2005-06-02
Images from the Ozone Monitoring Instrument onboard NASA Aura spacecraft shows the average total column ozone during the months of January and March, and the total column ozone on the single day of 11 March, 2005.
Observations over Hurricanes from the Ozone Monitoring Instrument
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A.; Yang, K.; Bhartia, P. K.
2006-01-01
There is an apparent inconsistency between the total column ozone derived from the total ozone mapping spectrometer (TOMS) and aircraft observations within the eye region of tropical cyclones. The higher spectral resolution, coverage, and sampling of the ozone monitoring instrument (OMI) on NASA s Aura satellite as compared with TOMS allows for improved ozone retrievals by including estimates of cloud pressure derived simultaneously using the effects of rotational Raman scattering. The retrieved cloud pressures from OM1 are more appropriate than the climatological cloud-top pressures based on infrared measurements used in the TOMS and initial OM1 algorithms. We find that total ozone within the eye of hurricane Katrina is significantly overestimated when we use climatological cloud pressures. Using OMI-retrieved cloud pressures, total ozone in the eye is similar to that in the surrounding area. The corrected total ozone is in better agreement with aircraft measurements that imply relatively small or negligible amounts of stratospheric intrusion into the eye region of tropical cyclones.
The 1988 Antarctic ozone monitoring Nimbus-7 TOMS data atlas
NASA Technical Reports Server (NTRS)
Krueger, Arlin J.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Guimaraes, Patricia T.
1989-01-01
Because of the great environmental significance of ozone and to support continuing research at McMurdo, Syowa, and other Southern Hemisphere stations, the development of the 1988 ozone hole was monitored using data from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) instrument, produced in near-real-time. This Atlas provides a complete set of daily polar orthographic projections of the TOMS total ozone measurements over the Southern Hemisphere for the period August 1 through November 17, 1988. Although total ozone in mini-holes briefly dropped below 150 DU in late August, the main ozone hole is seen to be much less pronounced than in 1987. Minimum values, observed in late September and early October 1988, were seldom less than 175 DU. Compared with the same period in 1987, when a pronounced ozone hole whose minimum value of 109 Dobson Units (DU) was the lowest total ozone ever observed, the 1988 ozone hole is displaced from the South Pole, opposing a persistent maximum with values consistently above 500 DU. Daily ozone values above selected Southern Hemisphere stations are presented, along with comparisons of the 1988 ozone distribution to that of other years.
NASA Technical Reports Server (NTRS)
Witte, Jacquelyn C.; Thompson, Anne M.; Ziemke, Jerald R.; Wargan, Krzysztof
2014-01-01
The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data.
Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing
2018-01-01
Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m3, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00–4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively. PMID:29596366
Zhao, Hui; Zheng, Youfei; Li, Ting; Wei, Li; Guan, Qing
2018-03-29
Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m³, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00-4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively.
The characterization of an air pollution episode using satellite total ozone measurements
NASA Technical Reports Server (NTRS)
Fishman, Jack; Shipham, Mark C.; Vukovich, Fred M.; Cahoon, Donald R.
1987-01-01
A case study is presented which demonstrates that measurements of total ozone from a space-based platform can be used to study a widespread air pollution episode over the southeastern U.S. In particular, the synoptic-scale distribution of surface-level ozone obtained from an independent analysis of ground-based monitoring stations appears to be captured by the synoptic-scale distribution of total ozone, even though about 90 percent of the total ozone is in the stratosphere. Additional analyses of upper air meteorological data, other satellite imagery, and in situ aircraft measurements of ozone likewise support the fact that synoptic-scale variability of tropospheric ozone is primarily responsible for the observed variability in total ozone under certain conditions. The use of the type of analysis discussed in this study may provide an important technique for understanding the global budget of tropospheric ozone.
NASA Astrophysics Data System (ADS)
Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy
2017-12-01
The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.
Ozone Profiles and Tropospheric Ozone from Global Ozone Monitoring Experiment
NASA Technical Reports Server (NTRS)
Liu, X.; Chance, K.; Sioris, C. E.; Sparr, R. J. D.; Kuregm, T. P.; Martin, R. V.; Newchurch, M. J.; Bhartia, P. K.
2003-01-01
Ozone profiles are derived from backscattered radiances in the ultraviolet spectra (290-340 nm) measured by the nadir-viewing Global Ozone Monitoring Experiment using optimal estimation. Tropospheric O3 is directly retrieved with the tropopause as one of the retrieval levels. To optimize the retrieval and improve the fitting precision needed for tropospheric O3, we perform extensive wavelength and radiometric calibrations and improve forward model inputs. Retrieved O3 profiles and tropospheric O3 agree well with coincident ozonesonde measurements, and the integrated total O3 agrees very well with Earth Probe TOMS and Dobson/Brewer total O3. The global distribution of tropospheric O3 clearly shows the influences of biomass burning, convection, and air pollution, and is generally consistent with our current understanding.
Total Ozone from the Ozone Monitoring System (OMI) using TOMS and DOAS Methods
NASA Technical Reports Server (NTRS)
Veefkind, J. P.; Bhartia, P. K.; Gleason, J.; deHaan, J. F.; Wellemeyer, C.; Levelt, P. F.
2003-01-01
The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to NASA's EOS-Aura satellite scheduled for launch in January 2004. OMI is an imaging spectrometer that will measure the back-scattered Solar radiance in the wavelength range of 270 to 500 nm. The instrument provides near global coverage in one day with a spatial resolution of 13x24 square kilometers. OMI is a new instrument, with a heritage from TOMS, SBW, GOME, GOMOS and SCIAMACHY. OMI'S unique capabilities for measuring important trace gases and aerosols with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will provide data continuity with the 23-year ozone record of TOMS. There are three ozone products planned for OMI: total column ozone, ozone profile and tropospheric column ozone. We are developing two different algorithms for total column ozone: one similar to the algorithm currently being used to process the TOMS data, and the other an improved version of the differential optical absorption spectroscopy (DOAS) method, which has been applied to GOME and SCIAMACHY data. The main reasons for starting with two algorithms for total ozone have to do with heritage and past experience; our long-term goal is to combine the two to develop a more accurate and reliable total ozone product for OMI. We will compare the performance of these two algorithms by applying both of them to the GOME data. We will examine where and how the results differ, and use the extensive TOMS-Dobson comparison studies to assess the performance of the DOAS algorithm.
NASA Technical Reports Server (NTRS)
Witte, J. C.; Thompson, A. M.; Oltmans, S. J.; Schoeberl, M. R.; Bhartia, P. K.; Froidevaux, L.; Schmidlin, F.; Calpini, B.; Shiotani, M.; Fujiwara, M.;
2007-01-01
We present comparisons of observed tropical and sub-tropical ozone from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project with satellite measurements using Aura's Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) instruments. Satellite products of total and derived tropospheric column ozone from OMI and profiles of ozone in the UT/LS region from MLS are used.
Post launch performance of the Meteor-3/TOMS instrument
NASA Technical Reports Server (NTRS)
Jaross, Glen; Ahmad, Zia; Cebula, Richard P.; Krueger, Arlin J.
1994-01-01
The Meteor-3/TOMS instrument is the second in a series of Total Ozone Mapping Spectrometers (TOMS) following the 1978 launch of Nimbus-7/TOMS. TOMS instruments are designed to measure total ozone amounts over the entire earth on a daily basis, and have been the cornerstone of ozone trend monitoring. Consequently, calibration is a critical issue, and is receiving much attention on both instruments. Performance and calibration data obtained by monitoring systems aboard the Meteor-3 instrument have been analyzed through the first full year of operation, and indicate that the instrument is performing quite well. A new system for monitoring instrument sensitivity employing multiple diffusers has been used successfully and is providing encouraging results. The 3-diffuser system has monitored changes in instrument sensitivity of a few percent despite decreases in diffuser reflectivity approaching 50 percent since launch.
Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide
NASA Technical Reports Server (NTRS)
McPeters, Richard D.; Bhartia, P. K.; Krueger, Arlin J.; Herman, Jay R.; Schlesinger, Barry M.; Wellemeyer, Charles G.; Seftor, Colin J.; Jaross, Glen; Taylor, Steven L.; Swissler, Tom;
1996-01-01
Two data products from the Total Ozone Mapping Spectrometer (TOMS) onboard Nimbus-7 have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio is used in ozone retrievals. Changes in the instrument sensitivity are monitored by a spectral discrimination technique using measurements of the intrinsically stable wavelength dependence of derived surface reflectivity. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and drift is less than 1.0 percent per decade. The Level-2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level-3 product contains daily total ozone amount and reflectivity in a I - degree latitude by 1.25 degrees longitude grid. The Level-3 product also is available on CD-ROM. Detailed descriptions of both HDF data files and the CD-ROM product are provided.
NASA Astrophysics Data System (ADS)
Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.
2011-11-01
This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.
Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user's guide
NASA Technical Reports Server (NTRS)
Mcpeters, Richard D.; Krueger, Arlin J.; Bhartia, P. K.; Herman, Jay R.; Oaks, Arnold; Ahmad, Ziuddin; Cebula, Richard P.; Schlesinger, Barry M.; Swissler, Tom; Taylor, Steven L.
1993-01-01
Two tape products from the Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus-7 have been archived at the National Space Science Data Center. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio -- the albedo -- is used in ozone retrievals. In-flight measurements are used to monitor changes in the instrument sensitivity. The algorithm to retrieve total column ozone compares the observed ratios of albedos at pairs of wavelengths with pair ratios calculated for different ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard-deviation random error is 2 percent, and the drift is +/- 1.5 percent over 14.5 years. The High Density TOMS (HDTOMS) tape contains the measured albedos, the derived total ozone amount, reflectivity, and cloud-height information for each scan position. It also contains an index of SO2 contamination for each position. The Gridded TOMS (GRIDTOMS) tape contains daily total ozone and reflectivity in roughly equal area grids (110 km in latitude by about 100-150 km in longitude). Detailed descriptions of the tape structure and record formats are provided.
NASA Technical Reports Server (NTRS)
McPeters, Richard; Bhartia, P. K. (Technical Monitor)
2002-01-01
The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.
Nimbus 7 solar backscatter ultraviolet (SBUV) ozone products user's guide
NASA Technical Reports Server (NTRS)
Fleig, Albert J.; Mcpeters, R. D.; Bhartia, P. K.; Schlesinger, Barry M.; Cebula, Richard P.; Klenk, K. F.; Taylor, Steven L.; Heath, Donald F.
1990-01-01
Three ozone tape products from the Solar Backscatter Ultraviolet (SBUV) experiment aboard Nimbus 7 were archived at the National Space Science Data Center. The experiment measures the fraction of incoming radiation backscattered by the Earth's atmosphere at 12 wavelengths. In-flight measurements were used to monitor changes in the instrument sensitivity. Total column ozone is derived by comparing the measurements with calculations of what would be measured for different total ozone amounts. The altitude distribution is retrieved using an optimum statistical technique for the inversion. The estimated initial error in the absolute scale for total ozone is 2 percent, with a 3 percent drift over 8 years. The profile error depends on latitude and height, smallest at 3 to 10 mbar; the drift increases with increasing altitude. Three tape products are described. The High Density SBUV (HDSBUV) tape contains the final derived products - the total ozone and the vertical ozone profile - as well as much detailed diagnostic information generated during the retrieval process. The Compressed Ozone (CPOZ) tape contains only that subset of HDSBUV information, including total ozone and ozone profiles, considered most useful for scientific studies. The Zonal Means Tape (ZMT) contains daily, weekly, monthly and quarterly averages of the derived quantities over 10 deg latitude zones.
Highlights from a Decade of OMI-TOMS Total Ozone Observations on EOS Aura
NASA Technical Reports Server (NTRS)
Haffner, David P.; Bhartia, Pawan K.; McPeters, Richard D.; Joiner, Joanna; Ziemke, Jerald R.; Vassilkov, Alexander; Labow, Gordon J.; Chiou, Er-Woon
2014-01-01
Total ozone measurements from OMI have been instrumental in meeting Aura science objectives. In the last decade, OMI has extended the length of the TOMS total ozone record to over 35 years to monitor stratospheric ozone recovery. OMI-TOMS total ozone measurements have also been combined synergistically with measurements from other Aura instruments and MLS in particular, which provides vertically resolved information that complements the total O3 mapping capability of OMI. With this combined approach, the EOS Aura platform has produced more accurate and detailed measurements of tropospheric ozone. This has led in turn to greater understanding of the sources and transport of tropospheric ozone as well as its radiative forcing effect. The combined use of OMI and MLS data was also vital to the analysis of the severe Arctic ozone depletion event of 2011. The quality of OMI-TOMS total O3 data used in these studies is the result of several factors: a mature and well-validated algorithm, the striking stability of the OMI instrument, and OMI's hyperspectral capabilities used to derive cloud pressures. The latter has changed how we think about the effects of clouds on total ozone retrievals. We will discuss the evolution of the operational V8.5 algorithm and provide an overview and motivation for V9. After reviewing results and developments of the past decade, we finally highlight how ozone observations from EOS Aura are playing an important role in new ozone mapping missions.
Common Calibration Source for Monitoring Long-term Ozone Trends
NASA Technical Reports Server (NTRS)
Kowalewski, Matthew
2004-01-01
Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.
Total ozone observation by sun photometry at Arosa, Switzerland
NASA Astrophysics Data System (ADS)
Staehelin, Johannes; Schill, Herbert; Hoegger, Bruno; Viatte, Pierre; Levrat, Gilbert; Gamma, Adrian
1995-07-01
The method used for ground-based total ozone observations and the design of two instruments used to monitor atmospheric total ozone at Arosa (Dobson spectrophotometer and Brewer spectrometer) are briefly described. Two different procedures of the calibration of the Dobson spectrometer, both based on the Langley plot method, are presented. Data quality problems that occured in recent years in the measurements of one Dobson instrument at Arosa are discussed, and two different methods to reassess total ozone observations are compared. Two partially automated Dobson spectrophotometers and two completely automated Brewer spectrometers are currently in operation at Arosa. Careful comparison of the results of the measurements of the different instruments yields valuable information of possible small long- term drifts of the instruments involved in the operational measurements.
NASA Astrophysics Data System (ADS)
Barrett, S.; Brooks, A.; Moussa, Y.; Spencer, T.; Thompson, J.
2013-12-01
Tropospheric ozone, formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react with sunlight, is a significant threat to the health of US National Forests. Approximately one third of ozone is absorbed by plants during the uptake of carbon dioxide. This increases the vegetation's susceptibility to drought, beetle infestation, and wildfire. Currently the US Forest Service has ground monitoring stations sparsely located across the country. This project looks specifically at the area surrounding several Class I Wilderness Areas in the Appalachian region. These areas are the highest priority for protection from air pollutants. The Forest Service must interpolate ozone concentrations for areas between these monitoring stations. Class I Wilderness Areas are designated by the Forest Service and are defined as a total 5000 acres or greater when the Clean Air Act was passed in 1977. This Act mandated that the EPA create national ambient air quality standards (NAAQS) for six major air pollutants including ground-level ozone. This project assessed the feasibility of incorporating NASA ozone data into Forest Service ozone monitoring in an effort to enhance the accuracy and precision of ozone exposure measurements in Class I Wilderness Areas and other federally managed lands in order to aid in complying with the Clean Air Act of 1977. This was accomplished by establishing a method of comparison between a preliminary data product produced at the Goddard Space Flight Center that uses OMI/MLS data to derive global tropospheric ozone measurements and Forest Service ozone monitoring station measurements. Once a methodology for comparison was established, statistical comparisons of these data were performed to assess the quantitative differences.
The Nimbus satellites - Pioneering earth observers
NASA Technical Reports Server (NTRS)
White, Carolynne
1990-01-01
The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).
NASA Astrophysics Data System (ADS)
Scarnato, B.; Staehelin, J.; Stübi, R.; Schill, H.
2010-07-01
Dobson and Brewer spectrophotometers are the standard instruments for ground-based total ozone monitoring under the World Meteorological Organization's Global Atmosphere Watch program. Both types of instruments have been simultaneously used at Arosa station (Switzerland) since 1988; presently two Dobson and three Brewer instruments (one of which is type Mark III) are in operation. The large data set of quasi-simultaneous measurements (defined here as observations performed less than 10 min apart) allows for the determination of both inter- and intrainstrumental precision. The results for one standard deviation of total ozone are ±0.5% for Dobson standard wavelength pair observations and ±0.15% for Brewer total ozone measurements. To transform Dobson data into Brewer total ozone observations, empirical transfer functions are used to describe the observed difference in seasonal variations of total ozone data derived from the two types of instruments (amounting to a seasonal amplitude of approximately 2% with maximum deviation in winter). The statistical model (applied to quasi-simultaneous measurements) includes the ozone effective temperature and the air mass multiplied by total ozone (ozone slant path) as explanatory variables; it removes the seasonal cycle in the difference and it allows the significance of the proxies introduced and systematic errors in the data to be determined. However, even when these transfer functions are applied, a 3% drift over about a 10 year period (1988-1997) between Arosa's Dobson and Brewer derived total ozone data series remains unexplained, adding to the model an aerosol proxy for which only part of the drift can be removed (related to the period 1992-1996).
ADEOS Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide
NASA Technical Reports Server (NTRS)
Krueger, A.; Bhartia, P. K.; McPeters, R.; Herman, J.; Wellemeyer, C.; Jaross, G.; Seftor, C.; Torres, O.; Labow, G.; Byerly, W.;
1998-01-01
Two data products from the Total Ozone Mapping Spectrometer (ADEOS/TOMS) have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The ADEOS/ TOMS began taking measurements on September 11, 1996, and ended on June 29, 1997. The instrument measured backscattered Earth radiance and incoming solar irradiance; their ratio was used in ozone retrievals. Changes in the reflectivity of the solar diffuser used for the irradiance measurement were monitored using a carousel of three diffusers, each exposed to the degrading effects of solar irradiation at different rates. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and the drift is less than 0.5 percent over the 9-month data record. The Level 2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level 3 product contains daily total ozone and reflectivity in a 1-degree latitude by 1.25 degrees longitude grid. The Level 3 files containing estimates of UVB at the Earth surface and tropospheric aerosol information will also be available. Detailed descriptions of both HDF data files and the CDROM product are provided.
Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Product User's Guide
NASA Technical Reports Server (NTRS)
McPeters, R.; Bhartia, P. K.; Krueger, A.; Herman, J.; Wellemeyer, C.; Seftor, C.; Jaross, G.; Torres, O.; Moy, L.; Labow, G.;
1998-01-01
Two data products from the Earth Probe Total Ozone Mapping Spectrometer (EP/TOMS) have been archived at the Distributed Active Archive Center, in the form of Hierarchical Data Format files. The EP/ TOMS began taking measurements on July 15, 1996. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio is used in ozone retrievals. Changes in the reflectivity of the solar diffuser used for the irradiance measurement are monitored using a carousel of three diffusers, each exposed to the degrading effects of solar irradiation at different rates. The algorithm to retrieve total column ozone compares measured Earth radiances at sets of three wavelengths with radiances calculated for different total ozone values. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard deviation random error is 2 percent, and the drift is less than 0.5 percent over the first year of data. The Level-2 product contains the measured radiances, the derived total ozone amount, and reflectivity information for each scan position. The Level-3 product contains daily total ozone and reflectivity in a 1-degree latitude by 1.25 degrees longitude grid. Level-3 files containing estimates of LTVB at the Earth surface and tropospheric aerosol information are also available, Detailed descriptions of both HDF data-files and the CD-ROM product are provided.
Small-Scale Tropopause Dynamics and TOMS Total Ozone
NASA Technical Reports Server (NTRS)
Stanford, John L.
2002-01-01
This project used Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) along-track ozone retrievals, in conjunction with ancillary meteorological fields and modeling studies, for high resolution investigations of upper troposphere and lower stratosphere dynamics. Specifically, high resolution along-track (Level 2) EP TOMS data were used to investigate the beautiful fine-scale structure in constituent and meteorological fields prominent in the evolution of highly non-linear baroclinic storm systems. Comparison was made with high resolution meteorological models. The analyses provide internal consistency checks and validation of the EP TOMS data which are vital for monitoring ozone depletion in both polar and midlatitude regions.
Nimbus-7 TOMS Antarctic ozone atlas: August through November, 1989
NASA Technical Reports Server (NTRS)
Krueger, Arlin J.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Guimaraes, Patricia T.
1990-01-01
Because of the great environmental significance of ozone and to support continuing research at the Antarctic and other Southern Hemisphere stations, the development of the 1989 ozone hole was monitored using data from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) instrument, produced in near-real-time. This Atlas provides a complete set of daily polar orthographic projections of the TOMS total ozone measurements over the Southern Hemisphere for the period August 1 through November 30, 1989. The 1989 ozone hole developed in a manner similar to that of 1987, reaching a comparable depth in early October. This was in sharp contrast to the much weaker hole of 1988. The 1989 ozone hole remained at polar latitudes as it filled in November, in contrast to other recent years when the hole drifted to mid-latitudes before disappearing. Daily ozone values above selected Southern Hemisphere stations are presented, along with comparisons of the 1989 ozone distribution to that of other years.
OMPS TC EDR Algorithm: Improvement and Verification
NASA Astrophysics Data System (ADS)
Novicki, M.; Sen, B.; Hao, X.; Qu, J. J.
2009-12-01
The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross track is 110 degrees to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the data analysis method being presently implemented to retrieve the total column ozone Earth Data Record (EDR) from the radiance data measured by the TC sensor. We discuss the software changes, the test data used to verify the functional performance and the test results.
Combined Characterisation of GOME and TOMS Total Ozone Using Ground-Based Observations from the NDSC
NASA Technical Reports Server (NTRS)
Lambert, J.-C.; VanRoozendael, M.; Simon, P. C.; Pommereau, J.-P.; Goutail, F.; Andersen, S. B.; Arlander, D. W.; BuiVan, N. A.; Claude, H.; deLaNoee, J.;
1998-01-01
Several years of total ozone measured from space by the ERS-2 GOME, the Earth Probe Total Ozone Mapping Spectrometer (TOMS), and the ADEOS TOMS, are compared with high-quality ground-based observations associated with the Network for the Detection of Stratospheric Change (NDSC), over an extended latitude range and a variety of geophysical conditions. The comparisons with each spaceborne sensor are combined altogether for investigating their respective solar zenith angle (SZA) dependence, dispersion, and difference of sensitivity. The space- and ground-based data are found to agree within a few percent on average. However, the analysis highlights for both Global Ozone Monitoring Experiment (GOME) and TOMS several sources of discrepancies, including a dependence on the SZA at high latitudes and internal inconsistencies.
A preliminary comparison between TOVS and GOME level 2 ozone data
NASA Astrophysics Data System (ADS)
Rathman, William; Monks, Paul S.; Llewellyn-Jones, David; Burrows, John P.
1997-09-01
A preliminary comparison between total column ozone concentration values derived from TIROS Operational Vertical Sounder (TOVS) and Global Ozone Monitoring Experiment (GOME) has been carried out. Two comparisons of ozone datasets have been made: a) TOVS ozone analysis maps vs. GOME level 2 data; b) TOVS data located at Northern Hemisphere Ground Ozone Stations (NHGOS) vs. GOME data. Both analyses consistently showed an offset in the value of the total column ozone between the datasets [for analyses a) 35 Dobson Units (DU); and for analyses b) 10 DU], despite a good correlation between the spatial and temporal features of the datasets. A noticeably poor correlation in the latitudinal bands 10°/20° North and 10°/20° South was observed—the reasons for which are discussed. The smallest region which was statistically representative of the ozone value correlation dataset of TOVS data at NHGOS and GOME level-2 data was determined to be a region that was enclosed by effective radius of 0.75 arc-degrees (83.5km).
Di, Qian; Rowland, Sebastian; Koutrakis, Petros; Schwartz, Joel
2017-01-01
Ground-level ozone is an important atmospheric oxidant, which exhibits considerable spatial and temporal variability in its concentration level. Existing modeling approaches for ground-level ozone include chemical transport models, land-use regression, Kriging, and data fusion of chemical transport models with monitoring data. Each of these methods has both strengths and weaknesses. Combining those complementary approaches could improve model performance. Meanwhile, satellite-based total column ozone, combined with ozone vertical profile, is another potential input. We propose a hybrid model that integrates the above variables to achieve spatially and temporally resolved exposure assessments for ground-level ozone. We used a neural network for its capacity to model interactions and nonlinearity. Convolutional layers, which use convolution kernels to aggregate nearby information, were added to the neural network to account for spatial and temporal autocorrelation. We trained the model with AQS 8-hour daily maximum ozone in the continental United States from 2000 to 2012 and tested it with left out monitoring sites. Cross-validated R2 on the left out monitoring sites ranged from 0.74 to 0.80 (mean 0.76) for predictions on 1 km×1 km grid cells, which indicates good model performance. Model performance remains good even at low ozone concentrations. The prediction results facilitate epidemiological studies to assess the health effect of ozone in the long term and the short term. PMID:27332675
Stratospheric ozone as viewed from the Chappuis band. [long term pollution monitoring
NASA Technical Reports Server (NTRS)
Angione, R. J.; Medeiros, E. J.; Roosen, R. G.
1976-01-01
Total stratospheric ozone values above high-altitude stations in southern California from 1912 to 1950 and northern Chile from 1918 to 1948 are determined using data obtained by the Smithsonian Astrophysical Observatory, including transmission measurements made in the Chappuis band (0.5 to 0.7 micron). The results show that at both sites, total ozone amounts commonly exhibit variations of as much as 20% to 30% on time scales ranging from months to decades. Consideration of the amount of incident solar energy absorbed by the Chappuis band suggests that ozone acts as a shutter on the incoming solar radiation and provides a trigger mechanism between solar activity and climatic change.
Tropospheric Chemistry Studies using Observations from GOME and TOMS
NASA Technical Reports Server (NTRS)
Chance, Kelly; Spurr, Robert J. D.; Kurosu, Thomas P.; Jacob, Daniel J.; Gleason, James F.
2003-01-01
Studies to quantitatively determine trace gas and aerosol amounts from the Global Ozone Monitoring Experiment (GOME) and the Total Ozone Monitoring Experiment (TOMS) and to perform chemical modeling studies which utilize these results are given. This includes: 1. Analysis of measurements from the GOME and TOMS instruments for troposphere distributions of O3 and HCHO; troposphere enhancements of SO2, NO2 and aerosols associated with major sources; and springtime events of elevated BrO in the lower Arctic troposphere. 2. Application of a global 3-dimensional model of troposphere chemistry to interpret the GOME observations in terms of the factors controlling the abundances of troposphere ozone and OH.
NASA Technical Reports Server (NTRS)
Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.
1992-01-01
A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.
Spacecraft instrument calibration and stability
NASA Technical Reports Server (NTRS)
Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.
1989-01-01
The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).
The total ozone and UV solar radiation over Stara Zagora, Bulgaria
NASA Astrophysics Data System (ADS)
Mendeva, B. D.; Gogosheva, Ts. N.; Petkov, B. H.; Krastev, D. G.
The results from direct ground-based solar UV irradiance measurements and the total ozone content (TOC) over Stara Zagora (42° 25'N, 25° 37'E), Bulgaria are presented. During the period 1999-2003 the TOC data show seasonal variations, typical for the middle latitudes - maximum in the spring and minimum in the autumn. The comparison between TOC ground-based data and Global Ozone Monitoring Experiment (GOME) satellite-borne ones shows a seasonal dependence of the differences between them. A strong negative relationship between the total ozone and the 305 nm wavelength irradiance was found. The dependence between the two variables is significant ( r = -0.62 ± 0.18) at 98% confidence level. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2.3%. The eye-damaging doses are more influenced by the TOC changes and in this case RAF = -2.7%. The amount of these biological doses depended on the solar altitude over the horizon. This dependence was not so strong when the total ozone content in the atmosphere was lower.
NASA Astrophysics Data System (ADS)
Antón, M.; Loyola, D.; López, M.; Vilaplana, J. M.; Bañón, M.; Zimmer, W.; Serrano, A.
2009-04-01
The main objective of this article is to compare the total ozone data from the new Global Ozone Monitoring Experiment instrument (GOME-2/MetOp) with reliable ground-based measurement recorded by five Brewer spectroradiometers in the Iberian Peninsula. In addition, a similar comparison for the predecessor instrument GOME/ERS-2 is described. The period of study is a whole year from May 2007 to April 2008. The results show that GOME-2/MetOp ozone data already has a very good quality, total ozone columns are on average 3.05% lower than Brewer measurements. This underestimation is higher than that obtained for GOME/ERS-2 (1.46%). However, the relative differences between GOME-2/MetOp and Brewer measurements show significantly lower variability than the differences between GOME/ERS-2 and Brewer data. Dependencies of these relative differences with respect to the satellite solar zenith angle (SZA), the satellite scan angle, the satellite cloud cover fraction (CF), and the ground-based total ozone measurements are analyzed. For both GOME instruments, differences show no significant dependence on SZA. However, GOME-2/MetOp data show a significant dependence on the satellite scan angle (+1.5%). In addition, GOME/ERS-2 differences present a clear dependence with respect to the CF and ground-based total ozone; such differences are minimized for GOME-2/MetOp. The comparison between the daily total ozone values provided by both GOME instruments shows that GOME-2/MetOp ozone data are on average 1.46% lower than GOME/ERS-2 data without any seasonal dependence. Finally, deviations of a priori climatological ozone profile used by the satellite retrieval algorithm from the true ozone profile are analyzed. Although excellent agreement between a priori climatological and measured partial ozone values is found for the middle and high stratosphere, relative differences greater than 15% are common for the troposphere and lower stratosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komhyr, W.D.; Quincy, D.M.; Grass, R.D.
This report describes work to improve the quality of total ozone and Umkehr data obtained in the past at the NOAA Climate Monitoring and Diagnostics Laboratory and the Dobson spectrophotometer ozone observatories. The authors present results of total ozone data re-evaluations for ten stations: Byrd, Antarctica; Fairbanks, Alaska; Hallett, Antarctica; Huancayo, Peru; Haute Provence, France; Lauder, New Zealand; Perth, Australia; Poker Flat, Alaska; Puerto Montt, Chile; and South Pole, Antarctica. The improved data will be submitted in early 1996 to the World Meteorological Organization (WMO) World Ozone Data Center (WODC), and the Atmospheric Environment Service for archiving. Considerable work hasmore » been accomplished, also, in reevaluating Umkehr data from seven of the stations, viz., Huancayo, Haute Provence, Lauder, Perth, Poker Flat, Boulder, Colorado; and Mauna Loa, Hawaii.« less
Tunable Diode Laser Heterodyne Spectrophotometry of Ozone
NASA Technical Reports Server (NTRS)
Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.
1988-01-01
Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.
Estimating Uncertainty in Long Term Total Ozone Records from Multiple Sources
NASA Technical Reports Server (NTRS)
Frith, Stacey M.; Stolarski, Richard S.; Kramarova, Natalya; McPeters, Richard D.
2014-01-01
Total ozone measurements derived from the TOMS and SBUV backscattered solar UV instrument series cover the period from late 1978 to the present. As the SBUV series of instruments comes to an end, we look to the 10 years of data from the AURA Ozone Monitoring Instrument (OMI) and two years of data from the Ozone Mapping Profiler Suite (OMPS) on board the Suomi National Polar-orbiting Partnership satellite to continue the record. When combining these records to construct a single long-term data set for analysis we must estimate the uncertainty in the record resulting from potential biases and drifts in the individual measurement records. In this study we present a Monte Carlo analysis used to estimate uncertainties in the Merged Ozone Dataset (MOD), constructed from the Version 8.6 SBUV2 series of instruments. We extend this analysis to incorporate OMI and OMPS total ozone data into the record and investigate the impact of multiple overlapping measurements on the estimated error. We also present an updated column ozone trend analysis and compare the size of statistical error (error from variability not explained by our linear regression model) to that from instrument uncertainty.
The Antarctic Ozone Hole: Initial Results from Aura / OMI Compared with TOMS
NASA Technical Reports Server (NTRS)
McPeters, R.; Bhartia, P. K.; Newman, P.
2004-01-01
A series of TOMS instruments (on November 7 , Meteor 3, and Earth Probe) has been monitoring the annual development of the Antarctic ozone hole since the 1980s. The ozone mapping instrument on Aura, OMI, is expected to take over this record of observation from the aging Earth Probe TOMS instrument. The area of the ozone hole can be taken as a sensitive indicator of the magnitude of ozone destruction each year. The timing of initial formation of the ozone hole and its duration are sensitive to the atmospheric dynamics of the southern polar regions. The entire TOMS data record (1978 - 2004) has recently been reprocessed with the new version 8 algorithm, which includes a revised calibration. The effect has been to slightly increase ozone hole area over earlier estimates, but only by 23%. OMI (ozone monitoring instrument) on Aura is a hyperspectral imaging instrument that operates in a pushbroom mode to measure solar backscattered radiation in the ultraviolet and visible. OMI has higher spatial resolution than TOMS - 14 x 24 km versus 38 km x 38 km from TOMS. OMI has now begin mapping total column ozone on a global basis in a measurement similar to TOMS. The ozone hole measurements for 2003 are compared with those from Earth Probe TOMS.
Assimilation of Satellite Ozone Observations
NASA Technical Reports Server (NTRS)
Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.
2003-01-01
This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.
NASA Technical Reports Server (NTRS)
Koukouli, M.E.; Lerot, C.; Granville, J.; Goutail, F.; Lambert, J.-C.; Pommereau, J.-P.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Coldewey-Egbers, M.;
2015-01-01
The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D'Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 plus or minus 1 percent level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1-3 percent requirement of the European Space Agency's Ozone Climate Change Initiative project.
Total ozone column retrieval from UV-MFRSR irradiance measurements: evaluation at Mauna Loa station
NASA Astrophysics Data System (ADS)
Zempila, Melina Maria; Fragkos, Konstantinos; Davis, John; Sun, Zhibin; Chen, Maosi; Gao, Wei
2017-09-01
The USDA UV-B Monitoring and Research Program (UVMRP) comprises of 36 climatological sites along with 4 long-duration research sites, in 27 states, one Canadian province, and the south island of New Zealand. Each station is equipped with an Ultraviolet multi-filter rotating shadowband radiometer (UV-MFRSR) which can provide response-weighted irradiances at 7 wavelengths (300, 305.5, 311.4, 317.6, 325.4, and 368 nm) with a nominal full width at half maximun of 2 nm. These UV irradiance data from the long term monitoring station at Mauna Loa, Hawaii, are used as input to a retrieval algorithm in order to derive high time frequency total ozone columns. The sensitivity of the algorithm to the different wavelength inputs is tested and the uncertainty of the retrievals is assessed based on error propagation methods. For the validation of the method, collocated hourly ozone data from the Dobson Network of the Global Monitoring Division (GMD) of the Earth System Radiation Laboratory (ESRL) under the jurisdiction of the US National Oceanic & Atmospheric Administration (NOAA) for the period 2010-2015 were used.
Reed, Andra J; Thompson, Anne M; Kollonige, Debra E; Martins, Douglas K; Tzortziou, Maria A; Herman, Jay R; Berkoff, Timothy A; Abuhassan, Nader K; Cede, Alexander
An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of D eriving I nformation on S urface CO nditions from Column and VER tically Resolved Observations Relevant to A ir Q uality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NO x Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.
Assimilation of MLS and OMI Ozone Data
NASA Technical Reports Server (NTRS)
Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.
2005-01-01
Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).
Reproducibility of total ozone column monitoring by the Arosa Brewer spectrophotometer triad
NASA Astrophysics Data System (ADS)
Stübi, R.; Schill, H.; Klausen, J.; Vuilleumier, L.; Ruffieux, D.
2017-04-01
The historical review of the total ozone column measurements with the Arosa Brewer triad in operation since 1998 is presented. The calibration history of the different instruments and the data quality control performed at Arosa are described. Over the last 15 years, the Brewer triad shows a dispersion of ˜0.4% between the three collocated instruments and a long-term stability of ±0.5%. These values are a reference metric achievable with well-maintained Brewer instruments under favorable measurement conditions.
NASA Astrophysics Data System (ADS)
Lerot, C.; Danckaert, T.; van Gent, J.; Coldewey-Egbers, M.; Loyola, D. G.; Errera, Q.; Spurr, R. J. D.; Garane, K.; Koukouli, M.; Balis, D.; Verhoelst, T.; Granville, J.; Lambert, J. C.; Van Roozendael, M.
2017-12-01
Total ozone is one of the Essential Climate Variables (ECV) operationally produced within the European Copernicus Climate Change Service (C3S), which aims at providing the geophysical information needed to monitor and study our climate system. The C3S total ozone processing chain relies on algorithmic developments realized for the last six years as part of the ESA's Ozone Climate Change Initiative (Ozone_cci) project. The C3S Climate Data Store currently contains a total ozone record based on observations from the nadir UV-Vis hyperspectral spectrometers GOME/ERS-2, SCIAMACHY/Envisat, GOME-2/Metop-A, GOME-2/Metop-B and OMI/Aura, spanning more than 23 years.Individual level-2 datasets were generated with the retrieval algorithm GODFIT (GOME-type Direct FITting). The retrievals are based on a non-linear least squares adjustment of reflectances simulated with radiative transfer tools from the LIDORT suite, to the measured spectra in the Huggins bands (325-335 nm). The inter-sensor consistency and the time stability of those data sets is significantly enhanced with the application of a soft-calibration procedure to the level-1 reflectances, in which GOME and OMI are used together as a long-term reference. Level-2 data sets are then combined to produce the level-3 GOME-type Total Ozone (GTO-ECV) record consisting of homogenized 1°x1° monthly mean grids. The merging procedure corrects for subsisting inter-satellite biases and temporal drifts. Some developments for minimizing sampling errors have also been recently investigated and will be discussed. Total ozone level-2 and level-3 data sets are regularly verified and validated by independent measurements both from space (independent algorithms and/or instruments) and ground (Brewer/Dobson/SAOZ) and their excellent quality and stability, as well as their consistency with other long-term total ozone data sets will be illustrated here. In future, in addition to be continuously extended in time, the C3S total ozone record will also incorporate new sensors such as OMPS aboard Suomi NPP or TROPOMI/S5p.
NASA Astrophysics Data System (ADS)
Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.
2015-03-01
A comparison of retrieved total column ozone amounts TCO between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado NOAA building. This paper, part of an ongoing study, covers a one-year period starting on 17 December 2013. Both the standard Dobson and Pandora total column ozone TCO retrievals required a correction TCOcorr = TCO (1+C(T)) using the effective climatology derived ozone temperature T to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(T) are CPandora = 0.00333(T-225) and CDobson = -0.0013 (T-226.7) per K. After the applied corrections removed the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1% for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r2 = 0.97 and an average offset of 1.1 ± 5.8 DU. In addition, the Pandora data showed 0.3% annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1% annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).
Retrieval of Surface Ozone from UV-MFRSR Irradiances using Deep Learning
NASA Astrophysics Data System (ADS)
Chen, M.; Sun, Z.; Davis, J.; Zempila, M.; Liu, C.; Gao, W.
2017-12-01
High concentration of surface ozone is harmful to humans and plants. USDA UV-B Monitoring and Research Program (UVMRP) uses Ultraviolet (UV) version of Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) to measure direct, diffuse, and total irradiances every three minutes at seven UV channels (i.e. 300, 305, 311, 317, 325, 332, and 368 nm channels with 2 nm full width at half maximum). Based on the wavelength dependency of aerosol optical depths, there have been plenty of literatures exploring retrieval methods of total column ozone from UV-MFRSR measurements. However, few has explored the retrieval of surface ozone. The total column ozone is the integral of the multiplication of ozone concentration (varying by height and time) and cross section (varying by wavelength and temperature) over height. Because of the distinctive values of ozone cross section in the UV region, the irradiances at seven UV channels have the potential to resolve the ozone concentration at multiple vertical layers. If the UV irradiances at multiple time points are considered together, the uncertainty or the vertical resolution of ozone concentrations can be further improved. In this study, the surface ozone amounts at the UVMRP station located at Billings, Oklahoma are estimated from the adjacent (i.e. within 200 miles) US Environmental Protection Agency (EPA) surface ozone observations using the spatial analysis technique. Then, the (direct normal) irradiances of UVMRP at one or more time points as inputs and the corresponding estimated surface ozone from EPA as outputs are fed into a pre-trained (dense) deep neural network (DNN) to explore the hidden non-linear relationship between them. This process could improve our understanding of their physical/mathematical relationship. Finally, the optimized DNN is tested with the preserved 5% of the dataset, which are not used during training, to verify the relationship.
Towards A Representation of Vertically Resolved Ozone Changes in Reanalyses
NASA Technical Reports Server (NTRS)
Pawson, Steven; Wargan, Krzysztof; Keller, Christoph; McCarty, Will; Coy, Larry
2017-01-01
The Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft provide a long-term record of total-column ozone and deep-layer partial columns since about 1980. These data have been carefully processed to extract long-term trends and offer a valuable resource for ozone monitoring. Studies assimilating limb-sounding observations in the Goddard Earth Observing System (GEOS) data assimilation system (DAS) demonstrate that vertical ozone gradients in the upper troposphere and lower stratosphere (UTLS) are much better represented than with the deep-layer SBUV observations. This is exemplified by the use of retrieved ozone from the EOS Microwave Limb Sounder (EOS-MLS) instrument in the MERRA-2 reanalysis, for the period after 2004. This study examines the potential for extending the use of limb-sounding observations at earlier times and into the future, so that future reanalyses may be more applicable to the study of long-term ozone changes.Historical data are available from NASA instruments: the Limb Infrared Monitor of the Stratosphere (LIMS: 1978-1979); the Upper Atmospheric Research Satellite (UARS: 1991-1995); Sounding of the Atmosphere using Broadband Emission Radiometry (SABER: 2000-onwards). For the post EOS-MLS period, the joint NASA-NOAA Ozone Monitoring and Profiling Suite Limb Profiler (OMPS-LP) instrument was launched on the Suomi-NPP platform in 201x and is planned for future platforms. This study will examine two aspects of these data pertaining to future reanalyses. First, the feasibility of merging the EOS-MLS and OMPS-LP instruments to provide a long-term record that extends beyond the potential lifetime of EOS-MLS. If feasible, this would allow for long-term monitoring of ozone recovery in a three-dimensional reanalysis context. Second, the skill of the GEOS DAS in ingesting historical data types will be investigated. Because these do not overlap with EOS-MLS, use will be made of system statistics and evaluation using independent datasets. Impacts of using a complete ozone chemistry module will also be considered.
Total ozone trends and variability during 1979-2012 from merged data sets of various satellites
NASA Astrophysics Data System (ADS)
Chehade, W.; Weber, M.; Burrows, J. P.
2014-07-01
The study presents a long-term statistical trend analysis of total ozone data sets obtained from various satellites. A multi-variate linear regression was applied to annual mean zonal mean data using various natural and anthropogenic explanatory variables that represent dynamical and chemical processes which modify global ozone distributions in a changing climate. The study investigated the magnitude and zonal distribution of the different atmospheric chemical and dynamical factors contributing to long-term total ozone changes. The regression model included the equivalent effective stratospheric chlorine (EESC), the 11-year solar cycle, the quasi-biennial oscillation (QBO), stratospheric aerosol loading describing the effects from major volcanic eruptions, the El Niño-Southern Oscillation (ENSO), the Arctic and Antarctic oscillation (AO/AAO), and accumulated eddy heat flux (EHF), the latter representing changes due to the Brewer-Dobson circulation. The total ozone column data set used here comprises the Solar Backscater Ultraviolet SBUV/SBUV-2 merged ozone data set (MOD) V8.6, the merged data set of the Solar Backscaterr Ultraviolet, the Total Ozone Mapping Spectrometer and the Ozone Monitoring Instrument SBUV/TOMS/OMI (1979-2012) MOD V8.0 and the merged data set of the Global Ozone Monitoring Experiment, the Scanning Imaging Absorption spectroMeter for Atmospheric ChartograpHY and the Global Ozone Monitoring Experiment 2 GOME/SCIAMACHY/GOME-2 (GSG) (1995-2012). The trend analysis was performed for twenty-six 5° wide latitude bands from 65° S to 65° N, and the analysis explained most of the ozone variability to within 70 to 90%. The results show that QBO dominates the ozone variability in the tropics (±7 DU) while at higher latitudes, the dynamical indices, AO/AAO and eddy heat flux, have substantial influence on total ozone variations by up to ±10 DU. The contribution from volcanic aerosols is only prominent during the major eruption periods (El Chichón and Mt. Pinatubo), and together with the ENSO signal, is more evident in the Northern Hemisphere. The signature of the solar cycle covers all latitudes and contributes about 10 DU from solar maximum to solar minimum. EESC is found to be a main contributor to the long-term ozone decline and the trend changes after the end of the 1990s. From the EESC fits, statistically significant upward trends after 1997 were found in the extratropics, which points at the slowing of ozone decline and the onset of ozone recovery. The EESC based trends are compared with the trends obtained from the statistical piecewise linear trend (PWLT) model (known as hockey stick) with a turnaround in 1997 to examine the differences between both approaches. In case of the SBUV merged V8.6 data the EESC and PWLT trends before and after 1997 are in good agreement (within 2 σ), however, the positive post-1997 linear trends from the PWLT regression are not significant within 2 σ. A sensitivity study is carried out by comparing the regression results, using SBUV/SBUV-2 MOD V8.6 merged time series (1979-2012) and a merged data set combining SBUV/SBUV-2 (1979-June 1995) and GOME/SCIAMACHY/GOME-2 ("GSG") WFDOAS (Weighting Function DOAS) (July 1995-2012) as well as SBUV/TOMS/OMI MOD V8.0 (1979-2012) in the regression analysis in order to investigate the uncertainty in the long-term trends due to different ozone data sets and data versions. Replacing the late SBUV/SBUV-2 merged data record with GSG data (unscaled and adjusted) leads to very similar results demonstrating the high consistency between satellite data sets. However, the comparison of the new SBUV/SBUV-2 MOD V8.6 with the MOD V8.0 and MOD8.6/GSG data showed somewhat smaller sensitivities with regard to several proxies as well as the linear EESC trends. On the other hand, the PWLT trends after 1997 show some differences, however, within the 2 σ error bars the PWLT trends agree with each other for all three data sets.
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Liu, X.; Bhartia, P. K.
2007-01-01
Previous studies using Total Ozone Mapping Spectrometer (TOMS) measurements have identified several types of tropical waves in the stratosphere. These waves include Kelvin waves, mixed Rossby-gravity waves, equatorial Rossby waves, and global normal modes. All of these detected waves occur when their zonal phase speeds are opposite the zonal winds in the low-mid stratosphere associated with the Quasi-biennial Oscillation (QBO). Peak-to-peak amplitudes in all cases are typically 5 DU. While total ozone data from TOMS is sensitive in detecting these tropical waves, they provide each day only a single horizontal cross-sectional map. The high spatial and spectral resolution of the Aura Ozone Monitoring Instrument (OMI) provides a unique means to evaluate 3D structure in these waves including their propagation characteristics. Ozone profiles retrieved from OMI radiances for wavelengths 270-310 nm are utilized to examine the nature of these wave disturbances extending from the lower to upper stratosphere.
NASA Astrophysics Data System (ADS)
Scarnato, B.; Staehelin, J.; Groebner, J.
2008-12-01
Dobson and Brewer spectrophotometers are the main ground based instruments used to monitor the ozone layer. Early total ozone (TOZ) measurements were made primarily with Dobson instruments; however, there has been a trend over the last years to replace them by the newer, more advanced Brewer spectrophotometer. Given this transition, it is of utmost importance to assure the homogeneity of the data taken with these two distinct instruments types if total ozone (TOZ) changes over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of few percentage from Brewer and Dobson spectrophotometers measurements at mid-latitudes. At Arosa (Switzerland), two Dobson and three Brewers instruments have been co-located since 1998, producing a unique dataset of quasi-simultaneous observations valuable for the study of systematic differences between these measurements. The differences can be at least partially attributed to seasonal variability in the atmospheric temperature and the ozone slant path. The effective temperature sensitivity of the ozone cross section has been calculated using different reference spectra, at high and low resolution, weighting of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. If one takes into account the temperature dependence of the [Bass, 1985] ozone absorption spectra (current remote sensing standard) and the ozone slant path effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced from an amplitude of about 2% to less than 0.5%. The use of different ozone laboratory spectra yields different results in retrieved TOZ, because of the sensitivity of the retrieval algorithms and uncertainties in the experimental ozone cross section measurements.
Temperature And Bandwidth Effect in Brewer and Dobson Direct Sun Observations
NASA Astrophysics Data System (ADS)
Scarnato, B.; Staehelin, J.; Stuebi, R.
2007-12-01
Dobson and Brewer spectrophotometer are the main instruments to monitor the ozone shield by ground based observations, and they have an important role for validation of ozone satellite data. Ground based total ozone observations from Brewer and Dobson spectrophotometers, operated at mid-latitudes stations, typically show a seasonal bias in the residual with a amplitude of a few percent. Mid-latitude total ozone trends caused by ozone depleting substances are on the order of few percents per decade. Therefore, only a maximum instrumental shift of 1% over the measured period can be tolerated for measurements to derive reliable trends. At Arosa two Dobson and three Brewers instruments have been co-located since 1992, producing a unique data set of quasi-simultaneous observations that is valuable for the study of systematic differences within the measurements. The differences can be at least partially attributed to the different sensitivities of the wavelengths used in the retrieval algorithms. This might explain different column ozone as a consequence of seasonal variability, mainly, in temperature in the lower stratosphere and in ozone slant path. The temperature dependence has been calculated using three different absorption spectra (Bass and Paur, Daumont and those used in the GOME satellite), weighing of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. The seasonal bias between Dobson and Brewer total ozone measurements is reduced from 3% to 1%, if one takes into account the temperature dependence of the Bass and Paur absorptions spectra and the ozone slant path effect. The accuracy and the resolution step of the experimental data of ozone cross sections have an important role. The ozone cross section must be convoluted for the slits functions that can vary from one instrument to an other, therefore the different spectra yield different results.
Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater.
Shin, Minjung; Lee, Hye-Jin; Kim, Min Sik; Park, Noh-Back; Lee, Changha
2017-02-01
The inactivation of C. polykrikoides, a red tide dinoflagellate, by ozonation was investigated in seawater by monitoring numbers of viable and total cells. Parameters affecting the inactivation efficacy of C. polykrikoides such as the ozone dose, initial cell concentration, pH, and temperature were examined. The viable cell number rapidly decreased in the initial stage of the reaction (mostly in 1-2 min), whereas the decrease in total cell number was relatively slow and steady. Increasing ozone dose and decreasing initial cell concentration increased the inactivation efficacy of C. polykrikoides, while increasing pH and temperature decreased the cell inactivation efficacy. The addition of humic acid (a promoter for the ozone decomposition) inhibited the inactivation of C. polykrikoides, whereas bicarbonate ion (an inhibitor for the ozone decomposition) accelerated the C. polykrikoides inactivation. Observations regarding the effects of pH, temperature, humic acid, and bicarbonate ion collectively indicate that the inactivation of C. polykrikoides by ozonation is mainly attributed to oxidative cell damages by molecular ozone, rather than by hydroxyl radical, produced during the ozone decomposition. At high ozone dose (e.g., 5 mg/L), hypobromous acid formed by the reaction of bromide with ozone may partially contribute to cell inactivation. The use of ozone of less than 1 mg/L produced 0.75-2.03 μg/L bromate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ozone measurement system for NASA global air sampling program
NASA Technical Reports Server (NTRS)
Tiefermann, M. W.
1979-01-01
The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.
The Heterogeneous Oxidation of Organic Droplets -Temperature and Physical Phase Effects
NASA Astrophysics Data System (ADS)
Hung, H.; Tang, C.; Lin, L.
2008-12-01
The heterogeneous reactions of oleic acid droplets with ozone are studied at different temperatures to imitating the atmospheric condition. The reactions are monitored concomitantly by using attenuated total reflectance Fourier Transform infrared spectroscopy (ATR-FT-IR) for the organic species and UV-VIS spectrometry for the ozone concentration, in order to investigate reaction rate discrepancies reported in literature as well as the oxidation mechanism, temperature and physical phase effects. The less and semi- volatile products are identified and resolved by a liquid chromatography and a gas chromatography mass spectrometer, respectively. The identified products are predominantly composed by nananoic acid and azelaic acid and might be due to propagation reactions possibly initiated by a secondary reaction such as the stabilized Criegee intermediates reacting with oleic acid. For temperature effect, the oxidation rate decreases with temperature when the oleic acid droplets are in the same physical phases. As oleic acid turns into the solid phase, the oxidation mechanism is observed to be different from the liquid phase. Furthermore, the concentration of ozone was monitored to examine the kinetics of the oxidation reaction. The integrated ozone profile recorded by UV-VIS spectrometry shows that the consumed ozone represents only approximately 12% of total oleic acid for the solid cases at 4°C in contrast to 30% for the liquid cases at 25°C, and hence confirmed the existence of secondary reactions.
40 CFR 75.74 - Annual and ozone season monitoring and reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Annual and ozone season monitoring and... Annual and ozone season monitoring and reporting requirements. (a) Annual monitoring requirement. (1) The... during the entire calendar year. (b) Ozone season monitoring requirements. The owner or operator of an...
40 CFR 75.74 - Annual and ozone season monitoring and reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Annual and ozone season monitoring and... Annual and ozone season monitoring and reporting requirements. (a) Annual monitoring requirement. (1) The... during the entire calendar year. (b) Ozone season monitoring requirements. The owner or operator of an...
40 CFR 75.74 - Annual and ozone season monitoring and reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Annual and ozone season monitoring and... Annual and ozone season monitoring and reporting requirements. (a) Annual monitoring requirement. (1) The... during the entire calendar year. (b) Ozone season monitoring requirements. The owner or operator of an...
40 CFR 75.74 - Annual and ozone season monitoring and reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Annual and ozone season monitoring and... Annual and ozone season monitoring and reporting requirements. (a) Annual monitoring requirement. (1) The... during the entire calendar year. (b) Ozone season monitoring requirements. The owner or operator of an...
Recent Advances in Ozone Data Assimilation at the GMAO - Towards a New Reanalysis
NASA Technical Reports Server (NTRS)
Krzysztof, Wargan; Pawson, S.; Nielsen, J. E.; Witte, J.; Douglass, A.; Strahan, S.; Joiner, J.; Bhartia, P. K.; Livesey, N.; Read, W.;
2012-01-01
This presentation summarized ongoing work on improving the representation of ozone in the GEOS Data Assimilation Systems. Data from two EOS Aura sensors was used: the total column ozone from the Ozone Monitoring Instrument (OMI) and high vertical resolution stratospheric profiles from Microwave Limb Sounder (MLS, version 3.3). As several previous studies have demonstrated, assimilation of this data can constrain the stratospheric and tropospheric ozone columns with relatively good accuracy. However, the representation of the vertical structures in the troposphere and near tropopause region is often deficient. Since both these layers of the atmosphere are critical to the understanding of the radiative forcing as well as the ozone budget in the troposphere, current work will focus on improving the assimilated product between the surface and the 50 hPa pressure level. The discussion included recent steps that have been taken towards refining the treatment of ozone in GEOS-5. Impacts of improved tropospheric chemistry model were discussed including the introduction of efficiency factors ("averaging kernels") for OMI total ozone, and direct assimilation of radiances from the MLS instrument. In particular, advantages and challenges involved in assimilating limb radiances rather than retrieved product were discussed. This work is, in part, a preparation for a planned reanalysis of the EOS Aura data from 2005 to present.
Chen, Kai; Zhou, Lian; Chen, Xiaodong; Bi, Jun; Kinney, Patrick L
2017-05-01
Few multicity studies have addressed the health effects of ozone in China due to the scarcity of ozone monitoring data. A critical scientific and policy-relevant question is whether a threshold exists in the ozone-mortality relationship. Using a generalized additive model and a univariate random-effects meta-analysis, this research evaluated the relationship between short-term ozone exposure and daily total mortality in seven cities of Jiangsu Province, China during 2013-2014. Spline, subset, and threshold models were applied to further evaluate whether a safe threshold level exists. This study found strong evidence that short-term ozone exposure is significantly associated with premature total mortality. A 10μg/m 3 increase in the average of the current and previous days' maximum 8-h average ozone concentration was associated with a 0.55% (95% posterior interval: 0.34%, 0.76%) increase of total mortality. This finding is robust when considering the confounding effect of PM 2.5 , PM 10 , NO 2 , and SO 2 . No consistent evidence was found for a threshold in the ozone-mortality concentration-response relationship down to concentrations well below the current Chinese Ambient Air Quality Standard (CAAQS) level 2 standard (160μg/m 3 ). Our findings suggest that ozone concentrations below the current CAAQS level 2 standard could still induce increased mortality risks in Jiangsu Province, China. Continuous air pollution control measures could yield important health benefits in Jiangsu Province, China, even in cities that meet the current CAAQS level 2 standard. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Kai; Zhou, Lian; Chen, Xiaodong; Bi, Jun; Kinney, Patrick L.
2017-01-01
Background Few multicity studies have addressed the health effects of ozone in China due to the scarcity of ozone monitoring data. A critical scientific and policy-relevant question is whether a threshold exists in the ozone-mortality relationship. Methods Using a generalized additive model and a univariate random-effects meta-analysis, this research evaluated the relationship between short-term ozone exposure and daily total mortality in seven cities of Jiangsu Province, China during 2013–2014. Spline, subset, and threshold models were applied to further evaluate whether a safe threshold level exists. Results This study found strong evidence that short-term ozone exposure is significantly associated with premature total mortality. A 10 μg/m3 increase in the average of the current and previous days’ maximum 8-h average ozone concentration was associated with a 0.55% (95% posterior interval: 0.34%, 0.76%) increase of total mortality. This finding is robust when considering the confounding effect of PM2.5, PM10, NO2, and SO2. No consistent evidence was found for a threshold in the ozone-mortality concentration-response relationship down to concentrations well below the current Chinese Ambient Air Quality Standard (CAAQS) level 2 standard (160 μg/m3). Conclusions Our findings suggest that ozone concentrations below the current CAAQS level 2 standard could still induce increased mortality risks in Jiangsu Province, China. Continuous air pollution control measures could yield important health benefits in Jiangsu Province, China, even in cities that meet the current CAAQS level 2 standard. PMID:28231551
OMPS SDR Calibration and Validation
NASA Astrophysics Data System (ADS)
Sen, B.; Done, J.; Buss, R.; Jaross, G. R.; Kelly, T. J.
2009-12-01
The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross-track is 110 degree to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the plans to calibrate the TC sensor and validate the radiance data (TC Sensor Data Record or TC SDR) after launch. We discuss the measurements planned during the Intensive Cal/Val (ICV) phase of NPP mission, the data analysis methodology and results from the analysis of OMPS calibration measurements.
NASA Astrophysics Data System (ADS)
Hurst, D. F.; Elkins, J. W.; Montzka, S. A.; Butler, J. H.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Moore, F. L.; Nance, J. D.; Romashkin, P. A.; Thompson, T. M.
2005-12-01
Back in 1978, NOAA/CMDL initiated the weekly filling of flasks at CMDL observatories in Alaska, Hawaii, American Samoa, and Antarctica for analyses of CFC-11, CFC-12 and N2O in the home laboratory. A decade later, each observatory was outfitted with an automated gas chromatograph to make routine, in situ measurements of these three source gases plus methyl chloroform and carbon tetrachloride. Both measurement programs are ongoing, having expanded over the years to include methyl halides and substitutes for regulated halocarbons, to presently account for 95% of the total burden of long-lived Cl and Br believed to enter the stratosphere. These long-term monitoring data have been assimilated into temporal records of the global tropospheric burdens of ozone-depleting chlorine and bromine which are critical input to models that predict future trends in stratospheric ozone. Other information pivotal to ozone projections, such as the atmospheric lifetimes of source gases, stratospheric entry values for total chlorine and total bromine, and identification of the stratospheric sink regions for long-lived source gases, has been gained from in situ measurements by NOAA/CMDL instruments aboard NASA high-altitude aircraft (ER-2 and WB-57) and balloons since 1991. Though CMDL's routine monitoring activities provide important historical records of halogenated source gases in the atmosphere, significant inaccuracies in ozone projections may propagate from the uncertain estimates of impending emissions of ozone-depleting gases. Scenarios of future halocarbon emissions require substantial assumptions about past and pending compliance with the Montreal Protocol, and the sizes and release rates of existing global reservoirs (banks) of halocarbons. Recent work by CMDL has focused on quantifying halocarbon bank emission rates in Russia, the USA, and Canada through geographically extensive measurements aboard trains and low-altitude aircraft. The USA and Canada results indicate that globally significant emissions continued to emanate from these two countries in 2003, more than 7 years after the Montreal Protocol-mandated production phase-out. Large-scale, measurement-based emission estimates such as these provide important checks of our understanding of contemporary halocarbon emissions and will undoubtedly help to improve the accuracy of projected future halocarbon abundances and ozone recovery rates.
Solar spectral irradiance variability in cycle 24: observations and models
NASA Astrophysics Data System (ADS)
Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.
2016-12-01
Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.
