to NOy, the organic nitrates at Alert were found to contribute between 7 and 20% of the total odd nitrogen species. After polar sunrise the total concentrations of these organic nitrates decreased steadily, due primarily to the consumption of larger (>C4) alkyl nitrates. The C3 alkyl nitrate concentrations showed little variation during this study. During ozone depletion episodes in April there was a positive correlation between the concentration of the larger organic nitrates and ozone. Most surprisingly, the ratio of concentrations of isomeric alkyl nitrates with carbon numbers ≥5, and in particular those involving the C5 isomers, was found to show substantial variations coinciding with the O3 depletion events. This change in the isomeric alkyl nitrate ratios implies a substantial chemical processing of the air masses exhibiting ozone depletion. The possible mechanisms, which must involve consumption of the organic nitrates by either OH radicals or Cl atoms, are discussed in the context of the chemical and meteorological observations conducted at Alert during these ozone depletion events.

  2. The use of visible-channel data from NOAA satellites to measure total ozone amount over Antarctica

    NASA Technical Reports Server (NTRS)

    Boime, Robert D.; Warren, Steven G.; Gruber, Arnold

    1994-01-01

    Accurate, detailed maps of total ozone were not available until the launch of the Total Ozone Mapping Spectrometer (TOMS) in late 1978. However, the Scanning Radiometer (SR), an instrument on board the NOAA series satellites during the 1970s, had a visible channel that overlapped closely with the Chappuis absorption band of ozone. We are investigating whether data from the SR can be used to map Antarctic ozone prior to 1978. The method is being developed with 1980s data from the Advanced Very High Resolution Radiometer (AVHRR), which succeeded the SR on the NOAA polar-orbiting satellites. Visible-derived total ozone maps can then be compared able on the NOAA satellites, which precludes the use of a differential absorption technique to measure ozone. Consequently, our method works exclusively over scenes whose albedos are large and unvarying, i.e. scenes that contain ice sheets and/or uniform cloud-cover. Initial comparisons of time series for October-December 1987 at locations in East Antarctica show that the visible absorption by ozone in measurable and that the technique may be usable for the 1970s, but with much less accuracy than TOMS. This initial test assumes that clouds, snow, and ice all reflect the same percentage of visible light towards the satellite, regardless of satellite position or environmental conditions. This assumption is our greatest source of error. To improve the accuracy of ozone retrievals, realistic anisotropic reflectance factors are needed, which are strongly influenced by cloud and snow surface features.

  3. Effect of Ventilation Strategies on Residential Ozone Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain S.; Sherman, Max H.

    Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone-associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reducemore » concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air-­exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.« less

  4. Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    2012-10-01

    In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.

  5. Some observations on the role of planetary waves in determining the spring time ozone distribution in the Antarctic

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Mcpeters, R. D.

    1986-01-01

    Ozone measurements from 1970 to 1984 from the Nimbus 4 backscattered ultraviolet and the Nimbus 7 solar backscattered ultraviolet spectrometers show significant decrease in total ozone only after 1979. The downward trend is most apparent in October south of 70 deg S in the longitude zone 0 to 30 deg W where planetary wave activity is weak. Outside this longitude region, the trend in total ozone is much smaller due to strong interannual variability of wave activity. This paper gives a phenomenological description of ozone depletion in the Antarctic region based on vertical advection and transient planetary waves.

  6. Tropical Tropospheric Ozone: A Multi-Satellite View From TOMS and Other Instruments

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Hudson, Robert D.; Guo, Hua; Witte, Jacquelyn C.; Kucsera, Tom L.; Seybold, Matthew G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument can resolve episodic pollution events in the tropics and interannual and seasonal variability. Modified-residual (MR) Nimbus 7 tropical tropospheric ozone (TTO), two maps/month (1979-1992, 1-deg latitude by 2-deg longitude) within the region in which total ozone displays a tropical wave-one pattern (maximum 20S to 20N), are available in digital form at http://metosrv2.umd.edu/tropo. Also available are preliminary 1996-1999 MR-TTO maps based on real-time Earth-Probe (EP)/TOMS observations. Examples of applications are given.

  7. Identifying controlling factors of ground-level ozone levels over southwestern Taiwan using a decision tree

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Lin, Chuan-Yao; Liau, Churn-Jung; Kuo, Yi-Ming

    2012-12-01

    Kaohsiung City and the suburban region of southwestern Taiwan have suffered from severe air pollution since becoming the largest center of heavy industry in Taiwan. The complex process of ozone (O3) formation and its precursor compounds (the volatile organic compounds (VOCs) and nitrogen oxide (NOx) emissions), accompanied by meteorological conditions, make controlling ozone difficult. Using a decision tree is especially appropriate for analyzing time series data that contain ozone levels and meteorological and explanatory variables for ozone formation. Results show that dominant variables such as temperature, wind speed, VOCs, and NOx can play vital roles in describing ozone variations among observations. That temperature and wind speed are highly correlated with ozone levels indicates that these meteorological conditions largely affect ozone variability. The results also demonstrate that spatial heterogeneity of ozone patterns are in coastal and inland areas caused by sea-land breeze and pollutant sources during high ozone episodes over southwestern Taiwan. This study used a decision tree to obtain quantitative insight into spatial distributions of precursor compound emissions and effects of meteorological conditions on ozone levels that are useful for refining monitoring plans and developing management strategies.

  8. Comparison of NASA OMI and MLS Ozone Products with US Forest Service Ground-based Ozone Monitoring Data for US Forest Service Air Quality / Forest Management Decision Support

    NASA Astrophysics Data System (ADS)

    Barrett, S.; Brooks, A.; Moussa, Y.; Spencer, T.; Thompson, J.

    2013-12-01

    Tropospheric ozone, formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react with sunlight, is a significant threat to the health of US National Forests. Approximately one third of ozone is absorbed by plants during the uptake of carbon dioxide. This increases the vegetation's susceptibility to drought, beetle infestation, and wildfire. Currently the US Forest Service has ground monitoring stations sparsely located across the country. This project looks specifically at the area surrounding several Class I Wilderness Areas in the Appalachian region. These areas are the highest priority for protection from air pollutants. The Forest Service must interpolate ozone concentrations for areas between these monitoring stations. Class I Wilderness Areas are designated by the Forest Service and are defined as a total 5000 acres or greater when the Clean Air Act was passed in 1977. This Act mandated that the EPA create national ambient air quality standards (NAAQS) for six major air pollutants including ground-level ozone. This project assessed the feasibility of incorporating NASA ozone data into Forest Service ozone monitoring in an effort to enhance the accuracy and precision of ozone exposure measurements in Class I Wilderness Areas and other federally managed lands in order to aid in complying with the Clean Air Act of 1977. This was accomplished by establishing a method of comparison between a preliminary data product produced at the Goddard Space Flight Center that uses OMI/MLS data to derive global tropospheric ozone measurements and Forest Service ozone monitoring station measurements. Once a methodology for comparison was established, statistical comparisons of these data were performed to assess the quantitative differences.

  9. Column NO2-total ozone-stratospheric temperature relationships associated with the Arctic and Antarctic ozone holes

    NASA Astrophysics Data System (ADS)

    Aheyeva, Viktoryia; Gruzdev, Aleksandr; Grishaev, Mikhail

    Data of ground-based measurements of NO2 column contents are analyzed to study winter-spring NO2 anomalies associated with negative anomalies in column ozone and stratospheric temperature. Episodes of significant decrease in column NO2 contents in the winter-spring period of 2011 in the northern hemisphere (NH) were detected at European and Siberian stations of Zvenigorod (55.7°N, Moscow Region) and Tomsk (56.5°N, West Siberia) in the middle latitudes, Harestua (60.2°N), Sodankyla (67.4°N, both in North Europe), and Zhigansk (66.8°N, East Siberia) in the high latitudes, and at the Arctic station of Scoresbysund (70.5°N, Greenland). All the stations, except Tomsk, are a part of the Network of the Detection of Atmospheric Composition Change (NDACC), and the data are accesses at http://ndacc.org. The decrease in NO2 is generally accompanied by total ozone and stratospheric temperature decrease and is shown to be caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Overpass total ozone data from Giovanni service and radiosonde data were used for the analysis. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 reached record magnitudes. A significant positive correlation has been found between variations in NO2 and ozone columns as well as NO2 column and stratospheric temperature during the winter-spring period of 2011, whereas the correlation is much weaker in years without Arctic ozone depletion. The correlation becomes even stronger if only episodes with significant NO2 decrease are considered. For example the correlation coefficients between NO2 and ozone columns deviations are about 0.9 for Zvenigorod and Scoresbysund. Correlation coefficients between variations in column NO2 and total ozone and stratospheric temperature as well as coefficients of regression of NO2 on ozone and temperature in the winter-spring period of 2011 for the Siberian stations are less than those for European stations. For comparison analysis, data of column NO2, total ozone and stratospheric temperature at the southern hemisphere (SH) stations of Dumont D’Urville (66.7°S, the Antarctic), Macquarie Island (54.5°S) and Kerguelen Island (49.3°S) (all stations are NDACC stations) were used. Correlation and regression coefficients between variations in column NO2 and total ozone as well as in column NO2 and stratospheric temperature for the winter-spring periods at the SH stations depend on the phase of the quasi-biennial oscillation (QBO) in the 30 hPa equatorial wind velocity. The correlation coefficients and the coefficients of regression of NO2 on ozone and temperature for the west QBO phase are large compared to those for the east phase. The 2011 Arctic ozone hole was observed during the west phase of the 30 hPa QBO. The calculated correlation coefficients at the NH stations for the winter-spring period of 2011 associated with the Arctic ozone hole are close to similar coefficients at the SH stations in winter-spring periods for the west QBO phase. The regression coefficients at the NH stations are less than those at the SH stations for the west QBO phase but greater than similar coefficients for the east phase. We can conclude that physico-chemical processes specific for ozone hole conditions cause spatial correlation between distribution of stratospheric NO2 and distributions of total ozone and temperature in polar and adjacent regions, which is generally stronger for stronger ozone deficit in a polar region. This results in significant time correlation between NO2, ozone and temperature at observation sites due to transport processes.

  10. Assimilation of MLS and OMI Ozone Data

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.

    2005-01-01

    Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).

  11. Use of AIRS, OMI, MLS, and TES Data in Assessing Forest Ecosystem Exposure to Ozone

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2007-01-01

    Ground-level ozone at high levels poses health threats to exposed flora and fauna, including negative impacts to human health. While concern is common regarding depletion of ozone in the stratosphere, portions of the urban and rural United States periodically have high ambient levels of tropospheric ozone on the ground. Ozone pollution can cause a variety of impacts to susceptible vegetation (e.g., Ponderosa and Jeffrey pine species in the southwestern United States), such as stunted growth, alteration of growth form, needle or leaf chlorosis, and impaired ability to withstand drought-induced water stress. In addition, Southern Californian forests with high ozone exposures have been recently subject to multiyear droughts that have led to extensive forest overstory mortality from insect outbreaks and increased incidence of wildfires. Residual forests in these impacted areas may be more vulnerable to high ozone exposures and to other forest threats than ever before. NASA sensors collect a wealth of atmospheric data that have been used recently for mapping and monitoring regional tropospheric ozone levels. AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), MLS (Microwave Limb Sounder), and TES (Tropospheric Emission Spectrometer) data could be used to assess forest ecosystem exposure to ozone. Such NASA data hold promise for providing better or at least complementary synoptic information on ground-level ozone levels that Federal agency partners can use to assess forest health trends and to mitigate the threats as needed in compliance with Federal laws and mandates. NASA data products on ozone concentrations may be able to aid applications of DSTs (decision support tools) adopted by the USDA FS (U.S. Department of Agriculture Forest Service) and by the NPS (National Park Service), such as the Ozone Calculator, in which ground ozone estimates are employed to assess ozone impacts to forested vegetation.

  12. "Cloud Slicing" : A New Technique to Derive Tropospheric Ozone Profile Information from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A new technique denoted cloud slicing has been developed for estimating tropospheric ozone profile information. All previous methods using satellite data were only capable of estimating the total column of ozone in the troposphere. Cloud slicing takes advantage of the opaque property of water vapor clouds to ultraviolet wavelength radiation. Measurements of above-cloud column ozone from the Nimbus 7 total ozone mapping spectrometer (TOMS) instrument are combined together with Nimbus 7 temperature humidity and infrared radiometer (THIR) cloud-top pressure data to derive ozone column amounts in the upper troposphere. In this study tropical TOMS and THIR data for the period 1979-1984 are analyzed. By combining total tropospheric column ozone (denoted TCO) measurements from the convective cloud differential (CCD) method with 100-400 hPa upper tropospheric column ozone amounts from cloud slicing, it is possible to estimate 400-1000 hPa lower tropospheric column ozone and evaluate its spatial and temporal variability. Results for both the upper and lower tropical troposphere show a year-round zonal wavenumber 1 pattern in column ozone with largest amounts in the Atlantic region (up to approx. 15 DU in the 100-400 hPa pressure band and approx. 25-30 DU in the 400-1000 hPa pressure band). Upper tropospheric ozone derived from cloud slicing shows maximum column amounts in the Atlantic region in the June-August and September-November seasons which is similar to the seasonal variability of CCD derived TCO in the region. For the lower troposphere, largest column amounts occur in the September-November season over Brazil in South America and also southern Africa. Localized increases in the tropics in lower tropospheric ozone are found over the northern region of South America around August and off the west coast of equatorial Africa in the March-May season. Time series analysis for several regions in South America and Africa show an anomalous increase in ozone in the lower troposphere around the month of March which is not observed in the upper troposphere. The eastern Pacific indicates weak seasonal variability of upper, lower, and total tropospheric ozone compared to the western Pacific which shows largest TCO amounts in both hemispheres around spring months. Ozone variability in the western Pacific is expected to have greater variability caused by strong convection, pollution and biomass burning, land/sea contrast and monsoon developments.

  13. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA.

    PubMed

    Gorai, A K; Tuluri, F; Tchounwou, P B; Ambinakudige, S

    2015-02-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO 2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sources, whereas, the dispersion of ozone depends on meteorological factors. Study results showed that the spatial mean of ground-level ozone concentrations was highly dependent on the spatial mean of NO 2 concentrations. However, spatial distributions of NO 2 and ozone concentrations were not uniformed throughout the study period due to uneven wind speeds and wind directions. Wind speed and wind direction also played a significant role in the dispersion of ozone. Temperature profile in the area rarely had any effects on the ozone concentrations due to low spatial variations.

  14. Influence of local meteorology and NO2 conditions on ground-level ozone concentrations in the eastern part of Texas, USA

    PubMed Central

    Gorai, A. K.; Tuluri, F.; Tchounwou, P. B.; Ambinakudige, S.

    2014-01-01

    The influence of local climatic factors on ground-level ozone concentrations is an area of increasing interest to air quality management in regards to future climate change. This study presents an analysis on the role of temperature, wind speed, wind direction, and NO2 level on ground-level ozone concentrations over the region of Eastern Texas, USA. Ozone concentrations at the ground level depend on the formation and dispersion processes. Formation process mainly depends on the precursor sources, whereas, the dispersion of ozone depends on meteorological factors. Study results showed that the spatial mean of ground-level ozone concentrations was highly dependent on the spatial mean of NO2 concentrations. However, spatial distributions of NO2 and ozone concentrations were not uniformed throughout the study period due to uneven wind speeds and wind directions. Wind speed and wind direction also played a significant role in the dispersion of ozone. Temperature profile in the area rarely had any effects on the ozone concentrations due to low spatial variations. PMID:25755687

  15. Changes in southern Piedmont grassland community structure and nutritive quality with future climate scenarios of elevated tropospheric ozone and altered rainfall patterns.

    PubMed

    Gilliland, N J; Chappelka, A H; Muntifering, R B; Ditchkoff, S S

    2016-01-01

    Forage species common to the southern USA Piedmont region, Lolium arundinacea, Paspalum dilatatum, Cynodon dactylon and Trifolium repens, were established in a model pasture system to test the future climate change scenario of increasing ozone exposure in combination with varying rainfall amounts on community structure and nutritive quality. Forages were exposed to two levels of ozone [ambient (non-filtered; NF) and twice ambient (2×) concentrations] with three levels of precipitation (average or ±20% of average) in modified open-top chambers (OTCs) from June to September 2009. Dry matter (DM) yield did not differ over the growing season between forage types, except in primary growth grasses where DM yield was higher in 2× than NF treatment. Primary growth clover decreased in nutritive quality in 2× ozone because of increased concentrations of neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL). Re-growth clover exhibited the largest decrease in nutritive quality, whereas grasses were not adversely affected in 2× ozone. Re-growth grasses responded positively to 2× ozone exposure, as indicated in increased relative food value (RFV) and percentage crude protein (CP) than NF-exposed re-growth grasses. Effects of precipitation were not significant over the growing season for primary or re-growth forage, except in primary growth grasses where DM yield was higher in chambers with above average (+20%) precipitation. Total canopy cover was significantly higher over the growing season in chambers receiving above average precipitation, but no significant effects were observed with ozone. Results indicate shifts in plant community structure and functioning related to mammalian herbivore herbivory in future climate change scenarios. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Undergraduate Research Program in Atmospheric Science: Houston Ozone Studies

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Balimuttajjo, M.; Damon, D.; Herridge, A.; Hromis, A. G.; Litwin, D.; Wright, J. M.

    2011-12-01

    The Minority University Consortium for Earth and Space Sciences (MUCESS) composed of the University of Houston-Downtown (UHD), Medgar Evers College (City University of New York), South Carolina State University, is an undergraduate atmospheric science program funded by NSF. The program's goal is to increase the participation of minority universities in STEM activities and careers by providing students with the knowledge and skills needed to perform weather balloon launches, interpret ozone and temperature variations in the troposphere and stratosphere. Ozone profiles up to 30 km altitude are obtained via an instrument payload attached to a weather balloon. The payload instrumentation consists of an EN-SCI ECC ozonesonde and an iMET radiosonde. The data is transmitted to a base station in real time and includes pressure, temperature, humidity, and GPS coordinates This presentation is directed towards comparing our 2011 Houston data to data that either UHD or the University of Houston (UH) has collected. Our launches are primarily on Sunday, and UH's on Friday. Our primary objective is to identify ground level ozone variations on Sunday and compare with weekday levels as tropospheric ozone is largely controlled by anthropogenic activities. Ozone levels vary depending on the time of year, temperature, rain, wind direction, chemical plant activities, private and commercial traffic patterns.etc. Our limited Friday launches, supported by UH data, indicate that ground level ozone is generally elevated in contrast to Sunday data, For example, our Friday July 2011 launch detected elevated low-altitude ozone levels with ground level ozone levels of 42 nb that increased to 46 nb from 500 m to 1 km. Other peaks are at 2.7 km (44 nb) and 6km (41 nb), decreasing to 17 nb at the tropopause (12 km). Overall, Sunday low altitude ozone levels are generally lower. Our Sunday ground level ozone data ranges from a low of 25 nb on July 11 to a high of 50 nb on August 1. A combination of wind direction and industrial output variations are likely responsible for the these differences. On July 11, ozone levels decrease slightly from the ground-level values up to 2 km. Above this altitude, significant fluctuations in ozone values ranging from 20 to 40nb occur from 2 to 7 km. These fluctuations inversely correlate with humidity. Relative humidity of 20% corresponding to high ozone and 60% humidity values for low ozone. This probably reflects dilution of ozone with water vapor. In contrast, on August 1 ozone values decrease abruptly at 800 meters to 35 nb with only minor fluctuations with increasing altitude to the tropopause. For both days, the change from ground-level ozone values to the higher altitude patterns correlates with a slight temperature inversion. The Stratospheric ozone also shows a significant contrast on the two days. At 22 km altitude an ozone value of 150 nb is seen on August 1 cf the more typical 110 nb on July 11. The high value seen on August 1 is coincident with a major solar flare. These variations are typical of the range of stratospheric ozone levels seen throughout the year and may be attributable to short-term fluctuations in solar activity.

  17. Stratospheric ozone variations in the equatorial region as seen in Stratiospheric Aerosol and Gas Experiment data

    NASA Technical Reports Server (NTRS)

    Shiotani, Masato; Hasebe, Fumio

    1994-01-01

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric mode and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.

  18. Retrieval of Surface Ozone from UV-MFRSR Irradiances using Deep Learning

    NASA Astrophysics Data System (ADS)

    Chen, M.; Sun, Z.; Davis, J.; Zempila, M.; Liu, C.; Gao, W.

    2017-12-01

    High concentration of surface ozone is harmful to humans and plants. USDA UV-B Monitoring and Research Program (UVMRP) uses Ultraviolet (UV) version of Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) to measure direct, diffuse, and total irradiances every three minutes at seven UV channels (i.e. 300, 305, 311, 317, 325, 332, and 368 nm channels with 2 nm full width at half maximum). Based on the wavelength dependency of aerosol optical depths, there have been plenty of literatures exploring retrieval methods of total column ozone from UV-MFRSR measurements. However, few has explored the retrieval of surface ozone. The total column ozone is the integral of the multiplication of ozone concentration (varying by height and time) and cross section (varying by wavelength and temperature) over height. Because of the distinctive values of ozone cross section in the UV region, the irradiances at seven UV channels have the potential to resolve the ozone concentration at multiple vertical layers. If the UV irradiances at multiple time points are considered together, the uncertainty or the vertical resolution of ozone concentrations can be further improved. In this study, the surface ozone amounts at the UVMRP station located at Billings, Oklahoma are estimated from the adjacent (i.e. within 200 miles) US Environmental Protection Agency (EPA) surface ozone observations using the spatial analysis technique. Then, the (direct normal) irradiances of UVMRP at one or more time points as inputs and the corresponding estimated surface ozone from EPA as outputs are fed into a pre-trained (dense) deep neural network (DNN) to explore the hidden non-linear relationship between them. This process could improve our understanding of their physical/mathematical relationship. Finally, the optimized DNN is tested with the preserved 5% of the dataset, which are not used during training, to verify the relationship.

  19. Rossby-gravity waves in tropical total ozone data

    NASA Technical Reports Server (NTRS)

    Stanford, J. L.; Ziemke, J. R.

    1993-01-01

    Evidence for Rossby-gravity waves in tropical data fields produced by the European Center for Medium Range Weather Forecasts (ECMWF) was recently reported. Similar features are observable in fields of total column ozone from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The observed features are episodic, have zonal (east-west) wavelengths of 6,000-10,000 km, and oscillate with periods of 5-10 days. In accord with simple linear theory, the modes exhibit westward phase progression and eastward group velocity. The significance of finding Rossby-gravity waves in total ozone fields is that (1) the report of similar features in ECMWF tropical fields is corroborated with an independent data set and (2) the TOMS data set is demonstrated to possess surprising versatility and sensitivity to relatively smaller scale tropical phenomena.

  20. Solar UV-B irradiance and total ozone in Italy: Fluctuations and trends

    NASA Astrophysics Data System (ADS)

    Casale, G. R.; Meloni, D.; Miano, S.; Palmieri, S.; Siani, A. M.; Cappellani, F.

    2000-02-01

    Solar UV irradiance spectra (290-325 nm) together with daily total ozone column observations have been collected since 1992 by means of Brewer spectrophotometers at two Italian stations (Rome and Ispra). The available Brewer irradiance data, recorded around noon and at fixed solar zenith angles, together with the output of a radiative transfer model (the STAR model) are presented and analyzed. The Brewer irradiance measurements and total ozone fluctuations and anomalies are investigated, pointing out the correlation between the high-frequency O3 components and irradiance at 305 nm. In addition, the total ozone long time series of Arosa (170 km apart from Ispra) and Vigna di Valle (very close to Rome) are analyzed to illustrate evidence of temporal variations and a possible trend.

  1. Assimilation of Satellite Ozone Observations

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.

    2003-01-01

    This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.

  2. Ozone Bioindicator Gardens: an Educational Tool to Raise Awareness about Environmental Pollution and its Effects on Living Systems

    NASA Astrophysics Data System (ADS)

    Lapina, K.; Lombardozzi, D.

    2014-12-01

    High concentrations of ground-level ozone cause health problems in humans and a number of negative effects on plants, from reduced yield for major agricultural crops to reduced amounts of carbon stored in trees. The Denver Metro/Colorado Front Range is exceeding the National Ambient Air Quality Standard for ozone on a regular basis in summer and the efforts to reduce the ozone levels are hampered by the presence of diverse pollution sources and complex meteorology in the region. To raise public awareness of air quality in the Colorado Front Range and to educate all age groups about ground-level ozone, two ozone bioindicator gardens were planted in Boulder in Spring 2014. The gardens contain ozone-sensitive plants that develop a characteristic ozone injury when exposed to high levels of ozone. The ozone gardens are providing the general public with a real-life demonstration of the negative effects of ozone pollution through observable plant damage. Additionally, the gardens are useful in teaching students how to collect and analyze real-world scientific data.

  3. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    NASA Astrophysics Data System (ADS)

    Wang, T.; Nie, W.; Gao, J.; Xue, L. K.; Gao, X. M.; Wang, X. F.; Qiu, J.; Poon, C. N.; Meinardi, S.; Blake, D.; Ding, A. J.; Chai, F. H.; Zhang, Q. Z.; Wang, W. X.

    2010-05-01

    This paper presents the first results of the atmospheric measurements of trace gases and aerosols at three surface sites in and around Beijing before and during the 2008 Olympics. We focus on secondary pollutants including ozone, fine sulfate and nitrate, and the contribution of regional sources in summer 2008. The results reveal different responses of secondary pollutants to the control measures from primary pollutants. Ambient concentrations of vehicle-related nitrogen oxides (NOx) and volatile organic compounds (VOCs) at an urban site dropped by 25% and 20-45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants) improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions). A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed 34%-88% to the peak ozone concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv), indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2), total sulfur (SO2+PM2.5 sulfate), carbon monoxide (CO), reactive aromatics (toluene and xylenes) sharply decreased (by 8-64%) in 2008, but no significant changes were observed for the concentrations of PM2.5, fine sulfate, total odd reactive nitrogen (NOy), and longer lived alkanes and benzene. We suggest that these results indicate the success of the government's efforts in reducing emissions of SO2, CO, and VOCs in Beijing. However, further control of regional emissions is needed for significant reductions of ozone and fine particulate pollution in Beijing.

