Sample records for total potassium current

  1. Potassium Loss during Galvanotaxis of Slime Mold

    PubMed Central

    Anderson, John D.

    1962-01-01

    The posterior reticulated regions of the plasmodia of the slime mold, Physarum polycephalum, whose migration has been oriented by direct current (3.0 to 5.0 µa/mm2 in the agar substrate), contain 30 per cent less potassium than the advancing non-reticulated region. The anterior regions have the same potassium concentration as that of the controls, approximately 32 meq/kg wet weight. Differences in potassium concentration between anterior and posterior regions of control plasmodia, not oriented by electric current, are less than 5 per cent. Sodium, in contrast to potassium, is generally less concentrated in the anterior than in the posterior regions of electrically oriented plasmodia, but sodium concentrations are extremely variable. No significant difference in protein concentration was found between oriented and control plasmodia. Thirty-five per cent of the total potassium, but none of the sodium, is found in acidified ethanol precipitates from plasmodial homogenates. Potassium, but not sodium, appears to be closely associated with processes which differentiate anterior from posterior in an oriented plasmodium. PMID:13861244

  2. Rapid Changes of Potassium Concentration at the Outer Surface of Exposed Single Neurons during Membrane Current Flow

    PubMed Central

    Neher, E.; Lux, H. D.

    1973-01-01

    K+-sensitive liquid ion-exchanger microelectrodes are shown to be capable of measuring concentration changes which occur on a millisecond time scale. However, some quaternary ammonium ions, such as tetraethylammonium and acetylcholine, are able to block electrode function when present in concentrations as low as 10-4 to 10-3 M. Changes in extracellular potassium concentration caused by spike activity or voltage clamp pulses of exposed single neurons of the snail Helix pomatia may be measured by these electrodes. Quantitative analysis shows that the total amount of excess potassium found in the vicinity of the cell a short time after a clamp pulse, is in relatively good agreement with the amount of potassium carried by the membrane current. PMID:4689624

  3. Decreased voltage-gated potassium currents in rat dorsal root ganglion neurons after chronic constriction injury.

    PubMed

    Xiao, Yun; Wu, Yang; Zhao, Bo; Xia, Zhongyuan

    2016-01-20

    Voltage-gated potassium channels (KV) regulate pain transmission by controlling neuronal excitability. Changes in KV expression patterns may thus contribute toward hyperalgesia following nerve injury. The aim of this study was to characterize KV current density in dorsal root ganglion (DRG) neurons following chronic constriction injury (CCI) of the right sciatic nerve, a robust model of post-traumatic neuropathic pain. The study examined changes in small-diameter potassium ion currents (<30 µm) in neurons in the L4-L6 DRG following CCI by whole-cell patch-clamping and the association with post-CCI mechanical and thermal nociceptive thresholds. Compared with the control group, 7 days after CCI, the mechanical force and temperature required to elicit ipsilateral foot withdrawal decreased significantly, indicating tactile allodynia and thermal hyperalgesia. Post-CCI neurons had a significantly lower rheobase current and depolarized resting membrane potential than controls, suggesting KV current downregulation. Some ipsilateral DRG neurons also had spontaneous action potentials and repetitive firing. There was a 55% reduction in the total KV current density caused by a 55% decrease in the sustained delayed rectifier potassium ion current (IK) density and a 17% decrease in the transient A-type potassium ion current (IA) density. These results indicated that changes in DRG neuron IK and IA current density and concomitant afferent hyperexcitability may contribute toward neuropathic pain following injury. The rat CCI model may prove valuable for examining pathogenic mechanisms and potential therapies, such as KV channel modulators.

  4. The relationship between uric acid and potassium in normal subjects.

    PubMed Central

    Kennedy, A C; Boddy, K; King, P C; Brennan, J; Anderson, J A; Buchanan, W W

    1978-01-01

    The serum uric acid concentration in normal healthy subjects has been studied in relation to sex, height, weight, lean body mass measured from total body potassium and predicted from the Hume-Weyers formula (1971), total body potassium, plasma potassium and urea, and packed cell volume. The strongest correlation was found with sex, but height, weight, total body potassium, lean body mass (measured and predicted) also correlated significantly with serum uric acid concentration. However, when the sex variable was removed, the other factors lost their significant correlation. Finally, total red blood cell and plasma volumes were predicted (Hume and Goldberg, 1964) and from these an estimate of total plasma uric acid, total plasma potassium, and total red blood cell potassium obtained. Measured total body potassium was found to correlate well with total plasma potassium and total red blood cell potassium independent of sex. Total plasma uric acid correlated well with measured total body potassium when both sexes were considered and when separated into male and female groups the males retained a significant correlation as did the female group. PMID:686865

  5. Sodium and potassium conductance changes during a membrane action potential.

    PubMed

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.

  6. Sodium and potassium conductance changes during a membrane action potential

    PubMed Central

    Bezanilla, Francisco; Rojas, Eduardo; Taylor, Robert E.

    1970-01-01

    1. A method for turning a membrane potential control system on and off in less than 10 μsec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential. 2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential. 3. The total membrane conductance taken from these current—voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939). 4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin—Huxley equations. 5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  7. Analysis of the Effects of Calcium or Magnesium on Voltage-Clamp Currents in Perfused Squid Axons Bathed in Solutions of High Potassium

    PubMed Central

    Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco

    1969-01-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216

  8. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium.

    PubMed

    Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F

    1969-10-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.

  9. [Serum and total body potassium during treatment with chlortalidone and hydrochlorothiazide. Influence of triamterene (author's transl)].

    PubMed

    Schäfer, G E; Werner, E; Kober, G; Kaltenbach, M

    1977-12-16

    The serum and total body potassium was investigated in 25 patients with non-congestive cardaic failure before and during saluretic treatment. Treatment with triamterene (100 mg/d; n = 10) over a period of 3 weeks led to an increase of serum potassium (from 4.1 +/- 0.65 to 4.7 +/- 0.51 mmol/l) and of total body potassium (by 110 mmol). After treatment with chlortalidon for 7 days (100 mg/d; n = 6) serum potassium concentration decreased from 4.38 "/- 0.37 to 3.30 +/- 0.46 mmol/l (approximately 25%). The total body potassium decreased by 240 mmol (approximately 10%). Continuation of the treatment with a combination of chlortalidon (50 mg/d) and triamterene (150 mg/d) led to correction of the extra- and intracellular potassium loss after 1 to 2 weeks. No significant change of serum and total body potassium was found during and after 6 months of treatment with hydrochlorothiazide (50 mg/d) and triamterene (100 mg/d; n = 9). The results demonstrate the potassium loss which occurs in the early stage of saluretic treatment and show the antikaluretic potency of triamterene.

  10. Vertebrate rod photoreceptors express both BK and IK calcium-activated potassium channels, but only BK channels are involved in receptor potential regulation.

    PubMed

    Pelucchi, Bruna; Grimaldi, Annalisa; Moriondo, Andrea

    2008-01-01

    In salamander rods, Ca(2+)-activated K(+) current (I(KCa)) provides an effective "clamp" of the dark membrane potential to its normal resting level. By a combination of electrophysiological, pharmacological, and immunohistochemical approaches, we show that salamander rods functionally express large-conductance Ca(2+)- and voltage-dependent potassium (BK) channel and intermediate-conductance Ca(2+)-dependent potassium (IK) channel, but not small-conductance Ca(2+)-dependent potassium channel (SK) subtypes. Application of 100 nM iberiotoxin and 100 nM clotrimazole reduced net I(KCa) to 36% and 63%, respectively, whereas the current was unaffected by application of 1 microM apamin. Consistently, anti- SK1, -SK2, and -SK3 antibodies were unable to stain rod photoreceptors, whereas both anti-BK and -SK4/ IK1 antibodies heavily stained the ellipsoid region of the inner segments of the rods. Moreover, by using current-clamp experiments, it was clearly seen that the strong clamping effect of the total I(KCa) was lost when IbTx, but not CLTZ, was applied to the bath. This behavior strongly suggests that of BK and IK channels, only the former are responsible for the clamping effect on the photoreceptor membrane potential.

  11. Effect of urinary trypsin inhibitor on potassium currents: fetus modulates membrane excitability by production of UTI.

    PubMed

    Takeuchi, Kinya; Fukuda, Atsuo; Kanayama, Naohiro

    2004-01-01

    Amniotic fluid contains a significant level of urinary trypsin inhibitor (UTI). Previously, we reported that UTI inhibits calcium influx of myometrium and it is effective in preventing uterine contraction. This study examined the effects of UTI upon potassium channels, which is important for membrane excitability. Whole-cell patch-clamp recordings were performed in fibroblasts derived from human fetal skin. Potassium currents were recorded and the effects of exogenous UTI and/or cadmium determined. Tetraethylammonium sensitive potassium currents were elicited by step or ramp stimulations at depolarized membrane potentials (over +30 mV). Administration of 1 micro M UTI significantly increased these potassium currents by 16.9%. When calcium channels were blocked by the administration of cadmium, UTI increased the rest of the potassium currents by 4.8%. This indicates that UTI increased calcium-dependent potassium currents by 94.8% but only increased voltage-dependent potassium currents by 4.8%. Urinary trypsin inhibitor is a physiological substance of fetal origin that modulates calcium-dependent and voltage-dependent potassium channels. These data suggest that UTI is capable of regulating the membrane properties of the fetal and myometrial cells in contact with amniotic fluid.

  12. Crataegus extract blocks potassium currents in guinea pig ventricular cardiac myocytes.

    PubMed

    Müller, A; Linke, W; Klaus, W

    1999-05-01

    Crataegus extract is used in cardiology for the treatment of mild to moderate heart failure (NYHA II) in Germany. However, little is known about the electrophysiological actions of Crataegus extract in the heart. Recently, it was shown that Crataegus extract prolongs the refractory period in isolated perfused hearts and increases action potential duration in guinea pig papillary muscle. It was the aim of this study to find out the mechanism of the increase in action potential duration caused by Crataegus extract. Using the patch-clamp technique, we measured the effects of Crataegus extract (10 mg/l; flavonoid content: 2.25%, total procyanidin content: 11.3 +/- 0.4%) on the inward rectifier and the delayed rectifier potassium current in isolated guinea pig ventricular myocytes. To get some insight into the mechanism underlying the positive inotropic effect of Crataegus extract, we also looked for effects on the L-type calcium current. Crataegus extract slightly blocked both the delayed and the inward rectifier potassium current. The inhibition amounted to 25% and about 15%, respectively. This amount of inhibition of these repolarising currents is sufficient to explain the prolongation of action potential duration caused by Crataegus extract. To our surprise we could not detect any influence of Crataegus extract on the L-type calcium current. In summary, our results show that Crataegus extract blocks repolarising potassium currents in ventricular myocytes. This effect is similar to the action of class III antiarrhythmic drugs and might be the basis of the antiarrhythmic effects described for Crataegus extract. Our measurements of the L-type calcium current indicate that Crataegus extract's positive inotropic effect is not caused by phosphodiesterase inhibition or a beta-sympathomimetic effect.

  13. Actions of bis(7)-tacrine and tacrine on transient potassium current in rat DRG neurons and potassium current mediated by K(V)4.2 expressed in Xenopus oocyte.

    PubMed

    Li, Xiang-Yuan; Zhang, Jian; Dai, Jia-Pei; Liu, Xiang-Ming; Li, Zhi-Wang

    2010-03-08

    Bis(7)-tacrine [bis(7)-tetrahydroaminacrine] is a dimeric AChE inhibitor derived from tacrine with a potential to treat Alzheimer's disease. Actions of bis(7)-tacrine on ligand-gated ion channels and voltage-gated cation channels have been identified on neurons of both central and peripheral nervous systems. In the present study, the effect of bis(7)-tacrine was investigated on the K(V)4.2 encoded potassium currents expressed in Xenopus oocytes and the transient A-type potassium current (I(K(A))) on rat DRG neurons. Bis(7)-tacrine suppressed recombinant Kv4.2 potassium channels in a concentration-dependent manner, with IC(50) value of 0.53+/-0.13 muM. Tacrine also inhibited Kv4.2 channels, but with a much lower potency (IC(50) 74+/-15 muM).The possible mechanisms underlying the inhibition on potassium currents by bis(7)-tacrine/tacrine could be that inactivation of the transient potassium currents was accelerated and recovery of the native or Kv4.2 expressed potassium currents was suppressed by bis(7)-tacrine/tacrine. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Physiology and pathophysiology of potassium homeostasis.

    PubMed

    Palmer, Biff F; Clegg, Deborah J

    2016-12-01

    Total body potassium content and proper distribution of potassium across the cell membrane is of critical importance for normal cellular function. Potassium homeostasis is maintained by several different methods. In the kidney, total body potassium content is achieved by alterations in renal excretion of potassium in response to variations in intake. Insulin and beta-adrenergic tone play critical roles in maintaining the internal distribution of potassium under normal conditions. Despite homeostatic pathways designed to maintain potassium levels within the normal range, disorders of altered potassium homeostasis are common. The clinical approach to designing effective treatments relies on understanding the pathophysiology and regulatory influences which govern the internal distribution and external balance of potassium. Here we provide an overview of the key regulatory aspects of normal potassium physiology. This review is designed to provide an overview of potassium homeostasis as well as provide references of seminal papers to guide the reader into a more in depth discussion of the importance of potassium balance. This review is designed to be a resource for educators and well-informed clinicians who are teaching trainees about the importance of potassium balance. Copyright © 2016 the American Physiological Society.

  15. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).

    PubMed

    Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang

    2012-06-15

    The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Equatorial potassium currents in lenses.

    PubMed

    Wind, B E; Walsh, S; Patterson, J W

    1988-02-01

    Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K+ concentrations across the membrane responsible for J is unchanged. Therefore, the decrease in PD is ascribed to an increase in Na+ permeance with a resultant increase in driving force accounting for the increase in J.

  17. The interplay of seven subthreshold conductances controls the resting membrane potential and the oscillatory behavior of thalamocortical neurons

    PubMed Central

    Zagha, Edward; Mato, German; Rudy, Bernardo; Nadal, Marcela S.

    2014-01-01

    The signaling properties of thalamocortical (TC) neurons depend on the diversity of ion conductance mechanisms that underlie their rich membrane behavior at subthreshold potentials. Using patch-clamp recordings of TC neurons in brain slices from mice and a realistic conductance-based computational model, we characterized seven subthreshold ion currents of TC neurons and quantified their individual contributions to the total steady-state conductance at levels below tonic firing threshold. We then used the TC neuron model to show that the resting membrane potential results from the interplay of several inward and outward currents over a background provided by the potassium and sodium leak currents. The steady-state conductances of depolarizing Ih (hyperpolarization-activated cationic current), IT (low-threshold calcium current), and INaP (persistent sodium current) move the membrane potential away from the reversal potential of the leak conductances. This depolarization is counteracted in turn by the hyperpolarizing steady-state current of IA (fast transient A-type potassium current) and IKir (inwardly rectifying potassium current). Using the computational model, we have shown that single parameter variations compatible with physiological or pathological modulation promote burst firing periodicity. The balance between three amplifying variables (activation of IT, activation of INaP, and activation of IKir) and three recovering variables (inactivation of IT, activation of IA, and activation of Ih) determines the propensity, or lack thereof, of repetitive burst firing of TC neurons. We also have determined the specific roles that each of these variables have during the intrinsic oscillation. PMID:24760784

  18. Gastrodin Inhibits Allodynia and Hyperalgesia in Painful Diabetic Neuropathy Rats by Decreasing Excitability of Nociceptive Primary Sensory Neurons

    PubMed Central

    Ye, Xin; Han, Wen-Juan; Wang, Wen-Ting; Luo, Ceng; Hu, San-Jue

    2012-01-01

    Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients’ quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (I NaT) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of I NaT and a decrease of potassium currents, especially slowly inactivating potassium currents (I AS); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of I NaT and total potassium current as well as I AS currents induced by STZ were normalized by GAS. This study provides a clear cellular basis for the peripheral analgesic action of gastrodin for the treatment of chronic pain, including PDN. PMID:22761855

  19. Relation of plasma aldosterone concentration to diuretic treatment in patients with severe heart disease.

    PubMed Central

    Knight, R K; Miall, P A; Hawkins, L A; Dacombe, J; Edwards, C R; Hamer, J

    1979-01-01

    To assess the relation of hyperaldosteronism and potassium depletion to the intensity of diuretic therapy we have measured plasma aldosterone by radioimmunoassay and total exchangeable potassium by radioisotope dilution in 24 patients when they were stable at the end of their preparation for cardiac operation. Some patients required intensive frusemide therapy to reach an optimal state for operation and many showed hyperaldosteronism. Plasma aldosterone was significantly related to daily dose of frusemide (r=0.77). Depletion of total exchangeable potassium expressed in terms of predicted weight was significantly related to plasma aldosterone (r= -0.64). The reduction in total exchangeable potassium is interpreted as chiefly related to loss of lean tissue mass from the wasting that leads to cardiac cachexia, but evidence is presented on the basis of measurements of extracellular fluid volume as sulphate space (20 patients) of entry of sodium into the cells which may indicate a true cellular potassium loss. Although plasma potassium is usually easily maintained with oral potassium supplements or aldosterone antagonists, we postulate that intensive diuretic therapy in severe heart disease may provoke hyperaldosteronism which accentuates potassium loss and may contribute to wasting and to intracellular potassium depletion in critical tissue, such as myocardium. PMID:508454

  20. Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis.

    PubMed

    Liang, H L; Whelan, H T; Eells, J T; Meng, H; Buchmann, E; Lerch-Gaggl, A; Wong-Riley, M

    2006-05-12

    Near-infrared light via light-emitting diode treatment has documented therapeutic effects on neurons functionally inactivated by tetrodotoxin or methanol intoxication. Light-emitting diode pretreatment also reduced potassium cyanide-induced cell death, but the mode of death via the apoptotic or necrotic pathway was unclear. The current study tested our hypothesis that light-emitting diode rescues neurons from apoptotic cell death. Primary neuronal cultures from postnatal rat visual cortex were pretreated with light-emitting diode for 10 min at a total energy density of 30 J/cm2 before exposing to potassium cyanide for 28 h. With 100 or 300 microM potassium cyanide, neurons died mainly via the apoptotic pathway, as confirmed by electron microscopy, Hoechst 33258, single-stranded DNA, Bax, and active caspase-3. In the presence of caspase inhibitor I, the percentage of apoptotic cells in 300microM potassium cyanide was significantly decreased. Light-emitting diode pretreatment reduced apoptosis from 36% to 17.9% (100 microM potassium cyanide) and from 58.9% to 39.6% (300 microM potassium cyanide), representing a 50.3% and 32.8% reduction, respectively. Light-emitting diode pretreatment significantly decreased the expression of caspase-3 elicited by potassium cyanide. It also reversed the potassium cyanide-induced increased expression of Bax and decreased expression of Bcl-2 to control levels. Moreover, light-emitting diode decreased the intensity of 5-(and -6) chloromethy-2', 7-dichlorodihydrofluorescein diacetate acetyl ester, a marker of reactive oxygen species, in neurons exposed to 300 microM potassium cyanide. These results indicate that light-emitting diode pretreatment partially protects neurons against cyanide-induced caspase-mediated apoptosis, most likely by decreasing reactive oxygen species production, down-regulating pro-apoptotic proteins and activating anti-apoptotic proteins, as well as increasing energy metabolism in neurons as reported previously.

  1. Dietary Potassium: a Key Mediator of the Cardiovascular Response to Dietary Sodium Chloride

    PubMed Central

    Kanbay, Mehmet; Bayram, Yeter; Solak, Yalcin; Sanders, Paul W.

    2014-01-01

    Potassium and sodium share a yin/yang relationship in the regulation of blood pressure (BP). BP is directly associated with the total body sodium and negatively correlated with the total body potassium. Epidemiologic, experimental, and clinical studies have demonstrated that potassium is a significant regulator of BP and further improves cardiovascular outcomes. Hypertensive cardiovascular damage, stroke and stroke-related death are accelerated by salt intake but could be prevented by increased dietary potassium intake. The antihypertensive effect of potassium supplementation appears to occur through several mechanisms that include regulation of vascular sensitivity to catecholamines, promotion of natriuresis, limiting plasma renin activity, and improving endothelial function. In the absence of chronic kidney disease, the combined evidence supports a diet high in potassium content serves a vasculoprotective function, especially in the setting of salt-sensitive hypertension and prehypertension. PMID:23735420

  2. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    PubMed Central

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  3. Effect of the cesium and potassium doping of multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics

    NASA Astrophysics Data System (ADS)

    Izrael'yants, K. R.; Orlov, A. P.; Ormont, A. B.; Chirkova, E. G.

    2017-04-01

    The effect of cesium and potassium atoms deposited onto multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics was studied. The current-voltage characteristics of the field electron emission of specimens with cesium or potassium doped multiwalled carbon nanotubes of this type were revealed to retain their linear character in the Fowler-Nordheim coordinates within several orders of magnitude of change in the emission current. The deposition of cesium and potassium atoms was shown to lead to a considerable increase in the emission current and a decrease in the work function φ of studied emitters with multiwalled nanotubes. The work function was established to decrease to φ 3.1 eV at an optimal thickness of coating with cesium atoms and to φ 2.9 eV in the case of doping with potassium atoms. Cesium and potassium deposition conditions optimal for the attainment of a maximum emission current were found.

  4. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    PubMed

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  5. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    PubMed

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dietary potassium: a key mediator of the cardiovascular response to dietary sodium chloride.

    PubMed

    Kanbay, Mehmet; Bayram, Yeter; Solak, Yalcin; Sanders, Paul W

    2013-01-01

    Potassium and sodium share a yin/yang relationship in the regulation of blood pressure (BP). BP is directly associated with the total body sodium and negatively correlated with the total body potassium. Epidemiologic, experimental, and clinical studies have shown that potassium is a significant regulator of BP and further improves cardiovascular outcomes. Hypertensive cardiovascular damage, stroke, and stroke-related death are accelerated by salt intake but might be curbed by increasing dietary potassium intake. The antihypertensive effect of potassium supplementation appears to occur through several mechanisms that include regulation of vascular sensitivity to catecholamines, promotion of natriuresis, limiting plasma renin activity, and improving endothelial function. In the absence of chronic kidney disease, the combined evidence suggests that a diet rich in potassium content serves a vasculoprotective function, particularly in the setting of salt-sensitive hypertension and prehypertension. Copyright © 2013 American Society of Hypertension. All rights reserved.

  7. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  8. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  9. Potassium currents and conductance. Comparison between motor and sensory myelinated fibers.

    PubMed Central

    Palti, Y; Moran, N; Stämpfli, R

    1980-01-01

    The potassium conductance system of sensory and motor fibers from the frog Rana esculenta were studied and compared by means of the voltage clamp. The potassium ion accumulation was first estimated from the currents and reversal potentials within the framework of both a three-compartment model and diffusion-in-an-unstirred-layer model. The potassium conductance parameters were then computed using the measured currents and corrected ionic driving forces. It was found that the potassium accumulation is faster and more pronounced in sensory fibers, the voltage dependency of the potassium conductance is steeper in sensory fibers, the maximal potassium conductance, corrected for accumulation, is approximately 1.1 S/cm2 in sensory and 0.55 S/cm2 in motor fibers, and that the conductance time constants, tau n, are smaller in sensory than in motor fibers. These differences, which increase progressively with depolarization, are not detectable for depolarization of 50 mV or smaller. The interpretation of these findings in terms of different types of potassium channels as well as their implications with regard to the differences between the excitability phenomena in motor and sensory fibers are discussed. PMID:6973371

  10. Dietary potassium intake is beneficial to bone health in a low calcium intake population: the Korean National Health and Nutrition Examination Survey (KNHANES) (2008-2011).

    PubMed

    Kong, S H; Kim, J H; Hong, A R; Lee, J H; Kim, S W; Shin, C S

    2017-05-01

    Dietary potassium may neutralize acid load and reduce calcium loss from the bone, leading to beneficial effect on bone mineral density. In this nationwide Korean population study, dietary potassium intake was associated with improved bone mineral density in older men and postmenopausal women. Nutrition is a major modifiable factor that affects bone health. The accompanying anion in dietary potassium may act as an alkaline source by neutralizing the acid load and reducing calcium loss from the bone. We aimed to evaluate the association between dietary potassium intake and bone mineral density (BMD) in the Korean population. We analyzed a total of 3135 men aged >50 years and 4052 postmenopausal women from the Korean National Health and Nutrition Examination Survey (KNHANES). Lumbar spine, total hip, and femur neck BMD were measured using dual energy X-ray absorptiometry. The daily food intake was assessed using a food frequency questionnaire. When we divided the participants into tertiles based on the intake of potassium intake, the highest potassium intake tertile group showed a significantly higher total hip and femur neck BMD as compared to lower tertile groups (0.914 ± 0.004, 0.928 ± 0.003, 0.925 ± 0.004 mg/day across the tertiles, P = .014 for total hip; 0.736 ± 0.003, 0.748 ± 0.003, 0.750 ± 0.004 mg/day, P = .012 for femur neck). Postmenopausal women in the highest potassium intake tertile group showed significantly higher lumbar, total hip, and femur neck BMD as compared to those in lower potassium intake tertile groups (0.793 ± 0.004, 0.793 ± 0.003, 0.805 ± 0.004 mg/day across the tertiles, P = .029 for lumbar spine; 0.766 ± 0.003, 0.770 ± 0.002, 0.780 ± 0.003 mg/day, P = .002 for total hip; 0.615 ± 0.003, 0.619 ± 0.002, 0.628 ± 0.003 mg/day, P = .002 for femur neck). Dietary potassium intake was positively associated with BMD in men aged >50 years and postmenopausal women, indicating the beneficial effects of dietary potassium intake on bone health.

  11. Contribution of dairy products to dietary potassium intake in the United States population.

    PubMed

    McGill, Carla R; Fulgoni, Victor L; DiRienzo, Douglas; Huth, Peter J; Kurilich, Anne C; Miller, Gregory D

    2008-02-01

    Adequate dietary potassium intake is associated with a reduced risk of cardiovascular and other chronic diseases. The Dietary Guidelines for Americans 2005 identifies milk and milk products as a major contributor of dietary potassium and lists dairy products, along with fruits and vegetables, as food groups to encourage. This paper further examines the impact of dairy consumption on the potassium intake of the United States (US) population. Using data from the National Health and Nutrition Examination Survey (NHANES) 1999-2002 we determined potassium intakes for various age groups of individuals who met the recommended number of dairy servings compared to those who did not. We also examined the impact of dairy servings consumed on mean and median potassium intakes and compared intakes to the age-appropriate Adequate Intakes (AI). For all age groups, mean and median potassium intakes did not meet the respective AI. Mean potassium intakes were significantly greater in those subjects who met dairy intake recommendations compared to those who did not for all age groups. Mean and median potassium intakes increased with increasing dairy intake but were below current intake recommendations for all age groups analyzed. For adults age 19 to 50, 16.1% consumed the recommended number of dairy servings per day. For those 51 and older, 10.7% met current dairy intake recommendations. Consumption of dairy products is below current recommendations which contributes in part to suboptimal dietary potassium intakes among a large proportion of the US population. Since adequate potassium intake is associated with decreased risk of chronic disease, consumption of a variety of potassium-rich foods, including fruits, vegetables and low-fat and fat free dairy products, should continue to be encouraged.

  12. Long-range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in Northern Taiwan - article no. D14301

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, S.C.; Liu, S.C.; Huang, Y.T.

    2009-07-16

    Total potassium was determined in aerosol particles between 2002 and early 2007 in northern Taiwan (25{sup o} 02'N, 121{sup o} 31'E). Biosmoke potassium (non-sea-salt/noncrustal) was assessed and used as a tracer of biosmoke pollution, which essentially represents the combination of coal and biofuel combustion and biomass burning. PM10-associated potassium displays a typical seasonality, peaking during the winter and waning during the summer. The size distribution showed a bimodal pattern, peaking at a supermicron size (2.5-5.{mu}m) and at around 1 {mu}m, demonstrating multiple sources. Size distribution patterns revealed an evident seasonality, indicative of the different domination of natural and biosmoke sourcesmore » in the two main periods of the northeasterly and summer monsoons, respectively. The relative contributions of biosmoke and natural sources to the total potassium were estimated to be 50-75% and 25-50%, respectively; the seasonality of biosmoke potassium is similar to that of total potassium. Substantial correlations existed between biosmoke potassium and selected trace metals (As, Se, Pb, and Mn), suggesting that the latter are essentially associated with biosmoke pollution. Another significant finding is that the seasonal mean concentrations of aerosol potassium between 2002 and early 2007 tend to increase. This could primarily be attributed to the increased consumption of coal in China, posing an urgent issue relevant to pollution mitigation in China. The southward inflow flux of biosmoke potassium to the south of 25{sup o} N during the northeasterly monsoon months has been estimated to be 56-79 mg m{sup -2} d{sup -1}, which could be applied to the assessment of other biosmoke-related species.« less

  13. Implementation of a timed, electronic, assessment-driven potassium-replacement protocol.

    PubMed

    Zielenski, Christopher; Crabtree, Adam; Le, Tien; Marlatt, Alyse; Ng, Dana; Tran, Alan

    2017-06-15

    The adherence to and effectiveness and safety of a timed, electronic, assessment-driven potassium-replacement protocol (TARP) were compared with an electronic nurse-driven replacement protocol (NRP) are reported. A retrospective observational study was conducted in a community hospital evaluating protocol adherence, effectiveness, and safety for 2 potassium-replacement protocols. All adults on medical units with an order for potassium replacement per protocol during the 3-month trial periods were reviewed. All patients requiring potassium replacement per protocol were included in the analysis. Adherence to the protocol was assessed by evaluating the dose of potassium administered and performance of reassessments. Effectiveness of the protocol was assessed by evaluating the time to achieve target potassium levels. Safety was assessed by evaluating the route of administration and occurrence of hyperkalemia. A total of 300 patients treated using potassium-replacement protocols required potassium replacement during the study period, with 148 patients in the NRP group requiring 491 instances of potassium replacement. In the TARP group a total of 564 instances requiring potassium replacement corresponded to 152 patients. Of the 491 instances requiring replacement in the NRP group, the correct dose was administered and reassessment performed 117 times (23.8%). Overall adherence ( p < 0.05), correct dose given ( p < 0.05), average time from blood draw to potassium replacement ( p < 0.0001), use of oral replacement ( p < 0.05), and time to achieve target potassium level within 12 hours ( p < 0.05) were significantly improved in the TARP group. The TARP improved the effectiveness and safety of potassium-replacement therapy over the traditional NRP without negatively affecting timeliness of care. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  14. Comparison of potassium and sodium binding in vivo and in agarose samples using TQTPPI pulse sequence

    NASA Astrophysics Data System (ADS)

    Schepkin, Victor D.; Neubauer, Andreas; Nagel, Armin M.; Budinger, Thomas F.

    2017-04-01

    Potassium and sodium specific binding in vivo were explored at 21.1 T by triple quantum (TQ) magnetic resonance (MR) signals without filtration to achieve high sensitivities and precise quantifications. The pulse sequence used time proportional phase increments (TPPI). During simultaneous phase-time increments, it provided total single quantum (SQ) and TQ MR signals in the second dimension at single and triple quantum frequencies, respectively. The detection of both TQ and SQ signals was performed at identical experimental conditions and the resulting TQ signal equals 60 ± 3% of the SQ signal when all ions experience sufficient time for binding. In a rat head in vivo the TQ percentage relative to SQ for potassium is 41.5 ± 3% and for sodium is 16.1 ± 1%. These percentages were compared to the matching values in an agarose tissue model with MR relaxation times similar to those of mammalian brain tissue. The sodium TQ signal in agarose samples decreased in the presence of potassium, suggesting a competitive binding of potassium relative to sodium ions for the same binding sites. The TQTPPI signals correspond to almost two times more effective binding of potassium than sodium. In vivo, up to ∼69% of total potassium and ∼27% of total sodium can be regarded as bound or experiencing an association time in the range of several milliseconds. Experimental data analyses show that more than half of the in vivo total sodium TQ signal could be from extracellular space, which is an important factor for quantification of intracellular MR signals.

  15. Analysis of factors causing hyperkalemia.

    PubMed

    Takaichi, Kenmei; Takemoto, Fumi; Ubara, Yoshifumi; Mori, Yasumichi

    2007-01-01

    Patients with impaired renal function or diabetes are considered to be prone to hyperkalemia. Furthermore, hyperkalemia is an adverse drug reaction of inhibitors of the renin-angiotensin system (RAS) that are established to be efficacious in these patients. However, the current status of hyperkalemia in the clinical setting remains obscure. A total of 9,117 patients treated at Toranomon Hospital between January and October 2005, who had serum creatinine levels below 5 mg/dL were studied. Patients on dialysis and patients using cation exchange resin or diuretics that lower serum potassium were excluded. Serum potassium increased significantly accompanying the increase in serum creatinine, and was significantly elevated in diabetic patients compared to non-diabetic patients. Serum potassium also increased significantly with the administration of angiotensin-II receptor blockers (ARB), angiotensin-converting-enzyme inhibitors (ACEI) or beta-blockers. A combination of diabetes and RAS inhibitor administration significantly increased serum potassium compared to each factor alone in patients with a serum creatinine level below 1.5 mg/dL but not in those with a higher serum creatinine level. According to step-wise multiple regression analyses, an elevated serum creatinine level had the strongest positive correlation with the serum potassium level, followed by diabetes, ACEI use, ARB use, and age. Lowered renal function, diabetes, use of RAS inhibitors and old age are independent factors that increase the serum potassium level. Caution should be exercised when using RAS inhibitors in diabetic patients even if their renal function is relatively preserved. In selected patients with diabetes or impaired renal function, however, RAS inhibitors can be used without hyperkalemia.