Park, Minkyu; Anumol, Tarun; Daniels, Kevin D; Wu, Shimin; Ziska, Austin D; Snyder, Shane A
2017-08-01
Ozone oxidation has been demonstrated to be an effective treatment process for the attenuation of trace organic compounds (TOrCs); however, predicting TOrC attenuation by ozone processes is challenging in wastewaters. Since ozone is rapidly consumed, determining the exposure times of ozone and hydroxyl radical proves to be difficult. As direct potable reuse schemes continue to gain traction, there is an increasing need for the development of real-time monitoring strategies for TOrC abatement in ozone oxidation processes. Hence, this study is primarily aimed at developing indicator and surrogate models for the prediction of TOrC attenuation by ozone oxidation. To this end, the second-order kinetic equations with a second-phase R ct value (ratio of hydroxyl radical exposure to molecular ozone exposure) were used to calculate comparative kinetics of TOrC attenuation and the reduction of indicator and spectroscopic surrogate parameters, including UV absorbance at 254 nm (UVA 254 ) and total fluorescence (TF). The developed indicator model using meprobamate as an indicator compound and the surrogate models with UVA 254 and TF exhibited good predictive power for the attenuation of 13 kinetically distinct TOrCs in five filtered and unfiltered wastewater effluents (R 2 values > 0.8). This study is intended to help provide a guideline for the implementation of indicator/surrogate models for real-time monitoring of TOrC abatement with ozone processes and integrate them into a regulatory framework in water reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of low ozone episodes on erythemal UV-B radiation in Austria
NASA Astrophysics Data System (ADS)
Schwarz, Matthias; Baumgartner, Dietmar J.; Pietsch, Helga; Blumthaler, Mario; Weihs, Philipp; Rieder, Harald E.
2017-06-01
This study investigates the influence of low ozone episodes on UV-B radiation in Austria during the period 1999 to 2015. To this aim observations of total column ozone (TCO) in the Greater Alpine Region (Arosa, Switzerland; Hohenpeissenberg, Germany; Hradec Kralove, Czech Republic; Sonnblick, Austria), and erythemal UV-B radiation, available from 12 sites of the Austrian UV-B monitoring network, are analyzed. As previous definitions for low ozone episodes are not particularly suited to investigate effects on UV radiation, a novel threshold approach—considering anomalies—is developed to provide a joint framework for the analysis of extremes. TCO and UV extremes are negatively correlated, although modulating effects of sunshine duration impact the robustness of the statistical relationship. Therefore, information on relative sunshine duration (SDrel), available at (or nearby) UV-B monitoring sites, is included as explanatory variable in the analysis. The joint analysis of anomalies of both UV index (UVI) and total ozone (∆UVI, ∆TCO) and SDrel across sites shows that more than 65% of observations with strongly negative ozone anomalies (∆TCO < -1) led to positive UVI anomalies. Considering only days with strongly positive UVI anomaly (∆UVI > 1), we find (across all sites) that about 90% correspond to negative ∆TCO. The remaining 10% of days occurred during fair weather conditions (SDrel ≥ 80%) explaining the appearance of ∆UVI > 1 despite positive TCO anomalies. Further, we introduce an anomaly amplification factor (AAF), which quantifies the expected change of the ∆UVI for a given change in ∆TCO.
NASA Technical Reports Server (NTRS)
Heath, D. F.; Ahmad, Z.; Torres, O.; Evans, R. D.; Grass, R. D.; Komhyr, W. A.; Nelson, W.
1994-01-01
Total ozone data obtained during summers at Mauna Loa Observatory, Hawaii, with Dobson Spectrophotometer 83 are routinely compared with overpass total ozone data from the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) spectrometer launched aboard the Nimbus 7 satellite in 1978. Results from the TOMS/Dobson instrument comparisons through 1990 have been presented by McPeters and Komhyr (1991). Dobson spectrophotometer 83 was established as the standard instrument for the U.S.A. Dobson instrument station network in 1962. In 1980, the instrument was designated by the World Meteorological Organization (WMO) as the Standard Dobson Spectrophotometer for the World. Long-term ozone measurement precision of the instrument has been maintained at plus or minus 0.5 percent (Komhyr et al., 1989). On an absolute scale, the ozone measurement accuracy of the instrument is estimated to plus or minus 3 percent. In early April, 1990, comparison of total ozone and vertical distribution (Umkehr) observations were made for the first time with Dobson spectrophotometer 8.3. The work was conducted at the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) in Boulder, Colorado, and at the research and instrument manufacturing facility of the Ball Aerospace System Division located about 2 km east of Boulder. (The SBUV-2 S/N-2 instrument, built by Ball Aerospace Systems Division, is scheduled for launch aboard the NOAA-13 satellite). We present results of the comparisons which include ozone vertical distribution data obtained with a balloon-borne electrochemical concentration cell (ECC) ozonesonde (Komhyr, 1969).
Inter-Annual and Decadal Changes in Tropospheric and Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Ziemke, Jr. R.; Chandra, S.
2011-01-01
Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and studying their long-term changes. Using this technique, we have produced a 32-year (1979-2010) long record of tropospheric and stratospheric ozone from the combined Total Ozone Mapping Spectrometer (Toms) and OMI. The analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual changes of 30-40 Dobson Units (DU). Tropospheric ozone also indicates a QBO signal in the peak to peak changes varying from 2 to 7 DU. Decadal changes in global stratospheric ozone indicate a turnaround in ozone loss around mid 1990's with most of these changes occurring in the Northern Hemisphere from the subtropics to high latitudes. The trend results are generally consistent with the prediction of chemistry climate models which include the reduction of ozone destroying substances beginning in the late 1980's mandated by the Montreal Protocol.
NASA Astrophysics Data System (ADS)
Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey
2016-06-01
We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5°N, 85.0°E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of Total Ozone Mapping Spectrometer (TOMS) data for the period 1979-1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk aftera series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, we record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.
NASA Astrophysics Data System (ADS)
Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.
2014-05-01
This paper evaluates the performance of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3 year period between September 2009 and September 2012. Ozone analyses produced by four different chemistry transport models and data assimilation techniques are examined: the ECMWF Integrated Forecast System (IFS) coupled to MOZART-3 (IFS-MOZART), the BIRA-IASB Belgian Assimilation System for Chemical ObsErvations (BASCOE), the DLR/RIU Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA), and the KNMI Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system: SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. The stratospheric ozone analyses are compared to independent ozone observations from ground-based instruments, ozone sondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. All analyses show total column values which are generally in good agreement with groundbased observations (biases <5%) and a realistic seasonal cycle. The only exceptions are found for BASCOE which systematically underestimates total ozone in the Tropics with about 7-10% at Chengkung (Taiwan, 23.1° N/121.365° E), resulting from the fact that BASCOE does not include any tropospheric processes, and for SACADA which overestimates total ozone in the absence of UV observations for the assimilation. Due to the large weight given to column observations in the assimilation procedure, IFS-MOZART is able to reproduce total column observations very well, but alternating positive and negative biases compared to ozonesonde and ACE-FTS satellite data are found in the vertical as well as an overestimation of 30 to 60% in the polar lower stratosphere during ozone depletion events. The assimilation of near real-time (NRT) Microwave Limb Sounder (MLS) profiles which only go down to 68 hPa is not able to correct for the deficiency of the underlying MOZART model, which may be related to the applied meteorological fields. Biases of BASCOE compared to ozonesonde or ACE-FTS ozone profiles do not exceed 10% over the entire vertical stratospheric range, thanks to the good performance of the model in ozone hole conditions and the assimilation of offline MLS profiles going down to 215 hPa. TM3DAM provides very realistic total ozone columns, but is not designed to provide information on the vertical distribution of ozone. Compared to ozonesondes and ACE-FTS satellite data, SACADA performs best in the Arctic, but shows large biases (>50%) for ozone in the lower stratosphere in the Tropics and in the Antarctic, especially during ozone hole conditions. This study shows that ozone analyses with realistic total ozone column densities do not necessarily yield good agreement with the observed ozone profiles. It also shows the large benefit obtained from the assimilation of a single limb-scanning instrument (Aura MLS) with a high density of observations. Hence even state-of-the-art models of stratospheric chemistry still require the assimilation of limb observations for a correct representation of the vertical distribution of ozone in the stratosphere.
Solar Spectral Irradiance Variability in Cycle 24: Model Predictions and OMI Observations
NASA Technical Reports Server (NTRS)
Marchenko, S.; DeLand, M.; Lean, J.
2016-01-01
Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nanometers during the ongoing Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 (Global Ozone Monitoring Experiment - 2) and SORCE (Solar Radiation and Climate Experiment) instruments and find fair-to-excellent agreement between the observations and predictions of the NRLSSI2 (Naval Research Laboratory Solar Spectral Irradiance - post SORCE) and SATIRE-S (the Naval Research Laboratory's Spectral And Total Irradiance REconstruction for the Satellite era) models.
The Effect of Representing Bromine from VSLS on the Simulation and Evolution of Antarctic Ozone
NASA Technical Reports Server (NTRS)
Oman, Luke D.; Douglass, Anne R.; Salawitch, Ross J.; Canty, Timothy P.; Ziemke, Jerald R.; Manyin, Michael
2016-01-01
We use the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine(Br(sub y)) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Br(sub y) are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASAs Aura satellite. In addition, the near zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Br(sub y) source from VSLS.
The Effect of Representing Bromine from VSLS on the Simulation and Evolution of Antarctic Ozone
Oman, Luke D.; Douglass, Anne R.; Salawitch, Ross J.; Canty, Timothy P.; Ziemke, Jerald R.; Manyin, Michael
2018-01-01
We use the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine (Bry) from very short-lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Bry are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite. In addition, the near zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Bry source from VSLS. PMID:29551840
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.;
2012-01-01
We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.
NASA Astrophysics Data System (ADS)
Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Bryan J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; Komala, Ninong; Maata, Matakite; Bt Mohamad, Maznorizan; Nguyo, J.; Mutai, C.; Ogino, S.-Y.; da Silva, F. Raimundo; Leme, N. M. Paes; Posny, Francoise; Scheele, Rinus; Selkirk, Henry B.; Shiotani, Masato; Stübi, René; Levrat, Gilbert; Calpini, Bertrand; Thouret, ValéRie; Tsuruta, Haruo; Canossa, Jessica Valverde; VöMel, Holger; Yonemura, S.; Diaz, Jorge AndréS.; Tan Thanh, Nguyen T.; Thuy Ha, Hoang T.
2012-12-01
We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela/Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific/eastern Indian Ocean; (2) equatorial Americas (San Cristóbal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EP/TOMS comparisons (1998-2004; Earth-Probe/Total Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMI/MLS) show that the satellite-derived column amount averages 25% low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2= 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.
Error in Dasibi flight measurements of atmospheric ozone due to instrument wall-loss
NASA Technical Reports Server (NTRS)
Ainsworth, J. E.; Hagemeyer, J. R.; Reed, E. I.
1981-01-01
Theory suggests that in laminar flow the percent loss of a trace constituent to the walls of a measuring instrument varies as P to the -2/3, where P is the total gas pressure. Preliminary laboratory ozone wall-loss measurements confirm this P to the -2/3 dependence. Accurate assessment of wall-loss is thus of particular importance for those balloon-borne instruments utilizing laminar flow at ambient pressure, since the ambient pressure decreases by a factor of 350 during ascent to 40 km. Measurements and extrapolations made for a Dasibi ozone monitor modified for balloon flight indicate that the wall-loss error at 40 km was between 6 and 30 percent and that the wall-loss error in the derived total ozone column-content for the region from the surface to 40 km altitude was between 2 and 10 percent. At 1000 mb, turbulence caused an order of magnitude increase in the Dasibi wall-loss.
Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light.
Mezzanotte, V; Antonelli, M; Citterio, S; Nurizzo, C
2007-11-01
Disinfection tests were carried out at pilot scale to compare the disinfection efficiency of ozone, sodium hypochlorite (NaOCl), peracetic acid (PAA), and UV irradiation. Total coliforms, fecal coliforms, and Escherichia coli were monitored as reference microorganisms. Total heterotrophic bacteria (THB) were also enumerated by cytometry. At similar doses, NaOCl was more effective than PAA, and its action was less affected by contact time. The results obtained by ozonation were comparable for total coliforms, fecal coliforms, and E. coli. On the contrary, some differences among the three indicators were observed for NaOCl, PAA, and UV. Differences increased with increasing values of the disinfectant concentration times contact time (C x t) and were probably the result of different initial counts, as total coliforms include fecal coliforms, which include E. coli. The UV irradiation lead to complete E. coli removals, even at low doses (10 to 20 mJ/cm2). Total heterotrophic bacteria appeared to be too wide a group to be a good disinfection indicator; no correlation was found among THB inactivation, dose, and contact time.
Spatial distribution of ozone over Indonesia (Study case: Forest fire event 2015)
NASA Astrophysics Data System (ADS)
Muslimah, Sri; Buce Saleh, Muhamad; Hidayat, Rahmat
2018-05-01
Tropospheric ozone is known as surface ozone and caused several health impact. The objective of this study was to analysis spatial distribution of tropospheric ozone over Indonesia case study forest fire event in 2015. Monthly observation measured by Ozone Monitoring Instrument (OMI) have been analysed from January – December 2015 to study spatial distribution of tropospheric ozone related to forest fire event 2015. The study discovered high level of tropospheric column ozone (TCO) from October to November 2015. The result shows increasing average of TCO from September to October almost 6 DU. Meanwhile, monthly number of hotspot is higher in September 2015 with total number 257 hotspot which is acquired by Moderate Resolution Imaging Spectrometer (MODIS) Terra version 6.1 with confidence level same or more than 90%. The hotspot distribution compared with spatial TCO distribution and shows interesting time lag with respect to hotspot distribution, one month. Further study for daily comparison of TCO and forest fire event needed. This result suggested that the tropospheric ozone over the Indonesian region increases in 2015 were remarkable and corresponded to forest fire event.
The measurement of ultraviolet radiation and sunburn time over southern Ontario
NASA Technical Reports Server (NTRS)
Evans, W. F. J.
1994-01-01
Studies of the depletion of ozone which have been conducted from the TOMS instrument on the NIMBUS 7 satellite indicate that total ozone has declined by 5 percent over the last 12 years at most mid-latitudes in the Northern Hemisphere typical of southern Ontario. The measurement of the actual resultant increases in UVB is now important. A monitoring program of UVB (biologically active solar ultraviolet radiation) has been conducted for the last 24 months at a site near Bolton, Ontario. The sunburn time varies from less than 17 minutes in late July, to over 4 hours in December on clear days. The levels depend on solar insolation and total ozone column. The ultraviolet levels are strongly affected by cloud and sky conditions. The implications of present and future depletion on the sunburn time are discussed.
NASA Astrophysics Data System (ADS)
Witte, Jacquelyn C.; Thompson, Anne M.; Smit, Herman G. J.; Vömel, Holger; Posny, Françoise; Stübi, Rene
2018-03-01
Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for both profile and total column ozone (TCO). The ozone uncertainty is a composite of the uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those being the ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow rate. Overall, PO3 uncertainties (ΔPO3) are within 15% and peak around the tropopause (15 ± 3 km) where ozone is a minimum and ΔPO3 approaches the measured signal. The uncertainty in the background and sensor currents dominates the overall ΔPO3 in the troposphere including the tropopause region, while the uncertainties in the conversion efficiency and flow rate dominate in the stratosphere. Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the ozone residual uncertainty, derived from the McPeters and Labow (2012, doi:10.1029/2011JD017006) 1σ ozone mixing ratios. Overall, ΔTCO are within ±15 Dobson units (DU), representing 5-6% of the TCO. Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument (TOMS and OMI) satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity between TOMS v8.6 (1998 to September 2004) and OMI (October 2004-2016) TCO on the order of 10 DU that accounts for the significant 16 DU overall difference observed between sonde and TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only 4 DU.
NASA Astrophysics Data System (ADS)
Asher, E. C. C.; Caputi, D.; Conley, S. A.; Faloona, I. C.
2016-12-01
Nitric oxide (NOx) emissions contribute to the production of tropospheric ozone and the nutrient supply fueling primary production. Current global estimates indicate that biomass burning, including wildfires, and soil emissions represent 15 - 25 % of the total emissions. Yet estimates suggest that in North America during the summer, natural sources, including biomass burning, soil emissions and lightning, are responsible for nearly half of total emissions. Thus, as domestic air quality standards grow stricter and anthropogenic sources more regulated, constraining natural sources of NOx becomes critical. NOx concentrations in wildfire smoke differ based on the age of the plume, fire intensity and vegetation type. NOx soil emissions depend on soil moisture, soil temperature, soil porosity, and nitrogen storage. We present two years of NOx and ozone (O3) measurements from a remote mountaintop monitoring site located on Chews Ridge in the coastal mountains of Central California, airborne observations, and remotely sensed NO2 tropospheric columns retrieved using the Ozone Monitoring Instrument (OMI). We explore controls on NOx concentrations at Chews Ridge, in Monterey County, such as the age of wildfire smoke plumes and wildfire intensity (i.e. burning vs. smoldering), as well as soil moisture and precipitation, which can lead to pulsed NOx fluxes. Most recently our in situ observations fortuitously captured differing amounts of the active plume of the Soberanes wildfire, which to date has burned >45,000 acres and is expected to continue partially contained through August 2016. Implications of these episodic sources of NOx on the regional ozone budget will be discussed.
Temperature-dependent ozone chemiluminescence: A new approach for hydrocarbon monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marley, N.; Gaffney, J.
1996-12-31
Ozone chemiluminescent reactions have been used for some time to detect oxides of nitrogen, ozone, and olefins in air quality studies. Current procedures use non-methane hydrocarbon analyzers based on the flame ionization detector (FID), which quantitate total non-methane hydrocarbons but do not differentiate between the wide variety of volatile organic classes and oxygenates. The other methodology that has been used, gas chromatography/mass spectroscopy (GC/MS), can measure a variety of individual hydrocarbon species and classes, but it is costly, time-consuming, and labor intensive and is not amenable to real-time measurements. Presented here is preliminary research aimed at the development of anmore » alternative to FID and GC/MS: the ozone chemiluminescent detector (OCD) for measurement of a variety of hydrocarbon species and classes by use of the temperature dependence of ozone chemiluminescent reactions. Responses for various hydrocarbon classes obtained with an OCD operated at 170 C or the FID were compared. The results indicate that the OCD detector responds like a total carbon detector at this temperature, with sensitivities 10-100 times higher than those of a FID. Use of the temperature dependence of the chemiluminescent reaction and prereactors will apparently make a real-time hydrocarbon analyzer based on this approach feasible for determination of high-, moderate-, and low-reactivity hydrocarbon levels in ambient air. The OCD approach may be very useful in determining oxygenate emissions from motor vehicles, particularly alternative fuels. The OCD may also be useful in monitoring of ambient air for natural hydrocarbon emissions.« less
The total ozone and UV solar radiation over Stara Zagora, Bulgaria
NASA Astrophysics Data System (ADS)
Mendeva, B.; Gogosheva, Ts.; Petkov, B.; Krastev, D.
Direct ground-based UV measurements and the total ozone content (TOC) over Stara Zagora, Bulgaria are presented. The observations are conducted by a scanning spectrophotometer, which measures the direct solar radiation in the range 290 - 360 nm with 1 nm resolution. For the time period 1998 -- 2003 the TOC data show seasonal variations, typical for the middle latitudes -- maximum in the spring and minimum in the autumn. The comparison of these TOC ground-based data to TOC satellite-borne data from the Global Ozone Monitoring Experiment (GOME) shows a seasonal dependence of the differences between the ground-based and satellite data. The relation between the UV radiation and TOC is investigated. Clear negative relationship is recognized between the total ozone and the irradiance of the wavelength 305 nm. The opposition of the two variables is significant ( r = - 0,62 ± 0,18) at 98 % confidence level. Yet, for 325 nm it is almost independent with the total ozone. The dependence of the UV-B radiation on the solar zenith angle at given TOC is also analyzed. A decrease of all wavelengths intensities with increase of the solar zenith angle is obtained but with different rate for each of them. The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained as the integral in the wavelength interval 290-330 nm of the measured UV solar spectrum, weighted with an action spectrum, typical for each effect. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2,3 %.The eye-damaging doses are more influenced by the TOC changes and in this case RAF=-2,7%. The amount of these biological doses is in a direct ratio with the solar altitude over the horizon. This dependence is more markedly expressed at lower total ozone content in the atmosphere.
The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.
2009-01-01
We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.
Heterodyne spectrophotometry of ozone in the 9.6-micron band using a tunable diode laser
NASA Technical Reports Server (NTRS)
Mcelroy, C. T.; Goldman, A.; Fogal, P. F.; Murcray, D. G.
1990-01-01
Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (0.0003/cm) solar spectra in the 9.6-micron ozone band. Observations have shown that a signal-to-noise ratio of 120:1 (about 30 percent of theoretical) for an integration time of 1/8 s can be achieved at a resolution of 0.0013 wave numbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that measured at the nearby NOAA ozone monitoring facility in Boulder, Colorado. Line positions for several ozone lines in the spectral region 996-997/cm are reported. Recent improvements have produced a signal-to-noise ratio of 95:1 (about 40 percent of theoretical) at 0.0003/cm and extended the range of wavelengths which can be observed.
Kanagaraj, James; Mandal, Asit Baran
2012-01-01
Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.
Ground-level ozone pollution and its health impacts in China
NASA Astrophysics Data System (ADS)
Liu, Huan; Liu, Shuai; Xue, Boru; Lv, Zhaofeng; Meng, Zhihang; Yang, Xiaofan; Xue, Tao; Yu, Qiao; He, Kebin
2018-01-01
In recent years, ground-level ozone pollution in China has become an increasingly prominent problem. This study simulated and analyzed spatiotemporal distribution of ozone and exposure level by the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models and monitoring data from 1516 national air quality monitoring stations in China during 2015. The simulation results show that the Sichuan Basin, Shandong, Shanxi, Henan, Anhui, Qinghai-Tibetan Plateau, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) region had relatively high average annual concentrations of ozone. The regions with more than 10% nonattainment days of 160 μg/m3 (daily maximum 8-h) are mainly concentrated in BTH, Shandong Peninsula and YRD, where large seasonal variations were also found. Exposure levels were calculated based on population data and simulated ozone concentrations. The cumulative population exposed to daily maximum 8-h concentration greater than or equal to 100 μg/m3 was 816.04 million, 61.17% of the total. Three methods were used to estimate the mortality of chronic obstructive pulmonary disease (COPD) attributable to ozone. A comparative study using different exposure concentrations and threshold concentrations found large variations among these methods, although they were all peer-reviewed methods. The estimated mortality of COPD caused by ozone in China in 2015 ranged from 55341 to 80280, which mainly distributed in Beijing, Shandong, Henan, Hubei and Sichuan Province, the YRD and PRD region.
Accuracy and practicality of a portable ozone monitor for personal exposure estimates
NASA Astrophysics Data System (ADS)
Sagona, Jessica A.; Weisel, Clifford P.; Meng, Qingyu
2018-02-01
Accurate measurements of personal exposure to atmospheric pollutants such as ozone are important for understanding health risks. We tested a new personal ozone monitor (POM; 2B Technologies) for accuracy, precision, and ease of use. The POM's measurements were compared to simultaneous ozone measurements from a 2B Model 205 monitor and a ThermoScientific 49i monitor, and multiple POMs were placed side-by-side to check precision. Tests were undertaken in a controlled environmental facility, outdoors, and in a private residence. Additionally, ten volunteers wore a POM for five days and answered a questionnaire about its ease of use. The POM measured ozone accurately compared to the 49i ozone monitor, with average relative differences of less than 8%. In the controlled environment tests, the POM's ozone measurements did not change in the presence of additional atmospheric constituents with similar absorption lines to ozone, though there may have been a small decrease in precision and accuracy. Precision between POMs varied by environment (r2 = 0.98 outdoors; r2 = 0.3 to 0.9 in controlled lab conditions). Volunteers reported that the POM was reasonably comfortable to wear, although all reported that they felt that it was too noisy. Overall, the POM is a viable option for personal ozone monitoring.
NASA Technical Reports Server (NTRS)
Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.
2015-01-01
A comparison of retrieved total column ozone (TCO) amounts between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado, NOAA building. This paper, part of an ongoing study, covers a 1-year period starting on 17 December 2013. Both the standard Dobson and Pandora TCO retrievals required a correction, TCO(sub corr) = TCO (1 + C(T)), using a monthly varying effective ozone temperature, T(sub E), derived from a temperature and ozone profile climatology. The correction is used to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(T(sub E)) are C(sub Pandora) = 0.00333(T(sub E) - 225) and C(sub Dobson) = -0.0013(T(sub E) - 226.7) per degree K. After the applied corrections removed most of the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1% for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r(exp 2) = 0.97 and an average offset of 1.1 +/- 5.8 DU. In addition, the Pandora TCO data showed 0.3% annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1% annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).
NASA Astrophysics Data System (ADS)
Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.
2015-08-01
A comparison of retrieved total column ozone (TCO) amounts between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado, NOAA building. This paper, part of an ongoing study, covers a 1-year period starting on 17 December 2013. Both the standard Dobson and Pandora TCO retrievals required a correction, TCOcorr = TCO (1 + C(T)), using a monthly varying effective ozone temperature, TE, derived from a temperature and ozone profile climatology. The correction is used to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(TE) are CPandora = 0.00333(TE-225) and CDobson = -0.0013(TE-226.7) per degree K. After the applied corrections removed most of the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1 % for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r2 = 0.97 and an average offset of 1.1 ± 5.8 DU. In addition, the Pandora TCO data showed 0.3 % annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1 % annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).
Malig, Brian J.; Pearson, Dharshani L.; Chang, Yun Brenda; Broadwin, Rachel; Basu, Rupa; Green, Rochelle S.; Ostro, Bart
2015-01-01
Background: Studies have explored ozone’s connection to asthma and total respiratory emergency department visits (EDVs) but have neglected other specific respiratory diagnoses despite hypotheses relating ozone to respiratory infections and allergic responses. Objective: We examined relationships between ozone and EDVs for respiratory visits, including specifically acute respiratory infections (ARI), asthma, pneumonia, chronic obstructive pulmonary disease (COPD), and upper respiratory tract inflammation (URTI). Methods: We conducted a multi-site time-stratified case-crossover study of ozone exposures for approximately 3.7 million respiratory EDVs from 2005 through 2008 among California residents living within 20 km of an ozone monitor. Conditional logistic regression was used to estimate associations by climate zone. Random effects meta-analysis was then applied to estimate pooled excess risks (ER). Effect modification by season, distance from the monitor and individual demographic characteristics (i.e., age, race/ethnicity, sex, and payment method), and confounding by other gaseous air pollutants were also investigated. Meta-regression was utilized to explore how climate zone–level meteorological, demographic, and regional differences influenced estimates. Results: We observed ozone-associated increases in all respiratory, asthma, and ARI visits, which were slightly larger in the warm season [asthma ER per 10-ppb increase in mean of same and previous 3 days ozone exposure (lag03) = 2.7%, 95% CI: 1.5, 3.9; ARI ERlag03 = 1.4%, 95% CI: 0.8, 1.9]. EDVs for pneumonia, COPD, and URTI were also significantly associated with ozone exposure over the whole year, but typically more consistently so during the warm season. Conclusions: Short-term ozone exposures among California residents living near an ozone monitor were positively associated with EDVs for asthma, ARI, pneumonia, COPD, and URTI from 2005 through 2008. Those associations were typically larger and more consistent during the warm season. Our findings suggest that these outcomes should be considered when evaluating the potential health benefits of reducing ozone concentrations. Citation: Malig BJ, Pearson DL, Chang YB, Broadwin R, Basu R, Green RS, Ostro B. 2016. A time-stratified case-crossover study of ambient ozone exposure and emergency department visits for specific respiratory diagnoses in California (2005–2008). Environ Health Perspect 124:745–753; http://dx.doi.org/10.1289/ehp.1409495 PMID:26647366
Spatial distribution of tropospheric ozone in western Washington, USA
Cooper, S.M.; Peterson, D.L.
2000-01-01
We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area a??6000 km2), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55a??67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.
2004-05-27
KENNEDY SPACE CENTER, FLA. -- EOS Aura: The Aura mission will study air quality, climate and stratospheric ozone depletion. Aura is the third of NASA’s major Earth Observing System (EOS) orbital platforms and has four instruments. The Microwave Limb Sounder (MLS) and the High Resolution Dynamics Limb Sounder (HIRDLS) will make complementary measurements of stratospheric ozone and the chemicals that destroy it. HIRDELS and MLS will also measure upper tropospheric water vapor and ozone - key gases that regulate climate. The Aura payload also includes the Tropospheric Emission Spectrometer (TES), which will make the first global measurements of lower atmospheric ozone, and the Ozone Monitoring Instrument (OMI), which will measure the total amount of atmospheric ozone as well as lower atmospheric dust, smoke and other aerosols. Aura is scheduled to launch in 2004. The flags on the decals represent the countries participating in the mission: United States, United Kingdom, Netherlands and Finland. The EOS Aura mission is being managed by NASA’s Goddard Space Flight Center.
N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers.
Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg; Snyder, Shane A
2016-02-01
N-Nitrosodimethylamine (NDMA) formation by ozonation was investigated in the effluents of four different wastewater treatment plants destined for alternative reuse. Very high levels of NDMA formation were observed in wastewaters from treatment plants non operating with biological nitrogen removal. Selected experiments showed that hydroxyl radical did not have a significant role in NDMA formation during ozonation of wastewater. Furthermore, ozonation of three different polymers used for water treatment, including polyDADMAC, anionic polyacrylamide, and cationic polyacrylamide, spiked in wastewater did not increase the NDMA formation. Effluent organic matter (EfOM) likely reduced the availability of ozone in water able to react with polymers and quenched the produced ·OH radicals which limited polymer degradation and subsequent NDMA production. Excellent correlations were observed between NDMA formation, UV absorbance at 254 nm, and total fluorescence reduction. These data provide evidence that UV and fluorescence surrogates could be used for monitoring and/or controlling NDMA formation during ozonation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Visheratin, K. N.; Nerushev, A. F.; Orozaliev, M. D.; Zheng, Xiangdong; Sun, Shumen; Liu, Li
2017-12-01
This paper reports investigation data on the temporal variability of total ozone content (TOC) in the Central Asian and Tibet Plateau mountain regions obtained by conventional methods, as well as by spectral, cross-wavelet, and composite analyses. The data of ground-based observation stations located at Huang He, Kunming, and Lake Issyk-Kul, along with the satellite data obtained at SBUV/SBUV2 (SBUV merged total and profile ozone data, Version 8.6) for 1980-2013 and OMI (Ozone Monitoring Instrument) and TOU (Total Ozone Unit) for 2009-2013 have been used. The average relative deviation from the SBUV/SBUV2 data is less than 1% in Kunming and Issyk-Kul for the period of 1980-2013, while the Huang He Station is characterized by an excess of the satellite data over the ground-based information at an average deviation of 2%. According to the Fourier analysis results, the distribution of amplitudes and the periods of TOC oscillations within a range of over 14 months is similar for all series analyzed. Meanwhile, according to the cross-wavelet and composite analyses results, the phase relationships between the series may considerably differ, especially in the periods of 5-7 years. The phase of quasi-decennial oscillations in the Kunming Station is close to the 11-year oscillations of the solar cycle, while in the Huang He and Issyk-Kul stations the TOC variations go ahead of the solar cycle.
Antarctic ozone loss in 1989-2010: evidence for ozone recovery?
NASA Astrophysics Data System (ADS)
Kuttippurath, J.; Lefèvre, F.; Pommereau, J.-P.; Roscoe, H. K.; Goutail, F.; Pazmiño, A.; Shanklin, J. D.
2012-04-01
We present a detailed estimation of chemical ozone loss in the Antarctic polar vortex from 1989 to 2010. The analyses include ozone loss estimates for 12 Antarctic ground-based (GB) stations. All GB observations show minimum ozone in the late September-early October period. Among the stations, the lowest minimum ozone values are observed at South Pole and the highest at Dumont d'Urville. The ozone loss starts by mid-June at the vortex edge and then progresses towards the vortex core with time. The loss intensifies in August-September, peaks by the end of September-early October, and recovers thereafter. The average ozone loss in the Antarctic is revealed to be about 33-50% in 1989-1992 in agreement with the increase in halogens during this period, and then stayed at around 48% due to saturation of the loss. The ozone loss in the warmer winters (e.g. 2002, and 2004) is lower (37-46%) and in the colder winters (e.g. 2003, and 2006) is higher (52-55%). Because of small inter-annual variability, the correlation between ozone loss and the volume of polar stratospheric clouds yields ~0.51. The GB ozone and ozone loss values are in good agreement with those found from the space-based observations of the Total Ozone Mapping Spectrometer/Ozone Monitoring Instrument (TOMS/OMI), the Global Ozone Monitoring Experiment (GOME), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and the Aura Microwave Limb Sounder (MLS), where the differences are within ±5% and are mostly within the error bars of the measurements. The piece-wise linear trends computed from the September-November vortex average GB and TOMS/OMI ozone show about -4 to -5.6 DU (Dobson Unit) yr-1 in 1989-1996 and about +1 DU yr-1 in 1997-2010. The trend during the former period is significant at 95% confidence intervals, but the trend in 1997-2010 is significant only at 85% confidence intervals. Our analyses suggest a period of about 9-10 yr to get the first detectable ozone recovery signal at the 95% confidence intervals with the current ozone trends in the Antarctic. Thus, this study reveals that the recovery of the Antarctic ozone is well on course.
Heleno, Fernanda F; de Queiroz, Maria Eliana L R; Neves, Antônio Augusto; Freitas, Romenique S; Faroni, Lêda Rita A; De Oliveira, André Fernando
2014-01-01
The effect of ozone fumigation on the reduction of difenoconazole residue on strawberries was studied. Strawberries were immersed in 1.0 L of aqueous solution containing 400 μL of the commercial product (250 g L(-1) of difenoconazole) for 1 min. Then, they were dried and exposed to ozone gas (O3) at concentrations of 0.3, 0.6 and 0.8 mg L(-1) for 1 h. The ozone fumigation treatments reduced the difenoconazole residue on strawberries to concentrations below 0.5 mg kg(-1), which corresponds to a 95% reduction. The strawberries treated with ozone and the control group, which was not treated with ozone, were stored at 4°C for 10 days. Some characteristics of the fruit were monitored throughout this period. Among these, pH, weight loss and total color difference did not change significantly (P > 0.05). The fumigation with ozone significantly affected the soluble solids, titratable acidity and ascorbic acid content (vitamin C) of the strawberries preventing a sharp reduction of these parameters during storage.
Characterization of ozone decomposition in a soil slurry: kinetics and mechanism.
Lim, Hyung-Nam; Choi, Hechul; Hwang, Tae-Moon; Kang, Joon-Wun
2002-01-01
A series of soil slurry experiments were performed in a carefully conceived reactor set-up to investigate the characteristics of the catalytic decomposition of ozone on a sand and iron surface. Real time on-line monitoring of ozone in the reaction module was possible using flow injection analysis coupled with a computer-controlled UV detector and data acquisition system. The effects of the soil media and size, ozone dosage, pH and p-CBA as a probe compound were examined at the given experimental conditions. Two apparent phases existed, and ozone instantaneously decomposed within one second in the first phase. These were defined as the instantaneous ozone demand (ID) phase, and the relatively slow decay stage. The interactions of ozone with the soil organic matter (SOM) and metal oxides were attributed mostly to the instantaneous decomposition of ozone. From the probe (p-CBA) experiments, 60-68% of total p-CBA removal occurred during the ID phase. The generation of hydroxyl radicals (OH.) was demonstrated and was closely related with metal oxides as well as SOM. Metal oxides in soil surface were considered to have relatively faster reaction rate with ozone and provide more favorable reactive sites to generate higher amount of OH. than SOM. Even at one-tenth concentration of the sands, a goethite-induced catalytic reaction outfitted the removal rate ofp-CBA among all the soils tested. More than 40% of total p-CBA removal occurred on the soil surface. It was inferred that the radical reaction with the probe compound seemed to take place not only on the soil surface but also in the solid-liquid interface. Ozone decomposition and the reaction between OH. and p-CBA appeared to be independent of any change in pH.
NASA Astrophysics Data System (ADS)
Hassinen, S.; Balis, D.; Bauer, H.; Begoin, M.; Delcloo, A.; Eleftheratos, K.; Gimeno Garcia, S.; Granville, J.; Grossi, M.; Hao, N.; Hedelt, P.; Hendrick, F.; Hess, M.; Heue, K.-P.; Hovila, J.; Jønch-Sørensen, H.; Kalakoski, N.; Kiemle, S.; Kins, L.; Koukouli, M. E.; Kujanpää, J.; Lambert, J.-C.; Lerot, C.; Loyola, D.; Määttä, A.; Pedergnana, M.; Pinardi, G.; Romahn, F.; van Roozendael, M.; Lutz, R.; De Smedt, I.; Stammes, P.; Steinbrecht, W.; Tamminen, J.; Theys, N.; Tilstra, L. G.; Tuinder, O. N. E.; Valks, P.; Zerefos, C.; Zimmer, W.; Zyrichidou, I.
2015-07-01
The three GOME-2 instruments will provide unique and long data sets for atmospheric research and applications. The complete time period will be 2007-2022, including the period of ozone depletion as well as the beginning of ozone layer recovery. Besides ozone chemistry, the GOME-2 products are important e.g. for air quality studies, climate modeling, policy monitoring and hazard warnings. The heritage for GOME-2 is in the ERS/GOME and Envisat/SCIAMACHY instruments. The current Level 2 (L2) data cover a wide range of products such as trace gas columns (NO2, BrO, H2CO, H2O, SO2), tropospheric columns of NO2, total ozone columns and vertical ozone profiles in high and low spatial resolution, absorbing aerosol indices from the main science channels as well as from the polarization channels (AAI, AAI-PMD), Lambertian-equivalent reflectivity database, clear-sky and cloud-corrected UV indices and surface UV fields with different weightings and photolysis rates. The Ozone Monitoring and Atmospheric Composition Satellite Application Facility (O3M SAF) processing and data dissemination is operational and running 24/7. Data quality is quarantined by the detailed review processes for the algorithms, validation of the products as well as by a continuous quality monitoring of the products and processing. This is an overview paper providing the O3M SAF project background, current status and future plans to utilization of the GOME-2 data. An important focus is the provision of summaries of the GOME-2 products including product principles and validation examples together with the product sample images. Furthermore, this paper collects the references to the detailed product algorithm and validation papers.
NASA Astrophysics Data System (ADS)
Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun
2018-03-01
Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.
Ambient air monitoring plan for Ciudad Acuna and Piedra Negras, Coahuila, Mexico. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winberry, J.; Henning, L.; Crume, R.
1998-01-01
The Cities of Ciudad Acuna and Piedras Negras and the State of Coahuila in Mexico are interested in improving ambient air quality monitoring capabilities in the two cities through the establishment of a network of ambient air monitors. The purpose of the network is to characterize population exposure to potentially harmful air contaminants, possibly including sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), ozone (O{sub 3}), carbon monoxide (CO), total suspended particulate matter (TSP), particulate matter with aerodynamic diameter less than 100 micrometers PM-10, and lead. This report presents the results of an evaluation of existing air quality monitoring equipmentmore » and facilities in Ciudad Acuna and Piedras Negras. Additionally, the report presents recommendations for developing an air quality monitoring network for PM-10, SO{sub 2}, lead, and ozone in these cities, using a combination of both new and existing equipment. The human resources currently available and ultimately needed to operate and maintain the network are also discussed.« less
Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)
2001-01-01
In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.
A study of interferences in ozone UV and chemiluminescence monitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgens, E.E.; Kleindienst, T.E.; McElroy, F.F.
A study was conducted to examine interferences and other measurement anomalies in chemiluminescence and ultraviolet ozone monitors. Previous results had show that there was a positive deviation in the chemiluminescence monitors and no direct interference with ultraviolet monitors due to the presence of water at non-condensing concentrations. The present study continues this effort, examining both potential positive and negative effects of moisture and other interferences on these monitors. Aromatic compounds and their oxidation products could potentially show a positive interference with ultraviolet monitors, and test measurements were made with aromatics such as toluene, benzaldehyde, and nitrotoluene to determine their possiblemore » retention in the ozone scrubber and their absorption in the cell as a function of the humidity. A detailed examination of the scrubbers used in ultraviolet ozone monitors has also been undertaken. Ozone scrubbers that have shown anomalous behavior in the field have been studied in various reduced-efficacy modes under controlled laboratory conditions. Longer term tests of unused scrubbers for possible ozone breakthrough under exposure to various simulated field conditions were initiated.« less
NASA Astrophysics Data System (ADS)
Puyate, Y. T.; Rim-Rukeh, A.
The performance of three biocides (dissolved ozone, formaldehyde and sodium hypochlorite) in eliminating the bacteria and fungi in produced water is investigated experimentally. The analysis involves monitoring the microbial population in nine conical flasks each containing the same volume of a mixture of produced water, culture medium that sustains the growth of microorganisms and a known concentration of biocide. The concentrations of each biocide used in the study are 0.1, 0.2 and 0.5 ppm. It is shown that dissolved ozone exhibits the best biocidal characteristics and a concentration of 0.5 ppm eliminated all the microorganisms in the produced water after 150 min contact time.
Comprehensive Analyzer for Biogenic Volatile Organic Compounds Detected as Total Ozone Reactivity
NASA Astrophysics Data System (ADS)
Matsumoto, J.
2011-12-01
Volatile organic compounds, VOCs, are emitted from various sources into the atmosphere. Through the reactions of VOCs with atmospheric radicals (eg. daytime OH, nighttime NO3, and all-day O3), formation of photochemical oxidants and secondary organic aerosols, SOA, are important. To investigate the mechanisms of reactions in the atmosphere and to control such secondary products effectively, it is essential to capture the behavior of VOC emission with the radical reactivity of VOCs considered. Recently, in addition to OH reactions of anthropogenic VOCs, SOA formation due to ozonolysis of biogenic VOCs (BVOCs) is one of the hottest topics in the atmospheric chemistry. It is difficult to analyze all the species individually due to the great number of VOCs. In this study, a comprehensive tool for capturing the total reactivity of BVOCs with ozone is realized utilizing a chemiluminescence ozone analyzer. A sensitive and fast-response ozone analyzer was developed based on an existing chemiluminescent NO analyzer (CLD). The CLD-O3 analyzer was used to monitor the fast variation of O3 in the sample of the VOC + O3 experiment. When O3 was added to the VOC sample, the reduction of O3 due to VOC was monitored and the O3 reactivity RO3 was determined with the reaction time considered. Dependence of the response of analyzer on the reaction time and the reactivity of sample was examined and confirmed as reasonable. As a result, VOCs can be detected at the level of ppbv (as limonene, S/N = 3). The detection limit of RO3 was 0.0002 s-1. For the test of ozone reactivity measurement of BVOCs emitted from the real vegetation, variation of ozone reactivity was significantly observed after the nursery was put into a closed chamber. In addition, just after the leaves of the plant were physically stimulated, observed reactivity increased. It was experimentally confirmed that stimulus to the leaves of the plant resulted in the increase of total BVOC emission. Consequently, it was confirmed that the analyzer be useful to investigate the real-time analysis of BVOC emission from the vegetation at the level of ppbv.
When Will the Antarctic Ozone Hole Recover?
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve
2005-01-01
The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We will show estimates of both when the ozone hole will begin to show first signs of recovery, and when the hole will fully recover to pre-1980 levels.
Detecting the Recovery of the Antarctic Ozone Hole
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve
2004-01-01
The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We will show estimates of both when the ozone hole will begin to show first signs of recovery, and when the hole will fully recover to pre-1980 levels.
50 years of monitoring of the ozone layer in the Czech Republic - results and challenges
NASA Astrophysics Data System (ADS)
Vanicek, Karel; Skrivankova, Pavla; Metelka, Ladislav; Stanek, Martin
2010-05-01
Long-term observations of total ozone (TOZ) and vertical ozone profiles, the basic parameters of the ozone layer, have been performed at the Solar and Ozone Observatory (SOO) Hradec Kralove and at the Aerological Department (AD) Praha of the Czech Hydrometeorological Institute (CHMI) since 1961 and 1992 respectively. The Dobson and Brewer spectrophotometers regularly calibrated towards the international references and electro-chemical ECC ozone sondes are used for the measurements. The observations contribute to the global GAW and NDACC ozone monitoring systems. Up to now analyses of the data give the basic findings given bellow and documented in the presentation. Some of them have important implication to the international ozone monitoring infrastructure, as well. - The decrease of TOZ by about 5-7 % in the winter-spring months towards the pre ozone-hole period have occurred since the mid eighties. This is in good agreement by the magnitude and time with depletion of the ozone layer due to chemical destruction of ozone in the NH mid-latitudes. - Significant depletion 3-5 % of TOZ has been identified also in the summer season since the early nineties. As this can not be attributed to the man-made chemical processes a change in the UT/LS dynamics over Central Europe is the most probable reason. - Aerological measurements taken at AD show that the summer reduction of TOZ very well coincides with a change of UT/LS temperature that persists for about two decades over the Czech territory. Therefore it has a long-term character that can be regarded as a climate shift in UT/LS and need to be further investigated. - 15 years of unique simultaneous Dobson/Brewer observations of TOZ performed at SOO show systematic seasonal deviations between both data sets that exceed instrumental accuracy of measurements. The differences are mostly caused by different wavelengths and their ozone absorption coefficients used by both instruments. As the Brewer observations are being preferred to continue the TOZ data series at SOO the seasonal effect need to be eliminated to avoid their effect in trend estimations and validation of satellite observations.. This is going to be done by assimilation of the Dobson data series to the Brewer one and creation of the homogenized data set. - The Brewer Umkehr observations have been implemented at the SOO in the recent years to expand measurements of vertical distribution of ozone in stratosphere over Central Europe. Accuracy of the new UM-04 algorithm developed for processing of the Umkehr profiles from SOO is being tested using the ozone sonde observations from AD. First results confirm a good perspective of this technology for implementation in the global network. Further improvement of monitoring and investigation of stratospheric ozone continues in the CHMI. Currently the activities are supported by the project P209/10/0058 "Long-term changes of the ozone layer over the Czech territory" of the Czech Grant Agency (2010-2012). The main goals of the Project are defined are specified in the presentation.
A Total Ozone Dependent Ozone Profile Climatology Based on Ozone-Sondes and Aura MLS Data
NASA Astrophysics Data System (ADS)
Labow, G. J.; McPeters, R. D.; Ziemke, J. R.
2014-12-01
A new total ozone-based ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining data from the Microwave Limb Sounder (MLS) with data from balloon sondes and binned by zone and total ozone. Because profile shape varies with total column ozone, this climatology better captures the ozone variations than the previously used seasonal climatologies, especially near the tropopause. This is significantly different than ozone climatologies used in the past as there is no time component. The MLS instrument on Aura has excellent latitude coverage and measures ozone profiles daily from the upper troposphere to the lower mesosphere at ~3.5 km resolution. Almost a million individual MLS ozone measurements are merged with data from over 55,000 ozonesondes which are then binned as a function of total ozone. The climatology consists of average ozone profiles as a function of total ozone for six 30 degree latitude bands covering altitudes from 0-75 km (in Z* pressure altitude coordinates). This new climatology better represents the profile shape as a function of total ozone than previous climatologies and shows some remarkable and somewhat unexpected correlations between total ozone and ozone in the lower altitudes, particularly in the lower and middle troposphere. These data can also be used to infer biases and errors in either the MLS retrievals or ozone sondes.
NASA Astrophysics Data System (ADS)
Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.
2015-03-01
This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA) systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART); the Belgian Assimilation System for Chemical ObsErvations (BASCOE); the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA); and the Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases < 5%) and have a realistic seasonal cycle, except for BASCOE analyses, which underestimate total ozone in the tropics all year long by 7 to 10%, and SACADA analyses, which overestimate total ozone in polar night regions by up to 30%. The validation of the vertical distribution is based on independent observations from ozonesondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. It cannot be performed with TM3DAM, which is designed only to deliver analyses of total ozone columns. Vertically alternating positive and negative biases are found in the IFS-MOZART analyses as well as an overestimation of 30 to 60% in the polar lower stratosphere during polar ozone depletion events. SACADA underestimates lower stratospheric ozone by up to 50% during these events above the South Pole and overestimates it by approximately the same amount in the tropics. The three-dimensional (3-D) analyses delivered by BASCOE are found to have the best quality among the three systems resolving the vertical dimension, with biases not exceeding 10% all year long, at all stratospheric levels and in all latitude bands, except in the tropical lowermost stratosphere. The northern spring 2011 period is studied in more detail to evaluate the ability of the analyses to represent the exceptional ozone depletion event, which happened above the Arctic in March 2011. Offline sensitivity tests are performed during this month and indicate that the differences between the forward models or the assimilation algorithms are much less important than the characteristics of the assimilated data sets. They also show that IFS-MOZART is able to deliver realistic analyses of ozone both in the troposphere and in the stratosphere, but this requires the assimilation of observations from nadir-looking instruments as well as the assimilation of profiles, which are well resolved vertically and extend into the lowermost stratosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, R; Kanter, H J; Sladkovic, R
The study of the balance of the tropospheric ozone as a function of atmospheric pollutants and tropospheric transport has been started. Continuous recordings are available of ozone concentration at three levels (3000 m, 1800 m, and 700 m a.s.l.) and of the concentration of the cosmogenic radionuclides /sup 7/Be, /sup 32/P, /sup 33/P, and the CO/sub 2/-concentration. Ozone concentrations >70 ppB have been observed after stratospheric intrusions as well as in consequence of photochemical reactions in the boundary layer. An observation sequence, covering now a period of 20 months, is presented of the stratospheric aerosol layer by means of lidarmore » monitoring. Possible errors in the measuring technique are discussed. A filter photospectrometer for the measurement of the atmospheric total ozone is described, its suitability is checked by a direct intercomparison with a Dobson spectrometer.« less
REPORT OF THE DECEMBER 15, 1999 EPA SATELLITE FORUM ON OZONE MONITORING, MAPPING AND PUBLIC OUTREACH
This report provides a summary of the US EPA's December 15, 1999 satellite forum on technology transfer tools for ozone monitoring, mapping, and public outreach under the EPA Environmental Monitoring for Public Access and Community Tracking (EMPACT) Program's Ozone Mapping Projec...
Khadhraoui, M; Trabelsi, H; Ksibi, M; Bouguerra, S; Elleuch, B
2009-01-30
The objective of this study was to investigate the degradation and mineralization of an azo-dye, the Congo red, in aqueous solutions using ozone. Phytotoxicity and the inhibitory effects on the microbial activity of the raw and the ozonated solutions were also carried out with the aim of water reuse and environment protection. Decolorization of the aqueous solutions, disappearance of the parent compound, chemical oxygen demand (COD) and total organic carbon (TOC) removal were the main parameters monitored in this study. To control the mineralization of the Congo red, pH of the ozonated solution and heteroatoms released from the mother molecule such NH(4)(+), NO(3)(-) and SO(4)(2-) were determined. It was concluded that ozone by itself is strong enough to decolorize these aqueous solutions in the early stage of the oxidation process. Nonetheless, efficient mineralization had not been achieved. Significant drops in COD (54%) were registered. The extent of TOC removal was about 32%. Sulfur heteroatom was totally oxidized to SO(4)(2-) ions while the central -NN- azo ring was partially converted to NH(4)(+) and NO(3)(-). Results of the kinetic studies showed that ozonation of the selected molecule was a pseudo-first-order reaction with respect to dye concentration. The obtained results also demonstrate that ozone process reduced the phytotoxicity of the raw solution and enhanced the biodegradability of the treated azo-dyes-wastewater. Hence, this show that ozone remains one of the effective technologies for the discoloration and the detoxification of organic dyes in wastewater.
NASA Astrophysics Data System (ADS)
Petkov, Boyan; Vitale, Vito; Tomasi, Claudio; Mazzola, Mauro; Lanconelli, Christian; Lupi, Angelo; Busetto, Maurizio
2014-01-01
Variations in total ozone column and sun exposures able to cause erythema and damage the DNA molecules were observed by the narrow-band filter radiometer UV-RAD in Bologna, Italy from 2005 to 2010. The ozone columns determined from the UV-RAD measurements were found to be close to those provided by the satellite Ozone Monitoring Instrument (OMI) showing an average discrepancy of 1 % with standard deviation of ± 6 %. Analysis of the data highlights a well-marked annual cycle of the ozone column variations while the oscillations with periods of 8, 18 and 34 months present much smaller amplitudes. The influence of the frequency of solar irradiance measurements on the accuracy of the evaluated daily exposure dose has been studied and it was found that time intervals no longer than 5-10 min between the measurements of erythema and DNA damage effective UV irradiances provide a satisfactory assessment of the corresponding daily exposures. The latter do not present significant year-to-year variations for the period under study, while their annual distributions show slight changes likely due to the specific cloud cover and ozone column variability for different years. The annual erythemal exposure dose for 2007-2010 varied between 603.7 and 638.1 kJ m-2, while the corresponding sun exposure affecting DNA changed from 6.38 to 7.91 kJ m-2.
GOME Total Ozone and Calibration Error Derived Usign Version 8 TOMS Algorithm
NASA Technical Reports Server (NTRS)
Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.
2003-01-01
The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local stiucture as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The lb detector appears to be quite well behaved throughout this time period.
NASA Astrophysics Data System (ADS)
Stauffer, R. M.; Thompson, A. M.; Witte, J. C.; Johnson, B.; Smit, H. G. J.
2017-12-01
The SHADOZ network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical stratospheric and tropospheric ozone. Beginning with nine stations in 1998, more than 7000 ozone and P-T-U profiles are available from 14 stations that have operated for at least a decade. In the past two years the SHADOZ records have been reprocessed to adjust for inconsistencies caused by varying ozonesonde instruments and operating techniques. We have followed consensus-based guidelines given by the international ozonesonde community and will release new records that include first estimates of uncertainties in the ozonesonde instrument system. The ozone uncertainty is a composite of uncertainties of the individual terms in the ozone partial pressure (PO3) equation, i.e., ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow-rate. Overall, SHADOZ PO3 uncertainties are 15% or less and peak around the tropopause (15±3km) where the ozone current can approach the detection limit of the sensor. The sonde total column ozone (TCO) uncertainty is estimated at ±15 DU or 5% of typical tropical TCO. When sonde-derived TCO is compared to overpasses from the EP/TOMS, OMI and OMPS satellites that cover 1998-2016, sonde-satellite offsets at 12 stations are 2% or less (Figure), well within the uncertainty of both satellite and sonde. This agreement is much improved over our earlier SHADOZ evaluations (2003, 2007 and 2012). Reprocessing has also led to more uniform stratospheric column amounts across sites within +19 degrees latitude and reduced profile bias.
Scaglione, Salvatore; Zola, Danilo; Menchini, Francesca; Sarcina, Ilaria Di
2017-02-01
The importance of ground-based measurements of ultraviolet radiation has increased since the discovery of the stratospheric ozone layer depletion. Spectroradiometers are the most widely used class of instruments, although the requirement to work in attended stations is sometimes limiting. In this work we present a filter radiometer, named F-RAD, with good optical stability, very short sampling time (1 min), and proven reliability. The instrument is based on a stand-alone functioning, making it suitable for operation in hostile environments. The total ozone column (TOC) was estimated by the irradiance ratio at wavelengths where the ozone absorbs the solar radiation and where the radiation is not absorbed. Direct correlation between the TOC values estimated by F-RAD and by the Ozone Monitoring Instrument (OMI) was found, and the standard deviations of the ratios between such values were calculated. Three wavelength ratios were identified to take into account the dependence of the measurements from the Solar Zenith Angle, AF-RAD (306.0 nm/325.3 nm) for SZA<50°, BF-RAD (309.9 nm/325.3 nm) and CF-RAD (317.5 nm/325.3 nm) for SZA>50°. Considering the OMI ozone data as the reference values, the accuracy of the filter radiometer is estimated to be ±4%. The data collected during the calibration campaign in Lampedusa (June-July 2009, Italy) and during the first Antarctica winter of the 2009-2013 measurement campaign at Mario Zucchelli Station (MZS) are reported. The TOC measured by the F-RAD instrument, by the OMI on board of EOS-Aura satellite (NASA), and by the NOAA UV Monitoring Station in McMurdo (USA) are compared to assess the appropriateness of F-RAD for a long-term measurement campaign.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
... 4th highest daily 8-hour monitored ozone value during the 2009 ozone season is 0.084 parts per million... Philadelphia Area's 4th highest daily 8-hour monitored value during the 2009 ozone season is 0.084 ppm or less...
NASA Astrophysics Data System (ADS)
Bauguitte, S. J.; Brough, N.; Frey, M. M.; Jones, A. E.; Roscoe, H. K.; Wolff, E. W.
2009-12-01
Concentrations of surface ozone over polar regions cannot be derived from satellite data so can only be studied from ground-based platforms. To understand the regional picture a carefully-designed network of ground-based monitors is required. Here we report on a network of 10 autonomous ozone monitors that was established around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau during the International Polar Year. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as on factors affecting the budget of surface ozone in Antarctica. Of specific interest were the balance between halogen-driven destruction and photochemical production from snow-emitted precursors, as well as the spatial extent of ozone depletion events. Each ozone monitor measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability. Here we present technical information and first results from the network.
OZONE MONITORING, MAPPING, AND PUBLIC OUTREACH ...
The U.S. EPA had developed a handbook to help state and local government officials implement ozone monitoring, mapping, and outreach programs. The handbook, called Ozone Monitoring, Mapping, and Public Outreach: Delivering Real-Time Ozone Information to Your Community, provides step-by-step instructions on how to: Design, site, operate, and maintain an ozone monitoring network. Install, configure, and operate the Automatic Data Transfer System Use MapGen software to create still-frame and animated ozone maps. Develop and outreach plan to communicate information about real-time ozone levels and their health effects to the public.This handbook was developed by EPA's EMPACT program. The program takes advantage of new technologies that make it possible to provide environmental information to the public in near real time. EMPACT is working with the 86 largest metropolitan areas of the country to help communities in these areas: Collect, manage and distribute time-relevant environmental information. Provide their residents with easy-to-understand information they can use in making informed, day-to-day decisions. Information
The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica
NASA Astrophysics Data System (ADS)
Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander
2016-04-01
At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is calculated from the observed time series, demonstrating that changes in nitrogen dioxide content cause subsequent changes in the ozone layer. Attempt to explain this phenomenon as influence upper atmosphere on ozone layer is under discussed.
Toledano Garcia, Diego; Ozer, Lütfiye Y; Parrino, Francesco; Ahmed, Menatalla; Brudecki, Grzegorz Przemyslaw; Hasan, Shadi W; Palmisano, Giovanni
2018-06-06
Photocatalysis and photocatalytic ozonation under visible light have been applied for the purification of a complex aqueous matrix such as the grey water of Masdar City (UAE), by using N-doped brookite-rutile catalysts. Preliminary runs on 4-nitrophenol (4-NP) solutions allowed to test the reaction system in the presence of a model pollutant and to afford the relevant kinetic parameters of the process. Subsequently, the remediation of grey water effluent has been evaluated in terms of the reduction of total organic carbon (TOC) and bacterial counts. The concentration of the most abundant inorganic ionic species in the effluent has been also monitored during reaction. Photocatalytic ozonation under visible light allowed to reduce the TOC content of the grey water by ca. 60% in the optimized experimental conditions and to reduce the total bacterial count by ca. 97%. The extent of TOC mineralization reached ca. 80% when the photocatalytic ozonation occurred downstream to a preliminary electro-membrane bioreactor (eMBR). Coupling the two processes enhanced the global efficiency. In fact, the eMBR treatment lowered the turbidity and the organic load of the effluent entering the photocatalytic ozonation treatment, which in turn enhanced the extent of purification and disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.
Retrieving vertical ozone profiles from measurements of global spectral irradiance
NASA Astrophysics Data System (ADS)
Bernhard, Germar; Petropavlovskikh, Irina; Mayer, Bernhard
2017-12-01
A new method is presented to determine vertical ozone profiles from measurements of spectral global (direct Sun plus upper hemisphere) irradiance in the ultraviolet. The method is similar to the widely used Umkehr technique, which inverts measurements of zenith sky radiance. The procedure was applied to measurements of a high-resolution spectroradiometer installed near the centre of the Greenland ice sheet. Retrieved profiles were validated with balloon-sonde observations and ozone profiles from the space-borne Microwave Limb Sounder (MLS). Depending on altitude, the bias between retrieval results presented in this paper and MLS observations ranges between -5 and +3 %. The magnitude of this bias is comparable, if not smaller, to values reported in the literature for the standard Dobson Umkehr method. Total ozone columns (TOCs) calculated from the retrieved profiles agree to within 0.7±2.0 % (±1σ) with TOCs measured by the Ozone Monitoring Instrument on board the Aura satellite. The new method is called the Global-Umkehr
method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, R; Kanter, H J; Poetzl, K
The balance of the tropospheric ozone as a function of atmospheric pollutants, tropospheric transport, and stratospheric intrusions is under active investigation. Continuous recordings of the ozone concentration at three levels (3000 m, 1800 m, and 700 m a.s.l.) and of the cosmogenic radionuclides Be/sup 7/, P/sup 32/, P/sup 33/, and the CO/sub 2/ are available and used for subject purposes. Results of a statistical evaluation concerning the frequency of high concentrations (> 70 ppB) of the tropospheric ozone are presented and possible sources discussed. Observations of changes in the fine structure of the ozone profile in the lower stratosphere aftermore » solar events are shown by balloon-borne ozone soundings up to 35 km altitude and discussed in connection with parameters of the stratospheric-tropospheric exchange. Monitoring of the stratospheric aerosol layer by lidar was continued. The accuracy of these measurements was considerably enhanced by significant system improvements. Intercomparisons with the results of nearby Dobson stations allowed conclusions to be drawn on the suitability of a filter spectrophotometer for the determination of the total ozone. Solar-terrestrial relationships were investigated and are discussed.« less
Development of an Aura Chemical Reanalysis in support Air Quality Applications
NASA Astrophysics Data System (ADS)
Pierce, R. B.; Lenzen, A.; Schaack, T.