  4. Ozone pretreatment of olive mill wastewaters (OMW) and its effect on OMW biochemical methane potential (BMP).

    PubMed

    Tsintavi, E; Pontillo, N; Dareioti, M A; Kornaros, M

    2013-01-01

    The possibility of coupling a physicochemical pretreatment (ozonation) with a biological treatment (anaerobic digestion) was investigated for the case of olive mill wastewaters (OMW). Batch ozonation experiments were performed in a glass bubble reactor. The parameters which were tested included the ozone concentration in the inlet gas stream, the reactor temperature and the composition of the liquid medium in terms of raw or fractionated OMW used. In the sequel, ozone-pretreated OMW samples were tested for their biochemical methane potential (BMP) under mesophilic conditions and these results were compared to the BMP of untreated OMW. The ozonation process alone resulted in a 57-76% decrease of total phenols and a 5-18% decrease of total carbohydrates contained in OMW, depending on the experimental conditions. Nevertheless, the ozone-pretreated OMW exhibited lower chemical oxygen demand removal and methane production during BMP testing compared to the untreated OMW.

  5. The contribution of atmospheric proxies to the vertical distribution of ozone over Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Bahramvash Shams, S.; Walden, V. P.; Oltmans, S. J.; Petropavlovskikh, I. V.; Kivi, R.; Thölix, L.

    2017-12-01

    The current trend and future concentrations of atmospheric ozone are active areas of research as the effect of the Montreal Protocol is realized. The trend of ozone is due to various chemical and dynamical parameters that create, destroy, and transport atmospheric ozone. These important parameters can be represented by different proxies, but their effects on ozone concentration are not completely understood. Previous studies show that proxies related to ozone have different contributions depending on latitude and altitude. In this study, we use vertical profiles of ozone derived from ozonesondes launched by the NOAA Global Monitoring Division at Summit Station, Greenland from 2005 to 2016. The effects of different proxies on ozone are investigated. Summit Station is located at 3,200 meters above sea level on the Greenland Ice Sheet and is a unique place in the Arctic. We use a stepwise multiple regression (MLR) technique to remove the seasonal cycle of ozone and investigate how the different proxies [solar flux (SF), the Quasi-Biennial Oscillation (QBO), the El Nino-Southern Oscillation index (ENSO), the Arctic Oscillation (AO), eddy heat flux (EHF), the volume of polar stratospheric clouds (VPSC), equivalent latitude (EL), and the tropopause pressure (TP)] affect the vertical distribution of ozone over Summit. The MLR is applied separately to total column ozone (TCO) as well as partial ozone columns (PCO) in the troposphere and the lower, middle, and upper stratosphere. Our results show that dynamical processes are important contributors to ozone concentrations over Summit Station. Tropospheric pressure and the QBO are effective predictors of ozone in the troposphere, lower and middle stratosphere, and to the TCO. The VPSC is an important contributor to changes in ozone in the middle stratosphere. AO explains part of low/mid stratospheric and TCO ozone cycle. A simulation model of ozone over Summit built from the MLR results explains the seasonal cycle and the trends in TCO over Summit with a correlation coefficient (R2) of 82% for TCO. Simulations of PCO in the lower and middle stratosphere range from R2 = 62% to 85%.

  6. Multipurpose Spectroradiometer for Satellite Instrument Calibration and Zenith Sky Remote Sensing Measurements

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Ahmad, Zia

    2001-01-01

    In the early 1990s a series of surface-based direct sun and zenith sky measurements of total column ozone were made with SBUV/2 flight models and the SSBUV Space Shuttle instrument in Boulder, Colorado which were compared with NOAA Dobson Instrument direct sun observations and TOMS instrument overpass observations of column ozone. These early measurements led to the investigation of the accuracy of derived total column ozone amounts and aerosol optical depths from zenith sky observations. Following the development and availability of radiometrically stable IAD narrow band interference filter and nitrided silicon photodiodes a simple compact multifilter spectroradiometer was developed which can be used as a calibration transfer standard spectroradiometer (CTSS) or as a surface based instrument remote sensing instruments for measurements of total column ozone and aerosol optical depths. The total column ozone derived from zenith sky observations agrees with Dobson direct sun AD double wavelength pair measurements and with TOMS overpass ozone amounts within uncertainties of about 1%. When used as a calibration transfer standard spectroradiometer the multifilter spectroradiometer appears to be capable of establishing instrument radiometric calibration uncertainties of the order of 1% or less relative to national standards laboratory radiometric standards.

  7. Periodic analysis of total ozone and its vertical distribution

    NASA Technical Reports Server (NTRS)

    Wilcox, R. W.; Nastrom, G. D.; Belmont, A. D.

    1975-01-01

    Both total ozone and vertical distribution ozone data from the period 1957 to 1972 are analyzed. For total ozone, improved monthly zonal means for both hemispheres are computed by weighting individual station monthly means by a factor which compensates for the close grouping of stations in certain regions of latitude bands. Longitudinal variability show maxima in summer in both hemispheres, but, in winter, only in the Northern Hemisphere. The geographical distributions of the long term mean, and the annual, quasibiennial and semiannual waves in total ozone over the Northern Hemisphere are presented. The extratropical amplitude of the annual wave is by far the largest of the three, as much as 120 m atm cm over northern Siberia. There is a tendency for all three waves to have maxima in high latitudes. Monthly means of the vertical distribution of ozone determined from 3 to 8 years of ozonesonde data over North America are presented. Number density is highest in the Arctic near 18 km. The region of maximum number density slopes upward toward 10 N, where the long term mean is 45 x 10 to the 11th power molecules cm/3 near 26 km.

  8. CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR

    EPA Science Inventory

    This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...

  9. Extreme events in total ozone over Arosa - Part 2: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.

    2010-10-01

    In this study the frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone values and their influence on mean values and trends are analyzed for the world's longest total ozone record (Arosa, Switzerland). The results show (i) an increase in ELOs and (ii) a decrease in EHOs during the last decades and (iii) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading of ozone depleting substances leads to a continuous modification of column ozone in the Northern Hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). Application of extreme value theory allows the identification of many more such "fingerprints" than conventional time series analysis of annual and seasonal mean values. The analysis shows in particular the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone. Overall the approach to extremal modelling provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values.

  10. Extreme events in total ozone over Arosa - Part 2: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.

    2010-05-01

    In this study the frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone values and their influence on mean values and trends are analyzed for the world's longest total ozone record (Arosa, Switzerland). The results show (a) an increase in ELOs and (b) a decrease in EHOs during the last decades and (c) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading of ozone depleting substances leads to a continuous modification of column ozone in the Northern Hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). Application of extreme value theory allows the identification of many more such "fingerprints" than conventional time series analysis of annual and seasonal mean values. The analysis shows in particular the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone. Overall the approach to extremal modelling provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values.

  11. A Madden-Julian Oscillation in Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.

    2004-01-01

    This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5- 10 DU peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. The implications of these results are: (1) model values of TCO in the tropical Pacific region, when accounted for the MJO may be highly variable depending upon the phase of the MJO, and (2) MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.

  12. Perspectives on African Ozone from Sondes, Dobson and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Chatfield, R. B.; Diab, R. D.; Thouret, V.; Sauvage, B.

    2004-01-01

    We have been studying variability in ozone over Africa using data from ozonesondes (vertical profiles from surface to stratosphere), aircraft (the MOZAIC dataset with cruise altitude and landing/takeoff profiles) and the ground (Dobson spectrophotometer total ozone column measurement). The following may give context for ozone investigations during AMMA: 1. Total ozone measurements since 1989 show considerable variability in mean value among the African stations in Algeria, Kenya, Egypt, South Africa, as well as in seasonal cycles and year-to-year. Trends are not evident. 2. The impacts of convection, stratospheric injection, biomass burning and lightning appear in ozone sounding profile data. Time-series analysis and case studies point to periodic influences of long-range interactions with the Atlantic ("ozone paradox," wave-one") and Indian Oceans. 3. Tropospheric ozone variations, observed in tropospheric profiles and integrated column amount, follow general seasonal patterns but short- term variability is so strong that simple averages are inadequate for describing "climatology" and statistical classification approaches may be required.

  13. A two-dimensional photochemical model of the atmosphere. I Chlorocarbon emissions and their effect on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Gidel, L. T.; Crutzen, P. J.; Fishman, J.

    1983-01-01

    A two-dimensional photochemical model is used to examine changes to the ozone layer caused by emissions of CFCl3, CF2Cl2, CH3CCl3 and CCl4. The influence of a possible secular increase in tropospheric methane up to 2 percent per year was found to be small, although it acts to mask decreases in total ozone caused by the chlorocarbons. Increasing NO(x) emissions caused by industralization also tend to mask decreases in total ozone and may have caused total ozone to increase by about 1 percent. The model-calculated ozone decreases are estimated to be about 3 percent by 1980. This estimate is higher than estimates by similar models, although it is noted that CCl4 and CH3CCl3 emissions are included in the model in addition to CFCl3 and CF2Cl2. This is significant because the model indicates that CCl4 has dominated the ozone depletions so far, and knowledge of the historical emission rate of CCl4 to the atmosphere is incomplete. There remain sufficient significant disagreements between theoretical and observed concentrations and variabilities, particularly for odd nitrogen and ClO, to caution against assigning too much confidence in the calculated ozone depletion.

  14. Ozone exposure and daily mortality in Mexico City: a time-series analysis.

    PubMed

    Loomis, D P; Borja-Aburto, V H; Bangdiwala, S I; Shy, C M

    1996-10-01

    Daily death counts in Mexico City were examined in relation to ambient ozone levels during 1990-1992 for the purpose of investigating the acute, irreversible effects of air pollution, with emphasis on ozone exposure. Air pollution data were obtained from nine monitoring stations operated by the Departamento del Distrito Federal. Mortality data were provided by the Instituto Nacional de Estadística, Geografía, e Informática. Increases in numbers of deaths were positively associated with elevated air pollution levels on the same day and on the previous day. The magnitude of the increases was small but statistically significant, after Poisson regression models were used to adjust for temperature and long-term trends. In models using data for a single pollutant, the "crude" ratio for total mortality associated with an increase of 100 parts per billion (ppb)* in one-hour maximum ozone concentration was 1.029 (95% CI 1.015, 1.044). A moving average of ozone showed a stronger association (rate ratio [RR] = 1.048, 95% CI 1.025, 1.070), and excess mortality (an increase in the number of deaths, relative to the average on days with low pollution levels) was more evident for persons over 65 years of age. Separate analyses of the effect of elevated ozone for different areas of the city showed similar results, but they were not statistically significant. Other pollutants also were related to mortality. The RR was 1.075 (95% CI 0.984, 1.062) per 100-ppb increase for sulfur dioxide and 1.049 (95% CI 1.030, 1.067) per 100 micrograms/m3 increase in total suspended particulates (TSP) when these pollutants were considered in separate models. However, when all three pollutants were considered simultaneously, only TSP remained associated with mortality, indicating excess mortality of 5% per 100 micrograms/m3 increase [RR = 1.052, 95% CI 1.034, 1.072]. The excess mortality associated with TSP is consistent with that observed in other cities in America and Europe. This study provides some evidence that ozone is associated with all-cause mortality and with mortality among the elderly after controlling for long-term cycles. However, ozone levels exhibited little or no effect on mortality rates when other air pollutants were considered simultaneously. Particulate matter appeared to be an important pollutant; it independently predicted changes in mortality. Nevertheless, because of the complexity and variability of the mixtures to which people are exposed, it is difficult to attribute the observed effects to a single pollutant. The technical feasibility and scientific validity of isolating the effect of single pollutants in such complex mixtures requires further research and careful consideration. Given the large population living in and exposed to ambient air pollution in Mexico City and other metropolises throughout the world, these small but significant associations of mortality with air pollution indices are of public health concern.

  15. Long term changes of tropospheric Nitrogen Dioxide over Pakistan derived from Ozone Monitoring Instrument (OMI) during the time period of October 2004 to December 2014

    NASA Astrophysics Data System (ADS)

    Murtaza, Rabbia; Fahim Khokhar, Muhammad

    2016-07-01

    Urban air pollution is causing huge number of diseases and deaths annually. Nitrogen dioxide is an important component of urban air pollution and a precursor to particulate matter, ground level ozone, and acid rain. The satellite based measurements of nitrogen dioxide from Ozone Monitoring Instrument (OMI) can help in analyzing spatio temporal variability in ground level concentrations within a large urban area. In this study, the spatial and temporal distributions of tropospheric nitrogen dioxide Vertical Column Densities (VCDs) over Pakistan are presented from 2004 to 2014. The results showed that the winter season is having high nitrogen dioxide levels as compared to summers. The increase can be attributed to the anthropogenic activities especially thermal power generation and traffic count. Punjab is one of the major provinces with high nitrogen dioxide levels followed by Sindh, Khyber Pakhtunkhwa and Balochistan. Six hotspots have been examined in the present study such as Lahore, Islamabad, Karachi, Faisalabad, Okara and Multan. Emissions of nitrogen compounds from thermal power plants and transportation sector represent a significant fraction of the total nitrogen dioxide emissions to the atmosphere.

  16. Links between extreme UV-radiation, total ozone, surface albedo and cloudiness: An analysis of 30 years of data from Switzerland and Austria

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Weihs, P.; Vuilleumier, L.; Blumthaler, M.; Holawe, F.; Lindfors, A.; Maeder, J. A.; Simic, S.; Wagner, J. E.; Walker, D.; Ribatet, M.

    2009-04-01

    Since the discovery of anthropogenic ozone depletion in the early 1970s (e.g. Molina and Rowland, 1974; Farman et al., 1985) the interest in stratospheric ozone trends and solar UV-B increased within the scientific community and the general public because of the link between reduced total column ozone and increased UV-radiation doses. Stratospheric ozone (e.g. Koch et al., 2005) and erythemal UV-radiation (e.g. Rieder et al., 2008) in the northern mid-latitudes are characterized by strong temporal variability. Long-term measurements of UV-B radiation are rare and datasets are only available for few locations and most of these measurements do not provide spectral information on the UV part of the spectra. During strong efforts in the reconstruction of erythemal UV, datasets of past UV-radiation doses became available for several measurement sites all over the globe. For Switzerland and Austria reconstructed UV datasets are available for 3 measurement sites (Davos, Sonnblick and Vienna) (Lindfors and Vuilleumier, 2005; Rieder et al., 2008). The world's longest ozone time series dating back to 1926 is available from Arosa, Switzerland, and is discussed in detail by Staehelin et al. (1998a,b). Recently new tools from extreme value theory have been applied to the Arosa time series to describe extreme events in low and high total ozone (Rieder et al., 2009). In our study we address the question of how much of the extremes in UV-radiation can be attributed to extremes in total ozone, high surface albedo and cloudiness. An analysis of the frequency distributions of such extreme events for the last decades is presented to gain a better understanding of the links between extreme erythemal UV-radiation, total ozone, surface albedo and clouds. References: Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207-210, 1985. Koch, G., Wernli, H., Schwierz, C., Staehelin, J., and Peter, T.: A composite study on the structure and formation of ozone miniholes and minihights over central Europe, J. Geophys. Res., 32, doi:10.1029/2004GL022062, 2005. Lindfors, A., and Vuilleumier, L.: Erythemal UV at Davos (Switzerland), 1926-2003, estimated using total ozone, sunshine duration, and snow depth, J. Geophys. Res., 110, D02104, doi:10.1029/2004JD005231, 2005. Molina, M. J., and Rowland, F. S.: Stratospheric sink for chlorofluoromethans: Chlorine atom-catalysed destruction of ozone, Nature, 249, 810-812, 1974. Rieder, H.E., Holawe, F., Simic, S., Blumthaler, M., Krzyscin, J.W., Wagner J.E., Schmalwieser A.W., and Weihs, P.: Reconstruction of erythemal UV-doses for two stations in Austria: A comparison between alpine and urban regions, Atmos. Chem. Phys., 8, 6309-6323, 2008. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.

  17. THE EMERGING RELATIONSHIP BETWEEN GROUND LEVEL OZONE AND LANDSCAPE CHARACTERISTICS

    EPA Science Inventory

    One of the most serious environmental health problems facing our society is that of poor air quality caused primarily by the formation of ground level ozone. Although natural ozone is beneficial in the upper atmosphere as a filter for ultraviolet radiation, ground- level ozone is...

  18. Ozone Observations using Ozonesonde over the Himalaya from Pokhara, Nepal.

    NASA Astrophysics Data System (ADS)

    Dhungel, S.; Cullis, P.; Johnson, B.; Thompson, A. M.; Witte, J. C.; Panday, A. K.

    2016-12-01

    In recent years, transport of emissions from the Indo-Gangetic Plains (IGP), which covers parts of Pakistan, Nepal, India, Bangladesh has increased. Ozone pre-cursors like methane, nitrogen oxides, volatile organic carbons, and carbon monoxide from diesel based vehicular emission, biofuel and biomass burning, agricultural activities dominate the total emissions from the IGP. Synoptic circulation patterns along with local weather systems transport pollutants from the IGP up the Himalayan valleys to the Tibetan plateau. After being emitted, these pollutants are photochemically converted into tropospheric ozone - a short-lived climate pollutant that can increase atmospheric warming, alter processes of cloud formation, and in turn, influence precipitation levels and reduce carbon absorptivity in plants leading to decline in crop yields. However, little is known about vertical profiles of ozone concentration on the southern slopes of the Himalaya. Vertical ozone profiles were sampled from December 18th, 2015 to January 8th, 2016 from Pokhara (28.23°N, 83.99°E, 827m asl), Nepal using ozonesondes. Pokhara is located about 30km south of the Annapurna Himalaya, thus providing an ideal location to profile vertical ozone concentration south of the Himalaya. We launched one, two or four ozonesondes per day to examine the vertical resolution of ozone south of the Himalaya for the first time, and to understand the contribution of tropospheric and stratospheric sources. Here we present results from the 37 ozonesonde launches from Pokhara to examine: (i) how emissions from the IGP contribute to the vertical resolution of ozone, and (ii) if Himalayan orography provides an efficient path for stratosphere-troposphere air mass exchange under dry conditions. Our results show no signals of stratospheric air mass exchange. The results indicate higher levels of ozone within the boundary layer and lower troposphere. These higher values in the lower troposphere during winter seasons may be a result of longer residence times of the air mass resulting in photochemical build-up despite reduced insolation. Our observations are also essential to help infer ozone trends near the Himalaya, where there is currently inadequate spatial and temporal data coverage.

  19. Seasonal ozone levels and control by seasonal meteorology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagnotti, V.

    1990-02-01

    Meteorological data, particularly 850-MB level temperatures, for Fort Totten, New York (1980) and Atlantic City, New Jersey (1981-1988) were examined for any relationship to seasonal ozone levels. Other radiosonde stations in the Northeast were utilized for 1983 and 1986, years of widely differing ozone levels. Statistics for selected parameters and years are presented. Emphasis is placed on recurring warm temperature regimes in high ozone years. Successive occurrences or episodes of high temperatures characterize seasonally high ozone years. Seasonally persistent high temperatures are related to seasonally chronic high ozone. An example is presented relating the broad-scale climatologically anomalous pattern of highmore » temperatures to anomalous circulation patterns at the 700-MB level.« less

  20. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    PubMed

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  1. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica

    PubMed Central

    Singh, Jaswant; Singh, Rudra P.

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743

  2. Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity.

    PubMed

    Moreira, Nuno F F; Sousa, José M; Macedo, Gonçalo; Ribeiro, Ana R; Barreiros, Luisa; Pedrosa, Marta; Faria, Joaquim L; Pereira, M Fernando R; Castro-Silva, Sérgio; Segundo, Marcela A; Manaia, Célia M; Nunes, Olga C; Silva, Adrián M T

    2016-05-01

    Photocatalytic ozonation was employed for the first time in continuous mode with TiO2-coated glass Raschig rings and light emitting diodes (LEDs) to treat urban wastewater as well as surface water collected from the supply area of a drinking water treatment plant (DWTP). Different levels of contamination and types of contaminants were considered in this work, including chemical priority substances (PSs) and contaminants of emerging concern (CECs), as well as potential human opportunistic antibiotic resistant bacteria and their genes (ARB&ARG). Photocatalytic ozonation was more effective than single ozonation (or even than TiO2 catalytic ozonation) in the degradation of typical reaction by-products (such as oxalic acid), and more effective than photocatalysis to remove the parent micropollutants determined in urban wastewater. In fact, only fluoxetine, clarithromycin, erythromycin and 17-alpha-ethinylestradiol (EE2) were detected after photocatalytic ozonation, by using solid-phase extraction (SPE) pre-concentration and LC-MS/MS analysis. In surface water, this treatment allowed the removal of all determined micropollutants to levels below the limit of detection (0.01-0.20 ng L(-1)). The efficiency of this process was then assessed based on the capacity to remove different groups of cultivable microorganisms and housekeeping (16S rRNA) and antibiotic resistance or related genes (intI1, blaTEM, qnrS, sul1). Photocatalytic ozonation was observed to efficiently remove microorganisms and ARGs. Although after storage total heterotrophic and ARB (to ciprofloxacin, gentamicin, meropenem), fungi, and the genes 16S rRNA and intI1, increased to values close to the pre-treatment levels, the ARGs (blaTEM, qnrS and sul1) were reduced to levels below/close to the quantification limit even after 3-days storage of treated surface water or wastewater. Yeast estrogen screen (YES), thiazolyl blue tetrazolium reduction (MTT) and lactate dehydrogenase (LDH) assays were also performed before and after photocatalytic ozonation to evaluate the potential estrogenic activity, the cellular metabolic activity and the cell viability. Compounds with estrogenic effects and significant differences concerning cell viability were not observed in any case. A slight cytotoxicity was only detected for Caco-2 and hCMEC/D3 cell lines after treatment of the urban wastewater, but not for L929 fibroblasts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The influence of changing UVB radiation in near-surface ozone time series

    NASA Astrophysics Data System (ADS)

    BröNnimann, Stefan; Voigt, Stefan; Wanner, Heinz

    2000-04-01

    UVB radiation plays an important role in tropospheric photochemistry since it determines the rate of ozone photolysis J(O1D) and subsequent formation of OH radicals. Consequently, changes of UVB radiation, for example due to changes of the stratospheric ozone amount, could alter the concentration of reactive tropospheric gases including ozone. An observation-based attempt is made to quantify the effect of changing UVB radiation on surface ozone peaks on a day-to-day scale using a time series of measurements at a Swiss mountain site. Seven years data of ozone, NO, NOx, and meteorological measurements from Chaumont (1140 m above sea level (asl)), total ozone and UVB measurements from Arosa (1847 m asl), and surface albedo from satellite observations are investigated. The study is restricted to fair weather days with moderately high NOx concentrations. Multiple regression analysis is performed using chemical, meteorological, and UV dependent variables to predict afternoon ozone peaks. From autumn to spring, positive deviations of ozone peaks are clearly connected with positive UVB deviations. The relation is statistically significant only in part of the seasonal data subsets; however, it is consistent with model studies. The estimated net effect on ozone peaks is normally within a range of 4 ppb, a range of about 6 ppb is predicted for large UVB changes. Applying the coefficients for the large interannual variability of the stratospheric ozone layer observed in spring in the last 10 years results in a range of variation of at most 1 to 1.5 ppb for monthly mean ozone peaks. For trends of J(O1D) from 1970 to 1990, a trend bias of surface ozone peaks on polluted fair weather days of less than 0.12 ppb/yr is calculated. Although the numbers are rather small, they may play a role in certain circumstances.

  4. Removal of geosmin and 2-methylisoborneol by biological filtration.

    PubMed

    Elhadi, S L N; Huck, P M; Slawson, R M

    2004-01-01

    The quality of drinking water is sometimes diminished by the presence of certain compounds that can impart particular tastes or odours. One of the most common and problematic types of taste and odour is the earthy/musty odour produced by geosmin (trans-1, 10-dimethyl-trans-9-decalol) and MIB (2-methylisoborneol). Taste and odour treatment processes including powdered activated carbon, and oxidation using chlorine, chloramines, potassium permanganate, and sometimes even ozone are largely ineffective for reducing these compounds to below their odour threshold concentration levels. Ozonation followed by biological filtration, however, has the potential to provide effective treatment. Ozone provides partial removal of geosmin and MIB but also creates other compounds more amenable to biodegradation and potentially undesirable biological instability. Subsequent biofiltration can remove residual geosmin and MIB in addition to removing these other biodegradable compounds. Bench scale experiments were conducted using two parallel filter columns containing fresh and exhausted granular activated carbon (GAC) media and sand. Source water consisted of dechlorinated tap water to which geosmin and MIB were added, as well as, a cocktail of easily biodegradable organic matter (i.e. typical ozonation by-products) in order to simulate water that had been subjected to ozonation prior to filtration. Using fresh GAC, total removals of geosmin ranged from 76 to 100% and total MIB removals ranged from 47% to 100%. The exhausted GAC initially removed less geosmin and MIB but removals increased over time. Overall the results of these experiments are encouraging for the use of biofiltration following ozonation as a means of geosmin and MIB removal. These results provide important information with respect to the role biofilters play during their startup phase in the reduction of these particular compounds. In addition, the results demonstrate the potential biofilters have in responding to transient geosmin and MIB episodes.

  5. Status of the Dobson total ozone data set

    NASA Technical Reports Server (NTRS)

    Planet, Walter G.; Hudson, Robert D.

    1994-01-01

    During deliberations of the International Ozone Trends Panel (IOTP) it became obvious that satellite determinations of global ozone amounts by themselves could not provide the necessary confidence in the measured trends. During the time of the deliberations of the IOTP, Bojkov re-examined the records of serveral North American Dobson stations and Degorska re-examined the records of the Belsk station. They were able to improve the quality of the data sets, thus improving the precision of their total ozone data sets. These improvements showed the greater potential of the world-wide Dobson total ozone data set in two primary areas. Firstly, the improvements showed that the existing data set when evaluated will become more valuable for comparisons with satellite determinations of total ozone. Secondly, the Dobson data set covers a greater period of time than the satellite data sets thus offering the possibility of extending improved information on ozone trends further back in time. An International Dobson Workshop was convened in September, 1991, under the auspices of the NOAA Climate and Global Change Program. It was part of the Information Management element of the C&GC Program. Further, it was considered as a 'data archaeology' project under the above. Clearly if the existing Dobson data set can be improved by re-evaluating all data records, we will be able to uncover the 'true' or 'best' data and fulfill the role of archaeologists.