  16. [Decreased A-type potassium current mediates the hyperexcitability of nociceptive neurons in the chronically compressed dorsal root ganglia].

    PubMed

    Yan, Ni; Li, Xiao-Han; Cheng, Qi; Yan, Jin; Ni, Xin; Sun, Ji-Hu

    2007-04-25

    The excitability of nociceptive neurons increases in the intact dorsal root ganglion (DRG) after a chronic compression, but the underlying mechanisms are still unclear. The aim of this study was to investigate the ionic mechanisms underlying the hyperexcitability of nociceptive neurons in the compressed ganglion. Chronic compression of DRG (CCD) was produced in adult rats by inserting two rods through the intervertebral foramina to compress the L4 DRG and the ipsilateral L5 DRG. After 5-7 d, DRG somata were dissociated and placed in culture for 12-18 h. In sharp electrode recording model, the lower current threshold and the depolarized membrane potential in the acutely dissociated CCD neurons were detected, indicating that hyperexcitability is intrinsic to the soma. Since voltage-gated K(+) (Kv) channels in the primary sensory neurons are important for the regulation of excitability, we hypothesized that CCD would alter K(+) current properties in the primary sensory neurons. We examined the effects of 4-aminopyridine (4-AP), a specific antagonist of A-type potassium channel, on the excitability of the control DRG neurons. With 4-AP in the external solution, the control DRG neurons depolarized (with discharges in some cells) and their current threshold decreased as the CCD neurons demonstrated, indicating the involvement of decreased A-type potassium current in the hyperexcitability of the injured neurons. Furthermore, the alteration of A-type potassium current in nociceptive neurons in the compressed ganglion was investigated with the whole-cell patch-clamp recording model. CCD significantly decreased A-type potassium current density in nociceptive DRG neurons. These data suggest that a reduction in A-type potassium current contributes, at least in part, to the increase in neuron excitability that may lead to the development of pain and hyperalgesia associated with CCD.

  17. Potassium Secondary Batteries.

    PubMed

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O 2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  18. PKA-induced internalization of slack KNa channels produces dorsal root ganglion neuron hyperexcitability.

    PubMed

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2010-10-20

    Inflammatory mediators through the activation of the protein kinase A (PKA) pathway sensitize primary afferent nociceptors to mechanical, thermal, and osmotic stimuli. However, it is unclear which ion conductances are responsible for PKA-induced nociceptor hyperexcitability. We have previously shown the abundant expression of Slack sodium-activated potassium (K(Na)) channels in nociceptive dorsal root ganglion (DRG) neurons. Here we show using cultured DRG neurons, that of the total potassium current, I(K), the K(Na) current is predominantly inhibited by PKA. We demonstrate that PKA modulation of K(Na) channels does not happen at the level of channel gating but arises from the internal trafficking of Slack channels from DRG membranes. Furthermore, we found that knocking down the Slack subunit by RNA interference causes a loss of firing accommodation analogous to that observed during PKA activation. Our data suggest that the change in nociceptive firing occurring during inflammation is the result of PKA-induced Slack channel trafficking.

  19. Effects of nerve growth factor on the action potential duration and repolarizing currents in a rabbit model of myocardial infarction

    PubMed Central

    Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang

    2013-01-01

    Objectives To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Methods Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Results Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (Ito), the rapidly activated omponent of delayed rectifier potassium current (IKr), the slowly activated component of delayed rectifier potassium current (IKs), and the L-type calcium current (ICaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Conclusions Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca2+ current are likely the underlying mechanism of action. PMID:23610573

  20. Effects of nerve growth factor on the action potential duration and repolarizing currents in a rabbit model of myocardial infarction.

    PubMed

    Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang

    2013-03-01

    To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck for the purpose of administering NGF 400 U/d for eight weeks (HMI + NGF group). Cardiomyocytes were isolated from regions of the non-infarcted left ventricular wall and the action potentials and ion currents in these cells were recorded using whole-cell patch clamps. Compared with HMI and control cardiomyocytes, significant prolongation of APD50 or APD90 (Action potential duration (APD) measured at 50% and 90% of repolarization) in HMI + NGF cardiomyocytes was found. The results showed that the 4-aminopyridine sensitive transient outward potassium current (I to), the rapidly activated omponent of delayed rectifier potassium current (I Kr), the slowly activated component of delayed rectifier potassium current (I Ks), and the L-type calcium current (I CaL) were significantly altered in NGF + HMI cardiomyocytes compared with HMI and control cells. Our results suggest that NGF treatment significantly prolongs APD in HMI cardiomyocytes and that a decrease in outward potassium currents and an increase of inward Ca(2+) current are likely the underlying mechanism of action.

  1. Simultaneous determination of potassium and total fluoride in toothpastes using a SIA system with two potentiometric detectors.

    PubMed

    Pérez-Olmos, R; Soto, J C; Zárate, N; Díez, I

    2008-05-12

    A sequential injection analysis (SIA) system has been developed for the first time to quantify potassium and total fluoride in toothpastes and gels used to prevent both dentinal hypersensitivity and dental caries. To enable this simultaneous determination, potentiometric detection, using a conventional fluoride electrode and a tubular potassium selective electrode, formed by a PVC membrane containing valinomycin as ionophore, was carried out. A manifold that uses a three-way solenoid valve was designed. The former under binary sampling conditions, provides reproducible mixing ratios of two solutions. This fact facilitates that the system automatically generates, on-line, the calibration curves required by the analytical procedure. The calibration ranged from 1.0 x 10(-4) to 1.0 x 10(-3) mol L(-1) for both potassium and total fluoride determinations. The R.S.D. (11 readings) resulted to be less than 1.5% for both determinations. Off-line studies related to the dissolution of the solid samples, the transformation of monofluorophosphate in fluoride, the elimination of organic matrix interference onto the plastic membrane of the potassium electrode, and the selection of the most adequate TISAB solution for fluoride determination, were also considered. A sampling rate of 18 samples h(-1) for both determinations was attained, their precisions and accuracies being statistically indistinguishable from those achieved by atomic emission spectroscopy (for potassium determination) and by a conventional batch potentiometry (for total fluoride determination) adopted as reference techniques.

  2. Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease: the Japan Collaborative Cohort Study for Evaluation of Cancer Risks.

    PubMed

    Umesawa, Mitsumasa; Iso, Hiroyasu; Date, Chigusa; Yamamoto, Akio; Toyoshima, Hideaki; Watanabe, Yoshiyuki; Kikuchi, Shogo; Koizumi, Akio; Kondo, Takaaki; Inaba, Yutaka; Tanabe, Naohito; Tamakoshi, Akiko

    2008-07-01

    Limited evidence is available about the relations between sodium and potassium intakes and cardiovascular disease in the general population. The objective was to investigate relations between sodium and potassium intakes and cardiovascular disease in Asian populations whose mean sodium intake is generally high. Between 1988 and 1990, a total of 58,730 Japanese subjects (n = 23,119 men and 35,611 women) aged 40-79 y with no history of stroke, coronary heart disease, or cancer completed a lifestyle questionnaire including food intake frequency under the Japan Collaborative Cohort Study for Evaluation of Cancer Risk sponsored by the Ministry of Education, Sports and Science. After 745,161 person-years of follow-up, we documented 986 deaths from stroke (153 subarachnoid hemorrhages, 227 intraparenchymal hemorrhages, and 510 ischemic strokes) and 424 deaths from coronary heart disease. Sodium intake was positively associated with mortality from total stroke, ischemic stroke, and total cardiovascular disease. The multivariable hazard ratio for the highest versus the lowest quintiles of sodium intake after adjustment for age, sex, and cardiovascular disease risk factors was 1.55 (95% CI: 1.21, 2.00; P for trend < 0.001) for total stroke, 2.04 (95% CI: 1.41, 2.94; P for trend < 0.001) for ischemic stroke, and 1.42 (95% CI: 1.20, 1.69; P for trend < 0.001) for total cardiovascular disease. Potassium intake was inversely associated with mortality from coronary heart disease and total cardiovascular disease. The multivariable hazard ratio for the highest versus the lowest quintiles of potassium intake was 0.65 (95% CI: 0.39, 1.06; P for trend = 0.083) for coronary heart disease and 0.73 (95% CI: 0.59, 0.92; P for trend = 0.018) for total cardiovascular disease, and these associations were more evident for women than for men. A high sodium intake and a low potassium intake may increase the risk of mortality from cardiovascular disease.

  3. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be..., will not result in daily ingestion of the additive so as to provide a total amount of iodine in excess...

  4. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be..., will not result in daily ingestion of the additive so as to provide a total amount of iodine in excess...

  5. Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference

    PubMed Central

    Santi, C. M.; Yuan, A.; Fawcett, G.; Wang, Z.-W.; Butler, A.; Nonet, M. L.; Wei, A.; Rojas, P.; Salkoff, L.

    2003-01-01

    GFP-promoter experiments have previously shown that at least nine genes encoding potassium channel subunits are expressed in Caenorhabditis elegans muscle. By using genetic, RNA interference, and physiological techniques we revealed the molecular identity of the major components of the outward K+ currents in body wall muscle cells in culture. We found that under physiological conditions, outward current is dominated by the products of only two genes, Shaker (Kv1) and Shal (Kv4), both expressing voltage-dependent potassium channels. Other channels may be held in reserve to respond to particular circumstances. Because GFP-promoter experiments indicated that slo-2 expression is prominent, we created a deletion mutant to identify the SLO-2 current in vivo. In both whole-cell and single-channel modes, in vivo SLO-2 channels were active only when intracellular Ca2+ and Cl- were raised above normal physiological conditions, as occurs during hypoxia. Under such conditions, SLO-2 is the largest outward current, contributing up to 87% of the total current. Other channels are present in muscle, but our results suggest that they are unlikely to contribute a large outward component under physiological conditions. However, they, too, may contribute currents conditional on other factors. Hence, the picture that emerges is of a complex membrane with a small number of household conductances functioning under normal circumstances, but with additional conductances that are activated during unusual circumstances. PMID:14612577

  6. Control of resting membrane potential by delayed rectifier potassium currents in ferret airway smooth muscle cells.

    PubMed Central

    Fleischmann, B K; Washabau, R J; Kotlikoff, M I

    1993-01-01

    1. In order to determine the physiological role of specific potassium currents in airway smooth muscle, potassium currents were measured in freshly dissociated ferret trachealis cells using the nystatin-permeabilized, whole-cell method, at 35 degrees C. 2. The magnitude of the outward currents was markedly increased as bath temperature was increased from 22 to 35 degrees C. This increase was primarily due to the increase in maximum potassium conductance (gK,max), although there was also a small leftward shift in the relationship between gK and voltage at higher temperatures. The maximum conductance and the kinetics of current activation and inactivation were also temperature dependent. At 35 degrees C, gating of the current was steeply voltage dependent between -40 and 0 mV. Current activation was well fitted by fourth-order kinetics; the mean time constants of activation (30 mV clamp step) were 1.09 +/- 0.17 and 1.96 +/- 0.27 ms at 35 and 22 degrees C, respectively. 3. Outward currents using the nystatin method were qualitatively similar to delayed rectifier currents recorded in dialysed cells with high calcium buffering capacity solutions. 4-Aminopyridine (4-AP; 2 mM), a specific blocker of delayed rectifier potassium channels in this tissue, inhibited over 80% of the outward current evoked by voltage-clamp steps to between -10 and +20 mV (n = 6). Less than 5% of the outward current was blocked over the same voltage range by charybdotoxin (100 nM; n = 15), a specific antagonist of large-conductance, calcium-activated potassium channels in this tissue. 4. The degree to which delayed rectifier and calcium-activated potassium conductances control resting membrane potential was examined in current-clamp experiments. The resting membrane potential of current clamped cells was -33.6 +/- 1.0 mV (n = 62). Application of 4-AP (2 mM) resulted in a 14.4 +/- 1.0 mV depolarization (n = 8) and an increase in input resistance. Charybdotoxin (100 nM) had no effect on resting membrane potential (n = 6). 5. Force measurements were made in isolated strips of trachealis muscle to determine the effect of pharmacological blockade of individual potassium conductances on resting tone. In the presence of tetrodotoxin (1 microM) and atropine (1 microM), 4-AP increased baseline tension in a dose-dependent manner, with an EC50 of 1.8 mM (n = 13); application of 5 mM 4-AP increased tone to 86.8 +/- 8.1% of that produced by 1 microM methacholine, and this tone was almost completely inhibited by nifedipine (1 microM).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8271220

  7. Extracellular Potassium Homeostasis: Insights from Hypokalemic Periodic Paralysis

    PubMed Central

    Cheng, Chih-Jen; Kuo, Elizabeth; Huang, Chou-Long

    2014-01-01

    The extracellular potassium makes up only about 2% of the total body potassium store. The majority of the body potassium is distributed in the intracellular space, and of which about 80% is in skeletal muscle. Movement of potassium in and out of skeletal muscle thus plays a pivotal role in extracellular potassium homeostasis. The exchange of potassium between the extracellular space and skeletal muscle is mediated by specific membrane transporters. These include potassium uptake by Na+, K+-ATPase and release by inward rectifier K+ channels. These processes are regulated by circulating hormones, peptides, ions, and by physical activity of muscle as well as dietary potassium intake. Pharmaceutical agents, poisons and disease conditions also affect the exchange and alter extracellular potassium concentration. Here, we review extracellular potassium homeostasis focusing on factors and conditions that influence the balance of potassium movement in skeletal muscle. Recent findings that mutations of a skeletal muscle-specific inward rectifier K+ channel cause hypokalemic periodic paralysis provide interesting insights into the role of skeletal muscle in extracellular potassium homeostasis. These recent findings will be reviewed. PMID:23953801

  8. A human intermediate conductance calcium-activated potassium channel.

    PubMed

    Ishii, T M; Silvia, C; Hirschberg, B; Bond, C T; Adelman, J P; Maylie, J

    1997-10-14

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is approximately 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 microM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3. 5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 microM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.

  9. Fluid and Electrolyte Nutrition

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.

    1999-01-01

    Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.

  10. [Variations of soil microbial community composition and enzyme activities with different salinities on Yuyao coast, Zhejiang, China].

    PubMed

    Sun, Hui; Zhang, Jian Feng; Xu, Hua Sen; Chen, Guang Cai; Wang, Li Ping

    2016-10-01

    In October 2015, soil samples with different salinity were collected in a coast area in Yuyao, Zhejiang, and soil microbial community composition, soil catalase, urease activities, as well as soil physical and chemical properties were studied. The results showed that Nitrospira took absolute advantage in the bacterial community, and showed good correlations to total potassium. Cladosporium and Fusarium were predominant in the fungal community. Meanwhile, Cladosporium was related to soil urease and total nitrogen, and same correlation was found between Fusarium and soil urease. Catalase activity ranged from 3.52 to 4.56 mL·g -1 , 3.08 to 4.61 mL·g -1 and 5.81 to 6.91 mL·g -1 for soils with heavy, medium and weak salinity, respectively. Catalase activity increased with the soil layer deepening, which was directly related to soil total potassium, and indirectly related to pH, organic matter, total nitrogen and total phosphorus through total potassium. Soil urease activity ranged among 0.04 to 0.52 mg·g -1 , 0.08 to 1.07 mg·g -1 and 0.27 to 8.21 mg·g -1 for each saline soil, respectively. Urease activity decreased with soil layer deepening which was directly related to soil total nitrogen, and was indirectly related to pH, organic matter and total potassium through total nitrogen. The total phosphorus was the largest effect factor on the bacterial community CCA ordination, and the urease was on fungal community.

  11. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China.

    PubMed

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-10-09

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl(-), SO4(2-) and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type.

  12. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China

    PubMed Central

    Chen, Jiao; Chen, Zhaoqiong; Ai, Yingwei; Xiao, Jingyao; Pan, Dandan; Li, Wei; Huang, Zhiyu; Wang, Yumei

    2015-01-01

    Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl−, SO42− and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type. PMID:26450811

  13. [Effects of stand density on understory species diversity and soil physicochemical properties of Pinus massoniana plantation].

    PubMed

    Sun, Qian Hui; Wu, Xia; Wang, Mei Zhen; Zhang, Liu Hua; Yao, Xiao Lan; Qi, Jin Qiu; Hao, Jian Feng

    2018-03-01

    We analyzed understory species diversity, soil physicochemical traits and their relationships in the 25-year-old non-commercial Pinus massoniana plantations with five different stand densities, i.e., 1057, 1136, 1231, 1383 and 1515 trees·hm -2 , in Wenfeng Mountain, Xinjin District, Sichuan Province, China. The results showed that a total of 110 species were found, belonging to 57 families and 98 genera. With the increase of tree density, the understory species showed a succession pattern from positive to moderate to shady. Different densities had significant effects on the contents of total potassium and organic matter in the soils. With the increase ofdensity, the contents of organic matter and total potassium in understory vegetation first increased and then decreased. The trends of the relationship between both diversity and soil physiochemical characteristics and tree density were similar. Both of them increased with the increase of density, with the maximum value presented at the density of 1136 trees·hm -2 . The concentrations of total phosphorus, available potassium, total potassium and total nitrogen was closely related to plant diversity index. The results suggested that the density at 1136 trees·hm -2 would be more beneficial to improve the stability of species diversity and soil fertility of P. massoniana non-commercial plantations in Wenfeng Mountain.

  14. Thermal energy harvesting and solar energy conversion utilizing carbon-based nanomaterials

    NASA Astrophysics Data System (ADS)

    McCarthy, Patrick T.

    This dissertation provides details of carbon-based nanomaterial fabrication for applications in energy harvesting and generation. As energy demands increase, and concerns about mankind's environmental impact increase, alternative methods of generating energy will be widely researched. Carbon-based nanomaterials may be effective in such applications as their fabrication is often inexpensive and they have highly desirable electrical, mechanical, and thermal properties. Synthesis and characterization of carbon nanotube thermal interfaces on gadolinium foils is described herein. Total thermal interface resistances of carbon nanotube coated gadolinium were measured using a one-dimensional reference calorimeter technique, and the effect of hydrogen embrittlement on the magnetic properties of gadolinium foils is discussed. The samples generated in this study were consistently measured with reduced total thermal interface resistances of 55-70% compared to bare gadolinium. Characterization of gadolinium foils in a cooling device called a magneto thermoelectric generator was also performed. A gadolinium shuttle drives the device as it transitions between ferromagnetic and paramagnetic states. Reduced interface resistances from the carbon nanotube arrays led to increased shuttle frequency and effective heat transfer coefficients. Detailed theoretical derivations for electron emission during thermal and photo-excitation are provided for both three-dimensional and two-dimensional materials. The derived theories were fitted to experimental data from variable temperature photoemission studies of potassium-intercalated graphitic nanopetals. A work function reduction from approximately 4.5 eV to 2 -- 3 eV resulted from potassium intercalation and adsorption. While changes in the electron energy distribution shape and intensity were significant within 310 -- 680 K, potassium-intercalated graphitic petals demonstrate very high thermal stability after heating to nearly 1000 K. Boron nitride modification of the nanopetals was performed in an effort to minimize deintercalation of potassium from the nanopetal lattice and while multiple work functions were present within the electron energy distribution, massive reductions in emission intensity took place above 580 K. Finally, a device for measuring the current density during photoemission was also developed and photoemission induced by a solar simulator at room temperature produced currents on the order of 1 nA/cm 2 resulting in a quantum efficiency of approximately 8.0x10 --8 electrons emitted per photon of illumination.

  15. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).

    PubMed

    Jan, Amin Ullah; Hadi, Fazal; Midrarullah; Nawaz, Muhammad Asif; Rahman, Khaista

    2017-07-01

    Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R 2  = 0.966 ∗∗∗ ), phenolic (R 2  = 0.741 ∗ ) and chlorophyll (R 2  = 0.853 ∗∗ ). The MDA content showed significant negative correlation (R 2  = 0.983 ∗∗∗ ) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Decreased mortality of weaned pigs with Streptococcus suis with the use of in-water potassium penicillin G.

    PubMed

    Byra, Chris; Gadbois, Pierre; Cox, William R; Gottschalk, Marcelo; Farzan, Vahab; Bauer, Sharon A; Wilson, Jeff B

    2011-03-01

    This study evaluated the efficacy of potassium penicillin G in drinking water of weaned pigs to reduce mortality and spread of infection caused by Streptococcus suis. A total of 896 18-day-old weaned pigs were randomly assigned to either treatment with potassium penicillin G in-water (Treated), or no treatment (Control). The outcomes analyzed were total mortality, mortality due to S. suis, and overall counts of S. suis colonies. The risk of mortality due to S. suis and total mortality were significantly increased in the Control group compared with Treated pigs (P < 0.05). Bacterial culture of posterior pharyngeal swabs indicated that Control pigs were significantly more likely to have ≥ 1000 colonies of S. suis per plate than were Treated pigs (P < 0.05). This study demonstrates that potassium penicillin G administered in drinking water is effective in reducing mortality associated with S. suis infection and reducing tonsillar carriage of S. suis.

  17. Decreased mortality of weaned pigs with Streptococcus suis with the use of in-water potassium penicillin G

    PubMed Central

    Byra, Chris; Gadbois, Pierre; Cox, William R.; Gottschalk, Marcelo; Farzan, Vahab; Bauer, Sharon A.; Wilson, Jeff B.

    2011-01-01

    This study evaluated the efficacy of potassium penicillin G in drinking water of weaned pigs to reduce mortality and spread of infection caused by Streptococcus suis. A total of 896 18-day-old weaned pigs were randomly assigned to either treatment with potassium penicillin G in-water (Treated), or no treatment (Control). The outcomes analyzed were total mortality, mortality due to S. suis, and overall counts of S. suis colonies. The risk of mortality due to S. suis and total mortality were significantly increased in the Control group compared with Treated pigs (P < 0.05). Bacterial culture of posterior pharyngeal swabs indicated that Control pigs were significantly more likely to have ≥ 1000 colonies of S. suis per plate than were Treated pigs (P < 0.05). This study demonstrates that potassium penicillin G administered in drinking water is effective in reducing mortality associated with S. suis infection and reducing tonsillar carriage of S. suis. PMID:21629419

  18. Quantitation of tissue loss during prolonged space flight

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; Leach, C. S.; Rambaut, P. C.

    1983-01-01

    An analysis of data from the three Skylab missions was performed to assess the lean body mass (LBM) and fat components of inflight body weight loss. Six methods for determining LBM were employed based on changes in total body water, total body potassium, nitrogen balance, potassium balance, and stereophotometric-body density. Those based solely on body potassium, and potassium and nitrogen balances (when expressed as shifts from preflight control), consistently overestimated LBM loss unless appropriate corrections were made. The average results from the various methods indicated that of a mean inflight total body weight loss of 2.7 + or - 0.3 kg (SD) for all nine crewmembers, more than half (1.5 + or - 0.3 kg) can be attributed to loss of LBM (including 1.1 kg body water), the remainder (1.2 + or - 0.3 kg) being derived from fat stores. The reduction of LBM appeared to be complete after the first month of flight and thereafter was largely independent of mission duration, diet, and exercise.

  19. Potassium and Health123

    PubMed Central

    Weaver, Connie M.

    2013-01-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints. PMID:23674806

  20. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is prepared commercially by the neutralization of lactic acid with potassium hydroxide. (b) The ingredient... current good manufacturing practice. (d) Prior sanctions for this ingredient different from the uses...

  1. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is prepared commercially by the neutralization of lactic acid with potassium hydroxide. (b) The ingredient... current good manufacturing practice. (d) Prior sanctions for this ingredient different from the uses...

  2. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is prepared commercially by the neutralization of lactic acid with potassium hydroxide. (b) The ingredient... current good manufacturing practice. (d) Prior sanctions for this ingredient different from the uses...

  3. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is prepared commercially by the neutralization of lactic acid with potassium hydroxide. (b) The ingredient... current good manufacturing practice. (d) Prior sanctions for this ingredient different from the uses...

  4. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.

    PubMed

    Chen, Y; Sun, X D; Herness, S

    1996-02-01

    1. Taste receptor cells produce action potentials as a result of transduction mechanisms that occur when these cells are stimulated with tastants. These action potentials are thought to be key signaling events in relaying information to the central nervous system. We explored the ionic basis of action potentials from dissociated posterior rat taste cells using the patch-clamp recording technique in both voltage-clamp and current-clamp modes. 2. Action potentials were evoked by intracellular injection of depolarizing current pulses from a holding potential of -80 mV. The threshold potential for firing of action potentials was approximately -35 mV; the input resistance of these cells averaged 6.9 G omega. With long depolarizing pulses, two or three action potentials could be elicited with successive attenuation of the spike height. Afterhyperpolarizations were observed often. 3. Both sodium and calcium currents contribute to depolarizing phases of the action potential. Action potentials were blocked completely in the presence of the sodium channel blocker tetrodotoxin. Calcium contributions could be visualized as prolonged calcium plateaus when repolarizing potassium currents were blocked and barium was used as a charge carrier. 4. Outward currents were composed of sustained delayed rectifier current, transient potassium current, and calcium-activated potassium current. Transient and sustained potassium currents activated close to -30 mV and increased monotonically with further depolarization. Up to half the outward current inactivated with decay constants on the order of seconds. Sustained and transient currents displayed steep voltage dependence in conductance and inactivation curves. Half inactivation occurred at -20 +/- 3.1 mV (mean +/- SE) with a decrease of 11.2 +/- 0.5 mV per e-fold. Half maximal conductance occurred at 3.6 +/- 1.8 mV and increased 12.2 +/- 0.6 mV per e-fold. Calcium-activated potassium current was evidenced by application of apamin and the use of calcium-free bathing solution. It was most obvious at more depolarized holding potentials that inactivated much of the transient and sustained outward currents. 5. Potassium currents contribute to both the repolarization and afterhyperpolarization phases of the action potential. These currents were blocked by bath application of tetraethylammonium, which also substantially broadened the action potential. Application of 4-aminopyridine was able to selectively block transient potassium currents without affecting sustained currents. This also broadened the action potential as well as eliminated the afterhyperpolarization. 6. A second type of action potential was observed that differed in duration. These slow action potentials had t1/2 durations of 9.6 ms compared with 1.4 ms for fast action potentials. Input resistances of the two groups were indistinguishable. Approximately one-fourth of the cells eliciting action potentials were of the slow type. 7. Cells eliciting fast action potentials had large outward currents capable of producing a quick repolarization, whereas cells with slow action potentials had small outward currents by comparison. The average values of fast cells were 2,563 pA and 1.4 ms compared with 373 pA and 9.6 ms for slow cells. Current and duration values were related exponentially. No significant difference was noted for inward currents. 8. These results suggest that many taste receptor cells conduct action potentials, which may be classified broadly into two groups on the basis of action potential duration and potassium current magnitude. These groups may be related to cell turnover. The physiological role of action potentials remains to be elucidated but may be important for communication within the taste bud as well as to the afferent nerve.

  5. Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis

    PubMed Central

    Iwai, Yuta; Shibuya, Kazumoto; Misawa, Sonoko; Sekiguchi, Yukari; Watanabe, Keisuke; Amino, Hiroshi; Kuwabara, Satoshi

    2016-01-01

    Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS), suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP) amplitude (index of motor neuronal loss) and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44), ALS patients (n = 140) had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p < 0.05), greater threshold changes in depolarizing threshold electrotonus (p < 0.05) and depolarizing current threshold relationship (i.e. less accommodation; (p < 0.05), greater superexcitability (a measure of fast potassium current; p < 0.05) and reduced late subexcitability (a measure of slow potassium current; p < 0.05), suggesting increased persistent sodium currents and decreased potassium currents. The reduced potassium currents were found even in the patient subgroups with normal CMAP (> 5mV). Regression analyses showed that SDTC (R = -0.22) and depolarizing threshold electrotonus (R = -0.22) increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS. PMID:27383069

  6. Primary, Secondary Metabolites, Photosynthetic Capacity and Antioxidant Activity of the Malaysian Herb Kacip Fatimah (Labisia Pumila Benth) Exposed to Potassium Fertilization under Greenhouse Conditions

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z. E.; Karimi, Ehsan; Ghasemzadeh, Ali

    2012-01-01

    A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (gs), intercellular CO2 (Ci), apparent quantum yield (ξ) and lower dark respiration rates (Rd), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant. PMID:23203128

  7. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel.

    PubMed

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na + /K + -ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K + -battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  8. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na+/K+-ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K+-battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  9. Differential Expression of Inward and Outward Potassium Currents in the Macrophage-like Cell Line J774.1

    DTIC Science & Technology

    1985-04-02

    skeletal muscle (Adrian, Hodgkin & Chandler, 1970), and nerve (Goldman & Schauf , 1973; Thompson, 1977). The general mathematical formalism describes the...594-609. Goldman, L. & Schauf , C. L. (1973) Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant

  10. [Study of relationship between consumption of potassium permanganate and total organic carbon on plastic kitchen utensils, food packages and toys].

    PubMed

    Ohno, Hiroyuki; Suzuki, Masako; Mutsuga, Motoh; Kawamura, Yoko

    2009-10-01

    Consumption of potassium permanganate and total organic carbon (TOC) were investigated as indices of total organic matter migrated into water from plastic kitchen utensils, food packages and toys for children. The samples were soaked in water at 60 or 95 degrees C for 30 min for kitchen utensils and food packages, and at 40 degrees C for 30 min for toys and the eluates were examined, using the two indices. The quantitation limits were both 0.5 microg/mL. Among 97 kitchen utensils and food packages tested, consumption of potassium permanganate and TOC were 0.5-10.9 microg/mL and ND-18.9 microg/mL for polyvinyl chloride (PVC) tea-pot spouts and nylon kitchen utensils, respectively. Among 32 toys tested, the levels were 0.8-45.5 microg/mL and 0.5-8.9 microg/mL from PVC toys and block toys made by ethylene vinyl acetate resin. The levels for other samples were very low. There were large discrepancies between consumption of potassium permanganate and TOC for some PVC products and nylon kitchen utensils. The cause may be a marked difference of the oxidation decomposition rate by potassium permanganate, depending on the kind of organic matter that migrated from the plastics.

  11. [Spatial variability of surface soil nutrients in the landslide area of Beichuan County, South- west China, after 5 · 12 Wenchuan Earthquake].

    PubMed

    Mai, Ji-shan; Zhao, Ting-ning; Zheng, Jiang-kun; Shi, Chang-qing

    2015-12-01

    Based on grid sampling and laboratory analysis, spatial variability of surface soil nutrients was analyzed with GS⁺ and other statistics methods on the landslide area of Fenghuang Mountain, Leigu Town, Beichuan County. The results showed that except for high variability of available phosphorus, other soil nutrients exhibited moderate variability. The ratios of nugget to sill of the soil available phosphorus and soil organic carbon were 27.9% and 28.8%, respectively, showing moderate spatial correlation, while the ratios of nugget to sill of the total nitrogen (20.0%), total phosphorus (24.3%), total potassium (11.1%), available nitrogen (11.2%), and available potassium (22.7%) suggested strong spatial correlation. The total phosphorus had the maximum range (1232.7 m), followed by available nitrogen (541.27 m), total nitrogen (468.35 m), total potassium (136.0 m), available potassium (128.7 m), available phosphorus (116.6 m), and soil organic carbon (93.5 m). Soil nutrients had no significant variation with the increase of altitude, but gradually increased from the landslide area, the transition area, to the little-impacted area. The total and available phosphorus contents of the landslide area decreased by 10.3% and 79.7% compared to that of the little-impacted area, respectively. The soil nutrient contents in the transition area accounted for 31.1%-87.2% of that of the little-impacted area, with the nant reason for the spatial variability of surface soil nutrients.

  12. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    PubMed

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  14. A human intermediate conductance calcium-activated potassium channel

    PubMed Central

    Ishii, Takahiro M.; Silvia, Christopher; Hirschberg, Birgit; Bond, Chris T.; Adelman, John P.; Maylie, James

    1997-01-01

    An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is ≈50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 μM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3.5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 μM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel. PMID:9326665

  15. Total body water and total body potassium in anorexia nervosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dempsey, D.T.; Crosby, L.O.; Lusk, E.

    1984-08-01

    In the ill hospitalized patient with clinically relevant malnutrition, there is a measurable decrease in the ratio of the total body potassium to total body water (TBK/TBW) and a detectable increase in the ratio of total exchangeable sodium to total exchangeable potassium (Nae/Ke). To evaluate body composition analyses in anorexia nervosa patients with chronic uncomplicated semistarvation, TBK and TBW were measured by whole body K40 counting and deuterium oxide dilution in 10 females with stable anorexia nervosa and 10 age-matched female controls. The ratio of TBK/TBW was significantly (p less than 0.05) higher in anorexia nervosa patients than controls. Themore » close inverse correlation found in published studies between TBK/TBW and Nae/Ke together with our results suggest that in anorexia nervosa, Nae/Ke may be low or normal. A decreased TBK/TBW is not a good indicator of malnutrition in the anorexia nervosa patient. The use of a decreased TBK/TBW ratio or an elevated Nae/Ke ratio as a definition of malnutrition may result in inappropriate nutritional management in the patient with severe nonstressed chronic semistarvation.« less

  16. Action Potential Broadening in Capsaicin-Sensitive DRG Neurons from Frequency-Dependent Reduction of Kv3 Current

    PubMed Central

    Liu, Pin W.; Blair, Nathaniel T.