2015-12-01
We present results of chemical data assimilation experiments utilizing the NOAA National Environmental Satellite, Data, and Information Service (NESDIS), University of Wisconsin Space Science and Engineering (SSEC) Real-time Air Quality Modeling System (RAQMS) in conjunction with the NOAA National Centers for Environmental Prediction (NCEP) Operational Gridpoint Statistical Interpolation (GSI) 3-dimensional variational data assimilation system. The impact of assimilating NASA Ozone Monitoring Instrument (OMI) total column ozone, OMI tropospheric nitrogen dioxide columns, and Microwave Limb Sounder (MLS) stratospheric ozone profiles on background ozone is assessed using measurements from the 2010 NSF High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observation (HIPPO) and NOAA California Nexus (CalNex) campaigns. Results show that the RAQMS/GSI Chemical Reanalysis is able to provide very good estimates of background ozone and large-scale ozone variability and is suitable for use in constraining regional air quality modeling activities. These experiments are being used to guide the development of a multi-year global chemical and aerosol reanalysis using NASA Aura and A-Train measurements to support air quality applications.
NASA Technical Reports Server (NTRS)
Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.
2010-01-01
The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.
NASA Technical Reports Server (NTRS)
Stricherz, Vince
2005-01-01
Nitrogen oxides produced by huge fires and fossil fuel combustion are a major component of air pollution. They are the primary ingredients in ground-level ozone, a pollutant harmful to human health and vegetation. But new research led by a University of Washington atmospheric scientist shows that, in some regions, nitrogen oxides emitted by the soil are much greater than expected and could play a substantially larger role in seasonal air pollution than previously believed. Nitrogen oxide emissions total more than 40 million metric tons worldwide each year, with 64 percent coming from fossil fuel combustion, 14 percent from burning and a surprising 22 percent from soil, said Lyatt Jaegle, a UW assistant professor of atmospheric sciences. The new research shows that the component from soil is about 70 percent greater than scientists expected. Instead of relying on scattered ground-based measurements of burning and combustion and then extrapolating a global total for nitrogen oxide emissions, the new work used actual observations recorded in 2000 by the Global Ozone Monitoring Experiment aboard the European Space Agency's European Remote Sensing 2 satellite. Nitrogen oxide emissions from fossil fuel combustion are most closely linked to major population centers and show up in the satellite's ozone-monitoring measurements of nitrogen dioxide, part of the nitrogen oxides family.
NASA Technical Reports Server (NTRS)
Livingston, J.; Schmid, B.; Russell, P.; Eilers, J.; Kolyer, R.; Redemann, J.; Yee, J.-H.; Trepte, C.; Thomason, L.; Pitts, M.
2003-01-01
During the Second SAGE 111 Ozone Loss and Validation Experiment (SOLVE II), the 14- channel NASA Ames Airborne Trackmg Sunphotometer (AATS-14) was mounted on the NASA DC-8 and successfully measured spectra of total and aerosol optical depth (TOD and AOD) during the sunlit portions of eight science flights. Values of ozone column content above the aircraft have been derived from the AATS-14 data by using a linear least squares method. For each AATS-14 measured TOD spectrum, this method iteratively finds the ozone column content that yields the best match between measured and calculated TOD. The calculations assume the known Chappuis ozone band shape and a three-parameter AOD shape (quadratic in log-log space). Seven of the AATS-14 channels (each employing an interference filter with a nominal full-width at half maximum bandpass of -5 nm) are within the Chappuis band, with center wavelengths between 452.9 nm and 864.5 nm. One channel (604.4 nm) is near the peak, and three channels (499.4, 519.4 and 675.1 nm) have ozone absorption within 30-40% of that at the peak. For the typical DC-8 SOLVE II cruising altitudes of approx. 8-12 km and the background stratospheric aerosol conditions that prevailed during SOLVE 11, absorption of incoming solar radiation by ozone comprised a significant fraction of the aerosol-plus-ozone optical depth measured in the four AATS-14 channels centered between 499.4 and 675.1 nm. Typical AODs above the DC-8 ranged from 0.003-0.008 in these channels. For comparison, an ozone overburden of 0.3 atm-cm (300 DU) translates to ozone optical depths of 0.009,0.014, 0.041, and 0.012, respectively, at these same wavelengths. In this paper, we compare AATS-14 values of ozone column content with temporally and spatially near-coincident values derived from measurements acquired by the Stratospheric Aerosol and Gas Experiment III (SAGE III) and the Polar Ozone and Aerosol Measurement 111 (POAM III) satellite sensors. We also compare AATS-14 ozone retrievals during selected DC-8 latitudinal and longitudinal transects with total column ozone data acquired by the Total Ozone Mapping Spectrometer (TOMS) and the Global Ozone Monitoring Experiment (GOME) satellite sensors. To enable this comparison, the amount of ozone in the column below the aircraft is estimated by combining SAGE and/or POAM data with high resolution, fast response in-situ ozone measurements acquired during the DC-8 ascent at the start of each science flight.
NASA Astrophysics Data System (ADS)
Gaudel, A.; Cooper, O. R.; Barret, B.; Boynard, A.; Clerbaux, C.; Pierre-Francois, C.; Huang, G.; Hurtmans, D.; Kerridge, B. J.; Latter, B.; Le Flochmoen, E.; Liu, X.; Neu, J. L.; Siddans, R.; Wespes, C.; Worden, H. M.; Ziemke, J. R.
2017-12-01
Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone have shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, has left scientists unable to answer the most basic questions: Is ozone continuing to decline in nations with strong emission controls? To what extent is ozone increasing in the developing world? IGAC's Tropospheric Ozone Assessment Report (TOAR) has been designed to answer these questions and this presentation will show the results from the TOAR-Climate initiative, focusing on the present-day distribution and trends of global tropospheric ozone from satellite observations. Five satellite products based on OMI (2 products using two different retrieval methods) and IASI (also 2 products using two different retrieval methods) and the OMI/MLS combined product were intercompared. An important result is the close agreement among the five products regarding the quantification of the total mass of all tropospheric ozone, the so called tropospheric ozone burden (TOB). The mean estimate for TOB between 60° N and 60° S is 296 Tg, with all products agreeing within ± 4%. However, on a regional basis the five satellite products have notable differences and there is no agreement in terms of ozone trends over the past decade. Continuing work is exploring the causes of these differences.
Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone, 1958-1987 (1991)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angell, J. K.; Korshover, J.; Planet, W. G.
For 1958 through 1987, this data base presents total ozone variations and layer mean ozone variations expressed as percent deviations from the 1958 to 1977 mean. The total ozone variations were derived from mean monthly ozone values published in Ozone Data for the World by the Atmospheric Environment Service in cooperation with the World Meteorological Organization. The layer mean ozone variations are derived from ozonesonde and Umkehr observations. The data records include year, seasonal and annual total ozone variations, and seasonal and annual layer mean ozone variations. The total ozone data are for four regions (Soviet Union, Europe, North America,more » and Asia); five climatic zones (north and south polar, north and south temperate, and tropical); both hemispheres; and the world. Layer mean ozone data are for four climatic zones (north and south temperate and north and south polar) and for the stratosphere, troposphere, and tropopause layers. The data are in two files [seasonal and year-average total ozone (13.4 kB) and layer mean ozone variations (24.2 kB)].« less
NASA Astrophysics Data System (ADS)
Pandey, Praveen; Gillotay, Didier; Depiesse, Cedric
2016-04-01
In this study we describe the network of ground-based ultraviolet (UV) radiation monitoring stations in Belgium. The evolution of the entire network, together with the details of measuring instruments is given. The observed cumulative irradiances -UVB, UVA and total solar irradiance (TSI)- over the course of measurement for three stations -a northern (Ostende), central (Uccle) and a southern (Redu)- are shown. The longest series of measurement shown in this study is at Uccle, Brussels, from 1995 till 2014. Thus, the variation of the UV index (UVI), together with the variation of irradiances during summer and winter months at Uccle are shown as a part of this climatological study. The trend of UVB irradiance over the above mentioned three stations is shown. This UVB trend is studied in conjunction with the long-term satellite-based total column ozone value over Belgium, which shows two distinct trends marked by a change point. The total column ozone trend following the change point is positive. It is also seen that the UVB trend is positive for the urban/sub-urban sites: Uccle and Redu. Whereas the UVB trend at Ostende, which is a coastal site, is not positive. A possible explanation of this relation between total column ozone and UVB trend could be associated with aerosols, which is shown in this paper by means of a radiative transfer model based study -as a part of a preliminary investigation. It is seen that the UVI is influenced by the type of aerosols.
NASA Astrophysics Data System (ADS)
Pandey, Praveen; Gillotay, Didier; Depiesse, Cedric
2016-08-01
In this paper we describe the network of ground-based ultraviolet (UV) radiation monitoring stations in Belgium. The evolution of the entire network, together with the details of measuring instruments is given. The observed cumulative irradiations -UVB, UVA and total solar irradiation (TSI)- over the course of measurement for three stations -a northern (Ostende), central (Uccle) and a southern (Redu)- are shown. The longest series of measurement shown in this study is at Uccle, Brussels, from 1995 till 2014. Thus, the variation of the UV index, together with the variation of irradiations during summer and winter months at Uccle are shown as a part of this climatological study. The trend of UVB irradiance over the above mentioned three stations is shown. This UVB trend is studied in conjunction with the long-term satellite-based total column ozone value over Belgium, which shows two distinct trends marked by a change point. The total column ozone trend following the change point is positive. It is also seen that the UVB trend is positive for the urban/sub-urban sites: Uccle and Redu. Whereas the UVB trend at Ostende, which is a coastal site, is not positive. A possible explanation of this relation between total column ozone and UVB trend could be associated with aerosols, which is shown in this paper by means of a radiative transfer model based study -as a part of a preliminary investigation. It is seen that the UVI is influenced by the type of aerosols.
NASA Technical Reports Server (NTRS)
Ziemke, Jerald R.; Chandra, Sushil
2012-01-01
Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979-2010) long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS) and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30- 40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.
Photochemical Assessment Monitoring Stations (PAMS)
Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites which measure ozone precursors (approximately 60 volatile hydrocarbons and carbonyl), as required by the 1990 Clean Air Act Amendments, in areas with persistently high ozone levels (mostly large metropolitan areas). In these areas, the States have established ambient air monitoring sites which collect and report detailed data for volatile organic compounds, nitrogen oxides, ozone and meteorological parameters. This file displays 199 monitoring sites reporting measurements for 2010. A wide range of related monitoring site attributes is also provided.
A reanalysis of ozone on Mars from assimilation of SPICAM observations
NASA Astrophysics Data System (ADS)
Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.; Lefèvre, Franck
2018-03-01
We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S-10°S from LS = 135-180° and at northern polar (60°N-90°N) latitudes during northern fall (LS = 150-195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S-10°S from LS = 135-180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.
When will the Antarctic Ozone Hole Recover?
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve
2006-01-01
The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the .TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to, both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. The ozone hole will begin to show first signs of recovery in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. This 2070 recovery is 20 years later than recent projections.
NASA Astrophysics Data System (ADS)
Zou, Y.; Deng, X. J.; Zhu, D.; Gong, D. C.; Wang, H.; Li, F.; Tan, H. B.; Deng, T.; Mai, B. R.; Liu, X. T.; Wang, B. G.
2015-06-01
Guangzhou, one of China's megacities, is beset with frequent occurrence of high-concentration ozone events. In this study, online instruments were used to simultaneously monitor ozone, nitrogen oxides (NOx) and volatile organic compounds (VOCs) at GPACS (the Guangzhou Panyu Atmospheric Composition Station) of the China Meteorological Administration, from June 2011 to May 2012, in order to determine their characteristics, the effect of VOCs on ozone photochemical production and the relationship between VOC / NOx ratio and ozone formation. The results showed that during the observation period, the seasonal variation of ozone concentration was lower in spring and winter compared to summer and autumn, which is opposite that for VOCs and NOx. In terms of VOCs, aromatics had the largest ozone formation potential, among which toluene, xylenes, ethylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene were the most important species, with a total contribution of about 44%. As the VOC / NOx ratios were very high during high-concentration ozone events that occur all year round, we speculate ozone production was likely to be NOx-limited regime (12:00-16:00 LT) in Guangzhou. Further investigation based on numerical models is needed in the future to obtain more detailed and robust conclusions.
NASA Astrophysics Data System (ADS)
Chang, K. L.; Petropavlovskikh, I. V.; Cooper, O. R.; Schultz, M.; Wang, T.
2017-12-01
Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone's global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April-September) 2000-2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more sophisticated statistical approach.
A partial pressure monitor and controller for stable ozone flow from a silica gel trap
NASA Astrophysics Data System (ADS)
Stevens, R. E.; Hsiao, C.-W.; Le, Linh; Curro, N. J.; Monton, B. J.; Chang, B.-Y.; Kung, C.-Y.; Kittrell, C.; Kinsey, J. L.
1998-06-01
A new ozone trapping system designed for safe and consistent delivery to a reaction vessel is described. Silica gel is used to trap the ozone because of its known safety advantages over traps that store ozone in liquid form. The new design is free of any liquid baths, such as freon or flammable solvents. A circuit design for monitoring and controlling the ozone partial pressure of 6-25 Torr is also described.
Analysis of ozone precursor data from Baton Rouge, Houston, El Paso, and Dallas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sather, M.E.; Kemp, M.G.
1998-12-31
Ongoing analyses of ozone precursor data continue to be performed for Baton Rouge, Louisiana, and Houston, El Paso, and Dallas, Texas. All four areas have collected ambient monitoring data for ozone, nitrogen oxides (NO{sub x}), and over 50 volatile organic compound (VOC) species in accordance with the Photochemical Assessment Monitoring Stations (PAMS) requirements. The PAMS program was initiated to provide more detailed VOC, NO{sub x}, and meteorological data for scientists, modelers, and managers working toward eliminating violations of the ozone National Ambient Air Quality Standards (NAAQS). This paper will focus on several useful analyses of PAMS data for the fourmore » study areas including: (1) a trends analysis of Total Non-Methane Organic Compounds (TNMOC), NO{sub x}, and ozone data from two Baton Rouge sites, (2) results of TNMOC/NO{sub x} ratio analyses for the three Baton Rouge PAMS sites which can provide a starting point for evaluating specific site sensitivity to changes in VOC or NO{sub x} ambient concentrations, (3) results of benzene/toluene ratio analyses which supply information on aged/fresh air masses, and (4) results of ethylene/acetylene ratio analyses which are useful in determining the impacts of catalytic/noncatalytic vehicles. This paper will also discuss the continuing maturation of the PAMS program in Baton Rouge, Houston, and El Paso. The Dallas area is expected to formally begin implementing a PAMS program in 1998 after the area is reclassified to a serious status for ozone pollution. In addition, the Beaumont, Texas area is currently scheduled to be reclassified to a serious status for ozone pollution in the 1998/1999 time period, and thus would also need to begin implementing a PAMS program.« less
Ozone monitoring in the Krakow Province, southern Poland
Barbara Godzik
1998-01-01
From June to mid-October in 1995, the concentration of tropospheric ozone in 18 localities in the Krakow Province of southern Poland was measured by using ultraviolet monitors and Ogawa passive samplers. At three active monitoring stations, tropospheric ozone was recorded in the downtown and western part of Krakow and in Szarow, 30 km to the east. The passive method...
Ozone from fireworks: Chemical processes or measurement interference?
Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun
2018-08-15
Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.
Satellite estimation of surface spectral ultraviolet irradiance using OMI data in East Asia
NASA Astrophysics Data System (ADS)
Lee, H.; Kim, J.; Jeong, U.
2017-12-01
Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface ultraviolet (UV) irradiance is important nowadays. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UV irradiance estimation. Also UV index (UVI) is a simple parameter to show the strength of surface UV irradiance, therefore UVI has been widely utilized for the purpose of UV monitoring. In this study, we estimate surface UV irradiance at East Asia using realistic input based on OMI Total Ozone and reflectivity, and then validate this estimated comparing to UV irradiance from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) data. In this work, we also try to develop our own retrieval algorithm for better estimation of surface irradiance. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UV irradiance calculation. The input to the VLIDORT radiative transfer calculations are the total ozone column (TOMS V7 climatology), the surface albedo (Herman and Celarier, 1997) and the cloud optical depth. Based on these, the UV irradiance is calculated based on look-up table (LUT) approach. To correct absorbing aerosol, UV irradiance algorithm added climatological aerosol information (Arola et al., 2009). The further study, we analyze the comprehensive uncertainty analysis based on LUT and all input parameters.
Chys, Michael; Demeestere, Kristof; Ingabire, Ange Sabine; Dries, Jan; Van Langenhove, Herman; Van Hulle, Stijn W H
2017-07-01
Ozonation and three (biological) filtration techniques (trickling filtration (TF), slow sand filtration (SSF) and biological activated carbon (BAC) filtration) have been evaluated in different combinations as tertiary treatment for municipal wastewater effluent. The removal of 18 multi-class pharmaceuticals, as model trace organic contaminants (TrOCs), has been studied. (Biological) activated carbon filtration could reduce the amount of TrOCs significantly (>99%) but is cost-intensive for full-scale applications. Filtration techniques mainly depending on biodegradation mechanisms (TF and SSF) are found to be inefficient for TrOCs removal as a stand alone technique. Ozonation resulted in 90% removal of the total amount of quantified TrOCs, but a post-ozonation step is needed to cope with an increased unselective toxicity. SSF following ozonation showed to be the only technique able to reduce the unselective toxicity to the same level as before ozonation. In view of process control, innovative correlation models developed for the monitoring and control of TrOC removal during ozonation, are verified for their applicability during ozonation in combination with TF, SSF or BAC. Particularly for the poorly ozone reactive TrOCs, statistically significant models were obtained that correlate TrOC removal and reduction in UVA 254 as an online measured surrogate parameter.
Recovery of the Antarctic Ozone Hole
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve; Schauffler, Sue; Stolarski, Richard S.; Douglass, Anne R.; Pawson, Steven; Nielsen, J. Eric
2006-01-01
The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS and OMI instruments. The severity of the hole has been assessed using the minimum total ozone value from the October monthly mean (depth of the hole), the average size during the September-October period, and the ozone mass deficit. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. We use two methods to estimate ozone hole recovery. First, we use projections of halogen levels combined with age-of-air estimates in a parametric model. Second, we use a coupled chemistry climate model to assess recovery. We find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. Furthermore, full recovery to 1980 levels will not occur until approximately 2068. We will also show some error estimates of these dates and the impact of climate change on the recovery.
NASA Astrophysics Data System (ADS)
Sadighi, Kira; Coffey, Evan; Polidori, Andrea; Feenstra, Brandon; Lv, Qin; Henze, Daven K.; Hannigan, Michael
2018-03-01
Sensor networks are being more widely used to characterize and understand compounds in the atmosphere like ozone (O3). This study employs a measurement tool, called the U-Pod, constructed at the University of Colorado Boulder, to investigate spatial and temporal variability of O3 in a 200 km2 area of Riverside County near Los Angeles, California. This tool contains low-cost sensors to collect ambient data at non-permanent locations. The U-Pods were calibrated using a pre-deployment field calibration technique; all the U-Pods were collocated with regulatory monitors. After collocation, the U-Pods were deployed in the area mentioned. A subset of pods was deployed at two local regulatory air quality monitoring stations providing validation for the collocation calibration method. Field validation of sensor O3 measurements to minute-resolution reference observations resulted in R2 and root mean squared errors (RMSEs) of 0.95-0.97 and 4.4-5.9 ppbv, respectively. Using the deployment data, ozone concentrations were observed to vary on this small spatial scale. In the analysis based on hourly binned data, the median R2 values between all possible U-Pod pairs varied from 0.52 to 0.86 for ozone during the deployment. The medians of absolute differences were calculated between all possible pod pairs, 21 pairs total. The median values of those median absolute differences for each hour of the day varied between 2.2 and 9.3 ppbv for the ozone deployment. Since median differences between U-Pod concentrations during deployment are larger than the respective root mean square error values, we can conclude that there is spatial variability in this criteria pollutant across the study area. This is important because it means that citizens may be exposed to more, or less, ozone than they would assume based on current regulatory monitoring.
NASA Technical Reports Server (NTRS)
Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong
2016-01-01
Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.
Trends in total column ozone measurements
NASA Technical Reports Server (NTRS)
Rowland, F. S.; Angell, J.; Attmannspacher, W.; Bloomfield, P.; Bojkov, R. D.; Harris, N.; Komhyr, W.; Mcfarland, M.; Mcpeters, R.; Stolarski, R. S.
1989-01-01
It is important to ensure the best available data are used in any determination of possible trends in total ozone in order to have the most accurate estimates of any trends and the associated uncertainties. Accordingly, the existing total ozone records were examined in considerable detail. Once the best data set has been produced, the statistical analysis must examine the data for any effects that might indicate changes in the behavior of global total ozone. The changes at any individual measuring station could be local in nature, and herein, particular attention was paid to the seasonal and latitudinal variations of total ozone, because two dimensional photochemical models indicate that any changes in total ozone would be most pronounced at high latitudes during the winter months. The conclusions derived from this detailed examination of available total ozone can be split into two categories, one concerning the quality and the other the statistical analysis of the total ozone record.
NASA Technical Reports Server (NTRS)
Hanser, F. A.
1977-01-01
An ultraviolet interference filter spectrophotometer was modified to use a photodiode and was flown on latitude survey flights in the fall of 1976. Comparison with Dobson station total ozone values shows agreement between UVS and Dobson total ozone of + or - 2 percent. The procedure used to convert UVS measured ozone above the aircraft altitude to total ozone above ground level introduces an additional 2 percent deviation for very high altitude UVS ozone data. Under stable aircraft operating conditions, the UVS derived ozone values have a variability, or reproducibility, of better than + or -1 percent. The UVS data from the latitude survey flights yield a detailed latitude profile of total ozone over the Pacific Ocean during November 1976. Significant latitudinal structure in total ozone is found at the middle latitudes (30 deg to 40 deg N and S).
NASA satellite helps airliners avoid ozone concentrations
NASA Technical Reports Server (NTRS)
1981-01-01
Results from a test to determine the effectiveness of satellite data for helping airlines avoid heavy concentrations of ozone are reported. Information from the Total Ozone Mapping Spectrometer, aboard the Nimbus-7 was transmitted, for use in meteorological forecast activities. The results show: (1) Total Ozone Mapping Spectrometer profile of total ozone in the atmosphere accurately represents upper air patterns and can be used to locate meteorological activity; (2) route forecasting of highly concentrated ozone is feasible; (3) five research aircraft flights were flown in jet stream regions located by the Total Ozone Mapping Spectrometer to determine winds, temperatures, and air composition. It is shown that the jet stream is coincides with the area of highest total ozone gradient, and low total ozone amounts are found where tropospheric air has been carried along above the tropopause on the anticyclonic side of the subtropical jet stream.
NASA Astrophysics Data System (ADS)
Brune, W. H.; Baier, B.; Miller, D. O.; Apel, E. C.; Wisthaler, A.; Fried, A.; Cantrell, C. A.; Blake, D. R.; Brown, S. S.; McDuffie, E. E.; Kaser, L.; Long, R.; Weinheimer, A. J.
2017-12-01
Ground level ozone pollution remains a health hazard in the United States despite dramatic reductions due to regulatory actions over the past three decades. The key to understanding the link between the ozone precursor gases, nitrogen oxides (NOx) and volatile organic compounds (VOCs), and ozone pollution is the ozone production rate. However, in air quality models, uncertainties in emissions and meteorology hide the true sensitivity of modeled ozone to the chemistry of the ozone production rate. A better way to understand the ozone production rate is to measure it directly. We devised a method for measuring the ozone production rate directly and have deployed it in a few field studies. In this presentation, we will discuss some fairly recent observations, the strengths and weaknesses of the current method, and a path toward routine monitoring of the ozone production rate.
Gridded global surface ozone metrics for atmospheric chemistry model evaluation
NASA Astrophysics Data System (ADS)
Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.
2016-02-01
The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.
Vitamin D Synthesis by UV Radiation: the Importance of Ozone Monitoring
NASA Astrophysics Data System (ADS)
Olds, W. J.; Moore, M. R.; Kimlin, M. G.
2006-12-01
The majority of humans rely on incidental sun exposure to maintain vitamin D sufficiency. Depending on where thresholds of vitamin D "sufficiency" are defined, it was recently stated that up to one billion people worldwide have suboptimal vitamin D levels (Bouillon, R., University of Leuven). Even in sunny southeast Queensland, the world's skin cancer capital, a 2006 study uncovered deficiency rates of up to 78% (at a threshold of 75 nmol/L of circulating 25-hydroxyvitamin D). Vitamin D regulates calcium absorption and inadequate levels are proven to result in osteomalacia, osteoporosis, rickets, bone pain and general skeletal weakness. Recent evidence also suggests vitamin D plays a preventative role in autoimmune diseases including numerous cancers, diabetes, schizophrenia, coronary heart disease, depression and other disorders. The most promising means of alleviating the worldwide burden of vitamin D deficiency seems to be by increased UV exposure. However, a much more mature understanding of UV exposures encountered in everyday life is required. This understanding is fundamentally founded in geophysics. UV exposures are strongly influenced by season/time of year, time of day, climate, location, pollution, aerosols and, importantly, ozone. In this work, we use computer simulations to obtain daily totals of vitamin D producing UV at numerous latitudes during one year. The ozone concentration is varied from 260 DU to 360 DU to determine the role of ozone variability on the ambient levels of vitamin D UV. Vitamin D synthesis is highly dependent on UVB. In our results, we demonstrate that this has important implications. Namely, vitamin D is strongly affected by ozone variability, since ozone filters UVB more strongly than UVA. Moreover, since erythema (sunburn) can occur at UVA wavelengths, ozone variation will more strongly affect vitamin D synthesis than erythema. Our results highlight that ozone monitoring is essential for understanding appropriate UV exposures for vitamin D health. We finally discuss implications for population health and how geophysics continues to play a vital role in addressing the widespread dilemma of vitamin D deficiency.
User's guide for SBUV/TOMS ozone derivative products
NASA Technical Reports Server (NTRS)
Fleig, A. J.; Wellemeyer, C.; Oslik, N.; Lee, D.; Miller, J.; Magatani, R.
1984-01-01
A series of products are available derived from the total-ozone and ozone vertical profile results for the Solar Backscattered Ultraviolet/Total-Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus-7 operation. Products available are (1) orbital height-latitude cross sections of the SBUV profile data, (2) daily global total ozone contours in polar coordinates, (3) daily averages of total ozone in global 5x5 degree latitude-longitude grid, (4) daily, monthly and quarterly averages of total ozone and profile data in 10 degree latitude zones, (5) tabular presentation of zonal means, (6) daily global total ozone and profile contours in polar coordinates. The ""Derivative Products User's Guide'' describes each of these products in detail, including their derivation and presentation format. Information is provided on how to order the tapes and microfilm from the National Space Science Data Center.
Stratospheric Ozone Variations Caused by Solar Proton Events between 1963 and 2005
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Fleming, Eric L.
2006-01-01
Solar proton fluxes have been measured by satellites for over forty years (1963-2005). Several satellites, including the NASA Interplanetary Monitoring Platforms (1963-1993) and the NOAA Geostationary Operational Environmental Satellites (1994-2005), have been used to compile this long-term dataset. Some solar eruptions lead to solar proton events (SPEs) at the Earth, which typically last a few days. High energy solar protons associated with SPEs precipitate on the Earth's atmosphere and cause increases in odd hydrogen (HOx) and odd nitrogen (NOy) in the polar cap regions (greater than 60 degrees geomagnetic). The enhanced HOx leads to short-lived ozone depletion (days) due to the short lifetime of HOx constituents. The enhanced NOy leads to long-lived ozone changes because of the long lifetime of the NOy family in the stratosphere and lower mesosphere. Very large SPEs occurred in 1972, 1989, 2000, 2001, and 2003 and were predicted to cause maximum total ozone depletions of 1-3%, which lasted for several months to years past the events. These long-term ozone changes caused by SPES are discussed.
Ozone determinations with the NOAA SBUV/2 system
NASA Technical Reports Server (NTRS)
Planet, Walter G.; Lienesch, James H.; Bowman, Harold D.; Miller, Alvin J.; Nagatani, Ronald M.
1994-01-01
The NOAA satellite ozone monitoring program was initiated by the National Environmental Satellite Data and Information Service (NESDIS) in December 1984, with the launch of the NOAA-9 spacecraft carrying the first operational Solar Backscatter Ultraviolet Spectrometer (SBUV/2). This instrument and its successor on NOAA-11, launched in 1988, are similar to the SBUV instrument launched by the NASA in 1978 on the Nimbus-7 research spacecraft. Measurements by the SBUV and SBUV/2 instruments overlap beginning in 1985. These instruments use measurements of the reflected ultraviolet solar radiation from the atmosphere to derive total ozone amounts and ozone vertical profiles. Since launch, the NOAA instruments and the derived products have been undergoing extensive evaluation by scientists of NOAA and NASA. Measurements obtained with these instruments are processed in real time by the NESDIS. These are reprocessed as the SBUV/2 instrument characterization is refined and as the retrieval algorithm for processing the data is improved. The NOAA-9 ozone data archive begins in March 1985 and continues through October 1990. The archive of NOAA-11 data begins in January 1989 and the data continues to be acquired in 1992.
Monitoring of Observation Errors in the Assimilation of Satellite Ozone Data
NASA Technical Reports Server (NTRS)
Stajner, Ivanka; Winslow, Nathan; Rood, Richard B.; Pawson, Steven
2003-01-01
The stratospheric ozone layer protects life on Earth from the harmful effects of solar ultravioiet radiation. The ozone layer is currently in a fragile state because of depletion caused by man-made chemicals, especially chlorofluorocarbons. The state of the ozone layer is being monitored and evaluated by scientific experts around the world, in order to help policy makers assess the impacts of international protocols that control the production and release of ozone depleting chemicals. Scientists use a variety ozone measurements and models in order to form a comprehensive picture about the current state of the ozone layer, and to predict the future behavior (expected to be a recovery, as the abundance of the depleting chemicals decreases). Among the data sets used, those from satellite-borne instruments have the advantage of providing a wealth of information about the ozone distribution over most of the globe. Several instruments onboard American and international satellites make measurements of the properties of the atmosphere, from which atmospheric ozone amounts are estimated; long-term measurement programs enable monitoring of trends in ozone. However, the characteristics of satellite instruments change in time. For example, the instrument lenses through which measurements are made may deteriorate over time, or the satellite orbit may drift so that measurements over each location are made later and later in the day. These changes may increase the errors in the retrieved ozone amounts, and degrade the quality of estimated ozone amounts and of their variability. Our work focuses on combining the satellite ozone data with global models that capture atmospheric motion and ozone chemistry, using advanced statistical techniques: this is known as data assimilation. Our method provides a three-dimensional global ozone distribution that is consistent with both the satellite measurements and with our understanding of processes (described in the models) that control ozone distribution. Through the monitoring of statistical properties of the agreement between the data and the model, this approach also enables us to detect changes in the quality of ozone data retrieved from satellite-borne instrument measurements. This paper demonstrates that calculations of the changes in satellite data quality, and the impact these changes on the estimates of the global ozone distribution, can assist in maintaining the uniform quality of the satellite ozone data throughout the lifetime of these instruments, thus contributing to our understanding of long-term ozone change.
Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis
NASA Technical Reports Server (NTRS)
Wargan, Krzysztof; Pawson, Steven; Labow, Gordon; Frith, Stacey M.; Livesey, Nathaniel; Partyka, Gary
2017-01-01
The assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), produced at NASAs Global Modeling and Assimilation Office (GMAO) is summarized. The reanalysis begins in 1980 with the use of retrieved partial-column ozone concentrations from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft. Beginning in October 2004, retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument (OMI) on NASAs EOS Aura satellite are assimilated. While this change in data streams does lead to a discontinuity in the assimilated ozone fields in MERRA-2, making it not useful for studies in decadal (secular) trends in ozone, this choice was made to prioritize demonstrating the value NASAs high-quality research data in the reanalysis context. The MERRA-2 ozone is compared with independent satellite and ozonesonde data, focusing on the representation of the spatial and temporal variability of stratospheric and upper-tropospheric ozone. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004, when EOS Aura data are assimilated. The standard deviation of the differences between the lower-stratospheric and upper-tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above. This is indicative of a realistic representation of the UTLS ozone variability in MERRA-2. After 2004, the upper tropospheric ozone in MERRA-2 shows a low bias compared to the sondes, but the covariance with independent observations is improved compared to earlier years. Case studies demonstrate the integrity of MERRA-2 analyses in representing important features such as tropopause folds.
The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations
NASA Technical Reports Server (NTRS)
Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.
2014-01-01
The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.
Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis
NASA Technical Reports Server (NTRS)
Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary
2017-01-01
We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASAs Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASAs EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.
2011 Arctic ozone depletion as seen by ESA-ENVISAT Atmospheric-Chemistry sensors
NASA Astrophysics Data System (ADS)
Brizzi, G.; Niro, F.; Saavedra de Miguel, L.; Dehn, A.; Scarpino, G.; Fehr, T.; von Kuhlmann, R.
2011-12-01
Three Atmospheric-Chemistry sensors on-board the ENVISAT satellite (GOMOS, MIPAS, and SCIAMACHY) sound the Earth's atmosphere since about nine years and provide to the science community three separated, but complementary data sets of the most interesting atmospheric trace gases. These extended and coherent data sets, generated with ESA operational processors, give a historical overview over seasonal and long-term trends of geophysical parameters and allow investigating major atmospheric phenomena and natural events. During March 2011, ESA's satellite ENVISAT detected the severe ozone depletion above the Euro-Atlantic sector of the Northern Hemisphere. This record-breaking loss for the ozone layer over the North Pole was mainly caused by unusual polar vortex conditions characterized by very low temperatures in the Arctic stratosphere. This paper presents the chemical ozone depletion over the Arctic regions as detected by SCIAMACHY, MIPAS and GOMOS during spring of 2011. Global maps of total ozone column and vertical ozone profiles along the mission's lifetime clearly show the unprecedented Arctic ozone loss for 2011 with the subsequent migration of ozone depleted air masses towards lower latitudes. ENVISAT's atmospheric measurements reveal changes in the composition of the ozone-related chemical species and permit to point out the chemical correlations of the ozone distribution with nitrogen and chlorine compounds and with the evolution of stratospheric temperatures. The synergistic use of ESA operational data sets from the three instruments allows to closely monitor the occurrence and extension of seasonal ozone depletion events, and to draw a comprehensive picture of all chemistry processes involved in the full atmospheric range.
Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis
Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary
2018-01-01
We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA’s Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA’s EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies. PMID:29527096
Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis.
Wargan, Krzysztof; Labow, Gordon; Frith, Stacey; Pawson, Steven; Livesey, Nathaniel; Partyka, Gary
2017-04-01
We describe and assess the quality of the assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) produced at NASA's Global Modeling and Assimilation Office (GMAO) spanning the time period from 1980 to present. MERRA-2 assimilates partial column ozone retrievals from a series of Solar Backscatter Ultraviolet (SBUV) radiometers on NASA and NOAA spacecraft between January 1980 and September 2004; starting in October 2004 retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument on NASA's EOS Aura satellite are assimilated. We compare the MERRA-2 ozone with independent satellite and ozonesonde data focusing on the representation of the spatial and temporal variability of stratospheric and upper tropospheric ozone and on implications of the change in the observing system from SBUV to EOS Aura. The comparisons show agreement within 10 % (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004 when EOS Aura data are assimilated. The standard deviation of the differences between the lower stratospheric and upper tropospheric MERRA-2 ozone and ozonesondes is 11.2 % and 24.5 %, respectively, with correlations of 0.8 and above, indicative of a realistic representation of the near-tropopause ozone variability in MERRA-2. The agreement improves significantly in the EOS Aura period, however MERRA-2 is biased low in the upper troposphere with respect to the ozonesondes. Caution is recommended when using MERRA-2 ozone for decadal changes and trend studies.
NASA Technical Reports Server (NTRS)
McPeters, R.D.; Oltmans, Samuel J.
2000-01-01
NASA is creating a long term satellite ozone time series by combining data from multiple instruments: Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) (1978 - 1993), Meteor 3 TOMS (1991 - 1994), Earth Probe TOMS (1996 - present), Nimbus 7 SB-JV (1978 - 1990), NOAA-9 Solar Backscatter UV Spectrometer (SBUV/2) (1984 - 1997), NOAA-11 SBUV/2 (1989 - 1994), and NOAA-14 SBUV/2 (1995 - present). The stability of individual data sets and possible instrument-to-instrument differences are best checked by comparison with ground-based measurements. We have examined the time dependence of the calibrations of these instruments by comparing satellite derived ozone with that measured by the world primary standard Dobson spectrometer No. 83. This instrument has been maintained since 1962 as a standard for total ozone to an uncertainty of plus or minus 0.5%. Measurements of AD pair ozone made with instrument No. 83 at Mauna Loa observatory most summers since 1979 were compared with coincident TOMS and SBUV(/2) ozone measurements. The comparison shows that the various instruments were stable relative to instrument No. 83 to within about plus or minus 1%, but that there are instrument-to-instrument biases of as much as 3%. Earth Probe TOMS, for example, is 1% to 2% high relative to Nimbus 7 TOMS when the world standard instrument is used as a transfer standard. Similar results are seen when comparisons are made with an ensemble of 41 Dobson stations throughout the world, demonstrating that the ensemble as a whole is stable despite the fact that many instruments within the ensemble have clear calibration changes.
Finco, Angelo; Marzuoli, Riccardo; Chiesa, Maria; Gerosa, Giacomo
2017-12-01
The upper vegetation belts like larch forests are supposed to be under great pressure because of climate change in the next decades. For this reason, the evaluation of the risks due to abiotic stressors like ozone is a key step. Two different approaches were used here: mapping AOT40 index by means of passive samplers and direct measurements of ozone deposition.Measurements of ozone fluxes using the eddy-correlation technique were carried out for the first time over a larch forest in Paspardo (I) at 1750 m a.s.l. Two field campaigns were run: the first one in 2010 from July to October and the second one in the following year from June to September. Vertical exchange of ozone, energy, and momentum were measured on a tower platform at 26 m above ground level to study fluxes dynamics over this ecosystem. Since the tower was located on a gentle slope, an "ad hoc" methodology was developed to minimize the effects of the terrain inclination. The larch forest uptake was estimated by means of a two-layer model to separate the understorey uptake from the larch one. Even if the total ozone fluxes were generally high, up to 30-40 nmol O 3 m -2 s -1 in both years, the stomatal uptake by the larch forest was relatively low (around 15% of the total deposition).Ozone risk was assessed considering the POD 1 received by the larch forest and the exposure index AOT40 estimated with both local data and data from the map obtained by the passive samplers monitoring.
NASA Astrophysics Data System (ADS)
Lerot, C.; Van Roozendael, M.; Spurr, R.; Loyola, D.; Coldewey-Egbers, M.; Kochenova, S.; van Gent, J.; Koukouli, M.; Balis, D.; Lambert, J.-C.; Granville, J.; Zehner, C.
2014-02-01
Within the European Space Agency's Climate Change Initiative, total ozone column records from GOME (Global Ozone Monitoring Experiment), SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY), and GOME-2 have been reprocessed with GODFIT version 3 (GOME-type Direct FITting). This algorithm is based on the direct fitting of reflectances simulated in the Huggins bands to the observations. We report on new developments in the algorithm from the version implemented in the operational GOME Data Processor v5. The a priori ozone profile database TOMSv8 is now combined with a recently compiled OMI/MLS tropospheric ozone climatology to improve the representativeness of a priori information. The Ring procedure that corrects simulated radiances for the rotational Raman inelastic scattering signature has been improved using a revised semi-empirical expression. Correction factors are also applied to the simulated spectra to account for atmospheric polarization. In addition, the computational performance has been significantly enhanced through the implementation of new radiative transfer tools based on principal component analysis of the optical properties. Furthermore, a soft-calibration scheme for measured reflectances and based on selected Brewer measurements has been developed in order to reduce the impact of level-1 errors. This soft-calibration corrects not only for possible biases in backscattered reflectances, but also for artificial spectral features interfering with the ozone signature. Intersensor comparisons and ground-based validation indicate that these ozone data sets are of unprecedented quality, with stability better than 1% per decade, a precision of 1.7%, and systematic uncertainties less than 3.6% over a wide range of atmospheric states.
[Effects of synoptic type on surface ozone pollution in Beijing].
Tang, Gui-qian; Li, Xin; Wang, Xiao-ke; Xin, Jin-yuan; Hu, Bo; Wang, Li-li; Ren, Yu-fen; Wang, Yue-Si
2010-03-01
Ozone (O), influenced by meteorological factors, is a primary gaseous photochemical pollutant during summer to fall in Beijing' s urban ambient. Continuous monitoring during July to September in 2008 was carried out at four sites in Beijing. Analyzed with synoptic type, the results show that the ratios of pre-low cylonic (mainly Mongolia cyclone) and pre-high anticylonic to total weather conditions are about 42% and 20%, illustrating the high-and low-ozone episodes, respectively. At the pre-low cylonic conditions, high temperature, low humidity, mountain and valley winds caused by local circulation induce average hourly maximum ozone concentration (volume fraction) up to 102.2 x 10(-9), negative correlated with atmospheric pressure with a slope of -3.4 x 10(-9) Pa(-1). The time of mountain wind changed to valley wind dominates the diurnal time of maximum ozone, generally around 14:00. At the pre-high anticylonic conditions, low temperature, high humidity and systematic north wind induce average hourly maximum ozone concentration (volume fraction) only 49.3 x 10(-9), the diurnal time of maximum ozone is deferred by continuous north wind till about 16:00. The consistency of photochemical pollution in Beijing region shows that good correlation exists between synoptic type and ozone concentration. Therefore, getting an eye on the structure and evolution of synoptic type is of great significances for forecasting the photochemical pollution.
NASA Astrophysics Data System (ADS)
Bai, Kaixu; Chang, Ni-Bin; Shi, Runhe; Yu, Huijia; Gao, Wei
2017-07-01
A four-step adaptive ozone trend estimation scheme is proposed by integrating multivariate linear regression (MLR) and ensemble empirical mode decomposition (EEMD) to analyze the long-term variability of total column ozone from a set of four observational and reanalysis total ozone data sets, including the rarely explored ERA-Interim total ozone reanalysis, from 1979 to 2009. Consistency among the four data sets was first assessed, indicating a mean relative difference of 1% and root-mean-square error around 2% on average, with respect to collocated ground-based total ozone observations. Nevertheless, large drifts with significant spatiotemporal inhomogeneity were diagnosed in ERA-Interim after 1995. To emphasize long-term trends, natural ozone variations associated with the solar cycle, quasi-biennial oscillation, volcanic aerosols, and El Niño-Southern Oscillation were modeled with MLR and then removed from each total ozone record, respectively, before performing EEMD analyses. The resulting rates of change estimated from the proposed scheme captured the long-term ozone variability well, with an inflection time of 2000 clearly detected. The positive rates of change after 2000 suggest that the ozone layer seems to be on a healing path, but the results are still inadequate to conclude an actual recovery of the ozone layer, and more observational evidence is needed. Further investigations suggest that biases embedded in total ozone records may significantly impact ozone trend estimations by resulting in large uncertainty or even negative rates of change after 2000.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liu, J. M.
1986-01-01
The distribution of atmospheric ozone is nonuniform both in space and time. Local ozone concentration vary with altitude, latitude, longitude, and season. Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations and 2.5 year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five American stations were used to study the relationship between the total ozone, vertical height distribution of the ozone mixing ratio, vertical height distribution of half total ozone, and the local tropopause height. The results show that there is a postive correlation between total ozone in Dobson Units and the tropopause height in terms of atmospheric pressure. This result suggests that local intrusion of the statosphere into the troposphere, or the local decreasing of tropopause height could occur if there is a local increasing of total ozone. A comparison of the vertical height distribution of the ozone mixing ratio, the modified pressure height of half total ozone and the tropopause height shows that the pressure height of an ozone mixing ratio of 0.3 micrograms/g, and the modified pressure height of half total ozone are very well correlated with the tropopause pressure height.
NASA Astrophysics Data System (ADS)
Evans, Robert D.; Petropavlovskikh, Irina; McClure-Begley, Audra; McConville, Glen; Quincy, Dorothy; Miyagawa, Koji
2017-10-01
The United States government has operated Dobson ozone spectrophotometers at various sites, starting during the International Geophysical Year (1 July 1957 to 31 December 1958). A network of stations for long-term monitoring of the total column content (thickness of the ozone layer) of the atmosphere was established in the early 1960s and eventually grew to 16 stations, 14 of which are still operational and submit data to the United States of America's National Oceanic and Atmospheric Administration (NOAA). Seven of these sites are also part of the Network for the Detection of Atmospheric Composition Change (NDACC), an organization that maintains its own data archive. Due to recent changes in data processing software the entire dataset was re-evaluated for possible changes. To evaluate and minimize potential changes caused by the new processing software, the reprocessed data record was compared to the original data record archived in the World Ozone and UV Data Center (WOUDC) in Toronto, Canada. The history of the observations at the individual stations, the instruments used for the NOAA network monitoring at the station, the method for reducing zenith-sky observations to total ozone, and calibration procedures were re-evaluated using data quality control tools built into the new software. At the completion of the evaluation, the new datasets are to be published as an update to the WOUDC and NDACC archives, and the entire dataset is to be made available to the scientific community. The procedure for reprocessing Dobson data and the results of the reanalysis on the archived record are presented in this paper. A summary of historical changes to 14 station records is also provided.
The Austrian UVB monitoring network: 12 years of observations and 25 years of reconstructed data
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Weihs, P.; Blumthaler, M.; Simic, S.; Schmalwieser, A. W.; Wagner, J. E.; Schallhart, B.; Schauberger, G.; Fitzka, M.; Holawe, F.; Laube, W.
2009-04-01
Since the discovery of anthropogenic ozone depletion in the early 1970s (e.g. Molina and Rowland, 1974; Farman et al., 1985) the interest in stratospheric ozone trends and solar UV-B increased within the scientific community and the general public because of the link between reduced total column ozone and increased UV-radiation doses. In 1996, the setup of an Austrian UVB monitoring network was initiated by the Federal Department of Environment (Blumthaler and Schauberger, 2001). Now it consists of 12 broadband detectors for measuring erythemally weighted solar UV irradiance at locations between 153 m and 3106 m above sea level. The locations of the stations were selected by objective criteria as spatial coverage and cover the whole altitude range of Austria. With that inter-stational correlation is close to 0.9 (Schmalwieser and Schauberger, 2001). All detectors are calibrated each year in the laboratory of the Division for Biomedical Physics, Innsbruck Medical University. First the relative spectral response of each detector is determined. Then by comparison with a double monochromator spectroradiometer the absolute calibration function is derived in dependence on solar zenith angle and on total atmospheric ozone (Blumthaler, 2004). The uncertainty of the calibration is about ±7% (at 95% confidence level) for solar zenith angles <75°, which is dominated by the uncertainty of the calibration lamp for the spectroradiometer (±4%). During routine operation, the measurements of all detectors are transmitted in near real time to the laboratory and then converted to UV-Indices, the internationally agreed unit for erythemally weighted solar irradiance. The results are then published on the internet (www.uv-index.at) every 15 minutes, together with a regional map showing the distribution of the UV-Index over Austria by combining the information from the measurement detectors with cloud information from Meteosat Second Generation. Recently reconstructed UV-data became available for two stations from the Austrian UVB monitoring network (Hoher Sonnblick and Vienna) (Rieder et al., 2008). An overview about the UVB monitoring network as well as studies on short and long-term trends and the influence of total ozone, surface albedo and cloudiness on erythemal UV (Weihs et al., 1999; Rieder et al., 2008; Simic et al., 2008) are presented. Results from a recent field campaign (Weihs et al., 2008) showed that maintenance of ground based measurements is very important as satellites so far do not satisfactorily represent ground UV. References: Blumthaler, M., and Ambach, W.: Solar UVB-albedo of various surfaces, Photochem. Photobiol., 48, 85-88, 1988. Blumthaler, M.: Quality assurance and quality control methodologies within the Austrian UV monitoring network, Rad. Prot. Dos., 111, 359-362, 2004. Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207-210, 1985. Molina, M. J., and Rowland, F. S.: Stratospheric sink for chlorofluoromethans: Chlorine atom-catalysed destruction of ozone, Nature, 249, 810-812, 1974. Rieder, H.E., Holawe, F., Simic, S., Blumthaler, M., Krzyscin, J.W., Wagner J.E., Schmalwieser A.W., and Weihs, P.: Reconstruction of erythemal UV-doses for two stations in Austria: A comparison between alpine and urban regions, Atmos. Chem. Phys., 8, 6309-6323, 2008. Simic, S., Weihs, P., Vacek, A., Kromp-Kolb, H., and Fitzka, M.: Spectral UV measurements in Austria from 1994 to 2006: investigations of short- and long-term changes, Atmos. Chem. Phys. Discuss., 8, 2403-2428, 2008. Schmalwieser, A.W., and Schauberger, G.: A monitoring network for erythemally-effective solar ultraviolet radiation in Austria: determination of the measuring sites and visualisation of the spatial distribution, Theor. Appl. Climatol., 69, 221-229, 2001. Weihs, P., Simic, S., Laube, W., Mikielewicz, W., Rengarajan, G., Mandl, G.: Albedo influences on surface UV irradiance at the Sonnblick high mountain Observatory (3106 m altitude), J. Appl. Meteorol., 38, 1599-1610, 1999. Weihs, P., Blumthaler, M., Rieder, H. E., Kreuter, A., Simic, S., Laube, W., Schmalwieser, A. W., Wagner, J. E., and Tanskanen, A.: Measurements of UV irradiance within the area of one satellite pixel, Atmos. Chem. Phys., 8, 5615-5626, 2008.
NASA Astrophysics Data System (ADS)
KrzyśCin, Janusz W.
2000-02-01
Monthly means and minima of total ozone for the late springs and summers (May-August) of 1963-1997 have been examined for the European Dobson stations (Arosa, Belsk, Hohenpeissenberg, Hradec Kralove, Uccle). It is shown that long-term tendencies in total ozone means were almost similar to those in the total ozone minima. Analyses of the late spring/summer means of UV daily doses, total ozone, and global solar radiation (proxy for the overall atmospheric transparency), measured at Belsk (52°N, 21°E) for the period 1976-1996, show that an importance of the total ozone changes for the UV-B level increases with the timescale. Decadal variations in total ozone are the main source of the UV trend at Belsk. Frequency of appearance of extreme daily total ozone values in the selected late spring/summer season seems to be important for analyses of the ozone forcing in the interannual timescale. Regional and temporal differences in the number of days with extreme low ozone values are discussed using the total ozone extrema taken at Arosa, Belsk, and Hradec Kralove in the 1963-1997 period. A statistical model is developed for diagnosis of the next day value of the UV-B level. The changes in the overall atmospheric transparency are essential for the UV-B level when the day-to-day variations in the UV forcing factors are examined.
The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003-2015
NASA Astrophysics Data System (ADS)
Flemming, Johannes; Benedetti, Angela; Inness, Antje; Engelen, Richard J.; Jones, Luke; Huijnen, Vincent; Remy, Samuel; Parrington, Mark; Suttie, Martin; Bozzo, Alessio; Peuch, Vincent-Henri; Akritidis, Dimitris; Katragkou, Eleni
2017-02-01
A new global reanalysis data set of atmospheric composition (AC) for the period 2003-2015 has been produced by the Copernicus Atmosphere Monitoring Service (CAMS). Satellite observations of total column (TC) carbon monoxide (CO) and aerosol optical depth (AOD), as well as several TC and profile observations of ozone, have been assimilated with the Integrated Forecasting System for Composition (C-IFS) of the European Centre for Medium-Range Weather Forecasting. Compared to the previous Monitoring Atmospheric Composition and Climate (MACC) reanalysis (MACCRA), the new CAMS interim reanalysis (CAMSiRA) is of a coarser horizontal resolution of about 110 km, compared to 80 km, but covers a longer period with the intent to be continued to present day. This paper compares CAMSiRA with MACCRA and a control run experiment (CR) without assimilation of AC retrievals. CAMSiRA has smaller biases than the CR with respect to independent observations of CO, AOD and stratospheric ozone. However, ozone at the surface could not be improved by the assimilation because of the strong impact of surface processes such as dry deposition and titration with nitrogen monoxide (NO), which were both unchanged by the assimilation. The assimilation of AOD led to a global reduction of sea salt and desert dust as well as an exaggerated increase in sulfate. Compared to MACCRA, CAMSiRA had smaller biases for AOD, surface CO and TC ozone as well as for upper stratospheric and tropospheric ozone. Finally, the temporal consistency of CAMSiRA was better than the one of MACCRA. This was achieved by using a revised emission data set as well as by applying careful selection and bias correction to the assimilated retrievals. CAMSiRA is therefore better suited than MACCRA for the study of interannual variability, as demonstrated for trends in surface CO.
NASA Technical Reports Server (NTRS)
Cook, William
1999-01-01
Measuring and understanding the distribution of ozone through the lower levels of Earth's atmosphere are high priorities in global change and climate research. Of particular interest now is the global distribution of ozone in the upper troposphere and lower stratosphere. Global coverage of the stratospheric ozone is feasible only via remote sensing instruments on a space-based platform. And though extensive monitoring tropospheric ozone is possible using instruments flown aboard conventional aircraft, a space-based system would be significantly less costly and provide information over a much broader area and produce more uniform coverage. Here we describe the prototype of an instrument being developed to monitor, from an orbiting spacecraft, the ozone found in Earth's upper troposphere and lower stratosphere. Our new spectrometer is an infrared Fabry-Perot interferometer which uses two synchrounously tuned etalons: a high resolution narrow band device and a lower resolution broader band filtering etalon. The prototype is a scanning device making use of nearly collimated input radiation and a single element detector. As presently configured, it is capable of providing a resolution better than 0.07/cm with a spectral band width approximately 5/cm wide and centered at 1054.7/cm. For the future space-based emission device a modification of the the prototype was to be made to employ innovative circle-to-line detector optics, those developed or in development at UM/SPRL, and a focal plane array detector. These enhancements would enable a simultaneous recording of the entire spectral range of interest, but with simple detection electronics and a significant gain in signal-to-noise over that of the scanning version.
Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.
2008-01-01
Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.
On the link between martian total ozone and potential vorticity
NASA Astrophysics Data System (ADS)
Lewis, S.; Holmes, J.; Patel, M.
2016-12-01
We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable.The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone can be of use to investigate the origin of potential vorticity filaments.
On the link between martian total ozone and potential vorticity
NASA Astrophysics Data System (ADS)
Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.
2017-01-01
We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.
NASA Astrophysics Data System (ADS)
Kotsakis, A.; Choi, Y.; Souri, A.; Jeon, W.; Flynn, J. H., III
2017-12-01
From the years 2000 to 2014, Dallas-Fort Worth (DFW) has seen a decrease in ozone exceedances due to decreased emissions of ozone precursors. In this study, a wind pattern analysis was done to gain a better understanding of the meteorological patterns that have historically contributed to ozone exceedances over the DFW area. Long-term trends in ozone and the seasonal distribution of ozone exceedances were analyzed using surface monitoring data. Using a clustering algorithm called self-organizing maps, characteristic regional wind patterns from 2000-2014 were determined. For each of the wind pattern clusters, the frequency over the last 15 years and average ozone from monitors across DFW was analyzed. Finally, model simulations were performed to determine if pollution transported out of Houston affected incoming background ozone into DFW.
Marshall, Meghan; Yargeau, Viviane
2018-03-01
New treatment technologies and quality monitoring tools are needed for Contaminants of Emerging Concern (CECs) in wastewater. The purpose of this work was to assess the LuminoTox as a monitoring tool for CEC-associated toxicity in municipal wastewater during ozone treatment, and to evaluate the impact of different ozone feed concentrations at equivalent ozone doses for removing toxicity. The LuminoTox was sensitive at monitoring changes in toxicity of atrazine (ATZ) in synthetic wastewater (SWW) and in a 14 CECs mix in secondary effluent (SE) during ozone treatment. In both experiments, a decrease in toxicity was observed with increasing transferred ozone dose, which corresponded to a decrease in CEC concentration. For ATZ in SWW, a 5 ppm ozone feed showed better toxicity removal, up to 25% and 35% inhibition for LuminoTox algae biosensors SAPS I and SAPS II, respectively, for statistically equivalent ozone dose pairs of 43 mg (5 ppm ozone feed) and 36 mg (15 ppm ozone feed). The opposite was true for the 14 CECs in SE; the 15 ppm ozone feed showed better toxicity removal, up to a reduction of 37% and 40% for SAPS I and SAPS II inhibition, respectively, for statistically equivalent ozone dose pairs of 42 mg (5 ppm ozone feed) and 42 mg (15 ppm ozone feed). Different feed applications had an impact on the efficiency of toxicity removal for equivalent ozone doses; this efficiency appears to depend on the type of contaminants and/or wastewater matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1981-01-01
The locations of total ozone stations and of stratospheric ozone samplings were presented. The samplings are concentrated in three areas: Japan, Europe, and India. Approximately 75% of the total ozone measurements are made with Dobson instruments which offer the best international measurements. When well calibrated their accuracy is on the order of a few percent. It is found that although the total ozone percent is similar in both hemispheres, the northern hemisphere has 3 to 10% more ozone than the southern hemisphere. The close association between total ozone distribution and pressure distribution in the atmosphere is noted.
A passive ozone sampler based on a reaction with nitrite.
Koutrakis, P; Wolfson, J M; Bunyaviroch, A; Froehlich, S
1994-02-01
Standard ozone monitoring techniques utilize large, heavy, and expensive instruments that are not easily adapted for personal or microenvironmental monitoring. For large-scale monitoring projects that examine spatial variations of a pollutant and human exposure assessments, passive sampling devices can provide the methodology to meet monitoring and statistical goals. Recently, we developed a coated filter for ozone collection that we used in a commercially available passive sampling device. Successful preliminary results merited further validation tests, which are presented in this report. The passive ozone sampler used in field and laboratory experiments consists of a badge clip supporting a barrel-shaped body that contains two coated glass fiber filters. The principle component of the coating is nitrite ion, which in the presence of ozone is oxidized to nitrate ion on the filter medium (NO2- + O3 produces NO3- + O2). After sample collection, the filters were extracted with ultrapure water and analyzed for nitrate ion by ion chromatography. The results from laboratory and field validation tests indicated excellent agreement between the passive method and standard ozone monitoring techniques. We determined that relative humidity (ranging from 10% to 80%) and temperature (ranging from 0 degrees C to 40 degrees C) at typical ambient ozone levels (40 to 100 parts per billion) do not influence sampler performance. Face velocity and sampler orientation with respect to wind direction were found to affect the sampler's collection rate of ozone. Using a protective cup, which acts as both a wind screen and a rain cover, we were able to obtain a constant collection rate over a wide range of wind speeds.
NASA Astrophysics Data System (ADS)
Kowalewski, M. G.; Janz, S. J.
2015-02-01
Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.
Ozone injury in west coast forests: 6 years of monitoring.
Sally J. Campbell; Ron Wanek; John W. Coulston
2007-01-01
Six years of monitoring for ozone injury by the Pacific Northwest Research Station Forest Inventory and Analysis Program are reported. The methods used to evaluate injury, compute an injury index, and estimate risk are described. Extensive injury was detected on ozone biomonitoring sites for all years in California, with ponderosa and Jeffrey pines, mugwort, skunkbush...
How to most effectively expand the global surface ozone observing network
NASA Astrophysics Data System (ADS)
Sofen, E. D.; Bowdalo, D.; Evans, M. J.
2016-02-01
Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close the gap in our ability to measure global surface ozone. An additional 20 surface ozone monitoring sites (a 20 % increase in the World Meteorological Organization Global Atmosphere Watch (WMO GAW) ozone sites or a 1 % increase in the total background network) located on 10 islands and in 10 continental regions would almost double the area observed. The cost of this addition to the network is small compared to other expenditure on atmospheric composition research infrastructure and would provide a significant long-term benefit to our understanding of the composition of the atmosphere, information which will also be available for consideration by air quality control managers and policy makers.
Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1926-1996
NASA Astrophysics Data System (ADS)
Staehelin, Johannes; Kegel, Rainer; Harris, Neil R. P.
1998-04-01
Total ozone measurements have been made at Arosa, Switzerland (47°N), from 1926 through the present day, forming the longest total ozone series in the world. The record has been recently homogenized. Ozone trends are calculated to be -(2.3±0.6)% per decade for annual means (larger losses are found in winter and spring, approximately -4% per decade for trends in January, February, and March) when a simple linear change from 1970 to 1996 is assumed. In addition, total ozone trends are calculated using multiple regression models involving combinations of explanatory variables for the 11-year solar cycle, local meteorological conditions (the Mount Säntis high-altitude temperature record), stratospheric aerosol loading from volcanoes, and stratospheric chlorine loading. When the terms for the solar cycle, the stratospheric aerosol loading and the high mountain temperature record were included, the annually averaged ozone trends were found to be -(1.9±0.6)% per decade. While a statistically significant relation is found between total ozone and indices of aerosol loadings of the stratosphere, the recent decrease in total ozone cannot be accounted for by the higher average aerosol content in the second half of the century. Finally, the decrease in ozone in the stratosphere is estimated to be approximately 30% larger than that found for total ozone, when a crude estimate of the increase in tropospheric ozone is included. The acceleration observed in total ozone trends between the 1970s and the 1980s over northern midlatitudes [e.g., Harris et al., 1997] might be partially attributed to the larger increase in tropospheric ozone in the 1970s.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... based on complete, quality-assured and certified ambient air quality monitoring data for 2007-2009... certain air quality monitoring data because they meet the criteria for ozone exceptional events that are... certified monitoring data. A violation occurs when the ambient ozone air quality monitoring data show...