  6. Ozone Climatological Profiles for Version 8 TOMS and SBUV Retrievals

    NASA Technical Reports Server (NTRS)

    McPeters, R. D.; Logan, J. A.; Labow, G. J.

    2003-01-01

    A new altitude dependent ozone climatology has been produced for use with the latest Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter Ultraviolet (SBUV) retrieval algorithms. The climatology consists of monthly average profiles for ten degree latitude zones covering from 0 to 60 km. The climatology was formed by combining data from SAGE II (1988 to 2000) and MLS (1991-1999) with data from balloon sondes (1988-2002). Ozone below about 20 km is based on balloons sondes, while ozone above 30 km is based on satellite measurements. The profiles join smoothly between 20 and 30 km. The ozone climatology in the southern hemisphere and tropics has been greatly enhanced in recent years by the addition of balloon sonde stations under the SHADOZ (Southern Hemisphere Additional Ozonesondes) program. A major source of error in the TOMS and SBUV retrieval of total column ozone comes from their reduced sensitivity to ozone in the lower troposphere. An accurate climatology for the retrieval a priori is important for reducing this error on the average. The new climatology follows the seasonal behavior of tropospheric ozone and reflects its hemispheric asymmetry. Comparisons of TOMS version 8 ozone with ground stations show an improvement due in part to the new climatology.

  7. Estimating Uncertainty in Long Term Total Ozone Records from Multiple Sources

    NASA Technical Reports Server (NTRS)

    Frith, Stacey M.; Stolarski, Richard S.; Kramarova, Natalya; McPeters, Richard D.

    2014-01-01

    Total ozone measurements derived from the TOMS and SBUV backscattered solar UV instrument series cover the period from late 1978 to the present. As the SBUV series of instruments comes to an end, we look to the 10 years of data from the AURA Ozone Monitoring Instrument (OMI) and two years of data from the Ozone Mapping Profiler Suite (OMPS) on board the Suomi National Polar-orbiting Partnership satellite to continue the record. When combining these records to construct a single long-term data set for analysis we must estimate the uncertainty in the record resulting from potential biases and drifts in the individual measurement records. In this study we present a Monte Carlo analysis used to estimate uncertainties in the Merged Ozone Dataset (MOD), constructed from the Version 8.6 SBUV2 series of instruments. We extend this analysis to incorporate OMI and OMPS total ozone data into the record and investigate the impact of multiple overlapping measurements on the estimated error. We also present an updated column ozone trend analysis and compare the size of statistical error (error from variability not explained by our linear regression model) to that from instrument uncertainty.

  8. Management of Chronic Periodontitis Using Subgingival Irrigation of Ozonized Water: A Clinical and Microbiological Study.

    PubMed

    Issac, Annie V; Mathew, Jayan Jacob; Ambooken, Majo; Kachappilly, Arun Jose; Pk, Ajithkumar; Johny, Thomas; Vk, Linith; Samuel, Anju

    2015-08-01

    Adjunctive use of professional subgingival irrigation with scaling and root planing (SRP) has been found to be beneficial in eradicating the residual microorganisms in the pocket. To evaluate the effect of ozonized water subgingival irrigation on microbiologic parameters and clinical parameters namely Gingival index, probing pocket depth, and clinical attachment level. Thirty chronic periodontitis patients with probing pocket depth ≥6mm on at least one tooth on contra lateral sides of opposite arches were included in the study. The test sites were subjected to ozonized water subgingival irrigation with subgingival irrigation device fitted with a modified subgingival tip. Control sites were subjected to scaling and root planing only. The following clinical parameters were recorded initially and after 4 weeks at the test sites and control sites. Plaque Index, Gingival Index, probing pocket depth, clinical attachment level. Microbiologic sampling was done for the test at the baseline, after scaling, immediately after ozonized water subgingival irrigation and after 4 weeks. In control sites microbiologic sampling was done at the baseline, after scaling and after 4 weeks. The following observations were made after 4 weeks. The results were statistically analysed using independent t-test and paired t-test. Test sites showed a greater reduction in pocket depth and gain in clinical attachment compared to control sites. The total anaerobic counts were significantly reduced by ozonized water subgingival irrigation along with SRP compared to SRP alone. Ozonized water subgingival irrigation can improve the clinical and microbiological parameters in patients with chronic periodontitis when used as an adjunct to scaling and root planing.

  9. Photochemical Grid Modelling Study to Assess Potential Air Quality Impacts Associated with Energy Development in Colorado and Northern New Mexico.

    NASA Astrophysics Data System (ADS)

    Parker, L. K.; Morris, R. E.; Zapert, J.; Cook, F.; Koo, B.; Rasmussen, D.; Jung, J.; Grant, J.; Johnson, J.; Shah, T.; Pavlovic, T.

    2015-12-01

    The Colorado Air Resource Management Modeling Study (CARMMS) was funded by the Bureau of Land Management (BLM) to predict the impacts from future federal and non-federal energy development in Colorado and Northern New Mexico. The study used the Comprehensive Air Quality Model with extensions (CAMx) photochemical grid model (PGM) to quantify potential impacts from energy development from BLM field office planning areas. CAMx source apportionment technology was used to track the impacts from multiple (14) different emissions source regions (i.e. field office areas) within one simulation, as well as to assess the cumulative impact of emissions from all source regions combined. The energy development emissions estimates were for the year 2021 for three different development scenarios: (1) low; (2) high; (3) high with emissions mitigation. Impacts on air quality (AQ) including ozone, PM2.5, PM10, NO2, SO2, and air quality related values (AQRVs) such as atmospheric deposition, regional haze and changes in Acid Neutralizing Capacity (ANC) of lakes were quantified, and compared to establish threshold levels. In this presentation, we present a brief summary of the how the emission scenarios were developed, we compare the emission totals for each scenario, and then focus on the ozone impacts for each scenario to assess: (1). the difference in potential ozone impacts under the different development scenarios and (2). to establish the sensitivity of the ozone impacts to different emissions levels. Region-wide ozone impacts will be presented as well as impacts at specific locations with ozone monitors.

  10. Condition of The Stratospheric and Mesospheric Ozone Layer Over Bulgaria for the Period 1996-2012

    NASA Astrophysics Data System (ADS)

    Kaleyna, Petya; Mukhtarov, Plamen; Miloshev, Nikolay

    2014-05-01

    A detailed analysis of the variations of the stratospheric and mesospheric ozone over Bulgaria, in the period 1996-2012, is presented in the article on the basis of ground and satellite measurements of the Total Ozone Content (TOC). The move of the most important components: yearly running mean values, amplitudes and phases of the first four harmonics of the seasonal cycle. Their mean values for the period and the existing long term trends have been found. An evaluation of the general characteristics of the short term variability of the Total Ozone Content (TOC) over Bulgaria also has been made in the article. The impact of the planetary wave activity of the stratosphere on the total ozone has been studied and the climatology of the oscillation amplitudes with periods of 4, 7, 11 and 25 days has been defined.

  11. Brewer spectrometer total ozone column measurements in Sodankylä

    NASA Astrophysics Data System (ADS)

    Karppinen, Tomi; Lakkala, Kaisa; Karhu, Juha M.; Heikkinen, Pauli; Kivi, Rigel; Kyrö, Esko

    2016-06-01

    Brewer total ozone column measurements started in Sodankylä in May 1988, 9 months after the signing of The Montreal Protocol. The Brewer instrument has been well maintained and frequently calibrated since then to produce a high-quality ozone time series now spanning more than 25 years. The data have now been uniformly reprocessed between 1988 and 2014. The quality of the data has been assured by automatic data rejection rules as well as by manual checking. Daily mean values calculated from the highest-quality direct sun measurements are available 77 % of time with up to 75 measurements per day on clear days. Zenith sky measurements fill another 14 % of the time series and winter months are sparsely covered by moon measurements. The time series provides information to survey the evolution of Arctic ozone layer and can be used as a reference point for assessing other total ozone column measurement practices.

  12. Changes in respiration, photosynthesis, adenosine 5'-triphosphate, and total adenylate content of ozonated pinto bean foliage as they relate to symptom expression.

    PubMed

    Pell, E J; Brennan, E

    1973-02-01

    The effect of 0.25 to 0.30 microliter per liter ozone on photosynthesis and respiration and on the ATP and total adenylate content of the primary leaves of pinto beans (Phaseolus vulgaris L.) was examined. Changes in these parameters over a 72-hour time period were correlated with the development of symptoms of ozone toxicity. Toxicity symptoms normally appeared within 24 hours. The content of ATP and total adenylates increased immediately following a 3-hour exposure to ozone. Photosynthesis was depressed initially, but returned to normal within 24 hours. Respiration was not always altered initially, but it was significantly stimulated within 24 hours. We interpret the results to mean that the changes in adenylate content and photosynthesis are early events in the initiation of ozone damage and that the change in respiration is a consequence rather than a cause of cellular injury.

  13. Carrot injury and yield response to ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J.P.; Oshima, R.J.

    1976-11-01

    Container-grown plants of carrot (Daucus carota L.) exposed intermittently to 0.19 or 0.25 ppm ozone throughout their growth increased in plant height and total number of leaves in spite of the development of chlorotic leaves. Leaf dry weight was unaffected by ozone, but root dry matter decreased 32 to 46%. As a result, the root weight/total dry weight ration and root/shoot ratio declined significantly in the presence of ozone. A regression of root dry weight on chlorotic lead dry weight explained 35% of the root loss and predicted that 1.5 g of root tissue is lost for every g ofmore » chlorotic leaf dry weight casued by ozone injury.« less

  14. Convective storms and non-classical low-level jets during high ozone level episodes in the Amazon region: An ARM/GOAMAZON case study

    NASA Astrophysics Data System (ADS)

    Dias-Junior, Cléo Q.; Dias, Nelson Luís; Fuentes, José D.; Chamecki, Marcelo

    2017-04-01

    In this work, we investigate the ozone dynamics during the occurrence of both downdrafts associated with mesoscale convective storms and non-classical low-level jets. Extensive data sets, comprised of air chemistry and meteorological observations made in the Amazon region of Brazil over the course of 2014-15, are analyzed to address several questions. A first objective is to investigate the atmospheric thermodynamic and dynamic conditions associated with storm-generated ozone enhancements in the Amazon region. A second objective is to determine the magnitude and the frequency of ground-level ozone enhancements related to low-level jets. Ozone enhancements are analyzed as a function of wind shear, low-level jet maximum wind speed, and altitude of jet core. Strong and sudden increases in ozone levels are associated with simultaneous changes in variables such as horizontal wind speed, convective available potential energy, turbulence intensity and vertical velocity skewness. Rapid increases in vertical velocity skewness give support to the hypothesis that the ozone enhancements are directly related to downdrafts. Low-level jets associated with advancing density currents are often present during and after storm downdrafts that transport ozone-enriched air from aloft to the surface.

  15. Regional and global modeling estimates of policy relevant background ozone over the United States

    NASA Astrophysics Data System (ADS)

    Emery, Christopher; Jung, Jaegun; Downey, Nicole; Johnson, Jeremiah; Jimenez, Michele; Yarwood, Greg; Morris, Ralph

    2012-02-01

    Policy Relevant Background (PRB) ozone, as defined by the US Environmental Protection Agency (EPA), refers to ozone concentrations that would occur in the absence of all North American anthropogenic emissions. PRB enters into the calculation of health risk benefits, and as the US ozone standard approaches background levels, PRB is increasingly important in determining the feasibility and cost of compliance. As PRB is a hypothetical construct, modeling is a necessary tool. Since 2006 EPA has relied on global modeling to establish PRB for their regulatory analyses. Recent assessments with higher resolution global models exhibit improved agreement with remote observations and modest upward shifts in PRB estimates. This paper shifts the paradigm to a regional model (CAMx) run at 12 km resolution, for which North American boundary conditions were provided by a low-resolution version of the GEOS-Chem global model. We conducted a comprehensive model inter-comparison, from which we elucidate differences in predictive performance against ozone observations and differences in temporal and spatial background variability over the US. In general, CAMx performed better in replicating observations at remote monitoring sites, and performance remained better at higher concentrations. While spring and summer mean PRB predicted by GEOS-Chem ranged 20-45 ppb, CAMx predicted PRB ranged 25-50 ppb and reached well over 60 ppb in the west due to event-oriented phenomena such as stratospheric intrusion and wildfires. CAMx showed a higher correlation between modeled PRB and total observed ozone, which is significant for health risk assessments. A case study during April 2006 suggests that stratospheric exchange of ozone is underestimated in both models on an event basis. We conclude that wildfires, lightning NO x and stratospheric intrusions contribute a significant level of uncertainty in estimating PRB, and that PRB will require careful consideration in the ozone standard setting process.

  16. Depletions in winter total ozone values over southern England

    NASA Technical Reports Server (NTRS)

    Lapworth, A.

    1994-01-01

    A study has been made of the recently re-evaluated time series of daily total ozone values for the period 1979 to 1992 for southern England. The series consists of measurements made at two stations, Bracknell and Camborne. The series shows a steady decline in ozone values in the spring months over the period, and this is consistent with data from an earlier decade that has been published but not re-evaluated. Of exceptional note is the monthly mean for January 1992 which was very significantly reduced from the normal value, and was the lowest so far measured for this month. This winter was also noteworthy for a prolonged period during which a blocking anticyclone dominated the region, and the possibility existed that this was related to the ozone anomaly. It was possible to determine whether the origin of the low ozone value lay in ascending stratospheric motions. A linear regression analysis of ozone value deviation against 100hPa temperature deviations was used to reduce ozone values to those expected in the absence of high pressure. The assumption was made that the normal regression relation was not affected by atmospheric anomalies during the winter. This showed that vertical motions in the stratosphere only accounted for part of the ozone anomaly and that the main cause of the ozone deficit lay either in a reduced stratospheric circulation to which the anticyclone may be related or in chemical effects in the reduced stratospheric temperatures above the high pressure area. A study of the ozone time series adjusted to remove variations correlated with meteorological quantities, showed that during the period since 1979, one other winter, that of 1982/3, showed a similar although less well defined deficit in total ozone values.

  17. Total Ozone Observations at Arosa (Switzerland) by Dobson and Brewer: Temperature and Ozone Slant Path Effect

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Groebner, J.

    2008-12-01

    Dobson and Brewer spectrophotometers are the main ground based instruments used to monitor the ozone layer. Early total ozone (TOZ) measurements were made primarily with Dobson instruments; however, there has been a trend over the last years to replace them by the newer, more advanced Brewer spectrophotometer. Given this transition, it is of utmost importance to assure the homogeneity of the data taken with these two distinct instruments types if total ozone (TOZ) changes over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of few percentage from Brewer and Dobson spectrophotometers measurements at mid-latitudes. At Arosa (Switzerland), two Dobson and three Brewers instruments have been co-located since 1998, producing a unique dataset of quasi-simultaneous observations valuable for the study of systematic differences between these measurements. The differences can be at least partially attributed to seasonal variability in the atmospheric temperature and the ozone slant path. The effective temperature sensitivity of the ozone cross section has been calculated using different reference spectra, at high and low resolution, weighting of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. If one takes into account the temperature dependence of the [Bass, 1985] ozone absorption spectra (current remote sensing standard) and the ozone slant path effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced from an amplitude of about 2% to less than 0.5%. The use of different ozone laboratory spectra yields different results in retrieved TOZ, because of the sensitivity of the retrieval algorithms and uncertainties in the experimental ozone cross section measurements.

  18. Temperature And Bandwidth Effect in Brewer and Dobson Direct Sun Observations

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Stuebi, R.

    2007-12-01

    Dobson and Brewer spectrophotometer are the main instruments to monitor the ozone shield by ground based observations, and they have an important role for validation of ozone satellite data. Ground based total ozone observations from Brewer and Dobson spectrophotometers, operated at mid-latitudes stations, typically show a seasonal bias in the residual with a amplitude of a few percent. Mid-latitude total ozone trends caused by ozone depleting substances are on the order of few percents per decade. Therefore, only a maximum instrumental shift of 1% over the measured period can be tolerated for measurements to derive reliable trends. At Arosa two Dobson and three Brewers instruments have been co-located since 1992, producing a unique data set of quasi-simultaneous observations that is valuable for the study of systematic differences within the measurements. The differences can be at least partially attributed to the different sensitivities of the wavelengths used in the retrieval algorithms. This might explain different column ozone as a consequence of seasonal variability, mainly, in temperature in the lower stratosphere and in ozone slant path. The temperature dependence has been calculated using three different absorption spectra (Bass and Paur, Daumont and those used in the GOME satellite), weighing of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. The seasonal bias between Dobson and Brewer total ozone measurements is reduced from 3% to 1%, if one takes into account the temperature dependence of the Bass and Paur absorptions spectra and the ozone slant path effect. The accuracy and the resolution step of the experimental data of ozone cross sections have an important role. The ozone cross section must be convoluted for the slits functions that can vary from one instrument to an other, therefore the different spectra yield different results.

  19. Reconstruction of erythemal UV irradiance at Hohenpeissenberg (1968-2001) considering trends of total ozone, cloudiness, and turbidity

    NASA Astrophysics Data System (ADS)

    Trepte, S.; Winkler, P.

    2003-04-01

    The global mean total column ozone amount for the period 1997-2001 was approximately 3% below the 1964-1980 average. The largest ozone decreases in the northern hemisphere midlatitudes are observed during winter-spring (˜4%), with summer-autumn decreases approximately half as large. Total ozone measured at Hohenpeissenberg, Germany (48^oN, 11^oE) shows a strong decrease by about 10% since 1968, representing the long-term downward trend over Central Europe. The main consequence of this phenomenon is the expected increase of solar ultraviolet irradiation (UV-B) reaching the Earth's surface with the known harmful effects on the biosphere. Global data records of reliable routine observations of UV irradiance are still too short for accurate estimation of long-term UV variations and trends. While direct UV mesaurements at Hohenpeissenberg are available only since 1990, the long-term development of UV-B have to be reconstructed. Besides on the amount of total ozone the UV irradiation at the ground depends also on atmospheric turbidity and cloudiness. The reconstruction method is based on statistical correlations of measured UV-B data with the influencing parameters total ozone, turbidity and cloud modification factors derived from eye-observations in connection with total solar irradiance data. These observed data allow a realistic reconstruction of the UV-B time series, since no assumption on these influencing data have to be made. A model is presented, using hourly observed spectral UV-B irradiance (1990-1998), total solar irradiance, total ozone amount (daily mean) and clouds to derive erythemal UV irradiance and daily doses at Hohenpeissenberg in the period 1968-2001. A comparison with recorded UV data shows good agreement. Due to long-term total ozone loss, peak values of erythemal UV irradiance in spring and summer at clear-sky conditions have strongly increased (+4.2%/decade in June). Mean daily doses have also increased in this season (+5.4%/decade in May) but meteorological changes like reduced sunshine duration and increased cloudiness lead to a partly compensation of the ozone-loss effect in spring and to an overcompensation in autumn, where we found a long-term decrease of the daily dose (-3.0%/decade in September). Model calculations also demonstrate large year-to-year fluctuations of UV doses induced by meteorological variability, which exceed the long-term trend of the various months significantly. Nevertheless, this investigation has shown that on a long-term time scale the daily doses develop in a different way as compared to the peak values because the reasons for ozone decline (anthropogenic CFC's) and the cloud cover (hydrological cycle changes due to greenhouse effect) are caused by different phenomena.

  20. Stratospheric ozone variations in the equatorial region as seen in Stratiospheric Aerosol and Gas Experiment data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiotani, M.; Hasebe, F.

    1994-07-01

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric modemore » and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.« less

  1. Stratospheric ozone variations in the equatorial region as seen in Stratospheric and Gas Experiment data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masato Shiotani; Fumio Hasebe

    1994-07-20

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric modemore » and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time. 28 refs., 13 figs.« less

  2. The Impact of Withholding Observations from TOMS or SBUV Instruments on the GEOS Ozone Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Stajner, Ovanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    In a data assimilation system (DAS), model forecast atmospheric fields, observations and their respective statistics are combined in an attempt to produce the best estimate of these fields. Ozone observations from two instruments are assimilated in the Goddard Earth Observing System (GEOS) ozone DAS: the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) instrument. The assimilated observations are complementary; TOMS provides a global daily coverage of total column ozone, without profile information, while SBUV measures ozone profiles and total column ozone at nadir only. The purpose of this paper is to examine the performance of the ozone assimilation system in the absence of observations from one of the instruments as it can happen in the event of a failure of an instrument or when there are problems with an instrument for a limited time. Our primary concern is for the performance of the GEOS ozone DAS when it is used in the operational mode to provide near real time analyzed ozone fields in support of instruments on the Terra satellite. In addition, we are planning to produce a longer term ozone record by assimilating historical data. We want to quantify the differences in the assimilated ozone fields that are caused by the changes in the TOMS or SBUV observing network. Our primary interest is in long term and large scale features visible in global statistics of analysis fields, such as differences in the zonal mean of assimilated ozone fields or comparisons with independent observations, While some drifts in assimilated fields occur immediately, after assimilating just one day of different observations, the others develop slowly over several months. Thus, we are also interested in the length of time, which is determined from time series, that is needed for significant changes to take place.

  3. Effect of gaseous ozone treatments on DON, microbial contaminants and technological parameters of wheat and semolina.

    PubMed

    Piemontese, Luca; Messia, Maria Cristina; Marconi, Emanuele; Falasca, Luisa; Zivoli, Rosanna; Gambacorta, Lucia; Perrone, Giancarlo; Solfrizzo, Michele

    2018-04-01

    Deoxynivalenol (DON) is an important mycotoxin produced by several species of Fusarium. It occurs often in wheat grain and is frequently associated with significant levels of its modified form DON-3-glucoside (DON-3-Glc). Ozone (O 3 ) is a powerful disinfectant and oxidant, classified as GRAS (Generally Recognised As Safe), that reacts easily with specific compounds including the mycotoxins aflatoxins, ochratoxin A, trichothecenes and zearalenone. It degrades DON in aqueous solution and can be effective for decontamination of grain. This study reports the efficacy of gaseous ozone treatments in reducing DON, DON-3-Glc, bacteria, fungi and yeasts in naturally contaminated durum wheat. A prototype was used to dispense ozone continuously and homogeneously at different concentrations and exposure time, in 2 kg aliquots of durum wheat. The optimal conditions, which do not affect chemical and rheological parameters of durum wheat, semolina and pasta, were identified (55 g O 3  h -1 for 6 h). The measured mean reductions of DON and DON-3-Glc in ozonated wheat were 29% and 44%, respectively. Ozonation also produced a significant (p < 0.05) reduction of total count (CFU/g) of bacteria, fungi and yeasts in wheat grains.

  4. Characteristics of sludge reduction in an integrated pretreatment and aerobic digestion process.

    PubMed

    Hwang, S; Jang, H; Lee, M; Song, J; Kim, S

    2006-01-01

    In this study, integrated pretreatments and aerobic digestion processes were investigated in order to provide a feasible alternative that can achieve effective sludge reduction. An ozone treatment in the presence of ionic manganese, a catalyst, increased the sludge reduction ratio three times higher than that of a single ozonation, presumably due to an increase in OH radical production. The ozone treatment yielded the effective sludge reduction ratio with an increasing ozone dosage, and an effective dosage of the catalyst was found to be 4 mg-Mn/g-TS. When a mechanical pretreatment and an ozone/catalyst were applied in a series, the integrated process, even at a half mechanical intensity and a half level of ozone dosage, showed higher and faster sludge reduction than each single process did. In addition, the integrated pretreatment process showed the highest dewaterability of the treated sludges. A ratio of sludge cake generation, which was newly introduced to quantify overall performance of sludge treatment processes, showed that the integrated pretreatment followed by the aerobic digestion yielded approximately a half of the sludge cake volume compared to the single aerobic digestion. Therefore, the integrated pretreatment can be a feasible method for the effective reduction of total suspended solid and the final volume.

  5. Spectroscopy of Solid State Laser Materials

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1994-01-01

    We retrieved the vertical distribution of ozone from a series 0.005-0.013/cm resolution infrared solar spectra recorded with the McMath Fourier Transform spectrometer at the Kitt Peak National Solar Observatory. The analysis is based on a multi-layer line-by-line forward model and a semi-empirical version of the optimal estimation inversion method by Rodgers. The 1002.6-1003.2/cm spectral interval has been selected for the analysis on the basis of synthetic spectrum calculations. The characterization and error analysis of the method have been performed. It was shown that for the Kitt Peak spectral resolution and typical signal-to-noise ratio (greater than or equal to 100) the retrieval is stable, with the vertical resolution of approximately 5 km attainable near the surface degrading to approximately 10 km in the stratosphere. Spectra recorded from 1980 through 1993 have been analyzed. The retrieved total ozone and vertical profiles have been compared with total ozone mapping spectrometer (TOMS) satellite total columns for the location and dates of the Kitt Peak Measurements and about 100 ozone ozonesoundings and Brewer total column measurements from Palestine, Texas, from 1979 to 1985. The total ozone measurements agree to +/- 2%. The retrieved profiles reproduce the seasonally averaged variations with altitude, including the ozone spring maximum and fall minimum measured by Palestine sondes, but up to 15% differences in the absolute values are obtained.