    2017-01-01

    Action potential (AP) shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter, capsaicin-sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz produced progressive broadening of the APs. Stimulation at 10 Hz for 3 s resulted in an increase in AP width by an average of 76 ± 7% at 22°C and by 38 ± 3% at 35°C. AP clamp experiments showed that spike broadening results from frequency-dependent reduction of potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC50 <100 μm) and block by the peptide inhibitor blood depressing substance I (BDS-I). There was a small component of Kv1-mediated current during AP repolarization, but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of calcium-dependent potassium current that showed frequency-dependent reduction, but the contribution to overall potassium current reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major contribution to spike repolarization in small-diameter DRG neurons and undergo frequency-dependent reduction, leading to spike broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could mitigate the frequency-dependent decreases in conduction velocity typical of C-fiber axons. SIGNIFICANCE STATEMENT Small-diameter dorsal root ganglia (DRG) neurons mediating nociception and other sensory modalities express many types of potassium channels, but how they combine to control firing patterns and conduction is not well understood. We found that action potentials of small-diameter rat DRG neurons showed spike broadening at frequencies as low as 1 Hz and that spike broadening resulted predominantly from frequency-dependent inactivation of Kv3 channels. Spike width helps to control transmitter release, conduction velocity, and firing patterns and understanding the role of particular potassium channels can help to guide new pharmacological strategies for targeting pain-sensing neurons selectively. PMID:28877968

  17. Action Potential Broadening in Capsaicin-Sensitive DRG Neurons from Frequency-Dependent Reduction of Kv3 Current.

    PubMed

    Liu, Pin W; Blair, Nathaniel T; Bean, Bruce P

    2017-10-04

    Action potential (AP) shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter, capsaicin-sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz produced progressive broadening of the APs. Stimulation at 10 Hz for 3 s resulted in an increase in AP width by an average of 76 ± 7% at 22°C and by 38 ± 3% at 35°C. AP clamp experiments showed that spike broadening results from frequency-dependent reduction of potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC 50 <100 μm) and block by the peptide inhibitor blood depressing substance I (BDS-I). There was a small component of Kv1-mediated current during AP repolarization, but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of calcium-dependent potassium current that showed frequency-dependent reduction, but the contribution to overall potassium current reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major contribution to spike repolarization in small-diameter DRG neurons and undergo frequency-dependent reduction, leading to spike broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could mitigate the frequency-dependent decreases in conduction velocity typical of C-fiber axons. SIGNIFICANCE STATEMENT Small-diameter dorsal root ganglia (DRG) neurons mediating nociception and other sensory modalities express many types of potassium channels, but how they combine to control firing patterns and conduction is not well understood. We found that action potentials of small-diameter rat DRG neurons showed spike broadening at frequencies as low as 1 Hz and that spike broadening resulted predominantly from frequency-dependent inactivation of Kv3 channels. Spike width helps to control transmitter release, conduction velocity, and firing patterns and understanding the role of particular potassium channels can help to guide new pharmacological strategies for targeting pain-sensing neurons selectively. Copyright © 2017 the authors 0270-6474/17/379705-10$15.00/0.

  18. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride.

    PubMed

    Wang, Li; Li, Yonghua; Li, Hairong; Liao, Xiaoyong; Wei, Binggan; Ye, Bixiong; Zhang, Fengying; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas

    2014-12-01

    Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil.

  19. Hyperkalemia.

    PubMed

    Hollander-Rodriguez, Joyce C; Calvert, James F

    2006-01-15

    Hyperkalemia is a potentially life-threatening metabolic problem caused by inability of the kidneys to excrete potassium, impairment of the mechanisms that move potassium from the circulation into the cells, or a combination of these factors. Acute episodes of hyperkalemia commonly are triggered by the introduction of a medication affecting potassium homeostasis; illness or dehydration also can be triggers. In patients with diabetic nephropathy, hyperkalemia may be caused by the syndrome of hyporeninemic hypoaldosteronism. The presence of typical electrocardiographic changes or a rapid rise in serum potassium indicates that hyperkalemia is potentially life threatening. Urine potassium, creatinine, and osmolarity should be obtained as a first step in determining the cause of hyperkalemia, which directs long-term treatment. Intravenous calcium is effective in reversing electrocardiographic changes and reducing the risk of arrhythmias but does not lower serum potassium. Serum potassium levels can be lowered acutely by using intravenous insulin and glucose, nebulized beta2 agonists, or both. Sodium polystyrene therapy, sometimes with intravenous furosemide and saline, is then initiated to lower total body potassium levels.

  20. Postnatal development of A-type and Kv1- and Kv2-mediated potassium channel currents in neocortical pyramidal neurons

    PubMed Central

    Guan, Dongxu; Horton, Leslie R.; Armstrong, William E.

    2011-01-01

    Potassium channels regulate numerous aspects of neuronal excitability, and several voltage-gated K+ channel subunits have been identified in pyramidal neurons of rat neocortex. Previous studies have either considered the development of outward current as a whole or divided currents into transient, A-type and persistent, delayed rectifier components but did not differentiate between current components defined by α-subunit type. To facilitate comparisons of studies reporting K+ currents from animals of different ages and to understand the functional roles of specific current components, we characterized the postnatal development of identified Kv channel-mediated currents in pyramidal neurons from layers II/III from rat somatosensory cortex. Both the persistent/slowly inactivating and transient components of the total K+ current increased in density with postnatal age. We used specific pharmacological agents to test the relative contributions of putative Kv1- and Kv2-mediated currents (100 nM α-dendrotoxin and 600 nM stromatoxin, respectively). A combination of voltage protocol, pharmacology, and curve fitting was used to isolate the rapidly inactivating A-type current. We found that the density of all identified current components increased with postnatal age, approaching a plateau at 3–5 wk. We found no significant changes in the relative proportions or kinetics of any component between postnatal weeks 1 and 5, except that the activation time constant for A-type current was longer at 1 wk. The putative Kv2-mediated component was the largest at all ages. Immunocytochemistry indicated that protein expression for Kv4.2, Kv4.3, Kv1.4, and Kv2.1 increased between 1 wk and 4–5 wk of age. PMID:21451062

  1. Postnatal development of A-type and Kv1- and Kv2-mediated potassium channel currents in neocortical pyramidal neurons.

    PubMed

    Guan, Dongxu; Horton, Leslie R; Armstrong, William E; Foehring, Robert C

    2011-06-01

    Potassium channels regulate numerous aspects of neuronal excitability, and several voltage-gated K(+) channel subunits have been identified in pyramidal neurons of rat neocortex. Previous studies have either considered the development of outward current as a whole or divided currents into transient, A-type and persistent, delayed rectifier components but did not differentiate between current components defined by α-subunit type. To facilitate comparisons of studies reporting K(+) currents from animals of different ages and to understand the functional roles of specific current components, we characterized the postnatal development of identified Kv channel-mediated currents in pyramidal neurons from layers II/III from rat somatosensory cortex. Both the persistent/slowly inactivating and transient components of the total K(+) current increased in density with postnatal age. We used specific pharmacological agents to test the relative contributions of putative Kv1- and Kv2-mediated currents (100 nM α-dendrotoxin and 600 nM stromatoxin, respectively). A combination of voltage protocol, pharmacology, and curve fitting was used to isolate the rapidly inactivating A-type current. We found that the density of all identified current components increased with postnatal age, approaching a plateau at 3-5 wk. We found no significant changes in the relative proportions or kinetics of any component between postnatal weeks 1 and 5, except that the activation time constant for A-type current was longer at 1 wk. The putative Kv2-mediated component was the largest at all ages. Immunocytochemistry indicated that protein expression for Kv4.2, Kv4.3, Kv1.4, and Kv2.1 increased between 1 wk and 4-5 wk of age.

  2. The renal response to potassium stress: integrating past with present.

    PubMed

    Boyd-Shiwarski, Cary R; Subramanya, Arohan R

    2017-09-01

    The current review combines past findings with recent advances in our understanding of the homeostatic response to potassium imbalance. Following the ingestion of a dietary potassium load, a combination of extrarenal and renal mechanisms act to maintain extracellular K+ within a tight window. Through hormonal regulation and direct K+ sensing, the nephron is ideally suited to respond to wide shifts in external K+ balance. Current evidence indicates that dietary K+ loading triggers a coordinated kaliuretic response that appears to involve voltage-dependent changes in sodium transport across multiple nephron segments, including the proximal tubule, medullary loop of Henle, and distal tubule. Inhibition of sodium transport in these segments would accomplish the final goal of enhancing distal NaCl delivery, luminal flow, and K+ secretion in the aldosterone sensitive distal nephron (ASDN). Ongoing research seeks to define the relationship between potassium and volume homeostasis by elucidating pathways that couple renal K+ sensing and tubular function during the potassium stress response.

  3. Intakes of magnesium, potassium, and calcium and the risk of stroke among men.

    PubMed

    Adebamowo, Sally N; Spiegelman, Donna; Flint, Alan J; Willett, Walter C; Rexrode, Kathryn M

    2015-10-01

    Intakes of magnesium, potassium, and calcium have been inversely associated with the incidence of hypertension, a known risk factor for stroke. However, only a few studies have examined intakes of these cations in relation to risk of stroke. The aim of this study was to investigate whether high intake of magnesium, potassium, and calcium is associated with reduced stroke risk among men. We prospectively examined the associations between intakes of magnesium, potassium, and calcium from diet and supplements, and the risk of incident stroke among 42 669 men in the Health Professionals Follow-up Study, aged 40 to 75 years and free of diagnosed cardiovascular disease and cancer at baseline in 1986. We calculated the hazard ratio of total, ischemic, and haemorrhagic strokes by quintiles of each cation intake, and of a combined dietary score of all three cations, using multivariate Cox proportional hazard models. During 24 years of follow-up, 1547 total stroke events were documented. In multivariate analyses, the relative risks and 95% confidence intervals of total stroke for men in the highest vs. lowest quintile were 0·87 (95% confidence interval, 0·74-1·02; P, trend = 0·04) for dietary magnesium, 0·89 (95% confidence interval, 0·76-1·05; P, trend = 0·10) for dietary potassium, and 0·89 (95% confidence interval, 0·75-1·04; P, trend = 0·25) for dietary calcium intake. The relative risk of total stroke for men in the highest vs. lowest quintile was 0·74 (95% confidence interval, 0·59-0·93; P, trend = 0·003) for supplemental magnesium, 0·66 (95% confidence interval, 0·50-0·86; P, trend = 0·002) for supplemental potassium, and 1·01 (95% confidence interval, 0·84-1·20; P, trend = 0·83) for supplemental calcium intake. For total intake (dietary and supplemental), the relative risk of total stroke for men in the highest vs. lowest quintile was 0·83 (95% confidence interval, 0·70-0·99; P, trend = 0·04) for magnesium, 0·88 (95% confidence interval, 0·75-4; P, trend = 6) for potassium, and 3 (95% confidence interval, 79-09; P, trend = 84) for calcium. Men in the highest quintile for a combined dietary score of all three cations had a multivariate relative risk of 0·79 (95% confidence interval, 0·67-0·92; P, trend = 0·008) for total stroke, compared with those in the lowest. A diet rich in magnesium, potassium, and calcium may contribute to reduced risk of stroke among men. Because of significant collinearity, the independent contribution of each cation is difficult to define. © 2015 World Stroke Organization.

  4. Potassium uptake and redistribution in Cabernet Sauvignon and Syrah grape tissues and its relationship with grape quality parameters.

    PubMed

    Ramos, María Concepción; Romero, María Paz

    2017-08-01

    The present study investigated the potassium (K) levels in petiole and other grape tissues during ripening in Vitis vinifera Shiraz and Cabernet Sauvignon, grown in areas with differences in vigour, as well as with and without leaf thinning. Potassium levels in petiole, seeds, skin and flesh were related to grape pH, acidity, berry weight and total soluble solids. Differences in K levels in petiole were in accordance with the differences in soil K. Leaf thinning gave rise to higher K levels in petiole but, in grape tissues, the differences were not significant in all samplings, with greater differences at the end of the growing cycle. Potassium levels per berry in grape tissues increased from veraison to harvest, with K mainly accumulated in skins and, to a lesser extent, in flesh. Potassium levels in flesh positively correlated with pH and total soluble solids, whereas the correlation with titratable acidity was negative. Grape juice pH and total soluble solids positively correlated with K, whereas titratable acidity correlated negatively. Leaf thinning increased K levels in petiole, although differences in K levels in grape tissues were not significant. This suggests the need to consider the K berry concentration when aiming to optimise K fertilisation programmes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain

    PubMed Central

    Sakai, Atsushi; Saitow, Fumihito; Maruyama, Motoyo; Miyake, Noriko; Miyake, Koichi; Shimada, Takashi; Okada, Takashi; Suzuki, Hidenori

    2017-01-01

    miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviates mechanical allodynia in a rat model of neuropathic pain. Plausible targets for the miR-17-92 cluster include genes encoding numerous voltage-gated potassium channels and their modulatory subunits. Single-cell analysis reveals extensive co-expression of miR-17-92 cluster and its predicted targets in primary sensory neurons. miR-17-92 downregulates the expression of potassium channels, and reduced outward potassium currents, in particular A-type currents. Combined application of potassium channel modulators synergistically alleviates mechanical allodynia induced by nerve injury or miR-17-92 overexpression. miR-17-92 cluster appears to cooperatively regulate the function of multiple voltage-gated potassium channel subunits, perpetuating mechanical allodynia. PMID:28677679

  6. [Experimental research on individual-specific rapid potassium supplementation strategy for fatal severe hypokalemia].

    PubMed

    Du, Yu; Mou, Yi; Liu, Jin

    2018-05-01

    To explore the effectiveness and safety of the individual-specific rapid potassium supplementation strategy, and to provide experimental basis for treating fatal severe hypokalemia. An acute fatal severe hypokalemia model was reproduced in 20 healthy adult Japanese big ear white rabbits with half lethal dose (LD50) of barium chloride (BaCl 2 ) solution 168 mg×5 mL -1 ×kg -1 . The rabbits were divided into conventional potassium supplementation group and individual-specific rapid potassium supplementation group according to random number table method with 10 rabbits in each group. All the animals were injected with 3% KCl through the auricular marginal veins by a micro-injection pump, and the target plasma potassium concentration was 4 mmol/L. The rabbits in conventional potassium supplementation group were administered continuously potassium infusion at the standard infusion rate of 0.4 mmol×kg -1 ×h -1 . And those in the individual-specific rapid potassium supplementation group were treated in two steps: first, a loading dose of potassium was rapidly injected within 5 minutes, and this step was repeated until the plasma potassium concentration increased to 3.5 mmol/L; second, a sustaining dose of potassium infusion was continued at the rate of 0.4 mmol×kg -1 ×h -1 after the increase in plasma potassium concentration. The changes in electrocardiogram, blood pressure, respiratory rate (RR), plasma potassium concentration, urine potassium concentration, urine volume, potassium content in extracellular fluid (ECF) and other parameters were monitored. The potassium supplementation, potassium excretion and potassium cross cell status were recorded. Adverse reactions and 7-day death were observed. Since the BaCl 2 administration, the plasma potassium concentration of all experimental rabbits were significantly lower than baseline at 0.5 hour, which was decreased below 2.5 mmol/L at 2.0 hours when the ventricular arrhythmias appeared, indicating the reproduction of fatal severe hypokalemia model was successful. There was no significant difference in gender, weight, baseline heart rate (HR), RR, mean arterial pressure (MAP), blood gas analysis or K + , Na + , Cl - levels between the two groups. Compared with baseline levels, MAP was significantly decreased and RR was significantly increased before potassium supplementation in both groups, but the parameters were improved significantly and restored to the baseline after potassium supplementation. There was no significant difference in MAP or RR during potassium supplementation between the two groups. The amount of potassium supplementation in two groups showed no significant differences. However, compared with the conventional potassium supplementation group, in the individual-specific rapid potassium supplementation group, the increase in plasma potassium concentration, urine potassium concentration, and the increase in potassium content in ECF were significantly increased [the increase in plasma potassium concentration (mmol/L): 2.40±0.33 vs. 1.51±0.75, urine potassium concentration (mmol/L): 164.94±18.07 vs. 108.35±19.67, the increase in potassium content in ECF (mmol): 1.17±0.16 vs. 0.73±0.35], the duration of potassium infusion was shortened (hours: 2.1±0.7 vs. 4.7±1.4), the total urine volume, renal excretion of potassium, and the amount of transcellular potassium shift were significantly decreased [total urine volume (mL): 6.40±1.78 vs. 13.60±4.69, renal excretion of potassium (mmol): 1.04±0.26 vs. 1.46±0.51, amount of transcellular potassium shift (mmol): 1.39±0.21 vs. 1.84±0.62], the duration of arrhythmia was shortened (minutes: 19.60±8.92 vs. 71.80±9.84), with statistically significant differences (all P < 0.05). Hyperkalemia did not occur in both groups. The rabbits of the individual-specific rapid potassium supplementation group were all alive, while 4 died in the conventional potassium supplementation group, and statistically significant difference was found between the two groups (P < 0.01). These data demonstrate that the individual-specific rapid potassium supplementation strategy can shorten the time for correcting hypokalemia, which is a better option to reverse life-threatening arrhythmia caused by severe hypokalemia, with a high rescue success rate. The process of potassium supplement is safe and effective.

  7. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel.

    PubMed

    Wang, Ming-Xiao; Cuevas, Catherina A; Su, Xiao-Tong; Wu, Peng; Gao, Zhong-Xiuzi; Lin, Dao-Hong; McCormick, James A; Yang, Chao-Ling; Wang, Wen-Hui; Ellison, David H

    2018-04-01

    Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. Potassium intake and risk of stroke in women with hypertension and nonhypertension in the Women's Health Initiative.

    PubMed

    Seth, Arjun; Mossavar-Rahmani, Yasmin; Kamensky, Victor; Silver, Brian; Lakshminarayan, Kamakshi; Prentice, Ross; Van Horn, Linda; Wassertheil-Smoller, Sylvia

    2014-10-01

    Dietary potassium has been associated with lower risk of stroke, but there are little data on dietary potassium effects on different stroke subtypes or in older women with hypertension and nonhypertension. The study population consisted of 90 137 postmenopausal women aged 50 to 79 at enrollment, free of stroke history at baseline, followed up prospectively for an average of 11 years. Outcome variables were total, ischemic, and hemorrhagic stroke, and all-cause mortality. Incidence was compared across quartiles of dietary potassium intake, and hazard ratios were obtained from Cox proportional hazards models after adjusting for potential confounding variables, and in women with hypertension and nonhypertension separately. Mean dietary potassium intake was 2611 mg/d. Highest quartile of potassium intake was associated with lower incidence of ischemic and hemorrhagic stroke and total mortality. Multivariate analyses comparing highest to lowest quartile of potassium intake indicated a hazard ratio of 0.90 (95% confidence interval, 0.85-0.95) for all-cause mortality, 0.88 (95% confidence interval, 0.79-0.98) for all stroke, and 0.84 (95% confidence interval, 0.74-0.96) for ischemic stroke. The effect on ischemic stroke was more apparent in women with nonhypertension among whom there was a 27% lower risk with hazard ratio of 0.73 (95% confidence interval, 0.60-0.88), interaction P<0.10. There was no association with hemorrhagic stroke. High potassium intake is associated with a lower risk of all stroke and ischemic stroke, as well as all-cause mortality in older women, particularly those who are not hypertensive. © 2014 American Heart Association, Inc.

  9. Potassium intake and risk of stroke in hypertensive and non-hypertensive women in the Women’s Health Initiative

    PubMed Central

    Seth, Arjun; Mossavar-Rahmani, Yasmin; Kamensky, Victor; Silver, Brian; Lakshminarayan, Kamakshi; Prentice, Ross; Van Horn, Linda; Wassertheil-Smoller, Sylvia

    2014-01-01

    Background and Purpose Dietary potassium has been associated with lower risk of stroke but there is little data on dietary potassium effects on different stroke subtypes or in older hypertensive and non-hypertensive women. Methods The study population consisted of 90,137 postmenopausal women aged 50–79 at enrollment, free of stroke history at baseline, followed prospectively for an average of 11 years. Outcome variables were total, ischemic, and hemorrhagic stroke, and all-cause mortality. Incidence was compared across quartiles of dietary potassium intake and hazard ratios were obtained from Cox proportional hazards models after adjusting for potential confounding variables, and in hypertensive and non-hypertensive women separately. Results Mean dietary potassium intake was 2611 mg/day. Highest quartile of potassium intake was associated with lower incidence of ischemic and hemorrhagic stroke, and total mortality. Multivariate analyses comparing highest to lowest quartile of potassium intake, indicated a hazard ratio (HR) for all-cause mortality of 0.90 (95% CI: 0.85 – 0.95), for all stroke of HR=0.88 (95% CI: 0.79 – 0.98), and for ischemic stroke of 0.84 (95% CI: 0.74 – 0.96). The effect on ischemic stroke was more apparent in non-hypertensive women among whom there was a 27% lower risk with HR of 0.73 (95% CI: 0.60 – 0.88), interaction p-value <.10. There was no association with hemorrhagic stroke. Conclusions High potassium intake is associated with a lower risk of all stroke and ischemic stroke as well as all-cause mortality in older women, particularly those who are not hypertensive. PMID:25190445

  10. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: a meta-analysis of randomized controlled trials.

    PubMed

    Binia, Aristea; Jaeger, Jonathan; Hu, Youyou; Singh, Anurag; Zimmermann, Diane

    2015-08-01

    To evaluate the efficacy of daily potassium intake on decreasing blood pressure in non-medicated normotensive or hypertensive patients, and to determine the relationship between potassium intake, sodium-to-potassium ratio and reduction in blood pressure. Mixed-effect meta-analyses and meta-regression models. Medline and the references of previous meta-analyses. Randomized controlled trials with potassium supplementation, with blood pressure as the primary outcome, in non-medicated patients. Fifteen randomized controlled trials of potassium supplementation in patients without antihypertensive medication were selected for the meta-analyses (917 patients). Potassium supplementation resulted in reduction of SBP by 4.7 mmHg [95% confidence interval (CI) 2.4-7.0] and DBP by 3.5 mmHg (95% CI 1.3-5.7) in all patients. The effect was found to be greater in hypertensive patients, with a reduction of SBP by 6.8 mmHg (95% CI 4.3-9.3) and DBP by 4.6 mmHg (95% CI 1.8-7.5). Meta-regression analysis showed that both increased daily potassium excretion and decreased sodium-to-potassium ratio were associated with blood pressure reduction (P < 0.05). Increased total daily potassium urinary excretion from 60 to 100 mmol/day and decrease of sodium-to-potassium ratio were shown to be necessary to explain the estimated effect. Potassium supplementation is associated with reduction of blood pressure in patients who are not on antihypertensive medication, and the effect is significant in hypertensive patients. The reduction in blood pressure significantly correlates with decreased daily urinary sodium-to-potassium ratio and increased urinary potassium. Patients with elevated blood pressure may benefit from increased potassium intake along with controlled or decreased sodium intake.

  11. Docetaxel modulates the delayed rectifier potassium current (IK) and ATP-sensitive potassium current (IKATP) in human breast cancer cells.

    PubMed

    Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun

    2015-04-01

    Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.

  12. Sodium and potassium urinary excretion levels of preschool children: Individual, daily, and seasonal differences.

    PubMed

    Yasutake, Kenichiro; Nagafuchi, Mikako; Izu, Ryoji; Kajiyama, Tomomi; Imai, Katsumi; Murata, Yusuke; Ohe, Kenji; Enjoji, Munechika; Tsuchihashi, Takuya

    2017-06-01

    In this study, the authors measured sodium and potassium concentrations in spot urine samples of preschool children on multiple days, and evaluated individual, daily, and seasonal effects. A total of 104 healthy preschool children aged 4 to 5 years were studied. Urine samples were collected from the first urine of the day after waking for three consecutive days (Monday-Wednesday) four times a year (spring, summer, autumn, winter). The authors estimated the daily urine volume as 500 mL and daily creatinine excretion as 300 mg, and used these to calculate daily sodium and potassium excretion levels. Daily sodium and potassium excretion levels and sodium to potassium ratios were highly variable. The coefficient variant in the children's excretion levels were also high within and between individuals. Sodium excretion levels and sodium to potassium ratios were higher on Monday (weekend sodium intakes) than Tuesday. Season had no effect on sodium or potassium excretion levels, but the sodium to potassium ratio was higher in summer than in winter. In conclusion, levels of urinary sodium excretion are comparatively high and those of potassium are low in preschool students, with high variability within and between individuals. ©2017 Wiley Periodicals, Inc.

  13. Geometric and electronic structures of potassium-adsorbed rubrene complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tsung-Lung, E-mail: quantum@mail.ncyu.edu.tw; Lu, Wen-Cai, E-mail: wencailu@jlu.edu.cn; State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021

    2015-06-28

    The geometric and electronic structures of potassium-adsorbed rubrene complexes are studied in this article. It is found that the potassium-rubrene (K{sub 1}RUB) complexes inherit the main symmetry characteristics from their pristine counterparts and are thus classified into D{sub 2}- and C{sub 2h}-like complexes according to the relative orientations of the four phenyl side groups. The geometric structures of K{sub 1}RUB are governed by two general effects on the total energy: Deformation of the carbon frame of the pristine rubrene increases the total energy, while proximity of the potassium ion to the phenyl ligands decreases the energy. Under these general rules,more » the structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB, however, exhibit their respective peculiarities. These peculiarities can be illustrated by their energy profiles of equilibrium structures. For the potassium adsorption-sites, the D{sub 2}-like complexes show minimum-energy basins, whereas the C{sub 2h}-like ones have single-point minimum-energies. If the potassium atom ever has the energy to diffuse from the minimum-energy site, the potassium diffusion path on the D{sub 2}-like complexes is most likely along the backbone in contrast to the C{sub 2h}-like ones. Although the electronic structures of the minimum-energy structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB are very alike, decompositions of their total spectra reveal insights into the electronic structures. First, the spectral shapes are mainly determined by the facts that, in comparison with the backbone carbons, the phenyl carbons have more uniform chemical environments and far less contributions to the electronic structures around the valence-band edge. Second, the electron dissociated from the potassium atom mainly remains on the backbone and has little effects on the electronic structures of the phenyl groups. Third, the two phenyls on the same side of the backbone as the potassium atom have more similar chemical environments than the other two on the opposite side, which leads to the largely enhanced resemblance of the simulated to the experimental spectra. Fourth, the HOMO and LUMO are mainly the α and β components of the 2p orbitals of the backbone carbons, respectively.« less

  14. Microbiological changes occurring in trout fillets (Oncorhynchus mykiss W. 1792) salted and treated with potassium sorbate during production and storage.

    PubMed

    Oksüztepe, Gülsüm; Gürel Inanli, Ayşe

    2007-08-15

    In this study, microbiological changes during processing and storage of salted-cured trout fillets treated with potassium sorbate were investigated. For this purpose, 10 and 15% (w/w) NaCl and 1, 5 and 10% (w/v) potassium sorbate were applied to the fillets. The processed fillets were vacuum-packed and storage at 4 degrees C. The samples were analyzed in some periods of production and in the storage days of 7, 14, 28, 42, 56, 70 and 84 for numbers of total mesophilic aerob, psycrophylic, yeast and mould. In conclusion, the microbiological quality of all samples treated with 15% NaCl and potassium sorbate were found better. Consequently, it can be concluded that the usage of potassium sorbate may be useful and a synergistic effect between salt and potassium sorbate determined.

  15. Change of heavy metal speciation, mobility, bioavailability, and ecological risk during potassium ferrate treatment of waste-activated sludge.

    PubMed

    Yu, Ming; Zhang, Jian; Tian, Yu

    2018-05-01

    The effects of potassium ferrate treatment on the heavy metal concentrations, speciation, mobility, bioavailability, and environmental risk in waste-activated sludge (WAS) at various dosages of potassium ferrate and different treatment times were investigated. Results showed that the total concentrations of all metals (except Cd) were decreased slightly after treatment and the order of metal concentrations in WAS and treated waste-activated sludge (TWAS) was Mg > Zn > Cu > Cr > Pb > Ni > Cd. Most heavy metals in WAS remained in TWAS after potassium ferrate treatment with metal residual rates over 67.8% in TWAS. The distribution of metal speciation in WAS was affected by potassium ferrate treatment. The bioavailability and the mobility of heavy metals (except Mg) in TWAS were mitigated, compared to those in WAS. Meanwhile, the environmental risk of heavy metals (except Pb and Cu) was alleviated after potassium ferrate treatment.

  16. A study of tumour growth based on stoichiometric principles: a continuous model and its discrete analogue.

    PubMed

    Saleem, M; Agrawal, Tanuja; Anees, Afzal

    2014-01-01

    In this paper, we consider a continuous mathematically tractable model and its discrete analogue for the tumour growth. The model formulation is based on stoichiometric principles considering tumour-immune cell interactions in potassium (K (+))-limited environment. Our both continuous and discrete models illustrate 'cancer immunoediting' as a dynamic process having all three phases namely elimination, equilibrium and escape. The stoichiometric principles introduced into the model allow us to study its dynamics with the variation in the total potassium in the surrounding of the tumour region. It is found that an increase in the total potassium may help the patient fight the disease for a longer period of time. This result seems to be in line with the protective role of the potassium against the risk of pancreatic cancer as has been reported by Bravi et al. [Dietary intake of selected micronutrients and risk of pancreatic cancer: An Italian case-control study, Ann. Oncol. 22 (2011), pp. 202-206].

  17. A study of tumour growth based on stoichiometric principles: a continuous model and its discrete analogue

    PubMed Central

    Saleem, M.; Agrawal, Tanuja; Anees, Afzal

    2014-01-01

    In this paper, we consider a continuous mathematically tractable model and its discrete analogue for the tumour growth. The model formulation is based on stoichiometric principles considering tumour-immune cell interactions in potassium (K +)-limited environment. Our both continuous and discrete models illustrate ‘cancer immunoediting’ as a dynamic process having all three phases namely elimination, equilibrium and escape. The stoichiometric principles introduced into the model allow us to study its dynamics with the variation in the total potassium in the surrounding of the tumour region. It is found that an increase in the total potassium may help the patient fight the disease for a longer period of time. This result seems to be in line with the protective role of the potassium against the risk of pancreatic cancer as has been reported by Bravi et al. [Dietary intake of selected micronutrients and risk of pancreatic cancer: An Italian case-control study, Ann. Oncol. 22 (2011), pp. 202–206]. PMID:24963981

  18. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  19. A-type potassium currents in smooth muscle.

    PubMed

    Amberg, Gregory C; Koh, Sang Don; Imaizumi, Yuji; Ohya, Susumu; Sanders, Kenton M

    2003-03-01

    A-type currents are voltage-gated, calcium-independent potassium (Kv) currents that undergo rapid activation and inactivation. Commonly associated with neuronal and cardiac cell-types, A-type currents have also been identified and characterized in vascular, genitourinary, and gastrointestinal smooth muscle cells. This review examines the molecular identity, biophysical properties, pharmacology, regulation, and physiological function of smooth muscle A-type currents. In general, this review is intended to facilitate the comparison of A-type currents present in different smooth muscles by providing a comprehensive report of the literature to date. This approach should also aid in the identification of areas of research requiring further attention.

  20. Potassium Currents of Olfactory Bulb Juxtaglomerular Cells: Characterization, Simulation, and Implications for Plateau Potential Firing

    PubMed Central

    Masurkar, Arjun V.; Chen, Wei R.

    2011-01-01

    Odor identity is encoded by the activity of olfactory bulb glomeruli, which receive primary sensory input and transfer it to projection neurons. Juxtaglomerular cells (JGCs) may influence glomerular processing via firing of long lasting plateau potentials. Though inward currents have been investigated, little is known regarding potassium current contribution to JGC plateau potentials. We pursued study of these currents, with the overarching goal of creating components for a computational model of JGC plateau potential firing. In conditions minimizing calcium-activated potassium current (IK(Ca)), we used whole cell voltage clamp and in vitro slice preparations to characterize three potassium currents in rat JGCs. The prominent component Ikt1 displayed rapid kinetics (τ10%−90% rise 0.6–2ms, τinactivation 5–10ms) and was blocked by high concentration 4-AP (5mM) and TEA (40mM). It had half maximal activation at −10mV (V½max) and little inactivation at rest. Ikt2, with slower kinetics (τ10%−90% rise 11–15ms, τinactivation 100–300ms), was blocked by low concentration 4-AP (0.5mM) and TEA (5mM). The V½max was 0mV and inactivation was also minimal at rest. Sustained current Ikt3 showed sensitivity to low concentration 4-AP and TEA, and had V½max of +10mV. Further experiments, in conditions of physiologic calcium buffering, suggested that IK(Ca) contributed to Ikt3 with minimal effect on plateau potential evolution. We transformed these characterizations into Hodgkin-Huxley models that robustly mimicked experimental data. Further simulation demonstrated that Ikt1 would be most efficiently activated by plateau potential waveforms, predicting a critical role in shaping JGC firing. These studies demonstrated that JGCs possess a unique potassium current profile, with delayed rectifier (Ikt3), atypical A-current (Ikt1), and D-current (Ikt2) in accordance with known expression patterns in OB glomeruli. Our simulations also provide an initial framework for more integrative models of JGC plateau potential firing. PMID:21704678

  1. Systematic review and meta-analysis of randomised controlled trials on the effects of potassium supplements on serum potassium and creatinine.