NASA Technical Reports Server (NTRS)
Tilmes, Curt A.; Fleig, Albert J.
2008-01-01
NASA's traditional science data processing systems have focused on specific missions, and providing data access, processing and services to the funded science teams of those specific missions. Recently NASA has been modifying this stance, changing the focus from Missions to Measurements. Where a specific Mission has a discrete beginning and end, the Measurement considers long term data continuity across multiple missions. Total Column Ozone, a critical measurement of atmospheric composition, has been monitored for'decades on a series of Total Ozone Mapping Spectrometer (TOMS) instruments. Some important European missions also monitor ozone, including the Global Ozone Monitoring Experiment (GOME) and SCIAMACHY. With the U.S.IEuropean cooperative launch of the Dutch Ozone Monitoring Instrument (OMI) on NASA Aura satellite, and the GOME-2 instrumental on MetOp, the ozone monitoring record has been further extended. In conjunction with the U.S. Department of Defense (DoD) and the National Oceanic and Atmospheric Administration (NOAA), NASA is now preparing to evaluate data and algorithms for the next generation Ozone Mapping and Profiler Suite (OMPS) which will launch on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) in 2010. NASA is constructing the Science Data Segment (SDS) which is comprised of several elements to evaluate the various NPP data products and algorithms. The NPP SDS Ozone Product Evaluation and Test Element (PEATE) will build on the heritage of the TOMS and OM1 mission based processing systems. The overall measurement based system that will encompass these efforts is the Atmospheric Composition Processing System (ACPS). We have extended the system to include access to publically available data sets from other instruments where feasible, including non-NASA missions as appropriate. The heritage system was largely monolithic providing a very controlled processing flow from data.ingest of satellite data to the ultimate archive of specific operational data products. The ACPS allows more open access with standard protocols including HTTP, SOAPIXML, RSS and various REST incarnations. External entities can be granted access to various modules within the system, including an extended data archive, metadata searching, production planning and processing. Data access is provided with very fine grained access control. It is possible to easily designate certain datasets as being available to the public, or restricted to groups of researchers, or limited strictly to the originator. This can be used, for example, to release one's best validated data to the public, but restrict the "new version" of data processed with a new, unproven algorithm until it is ready. Similarly, the system can provide access to algorithms, both as modifiable source code (where possible) and fully integrated executable Algorithm Plugin Packages (APPs). This enables researchers to download publically released versions of the processing algorithms and easily reproduce the processing remotely, while interacting with the ACPS. The algorithms can be modified allowing better experimentation and rapid improvement. The modified algorithms can be easily integrated back into the production system for large scale bulk processing to evaluate improvements. The system includes complete provenance tracking of algorithms, data and the entire processing environment. The origin of any data or algorithms is recorded and the entire history of the processing chains are stored such that a researcher can understand the entire data flow. Provenance is captured in a form suitable for the system to guarantee scientific reproducability of any data product it distributes even in cases where the physical data products themselves have been deleted due to space constraints. We are currently working on Semantic Web ontologies for representing the various provenance information. A new web site focusing on consolidating informaon about the measurement, processing system, and data access has been established to encourage interaction with the overall scientific community. We will describe the system, its data processing capabilities, and the methods the community can use to interact with the standard interfaces of the system.
NASA Astrophysics Data System (ADS)
Fleming, Z. L.; Doherty, R. M.; von Schneidemesser, E.; Cooper, O. R.; Malley, C.; Colette, A.; Xu, X.; Pinto, J. P.; Simpson, D.; Schultz, M. G.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.
2017-12-01
Using stations from the TOAR surface ozone database, this study quantifies present-day global and regional distributions of five ozone metrics relevant for both short-term and long-term human exposure. These metrics were explored at ozone monitoring sites globally, and re-classified for this project as urban or non-urban using population densities and night-time lights. National surface ozone limit values are usually related to an annual number of exceedances of daily maximum 8-hour running mean (MDA8), with many countries not even having any ozone limit values. A discussion and comparison of exceedances in the different ozone metrics, their locations and the seasonality of exceedances provides clues as to the regions that potentially have more serious ozone health implications. Present day ozone levels (2010-2014) have been compared globally and show definite geographical differences (see Figure showing the annual 4th highest MDA8 for present day ozone for all non-urban stations). Higher ozone levels are seen in western compared to eastern US, and between southern and northern Europe, and generally higher levels in east Asia. The metrics reflective of peak concentrations show highest values in western North America, southern Europe and East Asia. A number of the metrics show similar distributions of North-South gradients, most prominent across Europe and Japan. The interquartile range of the regional ozone metrics was largest in East Asia, higher for urban stations in Asia but higher for non-urban stations in Europe and North America. With over 3000 monitoring stations included in this analysis and despite the higher densities of monitoring stations in Europe, north America and East Asia, this study provides the most comprehensive global picture to date of surface ozone levels in terms of health-relevant metrics.
NASA Astrophysics Data System (ADS)
Stübi, René; Schill, Herbert; Klausen, Jörg; Vuilleumier, Laurent; Gröbner, Julian; Egli, Luca; Ruffieux, Dominique
2017-11-01
The Arosa site is well known in the ozone community for its continuous total ozone column observations that have been recorded since 1926. Originally based on Dobson sun spectrophotometers, the site has been gradually complemented by three automatic Brewer instruments, in operation since 1998. To secure the long-term ozone monitoring in this Alpine region and to benefit from synergies with the World Radiation Center, the feasibility of moving this activity to the nearby site at Davos (aerial distance of 13 km) has been explored. Concerns about a possible rupture of the 90-year-long record has motivated a careful comparison of the two sites, since great attention to the data continuity and quality has always been central to the operations of the observatory at Arosa. To this end, one element of the Arosa Brewer triad has been set up at the Davos site since November 2011 to realize a campaign of parallel measurements and to study the deviations between the three Brewer instruments. The analysis of the coincident measurement shows that the differences between Arosa and Davos remain within the range of the long-term stability of the Brewer instruments. A nonsignificant seasonal cycle is observed, which could possibly be induced by a stray-light bias and the altitude difference between the two sites. These differences are shown to be lower than the short-term variability of the time series and the overall uncertainty from individual Brewer instruments and therefore are not statistically significant. It is therefore concluded that the world's longest time series of the total ozone column obtained at Arosa site could be safely extended and continued with measurements taken from instruments located at the nearby Davos site without introducing a bias to this unique record.
Occurrence of ozone as a phytotoxicant in Kiev, Ukraine and in the Ukrainian Carpathian mountains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bytnerowicz, A.; Manning, W.; Blum, O.
1995-12-31
Ogawa passive ozone samplers were established at the Central Botanic Garden in Kiev and in five forest locations in the Ukrainian Carpathian mountains in summer, 1995. An active ozone monitor (Thermo-Electron 49) was also established at the Botanic Garden, together with plants of ozone-sensitive (Bel-W3) and ozone-tolerant (Bel-B) tobacco (Nicotiana tabacum). The highest average hourly ozone concentration monitored in Kiev was 84.4 ppb. From August to September, two-week average concentrations of ozone (Ogawa samplers) in the Carpathian forests ranged from 27.4--51.8 ppb. During a two-week exposure period, Bel-W3 tobacco plants in Kiev had foliar injury on leaf one as highmore » as 62%, with only 13% for Bel-B. Ozone injury was found on a variety of indicator plants in Kiev and at three of the five passive sampler sites in the Carpathians.« less
Dueñas, C; Fernández, M C; Cañete, S; Carretero, J; Liger, E
2002-11-01
Ozone concentrations are valuable indicators of possible health and environmental impacts. However, they are also used to monitor changes and trends in the sources of both ozone and its precursors. For this purpose, the influence of meteorological variables is a confusing factor. This study presents an analysis of a year of ozone concentrations measured in a coastal Spanish city. Firstly, the aim of this study was to perceive the daily, monthly and seasonal variation patterns of ozone concentrations. Diurnal cycles are presented by season and the fit of the data to a normal distribution is tested. In order to assess ozone behaviour under temperate weather conditions, local meteorological variables (wind direction and speed, temperature, relative humidity, pressure and rainfall) were monitored together with ozone concentrations. The main relationships we could observe in these analyses were then used to obtain a regression equation linking diurnal ozone concentrations in summer with meteorological parameters.
Active and passive ozone samplers based on a reaction with a binary reagent.
Hackney, J D; Avol, E L; Linn, W S; Anderson, K R
1994-02-01
Ozone is one of the most toxic common air pollutants (judging from short-term animal and human exposure studies at realistic concentrations) and one of the most difficult and expensive pollutants to control. Because of ozone's high chemical reactivity, its concentrations may vary greatly over short distances, and fixed-site air quality monitors may not accurately estimate exposures of human populations. Epidemiologic research on ozone's long-term health effects has been inconclusive, partly because of the lack of reliable personal exposure information. The objective of this project was to develop a practical personal ozone exposure monitoring technique, and to document its precision and accuracy in actual use by representatives of freely ranging, ozone-exposed populations. The project site, Los Angeles, is the nation's metropolitan area with the highest level of ozone pollution and, thus, probably the most important locale for personal exposure assessment. Our overall strategy was (1) to select the most promising laboratory technique for ozone detection from published literature and private communications; (2) to design and test personal monitors using this technique; and (3) when feasible, to evaluate concurrently alternative methodologies developed by others. As indicated below, parts 1 and 2 of our strategy yielded a limited success with respect to short-term active sampling, i.e., measuring personal ozone exposure levels during one to two hours with a monitor incorporating a battery-powered air pump of the type used in industrial hygiene investigations. The same approach was not successful in passive sampling, i.e., measuring exposure levels during multihour or multiday periods with a light-weight, diffusion-controlled "badge" sampler having no moving parts. Passive badge samplers could be calibrated reasonably well in laboratory exposures to ozone in otherwise pure air, but they greatly overestimated ozone levels in outdoor ambient air. Part 3 of our strategy yielded more promising information on an alternative passive badge design. After testing and rejecting two other possibilities, we chose a binary organic reagents, 3-methyl-2-benzothiazolinone acetone azine with 2-phenylphenol, as the most promising chemical detector of ozone. Filter papers impregnated with the binary reagent develop a characteristic intense pink color when exposed to ozone. The inventors, J.E. Lambert and associates of Kansas State University, had intended only to develop a rough qualitative ozone monitor (Lambert et al. 1989). However, our initial laboratory testing (in exposure chambers containing ozone in otherwise very clean air, away from humans), revealed fairly accurate quantitative response.(ABSTRACT TRUNCATED AT 400 WORDS)
Infrared measurements of atmospheric gases above Mauna Loa, Hawaii, in February 1987
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, F. H.; Blatherwick, R. D.
1988-01-01
The IR absorptions spectra of 13 minor and trace atmospheric gases, recorded by the NOAA's Geophysical Monitoring for Climate Change (GMCC) program station at Mauna Loa, Hawaii, for four days in February 1987, were analyzed to determine simultaneous total vertical column amounts for these gases. Comparisons with other data indicate that the NOAA GMCC surface volume mixing ratios are good measures of the mean volume mixing ratios of these gases in the troposphere and that Mauna Loa is a favorable site for IR monitoring of atmospheric gases. The ozone total columns deduced from the IR spectra agreed with the correlative Umkehr observations.
On the interannual oscillations in the northern temperate total ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krzyscin, J.W.
1994-07-01
The interannual variations in total ozone are studied using revised Dobson total ozone records (1961-1990) from 17 stations located within the latitude band 30 deg N - 60 deg N. To obtain the quasi-biennial oscillation (QBO), El Nino-Southern Oscillation (ENSO), and 11-year solar cycle manifestation in the `northern temperate` total ozone data, various multiple regression models are constructed by the least squares fitting to the observed ozone. The statistical relationships between the selected indices of the atmospheric variabilities and total ozone are described in the linear and nonlinear regression models. Nonlinear relationships to the predictor variables are found. That is,more » the total ozone variations are statistically modeled by nonlinear terms accounting for the coupling between QBO and ENSO, QBO and solar activity, and ENSO and solar activity. It is suggested that large reduction of total ozone values over the `northern temperate` region occurs in cold season when a strong ENSO warm event meets the west phase of the QBO during the period of high solar activity.« less
Gridded global surface ozone metrics for atmospheric chemistry model evaluation
NASA Astrophysics Data System (ADS)
Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To
2015-07-01
The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.
40 CFR 52.2332 - Control Strategy: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control Strategy: Ozone. 52.2332...: Ozone. Determinations—EPA is determining that, as of July 18, 1995, the Salt Lake and Davis Counties ozone nonattainment area has attained the ozone standard based on air quality monitoring data from 1992...
40 CFR 52.2332 - Control Strategy: Ozone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control Strategy: Ozone. 52.2332...: Ozone. Determinations—EPA is determining that, as of July 18, 1995, the Salt Lake and Davis Counties ozone nonattainment area has attained the ozone standard based on air quality monitoring data from 1992...
40 CFR 52.2332 - Control Strategy: Ozone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control Strategy: Ozone. 52.2332...: Ozone. Determinations—EPA is determining that, as of July 18, 1995, the Salt Lake and Davis Counties ozone nonattainment area has attained the ozone standard based on air quality monitoring data from 1992...
40 CFR 52.2332 - Control Strategy: Ozone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control Strategy: Ozone. 52.2332...: Ozone. Determinations—EPA is determining that, as of July 18, 1995, the Salt Lake and Davis Counties ozone nonattainment area has attained the ozone standard based on air quality monitoring data from 1992...
40 CFR 52.2332 - Control Strategy: Ozone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control Strategy: Ozone. 52.2332...: Ozone. Determinations—EPA is determining that, as of July 18, 1995, the Salt Lake and Davis Counties ozone nonattainment area has attained the ozone standard based on air quality monitoring data from 1992...
Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Huang, Zhonghui; Li, Longfeng
2015-01-01
Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control. Copyright © 2014 Elsevier B.V. All rights reserved.
Importance of a Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Zoogman, Peter; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Leblanc, Thierry
2017-01-01
Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME (Global Ozone Monitoring Experiment), GOME-2, and OMI (Ozone Monitoring Instrument). This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's (Global Modeling and Assimilation Office) operational GEOS-5 (Goddard Earth Observing System, Version 5) FP (Forecast Products) model and reanalysis data from MERRA2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 kilometers) and tropospheric (0-10 kilometers) TOLNet (Tropospheric Ozone Lidar Network) observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.
NASA Astrophysics Data System (ADS)
Staehelin, J.; Rieder, H. E.; Maeder, J. A.; Ribatet, M.; Davison, A. C.; Stübi, R.
2009-04-01
Atmospheric ozone protects the biota living at the Earth's surface from harmful solar UV-B and UV-C radiation. The global ozone shield is expected to gradually recover from the anthropogenic disturbance of ozone depleting substances (ODS) in the coming decades. The stratospheric ozone layer at extratropics might significantly increase above the thickness of the chemically undisturbed atmosphere which might enhance ozone concentrations at the tropopause altitude where ozone is an important greenhouse gas. At Arosa, a resort village in the Swiss Alps, total ozone measurements started in 1926 leading to the longest total ozone series of the world. One Fery spectrograph and seven Dobson spectrophotometers were operated at Arosa and the method used to homogenize the series will be presented. Due to its unique length the series allows studying total ozone in the chemically undisturbed as well as in the ODS loaded stratosphere. The series is particularly valuable to study natural variability in the period prior to 1970, when ODS started to affect stratospheric ozone. Concepts developed by extreme value statistics allow objective definitions of "ozone extreme high" and "ozone extreme low" values by fitting the (daily mean) time series using the Generalized Pareto Distribution (GPD). Extreme high ozone events can be attributed to effects of ElNino and/or NAO, whereas in the chemically disturbed stratosphere high frequencies of extreme low total ozone values simultaneously occur with periods of strong polar ozone depletion (identified by statistical modeling with Equivalent Stratospheric Chlorine times Volume of Stratospheric Polar Clouds) and volcanic eruptions (such as El Chichon and Pinatubo).
Analysis of the breakdown of the Antarctic circumpolar vortex using TOMS ozone data
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.
1987-01-01
Climatological analysis of data from the Total Ozone Mapping Spectrometer (TOMS) on the Nimbus 7 satellite has shown that the annual cycles of ozone are very different in the Arctic and Antarctic. The annual cycle in the Arctic is a relatively smooth annual sine wave; but in the Antarctic the circumpolar vortex breaks down rapidly during the Southern Hemisphere spring (September through November), producing a rapid rise in total ozone and a sawtooth-shaped annual cycle. The evolution of the Antarctic total ozone field during the vortex breakdown was studied by computing areally-integrated ozone amounts from the TOMS data. This technique avoids substantial difficulties with using zonally-averaged ozone amounts to study the asymmetric breakdown phenomenon. Variability of total ozone is found to be large both within an individual year and between different years. During the last decade monthly-mean total ozone values in the Antarctic during the springtime vortex breakdown period have decreased dramatically. The ozone-area statistics indicate that the decrease has resulted in part from changes in the timing of the vortex breakdown and resultant ozone increase, which have occurred later during recent years. Analysis of the spatial scales involved in the ozone transport and mixing that occur during the vortex breakdown is now underway. Reliable calculation of diagnostic quantities like areally-integrated ozone is possible only with the high-resolution, two-dimensional, daily coverage provided by the TOMS instrument.
In Brief: Monitoring ozone in Qatar
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-12-01
Qatar is establishing an ozone and pollution monitoring ground station in West Asia, following discussions between the government, the Qatar Foundation, and the United Nations Environment Programme, according to a 19 November announcement. The station will assist in understanding whether the ozone layer is actually recovering after being damaged by ozone-depleting chemicals. Qatar also announced plans to establish a global center of excellence for research and development of ozone and climate-friendly technology, equipment, and appliances. UNEP executive director Achim Steiner said the announcements by Qatar ``will help plug key data gaps relating to information gathering in West Asia and the Gulf to the benefit of the region and the world.''
An extreme anomaly in stratospheric ozone over Europe in 1940-1942
NASA Astrophysics Data System (ADS)
Brönnimann, S.; Luterbacher, J.; Staehelin, J.; Svendby, T. M.
2004-04-01
Reevaluated historical total ozone data reveal extraordinarily high values over several European sites in 1940-1942, concurrent with extreme climatic anomalies at the Earth's surface. Using historical radiosonde data, reconstructed upper-level fields, and total ozone data from Arosa (Switzerland), Dombås, and Tromsø (Norway), this unusual case of stratosphere-troposphere coupling is analyzed. At Arosa, numerous strong total ozone peaks in all seasons were due to unusually frequent upper troughs over central Europe and related ozone redistribution in the lower stratosphere. At the Norwegian sites, high winter total ozone was most likely caused by major stratospheric warmings in Jan./Feb. 1940, Feb./Mar. 1941, and Feb. 1942. Results demonstrate that the dynamically driven interannual variability of total ozone can be much larger than that estimated based on the past 25-40 years.
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Kramarova, N. A.; Bhartia, P. K.; Degenstein, D. A.; Deland, M. T.
2016-01-01
Since October 2004 the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) onboard the Aura satellite have provided over 11 years of continuous tropospheric ozone measurements. These OMI/MLS measurements have been used in many studies to evaluate dynamical and photochemical effects caused by ENSO, the Madden-Julian Oscillation (MJO) and shorter timescales, as well as long-term trends and the effects of deep convection on tropospheric ozone. Given that the OMI and MLS instruments have now extended well beyond their expected lifetimes, our goal is to continue their long record of tropospheric ozone using recent Ozone Mapping Profiler Suite (OMPS) measurements. The OMPS onboard the Suomi National Polar-orbiting Partnership NPP satellite was launched on October 28, 2011 and is comprised of three instruments: the nadir mapper, the nadir profiler, and the limb profiler. Our study combines total column ozone from the OMPS nadir mapper with stratospheric column ozone from the OMPS limb profiler to measure tropospheric ozone residual. The time period for the OMPS measurements is March 2012 present. For the OMPS limb profiler retrievals, the OMPS v2 algorithm from Goddard is tested against the University of Saskatchewan (USask) Algorithm. The retrieved ozone profiles from each of these algorithms are evaluated with ozone profiles from both ozonesondes and the Aura Microwave Limb Sounder (MLS). Effects on derived OMPS tropospheric ozone caused by the 2015-2016 El Nino event are highlighted. This recent El Nino produced anomalies in tropospheric ozone throughout the tropical Pacific involving increases of approximately 10 DU over Indonesia and decreases approximately 5-10 DU in the eastern Pacific. These changes in ozone due to El Nino were predominantly dynamically-induced, caused by the eastward shift in sea-surface temperature and convection from the western to the eastern Pacific.
Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John T.; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas J.; Langford, Andrew O'Neil; Senff, Christoph J.; Leblanc, Thierry; Berkoff, Timothy;
2016-01-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
Evaluating a Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Langford, Andrew; Senff, Chris; Leblanc, Thierry; Berkoff, Timothy;
2016-01-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product.TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Sullivan, J. T.; Liu, X.; Newchurch, M.; Kuang, S.; McGee, T. J.; Langford, A. O.; Senff, C. J.; Leblanc, T.; Berkoff, T.; Gronoff, G.; Chen, G.; Strawbridge, K. B.
2016-12-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
NASA Astrophysics Data System (ADS)
Murtaza, Rabbia; Fahim Khokhar, Muhammad
2016-07-01
Urban air pollution is causing huge number of diseases and deaths annually. Nitrogen dioxide is an important component of urban air pollution and a precursor to particulate matter, ground level ozone, and acid rain. The satellite based measurements of nitrogen dioxide from Ozone Monitoring Instrument (OMI) can help in analyzing spatio temporal variability in ground level concentrations within a large urban area. In this study, the spatial and temporal distributions of tropospheric nitrogen dioxide Vertical Column Densities (VCDs) over Pakistan are presented from 2004 to 2014. The results showed that the winter season is having high nitrogen dioxide levels as compared to summers. The increase can be attributed to the anthropogenic activities especially thermal power generation and traffic count. Punjab is one of the major provinces with high nitrogen dioxide levels followed by Sindh, Khyber Pakhtunkhwa and Balochistan. Six hotspots have been examined in the present study such as Lahore, Islamabad, Karachi, Faisalabad, Okara and Multan. Emissions of nitrogen compounds from thermal power plants and transportation sector represent a significant fraction of the total nitrogen dioxide emissions to the atmosphere.
NASA Technical Reports Server (NTRS)
Campbell, J. W. (Editor)
1981-01-01
The detection of anthropogenic disturbances in the Earth's ozone layer was studied. Two topics were addressed: (1) the level at which a trend in total ozoning is detected by existing data sources; and (2) empirical evidence in the prediction of the depletion in total ozone. Error sources are identified. The predictability of climatological series, whether empirical models can be trusted, and how errors in the Dobson total ozone data impact trend detectability, are discussed.
MULTIPOLLUTANT METHODS - METHODS FOR OZONE AND OZONE PRECURSORS
This task involves the development and testing of methods for monitoring ozone and compounds associated with the atmospheric chemistry of ozone production both as precursors and reaction products. Although atmospheric gases are the primary interest, separation of gas and particl...
Stratospheric column NO2 anomalies over Russia related to the 2011 Arctic ozone hole
NASA Astrophysics Data System (ADS)
Aheyeva, Viktoryia; Gruzdev, Aleksandr; Elokhov, Aleksandr; Grishaev, Mikhail; Salnikova, Natalia
2013-04-01
We analyze data of spectrometric measurements of stratospheric column NO2 contents at mid- and high-latitude stations of Zvenigorod (55.7°N, Moscow region), Tomsk (56.5°N, West Siberia), and Zhigansk (66.8°N, East Siberia). Measurements are done in visual spectral range with zenith-viewing spectrometers during morning and evening twilights. Alongside column NO2 contents, vertical profiles of NO2 are retrieved at the Zvenigorod station. Zvenigorod and Zhigansk are the measurement stations within the Network for the Detection of Atmospheric Composition Change (NDACC). For interpretation of results of analysis of NO2 data, data of Ozone Monitoring Instrument measurements of total column ozone and rawinsonde data are also analyzed and back trajectories calculated with the help of HYSPLIT trajectory model are used. Significant negative anomalies in stratospheric NO2 columns accompanied by episodes of significant cooling of the stratosphere and decrease in total ozone were observed at the three stations in the winter-spring period of 2011. Trajectory analysis shows that the anomalies were caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 have had record magnitudes. Analysis of NO2 vertical profiles at Zvenigorod shows that the NO2 anomaly in 2011 compared to other years anomalies was additionally contributed by the denitrification of the Arctic lower stratosphere. NO2 profiles show that a certain degree of the denitrification probably survived even after the ozone hole.
Ozone and modeled stomatal conductance at a high elevation subalpine site in southeastern Wyoming
Robert C. Musselman; Karl F. Zeller; Nedialko T. Nikolov
1998-01-01
Ozone concentrations have been monitored at the Glacier Lakes Ecosystem Experiment Site (GLEES) in the Snowy Range of the Medicine Bow Mountains 55 km west of Laramie, Wyoming, USA. The site is located at 3,186 m elevation in a large subalpine meadow of a mature subalpine forest near timberline. Continuous ozone and meteorological monitoring are a part of the GLEES...
Ozone in remote areas of the Southern Rocky Mountains
Robert C. Musselman; John L. Korfmacher
2014-01-01
Ozone (O3) data are sparse for remote, non-urban mountain areas of the western U.S. Ozone was monitored 2007e2011 at high elevation sites in national forests in Colorado and northeastern Utah using a portable battery-powered O3 monitor. The data suggest that many of these remote locations already have O3 concentrations that would contribute to exceedance of the current...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... Philadelphia Area's 4th highest daily 8-hour monitored ozone value during the 2009 ozone season at each monitor...-year extensions of the attainment date if: (a) For the first 1-year extension, the area's 4th highest... second 1-year extension, the area's 4th highest daily 8-hour value, averaged over both the original...
Monitoring for ozone injury in West Coast (Oregon, Washington, California) forests in 1998.
Sally Campbell; Gretchen Smith; Pat Temple; John Pronos; Regina Rochefort; Chris Andersen
2000-01-01
In 1998, forest vegetation was monitored for ozone injury on permanent plots in two Sierra Nevada national forests in California, at three locations in Mount Rainier National Park in Washington, and at 68 forest health monitoring (FHM) locations throughout Washington, Oregon, and California. This was the first year that extensive monitoring of forest vegetation for...
External comparisons of reprocessed SBUV/TOMS ozone data
NASA Technical Reports Server (NTRS)
Wellemeyer, C. G.; Taylor, S. L.; Singh, R. R.; Mcpeters, R. D.
1994-01-01
Ozone Retrievals from the Solar Backscatter Ultraviolet (SBUV) Instrument on-board the Nimbus-7 Satellite have been reprocessed using an improved internal calibration. The resulting data set covering November, 1978 through January, 1987 has been archived at the National Space Science Data Center in Greenbelt, Maryland. The reprocessed SBUV total ozone data as well as recalibrated Total Ozone Mapping Spectrometer (TOMS) data are compared with total ozone measurements from a network of ground based Dobson spectrophotometers. The SBUV also measures the vertical distribution of ozone, and these measurements are compared with external measurements made by SAGE II, Umkehr, and Ozonesondes. Special attention is paid to long-term changes in ozone bias.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Surajit; Bandyopadhyay, Goutami
2007-01-01
Present study deals with the mean monthly total ozone time series over Arosa, Switzerland. The study period is 1932-1971. First of all, the total ozone time series has been identified as a complex system and then Artificial Neural Networks models in the form of Multilayer Perceptron with back propagation learning have been developed. The models are Single-hidden-layer and Two-hidden-layer Perceptrons with sigmoid activation function. After sequential learning with learning rate 0.9 the peak total ozone period (February-May) concentrations of mean monthly total ozone have been predicted by the two neural net models. After training and validation, both of the models are found skillful. But, Two-hidden-layer Perceptron is found to be more adroit in predicting the mean monthly total ozone concentrations over the aforesaid period.
NASA Technical Reports Server (NTRS)
McPeters, Richard D.; Labow, Gordon J.; Witte, Jacquelyn; Einaudi, Franco (Technical Monitor)
2000-01-01
One year of balloon-sonde profiles taken from the Southern Hemisphere ADditional OZonesondes (SHADOZ) archive have been compared with data from the Earth Probe Total Ozone Mapping Spectrometer (TOMS) by integrating the balloon profiles to obtain total column ozone. The TOMS backscattered ultraviolet measurement loses sensitivity to ozone in the lowest five to ten kilometers of the atmosphere, limiting the accuracy of the TOMS measurement of tropospheric ozone. This is shown by the increased deviation between TOMS total ozone and the sonde total in the tropical Pacific, where tropospheric ozone is known to be lower than the tropical climatological average. The TOMS underestimate is further confirmed by the correlation of deviations between TOMS and the sondes with changes in lower tropospheric ozone. After allowing for the TOMS offset, the sondes appear to underestimate ozone by three to five percent. This is confirmed by a limited number of comparisons with Dobson data.
Ozone Gardens for the Citizen Scientist
NASA Technical Reports Server (NTRS)
Pippin, Margaret; Reilly, Gay; Rodjom, Abbey; Malick, Emily
2016-01-01
NASA Langley partnered with the Virginia Living Museum and two schools to create ozone bio-indicator gardens for citizen scientists of all ages. The garden at the Marshall Learning Center is part of a community vegetable garden designed to teach young children where food comes from and pollution in their area, since most of the children have asthma. The Mt. Carmel garden is located at a K-8 school. Different ozone sensitive and ozone tolerant species are growing and being monitored for leaf injury. In addition, CairClip ozone monitors were placed in the gardens and data are compared to ozone levels at the NASA Langley Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA. Leaf observations and plant measurements are made two to three times a week throughout the growing season.
Observations of tropospheric trace gases from GOSAT thermal infrared spectra
NASA Astrophysics Data System (ADS)
Ohyama, Hirofumi; Shiomi, Kei; Kawakami, Shuji; Nakajima, Masakatsu; Maki, Takashi; Deushi, Makoto
2013-04-01
Thermal And Near infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS), which is one of the sensors onboard the Greenhouse gases Observing SATellite (GOSAT), measures the sunlight backscattered by the Earth's surface and atmosphere as well as the thermal radiance emitted from the Earth. Atmospheric trace gases such as ozone (O3), water vapor (H2O and HDO), methanol (CH3OH) and ammonia (NH3) are derived from the thermal infrared spectral radiance recorded with the TANSO-FTS by an optimal estimation retrieval approach. TANSO-FTS total ozone columns are compared with Dobson spectrophotometer and Ozone Monitoring Instrument (OMI) data. The TANSO-FTS total ozone retrievals exhibit a positive bias of 3-4% with a root-mean-square difference of 2-6% compared to the Dobson and OMI measurements. We compare TANSO-FTS tropospheric ozone columns to those from ozonesonde data as well as from a three-dimensional chemical-climate model (MRI-CCM2). The TANSO-FTS data have high correlations with the ozonesonde data. The seasonal trends of the retrieved tropospheric ozone are consistent with those of the ozonesonde data. The spatial distribution of the tropospheric ozone from the TANSO-FTS and MRI-CCM2 shows good agreement, especially in the high-level tropospheric ozone regions. We also retrieve tropospheric H2O and HDO profiles simultaneously, accounting for the cross correlations between the water isotopes. The joint retrieval results in precise estimation of the isotope ratio by partial cancellation of systematic errors common to both H2O and HDO. The retrieved profiles and columns are compared with radiosonde, GPS, and ground-based high-resolution FTS data. The temporal and spatial variations of the precipitable water and the isotope ratio are consistent with those of the validation data. Finally, air pollutants such as CH3OH and NH3 are retrieved using the retrieved ozone and water vapor. We present the latitudinal and seasonal variations of CH3OH related to plant growth and biomass burning, and the high-level NH3 in the hot spot areas.
DOAS-based total column ozone retrieval from Phaethon system
NASA Astrophysics Data System (ADS)
Gkertsi, F.; Bais, A. F.; Kouremeti, N.; Drosoglou, Th; Fountoulakis, I.; Fragkos, K.
2018-05-01
This study introduces the measurement of the total ozone column using Differential Optical Absorption Spectroscopy (DOAS) analysis of direct-sun spectra recorded by the Phaethon system. This methodology is based on the analysis of spectra relative to a reference spectrum that has been recorded by the same instrument. The slant column density of ozone associated with the reference spectrum is derived by Langley extrapolation. Total ozone data derived by Phaethon over two years in Thessaloniki are compared with those of a collocated, well-maintained and calibrated, Brewer spectrophotometer. When the retrieval of total ozone is based on the absorption cross sections of (Paur and Bass, 1984) at 228 K, Phaethon shows an average overestimation of 1.85 ± 1.86%. Taking into account the effect of the day-to-day variability of stratospheric temperature on total ozone derived by both systems, the bias is reduced to 0.94 ± 1.26%. The sensitivity of the total ozone retrieval to changes in temperature is larger for Phaethon than for Brewer.
NASA Astrophysics Data System (ADS)
Bahramvash Shams, S.; Walden, V. P.; Oltmans, S. J.; Petropavlovskikh, I. V.; Kivi, R.; Thölix, L.
2017-12-01
The current trend and future concentrations of atmospheric ozone are active areas of research as the effect of the Montreal Protocol is realized. The trend of ozone is due to various chemical and dynamical parameters that create, destroy, and transport atmospheric ozone. These important parameters can be represented by different proxies, but their effects on ozone concentration are not completely understood. Previous studies show that proxies related to ozone have different contributions depending on latitude and altitude. In this study, we use vertical profiles of ozone derived from ozonesondes launched by the NOAA Global Monitoring Division at Summit Station, Greenland from 2005 to 2016. The effects of different proxies on ozone are investigated. Summit Station is located at 3,200 meters above sea level on the Greenland Ice Sheet and is a unique place in the Arctic. We use a stepwise multiple regression (MLR) technique to remove the seasonal cycle of ozone and investigate how the different proxies [solar flux (SF), the Quasi-Biennial Oscillation (QBO), the El Nino-Southern Oscillation index (ENSO), the Arctic Oscillation (AO), eddy heat flux (EHF), the volume of polar stratospheric clouds (VPSC), equivalent latitude (EL), and the tropopause pressure (TP)] affect the vertical distribution of ozone over Summit. The MLR is applied separately to total column ozone (TCO) as well as partial ozone columns (PCO) in the troposphere and the lower, middle, and upper stratosphere. Our results show that dynamical processes are important contributors to ozone concentrations over Summit Station. Tropospheric pressure and the QBO are effective predictors of ozone in the troposphere, lower and middle stratosphere, and to the TCO. The VPSC is an important contributor to changes in ozone in the middle stratosphere. AO explains part of low/mid stratospheric and TCO ozone cycle. A simulation model of ozone over Summit built from the MLR results explains the seasonal cycle and the trends in TCO over Summit with a correlation coefficient (R2) of 82% for TCO. Simulations of PCO in the lower and middle stratosphere range from R2 = 62% to 85%.
The study of international and interstate transport of ozone in Yuma, Arizona
NASA Astrophysics Data System (ADS)
Li, Y.; Sonenberg, M.; Wood, J. L.; Pearson, C. R.; Colson, H.; Malloy, J. W.; Pace, M.; Mao, F.; Paul, J.; Busby, B. R.; Parkey, B.; Drago, L.; Franquist, T. S.
2017-12-01
In October 2015, EPA reduced the National Ambient Air Quality Standards (NAAQS) for ozone from 75 parts per billion (ppb) to 70 ppb. Meeting the new standard may be extremely challenging for some areas, including rural Yuma County in the State of Arizona. Yuma County faces unique air quality challenges, since it borders the Mexican states of Baja California and Sonora, and the State of California. The present study investigates the contribution of international and interstate transport of ozone and ozone precursors to episodes of elevated ozone concentrations in Yuma. The Arizona Department of Environmental Quality (ADEQ) merged HYSPLIT modeling outputs with two years of hourly ground ozone monitor data to investigate the potential area contributions to ozone concentrations in Yuma County. This analysis found that elevated ozone concentrations in Yuma in 2014 and 2015 frequently coincided with back-trajectories over both California and Mexico, typically favoring Mexico during the spring. In May 2017, ADEQ installed a new ozone monitor in San Luis Rio Colorado, Sonora, Mexico (Latitude: 32.4665, Longitude: -114.7688), which is 29 km south of ozone site in Yuma County. We will present the first simultaneous observations of ozone seasons in Sonora, Mexico, eastern California, and Yuma.
Lü, Chun-guang; Wang, Wei-he; Yang, Wen-bo; Tian, Qing-iju; Lu, Shan; Chen, Yun
2015-11-01
New hyperspectral sensor to detect total ozone is considered to be carried on geostationary orbit platform in the future, because local troposphere ozone pollution and diurnal variation of ozone receive more and more attention. Sensors carried on geostationary satellites frequently obtain images on the condition of larger observation angles so that it has higher requirements of total ozone retrieval on these observation geometries. TOMS V8 algorithm is developing and widely used in low orbit ozone detecting sensors, but it still lack of accuracy on big observation geometry, therefore, how to improve the accuracy of total ozone retrieval is still an urgent problem that demands immediate solution. Using moderate resolution atmospheric transmission, MODT-RAN, synthetic UV backscatter radiance in the spectra region from 305 to 360 nm is simulated, which refers to clear sky, multi angles (12 solar zenith angles and view zenith angles) and 26 standard profiles, moreover, the correlation and trends between atmospheric total ozone and backward scattering of the earth UV radiation are analyzed based on the result data. According to these result data, a new modified initial total ozone estimation model in TOMS V8 algorithm is considered to be constructed in order to improve the initial total ozone estimating accuracy on big observation geometries. The analysis results about total ozone and simulated UV backscatter radiance shows: Radiance in 317.5 nm (R₃₁₇.₅) decreased as the total ozone rise. Under the small solar zenith Angle (SZA) and the same total ozone, R₃₁₇.₅ decreased with the increase of view zenith Angle (VZA) but increased on the large SZA. Comparison of two fit models shows: without the condition that both SZA and VZA are large (> 80°), exponential fitting model and logarithm fitting model all show high fitting precision (R² > 0.90), and precision of the two decreased as the SZA and VZA rise. In most cases, the precision of logarithm fitting mode is about 0.9% higher than exponential fitting model. With the increasing of VZA or SZA, the fitting precision gradually lower, and the fall is more in the larger VZA or SZA. In addition, the precision of fitting mode exist a plateau in the small SZA range. The modified initial total ozone estimating model (ln(I) vs. Ω) is established based on logarithm fitting mode, and compared with traditional estimating model (I vs. ln(Ω)), that shows: the RMSE of ln(I) vs. Ω and I vs. ln(Ω) all have the down trend with the rise of total ozone. In the low region of total ozone (175-275 DU), the RMSE is obvious higher than high region (425-525 DU), moreover, a RMSE peak and a trough exist in 225 and 475 DU respectively. With the increase of VZA and SZA, the RMSE of two initial estimating models are overall rise, and the upraising degree is ln(I) vs. Ω obvious with the growing of SZA and VZA. The estimating result by modified model is better than traditional model on the whole total ozone range (RMSE is 0.087%-0.537% lower than traditional model), especially on lower total ozone region and large observation geometries. Traditional estimating model relies on the precision of exponential fitting model, and modified estimating model relies on the precision of logarithm fitting model. The improvement of the estimation accuracy by modified initial total ozone estimating model expand the application range of TOMS V8 algorithm. For sensor carried on geostationary orbit platform, there is no doubt that the modified estimating model can help improve the inversion accuracy on wide spatial and time range This modified model could give support and reference to TOMS algorithm update in the future.
Insights into Tropical Tropospheric Ozone from Satellite and Sonde Data
NASA Technical Reports Server (NTRS)
Thompson, Anne M.
2003-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The data reside at: http://code916.gsfc.nasa.gov/Data_services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this. In addition to leading the SHADOZ network, we have been producing near-real tropical tropospheric ozone ('TTO') data from the Total Ozone Mapping Spectrometer (TOMS) since 1997 with Prof. Hudson and students at the University of Maryland: http://metosrv2.umd.edu/tropo. Further perspective on the complexity of tropospheric ozone variability is shown using satellite observations.
Multiannual tropical tropospheric ozone columns and the case of the 2015 el Niño event
NASA Astrophysics Data System (ADS)
Leventidou, Elpida; Eichmann, Kai-Uwe; Weber, Mark; Burrows, John P.
2016-04-01
Stratospheric ozone is well known for protecting the surface from harmful ultraviolet solar radiation whereas ozone in the troposphere plays a more complex role. In the lower troposphere ozone can be extremely harmful for human health as it can oxidize biological tissues and causes respiratory problems. Several studies have shown that the tropospheric ozone burden (300±30Tg (IPCC, 2007)) increases by 1-7% per decade in the tropics (Beig and Singh, 2007; Cooper et al., 2014) which makes the need to monitor it on a global scale crucial. Remote sensing from satellites has been proven to be very useful in providing consistent information of tropospheric ozone concentrations over large areas. Tropical tropospheric ozone columns can be retrieved with the Convective Cloud Differential (CCD) technique (Ziemke et al. 1998) using retrieved total ozone columns and cloud parameters from space-borne observations. We have developed a CCD-IUP algorithm which was applied to GOME/ ERS-2 (1995-2003), SCIAMACHY/ Envisat (2002-2012), and GOME-2/ MetOpA (2007-2012) weighting function DOAS (Coldewey-Egbers et al., 2005, Weber et al., 2005) total ozone data. A unique long-term record of monthly averaged tropical tropospheric ozone columns (20°S - 20°N) was created starting in 1996. This dataset has been extensively validated by comparisons with SHADOZ (Thompson et al., 2003) ozonesonde data and limb-nadir Matching (Ebojie et al. 2014) tropospheric ozone data. The comparison shows good agreement with respect to range, inter-annual variation, and variance. Biases where found to be within 5DU and the RMS errors less than 10 DU. This 17-years dataset has been harmonized into one consistent time series, taking into account the three instruments' difference in ground pixel size. The harmonised dataset is used to determine tropical tropospheric ozone trends and climatological values. The 2015 el Niño event has been characterised as one of the top three strongest el Niños since 1950. El Niño events are major sources of the tropospheric ozone variability (Ziemke and Chandra,2003) due to changes in the convection pattern and large-scale circulation in the tropical Pacific region. More clouds and rainfall appear in the central and/or eastern Pacific whereas more dryness over Indonesia and as a result strongest forest fires. These effects cause enhanced tropospheric ozone columns over the Indonesian region and reduced over the eastern Pacific. The focus of this work is to present the first results of tropospheric ozone trends the last 17 years as long as to understand and quantify the tropical tropospheric ozone (TTCO) anomalies due to the 2015 el Niño event.
Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record
NASA Technical Reports Server (NTRS)
Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.
2014-01-01
The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.
Ozone concentration characteristics at a high-elevation forest site
G. Wooldridge; K. Zeller; R. Musselman
1997-01-01
Atmospheric ozone concentrations have been monitored at a subalpine forest ecosystem site, 3180m above mean sea level (msl), and at a 2680m msl forest-steppe ecotone site 15km to the southeast. Ozone concentrations were monitored at three heights above the ground on a 30m tower at the higher elevation site, and on a 10m tower in a large meadow downwind of this site....
Balloon-Borne Observations of BrO in the Tropical Upper Troposphere/Lower Stratosphere
NASA Astrophysics Data System (ADS)
Kritten, L.; Butz, A.; Dorf, M.; Kreycy, S.; Prados, C.; Pfeilsticker, K.
2009-04-01
Due to the ozone destroying capabilities of bromine bearing compounds, the stratospheric budget of inorganic bromine is of major interest for modelling ozone depletion and assessing the future evolution of the ozone layer. It has recently been shown that the contribution of very short-lived substances (VSLS) to the bromine budget enhances ozone depletion at mid-latitudes and polar regions. Here we report for the first time on observations of the diurnal variation in stratospheric BrO by means of balloon-borne limb scanning observations. When combined with photochemical modelling, new insight into the photochemistry of stratospheric bromine and its budget is obtained. In particular we report on observations made during three balloon soundings at tropical northeastern Brazil (5°S, 43°W) in June 2005 and June 2008 from deployments of the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectrometer), IASI (Infrared Atmospheric Sounding Interferometer) and MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) payloads. Our measurements reveal that the diurnal cycle of BrO is primarily controlled by the reaction with NO2, and the photolysis of BrONO2 at daytime. Assimilation of our BrO measurements to photochemical modelling indicates that total stratospheric bromine is in agreement with the amount inferred by our direct sun observations, therefore providing further evidence for the importance of brominated very short-lived species (VSLS) for total stratospheric bromine.
Galvão, Elson Silva; Santos, Jane Meri; Reis Junior, Neyval Costa; Stuetz, Richard Michael
2016-09-01
Speciation and the influence on the ozone formation potential (OFP) from volatile organic compounds (VOCs) have been studied between February June 2013 in Vitória, ES, Brazil. Passive samplers were installed at three air-quality monitoring stations and a total of 96 samplings were collected. A total of 78 VOCs were characterized by gas chromatograph-mass spectrometer. The predominant group was organic acids, followed by alcohols and substituted aromatics and 14 precursor species were quantified. An analysis correlating concentrations with wind direction was conducted to identify possible sources. The OFP was calculated applying the scale of maximum incremental reactivity proposed by Carter.[ 23 ] Ozone precursors with the greatest OFP such as undecane, toluene, ethylbenzene and m, p-xylene compounds were the most abundant with means of 0.855, 0.365, 0.259 and 0.289 µg m(-3), respectively. The benzene, toluene, ethylbenzene and xylene (BTEX) group was found below the limits considered harmful to the health of the population living in Vitória. The OFP calculated for the precursors group was 22.55 µg m(-3) for the rainy season and 32.11 µg m(-3) for the dry season. The VOC/NOx ratio in Vitória is approximately 1.71, indicating that the region has a VOC-limiting condition for the production of ozone.
Li, Jianzhong; Li, Qingyang; Dyke, Jason V; Dasgupta, Purnendu K
2008-01-15
The bleaching action of ozone on indigo and related compounds is well known. We describe sensitive automated instrumentation for measuring ambient ozone. Air is sampled around a porous polypropylene tube filled with a solution of indigotrisulfonate. Light transmission through the tube is measured. Light transmission increases as O(3) diffuses through the membrane and bleaches the indigo. Evaporation of the solution, a function of the RH and the air temperature, can, however cause major errors. We solve this problem by adding an O(3)-inert dye that absorbs at a different wavelength. Here we provide a new algorithm for this correction and show that this very inexpensive instrument package (controlled by a BASIC Stamp Microcontroller with an on-board data logger, total parts cost US$ 300) provides data highly comparable to commercial ozone monitors over an extended period. The instrument displays an LOD of 1.2ppbv and a linear span up to 300ppbv for a sampling time of 1min. For a sampling time of 5min, the respective values are 0.24ppbv and 100ppbv O(3).
Haiganoush K. Preisler; Shiyuan (Sharon) Zhong; Annie Esperanza; Timothy J. Brown; Andrzej Bytnerowicz; Leland Tarnay
2010-01-01
Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an...
NASA Astrophysics Data System (ADS)
Spychala, M. D.; Morris, G. A.; Lefer, B. L.; Rappenglueck, B.; Cohan, D. S.; zhou, W.
2012-12-01
The Tropospheric Ozone Pollution Project (TOPP) at Rice University (2004 - 2006) and the University of Houston (2006 - present) has gathered > 400 profiles of ozone, temperature, pressure, and relative humidity, and > 250 of those also have wind speed and wind direction near the core of the City of Houston, Texas. Houston continues to be plagued with difficulty in coming into compliance with EPA National Ambient Air Quality Standards (NAAQS) due to a combination of its geographic location, large commuter population, significant petrochemical and energy production, and favorable weather patterns. An outstanding question remains the relative partitioning of ozone between local and remote, anthropogenic and natural sources. In this presentation, we use TOPP ozone profiles to determine a "background" ozone concentration and compare this measure with surface monitor "background" ozone as determined from upwind and downwind Continuous Air Monitoring Stations (CAMS) in an effort to further our understanding of this partitioning. For periods studied with the Community Multiscale Air Quality (CMAQ) Model, we also compare the sonde and surface "background" ozone with that suggested by the model.
The role of polar stratospheric clouds on total ozone minihole events
NASA Technical Reports Server (NTRS)
Sabutis, Joseph L.
1989-01-01
Using seven years of data from tha SAM 2 (Stratospheric Aerosol Measurement 2) and TOMS (Total Ozone Mapping Spectrometer) instruments, along with 70 mbar temperatures extracted from an NMC analysis, the effect of the austral spring polar stratospheric clouds (PSC) on the formation of total ozone miniholes is investigated. A total ozone minihole event is designated as the rapid decrease of more than 20 DU of total ozone over a time period of a day and a spatial extent of approximately 1000 by 1000 km. The severe decrease of total ozone during these minihole events could be explained in part by PSC being formed at altitudes of 10 to 24 km and preventing scattered UV radiation from ozone below the cloud from reaching the TOMS instrument. A result of the cloud's opaqueness is that the total ozone retrieval from TOMS data would underestimate the ozone column in the vicinity of the PSC. The approach to investigate the effect of PSC on total ozone was to use SAM 2 aerosol extinction values in conjunction with NMC stratospheric temperatures to determine if PSC are present during total ozone minihole events occurring during August and September, 1979 to 1986. The minihole events during these seven years were divided into two types: type 1, where the minihole region of 24 hour darkness from regions exposed to sunlight, and type 2, where the minihole occurred 5 to 10 degrees north of the terminator. The presence of PSC in a given region was ascertained by a maximum aerosol extinction greater than .006/km occurring with a temperature less than 189 K. It is found that PSC are consistently present with type 2 minihole events. This is contrasted with PSC rarely occurring in the same vicinity of type 2 miniholes. Also observed of that type 1 minihole events have minimum total ozone values which are on the average 3 to 10 DU smaller than type 2 miniholes. It can be concluded that care must be taken when trying to deduce a dynamical explanation of minihole events near the polar terminator and the role of PSC must be accounted for in type 1 minihole formation.
HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. I. THE RCT CONCEPT
The ozonation of model systems and several natural waters was examined in bench-scale batch experiments. In addition to measuring the concentration of ozone (03), the rate of depletion of an in situ hydroxyl radical probe compound was monitored, thus providing information on the ...
NASA Astrophysics Data System (ADS)
Duetsch, H. U.; Staehelin, J.
1989-12-01
This paper discusses the longest total ozone record in the world, started by Goetz (using a simple cadmium cell) at Arosa, Switzerland, in 1926 and supplemented by later measurements at Arosa with modern instruments and by ozone soundings at Payerne, Switzerland. These data yield the concurrent vertical distribution which makes it possible to distinguish between regional and hemispheric scale processes influencing total ozone. These measurements also make it possible to derive the height distribution of the ozone loss since 1970 and to derive indications of the extent of anthropogenic contribution to the changes. The most intense negative trends are found around the level of the ozone peak and in the upper stratosphere, whereby the former yields the dominant contribution to the total ozone loss.
NASA's Experience with UV Remote Using SBUV and TOMS Instruments
NASA Technical Reports Server (NTRS)
Bhartia, P. K.
1999-01-01
This paper will discuss key features of the NASA algorithm that has been used to produce several highly popular geophysical products from the Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) series of instruments. Since these instruments have a limited number of wavelengths, many innovative algorithmic approaches have been developed over the years to derive maximum information from these sensors. We will use Global Ozone Monitoring Experiment (GOME) data to test the assumptions made in these algorithms and show what additional information is contained in the GOME hyperspectral data. At NASA we are using this information to improve the SBUV and TOMS algorithms, as well as to develop more efficient algorithms to process GOME data.
Fine-Scale Comparison of TOMS Total Ozone Data with Model Analysis of an Intense Midwestern Cyclone
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Gallus, William A., Jr.; Stanford, John L.; Brown, John M.
2000-01-01
High-resolution (approx. 40 km) along-track total column ozone data from the Total Ozone Mapping Spectrometer (TOMS) instrument are compared with a high-resolution mesoscale numerical model analysis of an intense cyclone in the Midwestern United States. Total ozone increased by 100 DU (nearly 38%) as the TOMS instrument passed over the associated tropopause fold region. Complex structure is seen in the meteorological fields and compares well with the total ozone observations. Ozone data support the meteorological analysis showing that stratospheric descent was confined to levels above approx. 600 hPa; significant positive potential vorticity at lower levels is attributable to diabetic processes. Likewise, meteorological fields show that two pronounced ozone streamers extending north and northeastward into Canada at high levels are not bands of stratospheric air feeding into the cyclone; one is a channel of exhaust downstream from the system, and the other apparently previously connected the main cyclonic circulation to a southward intrusion of polar stratospheric air and advected eastward as the cut-off cyclone evolved. Good agreement between small-scale features in the model output and total ozone data underscores the latter's potential usefulness in diagnosing upper tropospheric/lower stratospheric dynamics and kinematics.
NASA Astrophysics Data System (ADS)
Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.
2016-07-01
Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within ±1 % of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.
NASA Technical Reports Server (NTRS)
Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.
2016-01-01
Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within 1% of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.
NASA Astrophysics Data System (ADS)
Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey
2015-11-01
We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5 °N, 85.0 °E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of TOMS satellite data for the period 1979- 1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk after a series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, researchers record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.
NASA Technical Reports Server (NTRS)
Vanicek, Karel
1994-01-01
Backward reevaluation of long-term total ozone measurements from the Solar and Ozone Observatory of Czech Hydrometeorological Institute at Hradec Kralove, Czechoslovakia, was performed for the period 1962-1990. The homogenization was carried out with respect to the calibration level of the World Primary Standard Spectrophotometer No. 83 - WPSS by means of day-by-day recalculations of more than 25,000 individual measurements using the R-N tables reconstructed after international comparisons and regular standard lamp tests of the Dobson spectrophotometer No. 74. The results showed significant differences among the recalculated data and those original ones published in the bulletins Ozone Data for the World. In the period 1962-1979 they reached 10-19 D.U. (3.0-5.5%) for annual averages and even 26 D.U. (7.0%) for monthly averages of total ozone. Such differences exceed several times accuracy of measuring and can significantly influence character of trends of total ozone in Central Europe. Therefore the results from Hradec Kralove support the calls for reevaluation of all historical Dobson total ozone data sets at individual stations of Global Ozone Observing System.
Operational surface UV radiation product from GOME-2 and AVHRR/3 data
NASA Astrophysics Data System (ADS)
Kujanpää, J.; Kalakoski, N.
2015-05-01
The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop) satellites. The input total ozone product is generated by the German Aerospace Center (DLR) also within the O3M SAF framework. Polar orbiting satellites provide global coverage but infrequent sampling of the diurnal cloud cover. The diurnal variation of the surface UV radiation is extremely strong due to modulation by solar elevation and rapidly changing cloud cover. At the minimum, one sample of the cloud cover in the morning and another in the afternoon are needed to derive daily maximum and daily integrated surface UV radiation quantities. This is achieved by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High Resolution Radiometer (AVHRR/3) instrument aboard both Metop in the morning orbit (daytime descending node around 09:30 LT) and Polar Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Administration (NOAA) in the afternoon orbit (daytime ascending node around 14:30 LT). In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast) using commercial telecommunication satellites for broadcasting the data to the user community. The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated UVB and UVA radiation, solar noon UV Index and daily maximum photolysis frequencies of ozone and nitrogen dioxide at the surface level. The quantities are computed in a 0.5° × 0.5° regular latitude-longitude grid and stored as daily files in the hierarchical data format (HDF5) within two weeks from sensing. The product files are archived in the O3M SAF distributed archive and can be ordered via the EUMETSAT Data Centre.
The 1987 Airborne Antarctic Ozone Experiment: the Nimbus-7 TOMS Data Atlas
NASA Technical Reports Server (NTRS)
Krueger, Arlin J.; Ardanuy, Philip E.; Sechrist, Frank S.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Galimore, Reginald N.
1988-01-01
Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the 1987 Airborne Antarctic Ozone Experiment. The near-real-time TOMS total ozone observations were suppled within hours of real time to the operations center in Punta Arenas, Chile, over a telecommunications network designed specifically for this purpose. The TOMS data preparation and method of transfer over the telecommunications links are reviewed. This atlas includes a complete set of the near-real-time TOMS orbital overpass data over regions around the Palmer Peninsula of Antarctica for the period of August 8 through September 29, 1987. Also provided are daily polar orthographic projections of TOMS total ozone measurements over the Southern Hemisphere from August through November 1987. In addition, a chronology of the salient points of the experiment, along with some latitudinal cross sections and time series at locations of interest of the TOMS total ozone observations are presented. The TOMS total ozone measurements are evaluated along the flight tracks of each of the ER-2 and DC-8 missions during the experiment. The ozone hole is shown here to develop in a monotonic progression throughout late August and September. The minimum total ozone amount was found on 5 October, when its all-time lowest value of 109 DU is recorded. The hole remains well defined, but fills gradually from mid-October through mid-November. The hole's dissolution is observed here to begin in mid-November, when it elongates and begins to rotate. By the end of November, the south pole is no longer located within the ozone hole.
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Olson, Jennifer R.; Sillman, Sanford; Martin, Randall V.; Lamsal, Lok; Hu, Yongtao; Pickering, Kenneth E.; Retscher, Christian; Allen, Dale J.;
2010-01-01
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios less than 1 and NOx at Ratios greater than 2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria. the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2. and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g .. Chicago). the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g ., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.
Retrieval of Total Ozone Amounts from Zenith-Sky Intensities in the Ultraviolet Region
NASA Technical Reports Server (NTRS)
Bojkov, B. R.; Bhartia, P. K.; Hilsenrath, E.; Labow, G. J.
2004-01-01
A new method to determine the total ozone column from zenith-sky intensities in the ultraviolet region has been developed for the Shuttle Solar Backscatter Ultraviolet Spectrometer (SSBUV) operating at the NASA Goddard Space Flight Center. The total ozone column amounts are derived by comparing the ratio of measured intensities from three wavelengths with the equivalent ratios calculated by a radiative transfer model. The differences between the retrieved ozone column amounts and the collocated Brewer double monochromator are within 2% for the measurement period beginning in April 2001. The methodology, as well as the influences of the ozone profiles, aerosols, surface albedo, and the solar zenith angle on the retrieved total ozone amounts will be presented.
Regional and local background ozone in Houston during Texas Air Quality Study 2006
NASA Astrophysics Data System (ADS)
Langford, A. O.; Senff, C. J.; Banta, R. M.; Hardesty, R. M.; Alvarez, R. J.; Sandberg, Scott P.; Darby, Lisa S.
2009-04-01
Principal Component Analysis (PCA) is used to isolate the common modes of behavior in the daily maximum 8-h average ozone mixing ratios measured at 30 Continuous Ambient Monitoring Stations in the Houston-Galveston-Brazoria area during the Second Texas Air Quality Study field intensive (1 August to 15 October 2006). Three principal components suffice to explain 93% of the total variance. Nearly 84% is explained by the first component, which is attributed to changes in the "regional background" determined primarily by the large-scale winds. The second component (6%) is attributed to changes in the "local background," that is, ozone photochemically produced in the Houston area and spatially and temporally averaged by local circulations. Finally, the third component (3.5%) is attributed to short-lived plumes containing high ozone originating from industrial areas along Galveston Bay and the Houston Ship Channel. Regional background ozone concentrations derived using the first component compare well with mean ozone concentrations measured above the Gulf of Mexico by the tunable profiler for aerosols and ozone lidar aboard the NOAA Twin Otter. The PCA regional background values also agree well with background values derived using the lowest daily 8-h maximum method of Nielsen-Gammon et al. (2005), provided the Galveston Airport data (C34) are omitted from that analysis. The differences found when Galveston is included are caused by the sea breeze, which depresses ozone at Galveston relative to sites further inland. PCA removes the effects of this and other local circulations to obtain a regional background value representative of the greater Houston area.
USE OF AUXILIARY DATA FOR SPATIAL INTERPOLATION OF OZONE EXPOSURE IN SOUTHEASTERN FORESTS
In order to assess the impact of tropospheric ozone on forests, it is necessary to quantify ozone exposure on regional scales. Since ozone monitoring stations are widely scattered and mostly concentrate in urban and suburban areas, some form of spatial interpolation is necessary ...
Zhao, H; Stephens, B
2016-08-01
Recent experiments have demonstrated that outdoor ozone reacts with materials inside residential building enclosures, potentially reducing indoor exposures to ozone or altering ozone reaction byproducts. However, test methods to measure ozone penetration factors in residences (P) remain limited. We developed a method to measure ozone penetration factors in residences under infiltration conditions and applied it in an unoccupied apartment unit. Twenty-four repeated measurements were made, and results were explored to (i) evaluate the accuracy and repeatability of the new procedure using multiple solution methods, (ii) compare results from 'interference-free' and conventional UV absorbance ozone monitors, and (iii) compare results against those from a previously published test method requiring artificial depressurization. The mean (±s.d.) estimate of P was 0.54 ± 0.10 across a wide range of conditions using the new method with an interference-free monitor; the conventional monitor was unable to yield meaningful results due to relatively high limits of detection. Estimates of P were not clearly influenced by any indoor or outdoor environmental conditions or changes in indoor decay rate constants. This work represents the first known measurements of ozone penetration factors in a residential building operating under natural infiltration conditions and provides a new method for widespread application in buildings. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Long-term ozone and temperature correlations above SANAE, Antarctica
NASA Technical Reports Server (NTRS)
Bodeker, Gregory E.; Scourfield, Malcolm W. J.