  6. Effects of cloud, aerosol, and ozone on surface spectral Ultraviolet and total irradiance observed in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hana; Kim, Jhoon; Kim, Woogyung; Lee, Yun Gon; Cho, Hi Ku

    2015-04-01

    In recent years, there have been substantial attempts to model the radiative transfer for climatological and biological purposes. However, the incorporation of clouds, aerosols and ozone into the modeling process is one of the difficult tasks due to their variable transmission in both temporal and space domains. In this study we quantify the atmospheric transmissions by clouds, aerosol optical depth (AOD at 320 nm) and total ozone (Ozone) together with all skies in three solar radiation components of the global solar (GS 305-2800nm), total ultraviolet (TUV 290-363nm) and the erythemal weighted ultraviolet (EUV 290-325nm) irradiances with statistical methods using the data at Seoul. The purpose of this study also is to clarify the different characteristics between cloud, AOD and Ozone in the wavelength-dependent solar radiation components. The ozone, EUV and TUV used in this study (March 2003 - February 2014) have been measured with Dobson Spectrophotometer (Beck #124) and Brewer Spectrophotometer (SCI-TEC#148) at Yonsei University, respectively. GS, Cloud Cover (CC) are available from the Korean Meteorological Agency. The measured total (effect of cloud, aerosol, and ozone) transmissions on annual average showed 74%, 76% and 80% of GS, TUV and EUV irradiance, respectively. For the comparison of the measured values with modeled, we have also constructed a multiple linear regression model for the total transmission. The average ratio of measured to modeled total transmission were 0.94, 0.96 and 0.96 with higher measured than modeled value in the three components, respectively, The individual transmission by clouds under the constant AOD and Ozone atmosphere on average showed 68%, 71% and 76% and further the overcast clouds reduced the transmissions to the 45%, 54% and 59% of the clear sky irradiance in the GS, TUV and EUV, respectively. The annual transmissions by AOD showed on average 67%, 70% and 74% and further the high loadings 2.5-4.0 AOD reduced the transmission to 50%, 52% and 55% of clear sky irradiance under the contact cloud and ozone atmosphere in the GS, TUV and EUV, respectively. And annual average EUV transmission by Ozone was 75 % of the clear-sky value under the constant CC and AOD. In future study, we are compare OMI data with ground-based instruments in order to use measured data for scientific studies.

  7. Ozone bioindicator

    Treesearch

    John W. Coulston; Mark J. Ambrose

    2007-01-01

    Why Is Ozone Important? Ground-level ozone occurs at phytotoxic levels in the United States (Lefohn and Pinkerton 1988). Elevated levels of ozone can cause foliar injury to several tree species, may cause growth loss, and can make trees more susceptible to insects and pathogens (Chappelka and Samuelson 1998). However, tree species have varying degrees of sensitivity to...

  8. Tropical tropospheric ozone and biomass burning.

    PubMed

    Thompson, A M; Witte, J C; Hudson, R D; Guo, H; Herman, J R; Fujiwara, M

    2001-03-16

    New methods for retrieving tropospheric ozone column depth and absorbing aerosol (smoke and dust) from the Earth Probe-Total Ozone Mapping Spectrometer (EP/TOMS) are used to follow pollution and to determine interannual variability and trends. During intense fires over Indonesia (August to November 1997), ozone plumes, decoupled from the smoke below, extended as far as India. This ozone overlay a regional ozone increase triggered by atmospheric responses to the El Niño and Indian Ocean Dipole. Tropospheric ozone and smoke aerosol measurements from the Nimbus 7 TOMS instrument show El Niño signals but no tropospheric ozone trend in the 1980s. Offsets between smoke and ozone seasonal maxima point to multiple factors determining tropical tropospheric ozone variability.

  9. Reduction of Environmental Listeria Using Gaseous Ozone in a Cheese Processing Facility.

    PubMed

    Eglezos, Sofroni; Dykes, Gary A

    2018-05-01

    A cheese processing facility seeking to reduce environmental Listeria colonization initiated a regime of ozonation across all production areas as an adjunct to its sanitation regimes. A total of 360 environmental samples from the facility were tested for Listeria over a 12-month period. A total of 15 areas before and 15 areas after ozonation were tested. Listeria isolations were significantly ( P < 0.001) reduced from 15.0% in the preozonation samples to 1.67% in the postozonation samples in all areas. No deleterious effects of ozonation were noted on the wall paneling, seals, synthetic floors, or cheese processing equipment. The ozonation regime was readily incorporated by sanitation staff into the existing good manufacturing practice program. The application of ozone may result in a significant reduction in the prevalence of Listeria in food processing facilities.

  10. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California

    Treesearch

    Haiganoush K. Preisler; Shiyuan (Sharon) Zhong; Annie Esperanza; Timothy J. Brown; Andrzej Bytnerowicz; Leland Tarnay

    2010-01-01

    Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an...

  11. 20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations

    NASA Astrophysics Data System (ADS)

    Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.

    2016-12-01

    Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.

  12. Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials

    NASA Astrophysics Data System (ADS)

    Poppendieck, D. G.; Hubbard, H. F.; Weschler, C. J.; Corsi, R. L.

    Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m -2, with most of the carbonyls being of lower molecular weight (C 1-C 4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m -2, with a greater fraction of the BOBPs being heavier carbonyls (C 5-C 9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor threshold.

  13. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    NASA Technical Reports Server (NTRS)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  14. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    NASA Astrophysics Data System (ADS)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  15. Low frequency oscillations in total ozone measurements

    NASA Technical Reports Server (NTRS)

    Gao, X. H.; Stanford, J. L.

    1989-01-01

    Low frequency oscillations with periods of approximately one to two months are found in eight years of global grids of total ozone data from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The low frequency oscillations corroborate earlier analyses based on four years of data. In addition, both annual and seasonal one-point correlation maps based on the 8-year TOMS data are presented. The results clearly show a standing dipole in ozone perturbations, oscillating with 35 to 50 day periods over the equatorial Indian Ocean-west Pacific region. This contrasts with the eastward moving dipole reported in other data sets. The standing ozone dipole appears to be a dynamical feature associated with vertical atmospheric motions. Consistent with prior analyses based on lower stratospheric temperature fields, large-scale standing patterns are also found in the extratropics of both hemispheres, correlated with ozone fluctuations over the equatorial west Pacific. In the Northern Hemisphere, a standing pattern is observed extending from the tropical Indian Ocean to the north Pacific, across North America, and down to the equatorial Atlantic Ocean region. This feature is most pronounced in the NH summer.

  16. Measurements of historical total ozone from the Chalonge-Divan stellar spectrum program: A reanalysis of the 1953-1972 data and a comparison with simultaneous Dobson Arosa measurements

    NASA Astrophysics Data System (ADS)

    Griffin, R. E. M.; Fioletov, V.; McConnell, J. C.

    2006-06-01

    We report new determinations of total ozone obtained by reanalyzing a unique set of astronomical observations that were made in the mid-20th century at observatories in France (Haute-Provence) and Switzerland (Jungfraujoch) for the purpose of calculating nightly atmospheric extinction coefficients in the UV (Rayleigh scattering and total ozone) as part of a program to measure absolute stellar fluxes. Only a small fraction of the original ozone results, corresponding to data obtained during 1958-1959, are in the public domain at the World Ozone and Ultraviolet Data Centre; the rest were on handwritten sheets and were stored at Haute-Provence. Both astronomical sites are close enough geographically to Arosa (Switzerland) that the respective ozone values can be compared directly. The comparison reveals a generally very close resemblance, even down to the pattern of daily variations, with a correlation coefficient of 0.78, but an overall negative bias of 6-7% in the stellar results. The bias appears to be slightly larger prior to 1958.

  17. Effect of tibolone pretreatment on kinases and phosphatases that regulate the expression and phosphorylation of Tau in the hippocampus of rats exposed to ozone.

    PubMed

    Pinto-Almazan, Rodolfo; Segura-Uribe, Julia J; Soriano-Ursúa, Marvin A; Farfán-García, Eunice D; Gallardo, Juan M; Guerra-Araiza, Christian

    2018-03-01

    Oxidative stress (OS) is a key process in the development of many neurodegenerative diseases, memory disorders, and other pathological processes related to aging. Tibolone (TIB), a synthetic hormone used as a treatment for menopausal symptoms, decreases lipoperoxidation levels, prevents memory impairment and learning disability caused by ozone (O 3 ) exposure. However, it is not clear if TIB could prevent the increase in phosphorylation induced by oxidative stress of the microtubule-associated protein Tau. In this study, the effects of TIB at different times of administration on the phosphorylation of Tau, the activation of glycogen synthase kinase-3β (GSK3β), and the inactivation of Akt and phosphatases PP2A and PTEN induced by O 3 exposure were assessed in adult male Wistar rats. Rats were divided into 10 groups: control group (ozone-free air plus vehicle [C]), control + TIB group (ozone-free air plus TIB 1 mg/kg [C + TIB]); 7, 15, 30, and 60 days of ozone exposure groups [O 3 ] and 7, 15, 30, and 60 days of TIB 1 mg/kg before ozone exposure groups [O 3 + TIB]. The effects of O 3 exposure and TIB administration were assessed by western blot analysis of total and phosphorylated Tau, GSK3β, Akt, PP2A, and PTEN proteins and oxidative stress marker nitrotyrosine, and superoxide dismutase activity and lipid peroxidation of malondialdehyde by two different spectrophotometric methods (Marklund and TBARS, respectively). We observed that O 3 exposure increases Tau phosphorylation, which is correlated with decreased PP2A and PTEN protein levels, diminished Akt protein levels, and increased GSK3β protein levels in the hippocampus of adult male rats. The effects of O 3 exposure were prevented by the long-term treatment (over 15 days) with TIB. Malondialdehyde and nitrotyrosine levels increased from 15 to 60 days of exposure to O 3 in comparison to C group, and superoxide dismutase activity decreased. Furthermore, TIB administration limited the changes induced by O 3 exposure. Our results suggest a beneficial use of hormone replacement therapy with TIB to prevent neurodegeneration caused by O 3 exposure in rats.

  18. Spatial regression analysis on 32 years of total column ozone data

    NASA Astrophysics Data System (ADS)

    Knibbe, J. S.; van der A, R. J.; de Laat, A. T. J.

    2014-08-01

    Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979-2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) ozone data (2009-2010). The two-dimensionality in this data set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis. A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on nonseasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO) and stratospheric alternative halogens which are parameterized by the effective equivalent stratospheric chlorine (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of a similar analysis based on a more commonly applied statistically oriented model. The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at mid- and high latitudes, the solar cycle affects ozone positively mostly in the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high northern latitudes, the effect of QBO is positive and negative in the tropics and mid- to high latitudes, respectively, and ENSO affects ozone negatively between 30° N and 30° S, particularly over the Pacific. The contribution of explanatory variables describing seasonal ozone variation is generally large at mid- to high latitudes. We observe ozone increases with potential vorticity and day length and ozone decreases with geopotential height and variable ozone effects due to the polar vortex in regions to the north and south of the polar vortices. Recovery of ozone is identified globally. However, recovery rates and uncertainties strongly depend on choices that can be made in defining the explanatory variables. The application of several trend models, each with their own pros and cons, yields a large range of recovery rate estimates. Overall these results suggest that care has to be taken in determining ozone recovery rates, in particular for the Antarctic ozone hole.

  19. The Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2002 Tropical Ozone Climatology. 3; Instrumentation and Station-to-Station Variability

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacqueline C.; Smit, Herman G. J.; Oltmans, Samuel J.; Johnson, Bryan J.; Kirchhoff, Volker W. J. H.; Schmidlin, Francis J.

    2004-01-01

    Abstract: Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has collected more than 2000 ozone profiles from a dozen tropical and subtropical sites using balloon-borne electrochemical concentration cell (ECC) ozonesondes. The data (with accompanying pressure-temperature-humidity soundings) are archived. Analysis of ozonesonde imprecision within the SHADOZ dataset revealed that variations in ozonesonde technique could lead to station-to-station biases in the measurements. In this paper imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. When SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release), discrepancies between sonde and satellite datasets decline 1-2 percentage points on average, compared to version 7 TOMS. Variability among stations is evaluated using total ozone normalized to TOMS and results of laboratory tests on ozonesondes (JOSE-2O00, Julich Ozonesonde Intercomparison Experiment). Ozone deviations from a standard instrument in the JOSE flight simulation chamber resemble those of SHADOZ station data relative to a SHADOZ-defined climatological reference. Certain systematic variations in SHADOZ ozone profiles are accounted for by differences in solution composition, data processing and instrument (manufacturer). Instrument bias leads to a greater ozone measurement above 25 km over Nairobi and to lower total column ozone at three Pacific sites compared to other SHADOZ stations at 0-20 deg.S.

  20. Comparison of ozone retrievals from the Pandora spectrometer system and Dobson spectrophotometer in Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.

    2015-03-01

    A comparison of retrieved total column ozone amounts TCO between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado NOAA building. This paper, part of an ongoing study, covers a one-year period starting on 17 December 2013. Both the standard Dobson and Pandora total column ozone TCO retrievals required a correction TCOcorr = TCO (1+C(T)) using the effective climatology derived ozone temperature T to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(T) are CPandora = 0.00333(T-225) and CDobson = -0.0013 (T-226.7) per K. After the applied corrections removed the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1% for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r2 = 0.97 and an average offset of 1.1 ± 5.8 DU. In addition, the Pandora data showed 0.3% annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1% annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).

  1. Comparison of TOMS, SBW & SBUV/2 Version 8 Total Column Ozone Data with Data from Groundstations

    NASA Technical Reports Server (NTRS)

    Labow, G. J.; McPeters, R. D.; Bhartia, P. K.

    2004-01-01

    The Nimbus-7 and Earth Probe Total Ozone Mapping Spectrometer (TOMS) data as well as SBUV and SBUV/2 data have been reprocessed with a new retrieval algorithm (Version 8) and an updated calibration procedure. An overview will be presented systematically comparing ozone values to an ensemble of Brewer and Dobson spectrophotometers. The comparisons were made as a function of latitude, solar zenith angle, reflectivity and total ozone. Results show that the accuracy of the TOMS retrieval has been improved when aerosols are present in the atmosphere, when snow/ice and sea glint are present, and when ozone in the northern hemisphere is extremely low. TOMS overpass data are derived from the single TOMS best match measurement, almost always located within one degree of the ground station and usually made within an hour of local noon. The Version 8 Earth Probe TOMS ozone values have decreased by an average of about 1% due to a much better understanding of the calibration of the instrument. N-7 SBUV as well as the series of NOAA SBUV/2 column ozone values have also been processed with the Version 8 algorithm and have been compared to values from an ensemble of groundstations. Results show that the SBW column ozone values agree well with the groundstations and the datasets are useful for trend studies.

  2. Initial estimate of NOAA-9 SBUV/2 total ozone drift: Based on comparison with re-calibrated TOMS measurements and pair justification of SBUV/2

    NASA Technical Reports Server (NTRS)

    Wellemeyer, C. G.; Taylor, S. L.; Gu, X. U.; Mcpeters, Richard D.; Hudson, R. D.

    1990-01-01

    Newly recalibrated version 6 Total Ozone Mapping Spectrometer (TOMS) data are used as a reference measurement in a comparison of monthly means of total ozone in 10 degree latitude zones from SBUV/2 and the nadir measurements from TOMS. These comparisons indicate a roughly linear long-term drift in SBUV/2 total ozone relative to TOMS of about 2.5 Dobson units per year at the equator over the first three years of SBUV/2. The pari justification technique is also applied to the SBUV/2 measurements in a manner similar to that used for SBUV and TOMS. The higher solar zenith angles associated with the afternoon orbit of NOAA-9 and the large changes in solar zenith angle associated with its changing equator crossing time degrade the accuracy of the pair justification method relative to its application to SBUV and TOMS, but the results are consistent with the SBUV/2-TOMS comparisons, and show a roughly linear drift in SBUV/2 of 2.5 to 4.5 Dobson units per year in equatorial ozone.

  3. Total atmospheric ozone determined from spectral measurements of direct solar UV irradiance

    NASA Astrophysics Data System (ADS)

    Huber, Martin; Blumthaler, Mario; Ambach, Walter; Staehelin, Johannes

    1995-01-01

    With a double monochromator, high resolution spectral measurements of direct solar UV-irradiance were performed in Arosa during February and March, 1993. Total atmospheric ozone amount is determined by fitting model calculations to the measured spectra. The results are compared with the operationally performed measurements of a Dobson and a Brewer spectrometer. The total ozone amount determined from spectral measurements differs from the results of the Dobson instrument by -1.1±0.9% and from those of the Brewer instrument by -0.4±0.7%.

  4. Global Ozone Distribution relevant to Human Health: Metrics and present day levels from the Tropospheric Ozone Assessment Report (TOAR)

    NASA Astrophysics Data System (ADS)

    Fleming, Z. L.; Doherty, R. M.; von Schneidemesser, E.; Cooper, O. R.; Malley, C.; Colette, A.; Xu, X.; Pinto, J. P.; Simpson, D.; Schultz, M. G.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.

    2017-12-01

    Using stations from the TOAR surface ozone database, this study quantifies present-day global and regional distributions of five ozone metrics relevant for both short-term and long-term human exposure. These metrics were explored at ozone monitoring sites globally, and re-classified for this project as urban or non-urban using population densities and night-time lights. National surface ozone limit values are usually related to an annual number of exceedances of daily maximum 8-hour running mean (MDA8), with many countries not even having any ozone limit values. A discussion and comparison of exceedances in the different ozone metrics, their locations and the seasonality of exceedances provides clues as to the regions that potentially have more serious ozone health implications. Present day ozone levels (2010-2014) have been compared globally and show definite geographical differences (see Figure showing the annual 4th highest MDA8 for present day ozone for all non-urban stations). Higher ozone levels are seen in western compared to eastern US, and between southern and northern Europe, and generally higher levels in east Asia. The metrics reflective of peak concentrations show highest values in western North America, southern Europe and East Asia. A number of the metrics show similar distributions of North-South gradients, most prominent across Europe and Japan. The interquartile range of the regional ozone metrics was largest in East Asia, higher for urban stations in Asia but higher for non-urban stations in Europe and North America. With over 3000 monitoring stations included in this analysis and despite the higher densities of monitoring stations in Europe, north America and East Asia, this study provides the most comprehensive global picture to date of surface ozone levels in terms of health-relevant metrics.

  5. A Comparison of TOMS Version 8 Total Column Ozone Data with Data from Groundstations

    NASA Technical Reports Server (NTRS)

    Labow, G. J.; McPeters, R. D.; Bhartia, P. K.

    2004-01-01

    The Nimbus-7 and Earth Probe Total Ozone Mapping Spectrometer (TOMS) data have been reprocessed with a new retrieval algorithm, (Version 8) and an updated calibration procedure. These data have been systematically compared to total ozone data from Brewer and Dobson spectrophotometers for 73 individual ground stations. The comparisons were made as a function of latitude, solar zenith angle, reflectivity and total ozone. Results show that the accuracy of the TOMS retrieval'is much improved when aerosols are present in the atmosphere, when snow/ice and sea glint are present, and when ozone in the northern hemisphere is extremely low. TOMS overpass data are derived from the single TOMS best match measurement, almost always located within one degree of the ground station and usually made within an hour of local noon. The version 8 Earth Probe TOMS ozone values have decreased by an average of about 1% due to a much better understanding of the calibration of the instrument. The remaining differences between TOMS and ground stations suggest that there are still small errors in the TOMS retrievals. But if TOMS is used as a transfer standard to compare ground stations, the large station-to-station differences suggest the possibility of significant instrument errors at some ground stations.

  6. Procedures for estimating the frequency of commercial airline flights encountering high cabin ozone levels

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1979-01-01

    Three analytical problems in estimating the frequency at which commercial airline flights will encounter high cabin ozone levels are formulated and solved: namely, estimating flight-segment mean levels, estimating maximum-per-flight levels, and estimating the maximum average level over a specified flight interval. For each problem, solution procedures are given for different levels of input information - from complete cabin ozone data, which provides a direct solution, to limited ozone information, such as ambient ozone means and standard deviations, with which several assumptions are necessary to obtain the required estimates. Each procedure is illustrated by an example case calculation that uses simultaneous cabin and ambient ozone data obtained by the NASA Global Atmospheric Sampling Program. Critical assumptions are discussed and evaluated, and the several solutions for each problem are compared. Example calculations are also performed to illustrate how variations in lattitude, altitude, season, retention ratio, flight duration, and cabin ozone limits affect the estimated probabilities.

  7. Ozone density measurements in the troposphere and stratosphere of Natal

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Motta, A. G.

    1983-01-01

    Ozone densitities were measured in the troposphere and stratosphere of Natal using ECC sondes launches on balloons. The data analyzed so far show tropospheric densities and total ozone contents larger than expected.

  8. The Ozone Problem | Ground-level Ozone | New England | US ...

    EPA Pesticide Factsheets

    2017-04-10

    Many factors impact ground-level ozone development, including temperature, wind speed and direction, time of day, and driving patterns. Due to its dependence on weather conditions, ozone is typically a summertime pollutant and a chief component of summertime smog.

  9. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum.

    PubMed

    Bortolin, Rafael Calixto; Caregnato, Fernanda Freitas; Divan Junior, Armando Molina; Zanotto-Filho, Alfeu; Moresco, Karla Suzana; Rios, Alessandro de Oliveira; Salvi, Aguisson de Oliveira; Ortmann, Caroline Flach; de Carvalho, Pâmela; Reginatto, Flávio Henrique; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-07-01

    Tropospheric ozone (O3) background concentrations have increased since pre-industrial times, reaching phytotoxic concentrations in many regions globally. However, the effect of high O3 concentrations on quality of fruit and vegetables remains unknown. Here, we evaluated whether O3 pollution alters the quality of Capsicum baccatum peppers by changing the secondary compound profiles and biological activity of the fruit. C. baccatum pepper plants were exposed to ozone for 62 days in an open-top chamber at a mean O3 concentration of 171.6µg/m(3). Capsaicin levels decreased by 50% in the pericarp, but remained unchanged in the seeds. In contrast, the total carotenoid content increased by 52.8% in the pericarp. The content of total phenolic compounds increased by 17% in the pericarp. The total antioxidant potential decreased by 87% in seeds of O3-treated plants. The seeds contributed more than the pericarp to the total radical-trapping antioxidant potential and total antioxidant reactivity. O3 treatment impaired the ferric-reducing antioxidant power of the seeds and reduced NO(•)-scavenging activity in the pericarp. However, O3 treatment increased ferrous ion-chelating activity and hydroxyl radical-scavenging activity in the pericarp. Our results confirm that O3 alters the secondary metabolite profile of C. baccatum pepper fruits and, consequently, their biological activity profile. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2006-01-01

    The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. In this talk we will demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating 61 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area's variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.

  11. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Stephen A.; Schauffler, Sue

    2006-01-01

    The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. Herein we demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating C1 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area s variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.

  12. The effect of surface anisotropy on the accuracy of total ozone estimates from satellite observations

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Ahmad, Z.

    1978-01-01

    The total amount of ozone in a vertical column of the earth's atmosphere is being derived from satellite measurements of the intensity of ultraviolet sunlight scattered by the earth-atmosphere system. The algorithm for deriving the ozone amount utilizes the assumption that the earth's surface reflects the incident light isotropically according to Lambert's law. Natural surface reflection deviates more or less from this law. Two extreme examples of anisotropic reflection from dark ocean and from bright snow are analyzed by means of models for their effects on the derived values of ozone.

  13. Total ozone measurement: Intercomparison of prototype New Zealand filter instrument and Dobson spectrophotometer

    NASA Technical Reports Server (NTRS)

    Basher, R. E.

    1978-01-01

    A five month intercomparison showed that the total ozone amounts of a prototype narrowband interference filter instrument were 7% less than those of a Dobson instrument for an ozone range of 0.300 to 0.500 atm cm and for airmasses less than two. The 7% bias was within the intercomparison calibration uncertainty. An airmass dependence in the Dobson instrument made the bias relationship airmass-dependent but the filter instrument's ozone values were generally constant to 2% up to an airmass of four. Long term drift in the bias was negligible.

  14. SHADOZ in the Aura Era

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Oltmans, S. J.; Schoeberl, M. R.; Bhartia, P. K.; Froidevaux, L.; Schmidlin, F.; Calpini, B.; Shiotani, M.; Fujiwara, M.; hide

    2007-01-01

    We present comparisons of observed tropical and sub-tropical ozone from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project with satellite measurements using Aura's Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) instruments. Satellite products of total and derived tropospheric column ozone from OMI and profiles of ozone in the UT/LS region from MLS are used.

  15. Historical Tropospheric and Stratospheric Ozone Radiative Forcing Using the CMIP6 Database

    NASA Astrophysics Data System (ADS)

    Checa-Garcia, Ramiro; Hegglin, Michaela I.; Kinnison, Douglas; Plummer, David A.; Shine, Keith P.

    2018-04-01

    We calculate ozone radiative forcing (RF) and stratospheric temperature adjustments for the period 1850-2014 using the newly available Coupled Model Intercomparison Project phase 6 (CMIP6) ozone data set. The CMIP6 total ozone RF (1850s to 2000s) is 0.28 ± 0.17 W m-2 (which is 80% higher than our CMIP5 estimation), and 0.30 ± 0.17 W m-2 out to the present day (2014). The total ozone RF grows rapidly until the 1970s, slows toward the 2000s, and shows a renewed growth thereafter. Since the 1990s the shortwave RF exceeds the longwave RF. Global stratospheric ozone RF is positive between 1930 and 1970 and then turns negative but remains positive in the Northern Hemisphere throughout. Derived stratospheric temperature changes show a localized cooling in the subtropical lower stratosphere due to tropospheric ozone increases and cooling in the upper stratosphere due to ozone depletion by more than 1 K already prior to the satellite era (1980) and by more than 2 K out to the present day (2014).

  16. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology. 2; Stratospheric and Tropospheric Ozone Variability and the Zonal Wave-One

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatomo; Kirchhoff, Volker W. J. H.; Posny, Francoise; Coetzee, Gert J. R.; Hoegger, Bruno; hide

    2002-01-01

    This is the second 'reference' or 'archival' paper for the SHADOZ (Southern Hemisphere Additional Ozonesondes) network and is a follow-on to the recently accepted paper with similar first part of title. The latter paper compared SHADOZ total ozone with satellite and ground-based instruments and showed that the equatorial wave-one in total ozone is in the troposphere. The current paper presents details of the wave-one structure and the first overview of tropospheric ozone variability over the southern Atlantic, Pacific and Indian Ocean basins. The principal new result is that signals of climate effects, convection and offsets between biomass burning seasonality and tropospheric ozone maxima suggest that dynamical factors are perhaps more important than pollution in determining the tropical distribution of tropospheric ozone. The SHADOZ data at () are setting records in website visits and are the first time that the zonal view of tropical ozone structure has been recorded - thanks to the distribution of the 10 sites that make up this validation network.

  17. Satellite remote sensing and ozonesonde observation of ozone vertical profile and severe storm development

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.