    PubMed

    Cappuccio, Francesco P; Buchanan, Laura A; Ji, Chen; Siani, Alfonso; Miller, Michelle A

    2016-08-26

    High potassium intake could prevent stroke, but supplementation is considered hazardous. We assessed the effect of oral potassium supplementation on serum or plasma potassium levels and renal function. We updated a systematic review of the effects of potassium supplementation in randomised clinical trials carried out worldwide, published in 2013, extending it to July 2015. We followed the PRISMA guidelines. Any individual taking part in a potassium supplementation randomised clinical trial. Studies included met the following criteria: randomised clinical trials, potassium supplement given and circulating potassium levels reported. Oral potassium supplementation. Serum or plasma potassium and serum or plasma creatinine. A total of 20 trials (21 independent groups) were included (1216 participants from 12 different countries). All but 2 were controlled (placebo n=16, control n=2). Of these trials, 15 were crossover, 4 had a parallel group and 1 was sequential. The duration of supplementation varied from 2 to 24 weeks and the amount of potassium given from 22 to 140 mmol/day. In the pooled analysis, potassium supplementation caused a small but significant increase in circulating potassium levels (weighted mean difference (WMD) 0.14 mmol/L, 95% CI 0.09 to 0.19, p<1×10(-5)), not associated with dose or duration of treatment. The average increase in urinary potassium excretion was 45.75 mmol/24 hours, 95% CI 38.81 to 53.69, p<1×10(-5). Potassium supplementation did not cause any change in circulating creatinine levels (WMD 0.30 µmol/L, 95% CI -1.19 to 1.78, p=0.70). In short-term studies of relatively healthy persons, a moderate oral potassium supplement resulted in a small increase in circulating potassium levels and no change in renal function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. An electrophysiological study on the effects of Pa-1G (a phospholipase A(2)) from the venom of king brown snake, Pseudechis australis, on neuromuscular function.

    PubMed

    Fatehi, M; Rowan, E G; Harvey, A L

    2002-01-01

    The effects of Pa-1G, a phospholipase A(2) (PLA(2)) from the venom of the Australian king brown snake (Pseudechis australis) were determined on the release of acetylcholine, muscle resting membrane potential and motor nerve terminal action potential at mouse neuromuscular junction. Intracellular recording from endplate regions of mouse triangularis sterni nerve-muscle preparations revealed that Pa-1G (800 nM) significantly reduced the amplitude of endplate potentials within 10 min exposure. The quantal content of endplate potentials was decreased to 58+/-6% of control after 30 min exposure to 800 nM Pa-1G. The toxin also caused a partial depolarisation of mouse muscle fibres within 60 min exposure. Extracellular recording of action potentials at motor nerve terminals showed that Pa-1G reduced the waveforms associated with both sodium and potassium conductances. To investigate whether this was a direct or indirect effect of the toxin on these ionic currents, whole cell patch clamp experiments were performed using human neuroblastoma (SK-N-SH) cells and B82 mouse fibroblasts stably transfected with rKv1.2. Patch clamp recording experiments confirmed that potassium currents sensitive to alpha-dendrotoxin recorded from B82 cells and sodium currents in SK-N-SH cells were not affected by the toxin. Since neither facilitation of acetylcholine release at mouse neuromuscular junction nor depression of potassium currents in B82 cells has been observed, the apparent blockade of potassium currents at mouse motor nerve endings induced by the toxin is unlikely to be due to a selective block of potassium channels.

  3. Potassium Permanganate as an Alternative for Gold Mining Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Ordiales, M.; Fernández, D.; Verdeja, L. F.; Sancho, J.

    2015-09-01

    The feasibility of using potassium permanganate as a reagent for cyanide oxidation in wastewater was experimentally studied. Both artificial and production wastewater from two different gold mines were tested. The experiments had three goals: determine the optimum reagent concentration and reaction time required to achieve total cyanide removal, obtain knowledge of the reaction kinetics, and improve the management of the amount of reagent. The results indicate that potassium permanganate is an effective and reliable oxidizing agent for the removal of cyanide from gold mining wastewater.

  4. Slack, Slick, and Sodium-Activated Potassium Channels

    PubMed Central

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  5. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation.

    PubMed

    Yang, Baode; Li, Chenxing; Sun, Junyi; Wang, Xinghui; Liu, Xinling; Yang, Chun; Chen, Lina; Zhou, Jun; Hu, Hao

    2017-05-01

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5-50.0mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I Kv1.5 ) were markedly inhibited by 12.5-50.0mM ethanol in a concentration-dependent manner. Ethanol with 50.0mM could inhibit rapid delayed rectifier potassium currents (I hERG ). Ethanol under 6.25-50.0mM did not affect on inward rectifier potassium currents (I Kir2.1 ). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I Kv1.5 and I hERG , which contributed to preventing the development and duration of AF. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. An extended chemical analysis of gallstone.

    PubMed

    Chandran, P; Kuchhal, N K; Garg, P; Pundir, C S

    2007-09-01

    Chemical composition of gall stones is essential for aetiopathogensis of gallstone disease. We have reported quantitative chemical analysis of total cholesterol bilirubin, calcium, iron and inorganic phosphate in 120 gallstones from haryana. To extend this chemical analysis of gall stones by studying more cases and by analyzing more chemical constituents. A quantitative chemical analysis of total cholesterol, total bilirubin, fatty acids, triglycerides, phospholipids, bile acids, soluble proteins, sodium potassium, magnesium, copper, oxalate and chlorides of biliary calculi (52 cholesterol, 76 mixed and 72 pigment) retrieved from surgical operation of 200 patients from Haryana state was carried out. Total cholesterol as the major component and total bilirubin, phospholipids, triglycerides, bile acids, fatty acids (esterified), soluble protein, calcium, magnesium, iron, copper, sodium, potassium, inorganic phosphate, oxalate and chloride as minor components were found in all types of calculi. The cholesterol stones had higher content of total cholesterol, phospholipids, fatty acids (esterified), inorganic phosphate and copper compared to mixed and pigment stones. The mixed stones had higher content of iron and triglycerides than to cholesterol and pigment stones. The pigment stones were richer in total bilirubin, bile acids, calcium, oxalate, magnesium, sodium, potassium, chloride and soluble protein compared to cholesterol and mixed stones. Although total cholesterol was a major component of cholesterol, mixed and pigment gall stone in Haryana, the content of most of the other lipids, cations and anions was different in different gall stones indicating their different mechanism of formation.

  7. On-The-Move Nutrient Delivery System (NDS): User Acceptability of Rotary Flow Control Version

    DTIC Science & Technology

    2009-04-01

    Following: Salt, Sodium Citrate, Monopotassium Phosphate, Sodium Benzoate , Potassium Sorbate, FD & C Yellow #5. Faslln,,, Flow Mallifold 126.00 g (4.44 oz...Fat Cholesterol Sodium 440mg Potassium Total Carbohydrate Dietary Fiber Sugars Protein Vitamin A Vitamin C Calcium lron Phosphorus 260 o Og Og Omg 18

  8. What is the acceptable hemolysis index for the measurements of plasma potassium, LDH and AST?

    PubMed

    Rousseau, Nathalie; Pige, Raphaëlle; Cohen, Richard; Pecquet, Matthieu

    2016-06-01

    Hemolysis is a cause of variability in test results for plasma potassium, LDH and AST and is a non-negligible part of measurement uncertainty. However, allowable levels of hemolysis provided by reagent suppliers take neither analytical variability (trueness and precision) nor the measurand into account. Using a calibration range of hemolysis, we measured the plasma concentrations of potassium, LDH and AST, and hemolysis indices with a Cobas C501 analyzer (Roche Diagnostics(®), Meylan, France). Based on the allowable total error (according to Ricós et al.) and the expanded measurement uncertainty equation we calculated the maximum allowable bias for two concentrations of each measurand. Finally, we determined the allowable hemolysis indices for all three measurands. We observed a linear relationship between the observed increases of concentration and hemolysis indices. The LDH measurement was the most sensitive to hemolysis, followed by AST and potassium measurements. The determination of the allowable hemolysis index depends on the targeted measurand, its concentration and the chosen level of requirement of allowable total error.

  9. Estimation of Daily Sodium and Potassium Excretion Using Spot Urine and 24-Hour Urine Samples in a Black Population (Benin).

    PubMed

    Mizéhoun-Adissoda, Carmelle; Houehanou, Corine; Chianéa, Thierry; Dalmay, François; Bigot, André; Preux, Pierre-Marie; Bovet, Pascal; Houinato, Dismand; Desport, Jean-Claude

    2016-07-01

    The 24-hour urine collection method is considered the gold standard for the estimation of ingested potassium and sodium. Because of the impracticalities of collecting all urine over a 24-hour period, spot urine is often used for epidemiological investigations. This study aims to assess the agreement between spot urine and 24-hour urine measurements to determine sodium and potassium intake. A total of 402 participants aged 25 to 64 years were randomly selected in South Benin. Spot urine was taken during the second urination of the day. Twenty-four-hour urine was also collected. Samples (2-mL) were taken and then stored at -20°C. The analysis was carried out using potentiometric dosage. The agreement between spot urine and 24-hour urine measurements was established using Bland-Altman plots. A total of 354 results were analyzed. Daily sodium chloride and potassium chloride urinary excretion means were 10.2±4.9 g/24 h and 2.9±1.4 g/24 h, respectively. Estimated daily sodium chloride and potassium chloride means from the spot urine were 10.7±7.0 g/24 h and 3.9±2.1 g/24 h, respectively. Concordance coefficients were 0.61 at d=-0.5 g, (d±2SD=-11 g and 10.1 g) for sodium chloride and 0.61 at d=-1 g, (d±2SD=-3.8 g and 1.8 g) for potassium chloride. Spot urine method is acceptable for estimating 24-hour urinary sodium and potassium excretion to assess sodium and potassium intake in a black population. However, the confidence interval for the mean difference, which is too large, makes the sodium chloride results inadmissible at a clinical level. © 2015 Wiley Periodicals, Inc.

  10. Dietary acid load and chronic kidney disease in elderly adults: Protein and potassium intake.

    PubMed

    Ko, Byung-Joon; Chang, Yoosoo; Ryu, Seungho; Kim, Eun Mi; Lee, Mi Yeon; Hyun, Young Youl; Lee, Kyu-Beck

    2017-01-01

    Dietary net endogenous acid production (NEAP), which represents total dietary load of nonvolatile acid, may affect kidney function. Estimated NEAP (eNEAP) is calculated indirectly by the ratio of protein and potassium intake. A few studies are available assessing the association between eNEAP and chronic kidney disease (CKD), and its relation to dietary protein and potassium intake in the elderly. A total 1,369 community-dwelling elderly Koreans in the Kangbuk Samsung Cohort Study (KSCS) were evaluated using a food frequency questionnaire (FFQ) and comprehensive health examination. We evaluated the association between eNEAP and the CKD. We also examined their relation to protein and potassium intake. eNEAP was correlated with potassium intake (r = -0.410, P < 0.001), but was not correlated with protein intake (r = -0.004, P = 0.879). In a full multivariate adjustment for sociodemographic factors, dietary factors, and comorbidities, the participants with higher eNEAP quartiles (Q2, Q3, Q4) had higher odds of CKD compared to the lowest eNEAP quartile (Q1); OR (95% CI) were 1.47 (0.78-2.72), 1.66 (0.85-3.23), and 2.30 (1.16-4.60) respectively (P for trend = 0.019). The odds of CKD decreased for participants with higher potassium intake quartiles (Q2, Q3, Q4) compared to the lowest potassium intake quartile (Q1); OR (95% CI) were 0.52 (0.28-0.95), 0.50 (0.26-0.96), and 0.50 (0.21-0.99) respectively (P for trend = 0.050). Protein intake was not associated with CKD. The association between eNEAP and CKD was similar in subgroup analysis. Dietary acid load was associated with CKD. Among the nutrients related to dietary acid load, potassium intake was negatively associated with CKD, but protein intake was not associated with CKD in elderly adults.

  11. In vivo Expression of a Light-activatable Potassium Channel Using Unnatural Amino Acids

    PubMed Central

    Kang, Ji-Yong; Kawaguchi, Daichi; Coin, Irene; Xiang, Zheng; O’Leary, Dennis D. M.; Slesinger, Paul A.; Wang, Lei

    2013-01-01

    SUMMARY Optical control of protein function provides excellent spatial-temporal resolution for studying proteins in situ. Although light-sensitive exogenous proteins and ligands have been employed to manipulate neuronal activity, a method for optical control of neuronal proteins using unnatural amino acids (Uaa) in vivo is lacking. Here, we describe the genetic incorporation of a photoreactive Uaa into the pore of an inwardly-rectifying potassium channel Kir2.1. The Uaa occluded the pore, rendering the channel non-conducting, and upon brief light illumination, was released to permit outward K+ current. Expression of this photo-inducible inwardly rectifying potassium (PIRK) channel in rat hippocampal neurons created a light-activatable PIRK switch for suppressing neuronal firing. We also expressed PIRK channels in embryonic mouse neocortex in vivo and demonstrated a light-activated PIRK current in cortical neurons. The principles applied here to a potassium channel could be generally expanded to other proteins expressed in the brain to enable optical regulation. PMID:24139041

  12. Electrochemical performance of potassium-doped wüstite nanoparticles supported on graphene as an anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Jung, Dong-Won; Jeong, Jae-Hoon; Han, Sang-Wook; Oh, Eun-Suok

    2016-05-01

    A graphene composite with potassium-doped FeO nanoparticles (K-FeO/graphene) is synthesized by the thermal diffusion of potassium into Fe2O3/graphene using polyol reduction. This is applied as anode material in lithium ion batteries in order to enhance the electrochemical performance of conventional iron oxides (hematite or magnetite). Rhombohedral Fe2O3 crystals are transformed into face-centered cubic FeO crystals, which show a broad d-spacing (5.2 Å) between their (111) crystal planes, by the calcination of potassium-added Fe2O3/graphene. Because of its structural characteristics, the K-FeO/graphene composite demonstrates an excellent discharge capacity of 1776 mA h g-1 at the 50th cycle at a current of 100 mA h g-1 with stable capacity retention. Even with the very high current density of 18.56 A g-1, its capacity remains at 851 mA h g-1 after 800 cycles.

  13. Developing strategies for predicting hyperkalemia in potassium-increasing drug-drug interactions.

    PubMed

    Eschmann, Emmanuel; Beeler, Patrick Emanuel; Schneemann, Markus; Blaser, Jürg

    2017-01-01

    To compare different strategies predicting hyperkalemia (serum potassium level ≥5.5 mEq/l) in hospitalized patients for whom medications triggering potassium-increasing drug-drug interactions (DDIs) were ordered. We investigated 5 strategies that combined prediction triggered at onset of DDI versus continuous monitoring and taking into account an increasing number of patient parameters. The considered patient parameters were identified using generalized additive models, and the thresholds of the prediction strategies were calculated by applying Youden's J statistic to receiver operation characteristic curves. Half of the data served as the calibration set, half as the validation set. We identified 132 incidences of hyperkalemia induced by 8413 potentially severe potassium-increasing DDIs among 76 467 patients. The positive predictive value (PPV) of those strategies predicting hyperkalemia at the onset of DDI ranged from 1.79% (undifferentiated anticipation of hyperkalemia due to the DDI) to 3.02% (additionally considering the baseline serum potassium) and 3.10% (including further patient parameters). Continuous monitoring significantly increased the PPV to 8.25% (considering the current serum potassium) and 9.34% (additional patient parameters). Continuous monitoring of the risk for hyperkalemia based on current potassium level shows a better predictive power than predictions triggered at the onset of DDI. This contrasts with efforts to improve DDI alerts by taking into account more patient parameters at the time of ordering. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Baode; Li, Chenxing

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5–50.0 mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I{submore » Kv1.5}) were markedly inhibited by 12.5–50.0 mM ethanol in a concentration-dependent manner. Ethanol with 50.0 mM could inhibit rapid delayed rectifier potassium currents (I{sub hERG}). Ethanol under 6.25–50.0 mM did not affect on inward rectifier potassium currents (I{sub Kir2.1}). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I{sub Kv1.5} and I{sub hERG}, which contributed to preventing the development and duration of AF. - Highlights: • Moderate ethanol prevented the development of AF in animal models. • Moderate ethanol prolonged APD in guinea pig atrial myocytes. • Moderate ethanol inhibited Kv1.5 currents.« less

  15. Genistein inhibition of OGD-induced brain neuron death correlates with its modulation of apoptosis, voltage-gated potassium and sodium currents and glutamate signal pathway.

    PubMed

    Ma, Xue-Ling; Zhang, Feng; Wang, Yu-Xiang; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Liu, Yan-Qiang

    2016-07-25

    In the present study, we established an in vitro model of hypoxic-ischemia via exposing primary neurons of newborn rats to oxygen-glucose deprivation (OGD) and observing the effects of genistein, a soybean isoflavone, on hypoxic-ischemic neuron viability, apoptosis, voltage-activated potassium (Kv) and sodium (Nav) currents, and glutamate receptor subunits. The results indicated that OGD exposure reduced the viability and increased the apoptosis of brain neurons. Meanwhile, OGD exposure caused changes in the current-voltage curves and current amplitude values of voltage-activated potassium and sodium currents; OGD exposure also decreased GluR2 expression and increased NR2 expression. However, genistein at least partially reversed the effects caused by OGD. The results suggest that hypoxic-ischemia-caused neuronal apoptosis/death is related to an increase in K(+) efflux, a decrease in Na(+) influx, a down-regulation of GluR2, and an up-regulation of NR2. Genistein may exert some neuroprotective effects via the modulation of Kv and Nav currents and the glutamate signal pathway, mediated by GluR2 and NR2. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Agreement of serum potassium measured by blood gas and biochemistry analyzer in patients with moderate to severe hyperkalemia.

    PubMed

    Acikgoz, Seyyid Bilal; Genc, Ahmet Bilal; Sipahi, Savas; Yildirim, Mehmet; Cinemre, Behice; Tamer, Ali; Solak, Yalcin

    2016-05-01

    Several studies investigated the agreement between central laboratory biochemistry analyzers and blood gas analyzers for potassium measurements. However, data are scarce when the potassium level is moderate to severely high. We aimed to evaluate the agreement between central laboratory biochemistry analyzers and blood gas analyzer in terms of serum potassium level measurement because differences in potassium at this level translate into very different clinical actions. This was a retrospective medical record review study in which patients who presented to the emergency department and had serum potassium levels ≥6mmol/L were included. Patients who did not have simultaneous potassium measurement by blood gas analyzer were excluded. We included all patients meeting potassium criteria irrespective of their underlying disease or comorbidities. We evaluated agreement between the measurement methods with Pearson correlation, Bland-Altman plot, and Sign test. A total of 118 blood sample pairs were included. The mean serum potassium level measured by biochemistry analyzer was 6.78±0.79mmol/L, whereas it was 6.16±0.86mmol/L by blood gas analyzer (P<.001, Sign test). There was a strong correlation (P<.001, r=0.864) between the 2 methods, but agreement was relatively poor. Blood gas analyzer tended to measure potassium significantly lower than measured by biochemistry analyzer. The mean difference between the methods was 0.62±0.43mmol/L. In patients with moderate to severe hyperkalemia, blood gas analyzer and biochemistry analyzer gives significantly different serum potassium results which may be clinically important. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide.

    PubMed

    Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno

    2008-01-01

    Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation.

  18. Serum Potassium Levels and Outcome in Acute Heart Failure (Data from the PROTECT and COACH Trials).

    PubMed

    Tromp, Jasper; Ter Maaten, Jozine M; Damman, Kevin; O'Connor, Christopher M; Metra, Marco; Dittrich, Howard C; Ponikowski, Piotr; Teerlink, John R; Cotter, Gad; Davison, Beth; Cleland, John G F; Givertz, Michael M; Bloomfield, Daniel M; van der Wal, Martje H L; Jaarsma, Tiny; van Veldhuisen, Dirk J; Hillege, Hans L; Voors, Adriaan A; van der Meer, Peter

    2017-01-15

    Serum potassium is routinely measured at admission for acute heart failure (AHF), but information on association with clinical variables and prognosis is limited. Potassium measurements at admission were available in 1,867 patients with AHF in the original cohort of 2,033 patients included in the Patients Hospitalized with acute heart failure and Volume Overload to Assess Treatment Effect on Congestion and Renal FuncTion trial. Patients were grouped according to low potassium (<3.5 mEq/l), normal potassium (3.5 to 5.0 mEq/l), and high potassium (>5.0 mEq/l) levels. Results were verified in a validation cohort of 1,023 patients. Mean age of patients was 71 ± 11 years, and 66% were men. Low potassium was present in 115 patients (6%), normal potassium in 1,576 (84%), and high potassium in 176 (9%). Potassium levels increased during hospitalization (0.18 ± 0.69 mEq/l). Patients with high potassium more often used angiotensin-converting enzyme inhibitors and mineralocorticoid receptor antagonists before admission, had impaired baseline renal function and a better diuretic response (p = 0.005), independent of mineralocorticoid receptor antagonist usage. During 180-day follow-up, a total of 330 patients (18%) died. Potassium levels at admission showed a univariate linear association with mortality (hazard ratio [log] 2.36, 95% confidence interval 1.07 to 5.23; p = 0.034) but not after multivariate adjustment. Changes of potassium levels during hospitalization or potassium levels at discharge were not associated with outcome after multivariate analysis. Results in the validation cohort were similar to the index cohort. In conclusion, high potassium levels at admission are associated with an impaired renal function but a better diuretic response. Changes in potassium levels are common, and overall levels increase during hospitalization. In conclusion, potassium levels at admission or its change during hospitalization are not associated with mortality after multivariate adjustment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. 78 FR 40695 - Persulfates From the People's Republic of China: Final Results of Expedited Third Sunset Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ..., potassium, and sodium persulfates. The chemical formula for these persulfates are, respectively, (NH 4 ) 2 S 2 O 8 , K 2 S 2 O 8 , and Na 2 S 2 O 8 . Potassium persulfates are currently classifiable under...

  20. Ion Fluxes in Giant Excised Cardiac Membrane Patches Detected and Quantified with Ion-selective Microelectrodes

    PubMed Central

    Kang, Tong Mook; Markin, Vladislav S.; Hilgemann, Donald W.

    2003-01-01

    We have used ion-selective electrodes (ISEs) to quantify ion fluxes across giant membrane patches by measuring and simulating ion gradients on both membrane sides. Experimental conditions are selected with low concentrations of the ions detected on the membrane side being monitored. For detection from the cytoplasmic (bath) side, the patch pipette is oscillated laterally in front of an ISE. For detection on the extracellular (pipette) side, ISEs are fabricated from flexible quartz capillary tubing (tip diameters, 2–3 microns), and an ISE is positioned carefully within the patch pipette with the tip at a controlled distance from the mouth of the patch pipette. Transport activity is then manipulated by solution changes on the cytoplasmic side. Ion fluxes can be quantified by simulating the ion gradients with appropriate diffusion models. For extracellular (intrapatch pipette) recordings, ion diffusion coefficients can be determined from the time courses of concentration changes. The sensitivity and utility of the methods are demonstrated with cardiac membrane patches by measuring (a) potassium fluxes via ion channels, valinomycin, and Na/K pumps; (b) calcium fluxes mediated by Na/Ca exchangers; (c) sodium fluxes mediated by gramicidin and Na/K pumps; and (d) proton fluxes mediated by an unknown electrogenic mechanism. The potassium flux-to-current ratio for the Na/K pump is approximately twice that determined for potassium channels and valinomycin, as expected for a 3Na/2K pump stoichiometery (i.e., 2K/charge moved). For valinomycin-mediated potassium currents and gramicidin-mediated sodium currents, the ion fluxes calculated from diffusion models are typically 10–15% smaller than expected from the membrane currents. As presently implemented, the ISE methods allow reliable detection of calcium and proton fluxes equivalent to monovalent cation currents <1 pA in magnitude, and they allow detection of sodium and potassium fluxes equivalent to <5 pA currents. The capability to monitor ion fluxes, independent of membrane currents, should facilitate studies of both electrogenic and electroneutral ion–coupled transporters in giant patches. PMID:12668735

  1. [Changes in vegetation and soil characteristics under tourism disturbance in lakeside wetland of northwest Yunnan Plateau, Southwest China].

    PubMed

    Tang, Ming-Yan; Yang, Yong-Xing

    2014-05-01

    The characteristics of vegetation and soil were investigated in Bita Lake and Shudu Lake wetlands in northwest Yunnan Plateau under tourism disturbance. The 22 typical plots in the wetlands were classified into 4 types by TWINSPAN, including primary wetland, light degradation, moderate degradation, and severe degradation. Along the degradation gradient, the plant community density, coverage, species number and Shannon diversity index increased and the plant height decreased in Bita Lake and Shudu Lake wetlands, and Whittaker diversity index increased in Bita Lake wetland. Plant species number, soil organic matter, total nitrogen, porosity, available nitrogen, available phosphorus and available potassium contents were higher in Shudu Lake wetland than in Bita Lake wetland, but the plant density, height, soil total potassium and pH were opposite. Canonical correspondence analysis (CCA) by importance values of 42 plants and 11 soil variables showed that soil organic matter, total nitrogen and total potassium were the key factors on plant species distribution in Bita Lake and Shudu Lake wetlands under tourism disturbance. TWINSPAN classification and analysis of vegetation-soil characteristics indicated the effects of tourism disturbance in Bita Lake wetland were larger than in Shudu Lake wetland.

  2. Vaporization thermodynamics of K2S and K2SO3

    NASA Technical Reports Server (NTRS)

    Bennet, J. E.

    1982-01-01

    The vaporization reactions, vapor pressures, and thermodynamics of potassium sulfide and potassium sulfite were studied for purposes of providing fundamental data for the seed cycle in magnetohydrodynamic electric power generation. Rate of effusion studies, supported by tube furnace experiments, X-ray powder diffraction, mass spectrometry and appropriate chemical analyses and tests, revealed that potassium sulfite disproportionates at high temperatures to form potassium sulfide and potassium sulfate. Potassium sulfide was observed to vaporize incongruently, the initial vapors beng predominantly potassium atoms, with minor species being S2 and various K-S molecules. The ratio of K/S2 in the vapor is very large initially and decreases steadily with prolonged heating. Several materials were evaluated for purposes of containing K2S/K2SO3 at temperatures or = 800 C: Pt, Mo, W, quartz, machinable glass, BN, high density graphite, pyrolytic coated graphite, and alumina. Of these, only alumina was observed to be chemically inert to both K2S but reacted with K2SO3. The other materials were not suitable for either substance. Thermodynamic calculations based on measured vapor pressures and approximate free energy functions are described. Results from isothermal total mass loss experiments and from thermogravimetric experiments are also included.

  3. Potassium Homeostasis: The Knowns, the Unknowns, and the Health Benefits

    PubMed Central

    Youn, Jang H.

    2017-01-01

    Potassium homeostasis has a very high priority because of its importance for membrane potential. Although extracellular K+ is only 2% of total body K+, our physiology was evolutionarily tuned for a high-K+, low-Na+ diet. We review how multiple systems interface to accomplish fine K+ balance and the consequences for health and disease. PMID:28202621

  4. Pooled results from five validation studies of dietary self-report instruments using recovery biomarkers for potassium and sodium intake

    USDA-ARS?s Scientific Manuscript database

    We have pooled data from five large validation studies of dietary self-report instruments that used recovery biomarkers as referents to assess food frequency questionnaires (FFQs) and 24-hour recalls. We reported on total potassium and sodium intakes, their densities, and their ratio. Results were...

  5. Inward rectifier potassium current IKir promotes intrinsic pacemaker activity of thalamocortical neurons.

    PubMed

    Amarillo, Yimy; Tissone, Angela I; Mato, Germán; Nadal, Marcela S

    2018-06-01

    Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (<4 Hz), which are the physiological oscillations during non-rapid eye movement sleep or pathological oscillations during idiopathic epilepsy. The pacemaker activity of TC neurons depends on the expression of several subthreshold conductances, which are modulated in a behaviorally dependent manner. Here we show that upregulation of the small and neglected inward rectifier potassium current I Kir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of I Kir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of I Kir and hyperpolarization-activated cationic current I h that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that I Kir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with I h and increases the robustness of low threshold-activated calcium current I T -mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current I Kir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that I Kir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current I h ; and increases the robustness of oscillations mediated by the low threshold-activated calcium current I T . Upregulation of I Kir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).

  6. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).

    PubMed

    Costa, P M; Fernandes, P L; Ferreira, H G; Ferreira, K T; Giraldez, F

    1987-12-01

    1. Membrane potential and conductances and short-circuit current were continuously measured with microelectrodes and conventional electrophysiological techniques in a stripped preparation of frog skin epithelium. The effects of the removal of chloride or sodium ions and the concentration or dilution of the serosal (inner) bathing solution were studied. 2. Chloride- or sodium-free solutions produced a cell depolarization of about 30 mV in parallel with a fall in the short-circuit current. Mucosal and serosal membrane conductances both decreased and the sodium permeability of the mucosal barrier was calculated to fall to about one-half its value in standard Ringer solution. The observed decrease in the short-circuit current is probably related to the combined effect of the decrease in sodium permeability and the decrease in the driving force across the mucosal membrane. 3. The removal of chloride or sodium ions reduced the depolarization caused by serosal perfusion with high-potassium solutions (50 mM-KCl). The ratio of the change in cell membrane potential under short-circuit conditions to the change in the potassium equilibrium potential (delta Ec(s.c.)/delta EK), was 0.59 in standard Ringer solution and 0.26 and 0.24 after the removal of chloride or sodium respectively. The depolarizing effect of barium-containing solutions (2 mM-BaCl2) was also markedly reduced in chloride- or sodium-free solutions, suggesting a decrease of the potassium selectivity of the serosal membrane in these conditions. 4. Increasing the osmolality of the serosal bathing solution produced similar effects, i.e. cell depolarization, fall in the short-circuit current and membrane conductances and reduction of the depolarizing effect of high-potassium and barium solutions. On the contrary, dilution of the serosal bath produced the opposite effects, consistent with an increase in the serosal permeability to potassium. 5. The effects of chloride- or sodium-free solutions were reversed by the dilution of the serosal bath. Cells repolarized when exposed to low-osmolality solutions after being in the absence of serosal chloride or sodium. The repolarization ran in parallel with the restoration of the short-circuit current and the potassium selectivity of the serosal membrane. 6. The results show that the effects produced by the removal of sodium or chloride ions from the serosal bathing solution are most probably mediated by a reduction in cell volume. Cell volume changes would lead to changes in the serosal membrane selectivity to potassium and thus to changes in cell membrane potential and sodium transport.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Effect of potassium depletion in normal males: an Apollo 15 simulation.

    PubMed

    Hyatt, K H; Johnson, P C; Hoffler, G W; Rambaut, P C; Rummel, J A; Hulley, S B; Vogel, J M; Huntoon, C; Spears, C P

    1975-01-01

    In the course of Apollo 15, physiologic abnormalities, manifested by ectopic activity on the ECG and unusual alterations in excerise tolerance, occurred in the crew of the Lunar Excursion Module. These were associated with decreases in total body potassium, measured by 42K, of 10% and 15%. The possibility of inadequate potassium (K plus) intake existed. A simulation study was performed prior to Apollo 16, corresponding in duration to Apollo 15. Subjects endured the same sleep aberrations and caloric expenditure as the Apollo 15 astronauts. Subjects consumed a diet containing only 15 mEq/d of K plus during the entire 12 d of absolute bedrest. ECG was continuously monitored, body fluid compartments and total body K plus were measured at intervals by radionuclide methods, electrolyte balance was determined daily, and excercise and orthostatic tolerances were determined prior to and after bedrest. In spite of decreases in total body K plus measured by 42K of 14.5% and 10.5%, and by potassium balances of 3.3% and 6.5%, respectively, neither of the two subjects developed symptomatic hypokalemia. Minor ECG abnormalities were noted in one subject. Orthostatic and exercise tolerance showed only those changes expected as a result of bedrest. Muscle strength was unaffected. Study implications and reasons for discrepancies between K plus loss measured by balance techniques and 42K are reviewed.

  8. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons

    PubMed Central

    Kimm, Tilia; Khaliq, Zayd M.

    2015-01-01

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency–current (f–I) relationship, whereas BK channel inhibition had little effect on the f–I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f–I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. SIGNIFICANCE STATEMENT This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both channel types participate in action potential repolarization about equally, they have contrasting and partially opposite effects in regulating neuronal firing at frequencies typical of bursting. Our analysis shows that this results from their different kinetic properties, with fast-activating BK channels serving to short-circuit activation of Kv2 channels, which tend to slow firing by producing a deep afterhyperpolarization. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. PMID:26674866

  9. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.

    PubMed

    Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P

    2015-12-16

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both channel types participate in action potential repolarization about equally, they have contrasting and partially opposite effects in regulating neuronal firing at frequencies typical of bursting. Our analysis shows that this results from their different kinetic properties, with fast-activating BK channels serving to short-circuit activation of Kv2 channels, which tend to slow firing by producing a deep afterhyperpolarization. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. Copyright © 2015 the authors 0270-6474/15/3516404-14$15.00/0.

  10. 76 FR 28419 - Persulfates From the People's Republic of China: Final Results of the 2009-2010 Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... ammonium, potassium, and sodium persulfates. The chemical formula for these persulfates are, respectively, (NH 4 ) 2 S 2 O 8 , K 2 S 2 O 8 , and Na 2 S 2 O 8 . Potassium persulfates are currently classifiable...

  11. Sustainable Potassium-Ion Battery Anodes Derived from Waste-Tire Rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunchao; Adams, Ryan A.; Arora, Anjela

    The recycling of waste-tire rubber is of critical importance since the discarded tires pose serious environmental and health hazards to our society. Here, we report a new application for hard-carbon materials derived from waste-tires as anodes in potassium-ion batteries. The sustainable tire-derived carbons show good reversible potassium insertion at relatively high rates. Long-term stability tests exhibit capacities of 155 and 141 mAh g –1 for carbon pyrolyzed at 1100°C and 1600°C, respectively, after 200 cycles at current rate of C/2. As a result, this study provides an alternative solution for inexpensive and environmental benign potassium-ion battery anode materials.