1994-01-01
A significant decline in Antarctic total column ozone and upper air temperatures has been observed in recent years. Furthermore, high correlations between monthly mean values of ozone and stratospheric temperature have been measured above Syowa, Antarctica. For the observations reported here, data from TOMS (Total Ozone Mapping Spectrometer) aboard the Nimbus 7 satellite have been used to examine the 1980 to 1990 decrease in total column ozone above the South African Antarctic base of SANAE (70 deg 18 min S, 2 deg 21 min W). The cooling of the Antarctic stratosphere above SANAE during this period has been investigated by examining upper air temperatures at the 150, 100, 70, 50, and 30 hPa levels obtained from daily radiosonde balloon launches. Furthermore, these two data sets have been used to examine long-term, medium-term, and short-term correlations between total column ozone and the temperatures at each of the five levels. The trend in SANAE total column ozone has been found to be -4.9 DU/year, while upper air temperatures have been found to decrease at around 0.3 C/year. An analysis of monthly average SANAE total column ozone has shown the decrease to be most severe during the month of September with a trend of -7.7 DU/year. A strong correlation (r(exp 2) = 0.92) has been found between yearly average total column ozone and temperature at the 100 hPa level. Daily ozone and temperature correlations show high values from September to November, at a time when the polar vortex is breaking down.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angell, J.K.
1990-09-01
Based on data through 1989, comparisons are made between the variation of total ozone at Resolute, Canada (75{degree}N) and South Pole, and the variation of low-stratospheric temperature at Singapore (reflecting the equatorial QBO) and SST in eastern equatorial Pacific (reflecting the ENSO phenomenon). Total-ozone variations at Resolute have been more closely related to the QBO, whereas the total-ozone variations at South Pole appear to have been almost equally related to QBO and SST. When the average of 50 mb and 30 mb June-July-August (JJA) values of Singapore temperature ({bar T}) increased from one year to the next, the decrease inmore » South Pole springtime total ozone for the same years averaged 21 {plus minus} 14% greater than when {bar T} decreased. When the JJA values of equatorial SST increased from one year to the next, the decrease in South Pole springtime total ozone for the same years averaged 18 {plus minus} 12% greater than when SST decreased. In the 6 cases when JJA values of both Singapore {bar T} and equatorial SST increased from one year to the next, the spring values of South Pole total ozone have decreased, whereas in the 6 cases when both {bar T} and SST decreased from one year to the next, South Pole total ozone has increased. Both Singapore {bar T} and equatorial SST will probably be warmer in JJA of 1990 than they were in JJA of 1989 suggesting, based on these previous relations, an even deeper Antarctic ozone hole in 1990 than in 1989 and ending the biennial variation in depth of the hole of the last 6 years.« less
Fu, Ywu-Jang; Qui, Hsuan-zhi; Liao, Kuo-Sung; Lue, Shingjiang Jessie; Hu, Chien-Chieh; Lee, Kueir-Rarn; Lai, Juin-Yih
2010-03-16
A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.
NASA Astrophysics Data System (ADS)
Noreen, Asma; Fahim Khokhar, Muhammad; Murtaza, Rabbia; Zeb, Naila
2016-07-01
Pakistan is a semi-arid, agricultural country located in Indian Sub-continent, Asia. Due to exponential population growth, poor control and regulatory measures and practices in industries, it is facing a major problem of air pollution. The concentration of greenhouse gases and aerosols are showing an increasing trend in general. One of these greenhouse gases is tropospheric ozone, one of the criteria pollutant, which has a radiative forcing (RF) of about 0.4 ± 0.2 Wm-2, contributing about 14% of the present total RF. Spatial distribution and temporal evolution of tropospheric ozone concentration over Pakistan during 2004 to 2014 was studied by using combined OMI/MLS product, which was derived by tropospheric ozone residual (TOR) method. Results showed an overall increase of 3.2 ± 2.2 DU in tropospheric ozone concentration over Pakistan since October 2004. The mean spatial distribution showed high concentrations of ozone in the Punjab and southern Sindh where there is high population densities along with rapid urbanization and enhanced anthropogenic activities. The seasonal variations were observed in the provinces of the country and TO3 VCDs were found to be high during summer while minimum during winter. The statistical analysis by using seasonal Mann Kendal test also showed strong positive trends over the four provinces as well as in major cities of Pakistan. These variations were driven by various factors such as seasonality in UV-B fluxes, seasonality in ozone precursor gases such as NOx and VOCs and agricultural fire activities in Pakistan. A strong correlation of 97% was found between fire events and tropospheric ozone concentration over the country. The results also depicted the influence of UV-B radiations on the tropospheric ozone concentration over different regions of Pakistan especially in Baluchistan and Sindh provinces.
Ozone climatology series. Volume 1: Atlas of total ozone, April 1970 - December 1976
NASA Technical Reports Server (NTRS)
Heath, D. F.; Fleig, A. J.; Miller, A. J.; Rogers, T. G.; Nagatani, R. M.; Bowman, H. D., II; Kaveeshwar, V. G.; Klenk, K. F.; Bhartia, P. K.; Lee, K. D.
1982-01-01
Contours and gridded values are given for seven years of monthly mean total ozone data derived from observations with the Backscattered Ultraviolet instrument on Nimbus-4 for the Northern and Southern Hemispheres. The instrument, algorithm, uncertainties in derived ozone and systematic changes in the bias with respect to the international groundbased ozone network of Dobson instruments, are discussed.
Variability in total ozone associated with baroclinic waves
NASA Technical Reports Server (NTRS)
Mote, Philip W.; Holton, James R.; Wallace, John M.
1991-01-01
One-point regression maps of total ozone formed by regressing the time series of bandpass-filtered geopotential height data have been analyzed against Total Ozone Mapping Spectrometer data. Results obtained reveal a strong signature of baroclinic waves in the ozone variability. The regressed patterns are found to be similar in extent and behavior to the relative vorticity patterns reported by Lim and Wallace (1991).
On the Relation between Atmospheric Ozone and Sunspot Number.
NASA Astrophysics Data System (ADS)
Angell, J. K.
1989-11-01
Based on data from the Dobson network, between 1960 and 1987 there has been a zero-lag correlation of 0.48 between the 112 unsmoothed seasonal values of sunspot number and global total ozone, significant at the 1% level taking into account the considerable serial correlation in these data. The maximum correlation of 0.54 is found when sunspot number lags total ozone by two seasons, the result mainly of a phase difference early in the record. On the basis of only 2 1/2 solar cycles, the global total ozone has increased by 1.4% for an increase in sunspot number of 100. The correlation between sunspot number and total ozone has been significant at the 5% level in north temperate and tropical zones-the zones with the most representative data. In the north temperate zone, the correlation between sunspot number and total ozone has been much higher in the west-wind phase of the 50 mb equatorial QBO than in the east-wind phase, but in the tropics the correlation has been much higher in the east-wind phase. Umkehr measurements between 1966 and 1987 in the north temperate zone indicate that the correlation between sunspot number and ozone amount has been higher (0.35, almost significant at the 5% level) in the low stratosphere where transport processes dominate than in the high stratosphere where photochemical processes dominate. During 1932-60 there was a significant correlation of 0.35 between sunspot number and Arosa total ozone 14 seasons later, very different from the nearly in-phase relation found after 1960. Considered is the possible impact of long-term change in transport processes in the low stratosphere on the total-ozone record at a single station such as Arosa.Between 1966 and 1985 there has been very good agreement between observed global total ozone, and global total ozone calculated from three 2-D stratospheric models that take into account the solar cycle, the time variation in trace gases, and nuclear tests; both observed and calculated variations are closely related to the variation in sunspot number. Between 1960 and 1966, however, the agreement between observation and calculation is poor, the models indicating a pronounced minimum in global total ozone in 1963 due to the nuclear tests of the early 1960s-a minimum not found in this analysis. The observed variation in global total ozone has been compared with the variation predicted by one of the models up to the sunspot maximum in 1990, and the agreement is shown to be good through the northern summer of 1988 if the impact of the QBO on global total ozone is taken into account. On the basis of the present analysis, there has been a 1.0 ± 0.9% decrease in global total ozone between solar cycles 20 and 21, a decrease 70% larger than that indicated by the three stratospheric models.
Shukla, K; Srivastava, Prashant K; Banerjee, T; Aneja, Viney P
2017-01-01
Ozone dynamics in two urban background atmospheres over middle Indo-Gangetic Plain (IGP) were studied in two contexts: total columnar and ground-level ozone. In terms of total columnar ozone (TCO), emphases were made to compare satellite-based retrieval with ground-based observation and existing trend in decadal and seasonal variation was also identified. Both satellite-retrieved (Aura Ozone Monitoring Instrument-Differential Optical Absorption Spectroscopy (OMI-DOAS)) and ground-based observations (IMD-O 3 ) revealed satisfying agreement with OMI-DOAS observation over predicting TCO with a positive bias of 7.24 % under all-sky conditions. Minor variation between daily daytime (r = 0.54; R 2 = 29 %; n = 275) and satellite overpass time-averaged TCO (r = 0.58; R 2 = 34 %; n = 208) was also recognized. A consistent and clear seasonal trend in columnar ozone (2005-2015) was noted with summertime (March-June) maxima (Varanasi, 290.9 ± 8.8; Lucknow, 295.6 ± 9.5 DU) and wintertime (December-February) minima (Varanasi, 257.4 ± 10.1; Lucknow, 258.8 ± 8.8 DU). Seasonal trend decomposition based on locally weighted regression smoothing technique identified marginally decreasing trend (Varanasi, 0.0084; Lucknow, 0.0096 DU year -1 ) especially due to reduction in monsoon time minima and summertime maxima. In continuation to TCO, variation in ground-level ozone in terms of seasonality and precursor gases were also analysed from September 2014 to August 2015. Both stations registered similar pattern of variation with Lucknow representing slightly higher annual mean (44.3 ± 30.6; range, 1.5-309.1 μg/m 3 ) over Varanasi (38.5 ± 17.7; range, 4.9-104.2 μg/m 3 ). Variation in ground-level ozone was further explained in terms water vapour, atmospheric boundary layer height and solar radiation. Ambient water vapour content was found to associate negatively (r = -0.28, n = 284) with ground-level ozone with considerable seasonal variation in Varanasi. Implication of solar radiation on formation of ground-level ozone was overall positive (Varanasi, 0.60; Lucknow, 0.26), while season-specific association was recorded in case of atmospheric boundary layer.
Annual variability of ozone along alpine hillsides
NASA Technical Reports Server (NTRS)
Putz, Erich; Kosmus, Walter
1994-01-01
Over a period of more than two years (March 1989 till June 1991) ozone and nitrogen dioxide have been monitored along twelve alpine hillsides in the Austrian alps. The profiles had a height-resolution of 100 m and cover a range between 400 m and 1800 m asl, that is 100 m to 1100 m above the bottom of the valleys. They were situated in remote rural areas as well as in the vicinity of polluted urban and industrial areas. Both trace gases were monitored by means of integral chemical (SAM-surface active monitor) methods with a measuring cycle of two weeks. The concentration of ozone exhibits a substantial annual variation over the entire height range. In summer, highest ozone levels are observed near the ground and at the top of the mountains, whereas in winter the maxima are found mainly in the crest regions. The overall ozone burden shows a relative maximum near the temperature inversion layer in the valleys and an absolute maximum at the crest.
Open hardware, low cost, air quality stations for monitoring ozone in coastal area
NASA Astrophysics Data System (ADS)
Lima, Marco; Donzella, Davide; Pintus, Fabio; Fedi, Adriano; Ferrari, Daniele; Massabò, Marco
2014-05-01
Ozone concentrations in urban and coastal area are a great concern for citizens and, consequently regulator. In the last 20 years the Ozone concentration is almost doubled and it has attracted the public attention because of the well know harmful impacts on human health and biosphere in general. Official monitoring networks usually comprise high precision, high accuracy observation stations, usually managed by public administrations and environmental agency; unfortunately due to their high costs of installation and maintenance, the monitoring stations are relatively sparse. This kind of monitoring networks have been recognized to be unsuitable to effectively characterize the high variability of air quality, especially in areas where pollution sources are various and often not static. We present a prototype of a low cost station for air quality monitoring, specifically developed for complementing the official monitoring stations improving the representation of air quality spatial distribution. We focused on a semi-professional product that could guarantee the highest reliability at the lowest possible cost, supported by a consistent infrastructure for data management. We test two type of Ozone sensor electrochemical and metal oxide. This work is integrated in the ACRONET Paradigm ® project: an open-hardware platform strongly oriented on environmental monitoring. All software and hardware sources will be available on the web. Thus, a computer and a small amount of work tools will be sufficient to create new monitoring networks, with the only constraint to share all the data obtained. It will so possible to create a real "sensing community". The prototype is currently able to measure ozone level, temperature and relative humidity, but soon, with the upcoming changes, it will be able also to monitor dust, carbon monoxide and nitrogen dioxide, always through the use of commercial sensors. The sensors are grouped in a compact board that interfaces with a data-logger able to transmit data to a dedicated server through a GPRS module (no ad hoc radio infrastructure needed). Due to the GPRS low latency transmission the data are transmitted in near-real time. The prototype has an independent power supply. The sensors outputs are directly compared with the measurement of the official fixed monitoring stations. We present preliminary tests of a ozone level assessment obtained without laboratory calibration during a first field campaign in Savona (Italy); the preliminary verification and test show reasonable agreement between low cost sensors and fixed monitoring station ozone level trends (low cost sensors detect gas concentration at ppb level). The preliminary results are promising for complementing the fixed official monitoring networks with low-cost sensors.
[The two ozone problems: too much in the troposphere, too little in the stratosphere].
Staehelin, J
1992-03-10
Trends analysis based on the long-term Swiss ozone measurements from Arosa and Payerne operationally performed by the Swiss Meteorological Institute are presented. These measurement include stratospheric ozone (approximately 90% of total ozone) and tropospheric ozone. The total ozone measurements from Arosa, the world longest series started at 1926, indicate, that total ozone has declined since about 1970 by approximately 5%. The ozone balloon soundings, operationally performed at Payerne since 1969 (2-3 ascents per week) show, that stratospheric ozone has decreased strongly in the last 20 years, whereas tropospheric ozone, remarkably has increased during this period. The relative change was strongest in the troposphere (more than 10% per decade, 3-4% increase per year during 1982-1988). However, on an absolute scale, changes in the stratosphere were strongest (relative decrease: 6 to 7% per decade at 20-22 km). The present scientific theories of the two ozone problems are reviewed: stratospheric ozone decrease was caused by the anthropogenic emissions of fluorochlorocarbons and other compounds mainly released from the earth surface. Tropospheric ozone has increased due to photochemical production of mainly anthropogenically emitted nitrogen oxides, volatile organic compounds and CO.
User's guide to the Nimbus-4 backscatter ultraviolet experiment data sets
NASA Technical Reports Server (NTRS)
Lowrey, B. E.
1978-01-01
The first year's data from the Nimbus 4 backscatter ultraviolet (BUV) experiment have been archived in the National Space Science Data Center (NSSDC). Backscattered radiances in the ultraviolet measured by the satellite were used to compute the global total ozone for the period April 1970 - April 1971. The data sets now in the NSSDC are the results obtained by the Ozone Processing Team, which has processed the data with the purpose of determining the best quality of the data. There are four basic sets of data available in the NSSDC representing various stages in processing. The primary data base contains organized and cleaned data in telemetry units. The radiance data has had most of the engineering calibrations performed. The detailed total ozone data is the result of computations to obtain the total ozone; the Compressed Total Ozone data is a convenient condensation of the detailed total ozone. Product data sets are also included.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Frolov, A. D.; Hudson, R. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method [("TDOT" = TOMS Direct Ozone in the Troposphere; Frolov et al., 2000] represents a new algorithm that uses TOMS radiances directly (i.e., not previously processed for TOMS ozone) to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution. These events tend to occur in certain meteorological regimes. For example, mid-latitude pollution usually occurs on the backside of subtropical fronts, as low pv, usually moist air intrudes to the extra-tropics. July 1999 was a month characterized by robust pollution in the eastern US, with high ozone, as detected by TOMS, originating over south central states and moving up the Atlantic seaboard. This corresponds to 50-80 DU in tropospheric ozone column depth. In most cases, further transport occurred to the North Atlantic, with ozone plumes traveling to western Europe in 4-5 days. Examples of high ozone and transit across boundaries within the US, as well as US->Europe, give a regional context for model results and field measurements taken in the SE US during the Nashville-1999 campaign period. Validation of the TDOT maps is made with ozonesondes taken during that time. TDOT maps also show ozone pollution from Asia traveling to the western US in July 1999.
Total ozone series at Arosa (Switzerland): Homogenization and data comparison
NASA Astrophysics Data System (ADS)
Staehelin, Johannes; Renaud, Anne; Bader, Jürg; McPeters, Richard; Viatte, Pierre; Hoegger, Bruno; Bugnion, Veronique; Giroud, Marianne; Schill, Herbert
1998-03-01
Five Dobson and two Brewer spectrophotometers were used for total ozone observations at Arosa, beginning in 1926 and providing the world's longest series. In this paper we present the results of our attempts to provide a homogeneous series and discuss the data quality problems of the record. From the mid-1950s to 1992, Dobson instrument D15 was calibrated by the statistical Langley plot method. In 1986 the calibration of another Dobson spectrometer at Arosa (D101) was changed by the intercomparison with the primary world Dobson instrument (D83). A statistical model based on simultaneous measurements of D101 and D15 of the period from 1987 to 1990 was used to obtain a total ozone series in line with the primary Dobson spectrophotometer, including a correction for an optical disalignment problem of D15. The series of Dl0l from 1990 to 1995 was corrected on the basis of data from the Dobson intercomparisons of 1990 and 1995 and comparisons with other total ozone measurements of Brewer and Dobson spectrophotometers at Arosa. A transfer function between Dobson and Brewer spectrophotometric measurements of Arosa is presented, and total ozone measurements of Arosa are compared with version 7 daily overpass data of the satellite instrument the total ozone mapping spectrometer (TOMS) which operated on board Nimbus 7 from autumn 1978 to spring 1993. Available information allowing us to track back the total ozone measurements of Arosa to the measurements of the primary Dobson spectrometer reveal that the total ozone series of Arosa fluctuated no more than approximately 1% against D83 in the period from 1978 to 1995. Average shift of Arosa total ozone data against the TOMS instrument was -1.12 (±0.1)% over the lifetime of the TOMS instrument.
Validation of Brewer and Pandora measurements using OMI total ozone
NASA Astrophysics Data System (ADS)
Baek, Kanghyun; Kim, Jae H.; Herman, Jay R.; Haffner, David P.; Kim, Jhoon
2017-07-01
Korea will launch the Geostationary Environment Monitoring Spectrometer (GEMS) instrument in 2018 onboard the Geostationary Korean Multi-Purpose Satellite to monitor tropospheric gas concentrations with high temporal and spatial resolutions. The purpose of this study is to examine the performance of total column ozone (TCO) measurements from ground-based Pandora and Brewer instruments that will be used for validation of the GEMS ozone product. Satellite measurements can be used to detect erroneous outliers at a particular ground station, which deviate significantly from co-located satellite measurements relative to other stations. This is possible because a single satellite retrieval algorithm is used to process the entire satellite dataset, and instrument characteristics typically change slowly over the life of the satellite. Thus, the short-term stability (months) of satellite measurements can be used to estimate the performance of the ground-based measurement network as well as to identify potential problems at individual stations. As a reference for satellite ozone measurements, we have selected TCO data derived from OMI-TOMS V8.5 algorithm, because it is a robust algorithm that has been well studied to identify its various error sources. We validated ground-based Brewer and Pandora TCO measurements using OMI-TOMS TCO data collected over South Korea from March 2012 to December 2014. The Brewer TCO measurements at Pohang showed significant deviation from overall seasonal variation during the study period. In addition, in the presence of clouds, Pandora TCO measurements are unusually ∼7% higher than OMI-TOMS TCO data. To filter out these cloud-contaminated data, we applied a Kalman filter to the Pandora measurements. The diurnal variation in the Kalman-filtered Pandora data agrees well with the Brewer data, and the correlation of Kalman-filtered Pandora data with OMI-TOMS TCO is significantly improved from 0.89 to 0.99 at Seoul and from 0.93 to 0.99 at Busan.
Ozone air pollution in the Ukrainian Carpathian Mountains and Kiev region
Oleg Blum; Andrzej Bytnerowicz; William Manning; Ludmila Popovicheva
1998-01-01
Ambient concentrations of ozone (O3) were measured at five highland forest locations in the Ukrainian Carpathians and in two lowland locations in the Kiev region during August to September 1995 by using O3 passive samplers. The ozone passive samplers were calibrated against a Thermo Environmental Model 49 ozone monitor...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-13
... Massachusetts Department of Environmental Protection performed a missing data analysis for each site with low... Massachusetts missing data analysis used a combination of meteorology and air quality data for ozone monitors... with missing ozone data, the ozone levels, if captured, would have been below the 1997 8-hour ozone...
2015 Revision to 2008 Ozone National Ambient Air Quality Standards (NAAQS) Related Documents
Find tools for background ozone, maps of nonattainment areas, an overview of the proposal, and information on designations, monitoring and permitting requirements and a presentation on the 2015 ozone NAAQS revision.
Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment.
Hoeger, Stefan J; Dietrich, Daniel R; Hitzfeld, Bettina C
2002-01-01
Water treatment plants faced with toxic cyanobacteria have to be able to remove cyanotoxins from raw water. In this study we investigated the efficacy of ozonation coupled with various filtration steps under different cyanobacterial bloom conditions. Cyanobacteria were ozonated in a laboratory-scale batch reactor modeled on a system used by a modern waterworks, with subsequent activated carbon and sand filtration steps. The presence of cyanobacterial toxins (microcystins) was determined using the protein phosphatase inhibition assay. We found that ozone concentrations of at least 1.5 mg/L were required to provide enough oxidation potential to destroy the toxin present in 5 X 10(5 )Microcystis aeruginosa cells/mL [total organic carbon (TOC), 1.56 mg/L]. High raw water TOC was shown to reduce the efficiency of free toxin oxidation and destruction. In addition, ozonation of raw waters containing high cyanobacteria cell densities will result in cell lysis and liberation of intracellular toxins. Thus, we emphasize that only regular and simultaneous monitoring of TOC/dissolved organic carbon and cyanobacterial cell densities, in conjunction with online residual O(3) concentration determination and efficient filtration steps, can ensure the provision of safe drinking water from surface waters contaminated with toxic cyanobacterial blooms. PMID:12417484
The OMPS Limb Profiler instrument
NASA Astrophysics Data System (ADS)
Rault, D. F.; Xu, P.
2011-12-01
The Ozone Mapping and Profiler Suite (OMPS) will continue the monitoring of the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. OMPS is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in October 2011. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance, from which ozone profile will be retrieved from the upper tropopause uo to 60km. End-to-end studies of the sensor and retrieval algorithm indicate the following expected performance for ozone: accuracy of 5% or better from the tropopause up to 50 km, precision of about 3-5% from 18 to 50 km, and vertical resolution of 1.5-2 km with vertical sampling of 1 km and along-track horizontal sampling of 1 deg latitude. The paper will describe the mission, discuss the retrieval algorithm, and summarize the expected performance. If available, the paper will also present early on-orbit data.
Air Quality Impacts of Oil and Gas Operations in the Northern Colorado Front Range
NASA Astrophysics Data System (ADS)
Helmig, D.; Thompson, C. R.; Jacques, H.; Smith, K. R.; Terrell, R. M.
2014-12-01
Exceedences of the US EPA National Ambient Air Quality Standard (NAAQS) for surface ozone have been reported from monitoring sites in the Northern Colorado Front Range (NCFR) for more than fifteen years during summer. Comparison of ozone records from the NCFR clearly show that ozone primarily results from regional photochemical daytime production. Recent trend analyses do not show an improvement of surface ozone despite efforts by the State of Colorado to curb ozone precursor emissions. Our review of atmospheric volatile organic compound (VOC) measurements from historic and recent monitoring shows significant spatial increases of atmospheric VOC towards the oil and gas development area in Weld County, NW of the Denver-Boulder metropolitan region. Secondly, analyses of VOC trends and VOC signatures show an overall increase of oil and gas associated VOC relative to other VOC sources. These analyses suggest that oil and gas emissions are playing and increasing role in ozone production in the NCFR and that reductions of oil and gas emissions would be beneficial for lowering surface ozone and attainment of the ozone NAAQS.
Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments
NASA Astrophysics Data System (ADS)
van Peet, Jacob C. A.; van der A, Ronald J.; Kelder, Hennie M.; Levelt, Pieternel F.
2018-02-01
A three-dimensional global ozone distribution has been derived from assimilation of ozone profiles that were observed by satellites. By simultaneous assimilation of ozone profiles retrieved from the nadir looking satellite instruments Global Ozone Monitoring Experiment 2 (GOME-2) and Ozone Monitoring Instrument (OMI), which measure the atmosphere at different times of the day, the quality of the derived atmospheric ozone field has been improved. The assimilation is using an extended Kalman filter in which chemical transport model TM5 has been used for the forecast. The combined assimilation of both GOME-2 and OMI improves upon the assimilation results of a single sensor. The new assimilation system has been demonstrated by processing 4 years of data from 2008 to 2011. Validation of the assimilation output by comparison with sondes shows that biases vary between -5 and +10 % between the surface and 100 hPa. The biases for the combined assimilation vary between -3 and +3 % in the region between 100 and 10 hPa where GOME-2 and OMI are most sensitive. This is a strong improvement compared to direct retrievals of ozone profiles from satellite observations.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Stauffer, Ryan M.; Miller, Sonya K.; Martins, Douglas K.; Joseph, Everette; Weinheimer, Andrew J.; Diskin, Glenn S.
2014-01-01
Much progress has been made in creating satellite products for tracking the pollutants ozone and NO2 in the troposphere. Yet, in mid-latitude regions where meteorological interactions with pollutants are complex, accuracy can be difficult to achieve, largely due to persistent layering of some constituents. We characterize the layering of ozone soundings and related species measured from aircraft over two ground sites in suburban Washington, DC (Beltsville, MD, 39.05N; 76.9W) and Baltimore (Edgewood, MD, 39.4N; 76.3W) during the July 2011 DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiment. First, we compare column-ozone amounts from the Beltsville and Edgewood sondes with data from overpassing satellites. Second, processes influencing ozone profile structure are analyzed using Laminar Identification and tracers: sonde water vapor, aircraft CO and NOy. Third, Beltsville ozone profiles and meteorological influences in July 2011 are compared to those from the summers of 2006-2010. Sonde-satellite offsets in total ozone during July 2011 at Edgewood and Beltsville, compared to the Ozone Monitoring Instrument (OMI), were 3 percent mean absolute error, not statistically significant. The disagreement between an OMIMicrowave Limb Sounder-based tropospheric ozone column and the sonde averaged 10 percent at both sites, with the sonde usually greater than the satellite. Laminar Identification (LID), that distinguishes ozone segments influenced by convective and advective transport, reveals that on days when both stations launched ozonesondes, vertical mixing was stronger at Edgewood. Approximately half the lower free troposphere sonde profiles have very dry laminae, with coincident aircraft spirals displaying low CO (80-110 ppbv), suggesting stratospheric influence. Ozone budgets at Beltsville in July 2011, determined with LID, as well as standard meteorological indicators, resemble those of 4 of the previous 5 summers. The penetration of stratospheric air throughout the troposphere appears to be typical for summer conditions in the Baltimore-Washington region.
Monitoring of atmospheric particles and ozone in Sequoia National Park: 1985-1987. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, T.A.
1989-06-01
The Air Quality Group Monitored particles and ozone in Sequoia National Park as part of an effort to understand the impact of acid deposition and other air pollutants on the park's forests and watersheds. For high-elevation ozone measurement, the project developed a new solar-powered ozone monitoring system. The particulate matter sampled was analyzed for elemental content using nuclear techniques. The measurements were correlated with meteorology, known elemental sources, and wet and dry deposition measurements. The results show that particulate matter at Sequoia National Park is similar to that present at other sites on the western slope of the Sierra Nevadamore » range at equivalent elevations. Some anthropogenic species, including nickel and sulfate, are present in higher concentrations at Sequoia than at Yosemite National Park.« less
NASA Astrophysics Data System (ADS)
Popescu, Alexandru F.; Paulsen, Togeir; Ratier, Guy
2018-04-01
This paper, "The global ozone monitoring by occultation of stars (GOMOS) instrument on ENVISAT requirements, design and development status," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
An assessment of the stray light in 25 years of Dobson total ozone data at Athens, Greece
NASA Astrophysics Data System (ADS)
Christodoulakis, J.; Varotsos, C.; Cracknell, A. P.; Tzanis, C.; Neofytos, A.
2015-07-01
In this study, we investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray light interference. In this regard, a series of total ozone content measurements were carried out in Athens, Greece for air-mass values (μ) extending up to μ = 5. The monochromatic-heterochromatic stray light derived by Basher's model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the measurements made by the Dobson instrument of the Athens station for air mass values up to 2.5, underestimates the total ozone content by 3.5 DU in average, or about 1 % of the station's mean total ozone content (TOC). The comparison of the values of the same parameters measured 15 years ago with the present ones indicates the good maintenance of the Dobson spectrophotometer No. 118. This fact is of crucial importance because the variability of the daily total ozone observations collected by the Athens Dobson Station since 1989 has proved to be representative to the variability of the mean total ozone observed over the whole mid-latitude zone of the Northern Hemisphere. This stresses the point that the Athens total ozone station, being the unique Dobson station in south-eastern Europe, may be assumed as a ground truth station for the reliable conversion of the satellite radiance observations to total ozone measurements.
Largest-ever Ozone Hole over Antarctica
NASA Technical Reports Server (NTRS)
2002-01-01
A NASA instrument has detected an Antarctic ozone 'hole' (what scientists call an 'ozone depletion area') that is three times larger than the entire land mass of the United States-the largest such area ever observed. The 'hole' expanded to a record size of approximately 11 million square miles (28.3 million square kilometers) on Sept. 3, 2000. The previous record was approximately 10.5 million square miles (27.2 million square km) on Sept. 19, 1998. The ozone hole's size currently has stabilized, but the low levels in its interior continue to fall. The lowest readings in the ozone hole are typically observed in late September or early October each year. 'These observations reinforce concerns about the frailty of Earth's ozone layer. Although production of ozone-destroying gases has been curtailed under international agreements, concentrations of the gases in the stratosphere are only now reaching their peak. Due to their long persistence in the atmosphere, it will be many decades before the ozone hole is no longer an annual occurrence,' said Dr. Michael J. Kurylo, manager of the Upper Atmosphere Research Program, NASA Headquarters, Washington, DC. Ozone molecules, made up of three atoms of oxygen, comprise a thin layer of the atmosphere that absorbs harmful ultraviolet radiation from the Sun. Most atmospheric ozone is found between approximately six miles (9.5 km) and 18 miles (29 km) above the Earth's surface. Scientists continuing to investigate this enormous hole are somewhat surprised by its size. The reasons behind the dimensions involve both early-spring conditions, and an extremely intense Antarctic vortex. The Antarctic vortex is an upper-altitude stratospheric air current that sweeps around the Antarctic continent, confining the Antarctic ozone hole. 'Variations in the size of the ozone hole and of ozone depletion accompanying it from one year to the next are not unexpected,' said Dr. Jack Kaye, Office of Earth Sciences Research Director, NASA Headquarters. 'At this point we can only wait to see how the ozone hole will evolve in the coming few months and see how the year's hole compares in all respects to those of previous years.' 'Discoveries like these demonstrate the value of our long-term commitment to providing key observations to the scientific community,' said Dr. Ghassem Asrar, Associate Administrator for NASA's Office of Earth Sciences at Headquarters. 'We will soon launch QuickTOMS and Aura, two spacecraft that will continue to gather these important data.' The measurements released today were obtained using the Total Ozone Mapping Spectrometer (TOMS) instrument aboard NASA's Earth Probe (TOMS-EP) satellite. NASA instruments have been measuring Antarctic ozone levels since the early 1970s. Since the discovery of the ozone 'hole' in 1985, TOMS has been a key instrument for monitoring ozone levels over the Earth. TOMS ozone data and more pictures are available at: http://toms.gsfc.nasa.gov/ TOMS-EP and other ozone-measurement programs are important parts of a global environmental effort of NASA's Earth Science enterprise, a long-term research program designed to study Earth's land, oceans, atmosphere, ice and life as a total integrated system. For more information about ozone and ozone loss, visit: Ozone in the Stratosphere. Image courtesy the TOMS science team and and the Scientific Visualization Studio, NASA GSFC
NASA Astrophysics Data System (ADS)
Krzycin, Janusz W.
2002-10-01
Decadal changes of ozone mini-hole event appearance over the Northern Hemisphere midlatitudes are examined based on daily total ozone data from seven stations having long records (four decades or more) of ozone observations. The various threshold methods for accepting and rejecting the ozone minima as mini-holes are examined. Mini-hole event activity is seen to be rather stable when averaged over a decadal time scale if the mini-holes are selected as large negative departures (exceeding 20%) relative to the moving long-term total ozone reference. The results are compared with a previous ozone mini-hole climatology derived from satellite data (TOMS measurements on board the Nimbus-7 satellite for the period 1978-93). A nonlinear statistical model (MARS), which takes into account various total ozone dynamical proxies (from NCEP-NCAR reanalysis), is used to study dynamical factors responsible for the ozone extremes over Arosa in the period 1950-99. The model explains as much as 95% of the total variance of the ozone extremes. The model-observation differences averaged over the decadal intervals are rather smooth throughout the whole period analysed. It is suggested that the short-term dynamical processes controlling the appearance of ozone extremes influenced the ozone field in a similar way before and after the onset of abrupt ozone depletion in the early 1980s. The analysis of the ozone profile and the tropopause pressure (from the ozonesondings over Hohenpeissenberg, 1966-99) during mini-hole events shows 60% ozone reduction in the lower stratosphere and an approximately 50 hPa upward shift of the thermal tropopause there.
Godiva, a European Project for Ozone and Trace Gas Measurements from GOME
NASA Astrophysics Data System (ADS)
Goede, A. P. H.; Tanzi, C. P.; Aben, I.; Burrows, J. P.; Weber, M.; Perner, D.; Monks, P. S.; Llewellyn-Jones, D.; Corlett, G. K.; Arlander, D. W.; Platt, U.; Wagner, T.; Pfeilsticker, K.; Taalas, P.; Kelder, H.; Piters, A.
GODIVA (GOME Data Interpretation, Validation and Application) is a European Commission project aimed at the improvement of GOME (Global Ozone Monitoring Experiment) data products. Existing data products include global ozone, NO2 columns and (ir)radiances. Advanced data products include O3 profiles, BrO, HCHO and OCIO columns. These data are validated by ground-based and balloon borne instruments. Calibration issues are investigated by in-flight monitoring using several complementary calibration sources, as well as an on-ground replica of the GOME instrument. The results will lead to specification of operational processing of the EUMETSAT ozone Satellite Application Facility as well as implementation of the improved and new GOME data products in the NILU database for use in the European THESEO (Third European Stratospheric Experiment on Ozone) campaign of 1999
Find information on the 2014 proposed ozone NAAQS revision, and find tools for background ozone, maps of nonattainment areas, an overview of the proposal, and information on designations, monitoring and permitting requirements
Pamela Edwards; Cindy Huber; Frederica Wood
2004-01-01
The United States is making the transition from the 1979 1 hr maximum ozone standard to the newly adopted 8 hr ozone standard (3 yr average of the 4th highest maximum 8 hr ozone concentration). Consequently, we analyzed and compared ozone concentrations under both standards from a variety of monitoring sites throughout the central Appalachian region of Kentucky (KY),...
NASA Technical Reports Server (NTRS)
Witte, J. C.; Thompson, A. M.; Fortuin, P.; Einsudi, Franco (Technical Monitor)
2001-01-01
There are three years of data (more than 1000 individual ozone profiles) available from a network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project. Since late 1999, a tropical station in the northern hemisphere (Paramaribo, Surinam; lat/long) joined SHADOZ, providing coordinated weekly ozone and radiosonde data from the surface to approx. 7 hPa for satellite validation, process studies, and model evaluation. Profiles are also collected at: Ascension Island; Nairobi, Kenya; Irene, South Africa; R (union Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The archive, station characteristics and photos are available at http://code9l6.gsfc.nasa.gov/Data_ services/shadoz>. SHADOZ ozone time-series and profiles in 1998-2000 display highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Integrated total ozone column amounts from the sondes are lower than independent measurements from a ground-based network and from the TOMS (Total Ozone Mapping Spectrometer) satellite (version 7 data).
NASA Technical Reports Server (NTRS)
Li, Can; Krotkov, Nickolay A.; Carn, Simon; Zhang, Yan; Spurr, Robert J. D.; Joiner, Joanna
2017-01-01
Since the fall of 2004, the Ozone Monitoring Instrument (OMI) has been providing global monitoring of volcanic SO2 emissions, helping to understand their climate impacts and to mitigate aviation hazards. Here we introduce a new-generation OMI volcanic SO2 dataset based on a principal component analysis (PCA) retrieval technique. To reduce retrieval noise and artifacts as seen in the current operational linear fit (LF) algorithm, the new algorithm, OMSO2VOLCANO, uses characteristic features extracted directly from OMI radiances in the spectral fitting, thereby helping to minimize interferences from various geophysical processes (e.g., O3 absorption) and measurement details (e.g., wavelength shift). To solve the problem of low bias for large SO2 total columns in the LF product, the OMSO2VOLCANO algorithm employs a table lookup approach to estimate SO2 Jacobians (i.e., the instrument sensitivity to a perturbation in the SO2 column amount) and iteratively adjusts the spectral fitting window to exclude shorter wavelengths where the SO2 absorption signals are saturated. To first order, the effects of clouds and aerosols are accounted for using a simple Lambertian equivalent reflectivity approach. As with the LF algorithm, OMSO2VOLCANO provides total column retrievals based on a set of predefined SO2 profiles from the lower troposphere to the lower stratosphere, including a new profile peaked at 13 km for plumes in the upper troposphere. Examples given in this study indicate that the new dataset shows significant improvement over the LF product, with at least 50% reduction in retrieval noise over the remote Pacific. For large eruptions such as Kasatochi in 2008 (approximately 1700 kt total SO2/ and Sierra Negra in 2005 (greater than 1100DU maximum SO2), OMSO2VOLCANO generally agrees well with other algorithms that also utilize the full spectral content of satellite measurements, while the LF algorithm tends to underestimate SO2. We also demonstrate that, despite the coarser spatial and spectral resolution of the Suomi National Polar-orbiting Partnership (Suomi-NPP) Ozone Mapping and Profiler Suite (OMPS) instrument, application of the new PCA algorithm to OMPS data produces highly consistent retrievals between OMI and OMPS. The new PCA algorithm is therefore capable of continuing the volcanic SO2 data record well into the future using current and future hyperspectral UV satellite instruments.
The total ozone at mid latitudes
NASA Astrophysics Data System (ADS)
Mendeva, Bogdana
The total ozone at mid latitudes B.D.Mendeva 1, D.G. Krastev 1, Ts.N.Gogosheva 2 1 Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences, Stara Zagora De-partment, Bulgaria, bmendeva@abv.bg 2 Institute of Astronomy, Bulgarian Academy of Sciences, Sofia, Bulgaria, This paper presents the total ozone content (TOC) behaviour over Bulgaria from satellite ex-periments (TOMS on the Earth Probe satellite and SCIAMACHY on board ENVISAT (ESA)). The long-term variations of the total ozone monthly means values in the period 1997-2009 are examined. The calculated linear ozone trend for this time interval is shown. An analysis of the total ozone over the Balkan region is also presented. For this purpose data from the SCIA-MACHY are used. The investigation is made for Athens (37o 59'N, 23o46'E), Thessaloniki (40o31'N, 22o58'E), Sofia (42o39'N, 23o23'E) and Bucharest (44o28'N, 26o17'E) in the period 2003-2009. A comparison between the courses of the monthly mean ozone values over these places is shown.
A novel ozone sensor for various environmental applications
NASA Technical Reports Server (NTRS)
Guesten, H.; Heinrich, G.; Schmidt, R. W. H.; Schurath, U.
1994-01-01
A small, lightweight, and fast-response ozone sensor for various environmental applications is described. At a flow rate of 100 l/min(-1) the ozone sensor has a response time of significantly better than 0.1 s with a detection limit lower than 100 pptv. The ozone sensor was successfully tested in various environmental applications, i.e. in measuring directly the vertical ozone flux onto agricultural land utilizing the eddy correlation or covariance technique and in monitoring horizontal and vertical ozone profiles in the troposphere and stratosphere.
NASA Technical Reports Server (NTRS)
Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)
2002-01-01
There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.
Extreme events in total ozone over Arosa - Part 1: Application of extreme value theory
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.
2010-10-01
In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.
Extreme events in total ozone over Arosa - Part 1: Application of extreme value theory
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.
2010-05-01
In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.
NASA Technical Reports Server (NTRS)
Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Loyola, Diego
2018-01-01
We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978–present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (approximately 1996 globally and approximately 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 percent decade(exp. -1) that are barely statistically significant at the 2 Sigma uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 percent(exp.-1), while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend analysis. Consequently, the retrieved trends can be only considered to be at the brink of becoming significant, but there are indications that we are about to emerge into the expected recovery phase. However, the recent trends are still considerably masked by the observed large year-to-year dynamical variability in total ozone.
NASA Astrophysics Data System (ADS)
Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Long, Craig S.; Loyola, Diego
2018-02-01
We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978-present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (˜ 1996 globally and ˜ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade-1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade-1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend analysis. Consequently, the retrieved trends can be only considered to be at the brink of becoming significant, but there are indications that we are about to emerge into the expected recovery phase. However, the recent trends are still considerably masked by the observed large year-to-year dynamical variability in total ozone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackman, C.H.; Douglass, A.R., Chandra, S.; Stolarski, R.S.
1991-03-20
Eight years of NMC (National Meteorological Center) temperature and SBUV (solar backscattered ultraviolet) ozone data were used to calculate the monthly mean heating rates and residual circulation for use in a two-dimensional photochemical model in order to examine the interannual variability of modeled ozone. Fairly good correlations were found in the interannual behavior of modeled and measured SBUV ozone in the upper stratosphere at middle to low latitudes, where temperature dependent photochemistry is thought to dominate ozone behavior. The calculated total ozone is found to be more sensitive to the interannual residual circulation changes than to the interannual temperature changes.more » The magnitude of the modeled ozone variability is similar to the observed variability, but the observed and modeled year to year deviations are mostly uncorrelated. The large component of the observed total ozone variability at low latitudes due to the quasi-biennial oscillation (QBO) is not seen in the modeled total ozone, as only a small QBO signal is present in the heating rates, temperatures, and monthly mean residual circulation. Large interanual changes in tropospheric dynamics are believed to influence the interannual variability in the total ozone, especially at middle and high latitudes. Since these tropospheric changes and most of the QBO forcing are not included in the model formulation, it is not surprising that the interannual variability in total ozione is not well represented in the model computations.« less
NASA Technical Reports Server (NTRS)
Frolov, A. D.; Thompson, A. M.; Hudson, R. D.; Browell, E. V.; Oltmans, S. J.; Witte, J. C.; Bhartia, P. K. (Technical Monitor)
2002-01-01
Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method ('TDOT' = TOMS Direct Ozone in the Troposphere) represents a new algorithm that uses TOMS radiances directly to extract tropospheric ozone in regions of constant stratospheric ozone. It is not geographically restricted, using meteorological regimes as the basis for classifying TOMS radiances and for selecting appropriate comparison data. TDOT is useful where tropospheric ozone displays high mixing ratios and variability characteristic of pollution. Some of these episodes were observed downwind of Asian biomass burning during the TRACE-P (Transport and Atmospheric Chemical Evolution-Pacific) field experiment in March 2001. This paper features comparisons among TDOT tropospheric ozone column depth, integrated uv-DIAL measurements made from NASA's DC-8, and ozonesonde data.
Total ozone and surface temperature correlations during 1972 - 1981
NASA Technical Reports Server (NTRS)
Parsons, C. L.
1983-01-01
Ten years of Dobson spectrophotometer total ozone measurements and surface temperature observations were used to construct monthly mean values of the two parameters. The variability of both parameters is greatest in the months of January and February. Indeed, in January there is an apparent correlation between high total ozone values and abnormally low surface temperatures. However, the correlation does not hold in February. By reviewing the history of stratospheric warmings during this period, it is argued that the ozone and surface temperature correlation is influenced by the advection or lack of advection of ozone rich arctic air resulting from sudden stratospheric warmings.
NASA Technical Reports Server (NTRS)
Ahn, C.; Ziemke, J. R.; Chandra, S.; Bhartia, P. K.
2002-01-01
A recently developed technique called cloud slicing used for deriving upper tropospheric ozone from the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument combined together with temperature-humidity and infrared radiometer (THIR) is no longer applicable to the Earth Probe TOMS (EPTOMS) because EPTOMS does not have an instrument to measure cloud top temperatures. For continuing monitoring of tropospheric ozone between 200-500hPa and testing the feasibility of this technique across spacecrafts, EPTOMS data are co-located in time and space with the Geostationary Operational Environmental Satellite (GOES)-8 infrared data for 2001 and early 2002, covering most of North and South America (45S-45N and 120W-30W). The maximum column amounts for the mid-latitudinal sites of the northern hemisphere are found in the March-May season. For the mid-latitudinal sites of the southern hemisphere, the highest column amounts are found in the September-November season, although overall seasonal variability is smaller than those of the northern hemisphere. The tropical sites show the weakest seasonal variability compared to higher latitudes. The derived results for selected sites are cross validated qualitatively with the seasonality of ozonesonde observations and the results from THIR analyses over the 1979-1984 time period due to the lack of available ozonesonde measurements to study sites for 2001. These comparisons show a reasonably good agreement among THIR, ozonesonde observations, and cloud slicing-derived column ozone. With very limited co-located EPTOMS/GOES data sets, the cloud slicing technique is still viable to derive the upper tropospheric column ozone. Two new variant approaches, High-Low (HL) cloud slicing and ozone profile derivation from cloud slicing are introduced to estimate column ozone amounts using the entire cloud information in the troposphere.
NASA Astrophysics Data System (ADS)
Sharma, Sumit; Khare, Mukesh
2017-02-01
This study simulates ground level ozone concentrations in a heavily populated and polluted National Capital Region (NCR- Delhi) in India. Multi-sectoral emission inventories of ozone precursors are prepared at a high resolution of 4 × 4 km2 for the whole region covering the capital city of Delhi along with other surrounding towns and rural regions in NCR. Emission inventories show that transport sector accounts for 55% of the total NOx emissions, followed by power plants (23%) and diesel generator sets (7%). In NMVOC inventories, transport sector again accounts for 33%, followed by evaporative emissions released from solvent use and fuel handling activities (30%), and agricultural residue burning (28%). Refuse burning contributes to 73% of CO emissions mainly due to incomplete combustion, followed by agricultural residue burning (14%). These emissions are spatially and temporally distributed across the study domain and are fed into the WRF-CMAQ models to predict ozone concentrations for the year 2012. Model validations are carried out with the observed values at different monitoring stations in Delhi. The performance of the models over various metrics used for evaluation was found to be satisfactory. Summers and post-monsoon seasons were better simulated than monsoon and winter seasons. Simulations have shown higher concentrations of ozone formation during summers and lesser during winters and monsoon seasons, mainly due to varying solar radiation affecting photo-chemical activities. Ozone concentrations are observed lower at those locations where NOx emissions are higher, and concentrations increase close to the boundary of study domain when compared to the center of Delhi city. Downwind regions to Delhi are influenced by the ozone formed due to plume of precursor emissions released from Delhi. Considering significant background contributions, regional scale controls are required for reducing ozone in NCR.
NASA Technical Reports Server (NTRS)
Tzortziou, Maria A.; Herman, Jay R.; Cede, Alexander; Abuhassan, Nader
2012-01-01
We present new, high precision, high temporal resolution measurements of total column ozone (TCO) amounts derived from ground-based direct-sun irradiance measurements using our recently deployed Pandora single-grating spectrometers. Pandora's small size and portability allow deployment at multiple sites within an urban air-shed and development of a ground-based monitoring network for studying small-scale atmospheric dynamics, spatial heterogeneities in trace gas distribution, local pollution conditions, photochemical processes and interdependencies of ozone and its major precursors. Results are shown for four mid- to high-latitude sites where different Pandora instruments were used. Comparisons with a well calibrated double-grating Brewer spectrometer over a period of more than a year in Greenbelt MD showed excellent agreement and a small bias of approximately 2 DU (or, 0.6%). This was constant with slant column ozone amount over the full range of observed solar zenith angles (15-80), indicating adequate Pandora stray light correction. A small (1-2%) seasonal difference was found, consistent with sensitivity studies showing that the Pandora spectral fitting TCO retrieval has a temperature dependence of 1% per 3K, with an underestimation in temperature (e.g., during summer) resulting in an underestimation of TCO. Pandora agreed well with Aura-OMI (Ozone Measuring Instrument) satellite data, with average residuals of <1% at the different sites when the OMI view was within 50 km from the Pandora location and OMI-measured cloud fraction was <0.2. The frequent and continuous measurements by Pandora revealed significant short-term (hourly) temporal changes in TCO, not possible to capture by sun-synchronous satellites, such as OMI, alone.
Abbey, D E; Mills, P K; Petersen, F F; Beeson, W L
1991-08-01
Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative ambient air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly (p less than 0.05) elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association (p = 0.056) was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution.
Abbey, D E; Mills, P K; Petersen, F F; Beeson, W L
1991-01-01
Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative ambient air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly (p less than 0.05) elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association (p = 0.056) was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution. PMID:1954938
NASA Astrophysics Data System (ADS)
da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris
2013-11-01
Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3-5.4 mmol m-3 enabling a calculated limit of detection (LOD) at 0.14 mmol m-3 (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated.
[Health impact of ozone in 13 Italian cities].
Mitis, Francesco; Iavarone, Ivano; Martuzzi, Marco
2007-01-01
to estimate the health impact of ozone in 13 Italian cities over 200,000 inhabitants and to produce basic elements to permit the reproducibility of the study in other urban locations. the following data have been used: population data (2001), health data (2001 or from scientific literature), environmental data (2002-2004), from urban background monitoring station and concentration/response risk coefficients derived from recent metanalyses. The indicators SOMO35 and SOMO0 have been used as a proxi of the average exposure to calcolate attributable deaths (and years of life lost) and several causes of morbility for ozone concentrations over 70 microg/m3. acute mortality for all causes and for cardiovascular mortality, respiratory-related hospital admissions in elderly, asthma exacerbation in children and adults, minor restricted activity days, lower respiratory symptoms in children. over 500 (1900) deaths, the 0.6% (2.1%) of total mortality, equivalent to about 6000 (22,000) years of life lost are attributable to ozone levels over 70 microg/m3 in the 13 Italian cities under study. Larger figures, in the order of thousands, are attributable to less severe morbidity outcomes. The health impact of ozone in Italian towns is relevant in terms of acute mortality and morbidity, although less severe than PM10 impact. Background ozone levels are increasing. Abatement strategies for ozone concentrations should consider the whole summer and not only "peak" days and look at policies limiting the concentration of precursors produced by traffic sources. Relevant health benefits can be obtained also under levels proposed as guidelines in the present environmental regulations.
This table shows the impacts of the proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems, both with and without the Cross-State Air Pollution Rule.
NASA Astrophysics Data System (ADS)
Steinbrecht, W.; Froidevaux, L.; Davis, S. M.; Degenstein, D. A.; Wild, J.; Roth, C.; Kaempfer, N.; Leblanc, T.; Godin-Beekmann, S.; Vigouroux, C.; Swart, D. P. J.; Querel, R.; Harris, N.; Nedoluha, G. E.
2016-12-01
The last WMO ozone assessment (WMO, 2014) concluded that observations show significant ozone increase, 3% per decade (±2% per decade, 2σ), in the upper stratosphere since 2000. At other levels, or for total ozone, increases were not found or not significant. Overall, this is consistent with expectations from model simulations, (e.g. CCMVal2, Eyring et al., 2010). These simulations indicate that declining chlorine levels and stratospheric cooling due to CO2 increase should contribute roughly equal parts to ozone increase in the upper stratosphere. Shortly after the assessment, results from the SI2N initiative (Harris et al., 2015) confirmed increasing ozone in the upper stratosphere. However, the SI2N results indicated smaller increases (+1.5% per decade) than the WMO assessment, and substantially larger uncertainties (±5% per decade, 2σ). Differences can be attributed to time period, 1998 to 2012, compared to 2000 to 2013/14 for the assessment, and to larger assumed instrumental drift uncertainties, 6% per decade, (only 1 to 2% per decade in WMO 2014, see also Hubert et al., 2016). Here, we explore how additional ground-based and satellite data since 2013, as well as new and improved records, affect ozone trends and uncertainties. The focus will be on ozone in the upper stratosphere, because this is the region where the earliest signs of beginning ozone recovery are expected. ReferencesEyring, V., et al.: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451-9472, doi:10.5194/acp-10-9451-2010, 2010. Harris, N. R. P., et al.: Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, doi:10.5194/acp-15-9965-2015, 2015. Hubert, D., et al.: Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records, Atmos. Meas. Tech., 9, 2497-2534, doi:10.5194/amt-9-2497-2016, 2016. WMO 2014: Pawson, S., Steinbrecht, W. et al.: Update on global ozone: Past, present, and future, Chapter 2 in: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project - Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014.
NASA Astrophysics Data System (ADS)
Zhao, Zijian; Wang, Yuxuan
2017-12-01
The West Pacific subtropical high (WPSH), as one of the most important components of the East Asian summer monsoon (EASM), is the key synoptic-scale circulation pattern influencing summertime precipitation and atmospheric conditions in China. Here we investigate the impacts of the WPSH on surface ozone daily variability over eastern China, using observations from recently established network of ozone monitors and meteorology reanalysis data during summer (June, July, August; JJA) 2014-2016 with a focus on 2014. An empirical orthogonal function (EOF) analysis of daily ozone variations reveals that the dominating eigenvector (EOF1), which contributes a quarter (25.2%) to the total variances, is a marked north-south contrast. This pattern is temporally well correlated (r = -0.66, p < 0.01) with daily anomalies of a normalized WPSH intensity index (WPSH-I). Spatially, the WPSH-I and ozone correlation is positive in North China (NC) but negative in South China (SC), which well correlates with the ozone EOF1 pattern showing the same north-south contrast (r = -0.86, p < 0.01). These associations suggest the dominant component of surface ozone daily variability in eastern China is linked with the variability of the WPSH intensity in that a stronger WPSH leads to a decrease of surface ozone over SC but an increase over NC and vice versa. This is because a stronger WPSH enhances southwesterly transport of moisture into SC, creating such conditions not conducive for ozone formation as higher RH, more cloudiness and precipitation, less UV radiation, and lower temperature. Meanwhile, as most of the rainfall due to the enhanced southwesterly transport of moisture occurs in SC, water vapor is largely depleted in the air masses transported towards NC, creating dry and sunny conditions over NC under a strong WPSH, thereby promoting ozone formation.
NASA Technical Reports Server (NTRS)
2002-01-01
Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.
Simon, Heather; Baker, Kirk R; Akhtar, Farhan; Napelenok, Sergey L; Possiel, Norm; Wells, Benjamin; Timin, Brian
2013-03-05
In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this application of modeled sensitivities to ambient ozone concentrations provides a more realistic spatial response of ozone concentrations at monitors inside and outside the urban core and at hours of both high and low ozone concentrations.
Results of international Dobson spectrophotometer calibrations at Arosa, Switzerland, 1990
NASA Technical Reports Server (NTRS)
Grass, R. D.; Komhyr, W. D.; Koenig, G. L.; Evans, R. D.
1994-01-01
An international comparison of Dobson ozone spectrophotometers, organized and partially funded by the World Meteorological Organization (WMO), was held at the Lichtklimatisches Observatorium (LKO) in Arosa, Switzerland, July-August 1990. Countries participating with a total of 18 Dobson instruments were Belgium, Czechoslovakia, Denmark, Germany, Greece, Hungary, Iceland, Norway, Poland, Portugal, Rumania, Spain, Switzerland, the United Kingdom, the United States, and the United Soviet Socialist Republics. The reference standard instrument for the comparison was U.S.A. Secondary Standard Dobson Spectrophotometer 65 maintained by the NOAA Climate and Monitoring and Diagnostics Laboratory, Boulder, Colorado. The mean difference in ozone obtained with the Dobson instruments relative to Dobson instrument 65, calculated from ADDSGQP observations in the air mass range 1.15-3.2, was minus 1.0 plus or minus 1.2 (1 sigma) percent. The WMO Standard Brewer Spectrometer 39 also participated. In the mean, the Brewer instrument measured 0.6 plus or minus 0.2 (1 sigma) percent more ozone than did Dobson instrument 65. Results are presented, also, of ozone vertical profile measurements made with the Dobson instruments, two Brewer spectrometers, a LIDAR, a balloon ozonesonde flown from Hohenpeissenberg, Germany, and balloon ozonesondes flown from Payerne, Switzerland.
Use of AIRS, OMI, MLS, and TES Data in Assessing Forest Ecosystem Exposure to Ozone
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.
2007-01-01
Ground-level ozone at high levels poses health threats to exposed flora and fauna, including negative impacts to human health. While concern is common regarding depletion of ozone in the stratosphere, portions of the urban and rural United States periodically have high ambient levels of tropospheric ozone on the ground. Ozone pollution can cause a variety of impacts to susceptible vegetation (e.g., Ponderosa and Jeffrey pine species in the southwestern United States), such as stunted growth, alteration of growth form, needle or leaf chlorosis, and impaired ability to withstand drought-induced water stress. In addition, Southern Californian forests with high ozone exposures have been recently subject to multiyear droughts that have led to extensive forest overstory mortality from insect outbreaks and increased incidence of wildfires. Residual forests in these impacted areas may be more vulnerable to high ozone exposures and to other forest threats than ever before. NASA sensors collect a wealth of atmospheric data that have been used recently for mapping and monitoring regional tropospheric ozone levels. AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), MLS (Microwave Limb Sounder), and TES (Tropospheric Emission Spectrometer) data could be used to assess forest ecosystem exposure to ozone. Such NASA data hold promise for providing better or at least complementary synoptic information on ground-level ozone levels that Federal agency partners can use to assess forest health trends and to mitigate the threats as needed in compliance with Federal laws and mandates. NASA data products on ozone concentrations may be able to aid applications of DSTs (decision support tools) adopted by the USDA FS (U.S. Department of Agriculture Forest Service) and by the NPS (National Park Service), such as the Ozone Calculator, in which ground ozone estimates are employed to assess ozone impacts to forested vegetation.
2009-09-16
The annual ozone hole has started developing over the South Pole, and it appears that it will be comparable to ozone depletions over the past decade. This composite image from September 10 depicts ozone concentrations in Dobson units, with purple and blues depicting severe deficits of ozone. "We have observed the ozone hole again in 2009, and it appears to be pretty average so far," said ozone researcher Paul Newman of NASA's Goddard Space Flight Center in Greenbelt, Md. "However, we won't know for another four weeks how this year's ozone hole will fully develop." Scientists are tracking the size and depth of the ozone hole with observations from the Ozone Monitoring Instrument on NASA's Aura spacecraft, the Global Ozone Monitoring Experiment on the European Space Agency's ERS-2 spacecraft, and the Solar Backscatter Ultraviolet instrument on the National Oceanic and Atmospheric Administration's NOAA-16 satellite. The depth and area of the ozone hole are governed by the amount of chlorine and bromine in the Antarctic stratosphere. Over the southern winter, polar stratospheric clouds (PSCs) form in the extreme cold of the atmosphere, and chlorine gases react on the cloud particles to release chlorine into a form that can easily destroy ozone. When the sun rises in August after months of seasonal polar darkness, the sunlight heats the clouds and catalyzes the chemical reactions that deplete the ozone layer. The ozone hole begins to grow in August and reaches its largest area in late September to early October. Recent observations and several studies have shown that the size of the annual ozone hole has stabilized and the level of ozone-depleting substances has decreased by 4 percent since 2001. But since chlorine and bromine compounds have long lifetimes in the atmosphere, a recovery of atmospheric ozone is not likely to be noticeable until 2020 or later. Visit NASA's Ozone Watch page for current imagery and data: ozonewatch.gsfc.nasa.gov/index.html
NASA Technical Reports Server (NTRS)
Swartz, W. H.; Stolarski, R. S.; Oman, L. D.; Fleming, E. L.; Jackman, C. H.
2012-01-01
The 11-year solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3-6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response 50 using the SORCE SSI is nearly 2 K per 100 units 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the atmospheric response to arbitrary SSI variations.