    1988-01-01

    Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations, and two-and-a-half year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five U.S. stations, were used to study the relationship between the total ozone, vertical distribution of the ozone mixing ratio, height of half the total ozone, and the variation of local tropopause height. In view of the correlation between the variation of the tropopause height and the possible development of severe storms, a better understanding of the effect of the vertical distribution of the local ozone profile on the variation of the tropopause height can give considerable insight into the development of severe storms.

  18. Ozone Climatology for Portsmouth, NH 1978-2002

    NASA Astrophysics Data System (ADS)

    Wake, C. P.; Miller, S. T.

    2003-12-01

    Hourly ozone mixing ratios have been monitored in Portsmouth, NH since 1978 for the typical "summer" ozone season (April to October) by the New Hampshire Department of Environmental Services. This 25 year record provides the basis to investigate seasonal variability in daily summertime ozone levels in Portsmouth NH and evaluate the relationship between ozone mixing ratios, temperature, precipitation, and the state of El Niño/Southern Oscillation. The overall goal of this research is to identify significant relationships between high ozone days and a suite of climate variables. The mean daily ozone mixing ratio in Portsmouth from 1977 through 2002 was 40 ppbv (sd 17 ppbv) with a mean of 6 days per summer when maxiumum 8 hour ozone levels exceed the 80 ppbv level. The highest ozone levels usually occur during June, July and August (with a peak in July), but high ozone days also occur May and September. April and October rarely experience high ozone. High ozone in coastal New Hampshire (and for most of New England) occurs predominantly on days when maximum temperatures are above 85 oF, although there are also may hot days when ozone levels do not reach elevated levels. Analysis of the relationship between number of days per year when 8 hour ozone is greater than 80 ppbv and maximum temperatures are greater than 85 oF indicates that there is a positive correlation (r = 0.60). Surprisingly, there is not a strong inverse relationship between ozone days and precipitation. For example, over the last 25 years, 1988 clearly stands out with 20 days with maximum 8 hour ozone above 80 ppbv. However, 1988 also experienced considerable precipitation in July and August (14.1 inches compared to the climatological mean of 6.7 inches) and relatively few days without precipitation (38 compared to the climatological mean of 44). There are differences in temperature, precipitation, and ozone levels in Portsmouth during years that are classified as El Ni¤o and neutral, compared to La Nina years. However, we have only experienced one strong La Nina year in the past 25 years, so the results must be viewed with caution. The La Nina year (1988) experience high ozone and more frequent hot days, as well as double the average precipitation. El Niño years experience slightly warmer, dryer and experience more frequent ozone days, although they are not significantly different from neutral years. Our results indicate that hot summers are indeed related to higher than average ozone levels, although there is considerable variability in this relationship. There does not appear to be a consistent ozone - precipitation relationship. Further work is needed to define these relationships for a larger number of stations throughout New England and also for comparison to broader synoptic to hemispheric circulation patterns and sea surface temperatures.

  19. Dobson total ozone series of Oxford: Reevaluation and applications

    NASA Astrophysics Data System (ADS)

    Vogler, C.; BröNnimann, S.; Staehelin, J.; Griffin, R. E. M.

    2007-10-01

    We have reevaluated the original total ozone measurements made in Oxford between 1924 and 1957, with a view to extending backward in time the existing total ozone series from 1957 to 1975. The Oxford measurements are the oldest Dobson observations in the world. Their prime importance, when coupled with the series from Arosa (since 1926) and Tromsø (since 1935), is for increasing basic understanding of stratospheric ozone and dynamics, while in relation to studies of the recent ozone depletion they constitute a baseline of considerable (and unique) significance and value. However, the reevaluation was made difficult on account of changes to the instruments and wavelengths as the early data collection methods evolved, while unknowns due to the influence of aerosols and the possible presence of dioxides of sulphur and nitrogen created additional problems. Our reevaluation was based on statistical procedures (comparisons with meteorological upper air data and ozone series from Arosa) and also on corrections suggested by Dobson himself. The comparisons demonstrate that the data are internally consistent and of good quality. Nevertheless, as post-1957 data were not assessed in this study, the series cannot be recommended at present for trend analysis, though the series can be used for climatological studies. By supplementing the Oxford data with other existing series, we present a European total ozone climatology for 1924-1939, 1950-1965, and 1988-2000 and analyze the data with respect to variables measuring the strength and the temperature of the polar vortex.

  20. Large-scale protein analysis of European beech trees following four vegetation periods of twice ambient ozone exposure.

    PubMed

    Kerner, René; Delgado-Eckert, Edgar; Ernst, Dieter; Dupuy, Jean-William; Grams, Thorsten E E; Barbro Winkler, J; Lindermayr, Christian; Müller-Starck, Gerhard

    2014-09-23

    In the present study, we performed a large-scale protein analysis based on 2-DE DIGE to examine the effects of ozone on the leaves of juvenile European beech (Fagus sylvatica L.), one of the most important deciduous tree species in Central Europe. To this end, beech trees were grown under field conditions and subjected to ambient and twice ambient ozone concentrations during the vegetation periods of four consecutive years. The twice ambient ozone concentration altered the abundance of 237 protein spots, which showed relative ratios higher than 30% compared to the ambient control trees. A total of 74 protein spots were subjected to mass spectrometry identification (LC-MS/MS), followed by homology-driven searches. The differentially expressed proteins participate in key biological processes including the Calvin cycle and photosynthesis, carbon metabolism, defense- and stress-related responses, detoxification mechanisms, protein folding and degradation, and mechanisms involved in senescence. The ozone-induced responses provide evidence of a changing carbon metabolism and counteraction against increased levels of reactive oxygen species. This study provides useful information on how European beech, an economically and ecologically important tree species, reacts on the molecular level to increased ozone concentrations expected in the near future. The main emphasis in the present study was placed on identifying differentially abundant proteins after long-term ozone exposure under climatically realistic settings, rather than short-term responses or reactions under laboratory conditions. Additionally, using nursery-grown beech trees, we took into account the natural genotypic variation of this species. As such, the results presented here provide information on molecular responses to ozone in an experimental plant system at very close to natural conditions. Furthermore, this proteomic approach was supported by previous studies on the present experiment. Ultimately, the combination of this proteomic approach with several approaches including transcriptomics, analysis of non-structural carbohydrates, and morphological effects contributes to a more global picture of how beech trees react under increased ozone concentrations. Copyright © 2014. Published by Elsevier B.V.

  1. Near-real-time TOMS, telecommunications and meteorological support for the 1987 Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Ardanuy, P.; Victorine, J.; Sechrist, F.; Feiner, A.; Penn, L.

    1988-01-01

    The goal of the 1987 Airborne Antarctic Ozone Experiment was to improve the understanding of the mechanisms involved in the formation of the Antarctic ozone hole. Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the experiment. During the experiment, the near-real-time TOMS total ozone observations were supplied within hours of real time to the operations center in Punta Arenas, Chile. The final report summarizes the role which Research and Data Systems (RDS) Corporation played in the support of the experiment. The RDS provided telecommunications to support the science and operations efforts for the Airborne Antarctic Ozone Experiment, and supplied near real-time weather information to ensure flight and crew safety; designed and installed the telecommunications network to link NASA-GSFC, the United Kingdom Meteorological Office (UKMO), Palmer Station, the European Center for Medium-Range Weather Forecasts (ECMWF) to the operation at Punta Arenas; engineered and installed stations and other stand-alone systems to collect data from designated low-orbiting polar satellites and beacons; provided analyses of Nimbus-7 TOMS data and backup data products to Punta Arenas; and provided synoptic meteorological data analysis and reduction.

  2. Chemical transport model ozone simulations for spring 2001 over the western Pacific: Comparisons with TRACE-P lidar, ozonesondes, and Total Ozone Mapping Spectrometer columns

    NASA Astrophysics Data System (ADS)

    Wild, Oliver; Sundet, Jostein K.; Prather, Michael J.; Isaksen, Ivar S. A.; Akimoto, Hajime; Browell, Edward V.; Oltmans, Samuel J.

    2003-11-01

    Two closely related chemical transport models (CTMs) employing the same high-resolution meteorological data (˜180 km × ˜180 km × ˜600 m) from the European Centre for Medium-Range Weather Forecasts are used to simulate the ozone total column and tropospheric distribution over the western Pacific region that was explored by the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) measurement campaign in February-April 2001. We make extensive comparisons with ozone measurements from the lidar instrument on the NASA DC-8, with ozonesondes taken during the period around the Pacific Rim, and with TOMS total column ozone. These demonstrate that within the uncertainties of the meteorological data and the constraints of model resolution, the two CTMs (FRSGC/UCI and Oslo CTM2) can simulate the observed tropospheric ozone and do particularly well when realistic stratospheric ozone photochemistry is included. The greatest differences between the models and observations occur in the polluted boundary layer, where problems related to the simplified chemical mechanism and inadequate horizontal resolution are likely to have caused the net overestimation of about 10 ppb mole fraction. In the upper troposphere, the large variability driven by stratospheric intrusions makes agreement very sensitive to the timing of meteorological features.

  3. Temperature-dependent ozone chemiluminescence: A new approach for hydrocarbon monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, N.; Gaffney, J.

    1996-12-31

    Ozone chemiluminescent reactions have been used for some time to detect oxides of nitrogen, ozone, and olefins in air quality studies. Current procedures use non-methane hydrocarbon analyzers based on the flame ionization detector (FID), which quantitate total non-methane hydrocarbons but do not differentiate between the wide variety of volatile organic classes and oxygenates. The other methodology that has been used, gas chromatography/mass spectroscopy (GC/MS), can measure a variety of individual hydrocarbon species and classes, but it is costly, time-consuming, and labor intensive and is not amenable to real-time measurements. Presented here is preliminary research aimed at the development of anmore » alternative to FID and GC/MS: the ozone chemiluminescent detector (OCD) for measurement of a variety of hydrocarbon species and classes by use of the temperature dependence of ozone chemiluminescent reactions. Responses for various hydrocarbon classes obtained with an OCD operated at 170 C or the FID were compared. The results indicate that the OCD detector responds like a total carbon detector at this temperature, with sensitivities 10-100 times higher than those of a FID. Use of the temperature dependence of the chemiluminescent reaction and prereactors will apparently make a real-time hydrocarbon analyzer based on this approach feasible for determination of high-, moderate-, and low-reactivity hydrocarbon levels in ambient air. The OCD approach may be very useful in determining oxygenate emissions from motor vehicles, particularly alternative fuels. The OCD may also be useful in monitoring of ambient air for natural hydrocarbon emissions.« less

  4. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water.

    PubMed

    Beltrán, Fernando J; Aguinaco, Almudena; García-Araya, Juan F; Oropesa, Ana

    2008-08-01

    In this study, water containing the pharmaceutical compound sulfamethoxazole (SMT) was subjected to the various treatments of different oxidation processes involving ozonation, and photolysis and catalysis under different experimental conditions. Removal rates of SMT and total organic carbon (TOC), from experiments of simple UVA radiation, ozonation (O(3)), catalytic ozonation (O(3)/TiO(2)), ozone photolysis (O(3)/UVA), photocatalytic oxidation (O(2)/TiO(2)/UVA) and photocatalytic ozonation (O(3)/UVA/TiO(2)), have been compared. Photocatalytic ozonation leads to the highest SMT removal rate (pH 7 in buffered systems, complete removal is achieved in less than 5min) and total organic carbon (in unbuffered systems, with initial pH=4, 93% TOC removal is reached). Also, lowest ozone consumption per TOC removed and toxicity was achieved with the O(3)/UVA/TiO(2) process. Direct ozone and free radical reactions were found to be the principal mechanisms for SMT and TOC removal, respectively. In photocatalytic ozonation, with buffered (pH 7) aqueous solutions phosphates (buffering salts) and accumulation of bicarbonate scavengers inhibit the reactions completely on the TiO(2) surface. As a consequence, TOC removal diminishes. In all cases, hydrogen peroxide plays a key role in TOC mineralization. According to the results obtained in this work the use of photocatalytic ozonation is recommended to achieve a high mineralization degree of water containing SMT type compounds.

  5. Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column

    NASA Astrophysics Data System (ADS)

    Grytsai, Asen; Klekociuk, Andrew; Milinevsky, Gennadi; Evtushevsky, Oleksandr; Stone, Kane

    2017-02-01

    The quasi-stationary pattern of the Antarctic total ozone has changed during the last 4 decades, showing an eastward shift in the zonal ozone minimum. In this work, the association between the longitudinal shift of the zonal ozone minimum and changes in meteorological fields in austral spring (September-November) for 1979-2014 is analyzed using ERA-Interim and NCEP-NCAR reanalyses. Regressive, correlative and anomaly composite analyses are applied to reanalysis data. Patterns of the Southern Annular Mode and quasi-stationary zonal waves 1 and 3 in the meteorological fields show relationships with interannual variability in the longitude of the zonal ozone minimum. On decadal timescales, consistent longitudinal shifts of the zonal ozone minimum and zonal wave 3 pattern in the middle-troposphere temperature at the southern midlatitudes are shown. Attribution runs of the chemistry-climate version of the Australian Community Climate and Earth System Simulator (ACCESS-CCM) model suggest that long-term shifts of the zonal ozone minimum are separately contributed by changes in ozone-depleting substances and greenhouse gases. As is known, Antarctic ozone depletion in spring is strongly projected on the Southern Annular Mode in summer and impacts summertime surface climate across the Southern Hemisphere. The results of this study suggest that changes in zonal ozone asymmetry accompanying ozone depletion could be associated with regional climate changes in the Southern Hemisphere in spring.

  6. Ozone and the stratosphere

    NASA Technical Reports Server (NTRS)

    Shimazaki, Tatsuo

    1987-01-01

    It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.

  7. The historic surface ozone record, 1896-1975, and its relation to modern measurements

    NASA Astrophysics Data System (ADS)

    Galbally, I. E.; Tarasick, D. W.; Stähelin, J.; Wallington, T. J.; Steinbacher, M.; Schultz, M.; Cooper, O. R.

    2017-12-01

    Tropospheric ozone is a greenhouse gas, a key component of atmospheric chemistry, and is detrimental to human health and plant productivity. The historic surface ozone record 1896-1975 has been constructed from measurements selected for (a) instrumentation whose ozone response can be traced to modern tropospheric ozone measurement standards, (b) samples taken when there is low probability of chemical interference and (c) sampling locations, heights and times when atmospheric mixing will minimise vertical gradients of ozone in the planetary boundary layer above and around the measurement location. Early measurements with the Schönbein filter paper technique cannot be related to modern methods with any degree of confidence. The potassium iodide-arsenite technique used at Montsouris for 1876-1910 is valid for measuring ozone; however, due to the presence of the interfering gases sulfur dioxide, ammonia and nitrogen oxides, the measured ozone concentrations are not representative of the regional atmosphere. The use of these data sets for trend analyses is not recommended. In total, 58 acceptable sets of measurements are currently identified, commencing in Europe in 1896, Greenland in 1932 and globally by the late 1950's. Between 1896 and 1944 there were 21 studies (median duration 5 days) with a median mole fraction of 23 nmol mol-1 (range of study averages 15-62 nmol mol-1). Between 1950 and 1975 there were 37 studies (median duration approx. 21 months) with a median mole fraction of 22 nmol mol-1 (range of study averages 13-49 nmol mol-1), all measured under conditions likely to give ozone mole fractions similar to those in the planetary boundary layer. These time series are matched with modern measurements from the Tropospheric Ozone Assessment Report (TOAR) Ozone Database and used to examine changes between the historic and modern observations. These historic ozone levels are higher than previously accepted for surface ozone in the late 19th early 20th Century. This historic surface ozone analysis provides a new test for historical reconstructions by Climate-Chemistry models.

  8. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    PubMed Central

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  9. Tobacco smoke aging in the presence of ozone: A room-sized chamber study

    NASA Astrophysics Data System (ADS)

    Petrick, Lauren M.; Sleiman, Mohamad; Dubowski, Yael; Gundel, Lara A.; Destaillats, Hugo

    2011-09-01

    Exposure to tobacco pollutants that linger indoors after smoking has taken place ( thirdhand smoke, THS) can occur over extended periods and is modulated by chemical processes involving atmospheric reactive species. This study investigates the role of ozone and indoor surfaces in chemical transformations of tobacco smoke residues. Gas and particle constituents of secondhand smoke (SHS) as well as sorbed SHS on chamber internal walls and model materials (cotton, paper, and gypsum wallboard) were characterized during aging. After smoldering 10 cigarettes in a 24-m 3 room size chamber, gas-phase nicotine was rapidly removed by sorption to chamber surfaces, and subsequently re-emitted during ventilation with clean air to a level of ˜10% that during the smoking phase. During chamber ventilation in the presence of ozone (180 ppb), ozone decayed at a rate of 5.6 h -1 and coincided with a factor of 5 less nicotine sorbed to wallboard. In the presence of ozone, no gas phase nicotine was detected as a result of re-emission, and higher concentrations of nicotine oxidation products were observed than when ventilation was performed with ozone-free air. Analysis of the model surfaces showed that heterogeneous nicotine-ozone reaction was faster on paper than cotton, and both were faster than on wallboard. However, wallboard played a dominant role in ozone-initiated reaction in the chamber due to its large total geometric surface area and sink potential compared to the other substrates. This study is the first to show in a room-sized environmental chamber that the heterogeneous ozone chemistry of sorbed nicotine generates THS constituents of concern, as observed previously in bench-top studies. In addition to the main oxidation products (cotinine, myosmine and N-methyl formamide), nicotine-1-oxide was detected for the first time.

  10. Combined Characterisation of GOME and TOMS Total Ozone Using Ground-Based Observations from the NDSC

    NASA Technical Reports Server (NTRS)

    Lambert, J.-C.; VanRoozendael, M.; Simon, P. C.; Pommereau, J.-P.; Goutail, F.; Andersen, S. B.; Arlander, D. W.; BuiVan, N. A.; Claude, H.; deLaNoee, J.; hide

    1998-01-01

    Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe Total Ozone Mapping Spectrometer (TOMS), and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both Global Ozone Monitoring Experiment (GOME) and TOMS several sources of discrepancies, including a dependence on the SZA at high latitudes and internal inconsistencies.

  11. Satellite Observations of Enhanced Tropospheric Ozone Associated with Biomass Burning in Africa and Madagascar

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Ziemke, J. R.; Thorpe, A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Brad G.; Lamb, Brian K.; Westberg, Halvor

    Volatile organic compounds (VOCs) are precursors to ground level ozone. Ground level ozone is the major component of photochemical smog, and has been linked to a variety of adverse health effects. These health effects include cancer, heart disease, pneumonia and death. In order to reduce ground level ozone, VOC emissions are being more stringently regulated. One VOC source that may come under regulation is lumber drying. Drying lumber is known to emit VOC into the atmosphere. This research evaluates the validity of VOC emission measurements from a small-scale kiln to approximate VOC emissions from kilns at commercial mills. We alsomore » report emission factors for three lumber species commonly harvested in the northwest United States (Douglas-fir, ponderosa pine, & grand fir). This work was done with a novel tracer ratio technique at a small laboratory kiln and a large commercial lumber drying facility. The measured emission factors were 0.51 g/kgOD for Douglas-fir, 0.7 g/kgOD for ponderosa pine, and 0.15 g/kgOD for grand fir. Aldehyde emission rates from lumber drying were also measured in some experiments. Results indicate that aldehyde emissions can constitute a significant percentage of the total VOC emissions.« less

  13. Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater.

    PubMed

    Shin, Minjung; Lee, Hye-Jin; Kim, Min Sik; Park, Noh-Back; Lee, Changha

    2017-02-01

    The inactivation of C. polykrikoides, a red tide dinoflagellate, by ozonation was investigated in seawater by monitoring numbers of viable and total cells. Parameters affecting the inactivation efficacy of C. polykrikoides such as the ozone dose, initial cell concentration, pH, and temperature were examined. The viable cell number rapidly decreased in the initial stage of the reaction (mostly in 1-2 min), whereas the decrease in total cell number was relatively slow and steady. Increasing ozone dose and decreasing initial cell concentration increased the inactivation efficacy of C. polykrikoides, while increasing pH and temperature decreased the cell inactivation efficacy. The addition of humic acid (a promoter for the ozone decomposition) inhibited the inactivation of C. polykrikoides, whereas bicarbonate ion (an inhibitor for the ozone decomposition) accelerated the C. polykrikoides inactivation. Observations regarding the effects of pH, temperature, humic acid, and bicarbonate ion collectively indicate that the inactivation of C. polykrikoides by ozonation is mainly attributed to oxidative cell damages by molecular ozone, rather than by hydroxyl radical, produced during the ozone decomposition. At high ozone dose (e.g., 5 mg/L), hypobromous acid formed by the reaction of bromide with ozone may partially contribute to cell inactivation. The use of ozone of less than 1 mg/L produced 0.75-2.03 μg/L bromate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar.

    PubMed

    Yuan, Xiangyang; Calatayud, Vicent; Gao, Feng; Fares, Silvano; Paoletti, Elena; Tian, Yuan; Feng, Zhaozhong

    2016-10-01

    The combined effects of ozone (O3 ) and drought on isoprene emission were studied for the first time. Young hybrid poplars (clone 546, Populus deltoides cv. 55/56 x P. deltoides cv. Imperial) were exposed to O3 (charcoal-filtered air, CF, and non-filtered air +40 ppb, E-O3 ) and soil water stress (well-watered, WW, and mild drought, MD, one-third irrigation) for 96 days. Consistent with light-saturated photosynthesis (Asat ), intercellular CO2 concentration (Ci ) and chlorophyll content, isoprene emission depended on drought, O3 , leaf position and sampling time. Drought stimulated emission (+38.4%), and O3 decreased it (-40.4%). Ozone increased the carbon cost per unit of isoprene emission. Ozone and drought effects were stronger in middle leaves (13th-15th from the apex) than in upper leaves (6th-8th). Only Asat showed a significant interaction between O3 and drought. When the responses were up-scaled to the entire-plant level, however, drought effects on total leaf area translated into around twice higher emission from WW plants in clean air than in E-O3 . Our results suggest that direct effects on plant emission rates and changes in total leaf area may affect isoprene emission from intensively cultivated hybrid poplar under combined MD and O3 exposure, with important feedbacks for air quality. © 2016 John Wiley & Sons Ltd.

  15. Management of Chronic Periodontitis Using Subgingival Irrigation of Ozonized Water: A Clinical and Microbiological Study

    PubMed Central

    Mathew, Jayan Jacob; Ambooken, Majo; Kachappilly, Arun Jose; PK, Ajithkumar; Johny, Thomas; VK, Linith; Samuel, Anju

    2015-01-01

    Introduction Adjunctive use of professional subgingival irrigation with scaling and root planing (SRP) has been found to be beneficial in eradicating the residual microorganisms in the pocket. Objective To evaluate the effect of ozonized water subgingival irrigation on microbiologic parameters and clinical parameters namely Gingival index, probing pocket depth, and clinical attachment level. Materials and Methods Thirty chronic periodontitis patients with probing pocket depth ≥6mm on at least one tooth on contra lateral sides of opposite arches were included in the study. The test sites were subjected to ozonized water subgingival irrigation with subgingival irrigation device fitted with a modified subgingival tip. Control sites were subjected to scaling and root planing only. The following clinical parameters were recorded initially and after 4 weeks at the test sites and control sites. Plaque Index, Gingival Index, probing pocket depth, clinical attachment level. Microbiologic sampling was done for the test at the baseline, after scaling, immediately after ozonized water subgingival irrigation and after 4 weeks. In control sites microbiologic sampling was done at the baseline, after scaling and after 4 weeks. The following observations were made after 4 weeks. The results were statistically analysed using independent t-test and paired t-test. Result Test sites showed a greater reduction in pocket depth and gain in clinical attachment compared to control sites. The total anaerobic counts were significantly reduced by ozonized water subgingival irrigation along with SRP compared to SRP alone. Conclusion Ozonized water subgingival irrigation can improve the clinical and microbiological parameters in patients with chronic periodontitis when used as an adjunct to scaling and root planing. PMID:26436042

  16. Total Ozone Trends from 1979 to 2016 Derived from Five Merged Observational Datasets - The Emergence into Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Loyola, Diego

    2018-01-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978–present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (approximately 1996 globally and approximately 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 percent decade(exp. -1) that are barely statistically significant at the 2 Sigma uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 percent(exp.-1), while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend analysis. Consequently, the retrieved trends can be only considered to be at the brink of becoming significant, but there are indications that we are about to emerge into the expected recovery phase. However, the recent trends are still considerably masked by the observed large year-to-year dynamical variability in total ozone.

  17. Total ozone trends from 1979 to 2016 derived from five merged observational datasets - the emergence into ozone recovery

    NASA Astrophysics Data System (ADS)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Long, Craig S.; Loyola, Diego

    2018-02-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978-present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (˜ 1996 globally and ˜ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade-1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade-1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend analysis. Consequently, the retrieved trends can be only considered to be at the brink of becoming significant, but there are indications that we are about to emerge into the expected recovery phase. However, the recent trends are still considerably masked by the observed large year-to-year dynamical variability in total ozone.

  18. Simultaneous measurements of ozone outside and inside cabins of two B-747 airliners and a Gates Learjet business jet

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Briehl, D.

    1978-01-01

    Recently, passengers and crew members on long-distance commercial flights have filed complaints after suffering symptoms of ozone sickness. Studies were conducted to determine the frequency and concentration of ozone in commercial jet transports. The airliner problem with ozone prompted NASA to determine the ozone concentrations that might be encountered in the cabin of a small business jet. Simultaneous measurements of atmospheric ozone levels and ozone levels in the cabins of jet aircraft were necessary because of the wide and rapid variability of atmospheric ozone in flight. It was found that the atmospheric ozone concentrations in the case of B-747 airliners vary widely during a flight. A constant difference, or ratio, between ozone concentrations outside and inside the cabin does not exist.

  19. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    NASA Astrophysics Data System (ADS)

    Lamy, Kévin; Portafaix, Thierry; Brogniez, Colette; Godin-Beekmann, Sophie; Bencherif, Hassan; Morel, Béatrice; Pazmino, Andrea; Metzger, Jean Marc; Auriol, Frédérique; Deroo, Christine; Duflot, Valentin; Goloub, Philippe; Long, Charles N.