  12. Sustainable Potassium-Ion Battery Anodes Derived from Waste-Tire Rubber

    DOE PAGES

    Li, Yunchao; Adams, Ryan A.; Arora, Anjela; ...

    2017-04-13

    The recycling of waste-tire rubber is of critical importance since the discarded tires pose serious environmental and health hazards to our society. Here, we report a new application for hard-carbon materials derived from waste-tires as anodes in potassium-ion batteries. The sustainable tire-derived carbons show good reversible potassium insertion at relatively high rates. Long-term stability tests exhibit capacities of 155 and 141 mAh g –1 for carbon pyrolyzed at 1100°C and 1600°C, respectively, after 200 cycles at current rate of C/2. As a result, this study provides an alternative solution for inexpensive and environmental benign potassium-ion battery anode materials.

  13. A new method of auxiliary purification for motor vehicle exhaust.

    PubMed

    Li, Dingqi

    2018-07-01

    As a result of the limitations of current purification technologies, purification efficiency is relatively low, particularly during startup or in the case of other abnormal automobile exhaust. Therefore, a new method of auxiliary purification is proposed in this paper. The acidic solution of potassium permanganate can oxidize carbon monoxide, nitrogen oxides and sulfur dioxide at relatively high temperatures and the alkaline solution of potassium permanganate can selectively absorb nitrogen oxide and sulfur dioxide. Therefore, we carried out the experiment using a solution of potassium permanganate and sulfuric acid as well as a solution of sodium carbonate and potassium permanganate, which served as the reagents for the auxiliary purification. The results of the test showed that after auxiliary purification by the acidic solution of potassium permanganate and the alkaline solution of potassium permanganate, the concentrations of carbon monoxide, hydrocarbons, nitrogen oxides and solid particles in the emissions were considerably lower than the concentrations prior to purification. It is possible to reduce the motor vehicle exhaust by the auxiliary purification of the solutions.

  14. Salivary flow and composition in diabetic and non-diabetic subjects.

    PubMed

    Lasisi, T J; Fasanmade, A A

    2012-06-07

    The study investigated the effects of type 2 diabetes mellitus on salivary flow and composition in humans compared to healthy sex and age matched controls. Forty adult human subjects divided into 20 diabetic and 20 non-diabetic healthy subjects were included. Saliva samples were collected and analysed for glucose, total protein, calcium, sodium, potassium, chloride and bicarbonate. Salivary flow rate was also determined. The results showed that salivary glucose and potassium levels were significantly higher (p = 0.01 and 0.002 respectively) in diabetic patients compared with non-diabetic participants. It was also found that the diabetic patients had significant reduction in salivary flow rate when compared with non-diabetic individuals. In contrast, there was no significant difference in levels of total protein, Na+, Ca++, Cl- and HCO3- between the two groups. These results suggest that some oral diseases associated with diabetes mellitus may be due to altered levels of salivary glucose, potassium and flow.

  15. Responses of soil physical and chemical properties to karst rocky desertification evolution in typical karst valley area

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Zhou, Dequan; Bai, Xiaoyong; zeng, Cheng; Xiao, Jianyong; Qian, Qinghuan; Luo, Guangjie

    2018-01-01

    In order to reveal the differences of soil physical and chemical properties and their response mechanism to the evolution of KRD. The characteristics of soil physical and chemical properties of different grades of KRD were studied by field sampling method to research different types of KRD in the typical karst valley of southern China. Instead of using space of time, to explore the response and the mechanisms of the soil physical and chemical properties at the different evolution process. The results showed that: (1) There were significant differences in organic matter, pH, total nitrogen, total phosphorus, total potassium, sediment concentration, clay content and AWHC in different levels of KRD environment. However, these indicators are not with increasing desertification degree has been degraded, but improved after a first degradation trends; (2) The correlation analysis showed that soil organic matter, acid, alkali, total nitrogen, total phosphorus, total potassium and clay contents were significantly correlated with other physical and chemical factors. They are the key factors of soil physical and chemical properties, play a key role in improving soil physical and chemical properties and promoting nutrient cycling; (3) The principal component analysis showed that the cumulative contribution rate of organic matter, pH, total nitrogen, total phosphorus, total potassium and sediment concentration was 80.26%, which was the key index to evaluate rocky desertification degree based on soil physical and chemical properties. The results have important theoretical and practical significance for the protection and restoration of rocky desertification ecosystem in southwest China.

  16. A mineral and antioxidant-rich extract from the red marine Algae Alsidium corallinum exhibits cytoprotective effects against potassium bromate-induced erythrocyte oxidative damages in mice.

    PubMed

    Ben Saad, Hajer; Nasri, Imen; Elwej, Awatef; Krayem, Najeh; Jarraya, Raoudha; Kallel, Choumous; Zeghal, Najiba; Amara, Ibtissem Ben

    2014-07-01

    The present study was carried out to investigate potassium bromate toxicity in mice and the corrective effects of marine algae Alsidium corallinum. The red algae demonstrated its rich composition in phenols, triterpenes, flavonoids, alkaloids, tropolones, sodium, potassium, calcium, magnesium, iron, copper, and zinc. To confirm its antioxidant potential, an in vivo study was performed on adult mice. The animals were divided into four groups: group I were used as controls, group II received potassium bromate (0.5 g/L) via drinking water, group III received potassium bromate (0.5 g/L) by the same route as group II and 7% of A. corallinum ethanolic extract via their diet, and group IV received only 7% of algae. The potassium bromate-treated group showed a significant decrease in erythrocyte, platelet, hemoglobin, and hematocrit values and a significant increase in total white blood cells, compared to those of controls. While, superoxide dismutase, catalase, glutathione, and vitamin C values were decreased by potassium bromate treatment, lipid peroxidation (as malondialdehyde) and erythrocyte osmotic fragility values were increased. Interestingly, potassium bromate treatment showed significant genotoxic effects, as demonstrated by DNA degradation. These changes were confirmed by blood smears histopathological observations which were marked by a necrosis and a decrease of erythrocytes number. A. corallinum extract appeared to be effective against hematotoxic and genotoxic changes induced by potassium bromate, as evidenced by the improvement of the parameters cited above.

  17. Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain.

    PubMed

    Holmqvist, Mats H; Cao, Jie; Hernandez-Pineda, Ricardo; Jacobson, Michael D; Carroll, Karen I; Sung, M Amy; Betty, Maria; Ge, Pei; Gilbride, Kevin J; Brown, Melissa E; Jurman, Mark E; Lawson, Deborah; Silos-Santiago, Inmaculada; Xie, Yu; Covarrubias, Manuel; Rhodes, Kenneth J; Distefano, Peter S; An, W Frank

    2002-01-22

    The Kv4 A-type potassium currents contribute to controlling the frequency of slow repetitive firing and back-propagation of action potentials in neurons and shape the action potential in heart. Kv4 currents exhibit rapid activation and inactivation and are specifically modulated by K-channel interacting proteins (KChIPs). Here we report the discovery and functional characterization of a modular K-channel inactivation suppressor (KIS) domain located in the first 34 aa of an additional KChIP (KChIP4a). Coexpression of KChIP4a with Kv4 alpha-subunits abolishes fast inactivation of the Kv4 currents in various cell types, including cerebellar granule neurons. Kinetic analysis shows that the KIS domain delays Kv4.3 opening, but once the channel is open, it disrupts rapid inactivation and slows Kv4.3 closing. Accordingly, KChIP4a increases the open probability of single Kv4.3 channels. The net effects of KChIP4a and KChIP1-3 on Kv4 gating are quite different. When both KChIP4a and KChIP1 are present, the Kv4.3 current shows mixed inactivation profiles dependent on KChIP4a/KChIP1 ratios. The KIS domain effectively converts the A-type Kv4 current to a slowly inactivating delayed rectifier-type potassium current. This conversion is opposite to that mediated by the Kv1-specific "ball" domain of the Kv beta 1 subunit. Together, these results demonstrate that specific auxiliary subunits with distinct functions actively modulate gating of potassium channels that govern membrane excitability.

  18. β1-Adrenoceptor autoantibodies affect action potential duration and delayed rectifier potassium currents in guinea pigs.

    PubMed

    Zhao, Yuhui; Huang, Haixia; Du, Yunhui; Li, Xiao; Lv, Tingting; Zhang, Suli; Wei, Hua; Shang, Jianyu; Liu, Ping; Liu, Huirong

    2015-01-01

    β1-Adrenoceptor autoantibodies (β1-AAs) affect the action potential duration (APD) in cardiomyocytes and are related to ventricular arrhythmias. The delayed rectifier potassium current (I K) plays a crucial role in APD, but the effects of β1-AAs on I K have not been completely illuminated. This work aimed to observe the effects of β1-AAs on I K and APD and further explore the mechanisms of β1-AA-mediated ventricular arrhythmias. β1-AAs were obtained from sera of patients with coronary heart disease (CHD) and nonsustained ventricular tachycardia. With whole-cell patch clamp technique, action potentials and I K were recorded. The results illustrated 0.1 μmol/L β1-AAs shortened APD at 50 % (APD50) and 90 % (APD90) of the repolarization. However, at 0.01 μmol/L, β1-AAs had no effects on either APD90 or APD50 (P > 0.05). At 0.001 μmol/L, β1-AAs significantly prolonged APD90 and APD50. Moreover, β1-AAs (0.001, 0.01, 0.1 μmol/L) dose-dependently increased the rapidly activating delayed rectifier potassium current (I Kr), but similarly decreased the slowly activating delayed rectifier potassium current (I Ks) and increased L-type calcium currents at the different concentrations. Taken together, the IKr increase induced by high β1-AA concentrations is responsible for a significant APD reduction which would contribute to repolarization changes and trigger the malignant ventricular arrhythmias in CHD patients.

  19. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium.

    PubMed

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-05-01

    Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.

  20. The relation of potassium and sodium intakes to diet cost among U.S. adults.

    PubMed

    Drewnowski, A; Rehm, C D; Maillot, M; Monsivais, P

    2015-01-01

    The 2010 Dietary Guidelines recommended that Americans increase potassium and decrease sodium intakes to reduce the burden of hypertension. One reason why so few Americans meet the recommended potassium or sodium goals may be perceived or actual food costs. This study explored the monetary costs associated with potassium and sodium intakes using national food prices and a representative sample of US adults. Dietary intake data from the 2001-2002 National Health and Nutrition Examination Survey were merged with a national food prices database. In a population of 4744 adults, the association between the energy-adjusted sodium and potassium intakes, and the sodium-to-potassium ratio (Na:K) and energy-adjusted diet cost was evaluated. Diets that were more potassium-rich or had lower Na:K ratios were associated with higher diet costs, while sodium intakes were not related to cost. The difference in diet cost between extreme quintiles of potassium intakes was $1.49 (95% confidence interval: 1.29, 1.69). A food-level analysis showed that beans, potatoes, coffee, milk, bananas, citrus juices and carrots are frequently consumed and low-cost sources of potassium. Based on existing dietary data and current American eating habits, a potassium-dense diet was associated with higher diet costs, while sodium was not. Price interventions may be an effective approach to improve potassium intakes and reduce the Na:K ratio of the diet. The present methods helped identify some alternative low-cost foods that were effective in increasing potassium intakes. The identification and promotion of lower-cost foods to help individuals meet targeted dietary recommendations could accompany future dietary guidelines.

  1. Dietary Impact of Adding Potassium Chloride to Foods as a Sodium Reduction Technique.

    PubMed

    van Buren, Leo; Dötsch-Klerk, Mariska; Seewi, Gila; Newson, Rachel S

    2016-04-21

    Potassium chloride is a leading reformulation technology for reducing sodium in food products. As, globally, sodium intake exceeds guidelines, this technology is beneficial; however, its potential impact on potassium intake is unknown. Therefore, a modeling study was conducted using Dutch National Food Survey data to examine the dietary impact of reformulation (n = 2106). Product-specific sodium criteria, to enable a maximum daily sodium chloride intake of 5 grams/day, were applied to all foods consumed in the survey. The impact of replacing 20%, 50% and 100% of sodium chloride from each product with potassium chloride was modeled. At baseline median, potassium intake was 3334 mg/day. An increase in the median intake of potassium of 453 mg/day was seen when a 20% replacement was applied, 674 mg/day with a 50% replacement scenario and 733 mg/day with a 100% replacement scenario. Reformulation had the largest impact on: bread, processed fruit and vegetables, snacks and processed meat. Replacement of sodium chloride by potassium chloride, particularly in key contributing product groups, would result in better compliance to potassium intake guidelines (3510 mg/day). Moreover, it could be considered safe for the general adult population, as intake remains compliant with EFSA guidelines. Based on current modeling potassium chloride presents as a valuable, safe replacer for sodium chloride in food products.

  2. [Effect of substance P on the potassium and calcium currents of colonic smooth muscle cells].

    PubMed

    Tang, Qincai; Luo, Hesheng; Quan, Xiaojing; Fan, Han; Yu, Guang

    2015-08-11

    To investigate the effect of substance P(SP) on the spontaneous contractile activity of smooth muscle cells,the large-conductance calcium-activated potassium channel currents (IBKCa) and the L-type calcium channel currents (ICaL) in rat smooth muscle cells of the proximal colon. A total of 24 healthy male Wista rats were used in this test. The change of smooth muscle strips spontaneous contraction of rat proximal colon after adding SP was recorded by a physiological signal stystem (RM6240). The IBKCa and ICaL were measured via the whole cell patch-clamp technique. The longitudinal muscle contraction was obviously increased concentration-dependently after adding different concentrations of SP (10(-7)-10(-6) mol/L), so as the circular muscle while adding SP(10(-8)-10(-6) mol/L) (all P<0.05). Compared with the control group, IBKCa was decreased after adding SP(10(-6) mol/L). Under the stimulating voltage of 60 mV, the IBKCa current density was (11.71±1.65) pA/pF, which was significantly lower compared with the control group (14.42±2.89) pA/pF (P<0.05). The ICaL) was apparently increased. Under the stimulating voltage of 0 mV, the ICaL) currents density was (-5.04±0.67) pA/pF, compared with the control group (-4.25±0.46) pA/pF, which was significantly increased (P<0.01). SP can promote the spontaneous contractile activity of colon smooth muscle of rats in vitro.And SP decrease IBKCa representatively while apparently increase ICaL). That is probably one of the mechanism SP regulate the gastrointestinal motility.

  3. Biological implications of the adolescent growth process: body composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, G.B.

    The adolescent growth curve for total-body potassium, as determined by potassium-40 counting, is described. Since this is a function of the lean body mass, this curve permits estimates of increments in body Ca and N contents. A new mathematical model is proposed in which the idolescent spurt is considered to be superimposed on a pre-adolescent growth pattern. (auth)

  4. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data

    USDA-ARS?s Scientific Manuscript database

    During construction of the whole body counter (WBC) at the Children’s Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of 40K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Car...

  5. Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells

    NASA Astrophysics Data System (ADS)

    Xu, Haifei; Bai, Juan; Meng, Jie; Hao, Wei; Xu, Haiyan; Cao, Ji-Min

    2009-07-01

    The advancement in nanotechnology has produced technological and conceptual breakthroughs but the effects nanomaterials have on organisms at the cellular level are poorly understood. Here we report that carboxyl-terminated multi-walled carbon nanotubes (MWCNTs) act as antagonists of three types of potassium channels as assessed by whole-cell patch clamp electrophysiology on undifferentiated pheochromocytoma (PC12) cells. Our results showed that carboxyl-terminated MWCNTs suppress the current densities of Ito, IK and IK1 in a time-dependent and irreversible manner. The suppressions were most distinct 24 h after incubation with MWCNTs. However, MWCNTs did not significantly change the expression levels of reactive oxygen species (ROS) or intracellular free calcium and also did not alter the mitochondrial membrane potential (ΔΨm) in PC12 cells. These results suggest that oxidative stress was not involved in the MWCNTs suppression of Ito, IK and IK1 current densities. Nonetheless, the suppression of potassium currents by MWCNTs will impact on electrical signaling of excitable cells such as neurons and muscles.

  6. Electrolyte status in birth asphyxia.

    PubMed

    Basu, Pallab; Som, Sabyasachi; Das, Harendranath; Choudhuri, Nabendu

    2010-03-01

    To study electrolyte status in asphyxiated newborns of different severity in early neonatal period and compare with controls. Sodium, potassium and total calcium levels were estimated in the serum samples of asphyxiated newborns of different severity and control group immediately after birth. Mean serum sodium level was significantly lower (122.1 +/- 6.0 mEq/L vs 138.8 +/- 2.7 mEq/L; P < 0.001), mean serum potassium was higher (5.05 +/- 0.63 mEq/L vs 4.19 +/- 0.40 mEq/L; P < 0.001) and mean serum calcium level was found lower (6.85 +/- 0.95 mg/dl vs 9.50 +/- 0.51 mg/dl; P < 0.001) in cases than controls. Among cases, a strong positive linear correlation was found between the serum sodium, serum calcium levels and their Apgar scores, between sodium levels and total calcium levels and significant negative linear correlation between Apgar scores and serum potassium level. Among cases, hyponatremia and hypocalcemia developed early and simultaneously and the decrease in their serum levels was directly proportional to each other and to the degree of asphyxia. Though, mean potassium level was within the normal limit, the value was higher among cases than controls and directly proportional to asphyxia.

  7. Dietary potassium intake and risk of stroke: a dose-response meta-analysis of prospective studies.

    PubMed

    Larsson, Susanna C; Orsini, Nicola; Wolk, Alicja

    2011-10-01

    Potassium intake has been inconsistently associated with risk of stroke. Our aim was to conduct a meta-analysis of prospective studies to assess the relation between potassium intake and stroke risk. Pertinent studies were identified by a search of PubMed from January 1966 through March 2011 and by reviewing the reference lists of retrieved articles. We included prospective studies that reported relative risks with 95% CIs of stroke for ≥3 categories of potassium intake or for potassium intake analyzed as a continuous variable. Study-specific results were pooled using a random-effects model. Ten independent prospective studies, with a total of 8695 stroke cases and 268 276 participants, were included in the meta-analysis. We observed a statistically significant inverse association between potassium intake and risk of stroke. For every 1000-mg/day increase in potassium intake, the risk of stroke decreased by 11% (pooled relative risk, 0.89; 95% CI, 0.83 to 0.97). In the 5 studies that reported results for stroke subtypes, the pooled relative risks were 0.89 (95% CI, 0.81 to 0.97) for ischemic stroke, 0.95 (95% CI, 0.83 to 1.09) for intracerebral hemorrhage, and 1.08 (95% CI, 0.92 to 1.27) for subarachnoid hemorrhage. Dietary potassium intake is inversely associated with risk of stroke, in particular ischemic stroke.

  8. Effect of potassium fertilizer application on the yield and quality of current sugarcane varieties in Louisiana

    USDA-ARS?s Scientific Manuscript database

    For many sugarcane producers in Louisiana the only fertilizer that is routinely applied to their crop is nitrogen that is side-dressed in the spring. This is due, primarily to the high cost of potassium and phosphorus fertilizers. Recent cooperative research conducted between the USDA/ARS Sugarcane ...

  9. Amoxicillin-potassium clavulanate: a novel beta-lactamase inhibitor.

    PubMed

    Smith, B R; LeFrock, J L

    1985-06-01

    Potassium clavulanate is a novel beta-lactamase inhibitor, which, in combination, expands the spectrum of amoxicillin to include many amoxicillin-resistant organisms. Potassium clavulanate is excreted 30-50 percent unchanged renally and its plasma time-course parallels that of amoxicillin. Several studies suggest that an increased incidence of gastrointestinal side effects may occur with this combination. In the current oral formulation, its greatest utility may be in pediatric infections due to beta-lactamase-producing Haemophilus influenzae and B. cattarhalis. In adults, the combination has not been adequately studied against other effective antibiotics.

  10. Reconstruction of ionic currents in a molluscan photoreceptor.

    PubMed Central

    Sakakibara, M.; Ikeno, H.; Usui, S.; Collin, C.; Alkon, D. L.

    1993-01-01

    Two-microelectrode voltage-clamp measurements were made to determine the kinetics and voltage dependence of ionic currents across the soma membrane of the Hermissenda type B photoreceptor. The voltage-dependent outward potassium currents, IA and ICa(2+)-K+, the inward voltage-dependent calcium current, ICa2+ and the light-induced current, IIgt, were then described with Hodgkin-Huxley-type equations. The fast-activating and inactivating potassium current, IA, was described by the equation; IA(t) = gA(max)(ma infinity[1-exp(-t/tau ma)])3 x (ha infinity [1-exp(-t/tau ha)] + exp(-t/tau ha)) (Vm-EK), where the parameters ma infinity, ha infinity, tau ma, and tau ha are functions of membrane potential, Vm, and ma infinity and ha infinity are steady-state activation and inactivation parameters. Similarly, the calcium-dependent outward potassium current, ICa(2+)-K+, was described by the equation, ICa(2+)-K+ (t) = gc(max)(mc infinity(VC)(1-exp[-t/tau mc (VC)]))pc (hc infinity(VC) [1-exp(-t/tau hc)] + exp(-t/tau hc(VC)])pc(VC-EK). In high external potassium, ICa(2+)-K+ could be measured in approximate isolation from other currents as a voltage-dependent inward tail current following a depolarizing command pulse from a holding potential of -60 mV. A voltage-dependent inward calcium current across the type B soma membrane, ICa2+, activated rapidly, showed little inactivation, and was described by the equation: ICa2+ = gCa(max) [1 + exp](-Vm-5)/7]-1 (Vm-ECa), where gCa(max) was 0.5 microS. The light-induced current with both fast and slow phases was described by: IIgt(t) = IIgt1 + IIgt2 + IIgt3, IIgti = gIgti [1-exp(- ton/tau mi)] exp(-ton/tau hi)(Vm-EIgti) (i = 1, 2). For i = 3, /Igt(t) = gigt3m33h3(Vm - Eigt3)exp(-ton/Ton) x exp(-tfoff/t Off). Based on these reconstructions of ionic currents, learning-induced enhancement of the long lasting depolarization (LLD) of the photoreceptor'slight response was shown to arise from progressive inactivation of /A, lca2+ -K+, and lCa2+. PMID:8369456

  11. Investigation of new hypergol scrubber technology

    NASA Technical Reports Server (NTRS)

    Glasscock, Barbara H.

    1994-01-01

    The ultimate goal of this work is to minimize the liquid waste generated from the scrubbing of hypergolic vent gases. In particular, nitrogen tetroxide, a strong oxidizer used in hypergolic propellant systems, is currently scrubbed with a sodium hydroxide solution resulting in a hazardous liquid waste. This study investigated the use of a solution of potassium hydroxide and hydrogen peroxide for the nitrogen textroxide vent scrubber system. The potassium nitrate formed would be potentially usable as a fertilizer. The hydrogen peroxide is added to convert the potassium nitrite that is formed into more potassium nitrate. Smallscale laboratory tests were conducted to establish the stability of hydrogen peroxide in the proposed scrubbing solution and to evaluate the effectiveness of hydrogen peroxide in converting nitrite to nitrate.

  12. Method for providing uranium articles with a corrosion resistant anodized coating

    DOEpatents

    Waldrop, Forrest B.; Washington, Charles A.

    1982-01-01

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  13. [Effects of nitrogen application rate on potassium uptake and utilization of direct-seeded cotton after wheat harvest].

    PubMed

    Zhang, Guo Wei; Yang, Chang Qin; Liu, Rui Xian; Zhang, Lei; Ni, Wan Chao

    2016-10-01

    By using cotton cultivar CCRI-50 as material, field experiments were conducted in the summer seasons of 2013 and 2014 at the experimental station of Jiangsu Academy of Agricultural Sciences (Nanjing, China) to study the effects of different nitrogen application rates (0, 60, 120, 150, 180 and 240 kg N·hm -2 ) on the potassium uptake and utilization of the cotton plant that was direct-seeded after wheat harvest. Data suggested that the elevated nitrogen application rates increased the cotton potassium uptake of all growth stages, and the largest increment was observed at the peak flowering-boll opening stage. Nitrogen application also changed the uptake percentage of potassium uptake of each stage, i.e., the percentage of potassium uptake decreased in the stage from seedling to peak flowering, while increased in the stage from peak flowering to boll maturing. In addition, the elevated nitrogen applications reduced the decreasing rate of nitrogen concentration in upper fruiting branches, but promoted the decreasing rate in middle and low fruiting branches at later growth stages. As the nitrogen application rate increased, the marginal effect of potassium uptake (promoted amount of potassium uptake due to 1 kg increase of N application) increased first and then decreased, and the lint production efficiency of potassium descended steadily. In cotton plants that were direct-seeded after wheat harvest, potassium and biomass were mainly accumulated in the lower and middle fruiting branches. At the 150 and 180 kg N·hm -2 application levels, much more potassium was allocated to the reproductive organs and the characters and the eigenvalues of simulated curves of potassium concentration and total potassium accumulation were more optimized than those at the higher or the lower N application levels. At the high nitrogen application (more than 180 kg N·hm -2 ) level, the marginal effect of potassium uptake and lint production efficiency decreased, and at the lower nitrogen application (less than 150 kg N·hm -2 ) level, lint yield was lower due to the decrease of economic coefficient of biomass and potassium in the middle and low fruiting branches.

  14. [Study on nutrient and salinity in soil covered with different vegetations in Shuangtaizi estuarine wetlands].

    PubMed

    Song, Xiao-Lin; Lü, Xian-Guo; Zhang, Zhong-Sheng; Chen, Zhi-Ke; Liu, Zheng-Mao

    2011-09-01

    Nutrient elements and salinity in soil covered by different vegetations including Phragmites australis (Clay.) Trin., Typha orientalis Presl., Puccinellia distans Parl, and Suaeda salsa in Shuangtaizi estuarine wetlands were investigated to study their distribution characteristics and to reveal the nutrient element variation during the vegetation succession processes. Results indicated that total potassium, total phosphorus and salinity were different significantly in soil between different plant communities while available phosphorus, total nitrogen, available nitrogen, available potassium, total sulfur, iron and soil organic carbon were different insignificantly. Correlation analysis suggested that soil organic carbon were related significantly to total nitrogen, available phosphorus, available potassium, which implied that decomposition of plant litter might be the mail source of soil nitrogen and available nutrient. Salinity was significantly related to total phosphorus and iron in soil. In Shuangtaizi estuarine wetland soil, ratios of carbon to nitrogen (R(C/N)) was in the range of 12.21-26.33 and the average value was 18.21, which was higher than 12.0. It indicated that soil organic carbon in Shuangtaizi estuarine mainly came from land but not ocean and plants contributed the most of soil organic matters. There was no significant difference in R(C/N) between soil from the four plant communities (F = 1.890, p = 0.151). R(C/N) was related significantly to sol salinity (r = 0.346 3, p = 0.035 8) and was increasing with soil salinity.

  15. Properties of the cromakalim-induced potassium conductance in smooth muscle cells isolated from the rabbit portal vein.

    PubMed Central

    Beech, D. J.; Bolton, T. B.

    1989-01-01

    1. Single smooth muscle cells were isolated freshly from the rabbit portal vein and membrane currents were recorded by the whole-cell or excised patch configurations of the patch-clamp technique at room temperature. 2. Cromakalim (Ckm, 10 microM) induced a potassium current (ICkm) that showed no pronounced voltage-dependence and had low current noise. 3. This current, ICkm, was inhibited by (in order of potency): phencyclidine greater than quinidine greater than 4-aminopyridine greater than tetraethylammonium ions (TEA). These drugs inhibited the delayed rectifier current, IdK, which is activated by depolarization of the cell, with the same order of potency. 4. Large conductance calcium-activated potassium channels (LKCa) in isolated membrane patches were blocked by (in order of potency) quinidine greater than TEA approximately phencyclidine. 4-Aminopyridine was ineffective. A similar order of potency was found for block of spontaneous transient outward currents thought to represent bursts of openings of LKCa channels. 5. The low current noise of ICkm at positive potentials, and its susceptibility to inhibitors indicated that it was not carried by LKCa channels, and that it may be carried by channels which underlie IdK. It was observed that when ICkm was activated, IdK was reduced. However, in two experiments, ICkm was much more susceptible to glibenclamide than IdK; possible reasons for this are discussed. PMID:2590772

  16. Potassium Homeostasis: The Knowns, the Unknowns, and the Health Benefits.

    PubMed

    McDonough, Alicia A; Youn, Jang H

    2017-03-01

    Potassium homeostasis has a very high priority because of its importance for membrane potential. Although extracellular K + is only 2% of total body K + , our physiology was evolutionarily tuned for a high-K + , low-Na + diet. We review how multiple systems interface to accomplish fine K + balance and the consequences for health and disease. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.

  17. Evaluation of eddy-current proximity devices for measuring thin potassium film thicknesses

    NASA Technical Reports Server (NTRS)

    Asadourian, A. S.

    1972-01-01

    Two eddy current proximity probe systems were tested over a range of 0 to 508 micrometers (0 to 20 mils) of simulated potassium film thicknesses for simulated temperatures of 66 C (150 F), 232 C (450 F), and 666 C (1230 F). The results of short time calibration tests are presented. Instrument drift was a problem throughout the testing and, without correction, may limit the use of such systems to short periods of time. Additional development will be required prior to their being usable as practical instrumentation systems.

  18. A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device.

    PubMed

    Fan, Ling; Lin, Kairui; Wang, Jue; Ma, Ruifang; Lu, Bingan

    2018-05-01

    A low cost nonaqueous potassium-based battery-supercapacitor hybrid device (BSH) is successfully established for the first time with soft carbon as the anode, commercialized activated carbon as the cathode, and potassium bis(fluoro-slufonyl)imide in dimethyl ether as the electrolyte. This BSH reconciles the advantages of potassium ion batteries and supercapacitors, achieving a high energy density of 120 W h kg -1 , a high power density of 599 W kg -1 , a long cycle life of 1500 cycles, and an ultrafast charge/slow discharge performance (energy density and power density are calculated based on the total mass of active materials in the anode and cathode). This work demonstrates a great potential of applying the nonaqueous BSH for low cost electric energy storage systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evaluating Status Change of Soil Potassium from Path Model

    PubMed Central

    He, Wenming; Chen, Fang

    2013-01-01

    The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K). Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K), the chemical index of alteration (CIA), Soil Organic Matter in soil solution (SOM), Na and total nitrogen in soil solution (TN), and key indirect factors were Carbonate (CO3), Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK), Non-exchangeable potassium (neK) and water-soluble potassium (wsK) under influences of specific environmental parameters. In reversible equilibrium state of , K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of , K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth. PMID:24204659

  20. Sodium-to-Potassium Ratio and Blood Pressure, Hypertension, and Related Factors12

    PubMed Central

    Perez, Vanessa; Chang, Ellen T.

    2014-01-01

    The potential cost-effectiveness and feasibility of dietary interventions aimed at reducing hypertension risk are of considerable interest and significance in public health. In particular, the effectiveness of restricted sodium or increased potassium intake on mitigating hypertension risk has been demonstrated in clinical and observational research. The role that modified sodium or potassium intake plays in influencing the renin-angiotensin system, arterial stiffness, and endothelial dysfunction remains of interest in current research. Up to the present date, no known systematic review has examined whether the sodium-to-potassium ratio or either sodium or potassium alone is more strongly associated with blood pressure and related factors, including the renin-angiotensin system, arterial stiffness, the augmentation index, and endothelial dysfunction, in humans. This article presents a systematic review and synthesis of the randomized controlled trials and observational research related to this issue. The main findings show that, among the randomized controlled trials reviewed, the sodium-to-potassium ratio appears to be more strongly associated with blood pressure outcomes than either sodium or potassium alone in hypertensive adult populations. Recent data from the observational studies reviewed provide additional support for the sodium-to-potassium ratio as a superior metric to either sodium or potassium alone in the evaluation of blood pressure outcomes and incident hypertension. It remains unclear whether this is true in normotensive populations and in children and for related outcomes including the renin-angiotensin system, arterial stiffness, the augmentation index, and endothelial dysfunction. Future study in these populations is warranted. PMID:25398734

  1. Potential New Agents for the Management of Hyperkalemia.

    PubMed

    Packham, David K; Kosiborod, Mikhail

    2016-02-01

    Hyperkalemia is a common electrolyte disturbance with multiple potential etiologies. It is usually observed in the setting of reduced renal function. Mild to moderate hyperkalemia is usually asymptomatic, but is associated with poor prognosis. When severe, hyperkalemia may cause serious acute cardiac arrhythmias and conduction abnormalities, and may result in sudden death. The rising prevalence of conditions associated with hyperkalemia (heart failure, chronic kidney disease, and diabetes) and broad use of renin-angiotensin-aldosterone system (RAAS) inhibitors and mineralocorticoid receptor antagonists (MRAs), which improve patient outcomes but increase the risk of hyperkalemia, have led to a significant rise in hyperkalemia-related hospitalizations and deaths. Current non-invasive therapies for hyperkalemia either do not remove excess potassium or have poor efficacy and tolerability. There is a clear need for safer, more effective potassium-lowering therapies suitable for both acute and chronic settings. Patiromer sorbitex calcium and sodium zirconium cyclosilicate (ZS-9) are two new potassium-lowering compounds currently in development. Although they have not yet been approved by the US FDA, both have demonstrated efficacy and safety in recent trials. Patiromer sorbitex calcium is a polymer resin and sorbitol complex that binds potassium in exchange for calcium; ZS-9, a non-absorbed, highly selective inorganic cation exchanger, traps potassium in exchange for sodium and hydrogen. This review discusses the merits of both novel drugs and how they may help optimize the future management of patients with hyperkalemia.