Open-path FTIR ozone measurements in Korea
NASA Astrophysics Data System (ADS)
Walter, William T.; Perry, Stephen H.; Han, Jin-Seok; Park, Chul-Jin
1999-02-01
In July 1997 the Republic of Korea became the 15th country to exceed 10-million registered motor vehicles. The number of cars has been increasing exponentially in Korea for the past 12 years opening an era of one car per household in this nation with a population of 44 million. The air quality effects of the growth of increasingly congested motor vehicle traffic in Seoul, home to more than one-fourth of the entire population, is of great concern to Korea's National Institute of Environmental Research (NIER). AIL's Open-Path FTIR air quality monitor, RAM 2000TM, has been used to quantify the ozone increase over the course of a warm summer day. The RAM 2000 instrument was setup on the roof of the 6-story NIER headquarters. The retroreflector was sited 180-m away across a major highway where it was tripod-mounted on top of the 6- story Korean National Institute of Health facility. During the Open-Path FTIR data taking, NIER Air Physics Division research team periodically tethered an airborne balloon containing pump and a potassium iodide solution to obtain absolute ozone concentration results which indicated that the ambient ozone level was 50 ppb when the Open-Path FTIR measurements began. Total ozone concentrations exceeded 120 ppb for five hours between 11:30 AM and 4:30 PM. The peak ozone concentration measured was 199 ppb at 12:56 PM. The averaged concentration for five and a half hours of data collection was 145 ppb. Ammonia concentrations were also measured.
National trends in ozone injury to forest plants: 16 years of biomonitoring
Gretchen Smith
2013-01-01
The ozone indicator, an important research component of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, was developed and implemented to address specific concerns about the negative effects of ground-level ozone pollution on forest health and productivity. Ozone is a highly toxic air contaminant that has been shown...
NASA Astrophysics Data System (ADS)
Taylan, Osman
2017-02-01
High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.
NASA Technical Reports Server (NTRS)
Witte, J. C.; Thompson, Anne M.; McPeters, R. D.; Oltmans, S. J.; Schmidlin, F. J.; Bhartia, P. K. (Technical Monitor)
2001-01-01
As part of the SAFARI-2000 campaign, additional launches of ozonesondes were made at Irene, South Africa and at Lusaka, Zambia. These represent campaign augmentations to the SHADOZ database described in this paper. This network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere ADditional OZonesondes (SHADOZ) project and established from operational sites, provided over 1000 profiles from ozonesondes and radiosondes during the period 1998-2000. (Since that time, two more stations, one in southern Africa, have joined SHADOZ). Archived data are available at: http://code9l6.gsfc.nasa.gov/Data-services/shadoz>. Uncertainties and accuracies within the SHADOZ ozone data set are evaluated by analyzing: (1) imprecisions in stratospheric ozone profiles and in methods of extrapolating ozone above balloon burst; (2) comparisons of column-integrated total ozone from sondes with total ozone from the Earth-Probe/TOMS (Total Ozone Mapping Spectrometer) satellite and ground-based instruments; (3) possible biases from station-to-station due to variations in ozonesonde characteristics. The key results are: (1) Ozonesonde precision is 5%; (2) Integrated total ozone column amounts from the sondes are in good agreement (2-10%) with independent measurements from ground-based instruments at five SHADOZ sites and with overpass measurements from the TOMS satellite (version 7 data). (3) Systematic variations in TOMS-sonde offsets and in groundbased-sonde offsets from station to station reflect biases in sonde technique as well as in satellite retrieval. Discrepancies are present in both stratospheric and tropospheric ozone. (4) There is evidence for a zonal wave-one pattern in total and tropospheric ozone, but not in stratospheric ozone.
NASA Astrophysics Data System (ADS)
Rieder, Harald E.; Jancso, Leonhardt M.; Rocco, Stefania Di; Staehelin, Johannes; Maeder, Joerg A.; Peter, Thomas; Ribatet, Mathieu; Davison, Anthony C.; de Backer, Hugo; Koehler, Ulf; Krzyścin, Janusz; Vaníček, Karel
2011-11-01
We apply methods from extreme value theory to identify extreme events in high (termed EHOs) and low (termed ELOs) total ozone and to describe the distribution tails (i.e. very high and very low values) of five long-term European ground-based total ozone time series. The influence of these extreme events on observed mean values, long-term trends and changes is analysed. The results show a decrease in EHOs and an increase in ELOs during the last decades, and establish that the observed downward trend in column ozone during the 1970-1990s is strongly dominated by changes in the frequency of extreme events. Furthermore, it is shown that clear ‘fingerprints’ of atmospheric dynamics (NAO, ENSO) and chemistry [ozone depleting substances (ODSs), polar vortex ozone loss] can be found in the frequency distribution of ozone extremes, even if no attribution is possible from standard metrics (e.g. annual mean values). The analysis complements earlier analysis for the world's longest total ozone record at Arosa, Switzerland, confirming and revealing the strong influence of atmospheric dynamics on observed ozone changes. The results provide clear evidence that in addition to ODS, volcanic eruptions and strong/moderate ENSO and NAO events had significant influence on column ozone in the European sector.
Atmospheric Chemistry Insights from the SHADOZ Data: An IGAC Paradigm
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Bhartia, P. K. (Technical Monitor)
2002-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from ten sites comprising the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a Trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: http://code9l6.gsfc.nasa.gov/ Data-services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Coetzee, G. J. R.; Hoegger, Bruno; Kirchhoff, V. W. J. H.; Ogawa, Toshihiro; Kawakami, Shuji; Posny, Francoise
2002-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at:
Total ozone trend significance from space time variability of daily Dobson data
NASA Technical Reports Server (NTRS)
Wilcox, R. W.
1981-01-01
Estimates of standard errors of total ozone time and area means, as derived from ozone's natural temporal and spatial variability and autocorrelation in middle latitudes determined from daily Dobson data are presented. Assessing the significance of apparent total ozone trends is equivalent to assessing the standard error of the means. Standard errors of time averages depend on the temporal variability and correlation of the averaged parameter. Trend detectability is discussed, both for the present network and for satellite measurements.
Data Validation for Earth Probe-Total Ozone Mapping Spectrometer
NASA Technical Reports Server (NTRS)
Stanford, John L.
1995-01-01
This presentation represents the final report for the NASA grant project. The goal of this project was to provide scientific analysis to aid in validation fo data sets used in detection of long term global trends of total ozone. Ozone data from the Earth Probe Total Ozone Mapping Spectrometer instrument was compared for validation purposes with features in previous TOMS data. Atmospheric dynamic concepts were used in the analysis. The publications sponsored by the grant are listed along with abstracts.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Bhartia, Pawan K. (Technical Monitor)
2001-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere ADditional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natai, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at an open archive:
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Bhartia, P. K. (Technical Monitor)
2002-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on an Trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approximately 7 hPa and relative humidity to approximately 200 hPa, reside at:
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Bhartia, Pawan (Technical Monitor)
2002-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at:
The effect of bandwidth on filter instrument total ozone accuracy
NASA Technical Reports Server (NTRS)
Basher, R. E.
1977-01-01
The effect of the width and shape of the New Zealand filter instrument's passbands on measured total-ozone accuracy is determined using a numerical model of the spectral measurement process. The model enables the calculation of corrections for the 'bandwidth-effect' error and shows that highly attenuating passband skirts and well-suppressed leakage bands are at least as important as narrow half-bandwidths. Over typical ranges of airmass and total ozone, the range in the bandwidth-effect correction is about 2% in total ozone for the filter instrument, compared with about 1% for the Dobson instrument.
Ozone profile measurements at McMurdo Station Antarctica during the spring of 1987
NASA Technical Reports Server (NTRS)
Hofmann, D. J.; Harder, J. W.; Rosen, J. M.; Hereford, J.; Carpenter, J. R.
1988-01-01
During the Antarctic spring of 1986, 33 ozone soundings were conducted from McMurdo Station. These data indicated that the springtime decrease in ozone occurred rapidly between the altitudes of 12 and 20 km. During 1987, these measurements were repeated with 50 soundings between 29 August and 9 November. Digital conversions of standard electrochemical cell ozonesondes were again employed. The ozonesonde pumps were individually calibrated for flow rate as the high altitude performance of these pumps have been in question. While these uncertainties are not large in the region of the ozone hole, they are significant at high altitude and apparently resulted in an underestimate of total ozone of about 7 percent (average) as compared to the Total Ozone Mapping Spectrometer (TOMS) in 1986, when the flow rate recommended by the manufacturer was used. At the upper altitudes (approx. 30 km) the flow rate may be overestimated by as much as 15 percent using recommended values (see Harder et al., The UW Digital Ozonesonde: Characteristics and Flow Rate Calibration, poster paper, this workshop). These upper level values are used in the extrapolation, at constant mixing ratio, required to complete the sounding for total ozone. The first sounding was on 29 August, prior to major ozone depletion, when 274 DU total ozone (25 DU extrapolated) was observed. By early October total ozone had decreased to the 150 DU range; it then increased during mid-October owing to motion of the vortex and returned to a value of 148 DU (29 DU extrapolated) on 27 October.
NASA Astrophysics Data System (ADS)
Antón, M.; Koukouli, M. E.; Kroon, M.; McPeters, R. D.; Labow, G. J.; Balis, D.; Serrano, A.
2010-10-01
This article focuses on the global-scale validation of the empirically corrected Version 8 total ozone column data set acquired by the NASA Total Ozone Mapping Spectrometer (TOMS) during the period 1996-2004 when this instrument was flying aboard the Earth Probe (EP) satellite platform. This analysis is based on the use of spatially co-located, ground-based measurements from Dobson and Brewer spectrophotometers. The original EP-TOMS V8 total ozone column data set was also validated with these ground-based measurements to quantify the improvements made by the empirical correction that was necessary as a result of instrumental degradation issues occurring from the year 2000 onward that were uncorrectable by normal calibration techniques. EP-TOMS V8-corrected total ozone data present a remarkable improvement concerning the significant negative bias of around ˜3% detected in the original EP-TOMS V8 observations after the year 2000. Neither the original nor the corrected EP-TOMS satellite total ozone data sets show a significant dependence on latitude. In addition, both EP-TOMS satellite data sets overestimate the Brewer measurements for small solar zenith angles (SZA) and underestimate for large SZA, explaining a significant seasonality (˜1.5%) for cloud-free and cloudy conditions. Conversely, relative differences between EP-TOMS and Dobson present almost no dependence on SZA for cloud-free conditions and a strong dependence for cloudy conditions (from +2% for small SZA to -1% for high SZA). The dependence of the satellite ground-based relative differences on total ozone shows good agreement for column values above 250 Dobson units. Our main conclusion is that the upgrade to TOMS V8-corrected total ozone data presents a remarkable improvement. Nevertheless, despite its quality, the EP-TOMS data for the period 2000-2004 should not be used as a source for trend analysis since EP-TOMS ozone trends are empirically corrected using NOAA-16 and NOAA-17 solar backscatter ultraviolet/2 data as external references, and therefore, they are no longer considered as independent observations.
Ozone (O3) Standards - Other Technical Documents from the Review Completed in 2015
These memoranda were each sent in to the Ozone NAAQS Review Docket, EPA-HQ-OAR-2008-0699, after the proposed rule was published. They present technical data on the methods, monitoring stations, and metrics used to estimate ozone concentrations.
Ozone formation behind pulsed-laser-generated blast waves in oxygen
NASA Astrophysics Data System (ADS)
Stricker, J.; Parker, J. G.
1984-12-01
The formation of ozone behind blast waves in oxygen generated by a pulsed laser has been investigated both experimentally and theoretically, over cell pressure range of 0.68-27 atm. Ozone buildup formed by successive pulses was monitored by recording UV absorption at 2540 Å. It was found that, as the number of pulses increase, the rate of ozone formation decreased until finally an equilibrium concentration was reached. This equilibrium magnitude was determined by the condition that the number of ozone molecules produced by the wave equals the number decomposed by the same wave. The decomposition and formation of O3 during a single pulse were monitored by time-resolved UV absorption measurements. In order to provide a fundamental basis for interpretation of the mechanism of ozone formation, a mathematical model was developed. Although qualitatively measurements and theory agree, the data, mainly on the number of O3 molecules produced per pulse, is in significant disagreement. Several possible explanations of this discrepancy are given.
Alexopoulos, A; Plessas, S; Kourkoutas, Y; Stefanis, C; Vavias, S; Voidarou, C; Mantzourani, I; Bezirtzoglou, E
2017-04-04
Ozone was used to control spoilage microorganisms during the manufacturing of dairy products. Ozone stream was applied onto the surface of freshly filled yoghurt cups just before storage for curd development in order to prevent cross contamination from spoilage airborne microorganisms. Accordingly, brine solution was bubbled with ozone for various periods of time and used for ripening of white (feta type) cheese. Both products were subjected to a continuous monitoring of microbial load and also tested for their sensorial properties. In ozonated yoghurt samples there was a reduction in mould counts of approximately 0.6Logcfu/g (25.1%) by the end of the monitoring period in relation to the control samples. In white cheese ripened with ozonated brine (1.3mg/L O 3 , NaCl 5%) it seems that ozone treatment during the two months of observation reduced some of the mould load but without offering any advantages over the use of traditional brine (NaCl 7%). However, some sensorial alterations were observed, probably due to the organic load in the brine which deactivates ozone in early stages of application. It is concluded that, if the factors of time and concentration of ozone are configured properly, ozonation could be a promising approach safeguarding the production of some dairy products. Copyright © 2017 Elsevier B.V. All rights reserved.
Microarray-based analysis of survival of soil microbial community during ozonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian; Van Nostrand, Joy D.; He, Zhili
A 15 h ozonation was performed on bioremediated soil to remove recalcitrant residual oil. To monitor the survival of indigenous microorganisms in the soil during in-situ chemical oxidation(ISCO) culturing and a functional genearray, GeoChip, was used to examine the functional genes and structure of the microbial community during ozonation (0h, 2h, 4h, 6h, 10hand15h). Breakthrough ozonation decreased the population of cultivable heterotrophic bacteria by about 3 orders of magnitude. The total functional gene abundance and diversity decreased during ozonation, as the number of functional genes was reduced by 48percent after 15 h. However, functional genes were evenly distributed during ozonationmore » as judged by the Shannon-Weaver Evenness index. A sharp decrease in gene number was observed in the first 6 h of ozonation followed by a slower decrease in the next 9 h, which was consistent with microbial populations measured by a culture based method. Functional genes involved in carbon, nitrogen, phosphors and sulfur cycling, metal resistance and organic remediation were detected in all samples. Though the pattern of gene categories detected was similar for all time points, hierarchica lcluster of all functional genes and major functional categories all showed a time-serial pattern. Bacteria, archaea and fungi decreased by 96.1percent, 95.1percent and 91.3percent, respectively, after 15 h ozonation. Delta proteobacteria, which were reduced by 94.3percent, showed the highest resistance to ozonation while Actinobacteria, reduced by 96.3percent, showed the lowest resistance. Microorganisms similar to Rhodothermus, Obesumbacterium, Staphylothermus, Gluconobacter, and Enterococcus were dominant at all time points. Functional genes related to petroleum degradation decreased 1~;;2 orders of magnitude. Most of the key functional genes were still detected after ozonation, allowing a rapid recovery of the microbial community after ozonation. While ozone had a large impact on the indigenous soil microorganisms, a fraction of the key functional gene-containing microorganisms survived during ozonation and kept the community functional.« less
NASA Astrophysics Data System (ADS)
Luhar, Ashok K.; Woodhouse, Matthew T.; Galbally, Ian E.
2018-03-01
Dry deposition at the Earth's surface is an important sink of atmospheric ozone. Currently, dry deposition of ozone to the ocean surface in atmospheric chemistry models has the largest uncertainty compared to deposition to other surface types, with implications for global tropospheric ozone budget and associated radiative forcing. Most global models assume that the dominant term of surface resistance in the parameterisation of ozone dry deposition velocity at the oceanic surface is constant. There have been recent mechanistic parameterisations for air-sea exchange that account for the simultaneous waterside processes of ozone solubility, molecular diffusion, turbulent transfer, and first-order chemical reaction of ozone with dissolved iodide and other compounds, but there are questions about their performance and consistency. We present a new two-layer parameterisation scheme for the oceanic surface resistance by making the following realistic assumptions: (a) the thickness of the top water layer is of the order of a reaction-diffusion length scale (a few micrometres) within which ozone loss is dominated by chemical reaction and the influence of waterside turbulent transfer is negligible; (b) in the water layer below, both chemical reaction and waterside turbulent transfer act together and are accounted for; and (c) chemical reactivity is present through the depth of the oceanic mixing layer. The new parameterisation has been evaluated against dry deposition velocities from recent open-ocean measurements. It is found that the inclusion of only the aqueous iodide-ozone reaction satisfactorily describes the measurements. In order to better quantify the global dry deposition loss and its interannual variability, modelled 3-hourly ozone deposition velocities are combined with the 3-hourly MACC (Monitoring Atmospheric Composition and Climate) reanalysis ozone for the years 2003-2012. The resulting ozone dry deposition is found to be 98.4 ± 30.0 Tg O3 yr-1 for the ocean and 722.8 ± 87.3 Tg O3 yr-1 globally. The new estimate of the ocean component is approximately a third of the current model estimates. This reduction corresponds to an approximately 20 % decrease in the total global ozone dry deposition, which (with all other components being unchanged) is equivalent to an increase of approximately 5 % in the modelled tropospheric ozone burden and a similar increase in tropospheric ozone lifetime.
Extreme Events: low and high total ozone over Arosa, Switzerland
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.
2009-04-01
The frequency distribution of days with extreme low (termed ELOs) and high (termed EHOs) total ozone is analyzed for the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al.,1998a,b), with new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007). A heavy-tail focused approach is used through the fitting of the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a high (or below a low) enough threshold (Coles, 2001). The analysis shows that the GPD is appropriate for modeling the frequency distribution in total ozone above or below a mathematically well-defined threshold. While previous studies focused on so termed ozone mini-holes and mini-highs (e.g. Bojkov and Balis, 2001, Koch et al., 2005), this study is the first to present a mathematical description of extreme events in low and high total ozone for a northern mid-latitudes site (Rieder et al., 2009). The results show (a) an increase in days with extreme low (ELOs) and (b) a decrease in days with extreme high total ozone (EHOs) during the last decades, (c) that the general trend in total ozone is strongly determined by these extreme events and (d) that fitting the GPD is an appropriate method for the estimation of the frequency distribution of so-called ozone mini-holes. Furthermore, this concept allows one to separate the effect of Arctic ozone depletion from that of in situ mid-latitude ozone loss. As shown by this study, ELOs and EHOs have a strong influence on mean values in total ozone and the "extremes concept" could be further used also for validation of Chemistry-Climate-Models (CCMs) within the scientific community. References: Bojkov, R. D., and Balis, D.S.: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1975-2000, Ann. Geophys., 19, 797-807, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Koch, G., H. Wernli, C. Schwierz, J. Staehelin, and T. Peter (2005), A composite study on the structure and formation of ozone miniholes and minihighs over central Europe, Geophys. Res. Lett., 32, L12810, doi:10.1029/2004GL022062. Pickands, J.: Statistical-Inference using extreme order Statistics, Ann. Stat., 3, 1, 119-131, 1975. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.
We use a 2005–2009 record of isoprene emissions over Africa derived from Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission in the continent and evaluate the impact on atmospheric co...
Mark E. Fenn; Andrzej Bytnerowicz; Susan L. Schilling
2018-01-01
Measuring the exposure of ecosystems to ecologically relevant pollutants is needed for evaluating ecosystem effects and to identify regions and resources at risk. In California, ozone (O3) and nitrogen (N) pollutants are of greatest concern for ecological effects. "Passive" monitoring methods have been developed to obtain spatially...
Bio-Monitoring of Ozone by Young Students
ERIC Educational Resources Information Center
Lorenzini, Giacomo; Nali, Cristina
2004-01-01
An educational pilot project on the bio-monitoring of air quality was carried out in the Umbria Region of Central Italy. It involved about 1000 young students (ages 4 to 16) from 42 schools of 16 municipalities in active biomonitoring of tropospheric ozone with bio-indicator sensitive tobacco seedlings. Some 6500 raw biological readings were used…
Use of Ozone to Treat Ileostomy Dermatitis in an Experimental Rat Model.
Biçer, Şenol; Sayar, İlyas; Gürsul, Cebrail; Işık, Arda; Aydın, Merve; Peker, Kemal; Demiryilmaz, İsmail
2016-03-07
Dermatitis associated with ileostomy is an important problem that affects many people, especially children. The aim of this study was to investigate the therapeutic effects of ozone on dermatitis due to ileostomy, and to develop an alternative treatment option. A total of 28 rats were divided into 4 groups: control, ileostomy, ozone, and zinc oxide. Ileostomy was performed in all rats except the control group. After a 1-week waiting time, the ozone group was administered ozone therapy and the zinc oxide group was administered zinc oxide cream locally once a day for a total of 7 days. All rats were sacrificed at the end of this period. The efficacy of treatment was examined by biochemical, histopathological, and immunohistochemical parameters. The levels of malondialdehyde (MDA), total glutathione (tGSH), total antioxidant capacity (TAC), and total oxidant status (TOS) were measured from tissue. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) were examined immunohistochemically. Dermatitis occurred pathologically in all rats that underwent ileostomy surgery. The lowest dermatitis score was in the ozone treatment group (p<0.05). Ileostomy dermatitis caused increased levels of MDA and TOS. Ozone treatment resulted in reduced MDA and TOS levels, while the levels of tGSH and TAC were increased (p<0.05). Both VEGF and PCNA immunostaining were augmented in the ozone treatment group (p<0.05). Local ozone application may be a good alternative compared to the conventional treatment methods for the prevention of skin lesions that develop after ileostomy.
Science Requirements Document for OMI-EOS. 2
NASA Technical Reports Server (NTRS)
Bhartia, P. K.; Chance, K.; Isaksen, I.; Levelt, P. F.; Boersma, F.; Brinksma, E.; Carpay, J.; vanderA, R.; deHaan, J.; Hilsenrath, E.
2000-01-01
A Dutch-Finnish scientific and industrial consortium is supplying the Ozone Monitoring Instrument (OMI) for Earth Observing System-Aura (EOS-Aura). EOS-Aura is the next NASA mission to study the Earth's atmosphere extensively, and successor to the highly successful UARS (Upper Atmospheric Research Satellite) mission. The 'Science Requirements Document for OMI-EOS' presents an overview of the Aura and OMI mission objectives. It describes how OMI fits into the Aura mission and it reviews the synergy with the other instruments onboard Aura to fulfill the mission. This evolves in the Scientific Requirements for OMI (Chapter 3), stating which trace gases have to be measured with what necessary accuracy, in order for OMI to meet Aura's objectives. The most important data product of OMI, the ozone vertical column, densities shall have a better accuracy and an improved global coverage than the predecessor instruments TOMS (Total Ozone Monitoring Spectrometer) and GOME (Global Ozone Monitoring Experiment), which is a.o. achieved by a better signal to noise ratio, improved calibration and a wide field-of-view. Moreover, in order to meet its role on Aura, OMI shall measure trace gases, such as NO2, OClO, BrO, HCHO and SO2, aerosols, cloud top height and cloud coverage. Improved accuracy, better coverage, and finer ground grid than has been done in the past are goals for OMI. After the scientific requirements are defined, three sets of subordinate requirements are derived. These are: the algorithm requirements, i.e. what do the algorithms need in order to meet the scientific requirements; the instrument and calibration requirements, i.e. what has to be measured and how accurately in order to provide the quality of data necessary for deriving the data products; and the validation requirements, i.e. a strategy of how the OMI program will assure that its data products are valid in the atmosphere, at least to the required accuracy.
Atmospheric Ozone Response to the Disrupted 2015-2016 Quasi-Biennial Oscillation
NASA Technical Reports Server (NTRS)
Kramarova, N. A.; Tweedy, O. V.; Strahan, S. E.; Newman, P. A.; Coy, L.; Randel, W. J.; Park, M.; Waugh, D. W.; Frith, S.
2017-01-01
The quasi-biennial oscillation (QBO) - a quasi-periodic alternation between easterly and westerly zonal winds in the tropical stratosphere - is a main driver of inter-annual ozone variability in the stratosphere. During the late-2015 through 2016 time period, the QBO experienced a major disruption unlike any observed since wind measurements began in 1953. We examined the ozone response to this QBO disruption using profile ozone measurements from the Aura Microwave Limb Sounder (MLS) and Ozone Mapping and Profiler Suite Limb Profiler and total column measurements from the Solar Backscatter Ultraviolet (SBUV) Merged Ozone Data Set (MOD). Positive anomalies in stratospheric equatorial O3 developed between 50 and 30 hPa in May-September of 2016, and negative ozone anomalies were observed in the subtropics of both hemispheres. As a consequence of this QBO disruption, extratropical total ozone values during the spring-summer 2016 were at or near seasonal record lows over the more than 40 years of the total ozone record, resulting in an increase of surface UV index during northern hemisphere summer. We found very consistent responses in all considered ozone observations in terms of time, amplitude and spatial patterns. We will show the ozone changes associated with this disrupted QBO throughout the winter and spring 2017.
NASA Technical Reports Server (NTRS)
Atkinson, Roger J.; Plumb, R. Alan
1994-01-01
In a previous observational analysis, Atkinson et al (1989) ascribed a sudden decrease in Southern Hemisphere midlatitude total ozone during December 1987 to an 'ozone dilution effect' brought about by the breakup of the polar stratospheric vortex at that time. A question alluded to but unanswered by that study was the degree to which the observed total ozone decrease might have been caused by the quasi-horizontal equatorward transport of 'ozone hold' air from within the vortex, and to what degree by the vertical advection from lower levels of air naturally low in ozone, a dynamical adjustment process which must accompany the equatorward outbreak of a discrete high-latitude airmass. In the present study, analyses of Ertel potential vorticity, TOMS total ozone, and SAGE and ozone sonde vertical profile data are employed using a novel technique to examine the 1987 event in greater detail, to answer this question. Recent progress is then reported in refining the technique and extending the investigation to examine the dynamical evolution of the austral spring stratosphere during other recent years, to shed more light on the precise nature, frequency, and severity of such 'ozone dilution' events, and the effect that this process may have on long term ozone behavior in the Southern Hemisphere.
NASA Astrophysics Data System (ADS)
Brönnimann, S.; Luterbacher, J.; Schmutz, C.; Wanner, H.; Staehelin, J.
2000-08-01
Atmospheric circulation determines to a considerable extent the variability of lower stratospheric ozone and can modulate its long-term trends in Europe and the North Atlantic Region. Due to dynamical stratosphere-troposphere coupling, important features of the variability of the surface pressure field are reflected in the long-term total ozone record from Arosa, Switzerland. Significant (p<0.01) correlations between total ozone and different atmospheric circulation indices (NAOI, AOI, EU1, EU2) are found in all months except for April, June, July, and November for the period 1931 to 1997. An analysis of geopotential heights for the period 1958 to 1997 shows that these circulation anomaly patterns have upper tropospheric features over the North Atlantic-European sector that are consistent with a dynamical influence on total ozone.
Ozone injury to forests across the northeast and north central United States, 1994 - 2010
Gretchen C. Smith; Randall S. Morin; George L. McCaskill
2012-01-01
Ozone is a highly toxic air contaminant that has been shown to decrease tree growth and cause significant disturbance to forested ecosystems. Ozone also causes distinct foliar injury symptoms to certain species (bioindicator plants) that can be used to detect and monitor ozone stress (biomonitoring) in the forest environment. In the early 1990s, the U.S. Forest Service...
Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations
Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga; ...
2017-11-27
In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.« less
Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga
In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.« less
Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas.
Ahmadi, Mahdi; John, Kuruvilla
2015-12-01
Over the past decade, substantial growth in shale gas exploration and production across the US has changed the country's energy outlook. Beyond its economic benefits, the negative impacts of shale gas development on air and water are less well known. In this study the relationship between shale gas activities and ground-level ozone pollution was statistically evaluated. The Dallas-Fort Worth (DFW) area in north-central Texas was selected as the study region. The Barnett Shale, which is one the most productive and fastest growing shale gas fields in the US, is located in the western half of DFW. Hourly meteorological and ozone data were acquired for fourteen years from monitoring stations established and operated by the Texas Commission on Environmental Quality (TCEQ). The area was divided into two regions, the shale gas region (SGR) and the non-shale gas (NSGR) region, according to the number of gas wells in close proximity to each monitoring site. The study period was also divided into 2000-2006 and 2007-2013 because the western half of DFW has experienced significant growth in shale gas activities since 2007. An evaluation of the raw ozone data showed that, while the overall trend in the ozone concentration was down over the entire region, the monitoring sites in the NSGR showed an additional reduction of 4% in the annual number of ozone exceedance days than those in the SGR. Directional analysis of ozone showed that the winds blowing from areas with high shale gas activities contributed to higher ozone downwind. KZ-filtering method and linear regression techniques were used to remove the effects of meteorological variations on ozone and to construct long-term and short-term meteorologically adjusted (M.A.) ozone time series. The mean value of all M.A. ozone components was 8% higher in the sites located within the SGR than in the NSGR. These findings may be useful for understanding the overall impact of shale gas activities on the local and regional ozone pollution. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.;
2013-01-01
Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.
NASA Astrophysics Data System (ADS)
Rieder, Harald E.; Staehelin, Johannes; Maeder, Jörg A.; Peter, Thomas; Ribatet, Mathieu; Davison, Anthony C.; Stübi, Rene; Weihs, Philipp; Holawe, Franz
2010-05-01
In this study tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied for the first time in the field of stratospheric ozone research, as statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not address the internal data structure concerning extremes adequately. The study illustrates that tools based on extreme value theory are appropriate to identify ozone extremes and to describe the tails of the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al., 1998a,b) (Rieder et al., 2010a). A daily moving threshold was implemented for consideration of the seasonal cycle in total ozone. The frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone and the influence of those on mean values and trends is analyzed for Arosa total ozone time series. The results show (a) an increase in ELOs and (b) a decrease in EHOs during the last decades and (c) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Furthermore, it is shown that the fitted model represents the tails of the total ozone data set with very high accuracy over the entire range (including absolute monthly minima and maxima). Also the frequency distribution of ozone mini-holes (using constant thresholds) can be calculated with high accuracy. Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight in time series properties. Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading in ozone depleting substances lead to a continuous modification of column ozone in the northern hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). It is shown that application of extreme value theory allows the identification of many more such fingerprints than conventional time series analysis of annual and seasonal mean values. Especially, the analysis shows the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone (Rieder et al., 2010b). Overall the presented new extremes concept provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder ,H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998a. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998b.
NASA Technical Reports Server (NTRS)
Lange, R.; Savage, M.; Peyton, B.
1981-01-01
The performance of a dual-channel infrared heterodyne radiometer, designed to remotely monitor the concentration and vertical distribution of selected atmospheric species, is described. Ground based solar viewing measurement using the IHR were performed at selected laser transitions for ammonia (NH3 and ozone O3). Flight tests were conducted aboard the Galileo II, NASA Ames CV-990, on the Latitude Survey Mission. Ozone was the selected atmospheric species for the airborne flight measurements because of the scientific interest in this atmospheric species, the availability of in situ monitors, the coordinated ozone measurements, and the availability of ground truth data. The IHS was operated in the solar viewing mode to determine ozone distributions in the stratosphere and in the nadir viewing mode to determine the ozone distribution in the troposphere. Airborne atmospheric propagation measurements also were carried out at selected CO2 laser transitions.
NASA Technical Reports Server (NTRS)
Stanford, J. L.; Ziemke, J. R.; Mcpeters, R. D.; Krueger, A. J.; Bhartia, P. K.
1995-01-01
This reference publication presents selected results from space-time spectral analyses of 13 years of version 6 daily global ozone fields from the Total Ozone Mapping Spectrometer (TOMS). One purpose is to illustrate more quantitatively the well-known richness of structure and variation in total ozone. A second purpose is to provide, for use by modelers and for comparison with other analysts' work, quantitative measures of zonal waves 1, 2, 3, and medium-scale waves 4-7 in total ozone. Their variations throughout the year and at a variety of latitudes are presented, from equatorial to polar regions. The 13-year averages are given, along with selected individual years which illustrate year-to-year variability. The largest long wave amplitudes occur in the polar winters and early springs of each hemisphere, and are related to strong wave amplification during major warning events. In low attitudes total ozone wave amplitudes are an order of magnitude smaller than at high latitudes. However, TOMS fields contain a number of equatorial dynamical features, including Rossby-gravity and Kelvin waves.
The Application of TOMS Ozone, Aerosol and UV-B Data to Madagascar Air Quality Determination
NASA Technical Reports Server (NTRS)
Aikin, A.C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Total Ozone Mapping Spectrometer (TOMS) data products for the area of Madagascar are presented. In addition to total ozone, aerosols and UV-B tropospheric ozone results are shown from 1979 to the present. Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods. The potential of TOMS and other space data for use in public education and research on Madagascar air quality is demonstrated.
Comparison of recalculated Dobson and TOMS total ozone at Hradec Kralove, Czechoslovakia, 1978-1990
NASA Technical Reports Server (NTRS)
Stanek, Martin; Vanicek, Karel
1994-01-01
The reevaluated Dobson total ozone data from Hradec Kralove, Czechoslovakia were compared with independent Total Ozone Mapping Spectrophotometer (TOMS) 'version 6' data set. The comparison was performed by means of the parallel daily averages of ground-based and satellite total ozone pairs of the period November 1978 to December 1990. The comparison showed slight differences between both data series. Their average relative difference is 0.48 percent. The similar results have been reached for subsets of direct sun and zenith types of measurements as well. Their relative differences are 0.61 percent and 0.11 percent respectively. These facts indicate not only good mutual relation of both data sources but also reliability and accuracy of the zenith charts of the spectrophotometer No. 74 used at Hradec Kralove. Preliminary assessment of seasonal MU-dependence of the differences between Dobson and TOMS data was made while using total ozones of winter and summer months representing values of MU=2.70-5.20 and MU = 1.12-1.30 respectively. The results did not show systematic underestimation or overestimation of total ozone due to MU-dependence of the instrument at Hradec Kralove in both seasons.
Improved Forecasting of Next Day Ozone Concentrations in the Eastern U.S.
There is an urgent need to provide accurate air quality information and forecasts to the general public. A hierarchical space-time model is used to forecast next day spatial patterns of daily maximum 8-hr ozone concentrations. The model combines ozone monitoring data and gridded...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... Ambient Air Quality Standard AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY... the National Ambient Air Quality Standards (NAAQS) promulgated for ozone on July 18, 1997. EPA finds... measuring and monitoring ozone in ambient air, a general definition of ozone, federal Prevention of...
An Autonomous Ozone Instrument for Atmospheric Measurements from Ocean Buoys
NASA Astrophysics Data System (ADS)
Hintsa, E. J.; Rawlins, W. T.; Sholkovitz, E. R.; Hosom, D. S.; Allsup, G. P.; Purcell, M. J.; Scott, D. R.; Mulhall, P.
2002-05-01
Tropospheric ozone is an oxidant, a greenhouse gas, and a pollutant. Because of its adverse health effects, there are numerous monitoring stations on land but none over the oceans. We have built an ozone instrument for deployment anywhere at sea from ocean buoys, to study ozone chemistry over the oceans, intercontinental transport of pollution, diurnal and seasonal cycles of ozone, and to make baseline and long-term time series measurements of ozone in remote locations. The instrument uses direct (Beer's Law) absorption of UV radiation in a dual-path cell, with ambient and ozone-free air alternately switched between the two paths, to measure ozone. Ozone can be measured at a rate of 1 Hz, with a precision of about 1 ppb at sea level. The air inlet and outlet have valves which close automatically under high wind conditions or rain to protect the ozone sensor. The instrument has been packaged for deployment at sea, and tested on a 3-meter discus buoy with other instruments in coastal waters in fall 2001. It can operate autonomously or be controlled via line-of-sight modem or a satellite link. We will present the details of the instrument, and laboratory and buoy test data from its first deployment, including a comparison with a nearby ozone monitoring station on land. We will also present an evaluation of the instrument's performance and describe plans for improvements. In summer 2002, the ozone measurement system will be operated at the Martha's Vineyard Coastal Observatory; in the future we anticipate deploying on the Bermuda Testbed Mooring, followed by use on the open ocean to measure long-range transport of ozone.
Comparison of GOME-2/Metop total column water vapour with ground-based and in situ measurements
NASA Astrophysics Data System (ADS)
Kalakoski, N.; Kujanpää, J.; Sofieva, V.; Tamminen, J.; Grossi, M.; Valks, P.
2014-12-01
Total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde and Global Positioning System (GPS) observations. The comparisons are performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The comparisons are performed for the period of January 2007-July 2013 (GOME-2A) and from December 2012 to July 2013 (GOME-2B). Radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by National Climatic Data Center (NCDC) and screened for soundings with incomplete tropospheric column. Ground-based GPS observations from COSMIC/SuomiNet network are used as the second independent data source. Good general agreement between GOME-2 and the ground-based observations is found. The median relative difference of GOME-2 to radiosonde observations is -2.7% for GOME-2A and -0.3% for GOME-2B. Against GPS observations, the median relative differences are 4.9 and 3.2% for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against GPS observations. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.
Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements
NASA Astrophysics Data System (ADS)
Kalakoski, Niilo; Kujanpää, Jukka; Sofieva, Viktoria; Tamminen, Johanna; Grossi, Margherita; Valks, Pieter
2016-04-01
The total column water vapour product from the Global Ozone Monitoring Experiment-2 on board Metop-A and Metop-B satellites (GOME-2/Metop-A and GOME-2/Metop-B) produced by the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) is compared with co-located radiosonde observations and global positioning system (GPS) retrievals. The validation is performed using recently reprocessed data by the GOME Data Processor (GDP) version 4.7. The time periods for the validation are January 2007-July 2013 (GOME-2A) and December 2012-July 2013 (GOME-2B). The radiosonde data are from the Integrated Global Radiosonde Archive (IGRA) maintained by the National Climatic Data Center (NCDC). The ground-based GPS observations from the COSMIC/SuomiNet network are used as the second independent data source. We find a good general agreement between the GOME-2 and the radiosonde/GPS data. The median relative difference of GOME-2 to the radiosonde observations is -2.7 % for GOME-2A and -0.3 % for GOME-2B. Against the GPS, the median relative differences are 4.9 % and 3.2 % for GOME-2A and B, respectively. For water vapour total columns below 10 kg m-2, large wet biases are observed, especially against the GPS retrievals. Conversely, at values above 50 kg m-2, GOME-2 generally underestimates both ground-based observations.
Trends in total ozone over southern African stations between 1979 and 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalicharran, S.; Diab, R.D.; Sokolic, F.
1993-12-01
Trends in total ozone for the period 1979 to 1991 over the southern African subcontinent and the southern ocean islands of Marion and Gough and the South African Antarctic base of SANAE are examined. Version 6 Total Ozone Mapping Spectrometer (TOMS) data are used. With the exception of the low latitude stations (Nairobi and Harare), where a marginally increasing trend (+0.2% and +0.3%, respectively) was observed, the other stations all exhibited a decreasing trend in total ozone over the 13 year period, ranging between -1.1 and -2.6% over most of South Africa, increasing with latitude to reach -20.6% at SANAE.more » Inter-annual fluctuations at Nairobi are dominated by a Quasi-Biennial Oscillation (QBO), with maximum ozone occurring during the westerly phase of the QBO. At the extratropical locations, ozone peaks and troughs are anti-correlated with those at Nairobi and the QBO signal is less well developed and modulated by the seasonal cycle.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
...: The commenter supported EPA's efforts to require ozone monitoring in Utah's Uinta Basin. However, the... air quality in the basin is not in compliance with the ozone standard,'' to designate the Uinta Basin... commenter refers to. For a discussion of other monitoring data in the Uinta Basin, see the response to...
Surface ozone in the Lake Tahoe Basin
Joel D. Burley; Sandra Theiss; Andrzej Bytnerowicz; Alan Gertler; Susan Schilling; Barbara Zielinska
2015-01-01
Surface ozone (O3) concentrations were measured in and around the Lake Tahoe Basin using both active monitors (2010) and passive samplers (2002, 2010). The 2010 data from active monitors indicate average summertime diurnal maxima of approximately 50â55 ppb. Some site-to-site variability is observed within the Basin during the well-mixed hours of...
Looking at Ozone From a New Angle: Shuttle Ozone Limb Sounding Experiment-2 (SOLSE-2)
NASA Technical Reports Server (NTRS)
McPeters, Richard; Hilsenrath, Ernest; Janz, Scott; Brown, Tammy (Technical Monitor)
2002-01-01
The ozone layer above Earth is our planet's fragile sunscreen, protecting people, vegetation, and wildlife. NASA has been measuring ozone for more than 20 years by looking down, but SOLSE-2 will show that more information is available by looking at ozone from the side, at Earth's limb or atmospheric boundary. When the ozone layer is compromised, increased ultraviolet (UV) levels from the sun cause health problems ranging from severe sunburns to skin cancer and cataracts. A concerted global effort has been made to reduce or eliminate the production of chemicals that deplete ozone, but the ozone layer is not expected to recover for many decades because these chemicals can remain active in the atmosphere for up to 100 years. We know now that ozone monitoring needs to be focused in the lower stratosphere. The discovery of the ozone hole in 1985 demonstrated that very large changes in ozone were occurring in the lower stratosphere near 20 km, instead of the upper stratosphere as first expected, and where current ozone instruments are focused. Measuring ozone from a tangential perspective that is centered at the limb provides ozone profiles concentrated in the lower stratosphere. The first flight of SOLSE proved that this technique achieves the accuracy and coverage of traditional measurements, and surpasses the altitude resolution and depth of retrieval of conventional techniques. Results from the first flight convinced the science community to design the next generation ozone monitoring satellite based on SOLSE. The Ozone Mapping and Profiling Suite (OMPS) is currently being built for the NPOESS satellite. The primary objective of SOLSE-2 is to confirm the promising results of the first flight over a wider range of viewing conditions and spectral wavelengths. Sometimes a really hard problem can be solved when you look at it from a different angle! While scientists conduct research, protect yourself by observing the UV index and spend less unprotected time outdoors.
NASA Technical Reports Server (NTRS)
Pickering, K. E.; Ziemke, J.; Bucsela, E.; Gleason, J.; Marufu, L.; Dickerson, R.; Mathur, R.; Davidson, P.; Duncan, B.; Bhartia, P. K.
2006-01-01
The Ozone Monitoring Instrument (OMI) on board NASA s Aura satellite was launched in July 2004, and is now providing daily global observations of total column ozone, NO2, and SO2, as well as aerosol information. Algorithms have also been developed to produce daily tropospheric ozone and NO2 products. The tropospheric ozone product reported here is a tropospheric residual computed through use of Aura Microwave Limb Sounder (MLS) ozone profile data to quantify stratospheric ozone. We are investigating the applicability of OMI products for use in air quality modeling, forecasting, and analysis. These investigations include comparison of the OMI tropospheric O3 and NO2 products with global and regional models and with lower tropospheric aircraft observations. Large-scale transport of pollution seen in the OM1 tropospheric O3 data is compared with output from NASA's Global Modeling Initiative global chemistry and transport model. On the regional scale we compare the OMI tropospheric O3 and NO2 with fields from the National Oceanic and Atmospheric Administration and Environmental Protection Agency (NOAA/EPA) operational Eta/CMAQ air quality forecasting model over the eastern United States. This 12-km horizontal resolution model output is roughly of equivalent resolution to the OMI pixel data. Correlation analysis between lower tropospheric aircraft O3 profile data taken by the University of Maryland over the Mid-Atlantic States and OMI tropospheric column mean volume mixing ratio for O3 will be presented. These aircraft data are representative of the lowest 3 kilometers of the atmosphere, the region in which much of the locally-generated and regionally-transported ozone exists.
da Silva, Júlio César Cardoso; Bispo, Glayson Leonardo; Pavanelli, Sérgio Pinton; Afonso, Robson José de Cássia Franco; Augusti, Rodinei
2012-06-15
Dyes have been widely used to accentuate or to provide different colors to foods. However, the high concentrations of dyes in effluents from the food industries can cause serious and unpredictable damages to aquatic life in general. Furthermore, since conventional biological treatments have been shown to be ineffective, the use of advanced oxidation processes to promote the depletion of such dyes in water bodies has turned out to be mandatory. The degradation of the food dye Brilliant Blue by ozone in aqueous solution is reported herein. The overall process was monitored in real time by using direct infusion electrospray ionization high-resolution mass spectrometry in the negative ion mode, ESI(-)-HRMS. Preliminary results (visual inspection and UV-vis spectra) showed the high efficiency of ozonation in causing the decoloration of an aqueous solution of the dye whereas TOC (total organic carbon) measurements revealed that such an oxidation process was unable to promote its complete mineralization. ESI(-)-HRMS data showed that the substrate consumption occurred concomitantly with the appearance of four by-products, all of them produced by an initial attack of hydroxyl radicals (generated via the decomposition of ozone) on the two imino moieties of the dye molecule. Structures were proposed for all the by-products based mainly on the high-resolution mass measurements and on the characteristic reactivity of typical functional groups towards hydroxyl radicals. An unprecedented degradation route of Brilliant Blue by ozone in aqueous solution could thus be proposed. A greater ecotoxicity against Artemia salina was observed for the by-products than for the original dye. This indicates that the identification of by-products arising from oxidation treatments is of primary importance since such compounds can be more hazardous than the precursor itself. Copyright © 2012 John Wiley & Sons, Ltd.
Total ozone determination by spectroradiometry in the middle ultraviolet
NASA Technical Reports Server (NTRS)
Garrison, L. M.; Doda, D. D.; Green, A. E. S.
1979-01-01
A method has been developed to determine total ozone from multispectral measurements of the direct solar irradiance. The total ozone is determined by a least squares fit to the spectrum between 290 nm and 380 nm. The aerosol extinction is accounted for by expanding it in a power series in wavelength; use of the linear term proved adequate. A mobile laboratory incorporating a sky scanner has been developed and used to obtain data to verify the method. Sun tracking, wavelength setting of the double monochromator, and data acquisition are under control of a minicomputer. Results obtained at Wallops Island, Virginia, and Palestine, Texas, agree well with simultaneous Dobson and Canterbury spectrometer and balloon ECC ozonesonde values. The wavelength calibration of the monochromator and the values for the normalized ozone absorption are the most important factors in an accurate determination of total ozone.
Using Ozone To Clean and Passivate Oxygen-Handling Hardware
NASA Technical Reports Server (NTRS)
Torrance, Paul; Biesinger, Paul
2009-01-01
A proposed method of cleaning, passivating, and verifying the cleanliness of oxygen-handling hardware would extend the established art of cleaning by use of ozone. As used here, "cleaning" signifies ridding all exposed surfaces of combustible (in particular, carbon-based) contaminants. The method calls for exposing the surfaces of the hardware to ozone while monitoring the ozone effluent for carbon dioxide. The ozone would passivate the hardware while oxidizing carbon-based residues, converting the carbon in them to carbon dioxide. The exposure to ozone would be continued until no more carbon dioxide was detected, signifying that cleaning and passivation were complete.
Use of Ozone to Treat Ileostomy Dermatitis in an Experimental Rat Model
Biçer, Şenol; Sayar, İlyas; Gürsul, Cebrail; Işık, Arda; Aydın, Merve; Peker, Kemal; Demiryilmaz, İsmail
2016-01-01
Background Dermatitis associated with ileostomy is an important problem that affects many people, especially children. The aim of this study was to investigate the therapeutic effects of ozone on dermatitis due to ileostomy, and to develop an alternative treatment option. Material/Methods A total of 28 rats were divided into 4 groups: control, ileostomy, ozone, and zinc oxide. Ileostomy was performed in all rats except the control group. After a 1-week waiting time, the ozone group was administered ozone therapy and the zinc oxide group was administered zinc oxide cream locally once a day for a total of 7 days. All rats were sacrificed at the end of this period. The efficacy of treatment was examined by biochemical, histopathological, and immunohistochemical parameters. The levels of malondialdehyde (MDA), total glutathione (tGSH), total antioxidant capacity (TAC), and total oxidant status (TOS) were measured from tissue. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) were examined immunohistochemically. Results Dermatitis occurred pathologically in all rats that underwent ileostomy surgery. The lowest dermatitis score was in the ozone treatment group (p<0.05). Ileostomy dermatitis caused increased levels of MDA and TOS. Ozone treatment resulted in reduced MDA and TOS levels, while the levels of tGSH and TAC were increased (p<0.05). Both VEGF and PCNA immunostaining were augmented in the ozone treatment group (p<0.05). Conclusions Local ozone application may be a good alternative compared to the conventional treatment methods for the prevention of skin lesions that develop after ileostomy. PMID:26947591
Stratospheric Ozone Intercomparison Campaign (STOIC) 1989: Overview
NASA Technical Reports Server (NTRS)
Margitan, J. J.; Barnes, R. A.; Brothers, G. B.; Butler, J.; Burris, J.; Connor, B. J.; Ferrare, R. A.; Kerr, J. B.; Komhyr, W. D.; McCormick, M. P.;
1995-01-01
The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment (SAGE 2) aboard the Earth Radiation Budget Satellite and the Total Ozone Mapping Spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. As expected, there was little atmospheric variability during the intercomparison, allowing for detailed statistical comparisons at a high level of precision. This overview paper summarizes the campaign and provides a 'road map' to subsequent papers in this issue by the individual instrument teams which will present more detailed analysis of the data and conclusions.
The QBO and interannual variation in total ozone
NASA Technical Reports Server (NTRS)
Lait, Leslie R.; Schoeberl, Mark R.; Newman, Paul A.; Stolarski, Richard S.
1988-01-01
Garcia and Soloman (1987) have noted that the October monthly mean minimum total ozone amounts south of 30 S were modulated by a quasibiennial oscillation (QBO) signal. The precise mechanism behind this effect, however, is unclear. Is the modulation brought about by the circulation-produced QBO signal in the ozone concentration itself, or does the temperature QBO modulate the formation of polar stratospheric clouds (PSCs), leading to changes in the chemically induced Antarctic spring ozone decline rate. Or is some other phenomenon involved. To investigate the means through which the QBO effect occurs, a series of correlation studies has been made between polar ozone and QBO signal in ozone and temperature.
Development of Improved Accelerated Corrosion Qualification Test Methodology for Aerospace Materials
2014-11-01
irradiation and ozone gas • Cumulative damage model for predicting atmospheric corrosion rates of 1010 steel was developed using inputs from weather...data: – Temperature, – Relative humidity (%RH) – Atmospheric contaminants (chloride, SO2, and ozone ) levels Silver Al Alloy 7075 Al Alloy...2024 Al Alloy 6061 Copper Steel Ozone generator Ozone monitor 10 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited
NASA Astrophysics Data System (ADS)
Rieder, Harald E.; di Rocco, Stefania; Staehelin, Johannes; Maeder, Jörg A.; Ribatet, Mathieu; Peter, Thomas; Davison, Anthony C.
2010-05-01
Tools from geostatistics and extreme value theory are applied to analyze spatial correlations in total ozone for the southern mid-latitudes. The dataset used in this study is the NIWA-assimilated total ozone dataset (Bodeker et al., 2001; Müller et al., 2008). Recently new tools from extreme value theory (Coles, 2001; Ribatet, 2007) have been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b) and 5 other long-term ground based stations to describe extreme events in low and high total ozone (Rieder et al., 2010a,b,c). Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading in ozone depleting substances lead to a continuous modification of column ozone in the northern hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). It is shown that application of extreme value theory allows the identification of many more of such fingerprints than conventional time series analysis on basis of annual and seasonal mean values. Especially, the analysis shows the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone (Rieder et al., 2010b,c). Within the current study patterns in spatial correlation and frequency distributions of extreme events (e.g. ELOs and EHOs) are studied for the southern mid-latitudes. It is analyzed if "fingerprints"found for features in the northern hemisphere occur also in the southern mid-latitudes. New insights in spatial patterns of total ozone for the southern mid-latitudes are presented. Within this study the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems, ENSO) as well as influence of major volcanic eruptions (e.g. Mt. Pinatubo) and ozone depleting substances (ODS) on column ozone over the southern mid-latitudes is analyzed for the time period 1979-2007. References: Bodeker, G.E., J.C. Scott, K. Kreher, and R.L. McKenzie, Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978-1998, J. Geophys. Res., 106 (D19), 23029-23042, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., and Bodeker, G.: Simple measures of ozone depletion in the polar stratosphere, Atmos. Chem. Phys., 8, 251-264, 2008. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder ,H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD. Rieder, H.E., Jancso, L.M., Staehelin, J., Maeder, J.A., Ribatet, Peter, T., and A.D., Davison (2010): Extreme events in total ozone over the northern mid-latitudes: A case study based on long-term data sets from 5 ground-based stations, in preparation. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.
Bijan, Leila; Mohseni, Madjid
2005-10-01
The overall effectiveness of integrating ozonation with biological treatment on the biodegradability enhancement and recalcitrant organic matter (ROM) removal from pulp mill alkaline bleach plant effluent was investigated. Ozonation was performed in a semi-batch bubble column reactor at pH of 11 and 4.5. Batch biological treatment was conducted in shake flasks. Samples obtained during the treatments were monitored for BOD5, COD, TOC, and molecular weight distribution. At an ozone dosage of 0.7-0.8 mg O3/mL wastewater, integrated treatment showed about 30% higher TOC mineralization compared to individual ozonation or biotreatment. Ozone treatment enhanced the biodegradability of the effluent (monitored as 21% COD reduction and 13% BOD5 enhancement), allowing for a higher removal of pollutants. The conversion of high molecular weight (HMW) to low molecular weight (LMW) compounds was an important factor in the overall biodegradability enhancement of the alkaline effluent. The overall biodegradability of the LMW compounds did not change over the course of ozonation, but it increased from 5% to 50% (measured as COD removal) for the HMW portion. Ozonation at pH of 11 was more effective than that at pH of 4.5 in terms of generating more biodegradable compounds.
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Davison, A. C.
2009-04-01
Various generations of satellites (e.g. TOMS, GOME, OMI) made spatial datasets of column ozone available to the scientific community. This study has a special focus on column ozone over the northern mid-latitudes. Tools from geostatistics and extreme value theory are applied to analyze variability, long-term trends and frequency distributions of extreme events in total ozone. In a recent case study (Rieder et al., 2009) new tools from extreme value theory (Coles, 2001; Ribatet, 2007) have been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b), in order to describe extreme events in low and high total ozone. Within the current study this analysis is extended to satellite datasets for the northern mid-latitudes. Further special emphasis is given on patterns and spatial correlations and the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems) on column ozone. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.
Implications of Version 8 TOMS and SBUV Data for Long-Term Trend Analysis
NASA Technical Reports Server (NTRS)
Frith, Stacey M.
2004-01-01
Total ozone data from the Total Ozone Mapping Spectrometer (TOMS) and profile/total ozone data from the Solar Backscatter Ultraviolet (SBUV; SBW/2) series of instruments have recently been reprocessed using new retrieval algorithms (referred to as Version 8 for both) and updated calibrations. In this paper, we incorporate the Version 8 data into a TOMS/SBW merged total ozone data set and an S B W merged profile ozone data set. The Total Merged Ozone Data (Total MOD) combines data from multiple TOMS and SBW instruments to form an internally consistent global data set with virtually complete time coverage from October 1978 through December 2003. Calibration differences between instruments are accounted for using external adjustments based on instrument intercomparisons during overlap periods. Previous results showed errors due to aerosol loading and sea glint are significantly reduced in the V8 TOMS retrievals. Using SBW as a transfer standard, calibration differences between V8 Nimbus 7 and Earth Probe TOMS data are approx. 1.3%, suggesting small errors in calibration remain. We will present updated total ozone long-term trends based on the Version 8 data. The Profile Merged Ozone Data (Profile MOD) data set is constructed using data from the SBUV series of instruments. In previous versions, SAGE data were used to establish the long-term external calibration of the combined data set. The SBW Version 8 we assess the V8 profile data through comparisons with SAGE and between SBW instruments in overlap periods. We then construct a consistently-calibrated long term time series. Updated zonal mean trends as a function of altitude and season from the new profile data set will be shown, and uncertainties in determining the best long-term calibration will be discussed.
NASA Technical Reports Server (NTRS)
Hassan, G. K. Y.
1994-01-01
A world wide interest in protecting ozone layer against manmade effects is now increasing. Assessment of the ozone depletion due to these activities depends on how successfully we can separate the natural variabilities from the data. The monthly mean values of total ozone over Cairo (30 05N) for the period 1968-1988, have been analyzed using the power spectral analysis technique. The technique used in this analysis does not depend on a pre-understanding of the natural fluctuations in the ozone data. The method depends on increasing the resolution of the spectral peaks in order to obtain the more accurate sinusoidal fluctuations with wavelength equal to or less than record length. Also it handles the possible sinusoidal fluctuations with wavelength equal to or less than record length. The results show that it is possible to detect some of the well known national fluctuations in the ozone record such as annual, semiannual, quasi-biennial and quasi-quadrennial oscillations. After separating the natural fluctuations from the ozone record, the trend analysis of total ozone over Cairo showed that a decrease of about -1.2% per decade has occurred since 1979.
Highlights of TOMS Version 9 Total Ozone Algorithm
NASA Technical Reports Server (NTRS)
Bhartia, Pawan; Haffner, David
2012-01-01
The fundamental basis of TOMS total ozone algorithm was developed some 45 years ago by Dave and Mateer. It was designed to estimate total ozone from satellite measurements of the backscattered UV radiances at few discrete wavelengths in the Huggins ozone absorption band (310-340 nm). Over the years, as the need for higher accuracy in measuring total ozone from space has increased, several improvements to the basic algorithms have been made. They include: better correction for the effects of aerosols and clouds, an improved method to account for the variation in shape of ozone profiles with season, latitude, and total ozone, and a multi-wavelength correction for remaining profile shape errors. These improvements have made it possible to retrieve total ozone with just 3 spectral channels of moderate spectral resolution (approx. 1 nm) with accuracy comparable to state-of-the-art spectral fitting algorithms like DOAS that require high spectral resolution measurements at large number of wavelengths. One of the deficiencies of the TOMS algorithm has been that it doesn't provide an error estimate. This is a particular problem in high latitudes when the profile shape errors become significant and vary with latitude, season, total ozone, and instrument viewing geometry. The primary objective of the TOMS V9 algorithm is to account for these effects in estimating the error bars. This is done by a straightforward implementation of the Rodgers optimum estimation method using a priori ozone profiles and their error covariances matrices constructed using Aura MLS and ozonesonde data. The algorithm produces a vertical ozone profile that contains 1-2.5 pieces of information (degrees of freedom of signal) depending upon solar zenith angle (SZA). The profile is integrated to obtain the total column. We provide information that shows the altitude range in which the profile is best determined by the measurements. One can use this information in data assimilation and analysis. A side benefit of this algorithm is that it is considerably simpler than the present algorithm that uses a database of 1512 profiles to retrieve total ozone. These profiles are tedious to construct and modify. Though conceptually similar to the SBUV V8 algorithm that was developed about a decade ago, the SBUV and TOMS V9 algorithms differ in detail. The TOMS algorithm uses 3 wavelengths to retrieve the profile while the SBUV algorithm uses 6-9 wavelengths, so TOMS provides less profile information. However both algorithms have comparable total ozone information and TOMS V9 can be easily adapted to use additional wavelengths from instruments like GOME, OMI and OMPS to provide better profile information at smaller SZAs. The other significant difference between the two algorithms is that while the SBUV algorithm has been optimized for deriving monthly zonal means by making an appropriate choice of the a priori error covariance matrix, the TOMS algorithm has been optimized for tracking short-term variability using month and latitude dependent covariance matrices.
NASA Astrophysics Data System (ADS)
Zhou, L. B.; Akiyoshi, H.; Kawahira, K.
2003-10-01
The year-to-year ozone variation over the subtropical western Pacific region is studied, especially the ozone lows in the 1996/1997, 1998/1999, and 2001/2002 winters, using the Earth Probe Total Ozone Mapping Spectrometer (EP_TOMS) ozone data from August 1996 to July 2002. Regression analyses show that dynamical signals, such as the quasi-biennial oscillation, play an important role in determining total ozone variation. A nudging chemical transport model (CTM) is used to simulate the year-to-year ozone variation and explain the mechanism for producing ozone lows in a three-dimensional distribution of ozone. The CTM was developed using the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) atmospheric general circulation model and introducing a nudging process for temperature and horizontal wind velocity. The year-to-year ozone variation, especially the winter ozone low, is well simulated by the model excluding heterogeneous reaction processes between 45°S and 45°N latitude. Results show that the year-to-year ozone variation is mainly controlled by dynamical transport processes.
NASA Astrophysics Data System (ADS)
Thompson, Tammy M.; King, Carey W.; Allen, David T.; Webber, Michael E.
2011-04-01
The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NOx emissions from EGUs during times of day when the vehicle is charging, and a decrease in NOx from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NOx emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.
Observed and theoretical variations of atmospheric ozone
NASA Technical Reports Server (NTRS)
London, J.
1976-01-01
Results are summarized from three areas of ozone research: (1) continued analysis of the global distribution of total ozone to extend the global ozone atlas to summarize 15 years (1957-72) of ground based observations; (2) analysis of balloon borne ozonesonde observations for Arosa, Switzerland, and Hohenpeissenberg, Germany (GFR); (3) contined processing of the (Orbiting Geophysical Observatory-4) satellite data to complete the analysis of the stratospheric ozone distribution from the available OGO-4 data. Results of the analysis of the total ozone observations indicated that the long term ozone variation have marked regional patterns and tend to alternate with season and hemisphere. It is becoming increasingly clear that these long period changes are associated with large scale variations in the general upper atmosphere circulation patterns.
Extreme events in total ozone: Spatio-temporal analysis from local to global scale
NASA Astrophysics Data System (ADS)
Rieder, Harald E.; Staehelin, Johannes; Maeder, Jörg A.; Ribatet, Mathieu; di Rocco, Stefania; Jancso, Leonhardt M.; Peter, Thomas; Davison, Anthony C.