    2018-01-01

    Surface ultraviolet radiation (SUR) is not an increasing concern after the implementation of the Montreal Protocol and the recovery of the ozone layer (Morgenstern et al., 2008). However, large uncertainties remain in the prediction of future changes of SUR (Bais et al., 2015). Several studies pointed out that UV-B impacts the biosphere (Erickson et al., 2015), especially the aquatic system, which plays a central part in the biogeochemical cycle (Hader et al., 2007). It can affect phytoplankton productivity (Smith and Cullen, 1995). This influence can result in either positive or negative feedback on climate (Zepp et al., 2007). Global circulation model simulations predict an acceleration of the Brewer-Dobson circulation over the next century (Butchart, 2014), which would lead to a decrease in ozone levels in the tropics and an enhancement at higher latitudes (Hegglin and Shepherd, 2009). Reunion Island is located in the tropics (21° S, 55° E), in a part of the world where the amount of ozone in the ozone column is naturally low. In addition, this island is mountainous and the marine atmosphere is often clean with low aerosol concentrations. Thus, measurements show much higher SUR than at other sites at the same latitude or at midlatitudes. Ground-based measurements of SUR have been taken on Reunion Island by a Bentham DTMc300 spectroradiometer since 2009. This instrument is affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). In order to quantify the future evolution of SUR in the tropics, it is necessary to validate a model against present observations. This study is designed to be a preliminary parametric and sensitivity study of SUR modelling in the tropics. We developed a local parameterisation using the Tropospheric Ultraviolet and Visible Model (TUV; Madronich, 1993) and compared the output of TUV to multiple years of Bentham spectral measurements. This comparison started in early 2009 and continued until 2016. Only clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman (2000)'s algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006)'s algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale) spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.

  20. Derivation of Tropospheric Ozone Climatology and Trends from TOMS Data

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; McPeters, Rich; Logan, Jennifer; Kim, Jae-Hwan

    2002-01-01

    This research addresses the following three objectives: (1) Derive tropospheric ozone columns from the TOMS instruments by computing the difference between total-ozone columns over cloudy areas and over clear areas in the tropics; (2) Compute secular trends in Nimbus-7 derived tropospheric Ozone column amounts and associated potential trends in the decadal-scale tropical cloud climatology; (3) Explain the occurrence of anomalously high ozone retrievals over high ice clouds.

  1. Chemical Data Assimilation Estimates of Continental US Ozone and Nitrogen Budgets during INTEX-A

    NASA Technical Reports Server (NTRS)

    Pierce, Robert B.; Schaack, Todd K.; Al-Saadi, Jassim A.; Fairlie, T. Duncan; Kittaka, Chieko; Lingenfelser, Gretchen; Natarajan, Murali; Olson, Jennifer; Soja, Amber; Zapotocny, Tom; hide

    2007-01-01

    Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the Continental US during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during the INTEX-A show that RAQMS captures the main features of the global and Continental US distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the Continental US export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental US photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24 percent, with NOx+PAN accounting for 54 percent of the total NOy export during INTEX-A.

  2. Changes in biologically active ultraviolet radiation reaching the Earth's surface.

    PubMed

    Madronich, S; McKenzie, R L; Björn, L O; Caldwell, M M

    1998-10-01

    Stratospheric ozone levels are near their lowest point since measurements began, so current ultraviolet-B (UV-B) radiation levels are thought to be close to their maximum. Total stratospheric content of ozone-depleting substances is expected to reach a maximum before the year 2000. All other things being equal, the current ozone losses and related UV-B increases should be close to their maximum. Increases in surface erythemal (sunburning) UV radiation relative to the values in the 1970s are estimated to be: about 7% at Northern Hemisphere mid-latitudes in winter/spring; about 4% at Northern Hemisphere mid-latitudes in summer/fall; about 6% at Southern Hemisphere mid-latitudes on a year-round basis; about 130% in the Antarctic in spring; and about 22% in the Arctic in spring. Reductions in atmospheric ozone are expected to result in higher amounts of UV-B radiation reaching the Earth's surface. The expected correlation between increases in surface UV-B radiation and decreases in overhead ozone has been further demonstrated and quantified by ground-based instruments under a wide range of conditions. Improved measurements of UV-B radiation are now providing better geographical and temporal coverage. Surface UV-B radiation levels are highly variable because of cloud cover, and also because of local effects including pollutants and surface reflections. These factors usually decrease atmospheric transmission and therefore the surface irradiances at UV-B as well as other wavelengths. Occasional cloud-induced increases have also been reported. With a few exceptions, the direct detection of UV-B trends at low- and mid-latitudes remains problematic due to this high natural variability, the relatively small ozone changes, and the practical difficulties of maintaining long-term stability in networks of UV-measuring instruments. Few reliable UV-B radiation measurements are available from pre-ozone-depletion days. Satellite-based observations of atmospheric ozone and clouds are being used, together with models of atmospheric transmission, to provide global coverage and long-term estimates of surface UV-B radiation. Estimates of long-term (1979-1992) trends in zonally averaged UV irradiances that include cloud effects are nearly identical to those for clear-sky estimates, providing evidence that clouds have not influenced the UV-B trends. However, the limitations of satellite-derived UV estimates should be recognized. To assess uncertainties inherent in this approach, additional validations involving comparisons with ground-based observations are required. Direct comparisons of ground-based UV-B radiation measurements between a few mid-latitude sites in the Northern and Southern Hemispheres have shown larger differences than those estimated using satellite data. Ground-based measurements show that summertime erythemal UV irradiances in the Southern Hemisphere exceed those at comparable latitudes of the Northern Hemisphere by up to 40%, whereas corresponding satellite-based estimates yield only 10-15% differences. Atmospheric pollution may be a factor in this discrepancy between ground-based measurements and satellite-derived estimates. UV-B measurements at more sites are required to determine whether the larger observed differences are globally representative. High levels of UV-B radiation continue to be observed in Antarctica during the recurrent spring-time ozone hole. For example, during ozone-hole episodes, measured biologically damaging radiation at Palmer Station, Antarctica (64 degrees S) has been found to approach and occasionally even exceed maximum summer values at San Diego, CA, USA (32 degrees N). Long-term predictions of future UV-B levels are difficult and uncertain. Nevertheless, current best estimates suggest that a slow recovery to pre-ozone depletion levels may be expected during the next half-century. (ABSTRACT TRUNCATED)

  3. Bromide's effect on DBP formation, speciation, and control; Part 1: Ozonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukairy, H.M.; Summers, R.S.; Miltner, R.J.

    1994-06-01

    The effect of variable ozone dosage and bromide concentration on the formation of organic disinfection by-products (DBPs) and bromate were evaluated. Low ozone dosages resulted in oxidation of organic precursors, yielding decreases in the formation potential for total trihalomethanes (THMs), six haloacetic acids (HAAs), and total organic halide (TOX). Increasing the ozone dosage oxidized bromide to bromate, decreasing the bromide for incorporation into DBPs. Bromate concentrations were linearly correlated with ozone residuals. Changes in the bromine incorporation factors n and n[prime] reflected differences in the resulting speciation of THMs and HAAs, respectively. Because TOX measurements based on chloride equivalence maymore » underestimate the halogenated DBP yield for high-bromide waters, a procedure is described whereby bromide and bromate concentrations were used to correct the TOX measurement.« less

  4. Improvement of the basic knowledge of the climatology of the vertical ozone layer by enhanced balloon sounding

    NASA Technical Reports Server (NTRS)

    Attmannspacher, W.; Hartmannsgrubber, R.; Lang, P.

    1984-01-01

    Balloon sounding of the ozone in the Earth atmosphere was performed in order to determine the natural behavior of ozone and its recognizable deviations. The importance of ozone in the Earth atmosphere and the orographic situation of observatories and ozone sounding statistics since 1966 are explained. The physical processes governing the total amount of ozone, and the behavior of stratospheric ozone are described. Measurements in the upper stratosphere show a decrease of the ozone partial pressure above 26 km altitude since 1977. The behavior of tropospheric ozone is discussed. Data since 1977 show increasing ozone values in the troposphere, up to 50% to 70%. This increase is independent of the solar radiation intensity and the reinforced transport of stratospheric ozone into the troposphere. The increase in the troposphere cannot compensate the stratospheric decrease.

  5. The increasing threat to stratospheric ozone from dichloromethane.

    PubMed

    Hossaini, Ryan; Chipperfield, Martyn P; Montzka, Stephen A; Leeson, Amber A; Dhomse, Sandip S; Pyle, John A

    2017-06-27

    It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane-an ozone-depleting gas not controlled by the Montreal Protocol-is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth's ozone layer.

  6. The increasing threat to stratospheric ozone from dichloromethane

    NASA Astrophysics Data System (ADS)

    Hossaini, Ryan; Chipperfield, Martyn P.; Montzka, Stephen A.; Leeson, Amber A.; Dhomse, Sandip S.; Pyle, John A.

    2017-06-01

    It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane--an ozone-depleting gas not controlled by the Montreal Protocol--is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth's ozone layer.

  7. 40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disinfectant or oxidant. (2) Use of chlorine dioxide as an alternate or supplemental disinfectant or oxidant... of raw water. Use of ozone as an alternate or supplemental disinfectant or oxidant. (d) If the... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS...

  8. Resourceful Thinking about Printing and Related Industries: Economic Considerations and Environmental Sustainability

    ERIC Educational Resources Information Center

    Wikina, Suanu Bliss; Thompson, Cynthia Carlton; Blackwell, Elinor

    2010-01-01

    Increasing population, total economic volume, and human consumption levels have resulted in problems of resource shortages, climate change, ozone layer depletion, land regression, and deteriorating environmental pollution. Printing and related industries constitute one of the major sources of environmental pollution due to heavy energy and…

  9. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation

    EPA Science Inventory

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adre...

  10. Extended and refined multi sensor reanalysis of total ozone for the period 1970-2012

    NASA Astrophysics Data System (ADS)

    van der A, R. J.; Allaart, M. A. F.; Eskes, H. J.

    2015-07-01

    The ozone multi-sensor reanalysis (MSR) is a multi-decadal ozone column data record constructed using all available ozone column satellite data sets, surface Brewer and Dobson observations and a data assimilation technique with detailed error modelling. The result is a high-resolution time series of 6-hourly global ozone column fields and forecast error fields that may be used for ozone trend analyses as well as detailed case studies. The ozone MSR is produced in two steps. First, the latest reprocessed versions of all available ozone column satellite data sets are collected and then are corrected for biases as a function of solar zenith angle (SZA), viewing zenith angle (VZA), time (trend), and stratospheric temperature using surface observations of the ozone column from Brewer and Dobson spectrophotometers from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Subsequently the de-biased satellite observations are assimilated within the ozone chemistry and data assimilation model TMDAM. The MSR2 (MSR version 2) reanalysis upgrade described in this paper consists of an ozone record for the 43-year period 1970-2012. The chemistry transport model and data assimilation system have been adapted to improve the resolution, error modelling and processing speed. Backscatter ultraviolet (BUV) satellite observations have been included for the period 1970-1977. The total record is extended by 13 years compared to the first version of the ozone multi sensor reanalysis, the MSR1. The latest total ozone retrievals of 15 satellite instruments are used: BUV-Nimbus4, TOMS-Nimbus7, TOMS-EP, SBUV-7, -9, -11, -14, -16, -17, -18, -19, GOME, SCIAMACHY, OMI and GOME-2. The resolution of the model runs, assimilation and output is increased from 2° × 3° to 1° × 1°. The analysis is driven by 3-hourly meteorology from the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) starting from 1979, and ERA-40 before that date. The chemistry parameterization has been updated. The performance of the MSR2 analysis is studied with the help of observation-minus-forecast (OmF) departures from the data assimilation, by comparisons with the individual station observations and with ozone sondes. The OmF statistics show that the mean bias of the MSR2 analyses is less than 1 % with respect to de-biased satellite observations after 1979.

  11. Effects of ozone in normal human epidermal keratinocytes.

    PubMed

    McCarthy, James T; Pelle, Edward; Dong, Kelly; Brahmbhatt, Krupa; Yarosh, Dan; Pernodet, Nadine

    2013-05-01

    Ozone is a tropospheric pollutant that can form at ground level as a result of an interaction between sunlight and hydrocarbon engine emissions. As ozone is an extremely oxidative reaction product, epidermal cells are in the outer layer of defense against ozone. We exposed normal human epidermal keratinocytes (NHEK) to concentrations of ozone that have been measured in cities and assayed for its effects. Hydrogen peroxide and IL-1α levels both increased while ATP levels decreased. We found a decrease in the NAD-dependent histone deacetylase, sirtuin 3. Lastly, we found that ozone increased DNA damage as evaluated by Comet assay. Taken together, our results show increased damage to NHEK that will ultimately impair normal cellular function as a result of an environmentally relevant ozone exposure. © 2013 John Wiley & Sons A/S.

  12. Injection of iodine to the stratosphere

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, Alfonso; Baidar, Sunil; Cuevas, Carlos A.; Koening, Theodore; Fernandez, Rafael P.; Dix, Barbara; Kinnison, Douglas E.; Lamarque, Jean-Francois; Rodriguez-Lloveras, Xavier; Campos, Teresa L.; Volkamer, Rainer

    2016-04-01

    There are still many uncertainties about the influence of iodine chemistry in the stratosphere, as the real amount of reactive iodine injected to this layer the troposphere and the partitioning of iodine species are still unknown. In this work we report a new estimation of the injection of iodine into the stratosphere based on novel daytime (SZA < 45°) aircraft observations in the tropical tropopause layer (TORERO campaign) and a 3D global chemistry-climate model (CAM-Chem) with the most recent knowledge about iodine photochemistry. The results indicate that significant levels of total reactive iodine (0.25-0.7 pptv), between 2 and 5 times larger than the accepted upper limits, could be injected into the stratosphere via tropical convective outflow. At these iodine levels, modelled iodine catalytic cycles account for up to 30% of the contemporary ozone loss in the tropical lower stratosphere and can exert a stratospheric ozone depletion potential equivalent or even larger than that of very short-lived bromocarbons. Therefore, we suggest that iodine sources and chemistry need to be considered in assessments of the historical and future evolution of the stratospheric ozone layer.

  13. Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model

    NASA Astrophysics Data System (ADS)

    Franz, Martina; Simpson, David; Arneth, Almut; Zaehle, Sönke

    2017-01-01

    Ozone (O3) is a toxic air pollutant that can damage plant leaves and substantially affect the plant's gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic O3 on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate O3 uptake and damage of plants for a state-of-the-art global terrestrial biosphere model called OCN. Our approach accounts for ozone damage by calculating (a) O3 transport from 45 m height to leaf level, (b) O3 flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated O3 uptake over the lifetime of a leaf. A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN including ozone damage. This comparison provides a good baseline on top of which ozone damage can be evaluated. In comparison to literature values, we demonstrate that the new model version produces realistic O3 surface resistances, O3 deposition velocities, and stomatal to total O3 flux ratios. A sensitivity study reveals that key metrics of the air-to-leaf O3 transport and O3 deposition, in particular the stomatal O3 uptake, are reasonably robust against uncertainty in the underlying parameterisation of the deposition scheme. Nevertheless, correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative O3 uptake. We further find that accounting for stomatal and non-stomatal uptake processes substantially affects simulated plant O3 uptake and accumulation, because aerodynamic resistance and non-stomatal O3 destruction reduce the predicted leaf-level O3 concentrations. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric O3 impacts the regional carbon and water cycling less than expected from previous studies. This study presents a first step towards the integration of atmospheric chemistry and ecosystem dynamics modelling, which would allow for assessing the wider feedbacks between vegetation ozone uptake and tropospheric ozone burden.

  14. Changes in biologically active ultraviolet radiation reaching the Earth's surface.

    PubMed

    McKenzie, Richard L; Björn, Lars Olof; Bais, Alkiviadis; Ilyasad, Mohammad

    2003-01-01

    Since publication of the 1998 UNEP Assessment, there has been continued rapid expansion of the literature on UV-B radiation. Many measurements have demonstrated the inverse relationship between column ozone amount and UV radiation, and in a few cases long-term increases due to ozone decreases have been identified. The quantity, quality and availability of ground-based UV measurements relevant to assessing the environmental impacts of ozone changes continue to improve. Recent studies have contributed to delineating regional and temporal differences due to aerosols, clouds, and ozone. Improvements in radiative transfer modelling capability now enable more accurate characterization of clouds, snow-cover, and topographical effects. A standardized scale for reporting UV to the public has gained wide acceptance. There has been increased use of satellite data to estimate geographic variability and trends in UV. Progress has been made in assessing the utility of satellite retrievals of UV radiation by comparison with measurements at the Earth's surface. Global climatologies of UV radiation are now available on the Internet. Anthropogenic aerosols play a more important role in attenuating UV irradiances than has been assumed previously, and this will have implications for the accuracy of UV retrievals from satellite data. Progress has been made inferring historical levels of UV radiation using measurements of ozone (from satellites or from ground-based networks) in conjunction with measurements of total solar radiation obtained from extensive meteorological networks. We cannot yet be sure whether global ozone has reached a minimum. Atmospheric chlorine concentrations are beginning to decrease. However, bromine concentrations are still increasing. While these halogen concentrations remain high, the ozone layer remains vulnerable to further depletion from events such as volcanic eruptions that inject material into the stratosphere. Interactions between global warming and ozone depletion could delay ozone recovery by several years, and this topic remains an area of intense research interest. Future changes in greenhouse gases will affect the future evolution of ozone through chemical, radiative, and dynamic processes In this highly coupled system, an evaluation of the relative importance of these processes is difficult: studies are ongoing. A reliable assessment of these effects on total column ozone is limited by uncertainties in lower stratospheric response to these changes. At several sites, changes in UV differ from those expected from ozone changes alone, possibly as a result of long-term changes in aerosols, snow cover, or clouds. This indicates a possible interaction between climate change and UV radiation. Cloud reflectance measured by satellite has shown a long-term increase at some locations, especially in the Antarctic region, but also in Central Europe, which would tend to reduce the UV radiation. Even with the expected decreases in atmospheric chlorine, it will be several years before the beginning of an ozone recovery can be unambiguously identified at individual locations. Because UV-B is more variable than ozone, any identification of its recovery would be further delayed.

  15. Ozone and Ozone By-Products in the Cabins of Commercial Aircraft

    PubMed Central

    Weisel, Clifford; Weschler, Charles J.; Mohan, Kris; Vallarino, Jose; Spengler, John D.

    2013-01-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were > 75ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO’s formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  16. Extreme value modeling for the analysis and prediction of time series of extreme tropospheric ozone levels: a case study.

    PubMed

    Escarela, Gabriel

    2012-06-01

    The occurrence of high concentrations of tropospheric ozone is considered as one of the most important issues of air management programs. The prediction of dangerous ozone levels for the public health and the environment, along with the assessment of air quality control programs aimed at reducing their severity, is of considerable interest to the scientific community and to policy makers. The chemical mechanisms of tropospheric ozone formation are complex, and highly variable meteorological conditions contribute additionally to difficulties in accurate study and prediction of high levels of ozone. Statistical methods offer an effective approach to understand the problem and eventually improve the ability to predict maximum levels of ozone. In this paper an extreme value model is developed to study data sets that consist of periodically collected maxima of tropospheric ozone concentrations and meteorological variables. The methods are applied to daily tropospheric ozone maxima in Guadalajara City, Mexico, for the period January 1997 to December 2006. The model adjusts the daily rate of change in ozone for concurrent impacts of seasonality and present and past meteorological conditions, which include surface temperature, wind speed, wind direction, relative humidity, and ozone. The results indicate that trend, annual effects, and key meteorological variables along with some interactions explain the variation in daily ozone maxima. Prediction performance assessments yield reasonably good results.

  17. Understanding Differences in Upper Stratospheric Ozone Response to Changes in Chlorine and Temperature as Computed Using CCMVal Models

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-01-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as chemistry and climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary for projections of changes in ozone depleting substances (ODSs) and greenhouse gases. In the upper stratosphere photochemical processes control ozone level, and ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. Simulations agree broadly but there are quantitative differences in the sensitivity of ozone to chlorine and to temperature. We obtain insight into these differences in sensitivity by examining the relationship between the upper stratosphere annual cycle of ozone and temperature as produced by a suite of models. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Differences in sensitivity are traced to differences in simulated temperature, ozone and reactive nitrogen when chlorine levels are close to background. This work shows that differences in the importance of specific processes underlie differences in simulated sensitivity of ozone to composition change. This suggests a) the multi-model mean is not a best estimate of the sensitivity of upper ozone to changes in ODSs and temperature; b) the spread of values is not an appropriate measure of uncertainty.

  18. Profiling secondary metabolites of needles of ozone-fumigated white pine (Pinus strobus) clones by thermally assisted hydrolysis/methylation GC/MS.

    PubMed

    Shadkami, F; Helleur, R J; Cox, R M

    2007-07-01

    Plant secondary metabolites have an important role in defense responses against herbivores and pathogens, and as a chemical barrier to elevated levels of harmful air pollutants. This study involves the rapid chemical profiling of phenolic and diterpene resin acids in needles of two (ozone-tolerant and ozone-sensitive) white pine (Pinus strobus) clones, fumigated with different ozone levels (control, and daily events peaking at 80 and 200 ppb) for 40 days. The phenolic and resin acids were measured using thermally assisted hydrolysis and methylation (THM) gas chromatography/mass spectrometry. Short-term fumigation affected the levels of two phenolic acids, i.e., 3-hydroxybenzoic and 3,4-dihydroxybenzoic acids, in that both showed a substantial decrease in concentration with increased ozone dose. The decrease in concentration of these THM products may be caused by inhibition of the plant's shikimate biochemical pathway caused by ozone exposure. The combined occurrence of these two ozone-sensitive indicators has a role in biomonitoring of ozone levels and its impact on forest productivity. In addition, chromatographic profile differences in the major diterpene resin acid components were observed between ozone-tolerant and ozone-sensitive clones. The resin acids anticopalic, 3-oxoanticopalic, 3beta-hydroxyanticopalic, and 3,4-cycloanticopalic acids were present in the ozone-sensitive pine; however, only anticopalic acid was present in the ozone-tolerant clone. This phenotypic variation in resin acid composition may be useful in distinguishing populations that are differentially adapted to air pollutants.

  19. Ozone in the Atmosphere: II. The Lower Atmosphere.

    ERIC Educational Resources Information Center

    Phillips, Paul; Pickering, Pam

    1991-01-01

    Described are the problems caused by the increased concentration of ozone in the lower atmosphere. Photochemical pollution, mechanisms of ozone production, ozone levels in the troposphere, effects of ozone on human health and vegetation, ozone standards, and control measures are discussed. (KR)

  20. SHADOZ (Southern Hemisphere Additional Ozonesondes): A Project Overview and New Insights on Tropical Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, S. J.; Schmidlin, F. J.

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the website, http://croc.gsfc.nasa.gov/shadoz, for 12 stations: Ascension Island; Nairobi and Malindi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil; Paramaribo, Surinam. Key results from SHADOZ will be described from among the following: 1) By using ECC sondes with similar procedures, 5-10% accuracy and precision (1-sigma) of the sonde total ozone measurement is achieved; 2) Week-to-week variability in tropospheric ozone is so great that statistics are frequently not Gaussian; most stations vary up to a factor of 3 in tropospheric column over the course of a year; 3) Longitudinal variability in tropospheric ozone profiles is a consistent feature, with a 10-15 DU column-integrated difference between Atlantic and Pacific sites; this causes a "zonal wave-one" feature in total ozone; 4) The ozone record from Paramaribo, Surinam (6N, 55W) is a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone.

  1. Climate change impacts on projections of excess mortality at ...

    EPA Pesticide Factsheets

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observeddata. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results variedby region . Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1 .6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.628.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. In this study we evaluate changes in ozone related mortality due to changes in biogenic f

  2. Ground-based intercomparisons of SBUV/2 flight instruments the world standard Dobson spectrophotometer 83 and overpass observations from Nimbus-7 TOMS and NOAA-11 SBUV/2

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Ahmad, Z.; Torres, O.; Evans, R. D.; Grass, R. D.; Komhyr, W. A.; Nelson, W.

    1994-01-01

    Total ozone data obtained during summers at Mauna Loa Observatory, Hawaii, with Dobson Spectrophotometer 83 are routinely compared with overpass total ozone data from the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) spectrometer launched aboard the Nimbus 7 satellite in 1978. Results from the TOMS/Dobson instrument comparisons through 1990 have been presented by McPeters and Komhyr (1991). Dobson spectrophotometer 83 was established as the standard instrument for the U.S.A. Dobson instrument station network in 1962. In 1980, the instrument was designated by the World Meteorological Organization (WMO) as the Standard Dobson Spectrophotometer for the World. Long-term ozone measurement precision of the instrument has been maintained at plus or minus 0.5 percent (Komhyr et al., 1989). On an absolute scale, the ozone measurement accuracy of the instrument is estimated to plus or minus 3 percent. In early April, 1990, comparison of total ozone and vertical distribution (Umkehr) observations were made for the first time with Dobson spectrophotometer 8.3. The work was conducted at the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) in Boulder, Colorado, and at the research and instrument manufacturing facility of the Ball Aerospace System Division located about 2 km east of Boulder. (The SBUV-2 S/N-2 instrument, built by Ball Aerospace Systems Division, is scheduled for launch aboard the NOAA-13 satellite). We present results of the comparisons which include ozone vertical distribution data obtained with a balloon-borne electrochemical concentration cell (ECC) ozonesonde (Komhyr, 1969).