  2. Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T.

    PubMed

    Kubicki, Dominik J; Prochowicz, Daniel; Hofstetter, Albert; Zakeeruddin, Shaik M; Grätzel, Michael; Emsley, Lyndon

    2018-06-13

    Organic-inorganic lead halide perovskites are a promising family of light absorbers for a new generation of solar cells, with reported efficiencies currently exceeding 22%. A common problem of solar cells fabricated using these materials is that their efficiency depends on their cycling history, an effect known as current-voltage ( J- V) hysteresis. Potassium doping has recently emerged as a universal way to overcome this adverse phenomenon. While the atomistic origins of J- V hysteresis are still not fully understood, it is essential to rationalize the atomic-level effect of protocols that lead to its suppression. Here, using 39 K MAS NMR at 21.1 T we provide for the first time atomic-level characterization of the potassium-containing phases that are formed upon KI doping of multication and multianion lead halide perovskites. We find no evidence of potassium incorporation into 3D perovskite lattices of the recently reported materials. Instead, we observe formation of a mixture of potassium-rich phases and unreacted KI. In the case of Br-containing lead halide perovskites doped with KI, a mixture of KI and KBr ensues, leading to a change in the Br/I ratio in the perovskite phase with respect to the undoped perovskite. Simultaneous Cs and K doping leads to the formation of nonperovskite Cs/K lead iodide phases.

  3. Dietary salt consumption and the knowledge, attitudes and behavior of healthy adults: a cross-sectional study from Jordan.

    PubMed

    Alawwa, Izzat; Dagash, Rajaa; Saleh, Akram; Ahmad, Abdelaziz

    2018-12-01

    High dietary sodium is recognized as a silent killer responsible for 2.3 million deaths worldwide in 2010 predominantly secondary to hypertension and its complications. Although high salt consumption is considered a worldwide public health problem, its magnitude is highly variable among different communities; therefore, it is important to study locally. This study aimed to evaluate habitual salt consumption, its important correlations, as well as the knowledge, attitude, and behavior of healthy Jordanian citizens. As potassium consumption is highly correlated and important we aimed to study both jointly. In this descriptive cross-sectional study we enrolled 103 healthy adult Jordanian citizens. All participants were interviewed for questionnaire filling, physical examination, and instructed on proper 24-hour urine collection procedure. We measured sodium and potassium concentration in the provided controlled 24-hour urine collection samples, as it is presently considered the gold standard for evaluating daily intake. The results showed an average sodium intake of 179 mmol (4.1 g) per day [higher in males at 186 mmol (4.3 g) vs. 173 mmol (4.0 g) for females], significantly above the current WHO recommendations, though only 8% regularly add salt to food. Ironically, most participants (82%) believe their salt consumption was appropriate and only 29% thought they may benefit from reducing salt intake. On the other hand, potassium intake is far below the current WHO recommendations. High sodium and low potassium intake have synergistic adverse effects on public health that is not currently addressed in Jordan. We conclude that Jordanian citizens currently consume high sodium and low potassium diet and are mostly unaware of its negative impact on their health. Hence, it is crucial for healthcare providers to intervene and adopt long-term strategies to control salt intake to reduce its negative effects in Jordan and elsewhere.

  4. Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China.

    PubMed

    Lin, Yongming; Deng, Haojun; Du, Kun; Rafay, Loretta; Zhang, Guang-Shuai; Li, Jian; Chen, Can; Wu, Chengzhen; Lin, Han; Yu, Wei; Fan, Hailan; Ge, Yonggang

    2017-10-15

    The MS 8.0Wenchuan Earthquake in 2008 caused huge damage to land cover in the northwest of China's Sichuan province. In order to determine the nutrient loss and short term characteristics of change in soil chemical properties, we established an experiment with three treatments ('undestroyed', 'destroyed and treated', and 'destroyed and untreated'), two climate types (semi-arid hot climate and subtropical monsoon climate), and three slope positions (upslope, mid-slope, and bottom-slope) in 2011. Ten soil properties-including pH, organic carbon, total nitrogen, total phosphorus, total potassium, Ca 2+ , Mg 2+ , alkaline hydrolysable nitrogen, available phosphorus, and available potassium-were measured in surface soil samples in December 2014. Analyses were performed to compare the characteristics of 3-year change in soil chemical properties in two climate zones. This study revealed that soil organic carbon, total nitrogen, Ca 2+ content, alkaline hydrolysable nitrogen, available phosphorus, and available potassium were significantly higher in subtropical monsoon climate zones than in semi-arid hot climate zones. However, subtropical monsoon climate zones had a higher decrease in soil organic carbon, total nitrogen, total phosphorus, total potassium, and alkaline hydrolysable nitrogen in 'destroyed and untreated' sites than in semi-arid hot climate zones. Most soil chemical properties exhibited significant interactions, indicating that they may degrade or develop concomitantly. 'Destroyed and treated' sites in both climate types had lower C:P and N:P ratios than 'destroyed and untreated' sites. Principal component analysis (PCA) showed that the first, second, and third principal components explained 76.53% of the variation and might be interpreted as structural integrity, nutrient supply availability, and efficiency of soil; the difference of soil parent material; as well as weathering and leaching effects. Our study indicated that the characteristics of short term change in soil properties were affected by climate types and treatments, but not slope positions. Our results provide useful information for the selection of restoration countermeasures in different climate types to facilitate ecological restoration and reconstruction strategies in earthquake-affected areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A biophysical model examining the role of low-voltage-activated potassium currents in shaping the responses of vestibular ganglion neurons.

    PubMed

    Hight, Ariel E; Kalluri, Radha

    2016-08-01

    The vestibular nerve is characterized by two broad groups of neurons that differ in the timing of their interspike intervals; some fire at highly regular intervals, whereas others fire at highly irregular intervals. Heterogeneity in ion channel properties has been proposed as shaping these firing patterns (Highstein SM, Politoff AL. Brain Res 150: 182-187, 1978; Smith CE, Goldberg JM. Biol Cybern 54: 41-51, 1986). Kalluri et al. (J Neurophysiol 104: 2034-2051, 2010) proposed that regularity is controlled by the density of low-voltage-activated potassium currents (IKL). To examine the impact of IKL on spike timing regularity, we implemented a single-compartment model with three conductances known to be present in the vestibular ganglion: transient sodium (gNa), low-voltage-activated potassium (gKL), and high-voltage-activated potassium (gKH). Consistent with in vitro observations, removing gKL depolarized resting potential, increased input resistance and membrane time constant, and converted current step-evoked firing patterns from transient (1 spike at current onset) to sustained (many spikes). Modeled neurons were driven with a time-varying synaptic conductance that captured the random arrival times and amplitudes of glutamate-driven synaptic events. In the presence of gKL, spiking occurred only in response to large events with fast onsets. Models without gKL exhibited greater integration by responding to the superposition of rapidly arriving events. Three synaptic conductance were modeled, each with different kinetics to represent a variety of different synaptic processes. In response to all three types of synaptic conductance, models containing gKL produced spike trains with irregular interspike intervals. Only models lacking gKL when driven by rapidly arriving small excitatory postsynaptic currents were capable of generating regular spiking. Copyright © 2016 the American Physiological Society.

  6. Synaptic calcium regulation in hair cells of the chicken basilar papilla.

    PubMed

    Im, Gi Jung; Moskowitz, Howard S; Lehar, Mohammed; Hiel, Hakim; Fuchs, Paul Albert

    2014-12-10

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents ("minis") resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. Copyright © 2014 the authors 0270-6474/14/3416688-10$15.00/0.

  7. Synaptic Calcium Regulation in Hair Cells of the Chicken Basilar Papilla

    PubMed Central

    Im, Gi Jung; Moskowitz, Howard S.; Lehar, Mohammed; Hiel, Hakim

    2014-01-01

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents (“minis”) resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. PMID:25505321

  8. Further evidence for a potassium-like action of lithium ions on sodium efflux in frog skeletal muscle

    PubMed Central

    Beaugé, L. A.; Ortiz, Olga

    1972-01-01

    1. The efflux of labelled sodium as well as net sodium and lithium changes were studied in aged high sodium sartorius muscles of the South American frog Leptodactilus ocelatus. 2. In the presence of 2·5 mM potassium in the media, the replacement of external sodium with lithium or magnesium resulted in an increase in sodium efflux. The magnitude of such increase was always larger in lithium. 3. With the absence of potassium in the media, the response of sodium efflux to replacement of external sodium varied with the cation used as a substitute. In lithium Ringer there was always a noticeable increase, whereas in magnesium there was always a marked reduction. The same results were observed when calcium was substituted for magnesium. 4. The replacement of 60 mM external sodium with sucrose did not prevent the stimulating effect of 5 mM potassium on sodium efflux, nor the inhibitory action of 10-4 M ouabain. This indicates that neither sucrose by itself, nor the lowering of the ionic strength, modified to an appreciable extent the function of the sodium pump. 5. Net sodium extrusion took place against an electrochemical gradient in potassium-free — 50 mM sodium — mM lithium Ringer. About 75% of this efflux was ouabain sensitive. 6. Muscles made both sodium and lithium rich and incubated in potassium-free — 60 mM sodium — 50 mM lithium Ringer also showed net sodium extrusion against an electrochemical gradient, which was 85% ouabain sensitive. This extrusion took place even under conditions where the changes in free energy favouring lithium entry were always lower than the changes in free energy opposing sodium going out. This indicates that a sodium-lithium exchange by a counter-transport process is unlikely. 7. External potassium reduced the ouabain sensitive lithium influx in muscles incubated in lithium Ringer. The values found were 5·90 ± 0·39 μ-mole/g.hr and 2·66 ± 0·43 μmole/g.hr in potassium-free and 15 mM potassium respectively. At the same time potassium had no effect on the ouabain-insensitive lithium uptake. 8. Muscles incubated in potassium-free-magnesium Ringer had a residual sodium efflux which could not be accounted for by passive movement. About 40% of it was abolished by 10-4 M ouabain. This ouabain-sensitive part could be a consequence of some stimulation of the sodium pump by potassium leaking out of the cells. If this is correct it should be inhibited by external sodium and should not contribute to the total sodium efflux in potassium-free sodium media. 9. Magnesium was used as the reference cation to study the sodium-stimulated sodium efflux under potassium-free conditions. The total sodium efflux amounted to 0·668 hr-1 (rate constant) and was 71% ouabain sensitive. 10. The present experiments demonstrated that lithium ions have a direct stimulating effect on sodium efflux in high sodium skeletal muscle, and strongly support the notion that this effect is produced by an activation of the sodium pump through a potassium-like action. PMID:4637626

  9. Recent Advances in the Pathogenesis and Drug Action in Periodic Paralyses and Related Channelopathies

    PubMed Central

    Tricarico, Domenico; Camerino, Diana Conte

    2011-01-01

    The periodic paralysis (PP) are rare autosomal-dominant disorders associated to mutations in the skeletal muscle sodium, calcium, and potassium channel genes characterized by muscle fiber depolarization with un-excitability, episodes of weakness with variations in serum potassium concentrations. Recent advances in thyrotoxic PP and hypokalemic PP (hypoPP) confirm the involvement of the muscle potassium channels in the pathogenesis of the diseases and their role as target of action for drugs of therapeutic interest. The novelty in the gating pore currents theory help to explain the disease symptoms, and open the possibility to more specifically target the disease. It is now known that the fiber depolarization in the hypoPP is due to an unbalance between the novel identified depolarizing gating pore currents (Igp) carried by protons or Na+ ions flowing through aberrant alternative pathways of the mutant subunits and repolarizing inwardly rectifying potassium channel (Kir) currents which also includes the ATP-sensitive subtype. Abnormal activation of the Igp or deficiency in the Kir channels predispose to fiber depolarization. One pharmacological strategy is based on blocking the Igp without affecting normal channel gating. It remains safe and effective the proposal of targeting the KATP, Kir channels, or BK channels by drugs capable to specifically open at nanomolar concentrations the skeletal muscle subtypes with less side effects. PMID:21687503

  10. Correlation between chemical components of billary calculi and bile & sera and bile of gallstone patients.

    PubMed

    Chandran, Prasheeda; Garg, Pradeep; Pundir, Chandra S

    2005-07-01

    Total cholesterol, total bilirubin, calcium, oxalate, inorganic phosphate, magnesium, iron, copper, sodium and potassium were analyzed quantitatively in gallstones, bile of gall bladder and sera of 200 patients of cholelithiasis (52 cholesterol, 76 mixed and 72 pigment stone patients) and their contents were correlated between calculi and bile and sera and bile in these three type of stone patients. A significant positive correlation was observed between total cholesterol, total bilirubin of calculi and bile, copper of bile and sera of cholesterol stone patients, copper of calculi and bile, total bilirubin, oxalate, magnesium, potassium of sera and bile of pigment stone patients and oxalate and iron of stone and bile, total bilirubin, oxalate, sodium of sera and bile of mixed stone patients. A significant negative correlation was found between magnesium of serum and bile of cholesterol stone patients, oxalate of calculi and bile of pigment stone patients and magnesium of serum and bile of mixed stone patients.

  11. Inhibitory Effects of Glycyrrhetinic Acid on the Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes and HERG Channel

    PubMed Central

    Wu, Delin; Jiang, Linqing; Wu, Hongjin; Wang, Shengqi; Zheng, Sidao; Yang, Jiyuan; Liu, Yuna; Ren, Jianxun; Chen, Xianbing

    2013-01-01

    Background. Licorice has long been used to treat many ailments including cardiovascular disorders in China. Recent studies have shown that the cardiac actions of licorice can be attributed to its active component, glycyrrhetinic acid (GA). However, the mechanism of action remains poorly understood. Aim. The effects of GA on the delayed rectifier potassium current (I K), the rapidly activating (I Kr) and slowly activating (I Ks) components of I K, and the HERG K+ channel expressed in HEK-293 cells were investigated. Materials and Methods. Single ventricular myocytes were isolated from guinea pig myocardium using enzymolysis. The wild type HERG gene was stably expressed in HEK293 cells. Whole-cell patch clamping was used to record I K (I Kr, I Ks) and the HERG K+ current. Results. GA (1, 5, and 10 μM) inhibited I K (I Kr, I Ks) and the HERG K+ current in a concentration-dependent manner. Conclusion. GA significantly inhibited the potassium currents in a dose- and voltage-dependent manner, suggesting that it exerts its antiarrhythmic action through the prolongation of APD and ERP owing to the inhibition of I K (I Kr, I Ks) and HERG K+ channel. PMID:24069049

  12. [Electrophysiological study on rat conduit pulmonary artery smooth muscle cells under normoxia and acute hypoxia].

    PubMed

    Hu, Ying; Zou, Fei; Cai, Chun-Qing; Wu, Hang-Yu; Yun, Hai-Xia; Chen, Yun-Tian; Jin, Guo-En; Ge, Ri-Li

    2006-10-25

    The present study was designed to investigate the electrophysiological characteristics of rat conduit pulmonary artery smooth muscle cells (PASMCs) and the response to acute hypoxia. PASMCs of the 1st to 2nd order branches in the conduit pulmonary arteries were obtained by enzymatic isolation. The PASMCs were divided into acute hypoxia preconditioned group and normoxia group. Hypoxia solutions were achieved by bubbling with 5% CO2 plus 95% N2 for at least 30 min before cell perfusion. Potassium currents were compared between these two groups using whole-cell patch clamp technique. The total outward current of PASMCs was measured under normoxia condition when iBTX [specific blocking agent of large conductance Ca-activated K(+) (BK(Ca)) channel] and 4-AP [specific blocking agent of delayed rectifier K(+) (K(DR)) channel] were added consequently into bath solution. PASMCs were classified into three types according to their size, shape and electrophysiological characteristics. Type I cells are the smallest with spindle shape, smooth surface and discrete perinuclear bulge. Type II cells show the biggest size with banana-like appearance. Type III cells have the similar size with type I, and present intermediary shape between type I and type II. iBTX had little effect on the total outward current in type I cells, while 4-AP almost completely blocked it. Most of the total outward current in type II cells was inhibited by iBTX, and the remaining was sensitive to 4-AP. In type III cells, the total outward current was sensitive to both iBTX and 4-AP. Acute hypoxia reduced the current in all three types of cells: (1614.8+/-62.5) pA to (892.4+/-33.6) pA for type I cells (P<0.01); (438.3+/-42.8) pA to (277.5+/-44.7) pA for type II cells (P<0.01); (1 042.0+/-37.2) pA to (613.6+/-23.8) pA for type III (P<0.01), and raised the resting membrane potentials (E(m)) in all these three types of cells: (-41.6+/-1.6) mV to (-18.6+/-1.5) mV (P<0.01), (-42.3+/-3.8) mV to (-30.6+/-3.0) mV (P<0.01), (-43.3+/-1.6) mV to (-28.4+/-1.4) mV (P<0.01), for type I, II, III cells, respectively. These results suggest that acute hypoxia suppresses the potassium current and improves the E(m) in PASMCs. These effects may be involved in the modulation of constriction/relaxation of conduit artery under acute hypoxia. Different distribution of K(DR) and BK(Ca) channels in these three types of PASMCs might account for their different constriction/relaxation response to acute hypoxia.

  13. Method for providing uranium articles with a corrosion-resistant anodized coating

    DOEpatents

    Waldrop, F.B.; Washington, C.A.

    1981-01-07

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  14. The changes of potassium currents in rabbit ventricle with healed myocardial infarction.

    PubMed

    Liu, Nian; Niu, Huiyan; Li, Yang; Zhang, Cuntai; Zhou, Qiang; Ruan, Yanfei; Pu, Jun; Lu, Zaiying

    2004-01-01

    To elucidate the mechanism of arrhythmia in healed myocardial infarction (HMI), the changes of action potential duration (APD), transient outward potassium current (Ito), delayed rectifier potassium current (IK) and inward rectifier potassium current (IK1) of left ventricular myocytes in non-infarcted zone of HMI were investigated. Rabbits were randomly assigned into two groups: HMI group, in which animals were subjected to thoracotomy and ligation of the circumflex coronary and sham-operated group, in which rabbits underwent thoracotomy but no conorary ligation. 3 months after the operation, the whole myocyte patch clamp technique was used to record APD, Ito, IK, and IK1 of ventricular myocytes in non-infarcted zone. Our results showed that the membrane capacitance was larger in HMI group than in sham-operated group. Action potential duration was significantly lengthened in HMI group and early afterdepolarization (EAD) appeared in HMI group. The densities of Ito, I(K, tail), and IK1 were reduced significantly in HMI group, from 6.72 +/- 0.42 pA/pF, 1.54 +/- 0.13 pA/pF and 25.6 +/- 2.6 pA/pF in sham-operated group to 4.03 +/- 0.33 pA/pF, 1.14 +/- 0.11 pA/pF and 17.6 +/- 2.3 pA/pF, respectively. It is concluded that the reduced densities of Ito, I(K, tail) and IK1 in ventricular myocytes of non-infarcted zone in HMI were responsible for the prolongation of APD and the presentation of EAD which played important roles in the development of malignant arrhythmia in HMI.

  15. Effects of furosemide on hemorheologic alterations induced by incremental treadmill exercise in thoroughbreds.

    PubMed

    Weiss, D J; Geor, R J; Burger, K

    1996-06-01

    To determine whether furosemide treatment altered the blood flow properties and serum and RBC electrolyte concentrations of Thoroughbreds during submaximal treadmill exercise. Thoroughbreds were subjected to submaximal treadmill exercise with and without treatment with furosemide (1 mg/kg of body weight, IV). 5 healthy Throughbreds that had raced within the past year and had no history of exercise-induced pulmonary hemorrhage. Venous blood samples were obtained before exercise, at treadmill speeds of 9 and 13 m/s, and 10 minutes after exercise, and hemorheologic and electrolyte test results were determined. Hemorheologic changes 60 minutes after furosemide administration included increased PCV, plasma total protein concentration, whole blood viscosity, mean RBC volume, and RBC potassium concentration, and decreased serum potassium concentration, serum chloride concentration, and RBC chloride concentration. Furosemide treatment attenuated the exercise-associated changes in RBC size, serum sodium concentration, serum potassium concentration, RBC potassium and chloride concentrations, and RBC density; exacerbated exercise-associated increases in whole blood viscosity; and had no effect on RBC filterability. The hemorheologic effects of furosemide probably occurred secondary to total body and transmembrane fluid and electrolyte fluxes and would not improve blood flow properties. The beneficial effects of furosemide treatment in reducing the severity of bleeding in horses with exercise-induced pulmonary hemorrhage cannot be explained by improved blood flow properties.

  16. Monitoring of urea and potassium by reverse iontophoresis in vitro.

    PubMed

    Wascotte, Valentine; Delgado-Charro, M Begoña; Rozet, Eric; Wallemacq, Pierre; Hubert, Philippe; Guy, Richard H; Préat, Véronique

    2007-06-01

    Reverse iontophoresis is an alternative to blood sampling for the monitoring of endogenous molecules. Here, the potential of the technique to measure urea and potassium levels non-invasively, and to track their concentrations during hemodialysis, has been examined. In vitro experiments were performed to test (a) a series of subdermal urea and potassium concentrations typical of the pathophysiologic range, and (b) a decreasing profile of urea and potassium subdermal concentrations to mimic those which are observed during hemodialysis. (a) After 60-120 min of iontophoresis, linear relationships (p < 0.05) were established between both urea and potassium fluxes and their respective subdermal concentrations. The determination coefficients were above 0.9 after 1 h of current passage using sodium as an internal standard. (b) Reverse iontophoretic fluxes of urea and K(+) closely paralleled the decay of the respective concentrations in the subdermal compartment, as would occur during a hemodialysis session. These in vitro experiments demonstrate that urea and potassium can be quantitatively and proportionately extracted by reverse iontophoresis, even when the subdermal concentrations of the analytes are varying with time. These results suggest the non-invasive monitoring of urea and potassium to diagnose renal failure and during hemodialysis is feasible, and that in vivo measurements are warranted.

  17. Urinary Sodium and Potassium Excretion and Dietary Sources of Sodium in Maputo, Mozambique.

    PubMed

    Queiroz, Ana; Damasceno, Albertino; Jessen, Neusa; Novela, Célia; Moreira, Pedro; Lunet, Nuno; Padrão, Patrícia

    2017-08-03

    This study aimed to evaluate the urinary excretion of sodium and potassium, and to estimate the main food sources of sodium in Maputo dwellers. A cross-sectional evaluation of a sample of 100 hospital workers was conducted between October 2012 and May 2013. Sodium and potassium urinary excretion was assessed in a 24-h urine sample; creatinine excretion was used to exclude unlikely urine values. Food intake in the same period of urine collection was assessed using a 24-h dietary recall. The Food Processor Plus ® was used to estimate sodium intake corresponding to naturally occurring sodium and sodium added to processed foods (non-discretionary sodium). Salt added during culinary preparations (discretionary sodium) was computed as the difference between urinary sodium excretion and non-discretionary sodium. The mean (standard deviation) urinary sodium excretion was 4220 (1830) mg/day, and 92% of the participants were above the World Health Organization (WHO) recommendations. Discretionary sodium contributed 60.1% of total dietary sodium intake, followed by sodium from processed foods (29.0%) and naturally occurring sodium (10.9%). The mean (standard deviation) urinary potassium excretion was 1909 (778) mg/day, and 96% of the participants were below the WHO potassium intake recommendation. The mean (standard deviation) sodium to potassium molar ratio was 4.2 (2.4). Interventions to decrease sodium and increase potassium intake are needed in Mozambique.

  18. Urinary Sodium and Potassium Excretion and Dietary Sources of Sodium in Maputo, Mozambique

    PubMed Central

    Queiroz, Ana; Damasceno, Albertino; Jessen, Neusa; Novela, Célia; Moreira, Pedro; Lunet, Nuno

    2017-01-01

    This study aimed to evaluate the urinary excretion of sodium and potassium, and to estimate the main food sources of sodium in Maputo dwellers. A cross-sectional evaluation of a sample of 100 hospital workers was conducted between October 2012 and May 2013. Sodium and potassium urinary excretion was assessed in a 24-h urine sample; creatinine excretion was used to exclude unlikely urine values. Food intake in the same period of urine collection was assessed using a 24-h dietary recall. The Food Processor Plus® was used to estimate sodium intake corresponding to naturally occurring sodium and sodium added to processed foods (non-discretionary sodium). Salt added during culinary preparations (discretionary sodium) was computed as the difference between urinary sodium excretion and non-discretionary sodium. The mean (standard deviation) urinary sodium excretion was 4220 (1830) mg/day, and 92% of the participants were above the World Health Organization (WHO) recommendations. Discretionary sodium contributed 60.1% of total dietary sodium intake, followed by sodium from processed foods (29.0%) and naturally occurring sodium (10.9%). The mean (standard deviation) urinary potassium excretion was 1909 (778) mg/day, and 96% of the participants were below the WHO potassium intake recommendation. The mean (standard deviation) sodium to potassium molar ratio was 4.2 (2.4). Interventions to decrease sodium and increase potassium intake are needed in Mozambique. PMID:28771193

  19. Reference Atmosphere for Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  20. Potassium channels in brain mitochondria.

    PubMed

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify their molecular correlates.

  1. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions

    PubMed Central

    Schmidt III, WF; McManus, TJ

    1977-01-01

    Duck red cells in hypertonic media experience rapid osmotic shrinkage followed by gradual reswelling back toward their original volume. This uptake of salt and water is self limiting and demands a specific ionic composition of the external solution. Although ouabain (10(-4)M) alters the pattern of cation accumulation from predominantly potassium to sodium, it does not affect the rate of the reaction, or the total amount of salt or water taken up. To study the response without the complications of active Na-K transport, ouabain was added to most incubations. All water accumulated by the cells can be accounted for by net salt uptake. Specific external cation requirements for reswelling include: sufficient sodium (more than 23 mM), and elevated potassium (more than 7 mM). In the absence of external potassium cells lose potassium without gaining sodium and continue to shrink instead of reswelling. Adding rubidium to the potassium- free solution promotes an even greater loss of cell potassium, yet causes swelling due to a net uptake of sodium and rubidium followed by chloride. The diuretic furosemide (10(-3)M) inhibits net sodium uptake which depends on potassium (or rubidium), as well as inhibits net sodium uptake which depends on sodium. As a result, cell volume is stabilized in the presence of this drug by inhibition of shrinkage, at low, and of swelling at high external potassium. The response has a high apparent energy of activation (15-20 kcal/mol). We propose that net salt and water movements in hypertonic solutions containing ouabain are mediated by direct coupling or cis-interaction, between sodium and potassium so that the uphill movement of one is driven by the downhill movement of the other in the same direction. PMID:894251

  2. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for potassium and sodium intake.

    PubMed

    Freedman, Laurence S; Commins, John M; Moler, James E; Willett, Walter; Tinker, Lesley F; Subar, Amy F; Spiegelman, Donna; Rhodes, Donna; Potischman, Nancy; Neuhouser, Marian L; Moshfegh, Alanna J; Kipnis, Victor; Arab, Lenore; Prentice, Ross L

    2015-04-01

    We pooled data from 5 large validation studies (1999-2009) of dietary self-report instruments that used recovery biomarkers as referents, to assess food frequency questionnaires (FFQs) and 24-hour recalls (24HRs). Here we report on total potassium and sodium intakes, their densities, and their ratio. Results were similar by sex but were heterogeneous across studies. For potassium, potassium density, sodium, sodium density, and sodium:potassium ratio, average correlation coefficients for the correlation of reported intake with true intake on the FFQs were 0.37, 0.47, 0.16, 0.32, and 0.49, respectively. For the same nutrients measured with a single 24HR, they were 0.47, 0.46, 0.32, 0.31, and 0.46, respectively, rising to 0.56, 0.53, 0.41, 0.38, and 0.60 for the average of three 24HRs. Average underreporting was 5%-6% with an FFQ and 0%-4% with a single 24HR for potassium but was 28%-39% and 4%-13%, respectively, for sodium. Higher body mass index was related to underreporting of sodium. Calibration equations for true intake that included personal characteristics provided improved prediction, except for sodium density. In summary, self-reports capture potassium intake quite well but sodium intake less well. Using densities improves the measurement of potassium and sodium on an FFQ. Sodium:potassium ratio is measured much better than sodium itself on both FFQs and 24HRs. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Associations of Biomarker-Calibrated Sodium and Potassium Intakes With Cardiovascular Disease Risk Among Postmenopausal Women.

    PubMed

    Prentice, Ross L; Huang, Ying; Neuhouser, Marian L; Manson, JoAnn E; Mossavar-Rahmani, Yasmin; Thomas, Fridtjof; Tinker, Lesley F; Allison, Matthew; Johnson, Karen C; Wassertheil-Smoller, Sylvia; Seth, Arjun; Rossouw, Jacques E; Shikany, James; Carbone, Laura D; Martin, Lisa W; Stefanick, Marcia L; Haring, Bernhard; Van Horn, Linda

    2017-11-01

    Studies of the associations of sodium and potassium intakes with cardiovascular disease incidence often rely on self-reported dietary data. In the present study, self-reported intakes from postmenopausal women at 40 participating US clinical centers are calibrated using 24-hour urinary excretion measures in cohorts from the Women's Health Initiative, with follow-up from 1993 to 2010. The incidence of hypertension was positively related to (calibrated) sodium intake and to the ratio of sodium to potassium. The sodium-to-potassium ratio was associated with cardiovascular disease incidence during an average follow-up period of 12 years. The estimated hazard ratio for a 20% increase in the sodium-to-potassium ratio was 1.13 (95% confidence interval (CI): 1.04, 1.22) for coronary heart disease, 1.20 (95% CI: 1.01, 1.42) for heart failure, and 1.11 (95% CI: 1.04, 1.19) for a composite cardiovascular disease outcome. The association with total stroke was not significant, but it was positive for ischemic stroke and inverse for hemorrhagic stroke. Aside from hemorrhagic stroke, corresponding associations of cardiovascular disease with sodium and potassium jointly were positive for sodium and inverse for potassium, although some were not statistically significant. Specifically, for coronary heart disease, the hazard ratios for 20% increases were 1.11 (95% CI: 0.95, 1.30) for sodium and 0.85 (95% CI: 0.73, 0.99) for potassium; and corresponding values for heart failure were 1.36 (95% CI: 1.02, 1.82) for sodium and 0.90 (95% CI: 0.69, 1.18) for potassium. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Use of airborne gamma-ray spectrometry for kaolin exploration

    NASA Astrophysics Data System (ADS)

    Tourlière, B.; Perrin, J.; Le Berre, P.; Pasquet, J. F.

    2003-08-01

    Airborne gamma-ray spectrometry was used to define targets with kaolin potential in the Armorican Massif of Brittany, France. This exploration method is based on the principle that kaolinite, an aluminosilicate clay mineral constituting kaolin, is formed by the hydrolysis of potash feldspar with the elimination of potassium. Therefore, potassium contrast between favourable host-rock such as a leucogranite and kaolin occurrence is likely a significant pathfinder. As the relationship between the potassium-40 recorded by an airborne gamma-ray spectrometer and total potassium is constant, such data provide us a direct measurement of the potassium content of the ground flown over. Our study tested this by calculating, for each geological unit, the difference between the measured and average potassium content calculated for a given geological formation. The study was based on (i) a recent (1998) high-definition airborne geophysical survey over the Armorican Massif undertaken on behalf of the French Government, and (ii) new geological compilation maps covering the same region. Depleted zones, where the measured potassium is less than the average potassium content calculated target areas with high potential of containing kaolin, provided that the unit was originally rich in potash feldspar. By applying this method to the entire Armorican Massif, it was possible to identify 150 potassium-depleted zones, including 115 that were subjected to rapid field checks and 36 that contained kaolin (21 new discoveries). This method, which is both safe for the environment and easy to use, is therefore a good tool for rapidly defining targets with kaolin potential at a regional scale. The method may also have possibilities in exploring for other types of deposit characterised by an enrichment or depletion in U, K and/or Th.