2010-05-01
Recently tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) have been applied for the first time in the field of stratospheric ozone research, as statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not address the internal data structure concerning extremes adequately (Rieder et al., 2010a,b). A case study the world's longest total ozone record (Arosa, Switzerland - for details see Staehelin et al., 1998a,b) illustrates that tools based on extreme value theory are appropriate to identify ozone extremes and to describe the tails of the total ozone record. Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (e.g. Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading in ozone depleting substances led to a continuous modification of column ozone in the northern hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). It is shown that application of extreme value theory allows the identification of many more such fingerprints than conventional time series analysis of annual and seasonal mean values. Especially, the extremal analysis shows the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone (Rieder et al., 2010b). Overall the extremes concept provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values. Findings described above could be proven also for the total ozone records of 5 other long-term series (Belsk, Hohenpeissenberg, Hradec Kralove, Potsdam, Uccle) showing that strong influence of atmospheric dynamics (NAO, ENSO) on total ozone is a global feature in the northern mid-latitudes (Rieder et al., 2010c). In a next step frequency distributions of extreme events are analyzed on global scale (northern and southern mid-latitudes). A specific focus here is whether findings gained through analysis of long-term European ground based stations can be clearly identified as a global phenomenon. By showing results from these three types of studies an overview of extreme events in total ozone (and the dynamical and chemical features leading to those) will be presented from local to global scales. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD. Rieder, H.E., Jancso, L., Staehelin, J., Maeder, J.A., Ribatet, Peter, T., and A.D., Davison (2010): Extreme events in total ozone over the northern mid-latitudes: A case study based on long-term data sets from 5 ground-based stations, in preparation. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998a. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998b.
Total ozone variations at Reykjavik since 1957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjarnason, G.G.; Rognvaldsson, O.E.; Sigfusson, T.I.
1993-12-01
Total ozone measurements using a Dobson spectrophotometer have been performed on a regular basis at Reykjavik (65 deg 08 min N, 21 deg 54 min W), Iceland, since 1957. The data set for the entire period of observations has been critically examined. Due to problems related to the calibration of the instrument the data record of ozone observations is divided into two periods in the following analysis (1957-1977 and 1977-1990). A statistical model was developed to fit the data and estimate long-term changes in total ozone. The model includes seasonal variations, solar cycle influences, quasi-biennial oscillation (QBO) effects, and linearmore » trends. Some variants of the model are applied to investigate to what extent the estimated trends depend on the form of the model. Trend analysis of the revised data reveals a statistically significant linear decrease of 0.11 +/- 0.07% per year in the annual total ozone amount during the earlier period and 0.30 +/- 0.11% during the latter. The annual total ozone decline since 1977 is caused by a 0.47 +/- 0.14% decrease per year during the summer with no significant change during the winter or fall. On an annual basis, ozone varies by 3.5 +/- 0.8% over a solar cycle and by 2.1 +/- 0.6% over a QBO for the whole observation period. The effect of the 11-year solar cycle is particularly strong in the data during the early months of the year and in the westerly phase of the QBO. The data also suggest a strong response of total ozone to major solar proton events.« less
Quantifying the ozone "weekend effect" at various locations in Phoenix, Arizona
NASA Astrophysics Data System (ADS)
Atkinson-Palombo, Carol M.; Miller, James A.; Balling, Robert C.
Analysis of pollution data from a network of monitors in Maricopa County, Arizona, reveals considerable variation in the magnitude of the ozone "weekend effect" depending on how and where it is measured. We used four separate methods to calculate the weekend effect, all of which showed that the phenomenon is stronger in the urban core, where ozone is produced. Spatial linear regressions show that the magnitude of the weekend effect and the goodness of fit of weekly harmonic cycles in ozone is a function of urbanization, described quantitatively using an index of traffic counts, population, and employment within a 4 km buffer zone of monitoring sites. Analysis of diurnal patterns of ozone as well as oxides of nitrogen (NO x) at a representative site in the urban core supports the hypothesis that lower levels of NO x on Sundays reduce the degree to which ozone is titrated, resulting in a higher minimum and hence mean for that day of the week (DOW). Fringe sites, where ozone concentrations are higher in absolute terms than in the urban core, show almost no "weekend effect," regardless of which of the four individual methods we used. Alternative quantification methods show statistically significant DOW differences in ozone levels in urban fringe locations, albeit out of phase with the weekly cycling of ozone in the urban core. Our findings suggest that multiple metrics need to be used to test for the weekend effect and that the causes of DOW differences in ozone concentrations may be location specific.
NASA Technical Reports Server (NTRS)
Lucke, R. L.; Planet, Walter G.; Hudson, R. D.
1995-01-01
Our recommendations to NPOESS for the sensors it should adopt to meet threshold requirements for global monitoring of ozone and, to some extent, of aerosols and of atmospheric temperature, pressure, and water vapor content are summarized in this report. The degree to which these sensors fulfill other NPOESS requirements than ozone is also summarized. The number of sensors that should be in the constellation is discussed in terms of desired reliability, continuity of coverage, and the ability to cross-calibrate successive sensors. Our recommendations for specific ozone measurement requirements, IORD item 4.1.6.2.28, are given. We make the case that the monitoring of three minor constituents in the upper atmosphere (N20, ClO or ClONO2, and HNO3) should be added to the list of NPOESS requirements because of their importance to long-term ozone studies and the small additional cost required (ozone sensors are already designed to measure them). Specific measurement requirements, which should be regarded as supplementary to the ozone requirement, are given here. The necessity of using two types of sensors, nadir-viewers and limb-scanners, for atmospheric studies is discussed.
On Relations Between the Ozonosphere and the General Atmospheric Circulation in Tropics
NASA Astrophysics Data System (ADS)
Kuznetsov, G. I.; Kramarova, N. A.
2006-05-01
The main features of temporal and spatial ozone distribution over tropics and their relations with peculiarities of the general atmospheric circulation are obtained using the total ozone data for the tropical region (Ozone Data for the World and TOMS (version 8)). Among the factors influencing ozone regime in tropics the properties of the region, like intertropical convergence zone and a structure of tropical tropopause, and processes such as stratosphere-troposphere exchange, migration of ozone equator, Quasi Biennial Oscillation are analyzed. To investigate the long term variability of tropical ozone detrended and de-seasonalized fields of TOMS observations are analyzed by means of EOF method. The first four EOFs explain about 75% of residual total ozone variability in tropical region. Spatial patterns of EOFs and corresponding time coefficients are closely connected with the Quasi-Biennial Oscillation (EOF-1), the 11-years Solar Cycle (EOF-2), the QBO-annual beat (EOF-3) and with the South Oscillation (EOF-4) correspondingly. The detailed analyses of temporal and spatial distribution of ozone EOF patterns reveals a distinct change of ozone fields to the both sides of equator at 10-15 latitude as well as at the zones of tropical tropopause break. A time delay of ozone QBO phase is observed while moving towards higher latitudes. Some features of the tropical ozone regime manifest themselves in the peculiarities of Antarctic Ozone Anomalies. A time variability of ozone QBO passes three months ahead of the Singapore 30 mbar zonal wind. Obtained relations let us to construct a linear regression model based on EOF decomposition to estimate total ozone monthly means over tropics. This model is successfully applied to predict 30 mbar zonal wind in dependence on tropical ozone behavior.
Ozone, ozone production rates and NO observations on the outskirts of Quito, Ecuador
NASA Astrophysics Data System (ADS)
Cazorla, M.
2014-12-01
Air quality measurements of ambient ozone, ozone production rates and nitrogen oxides, in addition to baseline meterology observations, are being taken at a recently built roof-top facility on the campus of Universidad San Francisco de Quito, in Ecuador. The measurement site is located in Cumbayá, a densely populated valley adjacent to the city of Quito. Time series of ozone and NO are being obtained with commercial air quality monitors. Rush-hour peaks of NO, above 100 ppb, have been observed, while daytime ozone levels are low. In addition, ozone production rates are being measured with the Ecuadorian version of the MOPS, Measurement of Ozone Production Sensor, originally built at Penn State University in 2010. NO and ozone observations and test results of measured ozone production rates will be presented.
Science Objectives of EOS-Aura's Ozone Monitoring Instrument (OMI)
NASA Technical Reports Server (NTRS)
Levelt, P. F.; Veefkind, J. P.; Stammes, P.; Hilsenrath, E.; Bhartia, P. K.; Chance, K. V.; Leppelmeier, G. W.; Maelkki, A.; Bhartia, Pawan (Technical Monitor)
2002-01-01
OMI is a UV/VIS nadir solar backscatter spectrograph, which provides near global coverage in one day with a spatial resolution of 13 x 24 sq km. OMI is a new instrument, with a heritage from the European satellite instruments GOME, GOMOS and SCIAMACHY. OMI's unique capabilities for measuring important trace gases with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will measure solar irradiance and Earth radiances in the wavelength range of 270 to 500 nm with spectral resolution of about 0.5 nm and a spectral sampling of about 2-3 per FWHM. From these observations, total columns of O3, NO2, BrO and SO2 will be derived from the back-scattered solar radiance using differential absorption spectroscopy (DOAS). The TOMS total ozone record will also be continued by employing the well established TOMS algorithm. Because of the high accuracy and spatial resolution of the measurements, a good estimate of tropospheric amounts of ozone and NO2 are expected. Ozone profiles will be derived using the optimal estimation method. The spectral aerosol optical depth will be determined from measurements between 340 and 500 nm. This will provide information on aerosol concentration, aerosol size distribution and aerosol type. This wavelength range makes it possible to retrieve aerosol information over both land and sea. OMI observations will also allow retrievals of cloud coverage and cloud heights. From these products, the UV-B flux at the surface can then be derived with high spatial resolution.
Wu, Di; Qi, Wenjing; Liu, Chun; Zhang, Qing
2017-04-01
A "turn-on" fluorescent sensor for ozone using bovine serum albumin-directed gold nanoclusters (BSA-Au NCs) via energy transfer was developed. The spectral overlap of fluorescent spectrum of BSA-Au NCs with absorption spectrum of indigo carmine (IDS) was utilized. Ozone cleaves C = C bond of IDS and suppresses energy transfer from BSA-Au NCs to IDS. Therefore, this proposed fluorescent sensor is a "turn-on" detection motif. It is the first application of fluorescent nanoclusters in sensitively detecting ozone from 0.2 to 12 μM with the limit of detection of 35 nM (the volume of 500 μL, 1.68 ppb). The proposed fluorescent sensor for ozone is more sensitive and faster (within 2 min) than most methods and is with good selectivity for ozone detection against other reactive oxygen species, reactive nitrogen, or metallic ions. Besides, the proposed method is also utlized in ozone detection in ambient air by monitoring 1 h (60 min) in Qijiang district in Chongqing city. The average of concentration of ozone in ambient air ranges from 44.97 to 52.85 μg/m 3 . The results are compared with the automatic monitoring data provided by Qijiang Environmental Monitoring Station and the relative deviations range, respectively, from 2.1 to 5.6%, which suggests that it is a promising fluorescent sensor for ozone in ambient air. This study not only develops a new model of energy transfer motif using BSA-Au NCs as donor and IDS as acceptor but also expands the application of BSA-Au NCs in environmental science. Graphical abstract A "turn-on" fluorescent sensor for ozone detection using bovine serum albumin-directed gold nanoclusters (BSA-Au NCs) via energy transfer is developed. It is the first time to utilize spectral overlap of fluorescent spectrum of BSA-Au NCs with absorption spectrum of indigo carmine and to achieve fast, sensitive, and selective ozone detection with a limit of detection of down to 35 nM (the volume of 500 μL, 1.68 ppb).
Report of the International Ozone Trends Panel 1988, volume 1
NASA Technical Reports Server (NTRS)
1989-01-01
Chapters on the following topics are presented: spacecraft instrument calibration and stability; information content of ozone retrieval algorithms; trends in total column ozone measurements; and trends in ozone profile measurement.
A Madden-Julian Oscillation in Tropospheric Ozone
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.
2003-01-01
This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5-10 Dobson Unit (DU) peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.
Ozone maxima over Southern Africa: A mid-latitude link
NASA Technical Reports Server (NTRS)
Barsby, Jane; Diab, Roseanne D.
1994-01-01
The relationship between patterns of total ozone and day-to-day weather was explored over South Africa for the period 1987 to 1988. Generally, there was a fairly poor relationship (variance less than 20 percent) between total ozone and the heights of the 100, 300 and 500 hPa geopotential heights at 5 South African stations. However, over a shorter period, October to December 1988, fluctuations in the height of the 300 hPa surface accounted for 53 percent of the variance in total ozone at Cape Town. High ozone amounts are associated with the lowering of the 300 hPa surface in the presence of an upper-air trough. The role of the mid-latitude westerly waves in this respect is discussed.
NASA Astrophysics Data System (ADS)
Parker, L. K.; Morris, R. E.; Zapert, J.; Cook, F.; Koo, B.; Rasmussen, D.; Jung, J.; Grant, J.; Johnson, J.; Shah, T.; Pavlovic, T.
2015-12-01
The Colorado Air Resource Management Modeling Study (CARMMS) was funded by the Bureau of Land Management (BLM) to predict the impacts from future federal and non-federal energy development in Colorado and Northern New Mexico. The study used the Comprehensive Air Quality Model with extensions (CAMx) photochemical grid model (PGM) to quantify potential impacts from energy development from BLM field office planning areas. CAMx source apportionment technology was used to track the impacts from multiple (14) different emissions source regions (i.e. field office areas) within one simulation, as well as to assess the cumulative impact of emissions from all source regions combined. The energy development emissions estimates were for the year 2021 for three different development scenarios: (1) low; (2) high; (3) high with emissions mitigation. Impacts on air quality (AQ) including ozone, PM2.5, PM10, NO2, SO2, and air quality related values (AQRVs) such as atmospheric deposition, regional haze and changes in Acid Neutralizing Capacity (ANC) of lakes were quantified, and compared to establish threshold levels. In this presentation, we present a brief summary of the how the emission scenarios were developed, we compare the emission totals for each scenario, and then focus on the ozone impacts for each scenario to assess: (1). the difference in potential ozone impacts under the different development scenarios and (2). to establish the sensitivity of the ozone impacts to different emissions levels. Region-wide ozone impacts will be presented as well as impacts at specific locations with ozone monitors.
Joseph, John; Sharif, Hatim O; Sunil, Thankam; Alamgir, Hasanat
2013-07-01
The adverse health effects of high concentrations of ground-level ozone are well-known, but estimating exposure is difficult due to the sparseness of urban monitoring networks. This sparseness discourages the reservation of a portion of the monitoring stations for validation of interpolation techniques precisely when the risk of overfitting is greatest. In this study, we test a variety of simple spatial interpolation techniques for 8-h ozone with thousands of randomly selected subsets of data from two urban areas with monitoring stations sufficiently numerous to allow for true validation. Results indicate that ordinary kriging with only the range parameter calibrated in an exponential variogram is the generally superior method, and yields reliable confidence intervals. Sparse data sets may contain sufficient information for calibration of the range parameter even if the Moran I p-value is close to unity. R script is made available to apply the methodology to other sparsely monitored constituents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ozone and UV-B variations at Ispra from 1993 to 1997
NASA Astrophysics Data System (ADS)
Cappellani, F.; Kochler, C.
An analysis of the variability of the total ozone column at Ispra (Italy) has been performed to ascertain if, even in a short-time interval of 5 years (1993-1997), a decline of the monthly mean ozone values could be demonstrated. A linear fit of the data displays a decrease of 0.21% per year with a mean value equal to 319±2 D.U. and an amplitude of the annual cycle of about 10% of the mean. A linear regression of the surface monthly mean ozone values has also been performed showing a decreasing trend (-1% per year) that could contribute, even if for a very small amount, to the decline of the total ozone values. Ispra monthly mean total ozone data have been compared with those of three stations located within 2° latitude and 3° longitude from Ispra (Haute Provence, Hohenpeissenberg and Arosa). A linear fit of the data shows some discrepancies in the ozone changes, which can be attributed to the limited length of the observational period. An analysis has been performed to verify if the variation of ozone at Ispra is in agreement with that of the solar UV measured at a wavelength (305 nm) where the ozone absorption is still remarkable. The results, taken at a fixed solar zenith angle of 68°, show a clear anticorrelation between the monthly mean values of UV and the corresponding values of the total ozone column; the linear fit of the UV data displays an increase of 2.0% per year, much higher than expected from the ozone decrease, and a mean value of 1.4±0.1 mW m -2 nm -1.
Sather, Mark E; Cavender, Kevin
2016-07-13
In the last 30 years ambient ozone concentrations have notably decreased in the South Central U.S. Yet, current ambient ozone concentrations measured over the past three years 2013-2015 in this area of the U.S. are not meeting the U.S. 2015 8 hour ozone standard of 70 parts per billion (ppb). This paper provides an update on long-term trends analyses of ambient 8 hour ozone and ozone precursor monitoring data collected over the past 30 years (1986-2015) in four South Central U.S. cities, following up on two previously published reviews of 20 and 25 year trends for these cities. All four cities have benefitted from national ozone precursor controls put in place during the 1990s and 2000s involving cleaner vehicles (vehicle fleet turnover/replacement over time), cleaner fuels, cleaner gasoline and diesel engines, and improved inspection/maintenance programs for existing vehicles. Additional ozone precursor emission controls specific to each city are detailed in this paper. The controls have resulted in impressive ambient ozone and ambient ozone precursor concentration reductions in the four South Central U.S. cities over the past 30 years, including 31-70% ambient nitrogen oxides (NOx) concentration declines from historical peaks to the present, 43-72% volatile organic compound (VOC) concentration declines from historical peaks to the present, a related 45-76% VOC reactivity decline for a subset of VOC species from historical peaks to the present, and an 18-38 ppb reduction in city 8 hour ozone design value concentrations. A new challenge for each of the four South Central U.S. cities will be meeting the U.S. 2015 8 hour ozone standard of 70 ppb.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... Purposes; Tennessee: Knoxville; Determination of Attaining Data for the 1997 8-Hour Ozone Standards AGENCY... make a determination that the Knoxville, Tennessee nonattainment area for the 1997 8-hour ozone..., quality controlled monitoring data from 2007 through 2009. The Knoxville 1997 8-hour ozone nonattainment...
Ozone Trends Across the United States over a Period of Decreasing NOx and VOC Emissions
In this work, we evaluate ambient ozone trends at urban, suburban, and rural monitoring sites across the United States over a period of decreasing NOx and VOC emissions (1998–2013). We find that decreasing ozone trends generally occur in the summer, in less urbanized areas,...
Episodes of vertical and horizontal ozone transport monitored at Italy's Mt. Cimone Observatory
NASA Technical Reports Server (NTRS)
Colombo, T.; Cundari, V.; Bonasoni, P.; Cervino, M.; Evangelisti, F.; Georgiadis, T.; Giovanelli, G.
1994-01-01
Variations in the concentration of surface ozone measured at a pollution-free mountain site from March 1991 to March 1992 are reported and discussed. Two of the ozone-transport episodes are presented in this case study: a stratospheric intrusion recorded in November 1991 and a horizontal transport in August 1991.
Error in total ozone measurements arising from aerosol attenuation
NASA Technical Reports Server (NTRS)
Thomas, R. W. L.; Basher, R. E.
1979-01-01
A generalized least squares method for deducing both total ozone and aerosol extinction spectrum parameters from Dobson spectrophotometer measurements was developed. An error analysis applied to this system indicates that there is little advantage to additional measurements once a sufficient number of line pairs have been employed to solve for the selected detail in the attenuation model. It is shown that when there is a predominance of small particles (less than about 0.35 microns in diameter) the total ozone from the standard AD system is too high by about one percent. When larger particles are present the derived total ozone may be an overestimate or an underestimate but serious errors occur only for narrow polydispersions.
Dobson spectrophotometer ozone measurements during international ozone rocketsonde intercomparison
NASA Technical Reports Server (NTRS)
Parsons, C. L.
1980-01-01
Measurements of the total ozone content of the atmosphere, made with seven ground based instruments at a site near Wallops Island, Virginia, are discussed in terms for serving as control values with which the rocketborne sensor data products can be compared. These products are profiles of O3 concentration with altitude. By integrating over the range of altitudes from the surface to the rocket apogee and by appropriately estimating the residual ozone amount from apogee to the top of the atmosphere, a total ozone amount can be computed from the profiles that can be directly compared with the ground based instrumentation results. Dobson spectrophotometers were used for two of the ground-based instruments. Preliminary data collected during the IORI from Dobson spectrophotometers 72 and 38 are presented. The agreement between the two and the variability of total ozone overburden through the experiment period are discussed.
NASA Astrophysics Data System (ADS)
Keeble, James; Brown, Hannah; Abraham, N. Luke; Harris, Neil R. P.; Pyle, John A.
2018-06-01
Total column ozone values from an ensemble of UM-UKCA model simulations are examined to investigate different definitions of progress on the road to ozone recovery. The impacts of modelled internal atmospheric variability are accounted for by applying a multiple linear regression model to modelled total column ozone values, and ozone trend analysis is performed on the resulting ozone residuals. Three definitions of recovery are investigated: (i) a slowed rate of decline and the date of minimum column ozone, (ii) the identification of significant positive trends and (iii) a return to historic values. A return to past thresholds is the last state to be achieved. Minimum column ozone values, averaged from 60° S to 60° N, occur between 1990 and 1995 for each ensemble member, driven in part by the solar minimum conditions during the 1990s. When natural cycles are accounted for, identification of the year of minimum ozone in the resulting ozone residuals is uncertain, with minimum values for each ensemble member occurring at different times between 1992 and 2000. As a result of this large variability, identification of the date of minimum ozone constitutes a poor measure of ozone recovery. Trends for the 2000-2017 period are positive at most latitudes and are statistically significant in the mid-latitudes in both hemispheres when natural cycles are accounted for. This significance results largely from the large sample size of the multi-member ensemble. Significant trends cannot be identified by 2017 at the highest latitudes, due to the large interannual variability in the data, nor in the tropics, due to the small trend magnitude, although it is projected that significant trends may be identified in these regions soon thereafter. While significant positive trends in total column ozone could be identified at all latitudes by ˜ 2030, column ozone values which are lower than the 1980 annual mean can occur in the mid-latitudes until ˜ 2050, and in the tropics and high latitudes deep into the second half of the 21st century.
Characterization of the Nimbus-7 SBUV radiometer for the long-term monitoring of stratospheric ozone
NASA Technical Reports Server (NTRS)
Cebula, Richard P.; Park, H.; Heath, D. F.
1988-01-01
Precise knowledge of in-orbit sensitivity change is critical for the successful monitoring of stratospheric ozone by satellite-based remote sensors. This paper evaluates those aspects of the in-flight operation that influence the long-term stability of the upper stratospheric ozone measurements made by the Nimbus-7 SBUV spectroradiometer and chronicles methods used to maintain the long-term albedo calibration of this UV sensor. It is shown that the instrument's calibration for the ozone measurement, the albedo calibration, has been maintained over the first 6 yr of operation to an accuracy of approximately + or - 2 percent. The instrument's wavelength calibration is shown to drift linearly with time. The knowledge of the SBUV wavelength assignment is maintained to a 0.02-nm precision.
Establishment of monitoring plots and evaluation of trees injured by ozone
Daniel Duriscoe; Kenneth Stolte; John Pronos
1996-01-01
By establishing longâterm monitoring plots, it is possible to record environmental and biological conditions of the plot and individual trees, evaluate the condition of crowns of trees in the plot, and determine the extent of ozone injury to western conifers. This chapter recommends various methods for recording data and selecting plots, and provides information for...
Comparison of ozone determinations by ultraviolet photometry and gas-phase titration
NASA Technical Reports Server (NTRS)
Demore, W. B.; Patapoff, M.
1976-01-01
A comparison of ozone determinations based on ultraviolet absorption photometry and gas-phase titration (GPT) shows good agreement between the two methods. Together with other results, these findings indicate that three candidate reference methods for ozone, UV photometry, IR photometry, and GPT are in substantial agreement. However, the GPT method is not recommended for routine use by air pollution agencies for calibration of ozone monitors because of susceptibility to experimental error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.
A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showedmore » good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971 (preliminary data--299 m.atm.cm).« less
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Bodeker, G. E.; Davison, A. C.
2009-04-01
Tools from geostatistics and extreme value theory are applied to analyze spatial correlations in total ozone for the northern mid-latitudes. The dataset used in this study is the NIWA combined total ozone dataset (Bodeker et al., 2001; Müller et al., 2008). New tools from extreme value theory (Coles, 2001; Ribatet, 2007) have recently been applied to the world's longest total ozone record from Arosa, Switzerland (e.g. Staehelin 1998a,b), in order to describe extreme events in low and high total ozone (Rieder et al., 200x). Within the current study, patterns in spatial correlation and frequency distributions of extreme events (e.g. ELOs and EHOs) are studied for the northern mid-latitudes. New insights in spatial patterns of total ozone for the northern mid-latitudes are presented. Koch et al. (2005) found that the increase in fast isentropic transport of tropical air to northern mid-latitudes contributed significantly to ozone changes between 1980 and 1989. Within this study the influence of changes in atmospheric dynamics (e.g. tropospheric and lower stratospheric pressure systems) on column ozone over the northern mid-latitudes is analyzed for the time period 1979-2007. References: Bodeker, G.E., J.C. Scott, K. Kreher, and R.L. McKenzie, Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978-1998, J. Geophys. Res., 106 (D19), 23029-23042, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Koch, G., H. Wernli, C. Schwierz, J. Staehelin, and T. Peter (2005), A composite study on the structure and formation of ozone miniholes and minihighs over central Europe, Geophys. Res. Lett., 32, L12810, doi:10.1029/2004GL022062. Müller, R., Grooß, J.-U., Lemmen, C., Heinze, D., Dameris, M., and Bodeker, G.: Simple measures of ozone depletion in the polar stratosphere, Atmos. Chem. Phys., 8, 251-264, 2008. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 200x. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.
The long-term changes in total ozone, as derived from Dobson measurements at Arosa (1948-2001)
NASA Astrophysics Data System (ADS)
Krzyscin, J. W.
2003-04-01
The longest possible total ozone time series (Arosa, Switzerland) is examined for a detection of trends. Two-step procedure is proposed to estimate the long-term (decadal) variations in the ozone time series. The first step consists of a standard least-squares multiple regression applied to the total ozone monthly means to parameterize "natural" (related to the oscillations in the atmospheric dynamics) variations in the analyzed time series. The standard proxies for the dynamical ozone variations are used including; the 11-year solar activity cycle, and indices of QBO, ENSO and NAO. We use the detrended time series of temperature at 100 hPa and 500 hPa over Arosa to parameterize short-term variations (with time periods<1 year) in total ozone related to local changes in the meteorological conditions over the station. The second step consists of a smooth-curve fitting to the total ozone residuals (original minus modeled "natural" time series), the time derivation applied to this curve to obtain local trends, and bootstrapping of the residual time series to estimate the standard error of local trends. Locally weighted regression and the wavelet analysis methodology are used to extract the smooth component out of the residual time series. The time integral over the local trend values provides the cumulative long-term change since the data beginning. Examining the pattern of the cumulative change we see the periods with total ozone loss (the end of 50s up to early 60s - probably the effect of the nuclear bomb tests), recovery (mid 60s up to beginning of 70s), apparent decrease (beginning of 70s lasting to mid 90s - probably the effect of the atmosphere contamination by anthropogenic substances containing chlorine), and with a kind of stabilization or recovery (starting in the mid of 90s - probably the effect of the Montreal protocol to eliminate substances reducing the ozone layer). We can also estimate that a full ozone recovery (return to the undisturbed total ozone level from the beginning of 70s) is expected around 2050. We propose to calculate both time series of local trends and the cumulative long-term change instead single trend value derived as a slope of straight line fit to the data.
An assessment of the stray-light in 25 years Dobson total ozone data at Athens, Greece
NASA Astrophysics Data System (ADS)
Christodoulakis, J.; Varotsos, C.; Cracknell, A. P.; Tzanis, C.; Neofytos, A.
2015-02-01
In this study, we investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray-light interference. In this regard, a series of total ozone content measurements were carried out in Athens, Greece for airmass values (μ) extending up to μ = 5. The monochromatic-heterochromatic stray-light derived by Basher's model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the Athens Dobson instrument appears to have an insignificant stray-light error. The comparison of the values of the same parameters measured 15 years ago with the present ones indicates the good maintenance of the Dobson spectrophotometer No. 118. This fact is of crucial importance because the variability of the daily total ozone observations collected by the Athens Dobson Station since 1989 has proved to be representative to the variability of the mean total ozone observed over the whole mid-latitude zone of the Northern Hemisphere. This stresses the point that the Athens total ozone station, being the unique Dobson station in south eastern Europe, may be assumed as a ground-truth station for the reliable conversion of the satellite radiance observations to total ozone measurements.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)
2000-01-01
New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets ("paradoxes") in tropical tropospheric ozone and smoke aerosol in regions of greatest tropical biomass burning [Thompson et at., 1996;2000b]. (4) Trans-boundary pollution tracking. With an air parcel (trajectory) model, smoke aerosol and ozone and dust plumes can be tracked across oceans (e.g., Asia to North America; North America to Europe) and national boundaries, e.g. Indonesia to Singapore and Malaysia during the 1997 ENSO fires.
NASA Astrophysics Data System (ADS)
Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong
2016-03-01
Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city, however, vehicle emission was less important as compared with sources from petrochemical industries, as characterized by relatively higher ethane (C2H4)/ ethyne (acetylene) and propene (C3H6)/ethyne ratios which ruled out tailpipes emission as major contributors to the VOCs sources.
User's guide for the Solar Backscattered Ultraviolet (SBUV) instrument first year ozone-S data set
NASA Technical Reports Server (NTRS)
Fleig, A. J.; Klenk, K. F.; Bhartia, P. K.; Gordon, D.; Schneider, W. H.
1982-01-01
Total-ozone and ozone vertical profile results for Solar Backscattered Ultraviolet/Total Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus 7 operation from November 1978 to November 1979 are available. The algorithm used have been thoroughly tested, the instrument performance has been examined in details, and the ozone results have been compared with Dobson, Umkehr, balloon, and rocket observations. The accuracy and precision of the satellite ozone data are good to at least within the ability of the ground truth to check and are self-consistent to within the specifications of the instrument. The 'SBUV User's Guide' describes the SBUV experiment and algorithms used. Detailed information on the data available on computer tape is provided including how to order tapes from the National Space Science Data Center.
Global distribution of ozone for various seasons
NASA Technical Reports Server (NTRS)
Koprova, L. I.
1979-01-01
A technique which was used to obtain a catalog of the seasonal global distribution of ozone is presented. The technique is based on the simultaneous use of 1964-1975 data on the total ozone content from a worldwide network of ozonometric stations and on the vertical ozone profile from ozone sounding stations.
Estimating vertical fluxes of ozone within the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Belan, Boris D.; Antokhin, Pavel N.; Antokhina, Olga Yu.; Arshinov, Mikhail Yu.; Belan, Sergey B.; Davydov, Denis K.; Krasnov, Oleg A.; Penenko, Alexey V.; Savkin, Denis E.; Sklyadneva, Tatayna K.; Tolmahev, Gennadii N.
2017-04-01
Investigation of the vertical distribution of ozone within the atmospheric boundary layer (ABL) was carried out by use of AN-2 light aircraft as a research platform. Vertical fluxes of ozone and their direction from the ground to the free-tropospheric level were calculated based on the in situ measurement data. Research flights have been performed over the greenhouse gas monitoring station located in a background area (56.1-56.4 N, 84.2-84.8 E) in the vicinity of abandoned village of Berezorechka (West Siberia). The schedule of diurnal flights was as follows: the first one just after the sunrise; the second one at noon; the third one 2-3 hours after noon, when a well-developed turbulence is observed; and the last one just before the sunset. A total of 10 diurnal cycles of measurements were undertaken. Analysis of the obtained data showed that the rate of ozone influx from upper layers of the atmosphere is 3-10 times less than the ozone production rate in the ABL. Average rate of ozone influx from the free troposphere was about 1 μg m-3 h-1, but ozone production rate in the ABL was about 5 μg m-3 h-1, so the major part of ozone is formed by photochemical reactions that occur within the ABL and only 20 % of its content is determined by the influx from the free troposphere. The vertical profiles of the ozone fluxes have shown that their maximum values are observed at heights from 200 to 600 m AGL. The height of the maximum depends on the season: in winter it is lower than 200-300 m, and in summer the maximum is observed at 500-600 m. The value of the ozone flux maximum also depends on the season and varies from 1 μg m-2 s-1in winter to 4.2 μg m-2 s-1 in spring. This work was supported by the Russian Foundation for Basic Research (grant No 17-05-00374).
Long-term changes (1980-2003) in total ozone time series over Northern Hemisphere midlatitudes
NASA Astrophysics Data System (ADS)
Białek, Małgorzata
2006-03-01
Long-term changes in total ozone time series for Arosa, Belsk, Boulder and Sapporo stations are examined. For each station we analyze time series of the following statistical characteristics of the distribution of daily ozone data: seasonal mean, standard deviation, maximum and minimum of total daily ozone values for all seasons. The iterative statistical model is proposed to estimate trends and long-term changes in the statistical distribution of the daily total ozone data. The trends are calculated for the period 1980-2003. We observe lessening of negative trends in the seasonal means as compared to those calculated by WMO for 1980-2000. We discuss a possibility of a change of the distribution shape of ozone daily data using the Kolmogorov-Smirnov test and comparing trend values in the seasonal mean, standard deviation, maximum and minimum time series for the selected stations and seasons. The distribution shift toward lower values without a change in the distribution shape is suggested with the following exceptions: the spreading of the distribution toward lower values for Belsk during winter and no decisive result for Sapporo and Boulder in summer.
Regional and global modeling estimates of policy relevant background ozone over the United States
NASA Astrophysics Data System (ADS)
Emery, Christopher; Jung, Jaegun; Downey, Nicole; Johnson, Jeremiah; Jimenez, Michele; Yarwood, Greg; Morris, Ralph
2012-02-01
Policy Relevant Background (PRB) ozone, as defined by the US Environmental Protection Agency (EPA), refers to ozone concentrations that would occur in the absence of all North American anthropogenic emissions. PRB enters into the calculation of health risk benefits, and as the US ozone standard approaches background levels, PRB is increasingly important in determining the feasibility and cost of compliance. As PRB is a hypothetical construct, modeling is a necessary tool. Since 2006 EPA has relied on global modeling to establish PRB for their regulatory analyses. Recent assessments with higher resolution global models exhibit improved agreement with remote observations and modest upward shifts in PRB estimates. This paper shifts the paradigm to a regional model (CAMx) run at 12 km resolution, for which North American boundary conditions were provided by a low-resolution version of the GEOS-Chem global model. We conducted a comprehensive model inter-comparison, from which we elucidate differences in predictive performance against ozone observations and differences in temporal and spatial background variability over the US. In general, CAMx performed better in replicating observations at remote monitoring sites, and performance remained better at higher concentrations. While spring and summer mean PRB predicted by GEOS-Chem ranged 20-45 ppb, CAMx predicted PRB ranged 25-50 ppb and reached well over 60 ppb in the west due to event-oriented phenomena such as stratospheric intrusion and wildfires. CAMx showed a higher correlation between modeled PRB and total observed ozone, which is significant for health risk assessments. A case study during April 2006 suggests that stratospheric exchange of ozone is underestimated in both models on an event basis. We conclude that wildfires, lightning NO x and stratospheric intrusions contribute a significant level of uncertainty in estimating PRB, and that PRB will require careful consideration in the ozone standard setting process.
Validation of Suomi NPP OMPS Limb Profiler Ozone Measurements
NASA Astrophysics Data System (ADS)
Buckner, S. N.; Flynn, L. E.; McCormick, M. P.; Anderson, J.
2017-12-01
The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler onboard the Suomi National Polar-Orbiting Partnership satellite (SNPP) makes measurements of limb-scattered solar radiances over Ultraviolet and Visible wavelengths. These measurements are used in retrieval algorithms to create high vertical resolution ozone profiles, helping monitor the evolution of the atmospheric ozone layer. NOAA is in the process of implementing these algorithms to make near-real-time versions of these products. The main objective of this project is to generate estimates of the accuracy and precision of the OMPS Limb products by analysis of matchup comparisons with similar products from the Earth Observing System Microwave Limb Sounder (EOS Aura MLS). The studies investigated the sources of errors, and classified them with respect to height, geographic location, and atmospheric and observation conditions. In addition, this project included working with the algorithm developers in an attempt to develop corrections and adjustments. Collocation and zonal mean comparisons were made and statistics were gathered on both a daily and monthly basis encompassing the entire OMPS data record. This validation effort of the OMPS-LP data will be used to help validate data from the Stratosphere Aerosol and Gas Experiment III on the International Space Station (SAGE III ISS) and will also be used in conjunction with the NOAA Total Ozone from Assimilation of Stratosphere and Troposphere (TOAST) product to develop a new a-priori for the NOAA Unique Combined Atmosphere Processing System (NUCAPS) ozone product. The current NUCAPS ozone product uses a combination of Cross-track Infrared Sounder (CrIS) data for the troposphere and a tropopause based climatology derived from ozonesonde data for the stratosphere a-priori. The latest version of TOAST uses a combination of both CrIS and OMPS-LP data. We will further develop the newest version of TOAST and incorporate it into the NUCAPS system as a new a-priori, in hopes of creating a better global ozone product.
A New Method to Cross Calibrate and Validate TOMS, SBUV/2, and SCIAMACHY Measurements
NASA Technical Reports Server (NTRS)
Ahmad, Ziauddin; Hilsenrath, Ernest; Einaudi, Franco (Technical Monitor)
2001-01-01
A unique method to validate back scattered ultraviolet (buv) type satellite data that complements the measurements from existing ground networks is proposed. The method involves comparing the zenith sky radiance measurements from the ground to the nadir radiance measurements taken from space. Since the measurements are compared directly, the proposed method is superior to any other method that involves comparing derived products (for example, ozone), because comparison of derived products involve inversion algorithms which are susceptible to several type of errors. Forward radiative transfer (RT) calculations show that for an aerosol free atmosphere, the ground-based zenith sky radiance measurement and the satellite nadir radiance measurements can be predicted with an accuracy of better than 1 percent. The RT computations also show that for certain values of the solar zenith angles, the radiance comparisons could be better than half a percent. This accuracy is practically independent of ozone amount and aerosols in the atmosphere. Experiences with the Shuttle Solar Backscatter Ultraviolet (SSBUV) program show that the accuracy of the ground-based zenith sky radiance measuring instrument can be maintained at a level of a few tenth of a percent. This implies that the zenith sky radiance measurements can be used to validate Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV/2), and The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) radiance data. Also, this method will help improve the long term precision of the measurements for better trend detection and the accuracy of other BUV products such as tropospheric ozone and aerosols. Finally, in the long term, this method is a good candidate to inter-calibrate and validate long term observations of upcoming operational instruments such as Global Ozone Monitoring Experiment (GOME-2), Ozone Mapping Instrument (OMI), Ozone Dynamics Ultraviolet Spectrometer (ODUS), and Ozone Mapping and Profiler Suite (OMPS).
NASA Astrophysics Data System (ADS)
Corrêa, Savio Figueira; Mota, Leonardo; Paiva, Luisa Brito; Couto, Flávio Mota do; Silva, Marcelo Gomes da; Oliveira, Jurandi Gonçalves de; Sthel, Marcelo Silva; Vargas, Helion; Miklós, András
2011-06-01
This work addresses the effects of ozone activity on the physiology of `Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Thompson, A. M.; Holdren, D. H.; Northam, E. T.; Witte, J. C.; Oltmans, S. J.; Hoegger, B.; Levrat, G. M.; Kirchhoff, V.
2000-01-01
Vertical ozone profiles between the Equator and 10 S latitude available from the Southern Hemisphere Additional Ozone (SHADOZ) program provide consistent data Ozone sets from up to 10 sounding locations. SHADOZ designed to provide independent ozone profiles in the tropics for evaluation of satellite ozone data and models has made available over 600 soundings over the period 1998-1999. These observations provide an ideal data base for the detailed description of ozone and afford differential comparison between sites. TOMS total ozone when compared with correlative integrated total ozone overburden from the sondes is found to be negatively biased when using the classical constant mixing ratio procedure to determine residual ozone. On the other hand, the climatological method proposed by McPeters and Labow appears to give consistent results but is positively biased. The longer then two years series of measurements also was subjected to harmonic analysis to examine data cycles. These will be discussed as well.
The use of plants as bioindicators of ozone
William J. Manning
1998-01-01
A variety of vascular plant species exhibit typical foliar injury symptoms when exposed to ambient ozone, making them useful as bioindicators of relative air quality for a particular location or region. They are quite useful in areas where mechanical ozone monitors are not available. Bioindicators are often introduced plant species known as sentinels. They are known to...
The Canadian Ozone Watch and UV-B advisory programs
NASA Technical Reports Server (NTRS)
Kerr, J. B.; Mcelroy, C. T.; Tarasick, D. W.; Wardle, D. I.
1994-01-01
The Ozone Watch, initiated in March, 1992, is a weekly bulletin describing the state of the ozone layer over Canada. The UV-B advisory program, which started in May, 1992, produces daily forecasts of clear-sky UV-B radiation. The forecast procedures use daily ozone measurements from the eight-station monitoring network, the output from the Canadian operational forecast model and a UV-B algorithm based on three years of spectral UV-B measurements with the Brewer spectrophotometer.
On the Quality of the Nimbus 7 LIMS Version 6 Ozone for Studies of the Middle Atmosphere
NASA Technical Reports Server (NTRS)
Remsberg, Ellis; Lingenfelser, Gretchen; Natarajan, Murali; Gordley, Larry; Thompson, Earl
2006-01-01
The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) radiance profile dataset of 1978/79 was reconditioned and reprocessed to Version 6 (V6) profiles of temperature and species that are improved significantly over those from Version 5 (V5). The LIMS V6 dataset was archived for public use in 2002. Improvements for its ozone include: (1) a more accurate accounting for instrument and spacecraft motion effects in the radiances, (2) the use of better spectroscopic line parameters for its ozone forward model, (3) retrievals of all its scans, (4) more accurate and compatible temperature versus pressure profiles (or T(p)), which are needed for the registration of the ozone radiances and for the removal of temperature effects from them, and (5) a better accounting for interfering species in the lower stratosphere. The retrieved V6 ozone profiles extend from near cloud top altitudes to about 80 km and from 64S to 84N latitude with better sampling along the orbit than for the V5 dataset. Calculated estimates of the single-profile precision and accuracy are provided for the V6 ozone from this study. Precision estimates based on the data themselves are of order 3% or better from 1 to 30 hPa. Estimates of total systematic error for a single profile are hard to generalize because the separate sources of error may not all be of the same sign and they depend somewhat on the atmospheric state. It is estimated that the V6 zonal mean ozone distributions are accurate to within 9% to 7% from 50 hPa to 3 hPa, respectively. Effects of a temperature bias can be significant and may be present at 1 to 2 hPa though. There may be ozone biases of order 10% at those levels due to possible biases of up to +2 K, but there is no indication of a similar problem elsewhere in the stratosphere. Simulation studies show that the LIMS retrievals are also underestimating slightly the small amplitudes of the atmospheric temperature tides, which affect its retrieved day/night ozone differences. There are small biases in the middle to lower stratosphere for the ascending versus descending node LIMS ozone, due principally to not accounting for the asymmetric weighting of its radiances across the tangent layer. The estimates of total accuracy were assessed by comparing the daily zonal mean LIMS ozone distributions against those from the Nimbus 7 SBUV Version 8 (V8) dataset for the same period. Generally, the LIMS V6 ozone agrees well with SBUV, except perhaps in the tropical lower stratosphere where the LIMS ozone is less. Still, the accuracy for LIMS V6 ozone in the lower stratosphere is improved over that found for LIMS V5, as indicated by several LIMS comparisons with ECC ozonesonde profiles. The LIMS V6 ozone is considered especially suitable for detailed studies of large-scale stratospheric processes above the 100-hPa level. Comparison of diurnal, photochemical model calculations with the monthly-averaged, upper stratospheric ozone observed from LIMS V6 indicates only a slight ozone deficit for the model at about 2 hPa. However, that deficit exhibits little to no seasonal variation and is in good agreement with similar model comparisons for a seasonal time series of ozone obtained with ground-based microwave instruments. Because the LIMS V6 ozone in the lower stratosphere has improved accuracy and sampling versus that of V5, it should now be possible to conduct quantitative studies of ozone transport and chemistry for the northern hemisphere, polar stratospheric winter of 1978/79 a time period when the catalytic loss of ozone due to reactive chlorine should not have been a major factor for the Arctic region.
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.
2009-04-01
Over the last few decades negative trends in stratospheric ozone have been studied because of the direct link between decreasing stratospheric ozone and increasing surface UV-radiation. Recently a discussion on ozone recovery has begun. Long-term measurements of total ozone extending back earlier than 1958 are limited and only available from a few stations in the northern hemisphere. The world's longest total ozone record is available from Arosa, Switzerland (Staehelin et al., 1998a,b). At this site total ozone measurements have been made since late 1926 through the present day. Within this study (Rieder et al., 2009) new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied to select mathematically well-defined thresholds for extreme low and extreme high total ozone. A heavy-tail focused approach is used by fitting the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a sufficiently high (or below a sufficiently low) threshold (Coles, 2001). More precisely, the GPD is the limiting distribution of normalized excesses over a threshold, as the threshold approaches the endpoint of the distribution. In practice, GPD parameters are fitted, to exceedances by maximum likelihood or other methods - such as the probability weighted moments. A preliminary step consists in defining an appropriate threshold for which the asymptotic GPD approximation holds. Suitable tools for threshold selection as the MRL-plot (mean residual life plot) and TC-plot (stability plot) from the POT-package (Ribatet, 2007) are presented. The frequency distribution of extremes in low (termed ELOs) and high (termed EHOs) total ozone and their influence on the long-term changes in total ozone are analyzed. Further it is shown that from the GPD-model the distribution of so-called ozone mini holes (e.g. Bojkov and Balis, 2001) can be precisely estimated and that the "extremes concept" provides new information on the data distribution and variability within the Arosa record as well as on the influence of ELOs and EHOs on the long-term trends of the ozone time series. References: Bojkov, R. D., and Balis, D.S.: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1975-2000, Ann. Geophys., 19, 797-807, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Pickands, J.: Statistical inference using extreme order statistics, Ann. Stat., 3, 1, 119-131, 1975. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Stübi, R., Weihs, P., Holawe, F., and M. Ribatet: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.
Domínguez-López, D; Adame, J A; Hernández-Ceballos, M A; Vaca, F; De la Morena, B A; Bolívar, J P
2014-09-01
Surface ozone is one of the most important photochemical pollutants in the low atmosphere, causing damage to human health, vegetation, materials and climate. The weather (high temperatures and high solar radiation), orography (presence of the Guadalquivir valley) and anthropogenic (the cities of Cádiz, Córdoba, Huelva and Seville and two important industrial complexes) characteristics of the southwestern Iberian Peninsula make this region ideal for the formation and accumulation of ozone. To increase the knowledge of ozone behaviour in this area, the monthly, daily and weekly variations of ozone and its precursors, nitrogen oxides (NO(x) = NO + NO2), were analysed over a 4-year period (2003 to 2006). Using the k-means cluster technique, 12 representative stations of five different areas with different ozone behaviour were selected from a total of 29 monitoring sites. This is the first time that the analysis of these atmospheric pollutants has been carried out for the whole area, allowing therefore a complete understanding of the dynamics and the relationships of these compounds in this region. The results showed an opposite behaviour among ozone and NO and NO2 concentrations in urban and suburban zones, marked by maximums of ozone (minimums NO(x)) in spring and summer and minimums (maximums) in autumn and winter. A seasonal behaviour, with lower amplitude, was also observed in rural and industrial areas for ozone concentrations, with the NO and NO2 concentrations remaining at low and similar values during the year in rural zones due to the absence of emission sources in their surroundings. The daily cycles of ozone in urban, suburban and industrial sites registered a maximum value in the early afternoon (14:00-17:00 UTC) while for NOx two peaks were observed, at 7:00-10:00 UTC and 20:00-22:00. In the case of rural stations, no hourly peak of ozone or NO(x) was registered. The weekend effect was studied by using a statistical contrast tests (Student's t). The results indicated that only areas influenced by important traffic emissions presented a weekend effect for NO and NO2, whereas an ozone weekend effect was not detected in any case.
NASA Astrophysics Data System (ADS)
Chakraborthy, Parthasarathi; Chattopadhyay, Surajit
2013-02-01
Endeavor of the present paper is to investigate the statistical properties of the total ozone concentration time series over Arosa, Switzerland (9.68°E, 46.78°N). For this purpose, different statistical data analysis procedures have been employed for analyzing the mean monthly total ozone concentration data, collected over a period of 40 years (1932-1971), at the above location. Based on the computations on the available data set, the study reports different degrees of variations in different months. The month of July is reported as the month of lowest variability. April and May are found to be the most correlated months with respect to total ozone concentration.
Gerosa, G; Mazzali, C; Ballarin-Denti, A
2001-10-31
Ozone is the most harmful air pollutant for plant ecosystems in the Mediterranean and Alpine areas due to its biological and economic damage to crops and forests. In order to evaluate the relation between ozone exposure and vegetation injury under on-field conditions, suitable ozone monitoring techniques were investigated. In the framework of a 5-year research project aimed at ozone risk assessment on forests, both continuous analysers and passive samplers were employed during the summer seasons (1994-1998) in different sites of a wide mountain region (80 x 40 km2) on the southern slope of the European Alps. Continuous analysers allowed the recording of ozone hourly concentration means necessary both to calculate specific exposure indexes (such as AOT, SUM, W126) and to record daily time-courses. Passive samplers, even though supplied only weekly mean concentration values, made it possible to estimate the altitude concentration gradient useful to correct the altitude dependence of ozone concentrations to be inserted into exposure indexes. In-canopy ozone profiles were also determined by placing passive samplers at different heights inside the forest canopy. Vertical ozone soundings by means of tethered balloons (kytoons) allowed the measurement of the vertical concentration gradient above the forest canopy. They also revealed ozone reservoirs aloft and were useful to explain the ozone advection dynamic in mountain slopes where ground measurement proved to be inadequate. An intercomparison between passive (PASSAM, CH) and continuous measurements highlighted the necessity to accurately standardize all the exposure operations, particularly the pre- and postexposure conservation at cold temperature to avoid dye (DPE) activity. Advantages and disadvantages from each mentioned technique are discussed.
Ozone fumigation for safety and quality of wine grapes in postharvest dehydration.
Botondi, Rinaldo; De Sanctis, Federica; Moscatelli, Niccolò; Vettraino, Anna Maria; Catelli, Cesare; Mencarelli, Fabio
2015-12-01
This paper proposes postharvest ozone fumigation (as a method) to control microorganisms and evaluate the effect on polyphenols, anthocyanins, carotenoids and cell wall enzymes during the grape dehydration for wine production. Pignola grapes were ozone-treated (1.5 g/h) for 18 h (A=shock treatment), then dehydrated or ozone-treated (1.5 g/h) for 18 h and at 0.5 g/h for 4 h each day (B=long-term treatment) during dehydration. Treatment and dehydration were performed at 10 °C. No significant difference was found for total carotenoid, total phenolic and total anthocyanin contents after 18 h of O3 treatment. A significant decrease in phenolic and anthocyanin contents occurred during treatment B. Also carotenoids were affected by B ozone treatment. Pectin methylesterase (PME) and polygalacturonase (PG) activities were higher in A-treated grapes during dehydration. Finally, ozone reduced fungi and yeasts by 50%. Shock ozone fumigation (A treatment) before dehydration can be used to reduce the microbial count during dehydration without affecting polyphenol and carotenoid contents. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tolson, R. H.
1981-01-01
A technique is described for providing a means of evaluating the influence of spatial sampling on the determination of global mean total columnar ozone. A finite number of coefficients in the expansion are determined, and the truncated part of the expansion is shown to contribute an error to the estimate, which depends strongly on the spatial sampling and is relatively insensitive to data noise. First and second order statistics are derived for each term in a spherical harmonic expansion which represents the ozone field, and the statistics are used to estimate systematic and random errors in the estimates of total ozone.
A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument
NASA Technical Reports Server (NTRS)
Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.
2016-01-01
Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(exp -1) to more than 4000 kt yr(exp -1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005- 2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(exp -1) and not detected by OMI.
The Ozone Monitoring Instrument: overview of 14 years in space
NASA Astrophysics Data System (ADS)
Levelt, Pieternel F.; Joiner, Joanna; Tamminen, Johanna; Pepijn Veefkind, J.; Bhartia, Pawan K.; Stein Zweers, Deborah C.; Duncan, Bryan N.; Streets, David G.; Eskes, Henk; van der A, Ronald; McLinden, Chris; Fioletov, Vitali; Carn, Simon; de Laat, Jos; DeLand, Matthew; Marchenko, Sergey; McPeters, Richard; Ziemke, Jerald; Fu, Dejian; Liu, Xiong; Pickering, Kenneth; Apituley, Arnoud; González Abad, Gonzalo; Arola, Antti; Boersma, Folkert; Miller, Christopher Chan; Chance, Kelly; de Graaf, Martin; Hakkarainen, Janne; Hassinen, Seppo; Ialongo, Iolanda; Kleipool, Quintus; Krotkov, Nickolay; Li, Can; Lamsal, Lok; Newman, Paul; Nowlan, Caroline; Suleiman, Raid; Gijsbert Tilstra, Lieuwe; Torres, Omar; Wang, Huiqun; Wargan, Krzysztof
2018-04-01
This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.
The Ozone Monitoring Instrument: overview of 14 years in space
NASA Technical Reports Server (NTRS)
Tamminen, Johanna; Veefkind, J. Pepijn; van der A, Ronald; Miller, Christopher Chan; Ialongo, Iolanda; Kleipool, Quintus; Lamsal, Lok N.; Wang, Huiqun; Bhartia, Pawan K.; Zweers, Deborah C. Stein;
2018-01-01
This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Briel, D.
1978-01-01
The average amount of ozone measured in the cabins of two B-747 airliners varied from 40 percent to 80 percent of the atmospheric concentrations without special ozone destruction systems. A charcoal filter in the cabin air inlet system of one B-747 reduced the ozone to about 5 percent of the atmospheric concentration. A Learjet 23 was also instrumented with monitors to measure simultaneously the atmospheric and ozone concentrations. Results indicate that a significant portion of the atmospheric ozone is not destroyed in the pressurization system and remains in the aircraft cabin of the Learjet. For the two cabin configurations tested, the ozone retentions were 63 and 41 percent of the atmospheric ozone concentrations. Ozone concentrations measured in the cabin near the conditioned-air outlets were reduced only slightly from atmospheric ozone concentrations. It is concluded that a constant difference between ozone concentrations inside and outside the cabin does not exist.
Early Results from TROPOMI on the Copernicus Sentinel 5 Precursor
NASA Astrophysics Data System (ADS)
Veefkind, J. P.; Kleipool, Q.; Ludewig, A.; Stein-Zweers, D.; Aben, I.; De Vries, J.; Loyola, D. G.; Nett, H.; Richter, A.; Van Roozendael, M.; Siddans, R.; Wagner, T.; Dehn, A.; Zehner, C.; Levelt, P.
2017-12-01
The Copernicus Sentinel 5 Precursor (S5P) is the first of the European Sentinels satellites dedicated to monitoring of the atmospheric composition. S5P is planned for launch in the 3rd quarter of 2017. The mission objectives of S5P are to monitor air quality, climate and the ozone layer, in the time period between 2017 and 2023. S5P will fly in a Sun-synchronized polar orbit with a 13:30 hr local equator crossing time. The single payload of the S5P mission is TROPOspheric Monitoring Instrument (TROPOMI), which is developed by The Netherlands in cooperation with the European Space Agency (ESA). TROPOMI is a nadir viewing shortwave spectrometer that measures in the UV-visible wavelength range (267-499 nm), the near infrared (661-775 nm) and the shortwave infrared (2300-2389 nm). With a spatial resolution of better than 7x7 km2 at nadir and almost 20 million measurements per day, TROPOMI will be a major step forward compared to its predecessors OMI (Ozone Monitoring Instrument) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography). The spatial resolution is combined with a wide swath to allow for daily global coverage. The TROPOMI/S5P geophysical (Level 2) operational data products include nitrogen dioxide, carbon monoxide, ozone (total column, tropospheric column & profile), methane, sulfur dioxide, formaldehyde and aerosol and cloud parameters. The S5P will fly in a so-called loose formation with the U.S. Suomi NPP (National Polar-orbiting Partnership) satellite. The primary objective for this formation flying is to use the cloud clearing capabilities of the VIIRS (Visible Infrared Imager Radiometer Suite). The temporal separation between TROPOMI and VIIRS will be less than 5 minutes. Once this formation has been established, it will enable synergistic data products and scientific research potentials.
Improved Ozone Profile Retrievals Using Multispectral Measurements from NASA 'A Train' Satellites
NASA Astrophysics Data System (ADS)
Fu, D.; Worden, J.; Livesey, N. J.; Irion, F. W.; Schwartz, M. J.; Bowman, K. W.; Pawson, S.; Wargan, K.
2013-12-01
Ozone, a radiatively and chemically important trace gas, plays various roles in different altitude ranges in the atmosphere. In the stratosphere, it absorbs the solar UV radiation from the Sun and protects us from sunburn and skin cancers. In the upper troposphere, ozone acts as greenhouse gas. Ozone in the middle troposphere reacts with many anthropogenic pollutants and cleans up the atmosphere. Near surface ozone is harmful to human health and plant life. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) are both in orbit on the Earth Observing System Aura satellite and are providing ozone concentration profile measurements. MLS observes limb signals from 118 GHz to 2.5 THz, and measures upper tropospheric and stratospheric ozone concentration (among many other species) with a vertical resolution of about 3 km. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. AIRS is a grating spectrometer, on EOS Aqua satellite, that measures the thermal infrared (TIR) radiances emitted by Earth's surface and by gases and particles in the spectral range 650 - 2665 cm-1. We present an approach to combine simultaneously measured UV and TIR radiances together with the retrieved MLS ozone fields, to improve the ozone sounding. This approach has the potential to provide a decadal record of ozone profiles with an improved spatial coverage and vertical resolution from space missions. For evaluating the quality of retrieved profiles, we selected a set of AIRS and OMI measurements, whose ground pixels were collocated with ozonesonde launch sites. The results from combination of these measurements are presented and discussed. The improvements on vertical resolution of tropospheric ozone profiles from the MLS/AIRS/OMI joint retrievals, as compared with either spectral region alone, are estimated using the ozonesonde measurements.
The use of visible-channel data from NOAA satellites to measure total ozone amount over Antarctica
NASA Technical Reports Server (NTRS)
Boime, Robert D.; Warren, Steven G.; Gruber, Arnold
1994-01-01
Accurate, detailed maps of total ozone were not available until the launch of the Total Ozone Mapping Spectrometer (TOMS) in late 1978. However, the Scanning Radiometer (SR), an instrument on board the NOAA series satellites during the 1970s, had a visible channel that overlapped closely with the Chappuis absorption band of ozone. We are investigating whether data from the SR can be used to map Antarctic ozone prior to 1978. The method is being developed with 1980s data from the Advanced Very High Resolution Radiometer (AVHRR), which succeeded the SR on the NOAA polar-orbiting satellites. Visible-derived total ozone maps can then be compared able on the NOAA satellites, which precludes the use of a differential absorption technique to measure ozone. Consequently, our method works exclusively over scenes whose albedos are large and unvarying, i.e. scenes that contain ice sheets and/or uniform cloud-cover. Initial comparisons of time series for October-December 1987 at locations in East Antarctica show that the visible absorption by ozone in measurable and that the technique may be usable for the 1970s, but with much less accuracy than TOMS. This initial test assumes that clouds, snow, and ice all reflect the same percentage of visible light towards the satellite, regardless of satellite position or environmental conditions. This assumption is our greatest source of error. To improve the accuracy of ozone retrievals, realistic anisotropic reflectance factors are needed, which are strongly influenced by cloud and snow surface features.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Surajit; Chattopadhyay, Goutami
2012-10-01
In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.
NASA Technical Reports Server (NTRS)
Chandra, S.; Mcpeters, R. D.
1986-01-01
Ozone measurements from 1970 to 1984 from the Nimbus 4 backscattered ultraviolet and the Nimbus 7 solar backscattered ultraviolet spectrometers show significant decrease in total ozone only after 1979. The downward trend is most apparent in October south of 70 deg S in the longitude zone 0 to 30 deg W where planetary wave activity is weak. Outside this longitude region, the trend in total ozone is much smaller due to strong interannual variability of wave activity. This paper gives a phenomenological description of ozone depletion in the Antarctic region based on vertical advection and transient planetary waves.
Tropical Tropospheric Ozone: A Multi-Satellite View From TOMS and Other Instruments
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Hudson, Robert D.; Guo, Hua; Witte, Jacquelyn C.; Kucsera, Tom L.; Seybold, Matthew G.; Einaudi, Franco (Technical Monitor)
2000-01-01
New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument can resolve episodic pollution events in the tropics and interannual and seasonal variability. Modified-residual (MR) Nimbus 7 tropical tropospheric ozone (TTO), two maps/month (1979-1992, 1-deg latitude by 2-deg longitude) within the region in which total ozone displays a tropical wave-one pattern (maximum 20S to 20N), are available in digital form at http://metosrv2.umd.edu/tropo. Also available are preliminary 1996-1999 MR-TTO maps based on real-time Earth-Probe (EP)/TOMS observations. Examples of applications are given.