  3. The GEOS Ozone Data Assimilation System: Specification of Error Statistics

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    A global three-dimensional ozone data assimilation system has been developed at the Data Assimilation Office of the NASA/Goddard Space Flight Center. The Total Ozone Mapping Spectrometer (TOMS) total ozone and the Solar Backscatter Ultraviolet (SBUV) or (SBUV/2) partial ozone profile observations are assimilated. The assimilation, into an off-line ozone transport model, is done using the global Physical-space Statistical Analysis Scheme (PSAS). This system became operational in December 1999. A detailed description of the statistical analysis scheme, and in particular, the forecast and observation error covariance models is given. A new global anisotropic horizontal forecast error correlation model accounts for a varying distribution of observations with latitude. Correlations are largest in the zonal direction in the tropics where data is sparse. Forecast error variance model is proportional to the ozone field. The forecast error covariance parameters were determined by maximum likelihood estimation. The error covariance models are validated using x squared statistics. The analyzed ozone fields in the winter 1992 are validated against independent observations from ozone sondes and HALOE. There is better than 10% agreement between mean Halogen Occultation Experiment (HALOE) and analysis fields between 70 and 0.2 hPa. The global root-mean-square (RMS) difference between TOMS observed and forecast values is less than 4%. The global RMS difference between SBUV observed and analyzed ozone between 50 and 3 hPa is less than 15%.

  4. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive cyclogenesis and hurricane force wind events. Currently, forecasters at WPC/OPC are evaluating the Air Mass RGB imagery in conjunction with the AIRS total column ozone to aid forecasting cyclogenesis and high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. To address this limitation, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air on the Air Mass RGB. This presentation describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the Air Mass RGB product for the unique forecast challenges WPC/OPC face. Additionally examples of CrIS ozone and anomaly products will be shown to further demonstrate the utility and capability of JPSS in forecasting unique events.

  5. Antarctic Ozone Hole on September 17, 2001

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Satellite data show the area of this year's Antarctic ozone hole peaked at about 26 million square kilometers-roughly the size of North America-making the hole similar in size to those of the past three years, according to scientists from NASA and the National Oceanic and Atmospheric Administration (NOAA). Researchers have observed a leveling-off of the hole size and predict a slow recovery. Over the past several years the annual ozone hole over Antarctica has remained about the same in both its size and in the thickness of the ozone layer. 'This is consistent with human-produced chlorine compounds that destroy ozone reaching their peak concentrations in the atmosphere, leveling off, and now beginning a very slow decline,' said Samuel Oltmans of NOAA's Climate Monitoring and Diagnostics Laboratory, Boulder, Colo. In the near future-barring unusual events such as explosive volcanic eruptions-the severity of the ozone hole will likely remain similar to what has been seen in recent years, with year-to-year differences associated with meteorological variability. Over the longer term (30-50 years) the severity of the ozone hole in Antarctica is expected to decrease as chlorine levels in the atmosphere decline. The image above shows ozone levels on Spetember 17, 2001-the lowest levels observed this year. Dark blue colors correspond to the thinnest ozone, while light blue, green, and yellow pixels indicate progressively thicker ozone. For more information read: 2001 Ozone Hole About the Same Size as Past Three Years. Image courtesy Greg Shirah, GSFC Scientific Visualization Studio, based on data from the TOMS science team

  6. BROMIDE'S EFFECT ON DBP FORMATION, SPECIATION, AND CONTROL: PART 1, OZONATION

    EPA Science Inventory

    The effect of variable ozone dosage and bromide concentration on the formation of organic disinfection byproducts (DBPs) and bromate were evaluated. Low ozone dosages resulted in oxidation of organic precursors, yielding decreases in the formation potential for total trihalometha...

  7. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    PubMed

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions.

  8. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China

    PubMed Central

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions. PMID:26760509

  9. Brewer spectrophotometer measurements in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Kerr, J. B.; Evans, W. F. J.

    1988-01-01

    In the winters of 1987 and 1988 measurements were conducted with the Brewer Spectrophotometer at Alert (82.5 N) and Resolute (74.5 N). The measurements were conducted as part of our Canadian Program to search for an Arctic Ozone Hole (CANOZE). Ozone measurements were conducted in the months of December, January and February using the moon as a light source. The total ozone measurements will be compared with ozonesonde profiles, from ECC sondes, flown once per week from Alert and Resolute. A modified Brewer Spectrophotometer was used in a special study to search for chlorine dioxide at Alert in March 1987. Ground based observations at Saskatoon in February and at Alert in March 1987 failed to detect any measureable chlorine dioxide. Interference from another absorbing gas, which we speculate may be nitrous acid, prevented the measurements at the low levels of chlorine dioxide detected in the Southern Hemisphere by Solomon et al.

  10. Effect of Gaseous Ozone Exposure on the Bacteria Counts and Oxidative Properties of Ground Hanwoo Beef at Refrigeration Temperature.

    PubMed

    Cho, Youngjae; Muhlisin; Choi, Ji Hye; Hahn, Tae-Wook; Lee, Sung Ki

    2014-01-01

    This study was designed to elucidate the effect of ozone exposure on the bacteria counts and oxidative properties of ground Hanwoo beef contaminated with Escherichia coli O157:H7 at refrigeration temperature. Ground beef was inoculated with 7 Log CFU/g of E. coli O157:H7 isolated from domestic pigs and was then subjected to ozone exposure (10×10(-6) kg O3 h(-1)) at 4℃ for 3 d. E. coli O157:H7, total aerobic and anaerobic bacterial growth and oxidative properties including instrumental color changes, TBARS, catalase (CAT) and glutathione peroxidase (GPx) activity were evaluated. Ozone exposure significantly prohibited (p<0.05) the growths of E. coli O157:H7, total aerobic and anaerobic bacteria in ground beef samples during storage. Ozone exposure reduced (p<0.05) the CIE a* value of samples over storage time. The CIE L* and CIE b* values of the samples fluctuated over storage time, and ozone had no clear effect. Ozone exposure increased the TBARS values during 1 to 3 d of storage (p<0.05). The CAT and GPx enzyme activities were not affected by ozone exposure until 2 and 3 d of storage, respectively. This study provides information about the use of ozone exposure as an antimicrobial agent for meat under refrigerated storage. The results of this study provide a foundation for the further application of ozone exposure by integrating an ozone generator inside a refrigerator. Further studies regarding the ozone concentrations and exposure times are needed.

  11. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    NASA Astrophysics Data System (ADS)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from July to September. Episodes of high concentrations occurred mainly during the dry warm months. Most of the year, nocturnal ozone levels were higher than those registered in the urban area due to the PMH altitude. As a great part of the mountain terrain regularly is above the nocturnal mixing layer formed each day on the valley floor, the ozone remanent levels above this layer in the mountains are kept isolated from urban NOx emissions generated at night. An evaluation of the AOT40 indicator shows that the forest zone is under a strong risk due to ozone pollution. A preliminary analysis of several ozone events in the PNMH shows the suppression of the diel peak, suggesting that a stratospheric intrusion of ozone occurs frequently in high-elevation sites surrounding MCMA.

  12. Treatment of raw and ozonated oil sands process-affected water under decoupled denitrifying anoxic and nitrifying aerobic conditions: a comparative study.

    PubMed

    Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2016-11-01

    Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3-O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.

  13. High Wintertime Ozone in the Uinta Basin: Diurnal Mixing and Ozone Production Measured by Tethered Ozonesondes

    NASA Astrophysics Data System (ADS)

    Johnson, B.; Cullis, P.; Schnell, R. C.; Oltmans, S. J.; Sterling, C. W.; Jordan, A. F.; Hall, E.

    2016-12-01

    Extreme high ozone mixing ratios, far exceeding U.S. National Air Quality Standards, were observed in the Uinta Basin in January-February 2013 under conditions highly favorable for wintertime ozone production. Hourly average ozone mixing ratios increased from regional background levels of 40-50 ppbv to >160 ppbv during several multi-day episodes of prolonged temperature inversions over snow-covered ground within air confining topography. Extensive surface and tethered balloon profile measurements of ozone, meteorology, CH4, CO2, NO2 and a suite of non-methane hydrocarbons (NMHCs) link emissions from oil and natural gas extraction with the strong ozone production throughout the Basin. High levels of NMHCs that were well correlated with CH4 showed that abundant O3 precursors were available throughout the Basin where high ozone mixing ratios extended from the surface to the top of the inversion layer at 200 m above ground level. This layer was at a nearly uniform height across the Basin even though there are significant terrain variations. Tethered balloon measurements rising above the elevated levels of ozone within the cold pool layer beneath the inversion measured regional background O3 concentrations. Surface wind and direction data from tethered balloons showed a consistent diurnal pattern in the Basin that moved air with the highest levels of CH4 and ozone precursor NMHC's from the gas fields of the east-central portion of the Basin to the edges during the day, before draining back into the Basin at night.

  14. Ozone contamination in aircraft cabins - Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The paper reviews results from the NASA Global Atmospheric Sampling Program (GASP) pertaining to the problem of ozone contamination in commercial aircraft cabins. Specifically, analyses of GASP data have (1) confirmed the high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; (2) defined ambient ozone climatology at commercial aircraft cruise altitudes, including tabulation of encounter frequency data; and (3) outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data and verified these procedures against cabin measurements.

  15. Ozone contamination in aircraft cabins: Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The global atmospheric sampling program pertaining to the problem of ozone contamination in commercial airplane cabins is described. Specifically, analyses of GASP data have: confirmed the occurrence of high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; defined ambient ozone climatology at commercial airplane cruise altitudes, including tabulation of encounter frequency data which were not available before GASP; and outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data, and verified these procedures against cabin measurements.

  16. Long-term erythemal UV doses at Sodankylä estimated using total ozone, sunshine duration, and snow depth

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Arola, A.; Kaurola, J.; Taalas, P.; SvenøE, T.

    2003-08-01

    A method for estimating daily erythemal UV doses using total ozone, sunshine duration, and snow depth has been developed. The method consists of three steps: (1) daily clear-sky UV doses were simulated using the UVSPEC radiative transfer program, with daily values of total ozone as input data, (2) an empirical relationship was sought between the simulated clear-sky UV doses, the measured UV doses, and the duration of bright sunshine, and (3) daily erythemal UV doses were estimated using this relationship. The method accounts for the varying surface albedo by dividing the period of interest into winter and summer days, depending on the snow depth. Using this method, the daily erythemal UV doses at Sodankylä were estimated for the period 1950-1999. This was done using Tromsø's total ozone together with Sodankylä's own sunshine duration and snow depth as input data. Although the method is fairly simple, the results are in good agreement, even on the daily scale, with the UV radiation measured with the Brewer spectrophotometer at Sodankylä. Over the period 1950-1999 a statistically significant increasing trend of 3.9% per decade in erythemal UV doses was found for March. The fact that this trend is much more pronounced during the latter part of the period, which is also the case for April, suggests a connection to the stratospheric ozone depletion. For July, on the other hand, a significant decreasing trend of 3.3% per decade, supported by the changes in both total ozone and sunshine duration, was found.

  17. Long-term erythemal UV doses at Sodankylä estimated using total ozone, sunshine duration and snow depth

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Arola, A.; Kaurola, J.; Taalas, P.; Svenøe, T.

    2003-04-01

    A method for estimating daily erythemal UV doses using total ozone, sunshine duration and snow depth has been developed. The method consists of three steps: (1) daily clear-sky UV doses were simulated using the UVSPEC radiative transfer program, with daily values of total ozone as input data, (2) an empirical relationship was sought between the simulated clear-sky UV doses, the measured UV doses and the duration of bright sunshine, (3) daily erythemal UV doses were estimated using this relationship. The method accounts for the varying surface albedo by dividing the period of interest into winter and summer days, depending on the snow depth. Using this method, the daily erythemal UV doses at Sodankylä were estimated for the period 1950--99. This was done using Tromsø's total ozone together with Sodankylä's own sunshine duration and snow depth as input data. Although the method is fairly simple, the results are in good agreement, even on the daily scale, with the UV radiation measured with the Brewer spectrophotometer at Sodankylä. Statistically significant increasing trends in erythemal UV doses of a few percents per decade over the period 1950--99 were found for March and April, suggesting a connection to the stratospheric ozone depletion. For July, on the other hand, a significant decreasing trend of about 3% per decade, supported by the changes in both total ozone and sunshine duration, was found. The produced data set of erythemal UV doses is the longest time series of estimated UV known to the authors.

  18. Interrelation of changes in the total content of ozone in the northern hemisphere with the velocity of the stratosphere circumpolar vortex

    NASA Astrophysics Data System (ADS)

    Kolyada, Maria N.; Kashkin, Valentin B.

    2004-12-01

    Considering the high significance of the ozone for preservation and maintenance of the biosphere and the temperature balance of the atmosphere the investigation of the ozone layer is a very important part of the investigation of the planet"s atmosphere. In this work results of investigations of TOC variability in the Northern Hemisphere and the influence of variability of the circumpolar vortex rotation velocity on the ozone layer are presented. Mean values of total ozone concentration in the Northern Hemisphere (by satellite data) and rotation velocities of the circumpolar vortex are calculated for each month from February to April during 1998-2004. Also in this work the mechanism of the influence of the natural factors on TOC variability solar activity during the spring is suggested.

  19. The roles of ozone and zeolite on reactive dye degradation in electrical discharge reactors.

    PubMed

    Peternel, L; Kusic, H; Koprivanac, N; Locke, B R

    2006-05-01

    In this study high voltage pulsed corona electrical discharge advanced oxidation processes (AOPs) were applied to bleach and degrade C.I. Reactive Green 8 and C.I. Reactive Red 45 organic dyes in water solutions. Two types of hybrid gas/liquid high voltage electrical discharge (corona) reactors, known as hybrid series and hybrid parallel were studied. The difference between these reactors relates to electrode configuration, which affects the amounts of ozone, hydrogen peroxide and hydroxyl radicals produced. Experiments were conducted using dye concentrations of 20 mgl(-1) and 75 mgl(-1), with and without NH4ZSM5 zeolite addition in order to determine possible effects of added solid particles to total process efficiency. The role of ozone in combination with zeolites was assessed through comparative direct ozonation experiments with ozone supplied by an ozone generator. UV/VIS spectrophotometric measurements and measurements of total organic carbon (TOC) were used for the determination of decolorization and mineralization rates.

  20. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    NASA Astrophysics Data System (ADS)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l -1 of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While α-pinene emissions decreased with ozone fumigation in Olea europaea, α-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95%) and total VOC (45%) emission rates in ozone-fumigated plants, whereas stomatal conductance did not change. Since VOCs are precursors of ozone, the increase in BVOC emission as a consequence of elevated tropospheric ozone concentrations may lead to positive feedback mechanisms in ozone formation.

  1. Long-Term Exposure to Ozone and Life Expectancy in the United States, 2002 to 2008

    PubMed Central

    Li, Chaoyang; Balluz, Lina S.; Vaidyanathan, Ambarish; Wen, Xiao-Jun; Hao, Yongping; Qualters, Judith R.

    2016-01-01

    Abstract Long-term exposure to ground-level ozone is associated with increased risk of morbidity and mortality. The association remains uncertain between long-term exposure to ozone and life expectancy. We assessed the associations between seasonal mean daily 8-hour maximum (8-hr max) ozone concentrations measured during the ozone monitoring seasons and life expectancy at birth in 3109 counties of the conterminous U.S. during 2002 to 2008. We used latent class growth analysis to identify latent classes of counties that had distinct mean levels and rates of change in ozone concentrations over the 7-year period and used linear regression analysis to determine differences in life expectancy by ozone levels. We identified 3 classes of counties with distinct seasonal mean daily 8-hr max ozone concentrations and rates of change. When compared with the counties with the lowest ozone concentrations, the counties with the highest ozone concentrations had 1.7- and 1.4-year lower mean life expectancy in males and females (both P < 0.0001), respectively. The associations remained statistically significant after controlling for potential confounding effects of seasonal mean PM2.5 concentrations and other selected environmental, demographic, socio-economic, and health-related factors (both P < 0.0001). A 5 ppb higher ozone concentration was associated with 0.25 year lower life expectancy in males (95% CI: −0.30 to −0.19) and 0.21 year in females (95% CI: −0.25 to −0.17). We identified 3 classes of counties with distinct mean levels and rates of change in ozone concentrations. Our findings suggest that long-term exposure to a higher ozone concentration may be associated with a lower life expectancy. PMID:26886595

  2. Stratospheric ozone as viewed from the Chappuis band. [long term pollution monitoring

    NASA Technical Reports Server (NTRS)

    Angione, R. J.; Medeiros, E. J.; Roosen, R. G.

    1976-01-01

    Total stratospheric ozone values above high-altitude stations in southern California from 1912 to 1950 and northern Chile from 1918 to 1948 are determined using data obtained by the Smithsonian Astrophysical Observatory, including transmission measurements made in the Chappuis band (0.5 to 0.7 micron). The results show that at both sites, total ozone amounts commonly exhibit variations of as much as 20% to 30% on time scales ranging from months to decades. Consideration of the amount of incident solar energy absorbed by the Chappuis band suggests that ozone acts as a shutter on the incoming solar radiation and provides a trigger mechanism between solar activity and climatic change.

  3. Direct measurements of tropospheric ozone from TOMS data

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D.

    1993-01-01

    In the past year, we have made measurements of the tropospheric total column of ozone during the biomass burning season in Africa (August to October). Fishman et. al. had reported previously that by taking a time average of the low spatial resolution data from TOMS (Total Ozone Mapping Spectrometer) on Nimbus-7 (referred to as the Grid-T data set), during the biomass burning season in Africa, a plume of ozone extends from the East coast of Africa into the Atlantic. In this report, we present an analysis that we have made using the measured TOMS radiances taken from the High Density TOMS data set (referred as the HDT data set), which examines this plume in more detail.

  4. Behavior of total tropospheric ozone, nitrogen oxide and carbon monoxide column over western Indian region by exploring space based satellite observations

    NASA Astrophysics Data System (ADS)

    Vyas, B. M.; Saxena, Abhishek; Shekhawat, M. S.

    2018-05-01

    Monthly, seasonal and annual variation of major atmospheric pollutant levels, such as Total Tropospheric Ozone (TO), Total NO2 columnar content (TNO2) and Total CO columnar content (TCO) have been presented first time for eleven district sites of Rajasthan state located in the western tropical Indian region. The study is based on collection of above air pollutant data retrieved from space based satellite measurements by exploring OMI and MOPITT data for a three year period from Jan 2009 to December 2012. A clear, distinct seasonal dependence in TO, TCO and TNO2 column content values have been noticed all over selected measuring location. The maximum average seasonal TO is observed in pre-monsoon and their minimum value in the monsoon months. However, in TCO and TNO2 case, the highest TCO and TNO2 level is seen rather in the winter and their respective lowest value in monsoon season. Thus, their seasonal variability of TNO2 and TCO in their ranges have been systematically found to be reduced and obeyed the following descending order, i.e., winter> post-monsoon> pre-monsoon> monsoon seasons. As far as concerned with their annual values, the observed values of all considered atmospheric pollutants are almost found in the same levels with slight discrepancies over their lower air pollutant levels recorded in hot, arid, rural as compared to the prevailing elevated value at urban region. The more detail investigation of comparison of present observations with earlier reported similar studies over other Indian regions and their possible explanation is also discussed.

  5. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    NASA Astrophysics Data System (ADS)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  6. Simulating ozone concentrations using precursor emission inventories in Delhi - National Capital Region of India

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Khare, Mukesh

    2017-02-01

    This study simulates ground level ozone concentrations in a heavily populated and polluted National Capital Region (NCR- Delhi) in India. Multi-sectoral emission inventories of ozone precursors are prepared at a high resolution of 4 × 4 km2 for the whole region covering the capital city of Delhi along with other surrounding towns and rural regions in NCR. Emission inventories show that transport sector accounts for 55% of the total NOx emissions, followed by power plants (23%) and diesel generator sets (7%). In NMVOC inventories, transport sector again accounts for 33%, followed by evaporative emissions released from solvent use and fuel handling activities (30%), and agricultural residue burning (28%). Refuse burning contributes to 73% of CO emissions mainly due to incomplete combustion, followed by agricultural residue burning (14%). These emissions are spatially and temporally distributed across the study domain and are fed into the WRF-CMAQ models to predict ozone concentrations for the year 2012. Model validations are carried out with the observed values at different monitoring stations in Delhi. The performance of the models over various metrics used for evaluation was found to be satisfactory. Summers and post-monsoon seasons were better simulated than monsoon and winter seasons. Simulations have shown higher concentrations of ozone formation during summers and lesser during winters and monsoon seasons, mainly due to varying solar radiation affecting photo-chemical activities. Ozone concentrations are observed lower at those locations where NOx emissions are higher, and concentrations increase close to the boundary of study domain when compared to the center of Delhi city. Downwind regions to Delhi are influenced by the ozone formed due to plume of precursor emissions released from Delhi. Considering significant background contributions, regional scale controls are required for reducing ozone in NCR.

  7. Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene

    PubMed Central

    Tsukahara, Keita; Sawada, Hiroko; Kohno, Yoshihisa; Matsuura, Takakazu; Mori, Izumi C.; Terao, Tomio; Ioki, Motohide; Tamaoki, Masanori

    2015-01-01

    Rice grain yield is predicted to decrease in the future because of an increase in tropospheric ozone concentration. However, the underlying mechanisms are unclear. Here, we investigated the responses to ozone of two rice (Oryza Sativa L.) cultivars, Sasanishiki and Habataki. Sasanishiki showed ozone-induced leaf injury, but no grain yield loss. By contrast, Habataki showed grain yield loss with minimal leaf injury. A QTL associated with grain yield loss caused by ozone was identified in Sasanishiki/Habataki chromosome segment substitution lines and included the ABERRANT PANICLE ORGANIZATION 1 (APO1) gene. The Habataki allele of the APO1 locus in a near-isogenic line also resulted in grain yield loss upon ozone exposure, suggesting APO1 involvement in ozone-induced yield loss. Only a few differences in the APO1 amino acid sequences were detected between the cultivars, but the APO1 transcript level was oppositely regulated by ozone exposure: i.e., it increased in Sasanishiki and decreased in Habataki. Interestingly, the levels of some phytohormones (jasmonic acid, jasmonoyl-L-isoleucine, and abscisic acid) known to be involved in attenuation of ozone-induced leaf injury tended to decrease in Sasanishiki but to increase in Habataki upon ozone exposure. These data indicate that ozone-induced grain yield loss in Habataki is caused by a reduction in the APO1 transcript level through an increase in the levels of phytohormones that reduce leaf damage. PMID:25923431

  8. First comparison of simultaneous IRIS, BUV, and ground-based measurements of total ozone

    NASA Technical Reports Server (NTRS)

    Prior, E. J.; Oza, B. J.

    1978-01-01

    In the present paper, the zonally-averaged global distribution of total ozone obtained simultaneously from different measurements are compared with respect to differences in the measured latitudinal and seasonal variations of total ozone. Emphasis is placed on systematic discrepancies that appear to be related to differences in the sensing methodologies or instruments. While the zonal averages of the IRIS and BUV satellite techniques agree quite well at low latitudes, the results are consistently higher for IRIS than for BUV above mid-latitudes in both the Northern and Southern Hemispheres. The BUV and ground-based ultraviolet averages agree better with each other than with infrared IRIS measurements.

  9. Modeling ozone bioindicator injury with microscale and landscape-scale explanatory variables: A logistic regression approach

    Treesearch

    John W. Coulston

    2011-01-01

    Tropospheric ozone occurs at phytotoxic levels in the United States (Lefohn and Pinkerton 1988). Several plant species, including commercially important timber species, are sensitive to elevated ozone levels. Exposure to elevated ozone can cause growth reduction and foliar injury and make trees more susceptible to secondary stressors such as insects and pathogens (...

  10. Retrieval of Ozone Column Content from Airborne Sun Photometer Measurements During SOLVE II: Comparison with SAGE III, POAM III,THOMAS and GOME Measurements. Comparison with SAGE 111, POAM 111, TOMS and GOME Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, J.; Schmid, B.; Russell, P.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Pitts, M.

    2003-01-01

    During the Second SAGE 111 Ozone Loss and Validation Experiment (SOLVE II), the 14- channel NASA Ames Airborne Trackmg Sunphotometer (AATS-14) was mounted on the NASA DC-8 and successfully measured spectra of total and aerosol optical depth (TOD and AOD) during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 data by using a linear least squares method. For each AATS-14 measured TOD spectrum, this method iteratively finds the ozone column content that yields the best match between measured and calculated TOD. The calculations assume the known Chappuis ozone band shape and a three-parameter AOD shape (quadratic in log-log space). Seven of the AATS-14 channels (each employing an interference filter with a nominal full-width at half maximum bandpass of -5 nm) are within the Chappuis band, with center wavelengths between 452.9 nm and 864.5 nm. One channel (604.4 nm) is near the peak, and three channels (499.4, 519.4 and 675.1 nm) have ozone absorption within 30-40% of that at the peak. For the typical DC-8 SOLVE II cruising altitudes of approx. 8-12 km and the background stratospheric aerosol conditions that prevailed during SOLVE 11, absorption of incoming solar radiation by ozone comprised a significant fraction of the aerosol-plus-ozone optical depth measured in the four AATS-14 channels centered between 499.4 and 675.1 nm. Typical AODs above the DC-8 ranged from 0.003-0.008 in these channels. For comparison, an ozone overburden of 0.3 atm-cm (300 DU) translates to ozone optical depths of 0.009,0.014, 0.041, and 0.012, respectively, at these same wavelengths. In this paper, we compare AATS-14 values of ozone column content with temporally and spatially near-coincident values derived from measurements acquired by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement 111 (POAM III) satellite sensors. We also compare AATS-14 ozone retrievals during selected DC-8 latitudinal and longitudinal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS) and the Global Ozone Monitoring Experiment (GOME) satellite sensors. To enable this comparison, the amount of ozone in the column below the aircraft is estimated by combining SAGE and/or POAM data with high resolution, fast response in-situ ozone measurements acquired during the DC-8 ascent at the start of each science flight.