  5. Hypokalemia and agitation in acute psychotic patients.

    PubMed

    Hatta, K; Takahashi, T; Nakamura, H; Yamashiro, H; Asukai, N; Yonezawa, Y

    1999-04-19

    Hypokalemia is caused partly by intensive exercise. Some evidence suggests that psychological distress may cause hypokalemia. The relationship between the decline of serum potassium concentration and the level of symptoms of acute agitation, which was defined as a total score on a subset of six categories on the 18-item Brief Psychiatric Rating Scale (anxiety, tension, mannerism and posturing, hostility, uncooperativeness, psychomotor excitement), was examined in 313 schizophrenic men, admitted on an emergency basis during a 24-month period. In addition, change in serum potassium concentration after sedation was investigated. Serum potassium concentration in the severely agitated group was lower than that in the mild group. There was a significant correlation between serum potassium concentration and the level of symptoms of acute agitation (r = -0.30, P < 0.0001). Although the decline of serum potassium concentration in the patients who were sufficiently sedated improved within 8 h, that in the patients showing high scores on the acute agitation subset even 8 h after emergency admission was prolonged. Results indicate that sedation improves acute agitation-induced hypokalemia. rights

  6. Hypotonic Shock Modulates Na+ Current via a Cl- and Ca2+/Calmodulin Dependent Mechanism in Alveolar Epithelial Cells

    PubMed Central

    Tatur, Sabina; Brochiero, Emmanuelle; Grygorczyk, Ryszard; Berthiaume, Yves

    2013-01-01

    Alveolar epithelial cells are involved in Na+ absorption via the epithelial Na+ channel (ENaC), an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC) inhibitor reduced the total and ENaC currents, showing that transcellular Cl- transport plays a major role in that process. During hypotonic shock, a basolateral Cl- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl- influx as well as Ca2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock. PMID:24019969

  7. Extracellular matrix of collagen modulates arrhythmogenic activity of pulmonary veins through p38 MAPK activation.

    PubMed

    Lu, Yen-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Chen, Shih-Ann; Chen, Yi-Jen

    2013-06-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia. Cardiac fibrosis with enhanced extracellular collagen plays a critical role in the pathophysiology of AF through structural and electrical remodeling. Pulmonary veins (PVs) are important foci for AF genesis. The purpose of this study was to evaluate whether collagen can directly modulate PV arrhythmogenesis. Action potentials and ionic currents were investigated in isolated male New Zealand rabbit PV cardiomyocytes with and without collagen incubation (10μg/ml, 5-7h) using the whole-cell patch-clamp technique. Compared to control PV cardiomyocytes (n=25), collagen-treated PV cardiomyocytes (n=22) had a faster beating rate (3.2±04 vs. 1.9±0.2Hz, p<0.005) and a larger amplitude of delayed afterdepolarization (16±2 vs. 10±1mV, p<0.01). Moreover, collagen-treated PV cardiomyocytes showed a larger transient outward potassium current, small-conductance Ca(2+)-activated K(+) current, inward rectifier potassium current, pacemaker current, and late sodium current than control PV cardiomyocytes, but amplitudes of the sodium current, sustained outward potassium current, and L-type calcium current were similar. Collagen increased the p38 MAPK phosphorylation in PV cardiomyocytes as compared to control. The change of the spontaneous activity and action potential morphology were ameliorated by SB203580 (the p38 MAPK catalytic activity inhibitor), indicating that collagen can directly increase PV cardiomyocyte arrhythmogenesis through p38 MAPK activation, which may contribute to the pathogenesis of AF. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Advances in treatment of hyperkalemia in chronic kidney disease.

    PubMed

    Sarafidis, Pantelis A; Georgianos, Panagiotis I; Bakris, George L

    2015-01-01

    Hyperkalemia is a frequent electrolyte disorder associated with life-threatening cardiac arrhythmias and sudden death. Patients prone to hyperkalemia have chronic kidney disease (CKD) either alone or in conjunction with diabetes or heart failure (HF). Although agents inhibiting the renin-angiotensin-aldosterone-system (RAAS) are currently the first-line treatments toward cardio- and nephroprotection, their administration often leads to potassium elevation in such patients and results in high rates of treatment discontinuation. This article provides an overview of factors interfering with potassium homeostasis and discusses emerging potassium-lowering therapies for long-term management of hyperkalemia. In recent randomized clinical studies, two new oral potassium-exchanging compounds, patiromer and sodium zirconium cyclosilicate, were shown to effectively normalize elevated serum potassium and chronically maintain potassium homeostasis in hyperkalemic patients treated with RAAS blockers. Both agents exhibit good tolerability and were not associated with serious adverse effects. Although additional research is required, these drugs are promising for lowering the risk of incident hyperkalemia associated with RAAS blockade use in people with diabetes or HF who have CKD. They also provide the opportunity to test whether patients who could not previously receive RAAS blockade may benefit from their cardio- and renoprotective effects.

  9. Recent developments in nickel electrode analysis

    NASA Technical Reports Server (NTRS)

    Whiteley, Richard V.; Daman, M. E.; Kaiser, E. Q.

    1991-01-01

    Three aspects of nickel electrode analysis for Nickel-Hydrogen and Nickel-Cadmium battery cell applications are addressed: (1) the determination of active material; (2) charged state nickel (as NiOOH + CoOOH); and (3) potassium ion content in the electrode. Four deloading procedures are compared for completeness of active material removal, and deloading conditions for efficient active material analyses are established. Two methods for charged state nickel analysis are compared: the current NASA procedure and a new procedure based on the oxidation of sodium oxalate by the charged material. Finally, a method for determining potassium content in an electrode sample by flame photometry is presented along with analytical results illustrating differences in potassium levels from vendor to vendor and the effects of stress testing on potassium content in the electrode. The relevance of these analytical procedures to electrode performance is reviewed.

  10. A heteromeric potassium channel involved in the modulation of the plasma membrane potential is essential for the survival of African trypanosomes.

    PubMed

    Steinmann, Michael E; González-Salgado, Amaia; Bütikofer, Peter; Mäser, Pascal; Sigel, Erwin

    2015-08-01

    Discovery of novel drug targets may lead to improved treatment of trypanosomiasis. We characterize here 2 gene products of Trypanosoma brucei that are essential for the growth of bloodstream form (BSF) parasites, as shown by RNA interference (RNAi)-mediated down-regulation of the individual mRNAs. The primary sequences of the 2 proteins--protein encoded by gene Tb927.1.4450 (TbK1) and protein encoded by gene Tb927.9.4820 (TbK2)--indicate that both belong to the family of putative, Ca(2+)-activated potassium channels. The proteins were expressed in Xenopus laevis oocytes and their functions investigated by use of electrophysiological techniques. Only combined expression of TbK1 and TbK2 results in the formation of sizeable currents, indicating that these proteins probably assemble into a heteromeric ion channel. The current mediated by this channel shows little time and voltage dependence and displays a permeability ratio of K(+)/Na(+) of >20. The known potassium channel blocker barium inhibits this channel with a half-maximal inhibitory concentration (IC50) of 98 ± 15 μM. The membrane potential of trypanosomes was measured with a fluorescent dye. Individual RNAi-mediated down-regulation of TbK1 or TbK2 eliminates a potassium conductance in the plasma membrane of BSF. Thus, this heteromeric potassium channel is involved in the modulation of the plasma membrane potential and represents a novel drug target in T. brucei. © FASEB.

  11. Total sugars in atmospheric aerosols: An alternative tracer for biomass burning

    NASA Astrophysics Data System (ADS)

    Scaramboni, C.; Urban, R. C.; Lima-Souza, M.; Nogueira, R. F. P.; Cardoso, A. A.; Allen, A. G.; Campos, M. L. A. M.

    2015-01-01

    Ambient aerosols were collected in an agro-industrial region of São Paulo State (Brazil) between May 2010 and February 2012 (n = 87). The atmosphere of the study region is highly affected by the emissions of gases and particles from sugar and fuel ethanol production, because part of the area planted with sugarcane is still burned before manual harvesting. This work proposes the quantification of total sugars as an alternative chemical tracer of biomass burning, instead of levoglucosan. The quantification of total sugars requires a small area of a filter sample and a simple spectrophotometer, in contrast to the determination of levoglucosan, which is much more complex and time-consuming. Total sugars concentrations in the aerosol ranged from 0.28 to 12.5 μg m-3, and (similarly to levoglucosan) the emissions were significantly higher at night and during the sugarcane harvest period, when most agricultural fires occur. The linear correlation between levoglucosan and total sugars (r = 0.612) was stronger than between levoglucosan and potassium (r = 0.379), which has previously been used as a biomass burning tracer. In the study region, potassium is used in fertilizers, and this, together with substantial soil dust resuspension, makes potassium unsuitable for use as a tracer. On average, ca. 40% of the total sugars was found in particles smaller than 0.49 μm. By including data from previous work, it was possible to identify from 35 to 42% of the total sugars, with biomass burning making the largest contribution. The high solubility in water of these sugars means that determination of their concentrations could also provide important information concerning the hydrophilic properties of atmospheric aerosols.

  12. Managing Hyperkalemia: Stepping Into a New Frontier.

    PubMed

    Pham, Antony Q; Sexton, Jessica; Wimer, Dexter; Rana, Isha; Nguyen, Timothy

    2017-10-01

    Maintaining potassium balance in the body is essential for cellular function. Even a slight increase in normal serum potassium levels (3.5-5.0 mEq/L) can interfere with metabolism, electrical action potentials, and cellular processes. Hyperkalemia is commonly seen in patients with chronic kidney disease (CKD) and in patients on renin-angiotensin-aldosterone system (RAAS) inhibitors. Sodium polystyrene sulfonate (SPS), diuretics, and hemodialysis are currently available methods for removing potassium from the body; however, these options have their limitations. Patiromer (Veltassa) and sodium zirconium cyclosilicate are 2 new therapeutic options that can potentially lead a new frontier in the management of hyperkalemia. This article will review these novel treatments.

  13. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    PubMed

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cardiac Delayed Rectifier Potassium Channels in Health and Disease

    PubMed Central

    Chen, Lei; Sampson, Kevin J.; Kass, Robert S.

    2016-01-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this chapter, we will review the molecular identities and biophysical properties of these channels. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the possibility and prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  15. Lower serum potassium associated with increased mortality in dialysis patients: A nationwide prospective observational cohort study in Korea

    PubMed Central

    Lee, Sunhwa; Kang, Eunjeong; Yoo, Kyung Don; Choi, Yunhee; Kim, Dong Ki; Joo, Kwon Wook; Yang, Seung Hee; Kim, Yong-Lim; Kang, Shin-Wook; Yang, Chul Woo; Kim, Nam Ho; Kim, Yon Su; Lee, Hajeong

    2017-01-01

    Background Abnormal serum potassium concentration has been suggested as a risk factor for mortality in patients undergoing dialysis patients. We investigated the impact of serum potassium levels on survival according to dialysis modality. Methods A nationwide, prospective, observational cohort study for end stage renal disease patients has been ongoing in Korea since August 2008. Our analysis included patients whose records contained data regarding serum potassium levels. The relationship between serum potassium and mortality was analyzed using competing risk regression. Results A total of 3,230 patients undergoing hemodialysis (HD, 64.3%) or peritoneal dialysis (PD, 35.7%) were included. The serum potassium level was significantly lower (P < 0.001) in PD (median, 4.5 mmol/L; interquartile range, 4.0–4.9 mmol/L) than in HD patients (median, 4.9 mmol/L; interquartile range, 4.5–5.4 mmol/L). During 4.4 ± 1.7 years of follow-up, 751 patients (23.3%) died, mainly from cardiovascular events (n = 179) and infection (n = 120). In overall, lower serum potassium level less than 4.5 mmol/L was an independent risk factor for mortality after adjusting for age, comorbidities, and nutritional status (sub-distribution hazard ratio, 1.30; 95% confidence interval 1.10–1.53; P = 0.002). HD patients showed a U-shaped survival pattern, suggesting that both lower and higher potassium levels were deleterious, although insignificant. However, in PD patients, only lower serum potassium level (<4.5 mmol/L) was an independent predictor of mortality (sub-distribution hazard ratio, 1.35; 95% confidence interval 1.00–1.80; P = 0.048). Conclusion Lower serum potassium levels (<4.5 mmol/L) occur more commonly in PD than in HD patients. It represents an independent predictor of survival in overall dialysis, especially in PD patients. Therefore, management of dialysis patients should focus especially on reducing the risk of hypokalemia, not only that of hyperkalemia. PMID:28264031

  16. Ionic mechanism of a two-component cholinergic inhibition in Aplysia neurones

    PubMed Central

    Kehoe, Jacsue

    1972-01-01

    1. A two-component inhibition, consisting of a rapid and slow i.p.s.p., has been observed in the medial cells of the pleural ganglion of Aplysia. Each i.p.s.p. has been shown to be mediated by a distinct cholinergic receptor. The ionic mechanisms of the two components of the inhibitory response (whether elicited synaptically or by ACh injection) are analysed in this paper. 2. The inversion potential (typically -60 mV) of the rapid i.p.s.p. and of the rapid response to ACh injection is selectively altered by an intracellular injection of chloride or by partial substitution of the external chloride by impermeant anions. The shift caused by this last procedure is similar to that predicted for the chloride equilibrium potential (ECl) by the Nernst equation. 3. The slow i.p.s.p. and the slow response to ACh injection (both of which invert around -80 mV) are insensitive to changes in either internal or external chloride concentrations; on the contrary, with alterations of the concentration of potassium in the external medium, the inversion potential of the slow responses is altered in a way similar to that expected for the potassium equilibrium potential (EK). 4. It is concluded that the rapid i.p.s.p. and the corresponding ACh potential are due to a change in chloride permeability of the post-synaptic membrane, whereas the slow responses are due to a selective change in potassium permeability. 5. Additional data suggest that the fast, `chloride' channel is impermeable to sulphate and methylsulphate, but slightly permeable to propionate and isethionate. The slow, `potassium' channel is impermeable to caesium ions, whereas its permeability to rubidium ions is half that to potassium. 6. The potassium permeability of both the non-synaptic and synaptic membrane is markedly reduced by an intracellular injection of either tetraethylammonium (TEA) or caesium. These ions not only block the cholinergic potassium currents (whether inward or outward) but likewise block the potassium currents activated in the same cells by an iontophoretic injection of dopamine. 7. The potassium dependent synaptic potentials are also selectively affected by manipulations known to block the electrogenic sodium pump. In the presence of ouabain or in sea water in which sodium has been replaced by lithium, there is an apparent reduction of these potentials which was shown to be simply a reflexion of the movement of EK towards a less polarized level. This shift in inversion potential was not seen for the potassium dependent response to ACh iontophoretic injection. These results are interpreted in terms of accumulation of potassium ions assumed to occur in the extracellular spaces of the neuropile, but not in the thoroughly dissected somatic region. 8. Cooling was shown to eliminate, selectively, the synaptic and ACh potential changes caused by an increase in potassium permeability. PMID:4679686

  17. A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability

    PubMed Central

    Flourakis, Matthieu; Kula-Eversole, Elzbieta; Hutchison, Alan L.; Han, Tae Hee; Aranda, Kimberly; Moose, Devon L.; White, Kevin P.; Dinner, Aaron R.; Lear, Bridget C.; Ren, Dejian; Diekman, Casey O.; Raman, Indira M.; Allada, Ravi

    2015-01-01

    Summary Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake. PMID:26276633

  18. Inward Rectifier Potassium Channels Control Rotor Frequency in Ventricular Fibrillation

    PubMed Central

    Jalife, José

    2009-01-01

    Summary Ventricular fibrillation (VF) is the most important cause of sudden cardiac death. While traditionally thought to result from random activation of the ventricles by multiple independent wavelets, recent evidence suggests that VF may be determined by the sustained activation of a relatively small number of reentrant sources. In addition, recent experimental data in various species as well as computer simulations have provided important clues about its ionic and molecular mechanisms, particularly in regards to the role of potassium currents in such mechanisms. The results strongly argue that the inward rectifier current, Ik1, is an important current during functional reentry because it mediates the electrotonic interactions between the unexcited core and its immediate surroundings. In addition, IK1 is a stabilizer of reentry due to its ability to shorten action potential duration and reducing conduction velocity near the center of rotation. Increased I K1 prevents wavefront-wavetail interactions and thus averts rotor destabilization and breakup. Other studies have shown that while the slow component of the delayed rectifier potassium current, IKs, does not significantly modify rotor frequency or stability, it plays a major role in post-repolarization refractoriness and wavebreak formation. Therefore, the interplay between IK1 and the rapid sodium inward current (INa) is a major factor in the control of cardiac excitability and therefore the stability and frequency of reentry while IKs is an important determinant of fibrillatory conduction. PMID:19880073

  19. Delayed Repolarization Underlies Ventricular Arrhythmias in Rats With Heart Failure and Preserved Ejection Fraction.

    PubMed

    Cho, Jae Hyung; Zhang, Rui; Kilfoil, Peter J; Gallet, Romain; de Couto, Geoffrey; Bresee, Catherine; Goldhaber, Joshua I; Marbán, Eduardo; Cingolani, Eugenio

    2017-11-21

    Heart failure with preserved ejection fraction (HFpEF) represents approximately half of heart failure, and its incidence continues to increase. The leading cause of mortality in HFpEF is sudden death, but little is known about the underlying mechanisms. Dahl salt-sensitive rats were fed a high-salt diet (8% NaCl) from 7 weeks of age to induce HFpEF (n=38). Rats fed a normal-salt diet (0.3% NaCl) served as controls (n=13). Echocardiograms were performed to assess systolic and diastolic function from 14 weeks of age. HFpEF-verified and control rats underwent programmed electrical stimulation. Corrected QT interval was measured by surface ECG. The mechanisms of ventricular arrhythmias (VA) were probed by optical mapping, whole-cell patch clamp to measure action potential duration and ionic currents, and quantitative polymerase chain reaction and Western blotting to investigate changes in ion channel expression. After 7 weeks of a high-salt diet, 31 of 38 rats showed diastolic dysfunction and preserved ejection fraction along with signs of heart failure and hence were diagnosed with HFpEF. Programmed electric stimulation demonstrated increased susceptibility to VA in HFpEF rats ( P <0.001 versus controls). The arrhythmogenicity index was increased ( P <0.001) and the corrected QT interval on ECG was prolonged ( P <0.001) in HFpEF rats. Optical mapping of HFpEF hearts demonstrated prolonged action potentials ( P <0.05) and multiple reentry circuits during induced VA. Single-cell recordings of cardiomyocytes isolated from HFpEF rats confirmed a delay of repolarization ( P =0.001) and revealed downregulation of transient outward potassium current ( I to ; P <0.05). The rapid components of the delayed rectifier potassium current ( I Kr ) and the inward rectifier potassium current ( I K1 ) were also downregulated ( P <0.05), but the current densities were much lower than for I to . In accordance with the reduction of I to , both Kcnd3 transcript and Kv4.3 protein levels were decreased in HFpEF rat hearts. Susceptibility to VA was markedly increased in rats with HFpEF. Underlying abnormalities include QT prolongation, delayed repolarization from downregulation of potassium currents, and multiple reentry circuits during VA. Our findings are consistent with the hypothesis that potassium current downregulation leads to abnormal repolarization in HFpEF, which in turn predisposes to VA and sudden cardiac death. © 2017 American Heart Association, Inc.

  20. In vivo measurement of human body composition

    NASA Technical Reports Server (NTRS)

    Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Price, D. C.

    1974-01-01

    The female bed rest study has shown that, the response of women to prolonged recumbency of 2 to 3 weeks duration is very similar to that displayed by men. Some of the key findings in the women after 17 days of continuous recumbency are: (1) a decrease in plasma volume of 12-13 per cent; (2) a small decrease in total body water; (3) a decrease in total body potassium of 3 to 4 per cent; (4) a decrease in plasma potassium concentration of 4 to 5 per cent; (5) a decrease in total circulating plasma protein of 11 to 12 per cent; (6) a decrease in urinary norepinephrine excretion rate of 27 to 28 per cent; (7) a possible increase in urinary magnesium, calcium, and phosphate excretion rates; and (8) a possible increase in urinary citrate excretion rate.

  1. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    PubMed

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  2. Inhibitory Effect of Vascular Endothelial Growth Factor on the Slowly Activating Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes.

    PubMed

    Lin, Zhenhao; Xing, Wenlu; Gao, Chuanyu; Wang, Xianpei; Qi, Datun; Dai, Guoyou; Zhao, Wen; Yan, Ganxin

    2018-01-26

    Vascular endothelial growth factor (VEGF) exerts a number of beneficial effects on ischemic myocardium via its angiogenic properties. However, little is known about whether VEGF has a direct effect on the electrical properties of cardiomyocytes. In the present study, we investigated the effects of different concentrations of VEGF on delayed rectifier potassium currents (I K ) in guinea pig ventricular myocytes and their effects on action potential (AP) parameters. I K and AP were recorded by the whole-cell patch clamp method in ventricular myocytes. Cells were superfused with control solution or solution containing VEGF at different concentrations for 10 minutes before recording. Some ventricular myocytes were pretreated with a phosphatidylinositol 3-kinase inhibitor for 1 hour before the addition of VEGF. We found that VEGF inhibited the slowly activating delayed rectifier potassium current (I K s ) in a concentration-dependent manner (18.13±1.04 versus 12.73±0.34, n=5, P =0.001; 12.73±0.34 versus 9.05±1.20, n=5, P =0.036) and prolonged AP duration (894.5±36.92 versus 746.3±33.71, n=5, P =0.021). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, eliminated these VEGF-induced effects. VEGF had no significant effect on the rapidly activating delayed rectifier potassium current (I K r ), resting membrane potential, AP amplitude, or maximal velocity of depolarization. VEGF inhibited I K s in a concentration-dependent manner through a phosphatidylinositol 3-kinase-mediated signaling pathway, leading to AP prolongation. The results indicate a promising therapeutic potential of VEGF in prevention of ventricular tachyarrhythmias under conditions of high sympathetic activity and ischemia. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bean, Bruce Palmer

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in themore » hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.« less

  4. Prolonged action potential duration in cardiac ablation of PDK1 mice.

    PubMed

    Han, Zhonglin; Jiang, Yu; Yang, Zhongzhou; Cao, Kejiang; Wang, Dao W

    2015-01-01

    The involvement of the AGC protein kinase family in regulating arrhythmia has drawn considerable attention, but the underlying mechanisms are still not clear. The aim of this study is to explore the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1), one of upstream protein kinases of the AGC protein kinase family, in the pathogenesis of dysregulated electrophysiological basis. PDK1(F/F) αMHC-Cre mice and PDK1(F/F) mice were divided into experiment group and control group. Using patch clamping technology, we explored action potential duration in both groups, and investigated the functions of transient outward potassium channel and L-type Ca(2+) channel to explain the abnormal action potential duration. Significant prolongation action potential duration was found in mice with PDK1 deletion. Further, the peak current of transient outward potassium current and L-type Ca(2+) current were decreased by 84% and 49% respectively. In addition, dysregulation of channel kinetics lead to action potential duration prolongation further. In conclusion, we have demonstrated that PDK1 participates in action potential prolongation in cardiac ablation of PDK1 mice. This effect is likely to be mediated largely through downregulation of transient outward potassium current. These findings indicate the modulation of the PDK1 pathway could provide a new mechanism for abnormal electrophysiological basis.

  5. Drug utilization review of potassium chloride injection formulations available in a private hospital in kuching, sarawak, malaysia.

    PubMed

    Melissa, Mohammad Hirman; Azmi, Sarriff

    2013-07-01

    The concentrated potassium chloride injection is a high-alert medication and replacing it with a pre-mixed formulation can reduce the risks associated with its use. The aim of this study was to determine the clinical characteristics of patients receiving different potassium chloride formulations available at a private institution. The study also assessed the effectiveness and safety of pre-mixed formulations in the correction of hypokalaemia. This was a retrospective observational study consisting of 296 cases using concentrated and pre-mixed potassium chloride injections in 2011 in a private hospital in Kuching, Sarawak, Malaysia. There were 135 (45.6%) cases that received concentrated potassium chloride, and 161 (54.4%) cases that received pre-mixed formulations. The patients' clinical characteristics that were significantly related to the utilization of the different formulations were diagnosis (P < 0.001), potassium serum blood concentration (P < 0.05), and fluid overload risk (P < 0.05). The difference observed for the cases that achieved or maintained normokalaemia was statistically insignificant (P = 0.172). Infusion-related adverse effects were seen more in pre-mixes compared to concentrated formulations (6.8% versus 2.2%, P < 0.05). This study provides insight into the utilization of potassium chloride injections at this specific institution. The results support current recommendations to use pre-mixed formulations whenever possible.

  6. Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers.

    PubMed

    Tang, Yong-Mei; Wang, Dao-Gang; Li, Jun; Li, Xing-Hua; Wang, Qian; Liu, Nan; Liu, Wei-Tian; Li, Ying-Xue

    2016-06-10

    We aimed to examine the effect of micronutrient losses through sweat on blood pressure (BP) among heat-exposed steelworkers. A total of 224 heat-exposed male steelworkers from an ironworks facility were evaluated in July 2012. We measured the Wet Bulb Globe Temperature Index to evaluate the level of heat stress in the workplace. We collected sweat from the workers during an eight-hour work, and then we measured the micronutrients in the sweat. We also measured the BP of each worker. The results revealed that vitamin C, potassium, and calcium losses in sweat were positively correlated with systolic (SBP) and diastolic (DBP) blood pressure (all P<0.05). A linear stepwise regression analysis revealed that potassium, and calcium losses in sweat adversely affected SBP and DBP (all P<0.05). An analysis of covariance showed that SBP increased when potassium or calcium losses in sweat were >900 mg, or >100 mg, respectively. Further, DBP increased when potassium or calcium losses in sweat were >600 mg or >130 mg, respectively. Therefore, vitamin C, potassium, and calcium losses in sweat may adversely effect BP. To help steelworkers maintain healthy BP, facilities with high temperatures should try to lower environmental temperatures to reduce vitamin C, potassium, and calcium losses in sweat. Additionally, heat-exposed steelworkers may need to increase their dietary intakes of vitamin C, potassium, and calcium. Further research is needed to confirm these findings and support these recommendations.

  7. Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers

    PubMed Central

    TANG, Yong-Mei; WANG, Dao-Gang; LI, Jun; LI, Xing-Hua; WANG, Qian; LIU, Nan; LIU, Wei-Tian; LI, Ying-Xue

    2016-01-01

    We aimed to examine the effect of micronutrient losses through sweat on blood pressure (BP) among heat-exposed steelworkers. A total of 224 heat-exposed male steelworkers from an ironworks facility were evaluated in July 2012. We measured the Wet Bulb Globe Temperature Index to evaluate the level of heat stress in the workplace. We collected sweat from the workers during an eight-hour work, and then we measured the micronutrients in the sweat. We also measured the BP of each worker. The results revealed that vitamin C, potassium, and calcium losses in sweat were positively correlated with systolic (SBP) and diastolic (DBP) blood pressure (all P<0.05). A linear stepwise regression analysis revealed that potassium, and calcium losses in sweat adversely affected SBP and DBP (all P<0.05). An analysis of covariance showed that SBP increased when potassium or calcium losses in sweat were >900 mg, or >100 mg, respectively. Further, DBP increased when potassium or calcium losses in sweat were >600 mg or >130 mg, respectively. Therefore, vitamin C, potassium, and calcium losses in sweat may adversely effect BP. To help steelworkers maintain healthy BP, facilities with high temperatures should try to lower environmental temperatures to reduce vitamin C, potassium, and calcium losses in sweat. Additionally, heat-exposed steelworkers may need to increase their dietary intakes of vitamin C, potassium, and calcium. Further research is needed to confirm these findings and support these recommendations. PMID:27087421

  8. Influence of Substrate, Additives, and Pulse Parameters on Electrodeposition of Gold Nanoparticles from Potassium Dicyanoaurate

    NASA Astrophysics Data System (ADS)

    Vahdatkhah, Parisa; Sadrnezhaad, Sayed Khatiboleslam

    2015-12-01

    Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of nucleation sites was larger on ITO than on Cu layer; while the average diameter of the crystallites on ITO was smaller than on Cu layer.

  9. Hollow microspheres of silica glass and method of manufacture

    DOEpatents

    Downs, Raymond L.; Miller, Wayne J.

    1982-01-01

    A method of manufacturing gel powder suitable for use as a starting material in the manufacture of hollow glass microspheres having a high concentration of silica. The powder is manufactured from a gel containing boron in the amount of about 1% to 20% (oxide equivalent mole percent), alkali metals, specifically potassium and sodium, in an amount exceeding 8% total, and the remainder silicon. Preferably, the ratio of potassium to sodium is greater than 1.5.

  10. Biochemical composition and antioxidant activity affected by spraying potassium sulfate in black grape (Vitis vinifera L. cv. Rasha).

    PubMed

    Zareei, Elnaz; Javadi, Taimoor; Aryal, Rishi

    2018-04-27

    The physiological and metabolic processes involved with grapevine growth and production are influenced by key macro and micro-nutrients. Potassium is an essential plant nutrient that affects growth and fruit quality. In this study, the impact of foliar spraying of potassium sulfate (K 2 SO 4 ) on qualitative characteristics of grape berries was evaluated in the cultivar 'Rasha', a commonly cultivated cultivar in Kurdistan province of Iran. Leaves of the fully-grown vines were sprayed with each of the 1.5 g L -1 and 3 g L -1 potassium sulfate solution once (one month after petal senescence) and twice (15 days after first spraying). The control plants were sprayed with distilled water. Various biochemical content and enzyme activities on the ripe berries were analyzed. Significant increase in anthocyanin, total protein content and antioxidant enzyme activities were observed in the berries treated twice with 3 g L -1 K 2 SO 4 . Concentrations of total carbohydrate, phenol and antioxidant activity in berries sprayed with K 2 SO 4 were higher compared to the controls. We observed a strong correlation between antioxidant activity and different phenolic compounds. These findings suggest that K 2 SO 4 treatment influences biosynthesis of phenolic compounds and antioxidant enzymes. Thus treatment by K 2 SO 4 could improve nutritional and qualitative attributes of grape. This article is protected by copyright. All rights reserved.

  11. The influece of forest gaps on some properties of humus in a managed beech forest, northern Iran

    NASA Astrophysics Data System (ADS)

    Vajari, K. A.

    2015-10-01

    The present research focuses on the effect of eight-year-old artificially created gaps on some properties of humus in managed beech-dominated stand in Hyrcanian forest of northern Iran. In this study, six-teen gaps were sampled in site and were classified into four classes (small, medium, large, and very large) with four replications for each. Humus sampling was carried out at the centre and at the cardinal points within each gap as well as in the adjacent closed stand, separately, as composite samples. The variables of organic carbon, P, K, pH, and total N were measured for each sample. It was found that the gap size had significant effect only on total N (%) and organic carbon (%) in beech stand. The amount of potassium clearly differed among three positions in beech forest. The adjacent stand had higher significantly potassium than center and edge of gaps. Different amount of potassium was detected in gap center and gap edge. Comparison of humus properties between gaps and its adjacent stand pointed to the higher amount of potassium in adjacent stand than that in gaps but there was no difference between them regarding other humus properties. According to the results, it can be concluded that there is relatively similar condition among gaps and closed adjacent stands in terms of humus properties eight years after logging in the beech stand.

  12. Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements.

    PubMed

    Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan

    2011-02-28

    Herein is presented a study on the long-term leaching behaviour of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. Two different semi-dynamic leaching tests were carried out on monolithic materials: ANS 16.1 test with liquid-to-solid ratio (L/S) of 10 dm(3) kg(-1) and increasing renewal times, and ASTM C1308 test with liquid-to-solid ratio (L/S) of 100 dm(3) kg(-1) and constant renewal time of 1 day. ASTM C1308 provides a lower degree of saturation of the leachant with respect to the leached material. The effectiveness of magnesium potassium phosphate cements for the inertization of nickel was proved. XRD analyses showed the presence of bobierrite on the monolith's surface after the leaching test, which had not been detected prior to the leaching test. In addition, the calculated cumulative release of the main components of the stabilization matrix (Mg(2+), total P and K(+)) was represented versus time in logarithmic scale and it was determined if the leaching mechanism corresponds to diffusion. Potassium is released by diffusion, while total phosphorous and magnesium show dissolution. Magnesium release in ANS 16.1 is slowed down because of saturation of the leachant. Experimental results demonstrate the importance of L/S ratio and renewal times in semi-dynamic leaching tests. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. The effect of substitution of sodium chloride with potassium chloride on the physicochemical, microbiological, and sensory properties of Halloumi cheese.

    PubMed

    Kamleh, R; Olabi, A; Toufeili, I; Najm, N E O; Younis, T; Ajib, R

    2012-03-01

    This study investigated the effect of salt reduction and partial replacement with KCl on the microbiological and sensory characteristics of fresh and matured Halloumi cheese. Halloumi samples were matured for 8 wk and moisture, fat, protein, pH, lactic acid, sodium, and potassium contents determined. Instrumental textural characteristics of the samples were measured using a texture analyzer. Microbiological analyses included counts of total bacteria, lactic acid bacteria, yeasts and molds, total coliforms, and psychrophilic bacteria. Descriptive sensory analysis was carried out by a 9-member panel, and acceptability testing was conducted with 72 panelists. Salt treatment had a significant effect on the pH, sodium, and potassium contents of the cheeses, whereas age by salt treatment interaction had a significant effect on the pH, lactic acid, and potassium contents of the samples. No major trends could be discerned from the texture profile analysis. All tested microorganisms increased with storage but in general did not differ between treatments and were, in certain instances, lower than levels reported in the literature for other cheeses. Descriptive analysis revealed a significant difference between salt treatments for bitterness, crumbliness, and moistness, whereas age of cheese was significant for saltiness and squeakiness. Salt treatment had no significant effect on any of the acceptability variables for all Halloumi samples. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Xuan; Zhao, Wei; Wang, Hong; Qi, Xiujun; Xing, Zheng; Zhuang, Quanchao; Ju, Zhicheng

    2018-02-01

    Potassium-ion batteries are attracting great attention as a promising alternative to lithium-ion batteries due to the abundance and low price of potassium. Herein, the phosphorus/carbon composite, obtained by a simple ball-milling of 20 wt% commercial red phosphorus and 80 wt% graphite, is studied as a novel anode for potassium-ion batteries. Considering the high theoretical specific capacity of phosphorus and formation of stable phosphorus-carbon bond, which can alleviate the volume expansion efficiently, the phosphorus/carbon composite exhibits a high charge capacity of 323.5 mA h g-1 after 50 cycles at a current density of 50 mA g-1 with moderate rate capability and cycling stability. By the X-ray diffraction analysis, the alloying-dealloying mechanism of phosphorus is proposed to form a KP phase. Meanwhile, prepotassiation treatment is conducted to improve the low initial coulomb efficiency.

  15. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  16. Use of vitreous carbon as a working electrode in coulometric titration of potassium hydrogen phthalate.