NASA Astrophysics Data System (ADS)
Aheyeva, Viktoryia; Gruzdev, Aleksandr; Grishaev, Mikhail
Data of ground-based measurements of NO2 column contents are analyzed to study winter-spring NO2 anomalies associated with negative anomalies in column ozone and stratospheric temperature. Episodes of significant decrease in column NO2 contents in the winter-spring period of 2011 in the northern hemisphere (NH) were detected at European and Siberian stations of Zvenigorod (55.7°N, Moscow Region) and Tomsk (56.5°N, West Siberia) in the middle latitudes, Harestua (60.2°N), Sodankyla (67.4°N, both in North Europe), and Zhigansk (66.8°N, East Siberia) in the high latitudes, and at the Arctic station of Scoresbysund (70.5°N, Greenland). All the stations, except Tomsk, are a part of the Network of the Detection of Atmospheric Composition Change (NDACC), and the data are accesses at http://ndacc.org. The decrease in NO2 is generally accompanied by total ozone and stratospheric temperature decrease and is shown to be caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Overpass total ozone data from Giovanni service and radiosonde data were used for the analysis. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 reached record magnitudes. A significant positive correlation has been found between variations in NO2 and ozone columns as well as NO2 column and stratospheric temperature during the winter-spring period of 2011, whereas the correlation is much weaker in years without Arctic ozone depletion. The correlation becomes even stronger if only episodes with significant NO2 decrease are considered. For example the correlation coefficients between NO2 and ozone columns deviations are about 0.9 for Zvenigorod and Scoresbysund. Correlation coefficients between variations in column NO2 and total ozone and stratospheric temperature as well as coefficients of regression of NO2 on ozone and temperature in the winter-spring period of 2011 for the Siberian stations are less than those for European stations. For comparison analysis, data of column NO2, total ozone and stratospheric temperature at the southern hemisphere (SH) stations of Dumont D’Urville (66.7°S, the Antarctic), Macquarie Island (54.5°S) and Kerguelen Island (49.3°S) (all stations are NDACC stations) were used. Correlation and regression coefficients between variations in column NO2 and total ozone as well as in column NO2 and stratospheric temperature for the winter-spring periods at the SH stations depend on the phase of the quasi-biennial oscillation (QBO) in the 30 hPa equatorial wind velocity. The correlation coefficients and the coefficients of regression of NO2 on ozone and temperature for the west QBO phase are large compared to those for the east phase. The 2011 Arctic ozone hole was observed during the west phase of the 30 hPa QBO. The calculated correlation coefficients at the NH stations for the winter-spring period of 2011 associated with the Arctic ozone hole are close to similar coefficients at the SH stations in winter-spring periods for the west QBO phase. The regression coefficients at the NH stations are less than those at the SH stations for the west QBO phase but greater than similar coefficients for the east phase. We can conclude that physico-chemical processes specific for ozone hole conditions cause spatial correlation between distribution of stratospheric NO2 and distributions of total ozone and temperature in polar and adjacent regions, which is generally stronger for stronger ozone deficit in a polar region. This results in significant time correlation between NO2, ozone and temperature at observation sites due to transport processes.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Wornom, D. E.; Mathis, J. J., Jr.; Sebacher, D. I.
1980-01-01
Ozone production was determined from aircraft and surface in situ measurements, as well as from an airborne laser absorption spectrometer. Three aircraft and approximately 10 surface stations provided air-quality data. Extensive meteorological, mixing-layer-height, and ozone-precursor data were also measured. Approximately 50 hrs (9 flight days) of data from the aircraft equipped to monitor ozone, nitrogen oxides, dewpoint temperature, and temperature are presented. In addition, each experiment conducted is discussed.
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)
2000-01-01
A new technique denoted cloud slicing has been developed for estimating tropospheric ozone profile information. All previous methods using satellite data were only capable of estimating the total column of ozone in the troposphere. Cloud slicing takes advantage of the opaque property of water vapor clouds to ultraviolet wavelength radiation. Measurements of above-cloud column ozone from the Nimbus 7 total ozone mapping spectrometer (TOMS) instrument are combined together with Nimbus 7 temperature humidity and infrared radiometer (THIR) cloud-top pressure data to derive ozone column amounts in the upper troposphere. In this study tropical TOMS and THIR data for the period 1979-1984 are analyzed. By combining total tropospheric column ozone (denoted TCO) measurements from the convective cloud differential (CCD) method with 100-400 hPa upper tropospheric column ozone amounts from cloud slicing, it is possible to estimate 400-1000 hPa lower tropospheric column ozone and evaluate its spatial and temporal variability. Results for both the upper and lower tropical troposphere show a year-round zonal wavenumber 1 pattern in column ozone with largest amounts in the Atlantic region (up to approx. 15 DU in the 100-400 hPa pressure band and approx. 25-30 DU in the 400-1000 hPa pressure band). Upper tropospheric ozone derived from cloud slicing shows maximum column amounts in the Atlantic region in the June-August and September-November seasons which is similar to the seasonal variability of CCD derived TCO in the region. For the lower troposphere, largest column amounts occur in the September-November season over Brazil in South America and also southern Africa. Localized increases in the tropics in lower tropospheric ozone are found over the northern region of South America around August and off the west coast of equatorial Africa in the March-May season. Time series analysis for several regions in South America and Africa show an anomalous increase in ozone in the lower troposphere around the month of March which is not observed in the upper troposphere. The eastern Pacific indicates weak seasonal variability of upper, lower, and total tropospheric ozone compared to the western Pacific which shows largest TCO amounts in both hemispheres around spring months. Ozone variability in the western Pacific is expected to have greater variability caused by strong convection, pollution and biomass burning, land/sea contrast and monsoon developments.
Patrick J. Temple; Paul R. Miller
1998-01-01
Ambient ozone was monitored from 1992 to 1994 near a forested site dominated by mature Jeffrey and ponderosa pines (Pinus jeffrey Grev. & Balf. and Pinus ponderosa Dougl. ex Laws.) at 2,000 m in the San Bernardino Mountains of southern California. Ozone injury symptoms, including percent chlorotic mottle and foliage retention,...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... quality monitoring data for the 2007-2009 ozone seasons that demonstrate that the 8-hour ozone NAAQS has... technical information and/or data that you used. 5. If you estimate potential costs or burdens, explain how... FR 23857), EPA published a final rule designating and classifying areas under the 8-hour ozone NAAQS...
Multimodel Assessment of the Factors Driving Stratospheric Ozone Evolution over the 21st Century
NASA Technical Reports Server (NTRS)
Oman, L. D.; Plummer, D. A.; Waugh, D. W.; Austin, J.; Scinocca, J. F.; Douglass, A. R.; Salawitch, R. J.; Canty, T.; Akiyoshi, H.; Bekki, S.;
2010-01-01
The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from 14 chemistry-climate models, driven by prescribed levels of halogens and greenhouse gases. There is general agreement among the models that total column ozone reached a minimum around year 2000 at all latitudes, projected to be followed by an increase over the first half of the 21st century. In the second half of the 21st century, ozone is projected to continue increasing, level off, or even decrease depending on the latitude. Separation into partial columns above and below 20 hPa reveals that these latitudinal differences are almost completely caused by differences in the model projections of ozone in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and is projected to return to 1960 levels well before the end of the century, although there is a spread among models in the dates that ozone returns to specific historical values. We find decreasing halogens and declining upper atmospheric temperatures, driven by increasing greenhouse gases, contribute almost equally to increases in upper stratospheric ozone. In the tropical lower stratosphere, an increase in upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in most of the models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century, returning to 1960 levels well before the end of the century in most models.
Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats
Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.
2013-01-01
Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage. PMID:23969972
NASA Technical Reports Server (NTRS)
Shiotani, Masato; Hasebe, Fumio
1994-01-01
An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric mode and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.
PE Padgett
2010-01-01
Nylon and Teflon filter media are frequently used for monitoring ambient air pollutants. These media are subject to many environmental factors that may influence adsorption and retention of particulate and gaseous nitrogenous pollutants. This study evaluated the effects of ozone and humidity on the efficacy of nylon and Teflon filters used in the US dry deposition...
Rossby-gravity waves in tropical total ozone data
NASA Technical Reports Server (NTRS)
Stanford, J. L.; Ziemke, J. R.
1993-01-01
Evidence for Rossby-gravity waves in tropical data fields produced by the European Center for Medium Range Weather Forecasts (ECMWF) was recently reported. Similar features are observable in fields of total column ozone from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The observed features are episodic, have zonal (east-west) wavelengths of 6,000-10,000 km, and oscillate with periods of 5-10 days. In accord with simple linear theory, the modes exhibit westward phase progression and eastward group velocity. The significance of finding Rossby-gravity waves in total ozone fields is that (1) the report of similar features in ECMWF tropical fields is corroborated with an independent data set and (2) the TOMS data set is demonstrated to possess surprising versatility and sensitivity to relatively smaller scale tropical phenomena.
Solar UV-B irradiance and total ozone in Italy: Fluctuations and trends
NASA Astrophysics Data System (ADS)
Casale, G. R.; Meloni, D.; Miano, S.; Palmieri, S.; Siani, A. M.; Cappellani, F.
2000-02-01
Solar UV irradiance spectra (290-325 nm) together with daily total ozone column observations have been collected since 1992 by means of Brewer spectrophotometers at two Italian stations (Rome and Ispra). The available Brewer irradiance data, recorded around noon and at fixed solar zenith angles, together with the output of a radiative transfer model (the STAR model) are presented and analyzed. The Brewer irradiance measurements and total ozone fluctuations and anomalies are investigated, pointing out the correlation between the high-frequency O3 components and irradiance at 305 nm. In addition, the total ozone long time series of Arosa (170 km apart from Ispra) and Vigna di Valle (very close to Rome) are analyzed to illustrate evidence of temporal variations and a possible trend.
Yılmaz, Selçuk; Algan, Serdar; Gursoy, Hare; Noyan, Ulku; Kuru, Bahar Eren; Kadir, Tanju
2013-06-01
The aim of this study was to evaluate the clinical and microbiological results of treatment with the Er:YAG laser and topical gaseous ozone application as adjuncts to initial periodontal therapy in chronic periodontitis (CP) patients. Although many studies have evaluated the effectiveness of the Er:YAG laser as an adjunct to initial periodontal therapy, few studies have focused on the use of gaseous ozone as an adjunct. Thirty patients with CP were randomly divided into three parallel groups, each composed of 10 individuals with at least four teeth having at least one approximal site with a probing depth (PD) of ≥5 mm and a sulcus bleeding index (SBI) ≥2 in each quadrant. Groups of patients received: (1) Scaling and root planing (SRP)+Er:YAG laser; (2) SRP+topical gaseous ozone; or (3) SRP alone. The microbiological and clinical parameters were monitored at day 0 and day 90. At the end of the observation period, statistically significant improvements in clinical parameters were observed within each group. Parallel to the clinical changes, all treatments reduced the number of total bacteria and the proportion of obligately anaerobic microorganisms. Although intergroup comparisons of microbiological parameters showed no significant differences, clinical findings, including attachment gain and PD reduction, were found to be statistically significant in favor of the SRP+Er:YAG laser group. Although statistically nonsignificant, the fact that the obligate anaerobic change was mostly observed in the SRP+Er:YAG laser group, and a similar decrease was noted in the SRP+topical gaseous ozone group, shows that ozone has an antimicrobial effect equivalent to that of the Er:YAG laser.
Ingold, T; Mätzler, C; Wehrli, C; Heimo, A; Kämpfer, N; Philipona, R
2001-04-20
Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 degrees , 9.68 degrees , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).
NASA Astrophysics Data System (ADS)
Ingold, Thomas; Mätzler, Christian; Wehrli, Christoph; Heimo, Alain; Kämpfer, Niklaus; Philipona, Rolf
2001-04-01
Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 , 9.68 , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos /World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305 /311 and 305 /318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305 /311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305 /311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).
Ozone Pollution, Transport and Variability: Examples from Satellite and In-Situ Observations
NASA Technical Reports Server (NTRS)
Thompson, Anne
2003-01-01
Regional and intercontinental transport of ozone has been observed from satellite, aircraft and sounding data. Over the past several years, we have developed new tropospheric ozone retrieval techniques from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique uses Level 2 total ozone and was used to follow the 1997 fires in the wake of the El-Nino-related fires in southeast Asia and the Indonesian maritime continent. The TOMS-direct method ('TDOT' = TOMS Direct Ozone in the Troposphere) is a newer algorithm that uses TOMS radiances directly to extract tropospheric ozone. Ozonesonde data that have been taken in campaigns (e.g. TRACE-P) and more consistently in the SHADOZ (Southern Hemisphere Additional Ozonesondes) project, reveal layers of pollution traceable with trajectories. Examples will be shown of long-range transport and recirculation over Africa during SAFARI-2000.
Tsintavi, E; Pontillo, N; Dareioti, M A; Kornaros, M
2013-01-01
The possibility of coupling a physicochemical pretreatment (ozonation) with a biological treatment (anaerobic digestion) was investigated for the case of olive mill wastewaters (OMW). Batch ozonation experiments were performed in a glass bubble reactor. The parameters which were tested included the ozone concentration in the inlet gas stream, the reactor temperature and the composition of the liquid medium in terms of raw or fractionated OMW used. In the sequel, ozone-pretreated OMW samples were tested for their biochemical methane potential (BMP) under mesophilic conditions and these results were compared to the BMP of untreated OMW. The ozonation process alone resulted in a 57-76% decrease of total phenols and a 5-18% decrease of total carbohydrates contained in OMW, depending on the experimental conditions. Nevertheless, the ozone-pretreated OMW exhibited lower chemical oxygen demand removal and methane production during BMP testing compared to the untreated OMW.
NASA Astrophysics Data System (ADS)
Turnipseed, Andrew A.; Andersen, Peter C.; Williford, Craig J.; Ennis, Christine A.; Birks, John W.
2017-06-01
A new solid-phase scrubber for use in conventional ozone (O3) photometers was investigated as a means of reducing interferences from other UV-absorbing species and water vapor. It was found that when heated to 100-130 °C, a tubular graphite scrubber efficiently removed up to 500 ppb ozone and ozone monitors using the heated graphite scrubber were found to be less susceptible to interferences from water vapor, mercury vapor, and aromatic volatile organic compounds (VOCs) compared to conventional metal oxide scrubbers. Ambient measurements from a graphite scrubber-equipped photometer and a co-located Federal equivalent method (FEM) ozone analyzer showed excellent agreement over 38 days of measurements and indicated no loss in the scrubber's ability to remove ozone when operated at 130 °C. The use of a heated graphite scrubber was found to reduce the interference from mercury vapor to ≤ 3 % of that obtained using a packed-bed Hopcalite scrubber. For a series of substituted aromatic compounds (ranging in volatility and absorption cross section at 253.7 nm), the graphite scrubber was observed to consistently exhibit reduced levels of interference, typically by factors of 2.5 to 20 less than with Hopcalite. Conventional solid-phase scrubbers also exhibited complex VOC adsorption and desorption characteristics that were dependent upon the relative humidity (RH), volatility of the VOC, and the available surface area of the scrubber. This complex behavior involving humidity is avoided by use of a heated graphite scrubber. These results suggest that heated graphite scrubbers could be substituted in most ozone photometers as a means of reducing interferences from other UV-absorbing species found in the atmosphere. This could be particularly important in ozone monitoring for compliance with the United States (U.S.) Clean Air Act or for use in VOC-rich environments such as in smog chambers and monitoring indoor air quality.
NASA Technical Reports Server (NTRS)
Heath, Donald F.; Ahmad, Zia
2001-01-01
In the early 1990s a series of surface-based direct sun and zenith sky measurements of total column ozone were made with SBUV/2 flight models and the SSBUV Space Shuttle instrument in Boulder, Colorado which were compared with NOAA Dobson Instrument direct sun observations and TOMS instrument overpass observations of column ozone. These early measurements led to the investigation of the accuracy of derived total column ozone amounts and aerosol optical depths from zenith sky observations. Following the development and availability of radiometrically stable IAD narrow band interference filter and nitrided silicon photodiodes a simple compact multifilter spectroradiometer was developed which can be used as a calibration transfer standard spectroradiometer (CTSS) or as a surface based instrument remote sensing instruments for measurements of total column ozone and aerosol optical depths. The total column ozone derived from zenith sky observations agrees with Dobson direct sun AD double wavelength pair measurements and with TOMS overpass ozone amounts within uncertainties of about 1%. When used as a calibration transfer standard spectroradiometer the multifilter spectroradiometer appears to be capable of establishing instrument radiometric calibration uncertainties of the order of 1% or less relative to national standards laboratory radiometric standards.
Periodic analysis of total ozone and its vertical distribution
NASA Technical Reports Server (NTRS)
Wilcox, R. W.; Nastrom, G. D.; Belmont, A. D.
1975-01-01
Both total ozone and vertical distribution ozone data from the period 1957 to 1972 are analyzed. For total ozone, improved monthly zonal means for both hemispheres are computed by weighting individual station monthly means by a factor which compensates for the close grouping of stations in certain regions of latitude bands. Longitudinal variability show maxima in summer in both hemispheres, but, in winter, only in the Northern Hemisphere. The geographical distributions of the long term mean, and the annual, quasibiennial and semiannual waves in total ozone over the Northern Hemisphere are presented. The extratropical amplitude of the annual wave is by far the largest of the three, as much as 120 m atm cm over northern Siberia. There is a tendency for all three waves to have maxima in high latitudes. Monthly means of the vertical distribution of ozone determined from 3 to 8 years of ozonesonde data over North America are presented. Number density is highest in the Arctic near 18 km. The region of maximum number density slopes upward toward 10 N, where the long term mean is 45 x 10 to the 11th power molecules cm/3 near 26 km.
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.
2010-10-01
In this study the frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone values and their influence on mean values and trends are analyzed for the world's longest total ozone record (Arosa, Switzerland). The results show (i) an increase in ELOs and (ii) a decrease in EHOs during the last decades and (iii) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading of ozone depleting substances leads to a continuous modification of column ozone in the Northern Hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). Application of extreme value theory allows the identification of many more such "fingerprints" than conventional time series analysis of annual and seasonal mean values. The analysis shows in particular the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone. Overall the approach to extremal modelling provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values.
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.
2010-05-01
In this study the frequency of days with extreme low (termed ELOs) and extreme high (termed EHOs) total ozone values and their influence on mean values and trends are analyzed for the world's longest total ozone record (Arosa, Switzerland). The results show (a) an increase in ELOs and (b) a decrease in EHOs during the last decades and (c) that the overall trend during the 1970s and 1980s in total ozone is strongly dominated by changes in these extreme events. After removing the extremes, the time series shows a strongly reduced trend (reduction by a factor of 2.5 for trend in annual mean). Excursions in the frequency of extreme events reveal "fingerprints" of dynamical factors such as ENSO or NAO, and chemical factors, such as cold Arctic vortex ozone losses, as well as major volcanic eruptions of the 20th century (Gunung Agung, El Chichón, Mt. Pinatubo). Furthermore, atmospheric loading of ozone depleting substances leads to a continuous modification of column ozone in the Northern Hemisphere also with respect to extreme values (partly again in connection with polar vortex contributions). Application of extreme value theory allows the identification of many more such "fingerprints" than conventional time series analysis of annual and seasonal mean values. The analysis shows in particular the strong influence of dynamics, revealing that even moderate ENSO and NAO events have a discernible effect on total ozone. Overall the approach to extremal modelling provides new information on time series properties, variability, trends and the influence of dynamics and chemistry, complementing earlier analyses focusing only on monthly (or annual) mean values.
A Madden-Julian Oscillation in Tropospheric Ozone
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.
2004-01-01
This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5- 10 DU peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. The implications of these results are: (1) model values of TCO in the tropical Pacific region, when accounted for the MJO may be highly variable depending upon the phase of the MJO, and (2) MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.
Perspectives on African Ozone from Sondes, Dobson and Aircraft Measurements
NASA Technical Reports Server (NTRS)
Thompson, A. M.; Witte, J. C.; Chatfield, R. B.; Diab, R. D.; Thouret, V.; Sauvage, B.
2004-01-01
We have been studying variability in ozone over Africa using data from ozonesondes (vertical profiles from surface to stratosphere), aircraft (the MOZAIC dataset with cruise altitude and landing/takeoff profiles) and the ground (Dobson spectrophotometer total ozone column measurement). The following may give context for ozone investigations during AMMA: 1. Total ozone measurements since 1989 show considerable variability in mean value among the African stations in Algeria, Kenya, Egypt, South Africa, as well as in seasonal cycles and year-to-year. Trends are not evident. 2. The impacts of convection, stratospheric injection, biomass burning and lightning appear in ozone sounding profile data. Time-series analysis and case studies point to periodic influences of long-range interactions with the Atlantic ("ozone paradox," wave-one") and Indian Oceans. 3. Tropospheric ozone variations, observed in tropospheric profiles and integrated column amount, follow general seasonal patterns but short- term variability is so strong that simple averages are inadequate for describing "climatology" and statistical classification approaches may be required.
NASA Technical Reports Server (NTRS)
Gidel, L. T.; Crutzen, P. J.; Fishman, J.
1983-01-01
A two-dimensional photochemical model is used to examine changes to the ozone layer caused by emissions of CFCl3, CF2Cl2, CH3CCl3 and CCl4. The influence of a possible secular increase in tropospheric methane up to 2 percent per year was found to be small, although it acts to mask decreases in total ozone caused by the chlorocarbons. Increasing NO(x) emissions caused by industralization also tend to mask decreases in total ozone and may have caused total ozone to increase by about 1 percent. The model-calculated ozone decreases are estimated to be about 3 percent by 1980. This estimate is higher than estimates by similar models, although it is noted that CCl4 and CH3CCl3 emissions are included in the model in addition to CFCl3 and CF2Cl2. This is significant because the model indicates that CCl4 has dominated the ozone depletions so far, and knowledge of the historical emission rate of CCl4 to the atmosphere is incomplete. There remain sufficient significant disagreements between theoretical and observed concentrations and variabilities, particularly for odd nitrogen and ClO, to caution against assigning too much confidence in the calculated ozone depletion.
Generation and Reduction of NOx on Air-Fed Ozonizers
NASA Astrophysics Data System (ADS)
Ehara, Yoshiyasu; Amemiya, Yusuke; Yamamoto, Toshiaki
A generation and reduction of NOx on air-fed ozonizers using a ferroelectric packed bed reactor have been experimentally investigated. The reactors packed with CaTiO3, SrTiO3 and BaTiO3 pellets are examined for ozone generation. An ac voltage is applied to the reactor to generate partial discharge. Ozone concentration and the different nitrogen oxides at downstream of the packed bed reactor were measured with UV absorption ozone monitor and a Fourier transform infrared spectroscope respectively. The dielectric constant of packed ferroelectric pellets influences the discharge characteristic, ozone and NOx generations are varied by the dielectric constant value. Focusing on a discharge pulse current and maximum discharge magnitude, the ferroelectric packed bed plasma reactors have been evaluated on nitrogen oxide and ozone generated concentrations.
Noreen, Asma; Khokhar, Muhammad Fahim; Zeb, Naila; Yasmin, Naila; Hakeem, Khalid Rehman
2018-03-01
This study uses the tropospheric ozone data derived from combined observations of Ozone Monitoring Instrument/Microwave Limb Sounder instruments by using the tropospheric ozone residual method. The main objective was to study the spatial distribution and temporal evolution in the troposphere ozone columns over Pakistan during the time period of 2004 to 2014. Results showed an overall increase of 3.2 ± 1.1 DU in tropospheric ozone columns over Pakistan. Spatial distribution showed enhanced ozone columns in the Punjab and southern Sindh consistent to high population, urbanization, and extensive anthropogenic activities, and exhibited statistically significant temporal increase. Seasonal variations in tropospheric ozone columns are driven by various factors such as seasonality in UV-B fluxes, seasonality in ozone precursor gases such as NO x and volatile organic compounds (caused by temperature dependent biogenic emission) and agricultural fire activities in Pakistan. A strong correlation of 96% (r = 0.96) was found between fire events and tropospheric ozone columns in Pakistan.
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Weihs, P.; Vuilleumier, L.; Blumthaler, M.; Holawe, F.; Lindfors, A.; Maeder, J. A.; Simic, S.; Wagner, J. E.; Walker, D.; Ribatet, M.
2009-04-01
Since the discovery of anthropogenic ozone depletion in the early 1970s (e.g. Molina and Rowland, 1974; Farman et al., 1985) the interest in stratospheric ozone trends and solar UV-B increased within the scientific community and the general public because of the link between reduced total column ozone and increased UV-radiation doses. Stratospheric ozone (e.g. Koch et al., 2005) and erythemal UV-radiation (e.g. Rieder et al., 2008) in the northern mid-latitudes are characterized by strong temporal variability. Long-term measurements of UV-B radiation are rare and datasets are only available for few locations and most of these measurements do not provide spectral information on the UV part of the spectra. During strong efforts in the reconstruction of erythemal UV, datasets of past UV-radiation doses became available for several measurement sites all over the globe. For Switzerland and Austria reconstructed UV datasets are available for 3 measurement sites (Davos, Sonnblick and Vienna) (Lindfors and Vuilleumier, 2005; Rieder et al., 2008). The world's longest ozone time series dating back to 1926 is available from Arosa, Switzerland, and is discussed in detail by Staehelin et al. (1998a,b). Recently new tools from extreme value theory have been applied to the Arosa time series to describe extreme events in low and high total ozone (Rieder et al., 2009). In our study we address the question of how much of the extremes in UV-radiation can be attributed to extremes in total ozone, high surface albedo and cloudiness. An analysis of the frequency distributions of such extreme events for the last decades is presented to gain a better understanding of the links between extreme erythemal UV-radiation, total ozone, surface albedo and clouds. References: Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207-210, 1985. Koch, G., Wernli, H., Schwierz, C., Staehelin, J., and Peter, T.: A composite study on the structure and formation of ozone miniholes and minihights over central Europe, J. Geophys. Res., 32, doi:10.1029/2004GL022062, 2005. Lindfors, A., and Vuilleumier, L.: Erythemal UV at Davos (Switzerland), 1926-2003, estimated using total ozone, sunshine duration, and snow depth, J. Geophys. Res., 110, D02104, doi:10.1029/2004JD005231, 2005. Molina, M. J., and Rowland, F. S.: Stratospheric sink for chlorofluoromethans: Chlorine atom-catalysed destruction of ozone, Nature, 249, 810-812, 1974. Rieder, H.E., Holawe, F., Simic, S., Blumthaler, M., Krzyscin, J.W., Wagner J.E., Schmalwieser A.W., and Weihs, P.: Reconstruction of erythemal UV-doses for two stations in Austria: A comparison between alpine and urban regions, Atmos. Chem. Phys., 8, 6309-6323, 2008. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and Davison, A.C.: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Hoff, R. M.; Twigg, L.; Sumnicht, G. K.
2014-12-01
Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Fort Collins, CO from 200 m to 16 km AGL. These measurements were taken as part of NASA's DISCOVER-AQ campaign in July/August 2014. Measurements were made during simultaneous aircraft spirals over the lidar site as well as collocated ozonesonde launches. Ozone enhancement from local sources typically occurred in the mid-afternoon convection period, especially when there was light winds and low cloud cover. Interesting ozone profiles and time series data will be shown. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. Three of these lidars, including the GSFC TROPOZ DIAL, recorded measurements during the DISCOVER-AQ campaign. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived.
Status of the Dobson total ozone data set
NASA Technical Reports Server (NTRS)
Planet, Walter G.; Hudson, Robert D.
1994-01-01
During deliberations of the International Ozone Trends Panel (IOTP) it became obvious that satellite determinations of global ozone amounts by themselves could not provide the necessary confidence in the measured trends. During the time of the deliberations of the IOTP, Bojkov re-examined the records of serveral North American Dobson stations and Degorska re-examined the records of the Belsk station. They were able to improve the quality of the data sets, thus improving the precision of their total ozone data sets. These improvements showed the greater potential of the world-wide Dobson total ozone data set in two primary areas. Firstly, the improvements showed that the existing data set when evaluated will become more valuable for comparisons with satellite determinations of total ozone. Secondly, the Dobson data set covers a greater period of time than the satellite data sets thus offering the possibility of extending improved information on ozone trends further back in time. An International Dobson Workshop was convened in September, 1991, under the auspices of the NOAA Climate and Global Change Program. It was part of the Information Management element of the C&GC Program. Further, it was considered as a 'data archaeology' project under the above. Clearly if the existing Dobson data set can be improved by re-evaluating all data records, we will be able to uncover the 'true' or 'best' data and fulfill the role of archaeologists.
Ozone Climatological Profiles for Version 8 TOMS and SBUV Retrievals
NASA Technical Reports Server (NTRS)
McPeters, R. D.; Logan, J. A.; Labow, G. J.
2003-01-01
A new altitude dependent ozone climatology has been produced for use with the latest Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter Ultraviolet (SBUV) retrieval algorithms. The climatology consists of monthly average profiles for ten degree latitude zones covering from 0 to 60 km. The climatology was formed by combining data from SAGE II (1988 to 2000) and MLS (1991-1999) with data from balloon sondes (1988-2002). Ozone below about 20 km is based on balloons sondes, while ozone above 30 km is based on satellite measurements. The profiles join smoothly between 20 and 30 km. The ozone climatology in the southern hemisphere and tropics has been greatly enhanced in recent years by the addition of balloon sonde stations under the SHADOZ (Southern Hemisphere Additional Ozonesondes) program. A major source of error in the TOMS and SBUV retrieval of total column ozone comes from their reduced sensitivity to ozone in the lower troposphere. An accurate climatology for the retrieval a priori is important for reducing this error on the average. The new climatology follows the seasonal behavior of tropospheric ozone and reflects its hemispheric asymmetry. Comparisons of TOMS version 8 ozone with ground stations show an improvement due in part to the new climatology.
Condition of The Stratospheric and Mesospheric Ozone Layer Over Bulgaria for the Period 1996-2012
NASA Astrophysics Data System (ADS)
Kaleyna, Petya; Mukhtarov, Plamen; Miloshev, Nikolay
2014-05-01
A detailed analysis of the variations of the stratospheric and mesospheric ozone over Bulgaria, in the period 1996-2012, is presented in the article on the basis of ground and satellite measurements of the Total Ozone Content (TOC). The move of the most important components: yearly running mean values, amplitudes and phases of the first four harmonics of the seasonal cycle. Their mean values for the period and the existing long term trends have been found. An evaluation of the general characteristics of the short term variability of the Total Ozone Content (TOC) over Bulgaria also has been made in the article. The impact of the planetary wave activity of the stratosphere on the total ozone has been studied and the climatology of the oscillation amplitudes with periods of 4, 7, 11 and 25 days has been defined.
Brewer spectrometer total ozone column measurements in Sodankylä
NASA Astrophysics Data System (ADS)
Karppinen, Tomi; Lakkala, Kaisa; Karhu, Juha M.; Heikkinen, Pauli; Kivi, Rigel; Kyrö, Esko
2016-06-01
Brewer total ozone column measurements started in Sodankylä in May 1988, 9 months after the signing of The Montreal Protocol. The Brewer instrument has been well maintained and frequently calibrated since then to produce a high-quality ozone time series now spanning more than 25 years. The data have now been uniformly reprocessed between 1988 and 2014. The quality of the data has been assured by automatic data rejection rules as well as by manual checking. Daily mean values calculated from the highest-quality direct sun measurements are available 77 % of time with up to 75 measurements per day on clear days. Zenith sky measurements fill another 14 % of the time series and winter months are sparsely covered by moon measurements. The time series provides information to survey the evolution of Arctic ozone layer and can be used as a reference point for assessing other total ozone column measurement practices.
Pell, E J; Brennan, E
1973-02-01
The effect of 0.25 to 0.30 microliter per liter ozone on photosynthesis and respiration and on the ATP and total adenylate content of the primary leaves of pinto beans (Phaseolus vulgaris L.) was examined. Changes in these parameters over a 72-hour time period were correlated with the development of symptoms of ozone toxicity. Toxicity symptoms normally appeared within 24 hours. The content of ATP and total adenylates increased immediately following a 3-hour exposure to ozone. Photosynthesis was depressed initially, but returned to normal within 24 hours. Respiration was not always altered initially, but it was significantly stimulated within 24 hours. We interpret the results to mean that the changes in adenylate content and photosynthesis are early events in the initiation of ozone damage and that the change in respiration is a consequence rather than a cause of cellular injury.
Carrot injury and yield response to ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, J.P.; Oshima, R.J.
1976-11-01
Container-grown plants of carrot (Daucus carota L.) exposed intermittently to 0.19 or 0.25 ppm ozone throughout their growth increased in plant height and total number of leaves in spite of the development of chlorotic leaves. Leaf dry weight was unaffected by ozone, but root dry matter decreased 32 to 46%. As a result, the root weight/total dry weight ration and root/shoot ratio declined significantly in the presence of ozone. A regression of root dry weight on chlorotic lead dry weight explained 35% of the root loss and predicted that 1.5 g of root tissue is lost for every g ofmore » chlorotic leaf dry weight casued by ozone injury.« less
Paul Miller; Raleigh Guthrey; Susan Schilling; John Carroll
1998-01-01
Ozone injury was monitored on foliage of ponderosa (Pinus ponderosa Dougl. ex Laws.) and Jeffrey (Pinus jeffreyi Grev. & Balf.) pines at 11 locations in the Sierra Nevada and 1 site in the San Bernardino Mountains of southern California. Ozone injury on all age cohorts of needles on about 1,600 trees was surveyed annually from...
Carvajal, Guido; Branch, Amos; Michel, Philipp; Sisson, Scott A; Roser, David J; Drewes, Jörg E; Khan, Stuart J
2017-11-01
Ozonation of wastewater has gained popularity because of its effectiveness in removing colour, UV absorbance, trace organic chemicals, and pathogens. Due to the rapid reaction of ozone with organic compounds, dissolved ozone is often not measurable and therefore, the common disinfection controlling parameter, concentration integrated over contact time (CT) cannot be obtained. In such cases, alternative parameters have been shown to be useful as surrogate measures for microbial removal including change in UV 254 absorbance (ΔUVA), change in total fluorescence (ΔTF), or O 3 :TOC (or O 3 :DOC). Although these measures have shown promise, a number of caveats remain. These include uncertainties in the associations between these measurements and microbial inactivation. Furthermore, previous use of seeded microorganisms with higher disinfection sensitivity compared to autochthonous microorganisms could lead to overestimation of appropriate log credits. In our study, secondary treated wastewater from a full-scale plant was ozonated in a bench-scale reactor using five increasing ozone doses. During the experiments, removal of four indigenous microbial indicators representing viruses, bacteria and protozoa were monitored concurrent with ΔUVA, ΔTF, O 3 :DOC and PARAFAC derived components. Bayesian methods were used to fit linear regression models, and the uncertainty in the posterior predictive distributions and slopes provided a comparison between previously reported results and those reported here. Combined results indicated that all surrogate parameters were useful in predicting the removal of microorganisms, with a better fit to the models using ΔUVA, ΔTF in most cases. Average adjusted determination coefficients for fitted models were high (R 2 adjusted >0.47). With ΔUVA, one unit decrease in LRV corresponded with a UVA mean reduction of 15-20% for coliforms, 59% for C. perfringens spores, and 11% for somatic coliphages. With ΔTF, a one unit decrease in LRV corresponded with a TF mean reduction of 18-23% for coliforms, 71% for C. perfringens spores, and 14% for somatic coliphages. Compared to previous studies also analysed, our results suggest that microbial reductions were more conservative for autochthonous than for seeded microorganisms. The findings of our study suggested that site-specific analyses should be conducted to generate models with lower uncertainty and that indigenous microorganisms are useful for the measurement of system performance even when censored observations are obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correa, Savio Figueira; Brito Paiva, Luisa; Mota do Couto, Flavio
2011-06-01
This work addresses the effects of ozone activity on the physiology of 'Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticlemore » have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.« less
Depletions in winter total ozone values over southern England
NASA Technical Reports Server (NTRS)
Lapworth, A.
1994-01-01
A study has been made of the recently re-evaluated time series of daily total ozone values for the period 1979 to 1992 for southern England. The series consists of measurements made at two stations, Bracknell and Camborne. The series shows a steady decline in ozone values in the spring months over the period, and this is consistent with data from an earlier decade that has been published but not re-evaluated. Of exceptional note is the monthly mean for January 1992 which was very significantly reduced from the normal value, and was the lowest so far measured for this month. This winter was also noteworthy for a prolonged period during which a blocking anticyclone dominated the region, and the possibility existed that this was related to the ozone anomaly. It was possible to determine whether the origin of the low ozone value lay in ascending stratospheric motions. A linear regression analysis of ozone value deviation against 100hPa temperature deviations was used to reduce ozone values to those expected in the absence of high pressure. The assumption was made that the normal regression relation was not affected by atmospheric anomalies during the winter. This showed that vertical motions in the stratosphere only accounted for part of the ozone anomaly and that the main cause of the ozone deficit lay either in a reduced stratospheric circulation to which the anticyclone may be related or in chemical effects in the reduced stratospheric temperatures above the high pressure area. A study of the ozone time series adjusted to remove variations correlated with meteorological quantities, showed that during the period since 1979, one other winter, that of 1982/3, showed a similar although less well defined deficit in total ozone values.
Total ozone changes in the 1987 Antarctic ozone hole
NASA Technical Reports Server (NTRS)
Krueger, Arlin J.; Schoeberl, Mark R.; Doiron, Scott D.; Sechrist, Frank; Galimore, Reginald
1988-01-01
The development of the Antarctic ozone minimum was observed in 1987 with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) instrument. In the first half of August the near-polar (60 and 70 deg S) ozone levels were similar to those of recent years. By September, however, the ozone at 70 and 80 deg S was clearly lower than any previous year including 1985, the prior record low year. The levels continued to decrease throughout September until October 5 when a new record low of 109 DU was established at a point near the South Pole. This value is 29 DU less than the lowest observed in 1985 and 48 DU less than the 1986 low. The zonal mean total ozone at 60 deg S remained constant throughout the time of ozone hole formation. The ozone decline was punctuated by local minima formed away from the polar night boundary at about 75 deg S. The first of these, on August 15 to 17, formed just east of the Palmer Peninsula and appears to be a mountain wave. The second major minimum formed on September 5 to 7 again downwind of the Palmer Peninsula. This event was larger in scale than the August minimum and initiated the decline of ozone across the polar region. The 1987 ozone hole was nearly circular and pole centered for its entire life. In previous years the hole was perturbed by intrusions of the circumpolar maximum into the polar regions, thus causing the hole to be elliptical. The 1987 hole also remained in place until the end of November, a few days longer than in 1985, and this persistence resulted in the latest time for recovery to normal values yet observed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
... is specifically considering how these more recent data could impact changes to the current and... reporting to the public, ozone forecasting programs, and the verification of real-time air quality forecast...
NASA Astrophysics Data System (ADS)
Trepte, S.; Winkler, P.
2003-04-01
The global mean total column ozone amount for the period 1997-2001 was approximately 3% below the 1964-1980 average. The largest ozone decreases in the northern hemisphere midlatitudes are observed during winter-spring (˜4%), with summer-autumn decreases approximately half as large. Total ozone measured at Hohenpeissenberg, Germany (48^oN, 11^oE) shows a strong decrease by about 10% since 1968, representing the long-term downward trend over Central Europe. The main consequence of this phenomenon is the expected increase of solar ultraviolet irradiation (UV-B) reaching the Earth's surface with the known harmful effects on the biosphere. Global data records of reliable routine observations of UV irradiance are still too short for accurate estimation of long-term UV variations and trends. While direct UV mesaurements at Hohenpeissenberg are available only since 1990, the long-term development of UV-B have to be reconstructed. Besides on the amount of total ozone the UV irradiation at the ground depends also on atmospheric turbidity and cloudiness. The reconstruction method is based on statistical correlations of measured UV-B data with the influencing parameters total ozone, turbidity and cloud modification factors derived from eye-observations in connection with total solar irradiance data. These observed data allow a realistic reconstruction of the UV-B time series, since no assumption on these influencing data have to be made. A model is presented, using hourly observed spectral UV-B irradiance (1990-1998), total solar irradiance, total ozone amount (daily mean) and clouds to derive erythemal UV irradiance and daily doses at Hohenpeissenberg in the period 1968-2001. A comparison with recorded UV data shows good agreement. Due to long-term total ozone loss, peak values of erythemal UV irradiance in spring and summer at clear-sky conditions have strongly increased (+4.2%/decade in June). Mean daily doses have also increased in this season (+5.4%/decade in May) but meteorological changes like reduced sunshine duration and increased cloudiness lead to a partly compensation of the ozone-loss effect in spring and to an overcompensation in autumn, where we found a long-term decrease of the daily dose (-3.0%/decade in September). Model calculations also demonstrate large year-to-year fluctuations of UV doses induced by meteorological variability, which exceed the long-term trend of the various months significantly. Nevertheless, this investigation has shown that on a long-term time scale the daily doses develop in a different way as compared to the peak values because the reasons for ozone decline (anthropogenic CFC's) and the cloud cover (hydrological cycle changes due to greenhouse effect) are caused by different phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiotani, M.; Hasebe, F.
1994-07-01
An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric modemore » and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masato Shiotani; Fumio Hasebe
1994-07-20
An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric modemore » and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time. 28 refs., 13 figs.« less
NASA Technical Reports Server (NTRS)
Stajner, Ovanka; Riishojgaard, Lars Peter; Rood, Richard B.
2000-01-01
In a data assimilation system (DAS), model forecast atmospheric fields, observations and their respective statistics are combined in an attempt to produce the best estimate of these fields. Ozone observations from two instruments are assimilated in the Goddard Earth Observing System (GEOS) ozone DAS: the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) instrument. The assimilated observations are complementary; TOMS provides a global daily coverage of total column ozone, without profile information, while SBUV measures ozone profiles and total column ozone at nadir only. The purpose of this paper is to examine the performance of the ozone assimilation system in the absence of observations from one of the instruments as it can happen in the event of a failure of an instrument or when there are problems with an instrument for a limited time. Our primary concern is for the performance of the GEOS ozone DAS when it is used in the operational mode to provide near real time analyzed ozone fields in support of instruments on the Terra satellite. In addition, we are planning to produce a longer term ozone record by assimilating historical data. We want to quantify the differences in the assimilated ozone fields that are caused by the changes in the TOMS or SBUV observing network. Our primary interest is in long term and large scale features visible in global statistics of analysis fields, such as differences in the zonal mean of assimilated ozone fields or comparisons with independent observations, While some drifts in assimilated fields occur immediately, after assimilating just one day of different observations, the others develop slowly over several months. Thus, we are also interested in the length of time, which is determined from time series, that is needed for significant changes to take place.
Spectroscopy of Solid State Laser Materials
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.
1994-01-01
We retrieved the vertical distribution of ozone from a series 0.005-0.013/cm resolution infrared solar spectra recorded with the McMath Fourier Transform spectrometer at the Kitt Peak National Solar Observatory. The analysis is based on a multi-layer line-by-line forward model and a semi-empirical version of the optimal estimation inversion method by Rodgers. The 1002.6-1003.2/cm spectral interval has been selected for the analysis on the basis of synthetic spectrum calculations. The characterization and error analysis of the method have been performed. It was shown that for the Kitt Peak spectral resolution and typical signal-to-noise ratio (greater than or equal to 100) the retrieval is stable, with the vertical resolution of approximately 5 km attainable near the surface degrading to approximately 10 km in the stratosphere. Spectra recorded from 1980 through 1993 have been analyzed. The retrieved total ozone and vertical profiles have been compared with total ozone mapping spectrometer (TOMS) satellite total columns for the location and dates of the Kitt Peak Measurements and about 100 ozone ozonesoundings and Brewer total column measurements from Palestine, Texas, from 1979 to 1985. The total ozone measurements agree to +/- 2%. The retrieved profiles reproduce the seasonally averaged variations with altitude, including the ozone spring maximum and fall minimum measured by Palestine sondes, but up to 15% differences in the absolute values are obtained.
Imaging spectrometers for atmosphere monitoring
NASA Astrophysics Data System (ADS)
Reinert, Thido; Bovensmann, Heinrich; Münzenmayer, Ralf; Weiss, Stefan; Posselt, Winfried
2017-11-01
Atmospheric monitoring missions aim at products like O3, H2O, NO2, SO2, BrO, CH4, CO, CO2 as well as aerosols and cloud information. Depending on the application area (Ozone Monitoring, Green House Gas Monitoring, Tropospheric Composition and Air Quality, Chemistry Climate Interaction etc.) total or tropospheric columns as well as profile information is required. The user community of these data as well as their central requirements w.r.t. the payload aspects will be described. A large range of relevant passive instrument types is available, in particular imaging spectrometer, sounder and polarisation measuring systems in the UV-VIS, SWIR and TIR spectral range. Differences between instruments for dedicated missions are highlighted and evolution of requirements is explained, also in comparison with relevant existing instrumentation partly in orbit today. Aspects of technology roadmaps for instrument implementation as well as synergetic effects of instrument combinations and according mission scopes are discussed.
Operational trace gas column observations from GOME-2 on MetOp
NASA Astrophysics Data System (ADS)
Valks, Pieter; Hao, Nan; Pinardi, Gaia; Hedelt, Pascal; Liu, Song; Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Koukouli, MariLiza; Balis, Dimitris
2017-04-01
This contribution focuses on the operational GOME-2 trace gas column products developed in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Composition Monitoring (AC-SAF). We present an overview of the retrieval algorithms for ozone, OClO, NO2, SO2 and formaldehyde, and we show examples of various applications such as air quality and climate monitoring, using observations from the GOME-2 instruments on MetOp-A and MetOp-B. Total ozone and the minor trace gas columns from GOME-2 are retrieved with the latest version 4.8 of the GOME Data Processor (GDP), which uses an optimized Differential Optical Absorption Spectroscopy (DOAS) algorithm, with air mass factor conversions based on the LIDORT model. Improved total and tropospheric NO2 columns are retrieved in the visible wavelength region between 425 and 497 nm. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For formaldehyde, an optimal DOAS fitting window around 335 nm has been determined for GOME-2. The GOME-2 trace gas columns have reached the operational EUMETSAT product status, and are available to the users in near real time (within two hours after sensing by GOME-2). The use of trace gas observations from the GOME-2 instruments on MetOp-A and MetOp-B for air quality purposed will be illustrated, e.g. for South-East Asia and Europe. Furthermore, comparisons of the GOME-2 satellite observations with ground-based measurements will be shown. Finally, the use of GOME-2 trace-gas column data in the Copernicus Atmosphere Monitoring Service (CAMS) will be presented.
Solar Radiation and Climate Experiment (SORCE) Satellite
NASA Technical Reports Server (NTRS)
2003-01-01
This is a close-up of the NASA-sponsored Solar Radiation and Climate Experiment (SORCE) Satellite. The SORCE mission, launched aboard a Pegasus rocket January 25, 2003, will provide state of the art measurements of incoming x-ray, ultraviolet, visible, near-infrared, and total solar radiation. Critical to studies of the Sun and its effect on our Earth system and mankind, SORCE will provide measurements that specifically address long-term climate change, natural variability and enhanced climate prediction, and atmospheric ozone and UV-B radiation. Orbiting around the Earth accumulating solar data, SORCE measures the Sun's output with the use of state-of-the-art radiometers, spectrometers, photodiodes, detectors, and bolo meters engineered into instruments mounted on a satellite observatory. SORCE is carrying 4 instruments: The Total Irradiance Monitor (TIM); the Solar Stellar Irradiance Comparison Experiment (SOLSTICE); the Spectral Irradiance Monitor (SIM); and the XUV Photometer System (XPS).
NASA Astrophysics Data System (ADS)
Lee, Hana; Kim, Jhoon; Kim, Woogyung; Lee, Yun Gon; Cho, Hi Ku
2015-04-01
In recent years, there have been substantial attempts to model the radiative transfer for climatological and biological purposes. However, the incorporation of clouds, aerosols and ozone into the modeling process is one of the difficult tasks due to their variable transmission in both temporal and space domains. In this study we quantify the atmospheric transmissions by clouds, aerosol optical depth (AOD at 320 nm) and total ozone (Ozone) together with all skies in three solar radiation components of the global solar (GS 305-2800nm), total ultraviolet (TUV 290-363nm) and the erythemal weighted ultraviolet (EUV 290-325nm) irradiances with statistical methods using the data at Seoul. The purpose of this study also is to clarify the different characteristics between cloud, AOD and Ozone in the wavelength-dependent solar radiation components. The ozone, EUV and TUV used in this study (March 2003 - February 2014) have been measured with Dobson Spectrophotometer (Beck #124) and Brewer Spectrophotometer (SCI-TEC#148) at Yonsei University, respectively. GS, Cloud Cover (CC) are available from the Korean Meteorological Agency. The measured total (effect of cloud, aerosol, and ozone) transmissions on annual average showed 74%, 76% and 80% of GS, TUV and EUV irradiance, respectively. For the comparison of the measured values with modeled, we have also constructed a multiple linear regression model for the total transmission. The average ratio of measured to modeled total transmission were 0.94, 0.96 and 0.96 with higher measured than modeled value in the three components, respectively, The individual transmission by clouds under the constant AOD and Ozone atmosphere on average showed 68%, 71% and 76% and further the overcast clouds reduced the transmissions to the 45%, 54% and 59% of the clear sky irradiance in the GS, TUV and EUV, respectively. The annual transmissions by AOD showed on average 67%, 70% and 74% and further the high loadings 2.5-4.0 AOD reduced the transmission to 50%, 52% and 55% of clear sky irradiance under the contact cloud and ozone atmosphere in the GS, TUV and EUV, respectively. And annual average EUV transmission by Ozone was 75 % of the clear-sky value under the constant CC and AOD. In future study, we are compare OMI data with ground-based instruments in order to use measured data for scientific studies.
NASA Technical Reports Server (NTRS)
Chiou, E. W.; Bhartia, P. K.; McPeters, R. D.; Loyola, D. G.; Coldewey-Egbers, M.; Fioletov, V. E.; Van Roozendael, M.; Spurr, R.; Lerot, C.; Frith, S. M.
2014-01-01
This paper describes the comparison of the variability of total column ozone inferred from the three independent multi-year data records, namely, (i) Solar Backscatter Ultraviolet Instrument (SBUV) v8.6 profile total ozone, (ii) GTO (GOME-type total ozone), and (iii) ground-based total ozone data records covering the 16-year overlap period (March 1996 through June 2011). Analyses are conducted based on area-weighted zonal means for 0-30degS, 0-30degN, 50-30degS, and 30-60degN. It has been found that, on average, the differences in monthly zonal mean total ozone vary between -0.3 and 0.8% and are well within 1 %. For GTO minus SBUV, the standard deviations and ranges (maximum minus minimum) of the differences regarding monthly zonal mean total ozone vary between 0.6-0.7% and 2.8-3.8% respectively, depending on the latitude band. The corresponding standard deviations and ranges regarding the differences in monthly zonal mean anomalies show values between 0.4-0.6% and 2.2-3.5 %. The standard deviations and ranges of the differences ground-based minus SBUV regarding both monthly zonal means and anomalies are larger by a factor of 1.4-2.9 in comparison to GTO minus SBUV. The ground-based zonal means demonstrate larger scattering of monthly data compared to satellite-based records. The differences in the scattering are significantly reduced if seasonal zonal averages are analyzed. The trends of the differences GTO minus SBUV and ground-based minus SBUV are found to vary between -0.04 and 0.1%/yr (-0.1 and 0.3DU/yr). These negligibly small trends have provided strong evidence that there are no significant time-dependent differences among these multiyear total ozone data records. Analyses of the annual deviations from pre-1980 level indicate that, for the 15-year period of 1996 to 2010, all three data records show a gradual increase at 30-60degN from -5% in 1996 to -2% in 2010. In contrast, at 50-30degS and 30degS- 30degN there has been a leveling off in the 15 years after 1996. The deviations inferred from GTO and SBUV show agreement within 1 %, but a slight increase has been found in the differences during the period 1996-2010.
Tropical tropospheric ozone and biomass burning.
Thompson, A M; Witte, J C; Hudson, R D; Guo, H; Herman, J R; Fujiwara, M
2001-03-16
New methods for retrieving tropospheric ozone column depth and absorbing aerosol (smoke and dust) from the Earth Probe-Total Ozone Mapping Spectrometer (EP/TOMS) are used to follow pollution and to determine interannual variability and trends. During intense fires over Indonesia (August to November 1997), ozone plumes, decoupled from the smoke below, extended as far as India. This ozone overlay a regional ozone increase triggered by atmospheric responses to the El Niño and Indian Ocean Dipole. Tropospheric ozone and smoke aerosol measurements from the Nimbus 7 TOMS instrument show El Niño signals but no tropospheric ozone trend in the 1980s. Offsets between smoke and ozone seasonal maxima point to multiple factors determining tropical tropospheric ozone variability.
Analysis and interpretation of variabilities in ozone and temperature fields
NASA Technical Reports Server (NTRS)
Chandra, S.
1990-01-01
The temporal and spatial variabilities were studied of short and long term fluctuations in stratospheric ozone and temperature at various pressure levels using several years of ozone, temperature, and solar flux data from Nimbus 4, Nimbus 7, and SME satellites. Some results are as follows: (1) the solar UV flux and various indices of solar activity indicate a strong period at about 5 months; (2) satellite total ozone observations were analyzed using 17 years of data from the Nimbus 4 BUV and the Nimbus 7 SBUV experiments, which show very similar seasonal variations and quasibiennial oscillation (QBO) with some indication of a 4 year component; and (3) the zonal characteristics of both the ozone and temperature trends were derived from ten years of total ozone and 50 mb temperature based on the Nimbus 7 TOMS measurements and the NMC analyses respectively.
Reduction of Environmental Listeria Using Gaseous Ozone in a Cheese Processing Facility.
Eglezos, Sofroni; Dykes, Gary A
2018-05-01
A cheese processing facility seeking to reduce environmental Listeria colonization initiated a regime of ozonation across all production areas as an adjunct to its sanitation regimes. A total of 360 environmental samples from the facility were tested for Listeria over a 12-month period. A total of 15 areas before and 15 areas after ozonation were tested. Listeria isolations were significantly ( P < 0.001) reduced from 15.0% in the preozonation samples to 1.67% in the postozonation samples in all areas. No deleterious effects of ozonation were noted on the wall paneling, seals, synthetic floors, or cheese processing equipment. The ozonation regime was readily incorporated by sanitation staff into the existing good manufacturing practice program. The application of ozone may result in a significant reduction in the prevalence of Listeria in food processing facilities.
NASA Technical Reports Server (NTRS)
Randhawa, J.
1978-01-01
The chemiluminescent ozonesonde to be flown with the STRATCOM balloon flight consisted of two main parts: (1) A constant-volume sampling pump made from TEFLON was used for the intake of the air sample. Sample was drawn at a rate of 200 millimeters per minute. (2) Ozone was detected by the chemiluminescent process (Rhodamine - B). Ozone molecules in the air sample flowed over the detector and the photons produced by the destruction of ozone molecules on the chemiluminescent material were monitored by the photomultiplier tube, the output signal from which was transmitted to the ground receiver.
20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations
NASA Astrophysics Data System (ADS)
Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.
2016-12-01
Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.
Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials
NASA Astrophysics Data System (ADS)
Poppendieck, D. G.; Hubbard, H. F.; Weschler, C. J.; Corsi, R. L.
Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m -2, with most of the carbonyls being of lower molecular weight (C 1-C 4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m -2, with a greater fraction of the BOBPs being heavier carbonyls (C 5-C 9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor threshold.
Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery
NASA Technical Reports Server (NTRS)
Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John;
2018-01-01
Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.
Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery
NASA Astrophysics Data System (ADS)
Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.
2018-02-01
Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer
around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.
Application of Aura OMI L2G Products Compared with NASA MERRA-2 Assimilation
NASA Technical Reports Server (NTRS)
Zeng, Jian; Shen, Suhung; Wei, Jennifer; Johnson, James E.; Su, Jian; Meyer, David J.
2018-01-01
The Ozone Monitoring Instrument (OMI) is one of the instruments aboard NASA's Aura satellite. It measures ozone total column and vertical profile, aerosols, clouds, and trace gases including NO2, SO2, HCHO, BrO, and OClO using absorption in the ultraviolet electromagnetic spectrum (280 - 400 nm). OMI Level-2G (L2G) products are based on the pixel-level OMI granule satellite measurements stored within global 0.25 deg. X 0.25 deg. grids, therefore they conserve all the Level 2 (L2) spatial and temporal details for 24 hours of scientific data in one file. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis, using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. MERRA-2 includes aerosol data reanalysis and improved representations of stratospheric ozone, compared with its predecessor MERRA, in both instantaneous and time-averaged collections. It is found that simply comparing satellite Level-3 products might cause biases, due to lack of detailed temporal and original retrieval information. It is therefore preferable to inter-compare or implement satellite derived physical quantities directly with/to model assimilation with as high temporal and spatial resolutions as possible. This study will demonstrate utilization of OMI L2G daily aerosol and ozone products by comparing them with MERRA-2 hourly aerosol/ozone simulations, matched in both space and time aspects. Both OMI and MERRA-2 products are accessible online through NASA Goddard Earth Sciences Data Information Services Center (GES DISC, https://disc.gsfc.nasa.gov/).
Low frequency oscillations in total ozone measurements
NASA Technical Reports Server (NTRS)
Gao, X. H.; Stanford, J. L.
1989-01-01
Low frequency oscillations with periods of approximately one to two months are found in eight years of global grids of total ozone data from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The low frequency oscillations corroborate earlier analyses based on four years of data. In addition, both annual and seasonal one-point correlation maps based on the 8-year TOMS data are presented. The results clearly show a standing dipole in ozone perturbations, oscillating with 35 to 50 day periods over the equatorial Indian Ocean-west Pacific region. This contrasts with the eastward moving dipole reported in other data sets. The standing ozone dipole appears to be a dynamical feature associated with vertical atmospheric motions. Consistent with prior analyses based on lower stratospheric temperature fields, large-scale standing patterns are also found in the extratropics of both hemispheres, correlated with ozone fluctuations over the equatorial west Pacific. In the Northern Hemisphere, a standing pattern is observed extending from the tropical Indian Ocean to the north Pacific, across North America, and down to the equatorial Atlantic Ocean region. This feature is most pronounced in the NH summer.
NASA Astrophysics Data System (ADS)
Griffin, R. E. M.; Fioletov, V.; McConnell, J. C.
2006-06-01
We report new determinations of total ozone obtained by reanalyzing a unique set of astronomical observations that were made in the mid-20th century at observatories in France (Haute-Provence) and Switzerland (Jungfraujoch) for the purpose of calculating nightly atmospheric extinction coefficients in the UV (Rayleigh scattering and total ozone) as part of a program to measure absolute stellar fluxes. Only a small fraction of the original ozone results, corresponding to data obtained during 1958-1959, are in the public domain at the World Ozone and Ultraviolet Data Centre; the rest were on handwritten sheets and were stored at Haute-Provence. Both astronomical sites are close enough geographically to Arosa (Switzerland) that the respective ozone values can be compared directly. The comparison reveals a generally very close resemblance, even down to the pattern of daily variations, with a correlation coefficient of 0.78, but an overall negative bias of 6-7% in the stellar results. The bias appears to be slightly larger prior to 1958.
Exploring the roles of temperature and NOx on ozone production in the Sacramento urban plume
NASA Astrophysics Data System (ADS)
Lafranchi, B. W.; Cohen, R. C.
2009-12-01
We investigate the role of temperature and NOx (NOx = NO+NO2) on ozone (O3) production in the Sacramento urban plume over a stretch of seven years (2001-2007) using data collected at UC Blodgett Forest Research Station (a forested site in the Sierra Nevadas about 80 km downwind of Sacramento, CA) and at a series of California Air Resources Board (CARB) sites along the Sacramento-Blodgett transect. The consistent daytime wind patterns between the Central Valley of California and the foothills of the Sierra Nevada mountains permits the assumption of plume transport from downtown Sacramento, over the CARB monitoring sites in the eastern suburbs, and past the Blodgett Forest research site. While NOx emissions are limited primarily to the urban and suburban regions of the transect, biogenic volatile organic compound (VOC) emissions are significant throughout the transect, thus there is a fast transition from VOC-limited to NOx-limited as the plume travels away from the urban center, and we have the opportunity to analyze the differences in ozone production across these two chemical regimes. For this analysis, the Sacramento-Blodgett transect is separated into three segments: urban, suburban, and rural, defined by the locations of selected monitoring sites. Ozone concentrations across each segment are controlled by chemical production (Pchem) and loss (Lchem), deposition to surfaces (Ldep), and mixing with background air (Lmix). At an assumed deposition rate, mixing rate, and background O3 concentration, the net chemical flux of ozone (Pchem - Lchem) can be inferred from differences in ozone concentrations between adjacent monitoring sites. We show that ozone production rates, in general, increase with temperature. We also show that decreases in NOx emissions over the period from 2001-2007 have been effective at reducing ozone production at all points along the transect, but only on days where temperatures are highest. At low temperatures, this decrease is less apparent, and in the urban transect, ozone production is observed to increase as NOx concentrations decrease. This is attributed to the high NOx/VOC ratio that results from reduced biogenic emissions and strong local inputs of NOx, thus driving the chemical environment into a NOx-saturated regime. From these results, we give predictions of future ozone exceedences for various emissions and climate scenarios.