  11. Climatology of equatorial stratosphere over Lagos, Nigeria

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi Samuel

    We have used 12 complete calendar years (January 1993-December 2004) of monthly averages of measurements made by the Dobson spectrophotometer instrument over an urban site, Lagos (6.6oN, 3.3oE), southwest Nigeria, to study equatorial stratospheric column ozone variations and trends. Our results indicate that the time-averaged total column ozone has a seasonal cy-cle, which maximizes in June and July with a value of 259 Dobson units (DU) and minimizes in February with a magnitude of 250 DU. Statistical analysis of the climatological mean monthly total Dobson O3 record for 1993-2004 show that the local trend is approximately +0.041±0.0011 DU/year (+0.49±0.013% per decade). Spectral analysis was applied to the monthly averages series. The significant periodicity at 95% confidence level demonstrate prominent spectra peaks near 1.9 and 3.6 years, representative of quasi-biennial oscillation (QBO) and quasi-triennial oscillation (QTO), respectively. Signal due to semiannual variation is also identified at Lagos sounding site. Comparison with the ozone observations from Total Ozone Mapping Spectrom-eter (TOMS) on board the Earth-Probe (EP) satellite for the period from 1997 to 2002 reveal that EP/TOMS instrument consistently larger than the ground-based measurement from Dob-son station. Percentage mean relative disparity ranges from -11% to 15%. The root mean square error (RMSE) between satellite and ground-based observations over Lagos ranges be-tween ˜35-83 DU with largest and lowest variability occurring during the ascending phase of solar activity (1999, 10.7 cm radio flux, F10.7 equals 154 flux units) and during the peak phase of solar activity (2001, F10.7 equals 181), respectively.

  12. Comparative analyses of the ultraviolet-B flux over the continental United State based on the NASA total ozone mapping spectrometer data and USDA ground-based measurements

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Gao, Wei; Chang, Ni-Bin

    2010-10-01

    In recent years, the risk of health effects caused by the increased exposure to Ultraviolet-B (UVB) due to stratospheric ozone depletion has received wide attention. In the US, there are two ways to accurately measure the UVB. They include: 1) the National Aeronautical and Space Administration (NASA) Nimbus-7 total ozone mapping spectrometer (TOMS), and 2) the United State Department of Agriculture (USDA) ground-based network. This paper compares these two sensors' data for the ultraviolet index (UVI) nationally and regionally to support possible public health, agricultural, and ecological analyses in the future. The major findings of our study are: 1) although there are discrepancies between these two data sets, the temporal correlation coefficients can be as high as 98%. 2) Both types of data sources depict the macroscopic spatial pattern of the UVI across the continental US.indicating a strong spatial correlation; 3) The two data sources are generally consistent though the UVI of the NASA TOMS data are often about 0.13-1.05 units larger than those of the USDA ground-based measurements; and 4) Varying differences can be seen between the Midwest and two coastal regions. While the level of the UVI on the west coast has shown a decreasing trend in the past few years, its counterpart on the east coast showed an opposite trend in between 2000 and 2005. It is hard to conclude that the changes are due to variations of total ozone concentrations in this study period. The USDA ground-based measurements may be better applied for time series analysis for public health, ecological, and agricultural applications due to their ability to provide intensive calibrated point measurements.

  13. Enhanced near-surface ozone under heatwave conditions in a Mediterranean island.

    PubMed

    Pyrgou, Andri; Hadjinicolaou, Panos; Santamouris, Mat

    2018-06-15

    Near-surface ozone is enhanced under particular chemical reactions and physical processes. This study showed the seasonal variation of near-surface ozone in Nicosia, Cyprus and focused in summers when the highest ozone levels were noted using a seven year hourly dataset from 2007 to 2014. The originality of this study is that it examines how ozone levels changed under heatwave conditions (defined as 4 consecutive days with daily maximum temperature over 39 °C) with emphasis on specific air quality and meteorological parameters with respect to non-heatwave summer conditions. The influencing parameters had a medium-strong positive correlation of ozone with temperature, UVA and UVB at daytime which increased by about 35% under heatwave conditions. The analysis of the wind pattern showed a small decrease of wind speed during heatwaves leading to stagnant weather conditions, but also revealed a steady diurnal cycle of wind speed reaching a peak at noon, when the highest ozone levels were noted. The negative correlation of NOx budget with ozone was further increased under heatwave conditions leading to steeper lows of ozone in the morning. In summary, this research encourages further analysis into the persistent weather conditions prevalent during HWs stimulating ozone formation for higher temperatures.

  14. New Directions: Ozone-initiated reaction products indoors may be more harmful than ozone itself

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.

    2004-10-01

    Epidemiological studies have found associations between ozone concentrations measured at outdoor monitoring stations and certain adverse health outcomes. As a recent example, Gent et al. (2003, Journal of the American Medical Association 290, 1859-1867) have observed an association between ozone levels and respiratory symptoms as well as the use of maintenance medication by 271 asthmatic children living in Connecticut and the Springfield area of Massachusetts. In another example, Gilliland et al. (2001, Epidemiology 12, 43-54) detected an association between short-term increases in ozone levels and increased absences among 4th grade students from 12 southern California communities during the period from January to June 1996. Although children may spend a significant amount of time outdoors, especially during periods when ozone levels are elevated, they spend a much larger fraction of their time indoors. I hypothesize that exposure to the products of ozone-initiated indoor chemistry is more directly responsible for the health effects observed in the cited epidemiological studies than is exposure to outdoor ozone itself.

  15. Effect of tibolone pretreatment on kinases and phosphatases that regulate the expression and phosphorylation of Tau in the hippocampus of rats exposed to ozone

    PubMed Central

    Pinto-Almazán, Rodolfo; Segura-Uribe, Julia J.; Soriano-Ursúa, Marvin A.; Farfán-García, Eunice D.; Gallardo, Juan M.; Guerra-Araiza, Christian

    2018-01-01

    Oxidative stress (OS) is a key process in the development of many neurodegenerative diseases, memory disorders, and other pathological processes related to aging. Tibolone (TIB), a synthetic hormone used as a treatment for menopausal symptoms, decreases lipoperoxidation levels, prevents memory impairment and learning disability caused by ozone (O3) exposure. However, it is not clear if TIB could prevent the increase in phosphorylation induced by oxidative stress of the microtubule-associated protein Tau. In this study, the effects of TIB at different times of administration on the phosphorylation of Tau, the activation of glycogen synthase kinase-3β (GSK3β), and the inactivation of Akt and phosphatases PP2A and PTEN induced by O3 exposure were assessed in adult male Wistar rats. Rats were divided into 10 groups: control group (ozone-free air plus vehicle [C]), control + TIB group (ozone-free air plus TIB 1 mg/kg [C + TIB]); 7, 15, 30, and 60 days of ozone exposure groups [O3] and 7, 15, 30, and 60 days of TIB 1 mg/kg before ozone exposure groups [O3 + TIB]. The effects of O3 exposure and TIB administration were assessed by western blot analysis of total and phosphorylated Tau, GSK3β, Akt, PP2A, and PTEN proteins and oxidative stress marker nitrotyrosine, and superoxide dismutase activity and lipid peroxidation of malondialdehyde by two different spectrophotometric methods (Marklund and TBARS, respectively). We observed that O3 exposure increases Tau phosphorylation, which is correlated with decreased PP2A and PTEN protein levels, diminished Akt protein levels, and increased GSK3β protein levels in the hippocampus of adult male rats. The effects of O3 exposure were prevented by the long-term treatment (over 15 days) with TIB. Malondialdehyde and nitrotyrosine levels increased from 15 to 60 days of exposure to O3 in comparison to C group, and superoxide dismutase activity decreased. Furthermore, TIB administration limited the changes induced by O3 exposure. Our results suggest a beneficial use of hormone replacement therapy with TIB to prevent neurodegeneration caused by O3 exposure in rats. PMID:29623928

  16. Nimbus-7 TOMS Version 7 Calibration

    NASA Technical Reports Server (NTRS)

    Wellemeyer, C. G.; Taylor, S. L.; Jaross, G.; DeLand, M. T.; Seftor, C. J.; Labow, G.; Swissler, T. J.; Cebula, R. P.

    1996-01-01

    This report describes an improved instrument characterization used for the Version 7 processing of the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data record. An improved internal calibration technique referred to as spectral discrimination is used to provide long-term calibration precision of +/- 1%/decade in total column ozone amount. A revised wavelength scale results in a day one calibration that agrees with other satellite and ground-based measurements of total ozone, while a wavelength independent adjustment of the initial radiometric calibration constants provides good agreement with surface reflectivity measured by other satellite-borne ultraviolet measurements. The impact of other aspects of the Nimbus-7 TOMS instrument performance are also discussed. The Version 7 data should be used in all future studies involving the Nimbus-7 TOMS measurements of ozone. The data are available through the NASA Goddard Space Flight Center's Distributive Active Archive Center (DAAC).

  17. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    NASA Astrophysics Data System (ADS)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen oxides to the observed ozone production in the boundary layer.

  18. Atopic asthmatic subjects but not atopic subjects without ...

    EPA Pesticide Factsheets

    BACKGROUND: Asthma is a known risk factor for acute ozone-associated respiratory disease. Ozone causes an immediate decrease in lung function and increased airway inflammation. The role of atopy and asthma in modulation of ozone-induced inflammation has not been determined. OBJECTIVE: We sought to determine whether atopic status modulates ozone response phenotypes in human subjects. METHODS: Fifty volunteers (25 healthy volunteers, 14 atopic nonasthmatic subjects, and 11 atopic asthmatic subjects not requiring maintenance therapy) underwent a 0.4-ppm ozone exposure protocol. Ozone response was determined based on changes in lung function and induced sputum composition, including airway inflammatory cell concentration, cell-surface markers, and cytokine and hyaluronic acid concentrations. RESULTS: All cohorts experienced similar decreases in lung function after ozone. Atopic and atopic asthmatic subjects had increased sputum neutrophil numbers and IL-8 levels after ozone exposure; values did not significantly change in healthy volunteers. After ozone exposure, atopic asthmatic subjects had significantly increased sputum IL-6 and IL-1beta levels and airway macrophage Toll-like receptor 4, Fc(epsilon)RI, and CD23 expression; values in healthy volunteers and atopic nonasthmatic subjects showed no significant change. Atopic asthmatic subjects had significantly decreased IL-10 levels at baseline compared with healthy volunteers; IL-10 levels did not significa

  19. Meteorologically-adjusted trend analysis of surface observed ozone at three monitoring sites in Delhi, India: 2007-2011

    NASA Astrophysics Data System (ADS)

    Biswas, J.; Farooqui, Z.; Guttikunda, S. K.

    2012-12-01

    It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.

  20. Ozone and stratospheric height waves for opposite phases of the QBO

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse C.; Nogues-Paegle, Julia

    1994-01-01

    The stratospheric quasi-biennial oscillation (QBO) provides an important source of interannual variations in the Northern Hemisphere. O'sullivan and Salby (1990) related extra-tropical eddy transport with the phase of the tropical QBO. When the tropical wind is easterly, the zero wind line is shifted into the winter hemisphere. Enhanced wave activity in middle latitudes acts to weaken the polar vortex. When the tropical wind is in the westerly phase the situation reverses. Heights at 30 mb and ozone configurations are contrasted in this paper for these two QBO phases. When the winter vortex deforms due to the amplification of planetary waves 1 and 2, extends westward and equatorward, the complementary band of low vorticity air spirals in toward the pole from lower latitudes. Sometimes, these planetary waves break (Juckes and McIntyre, 1987) and an irreversible mixing of air takes place between high and mid-latitudes. Global ozone patterns, as obtained form satellite observations, appear to be affected by planetary wave breaking (Leovy et al. 1985). This mixing results on regions with uniform ozone and potential vorticity. In the Southern Hemisphere (SH), Newman and Randel (1988) using Total Ozone Mapping Spectrometer (TOMS) data and the NMC analyses have found strong spatial correlation between the October mean temperature in the lower stratosphere and total ozone for the 1979 through 1986 years. Recently Nogues-Paegle et al.(1992) analyzed SH ozone and height data from 1986 to 1989. They found that leading empirical orthogonal functions (EOFs) for both ozone and 50 mb heights exhibit zonal wave 1 and 2 and that the correlations between ozone and 50 mb principal components (PCs) are high. The results were found to be consistent with a linear planetary wave advecting a passive tracer. In this paper, the dominant patterns of variability for 30 mb NMC heights and TOMS total ozone are obtained for the winter to summer transition (January to May) in the Northern Hemisphere (NH) for the years 1987-1990.

  1. First Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty in Ozone Profile and Total Column

    NASA Astrophysics Data System (ADS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Smit, Herman G. J.; Vömel, Holger; Posny, Françoise; Stübi, Rene

    2018-03-01

    Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for both profile and total column ozone (TCO). The ozone uncertainty is a composite of the uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those being the ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow rate. Overall, PO3 uncertainties (ΔPO3) are within 15% and peak around the tropopause (15 ± 3 km) where ozone is a minimum and ΔPO3 approaches the measured signal. The uncertainty in the background and sensor currents dominates the overall ΔPO3 in the troposphere including the tropopause region, while the uncertainties in the conversion efficiency and flow rate dominate in the stratosphere. Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the ozone residual uncertainty, derived from the McPeters and Labow (2012, doi:10.1029/2011JD017006) 1σ ozone mixing ratios. Overall, ΔTCO are within ±15 Dobson units (DU), representing 5-6% of the TCO. Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument (TOMS and OMI) satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity between TOMS v8.6 (1998 to September 2004) and OMI (October 2004-2016) TCO on the order of 10 DU that accounts for the significant 16 DU overall difference observed between sonde and TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only 4 DU.

  2. Investigations of Stratosphere-Troposphere Exchange of Ozone Derived From MLS Observations

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Schoeberl, Mark R.; Ziemke, Jerry R.

    2006-01-01

    Daily high-resolution maps of stratospheric ozone have been constructed using observations by MLS combined with trajectory information. These fields are used to determine the extratropical stratosphere-troposphere exchange (STE) of ozone for the year 2005 using two diagnostic methods. The resulting two annual estimates compare well with past model- and observational-based estimates. Initial analyses of the seasonal characteristics indicate that significant STE of ozone in the polar regions occurs only during spring and early summer. We also examine evidence that the Antarctic ozone hole is responsible for a rapid decrease in the rate of ozone STE during the SH spring. Subtracting the high-resolution stratospheric ozone fiom OMI total column measurements creates a high-resolution tropospheric ozone residual (HTOR) product. The HTOR fields are compared to the spatial distribution of the ozone STE. We show that the mean tropospheric ozone maxima tend to occur near locations of significant ozone STE. This suggests that STE may be responsible for a significant fraction of many mean tropospheric ozone anomalies.

  3. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  4. Total Ozone Mapping Spectrometer (TOMS) Level-3 Data Products User's Guide

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Bhartia, P. K.; Krueger, Arlin J.; Herman, Jay R.; Wellemeyer, Charles G.; Seftor, Colin J.; Byerly, William; Celarier, Edward A.

    2000-01-01

    Data from the TOMS series of instruments span the time period from November 1978, through the present with about a one and a-half year gap from January 1994 through July 1996. A set of four parameters derived from the TOMS measurements have been archived in the form of daily global maps or Level-3 data products. These products are total column ozone, effective surface reflectivity, aerosol index, and erythermal ultraviolet estimated at the Earth surface. A common fixed grid of I degree latitude by 1.25 degree longitude cells over the entire globe is provided daily for each parameter. These data are archived at the Goddard Space Flight Center Distributed Active Archive Center (DAAQ in Hierarchical Data Format (HDF). They are also available in a character format through the TOMS web site at http://toms.gsfc.nasa.gov. The derivations of the parameters, the mapping algorithm, and the data formats are described. The trend uncertainty for individual TOMS instruments is about 1% decade, but additional uncertainty exists in the combined data record due to uncertainty in the relative calibrations of the various TOMS.

  5. Change in ozone trends at southern high latitudes

    NASA Technical Reports Server (NTRS)

    Yang, E.-S.; Cunnold, D. M.; Newchurch, M. J.; Salawitch, R. J.

    2005-01-01

    Long-term ozone variations at 60-70degS in spring are investigated using ground-based and satellite measurements. Strong positive correlation is shown between year-to-year variations of ozone and temperature in the Antarctic collar region in Septembers and Octobers. Based on this relationship, the effect of year-to-year variations in vortex dynamics has been filtered out. This process results in an ozone time series that shows increasing springtime ozone losses over the Antarctic until the mid-1990s. Since approximately 1997 the ozone losses have leveled off. The analysis confirms that this change is consistent across all instruments and is statistically significant at the 95% confidence level. This analysis quantifies the beginning of the recovery of the ozone hole, which is expected from the leveling off of stratospheric halogen loading due to the ban on CFCs and other halocarbons initiated by the Montreal Protocol.

  6. Variability in Tropical Tropospheric Ozone as Observed by SHADOZ

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Coetzee, Geert J. R.; Chatfield, Robert B.; Hudson, Robert D.

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the central website, , for 12 stations: Ascension Island; Nairobi and Malindi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil; Paramaribo, Surinam. Some results to date indicate reliability of the measurement and highly variable interactions between ozone and tropical meteorology. For example: 1. By using ECC sondes with similar procedures, 5-10% accuracy and precision (1-sigma) of the sonde total ozone measurement was achieved [Thompson et al., 2003al; 2. Week-to-week variability in tropospheric ozone is so great that statistics are frequently not Gaussian and most stations vary up to a factor of 3 in column amount over the course of a year [Thompson et al., 2002b]. 3. Longitudinal variability in tropospheric ozone profiles is a consistent feature, with a 10- 15 DU column-integrated difference between Atlantic and Pacific sites; this is the cause of the zonal wave-one feature in total ozone [Shiotani, 1992]. The ozone record from Paramaribo, Surinam (6N, 55W) is a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone. Interpretations of SHADOZ time-series and approaches to classification suggested by SHADOZ data over Africa and the Indian Ocean will be described.

  7. Tropical Tropospheric Ozone: New Insights from Remote Sensing and Field Studies

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    1999-01-01

    This talk will summarize our recent research in tropical tropospheric ozone studies in the field and from space. New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument will be highlighted (Hudson and Thompson, 1998; Thompson and Hudson, 1999). These are suitable for studying processes like ozone pollution resulting from biomass fires, seasonal and interannual variations and trends. Archived maps of tropospheric ozone over the tropics, from the Nimbus 7 observing period (1979-1992) are available in digital form at our website. Real-time processing of TOMS data has produced images of tropical tropospheric ozone (TTO) since early 1997, using Earth-Probe TOMS; these maps are also available on the homepage.

  8. Detection of volcanic eruptions from space by their sulfur dioxide clouds

    NASA Technical Reports Server (NTRS)

    Krueger, A. J.

    1985-01-01

    The capabilities of the total ozone mapping spectrometer (TOMS) on the Nimbus 7 satellite for tracking volcano plumes are assessed. TOMS was installed on the sun-synchronous polar orbiting satellite to measure spatial variations in the global total ozone field. Radiance absorption coefficients of the atmosphere for four near-UV wavelengths from 312.5-380.0 are measured. Data from the El Chichon eruption in March-April 1982 revealed that SO2 was an absorbing species at 312.5 and 317.5 nm. The near-UV absorption level differences between SO2 and O3 permit discriminating the atmospheric densities of each species. An examination of the data base generated by TOMS since 1978 showed the perceptible tracks of all known major eruptions in the 1978-1982 time period. A constellation of three of the polar orbiting TOMS would be sufficient to provide near-real time alerts of plumes to warn aircraft of the hazards.

  9. Ozone in Sequoia National Park: Linking Ozone Production in the San Joaquin Valley to Trends in Vegetative Impacts in Sequoia National Park from 2000-2016

    NASA Astrophysics Data System (ADS)

    Buysse, C. E.; Pusede, S.; Kotsakis, A.

    2016-12-01

    Sequoia National Park (SNP) has the worst ozone air pollution of any National Park in the United States. Ozone pollution levels in SNP are high enough to exert damaging impacts on humans, animals, and vegetation. The major source of ozone to SNP is chemical production within the nearby and ozone-polluted San Joaquin Valley (SJV), which is then transported out of the valley into the park. Emission controls to reduce ozone in the SJV have been in place for the last two decades and these controls should have had the effect of altering ozone levels within SNP. This work has two aims. First, we investigate the chemistry driving trends in ozone in SNP and link these changes to trends in ozone in the SJV. Second, we consider both the metrics and time frames that best capture ozone trends contributing to vegetative damage, as these are not well represented in assessments of human health-based ambient air quality standards over an entire ozone season.

  10. Quantification of Mesophyll Resistance and Apoplastic Ascorbic Acid as an Antioxidant for Tropospheric Ozone in Durum Wheat (Triticum durum Desf. cv. Camacho)

    PubMed Central

    de la Torre, Daniel

    2008-01-01

    The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid. PMID:19082416

  11. Quantification of mesophyll resistance and apoplastic ascorbic acid as an antioxidant for tropospheric ozone in durum wheat (Triticum durum Desf. cv. Camacho).

    PubMed

    de la Torre, Daniel

    2008-12-14

    The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid.

  12. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; hide

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  13. Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005-2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI-based ozone products

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Bryan J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; Komala, Ninong; Maata, Matakite; Bt Mohamad, Maznorizan; Nguyo, J.; Mutai, C.; Ogino, S.-Y.; da Silva, F. Raimundo; Leme, N. M. Paes; Posny, Francoise; Scheele, Rinus; Selkirk, Henry B.; Shiotani, Masato; Stübi, René; Levrat, Gilbert; Calpini, Bertrand; Thouret, ValéRie; Tsuruta, Haruo; Canossa, Jessica Valverde; VöMel, Holger; Yonemura, S.; Diaz, Jorge AndréS.; Tan Thanh, Nguyen T.; Thuy Ha, Hoang T.

    2012-12-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela/Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific/eastern Indian Ocean; (2) equatorial Americas (San Cristóbal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EP/TOMS comparisons (1998-2004; Earth-Probe/Total Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMI/MLS) show that the satellite-derived column amount averages 25% low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2= 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  14. Economic damages of ozone air pollution to crops using combined air quality and GIS modelling

    NASA Astrophysics Data System (ADS)

    Vlachokostas, Ch.; Nastis, S. A.; Achillas, Ch.; Kalogeropoulos, K.; Karmiris, I.; Moussiopoulos, N.; Chourdakis, E.; Banias, G.; Limperi, N.

    2010-09-01

    This study aims at presenting a combined air quality and GIS modelling methodological approach in order to estimate crop damages from photochemical air pollution, depict their spatial resolution and assess the order of magnitude regarding the corresponding economic damages. The analysis is conducted within the Greater Thessaloniki Area, Greece, a Mediterranean territory which is characterised by high levels of photochemical air pollution and considerable agricultural activity. Ozone concentration fields for 2002 and for specific emission reduction scenarios for the year 2010 were estimated with the Ozone Fine Structure model in the area under consideration. Total economic damage to crops turns out to be significant and estimated to be approximately 43 M€ for the reference year. Production of cotton presents the highest economic loss, which is over 16 M€, followed by table tomato (9 M€), rice (4.2 M€), wheat (4 M€) and oilseed rape (2.8 M€) cultivations. Losses are not spread uniformly among farmers and the major losses occur in areas with valuable ozone-sensitive crops. The results are very useful for highlighting the magnitude of the total economic impacts of photochemical air pollution to the area's agricultural sector and can potentially be used for comparison with studies worldwide. Furthermore, spatial analysis of the economic damage could be of importance for governmental authorities and decision makers since it provides an indicative insight, especially if the economic instruments such as financial incentives or state subsidies to farmers are considered.

  15. Long-term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in California Seventh-Day Adventists.

    PubMed

    Abbey, D E; Mills, P K; Petersen, F F; Beeson, W L

    1991-08-01

    Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative ambient air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly (p less than 0.05) elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association (p = 0.056) was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution.

  16. Long-term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in California Seventh-Day Adventists.

    PubMed Central

    Abbey, D E; Mills, P K; Petersen, F F; Beeson, W L

    1991-01-01

    Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative ambient air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly (p less than 0.05) elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association (p = 0.056) was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution. PMID:1954938

  17. On vertical profile of ozone at Syowa

    NASA Technical Reports Server (NTRS)

    Chubachi, Shigeru

    1994-01-01

    The difference in the vertical ozone profile at Syowa between 1966-1981 and 1982-1988 is shown. The month-height cross section of the slope of the linear regressions between ozone partial pressure and 100-mb temperature is also shown. The vertically integrated values of the slopes are in close agreement with the slopes calculated by linear regression of Dobson total ozone on 100-mb temperature in the period of 1982-1988.

  18. Deformation of the total ozone content field in the tropical zone

    NASA Technical Reports Server (NTRS)

    Vasilyev, Victor I.

    1994-01-01

    Presented are the ozone investigation results obtained in the tropical zone. Measurements of the total ozone content (TOC) were carried out by the ozonometer M-124. The ozonometer was automated to investigate the ozone intradiurnal variations and to increase precision of the TOC measurements. Obtained results allowed us to follow the effect of tropical cyclones (TC) on the TOC field. Several days before the TC formation the TOC increase is observed in daily mean course compared with the background one. Three types of trend can be singled out in the TOC intradiurnal course: zero, parabolic, quasi-linear. Maximum velocities of a trend are observed some days before the TC formation. Analogous harmonic constituents are mainly presented as spectrum of daily means of ozone, mean and absolute velocities of trend and dispersion as well as spectra of meteorological, hydrometeorological and actinometric values. Revealed is a number of day-to-day ozone variations concerned with large-scale circulations; moisture content in the atmosphere. Obtained are the data about short-period ozone waves (period less than a day). Thin-film silver sensors were used to measure the vertical ozone distribution (VOD). Atmospheric aerosol and VOD measurements were carried out simultaneously, they gave data of the VOD layered structure, where the VOD local minima coincided with the position of aerosol layers' maxima.

  19. Deposition velocities and impact of physical properties on ozone removal for building materials

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Hsu, Shu-Chen

    2015-01-01

    This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.

  20. Space observations of aerosols and ozone; Proceedings of the Topical Meeting, Ottawa, Canada, May 16-June 2, 1982

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P. (Editor); Lovill, J. E.

    1982-01-01

    The measurement of aerosols from space is discussed, taking into account the role of aerosols in climate, instrumentation and further measurement systems, retrieval procedures, measurements and observations, ground truth measurements, and effects on remote sensing and on climate. Aspects of ozone variability in the middle atmosphere are explored, giving attention to the quasi-biennial oscillation in equatorial stratospheric temperatures and total ozone, global pictures on the ozone field from high altitudes from DE-1, measurements of atmospheric ozone from aircraft and from balloons, a mesospheric ozone profile at sunset, periodic and aperiodic ozone variations in the middle and upper stratosphere, solar eclipse induced variations in mesospheric ozone concentrations, and solar UV and ozone balloon measurements. The determination of aerosol optical depth is considered along with a method for estimating cross radiance.

Top