    PubMed

    Jennings, V J; Dodson, A; Tedds, G

    1973-07-01

    The use of a vitreous carbon electrode as a cathode in the amperostatic coulometric titration of aqueous potassium hydrogen phthalate solution is described. It is shown that 10 mg of the phthalate can be titrated with a precision better than 0.5%. Current-voltage curves for platinum and vitreous carbon cathodes show that there is an overpotential on the latter relative to the former.

  17. Effect of potassium depletion in normal males - An Apollo 15 simulation

    NASA Technical Reports Server (NTRS)

    Hyatt, K. H.; Hulley, S. B.; Vogel, J. M.; Spears, C. P.; Johnson, P. C.; Hoffler, G. W.; Rambaut, P. C.; Rummel, J. A.; Huntoon, C.

    1975-01-01

    In the course of Apollo 15, physiologic abnormalities, manifested by ectopic activity on the ECG and unusual alterations in exercise tolerance, occurred in the crew of the Lunar Excursion Module. These were associated with decreases in total body potassium, measured by K-42, of 10% and 15%. The possibility of inadequate potassium (K+) intake existed. A simulation study was performed prior to Apollo 16, corresponding in duration to Apollo 15. Subjects endured the same sleep aberrations and caloric expenditure as the Apollo 15 astronauts. Subjects consumed a diet containing only 15 mEq/d of K+ during the entire 12 days of absolute bedrest. Study implications and reasons for discrepancies between K+ loss measured by balance techniques and K-42 are reviewed.

  18. Comparison of rhizosphere properties as affected by different Bt- and non-Bt-cotton (Gossypium hirsutum L.) genotypes and fertilization.

    PubMed

    Ahamd, Maqshoof; Abbasi, Waleed Mumtaz; Jamil, Moazzam; Iqbal, Muhammad; Hussain, Azhar; Akhtar, Muhammad Fakhar-U-Zaman; Nazli, Farheen

    2017-06-01

    Incorporation of genetically modified crops in the cropping system raises the need for studying the effect of these crops on the soil ecosystem. The current study aimed to compare the effect of Bacillus thuringiensis (Bt)- and non-Bt-cotton (Gossypium hirsutum L.) genotypes on rhizosphere properties under fertilized and unfertilized soil conditions. One non-Bt-cotton (IUB 75) and four Bt-cotton varieties (IUB-222, MM-58, IUB-13, FH-142) were sown in a Randomized Complete Block Design (RCBD) in a factorial fashion with three replications under unfertilized (T1) and fertilized (T2 at NPK 310-170-110 kg ha -1 ) soil conditions. The culturable soil bacterial population was recorded at flowering, boll opening, and harvesting stages, while other rhizosphere biological and chemical properties were recorded at harvesting. Results revealed that Bt-cotton genotypes IUB-222 and FH-142 showed significantly higher rhizosphere total nitrogen, NH 4 + -N, available phosphorus, and available potassium. Total organic carbon and microbial biomass carbon was also maximum in the rhizosphere of IUB-222 under fertilized conditions. Similarly, bacterial population (CFU g -1 ) at flowering stage and at harvesting was significantly higher in the rhizosphere of IUB-222 as compared to non-Bt- (IUB-75) and other Bt-cotton genotypes under same growth conditions. It showed that Bt genotypes can help in maintaining soil macronutrients (total nitrogen, available phosphorus, and available potassium) under proper nutrient management. Moreover, Bt-cotton genotypes seem to strengthen certain biological properties of the soil, thus increasing the growth and yield capability, maintaining available nutrients in the soil as compared to non-Bt cotton, while no harmful effects of Bt cotton on soil properties was detected.

  19. Sodium Zirconium Cyclosilicate (ZS-9): A Novel Agent for the Treatment of Hyperkalemia.

    PubMed

    Linder, Kristin E; Krawczynski, Michelle A; Laskey, Dayne

    2016-08-01

    Hyperkalemia is a potentially life-threatening electrolyte abnormality that may be caused by select medications, underlying organ dysfunction, or alterations in potassium homeostasis. Treatment for this condition has remained largely unchanged since the release of sodium polystyrene sulfonate (SPS) in 1958. Despite its widespread use, the safety and efficacy of SPS remains controversial. Two novel potassium-binding resins have emerged in recent years. Patiromer was the first of these to receive U.S. Food and Drug Administration approval for the treatment of hyperkalemia in October 2015. A second potassium-binding resin, a zirconium cyclosilicate currently known as ZS-9, may provide yet another alternative to the archetypal treatment with SPS. ZS-9 is an orally administered nonabsorbed inorganic compound that selectively binds potassium ions in vivo. Two phase III multicenter, randomized, placebo-controlled, double-blind trials have evaluated ZS-9 for the treatment of acute hyperkalemia. In this review, we discuss the pharmacology, clinical efficacy, safety, and potential place in therapy of ZS-9 for the enhanced elimination of potassium in the setting of hyperkalemia. © 2016 Pharmacotherapy Publications, Inc.

  20. Growth of the Maize Primary Root at Low Water Potentials 1

    PubMed Central

    Sharp, Robert E.; Hsiao, Theodore C.; Silk, Wendy Kuhn

    1990-01-01

    Primary roots of maize (Zea mays L. cv WF9 × Mo17) seedlings growing in vermiculite at various water potentials exhibited substantial osmotic adjustment in the growing region. We have assessed quantitatively whether the osmotic adjustment was attributable to increased net solute deposition rates or to slower rates of water deposition associated with reduced volume expansion. Spatial distributions of total osmotica, soluble carbohydrates, potassium, and water were combined with published growth velocity distributions to calculate deposition rate profiles using the continuity equation. Low water potentials had no effect on the rate of total osmoticum deposition per unit length close to the apex, and caused decreased deposition rates in basal regions. However, rates of water deposition decreased more than osmoticum deposition. Consequently, osmoticum deposition rates per unit water volume were increased near the apex and osmotic potentials were lower throughout the growing region. Because the stressed roots were thinner, osmotic adjustment occurred without osmoticum accumulation per unit length. The effects of low water potential on hexose deposition were similar to those for total osmotica, and hexose made a major contribution to the osmotic adjustment in middle and basal regions. In contrast, potassium deposition decreased at low water potentials in close parallel with water deposition, and increases in potassium concentration were small. The results show that growth of the maize primary root at low water potentials involves a complex pattern of morphogenic and metabolic events. Although osmotic adjustment is largely the result of a greater inhibition of volume expansion and water deposition than solute deposition, the contrasting behavior of hexose and potassium deposition indicates that the adjustment is a highly regulated process. PMID:16667622

  1. Spatial and Temporal Variations of Crop Fertilization and Soil Fertility in the Loess Plateau in China from the 1970s to the 2000s

    PubMed Central

    Wang, Xiaoying; Tong, Yanan; Gao, Yimin; Gao, Pengcheng; Liu, Fen; Zhao, Zuoping; Pang, Yan

    2014-01-01

    Increased fertilizer input in agricultural systems during the last few decades has resulted in large yield increases, but also in environmental problems. We used data from published papers and a soil testing and fertilization project in Shaanxi province during the years 2005 to 2009 to analyze chemical fertilizer inputs and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) on the farmers' level, and soil fertility change from the 1970s to the 2000s in the Loess Plateau in China. The results showed that in different regions of the province, chemical fertilizer NPK inputs and yields of wheat and maize increased. With regard to soil nutrient balance, N and P gradually changed from deficit to surplus levels, while K deficiency became more severe. In addition, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium increased during the same period. The PFP of N, NP and NPK on wheat and maize all decreased from the 1970s to the 2000s as a whole. With the increase in N fertilizer inputs, both soil total nitrogen and alkali-hydrolysis nitrogen increased; P fertilizer increased soil available phosphorus and K fertilizer increased soil available potassium. At the same time, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium all had positive impacts on crop yields. In order to promote food safety and environmental protection, fertilizer requirements should be assessed at the farmers' level. In many cases, farmers should be encouraged to reduce nitrogen and phosphate fertilizer inputs significantly, but increase potassium fertilizer and organic manure on cereal crops as a whole. PMID:25380401

  2. A Small Potassium Current in AgRP/NPY Neurons Regulates Feeding Behavior and Energy Metabolism.

    PubMed

    He, Yanlin; Shu, Gang; Yang, Yongjie; Xu, Pingwen; Xia, Yan; Wang, Chunmei; Saito, Kenji; Hinton, Antentor; Yan, Xiaofeng; Liu, Chen; Wu, Qi; Tong, Qingchun; Xu, Yong

    2016-11-08

    Neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y (NPY) are indispensable for normal feeding behavior. Firing activities of AgRP/NPY neurons are dynamically regulated by energy status and coordinate appropriate feeding behavior to meet nutritional demands. However, intrinsic mechanisms that regulate AgRP/NPY neural activities during the fed-to-fasted transition are not fully understood. We found that AgRP/NPY neurons in satiated mice express high levels of the small-conductance calcium-activated potassium channel 3 (SK3) and are inhibited by SK3-mediated potassium currents; on the other hand, food deprivation suppresses SK3 expression in AgRP/NPY neurons, and the decreased SK3-mediated currents contribute to fasting-induced activation of these neurons. Genetic mutation of SK3 specifically in AgRP/NPY neurons leads to increased sensitivity to diet-induced obesity, associated with chronic hyperphagia and decreased energy expenditure. Our results identify SK3 as a key intrinsic mediator that coordinates nutritional status with AgRP/NPY neural activities and animals' feeding behavior and energy metabolism. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Measurement error corrected sodium and potassium intake estimation using 24-hour urinary excretion.

    PubMed

    Huang, Ying; Van Horn, Linda; Tinker, Lesley F; Neuhouser, Marian L; Carbone, Laura; Mossavar-Rahmani, Yasmin; Thomas, Fridtjof; Prentice, Ross L

    2014-02-01

    Epidemiological studies of the association of sodium and potassium intake with cardiovascular disease risk have almost exclusively relied on self-reported dietary data. Here, 24-hour urinary excretion assessments are used to correct the dietary self-report data for measurement error under the assumption that 24-hour urine recovery provides a biomarker that differs from usual intake according to a classical measurement model. Under this assumption, dietary self-reports underestimate sodium by 0% to 15%, overestimate potassium by 8% to 15%, and underestimate sodium/potassium ratio by ≈20% using food frequency questionnaires, 4-day food records, or three 24-hour dietary recalls in Women's Health Initiative studies. Calibration equations are developed by linear regression of log-transformed 24-hour urine assessments on corresponding log-transformed self-report assessments and several study subject characteristics. For each self-report method, the calibration equations turned out to depend on race and age and strongly on body mass index. After adjustment for temporal variation, calibration equations using food records or recalls explained 45% to 50% of the variation in (log-transformed) 24-hour urine assessments for sodium, 60% to 70% of the variation for potassium, and 55% to 60% of the variation for sodium/potassium ratio. These equations may be suitable for use in epidemiological disease association studies among postmenopausal women. The corresponding signals from food frequency questionnaire data were weak, but calibration equations for the ratios of sodium and potassium/total energy explained ≈35%, 50%, and 45% of log-biomarker variation for sodium, potassium, and their ratio, respectively, after the adjustment for temporal biomarker variation and may be suitable for cautious use in epidemiological studies. Clinical Trial Registration- URL: www.clinicaltrials.gov. Unique identifier: NCT00000611.

  4. Skin decontamination efficacy of potassium ketoxime on rabbits exposed to sulfur mustard.

    PubMed

    Sun, Jing-Hai; Sun, Pei-Pei; Zheng, Wei; Han, Song; Ying, Ying; Liu, Hong-Yan; Zhang, Cheng; Zhao, Bao-Quan; Zuo, Guo-Min; Lu, Hong; Zhong, Yu-Xu

    2015-03-01

    The chemical weapon sulfur mustard (SM) is a blister agent, and currently, there is no effective antidote. To evaluate the decontamination efficacy of potassium ketoxime against SM and preliminarily elucidate its decontamination mechanism. Potassium ketoxime reacted with SM, and SM residues were tested at different time intervals by T-135 colorimetry after the reaction. Rabbit skin was topically exposed to 2 mg/cm(2) SM, treated with potassium ketoxime 1 min later, and observed after 6, 12, and 24 h. Gas chromatography-mass spectroscopy was employed to screen and identify the main products of potassium ketoxime decontamination of SM. Potassium ketoxime had a great effect against SM contamination. With a mass ratio of decontaminant: SM of 50:1, decontamination rates against SM were 87.5% after 30 s, 95.9% after 1 min, and 99.0% after 5 min. Fifteen minutes after exposure to SM, the untreated group showed clear erythema lesions, whereas the experimental group showed no clear erythema lesions within 6 h. After 12 and 24 h, the areas of damaged skin in the experimental group were 0.038 and 0.125 cm(2), respectively, compared with 2.21 and 2.65 cm(2) in the control group. Histopathological analysis revealed that treatment with potassium ketoxime also reduced inflammation-induced damage. The results of this study indicate that potassium ketoxime reacted rapidly and completely with SM, and thus, it was found to be a suitable and effective skin decontaminant against SM. The decontamination reaction mechanism is mainly related to nucleophilic substitution.

  5. Direct growth inhibition assay of total airborne fungi with application of biocide-treated malt extract agar.

    PubMed

    Er, Chin Ming; Sunar, N M; Leman, A M; Othman, N

    2015-01-01

    Indoor air pollution by airborne fungi has risen to become a common issue all over the world and it is hazardous to indoor occupants' health as it is associated with a series of respiratory-related and skin-related diseases. Selected bioactive compounds from the food industry have been suggested to be effective against individual fungus isolated from indoor environment. However, the techniques used to evaluate these compounds were lengthy and unsuitable against total airborne fungi. Therefore, this paper describes an assay to assess the effectiveness of a bioactive compound to inhibit growth of total airborne fungi.•A combination and modification of previous methods and the NIOSH Manual Analytical Standard Method (NMAM 0800) is proposed.•This method concurrently samples the total airborne fungi and evaluates the ability of bioactive compounds (potassium sorbate in this paper), as a biocide, to treat these indoor airborne fungi.•The current method shortens the time of evaluation from 30 days to only 5 days and employs the counting of colony forming units (CFUs) to ease the measurement of the growth of fungi.

  6. Changes in the mRNA levels of delayed rectifier potassium channels in human atrial fibrillation.

    PubMed

    Lai, L P; Su, M J; Lin, J L; Lin, F Y; Tsai, C H; Chen, Y S; Tseng, Y Z; Lien, W P; Huang, S K

    1999-01-01

    We measured mRNA levels of delayed rectifier potassium channels in human atrial tissue to investigate the mechanism of the shortening of the atrial effective refractory period and the loss of rate-adaptive shortening of the atrial effective refractory period in human atrial fibrillation. A total of 34 patients undergoing open heart surgery were included. Atrial tissue was obtained from the right atrial free wall, right atrial appendage, left atrial free wall and left atrial appendage, respectively. The mRNA amounts of KVLQT1 (IKs), minK (beta-subunit of IKs), HERG (IKr), and KV1.5 (IKur) were measured by reverse transcription-polymerase chain reaction and normalized to the mRNA amount of GAPDH. We found that the mRNA levels of KV1.5, HERG and KVLQT1 were all significantly decreased in patients with persistent atrial fibrillation for more than 3 months. In contrast, the mRNA level of minK was significantly increased in patients with persistent atrial fibrillation for more than 3 months. We further showed that these changes were independent of the underlying cardiac disease, atrial filling pressure, gender and age. We also found that there was no spatial dispersion of mRNA levels among the four atrial sampling sites. Because the decrease in potassium currents results in a prolonged action potential, the shortening of the atrial effective refractory period in atrial fibrillation should be attributed to other factors. However, the decrease in IKs might contribute, at least in part, to the loss of rate-adaptive shortening of the atrial refractory period.

  7. The Link between Potassium and Mild Cognitive Impairment in Mexican-Americans

    PubMed Central

    Vintimilla, Raul M.; Large, Stephanie E.; Gamboa, Adriana; Rohlfing, Geoffrey D.; O'Jile, Judith R.; Hall, James R.; O'Bryant, Sid E.; Johnson, Leigh A.

    2018-01-01

    Background Recent evidence suggests that increasing dietary intake of minerals reduces the risk of dementia. This study aimed to examine the relationship between potassium and diagnosis of mild cognitive impairment (MCI) in a sample of older Mexican-Americans from rural and urban populations. Methods The sample was formed of a total of 139 participants with MCI and 371 normal controls from two independent cohorts: a rural cohort (Facing Rural Obstacles to Healthcare Now through Intervention, Education and Research [Project FRONTIER]) and an urban cohort (the Health and Aging Brain among Latino Elders [HABLE] study). Serum electrolytes examined were sodium and potassium. Age and education were entered in the model as covariates. Results Across both cohorts, the Project FRONTIER (OR = 3.1; p = 0.01) and the HABLE Project (OR = 2.0; p = 0.04), the results indicated that serum potassium levels significantly increased the risk of diagnosis of MCI. Conclusion Our finding suggested a link between serum potassium levels and a diagnosis of MCI in Mexican-Americans. The results of this study support a previous research which has suggested that the risk factors for MCI may vary by ethnicity. PMID:29805381

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Manoj K., E-mail: mmanoj.ssi@gmail.com; Hashmi, S. A.

    The comparative performance of the solid-state electrical double layer capacitors (EDLCs) based on the multiwalled carbon nanotube (MWCNT) electrodes and poly (vinaylidinefluoride-co-hexafluoropropyline) (PVdF-HFP) based gel polymer electrolytes (GPEs) containing potassium and lithium salts have been studied. The room temperature ionic conductivity of the GPEs have been found to be ∼3.8×10{sup −3} and 5.9×10{sup −3} S cm{sup −1} for lithium and potassium based systems. The performance of EDLC cells studied by impedance spectroscopy, cyclic voltammetry and constant current charge-discharge techniques, indicate that the EDLC with potassium salt containing GPE shows excellent performance almost equivalent to the EDLC with Li-salt-based GPE.

  9. [Lead compound optimization strategy(5) – reducing the hERG cardiac toxicity in drug development].

    PubMed

    Zhou, Sheng-bin; Wang, Jiang; Liu, Hong

    2016-10-01

    The potassium channel encoded by the human ether-a-go-go related gene(hERG) plays a very important role in the physiological and pathological processes in human. hERG potassium channel determines the outward currents which facilitate the repolarization of the myocardial cells. Some drugs were withdrawn from the market for the serious side effect of long QT interval and arrhythmia due to blockade of hERG channel. The strategies for lead compound optimization are to reduce inhibitory activity of hERG potassium channel and decrease cardiac toxicity. These methods include reduction of lipophilicity and basicity of amines, introduction of hydroxyl and acidic groups, and restricting conformation.

  10. [Development and validation of an analytical method to quantify residues of cleaning products able to inactivate prion].

    PubMed

    Briot, T; Robelet, A; Morin, N; Riou, J; Lelièvre, B; Lebelle-Dehaut, A-V

    2016-07-01

    In this study, a novel analytical method to quantify prion inactivating detergent in rinsing waters coming from the washer-disinfector of a hospital sterilization unit has been developed. The final aim was to obtain an easy and functional method in a routine hospital process which does not need the cleaning product manufacturer services. An ICP-MS method based on the potassium dosage of the washer-disinfector's rinsing waters was developed. Potassium hydroxide is present on the composition of the three prion inactivating detergent currently on the French market. The detergent used in this study was the Actanios LDI(®) (Anios laboratories). A Passing and Bablok regression compares concentrations measured with this developed method and with the HPLC-UV manufacturer method. According to results obtained, the developed method is easy to use in a routine hospital process. The Passing and Bablok regression showed that there is no statistical difference between the two analytical methods during the second rinsing step. Besides, both methods were linear on the third rinsing step, with a 1.5ppm difference between the concentrations measured for each method. This study shows that the ICP-MS method developed is nonspecific for the detergent, but specific for the potassium element which is present in all prion inactivating detergent currently on the French market. This method should be functional for all the prion inactivating detergent containing potassium, if the sensibility of the method is sufficient when the potassium concentration is very low in the prion inactivating detergent formulation. Copyright © 2016. Published by Elsevier Masson SAS.

  11. The physostigmine depolarization potentiating effect of salicylate in frog skeletal muscle.

    PubMed

    Varga, E; Kovács, L; Szücs, G; Illés, B

    1975-01-01

    1) The frog's sartorius muscle was depolarized depending on the degree of concentration 2--4 times more intensely by physostigmine salicylate than by physostigmine sulphate. 2) In normal Ringer's solution, 1 mM physostigmine salicylate decreased the sensitivity of the membrane to potassium depolarization by about 90%. Under similar experimental conditions, physostigmine sulphate and Na salicylate, respectively, decrease the sensitivity of the membrane to potassium depolarization by about 30%. 3) The difference manifested in the depolarizing effect of salicylate and other physostigmine salts (chloride, sulphate, phosphate, formiate, acetate, monochloracetate, benzoate and para-oxy-benzoate) is expressed already at 1 mM concentration (about 10-fold), if the muscle had been equilibrated in chloride-free glucuronate or sulphate milieu. 4) The depolarization develops slowly. It takes 30--60 minutes for the new steady state to develop even in the superficial sartorius fibres. If depolarization has reached its maximum on an average 100 mV, the membrane potential remains unchanged for hours. 5) Depolarization ensues at an unchanged degree in the presence of Na-free (choline) Ringer as well as in the presence of 2X10(-8) g/ml tetrodotoxin; therefore, it is not a Na-dependent process. 6) Under the influence of 1 mM physostigmine salicylate the membrane's resistance to the inward potassium current increased about twofold, while the increase was only 15% to the outward potassium current. It is assumed that the salicylate anion is characteristically capable of potentiating the decreasing effect of physostigmine on potassium permeability, though the role of the metabolic effect of salicylate cannot be excluded.

  12. Analysis of Potassium in Bricks--Determining the Dose Rate from {sup 40}K for Thermoluminescence Dating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musilek, Ladislav; Polach, Tomas; Trojek, Tomas

    2008-08-07

    Thermoluminescence (TL) dating is based on accumulating the natural radiation dose in the material of a dated artefact (brick, pottery, etc.), and comparing the dose accumulated during the lifetime of the object with the dose rate within the sample collected for TL measurement. Determining the dose rate from natural radionuclides in materials is one of the most important and most difficult parts of the technique. The most important radionuclides present are usually nuclides of the uranium and thorium decay series and {sup 40}K. An analysis of the total potassium concentration enables us to determine the {sup 40}K content effectively, andmore » from this it is possible to calculate the dose rate originating from this radiation source. X-ray fluorescence (XRF) analysis can be used to determine the potassium concentration in bricks rapidly and efficiently. The procedure for analysing potassium, examples of results of dose rate calculation and possible sources of error are described here.« less

  13. Clinical biochemistry of pregnant and nursing mares.

    PubMed

    Harvey, John W; Pate, Melanie G; Kivipelto, Jan; Asquith, Richard L

    2005-09-01

    Pregnancy and lactation result in increased metabolic demands. Although homeostatic mechanisms function to keep substances in blood at relatively constant levels, some changes in the concentrations of routine clinical chemistry analytes are likely to occur. The purpose of this study was to determine what physiological changes occur in serum clinical biochemistry analytes in pregnant and nursing mares, and to determine whether the changes were substantial enough to warrant separate reference intervals for pregnant or lactating horses. Forty-two Quarter Horse, Thoroughbred, Saddlebred, Standardbred and Morgan mares were entered into the study while pregnant. They were bled once each month through birth. Studies were continued on 20 mares until their foals were weaned. Test results were tabulated by time before or after birth. Serum biochemistry values were determined by standard methods using automated analyzers. Test results were analyzed using the Kruskal-Wallis 1-way ANOVA on ranks. If a significant difference was found (P<.05), Dunn's multiple comparison procedure was performed on all pairs. Results from pregnant and nursing mares also were compared with a reference group of 19 open, nonlactating mares. Serum triglyceride, potassium, creatinine, and total bilirubin concentrations were lower during lactation than during pregnancy. Serum calcium concentration also was slightly decreased at 2 time points during lactation. Triglyceride concentration was highest during midgestation, while bilirubin and creatinine values increased, and potassium and calcium remained constant during pregnancy. Serum urea concentration also remained constant during pregnancy but increased during lactation. Serum phosphate concentration was lowest during midgestation and highest during lactation. Total CO2 values were highest, and anion gaps were lowest, during midgestation. No significant differences were found in serum albumin, globulin, albumin:globulin ratio, total protein, or glucose values. When compared with the reference group of open mares, serum triglyceride, potassium, bilirubin, and total CO2 concentrations were lower, and anion gap was higher in horses that were nursing. Although most biochemical values remained relatively constant, significant differences were observed during pregnancy and lactation. Changes in the concentrations of triglycerides, potassium, bilirubin, total CO2, and anion gap during lactation were substantial enough to warrant separate reference intervals for lactating horses.

  14. [Correlation research on contents of podophyllotoxin and total lignans in Sinopodophyllum hexandrum and ecological factors].

    PubMed

    Li, Min; Zhong, Guo-yue; Wu, Ao-lin; Zhang, Shou-wen; Jiang, Wei; Liang, Jian

    2015-05-01

    To explore the correlation between the ecological factors and the contents of podophyllotoxin and total lignans in root and rhizome of Sinopodophyllum hexandrum, podophyllotoxin in 87 samples (from 5 provinces) was determined by HPLC and total lignans by UV. A correlation and regression analysis was made by software SPSS 16.0 in combination with ecological factors (terrain, soil and climate). The content determination results showed a great difference between podophyllotoxin and total lignans, attaining 1.001%-6.230% and 5.350%-16.34%, respective. The correlation and regression analysis by SPSS showed a positive linear correlation between their contents, strong positive correlation between their contents, latitude and annual average rainfall within the sampling area, weak negative correlation with pH value and organic material in soil, weaker and stronger positive correlations with soil potassium, weak negative correlation with slope and annual average temperature and weaker positive correlation between the podophyllotoxin content and soil potassium.

  15. Determining the 40K radioactivity in rocks using x-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Pilakouta, M.; Kallithrakas-Kontos, N.; Nikolaou, G.

    2017-09-01

    In this paper we propose an experimental method for the determination of potassium-40 (40K) radioactivity in commercial granite samples using x-ray fluorescence (XRF). The method correlates the total potassium concentration (yield) in samples deduced by XRF analysis with the radioactivity of the sample due to the 40K radionuclide. This method can be used in an undergraduate student laboratory. A brief theoretical background and description of the method, as well as some results and their interpretation, are presented.

  16. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence.

    PubMed

    Aaron, Kristal J; Sanders, Paul W

    2013-09-01

    The objective of this review was to provide a synthesis of the evidence on the effect of dietary salt and potassium intake on population blood pressure, cardiovascular disease, and mortality. Dietary guidelines and recommendations are outlined, current controversies regarding the evidence are discussed, and recommendations are made on the basis of the evidence. Designed search strategies were used to search various databases for available studies. Randomized trials of the effect of dietary salt intake reduction or increased potassium intake on blood pressure, target organ damage, cardiovascular disease, and mortality were included. Fifty-two publications from January 1, 1990, to January 31, 2013, were identified for inclusion. Consideration was given to variations in the search terms used and the spelling of terms so that studies were not overlooked, and search terms took the following general form: (dietary salt or dietary sodium or [synonyms]) and (dietary potassium or [synonyms]) and (blood pressure or hypertension or vascular disease or heart disease or chronic kidney disease or stroke or mortality or [synonyms]). Evidence from these studies demonstrates that high salt intake not only increases blood pressure but also plays a role in endothelial dysfunction, cardiovascular structure and function, albuminuria and kidney disease progression, and cardiovascular morbidity and mortality in the general population. Conversely, dietary potassium intake attenuates these effects, showing a linkage to reduction in stroke rates and cardiovascular disease risk. Various subpopulations, such as overweight and obese individuals and aging adults, exhibit greater sensitivity to the effects of reduced salt intake and may gain the most benefits. A diet that includes modest salt restriction while increasing potassium intake serves as a strategy to prevent or control hypertension and decrease cardiovascular morbidity and mortality. Thus, the body of evidence supports population-wide sodium intake reduction and recommended increases in dietary potassium intake as outlined by current guidelines as an essential public health effort to prevent kidney disease, stroke, and cardiovascular disease. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  17. Interference of ascorbic acid with chemical analytes.

    PubMed

    Meng, Qing H; Irwin, William C; Fesser, Jennifer; Massey, K Lorne

    2005-11-01

    Ascorbic acid can interfere with methodologies involving redox reactions, while comprehensive studies on main chemistry analysers have not been reported. We therefore attempted to determine the interference of ascorbic acid with analytes on the Beckman Synchron LX20. Various concentrations of ascorbic acid were added to serum, and the serum analytes were measured on the LX20. With a serum ascorbic acid concentration of 12.0 mmol/L, the values for sodium, potassium, calcium and creatinine increased by 43%, 58%, 103% and 26%, respectively (P<0.01). With a serum ascorbic acid concentration of 12.0 mmol/L, the values for chloride, total bilirubin and uric acid decreased by 33%, 62% and 83%, respectively (P<0.01), and were undetectable for total cholesterol, triglyceride, ammonia and lactate. There was no definite influence of ascorbic acid on analytical values for total CO(2), urea, glucose, phosphate, total protein, albumin, amylase, creatine kinase, creatine kinase-MB, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total iron, unbound iron-binding capacity or magnesium. Ascorbic acid causes a false increase in sodium, potassium, calcium and creatinine results and a false decrease in chloride, total bilirubin, uric acid, total cholesterol, triglyceride, ammonia and lactate results.

  18. Potassium Intake and the Prevalence of Metabolic Syndrome: The Korean National Health and Nutrition Examination Survey 2008–2010

    PubMed Central

    Lee, Hajeong; Lee, Jeonghwan; Hwang, Seung-sik; Kim, Sejoong; Chin, Ho Jun; Han, Jin Suk; Heo, Nam Ju

    2013-01-01

    Lower potassium intake is considered to be correlated with diabetes incidence. However, few studies have investigated the effect of potassium intake on metabolic syndrome (MetS). Data was taken from the Korean National Health and Nutritional Examination Survey (2008–2010) using weighted adjustment. MetS was defined as per the revised National Cholesterol Education Program criteria. Homeostasis model assessment indices were calculated to diagnosis insulin resistance (IR). A total of 16,637 participants (44±0.25 years) were included. Women ingested lower amounts of potassium (2.71±0.02 g/day) than men (3.45±0.03 g/day). A curvilinear association between potassium intake and MetS prevalence was found among women. Women with less than the Adequate Intake (4.7 g/day) of potassium had an 11% risk reduction for MetS (adjusted odds ratio [OR], 0.89; 95% confidence interval [CI], 0.82–0.96; P = 0.004) and a 10% risk reduction for IR (OR, 0.90; 95% CI, 0.82–0.99; P = 0.026) for every 1 g/day potassium increase. Compared with the reference group (3.5–4.5 g/day), potassium intake was inversely associated with an increased risk of MetS (1.5–2.5 g/day; OR, 1.29; 95% CI, 1.02–1.63; P = 0.035; <1.5 g/day; OR, 1.40; 95% CI, 1.06–1.85; P = 0.017) and IR (<1.5 g/day; OR, 1.36; 95% CI, 1.05–1.76; P = 0.021). This relationship was more prominent in postmenopausal women, but not observed among men. Higher potassium intake is significantly associated with a lower MetS prevalence in women, and IR is believed to be connected. PMID:23372822

  19. Onset time of hyperkalaemia after angiotensin receptor blocker initiation: when should we start serum potassium monitoring?

    PubMed

    Park, I-W; Sheen, S S; Yoon, D; Lee, S-H; Shin, G-T; Kim, H; Park, R W

    2014-02-01

    Angiotensin receptor blockers (ARBs) frequently induce hyperkalaemia in high-risk patients. Early detection of hyperkalaemia can reduce the subsequent harmful effects. This study was performed to examine the onset time of hyperkalaemia after ARB therapy. We carried out a retrospective analysis to determine the onset time of hyperkalaemia (serum potassium >5·5 mm) among hospitalized patients newly starting ARB therapy between 2004 and 2012, in a tertiary teaching hospital. Predefined possible risk factors and concomitant medications were evaluated. During the 97-month study period, a total of 4267 hospitalized patients started ARBs as new drugs and 225 patients showed hyperkalaemia. A significantly increased risk of hyperkalaemia was detected among patients with a high baseline potassium [odds ratio (OR) 6·0] and those who took non-potassium-sparing diuretics (OR 2·2) or potassium supplements (OR 1·6). A high glomerular filtration rate (GFR) was associated with a lower risk of hyperkalaemia (OR 0·992). Fifty-two percentage of hyperkalaemic events occurred within the first week after initiation of ARB therapy. The highest frequency of hyperkalaemia occurred on the first day after initiation of ARBs. Hyperkalaemia occurred earlier in patients with a high baseline serum potassium level, reduced GFR, diabetes and in those without heart failure. Hyperkalaemia occurs most frequently at the beginning of ARB therapy in hospitalized patients. Monitoring of serum potassium and estimated GFR after initiation of ARBs should be started within a few days or not later than 1 week, especially in patients with risk factors. © 2013 John Wiley & Sons Ltd.

  20. Inward rectifier potassium channels control rotor frequency in ventricular fibrillation.

    PubMed

    Jalife, José

    2009-11-01

    Ventricular fibrillation (VF) is the most important cause of sudden cardiac death. While traditionally thought to result from random activation of the ventricles by multiple independent wavelets, recent evidence suggests that VF may be determined by the sustained activation of a relatively small number of reentrant sources. In addition, recent experimental data in various species as well as computer simulations have provided important clues about its ionic and molecular mechanisms, particularly in regards to the role of potassium currents in such mechanisms. The results strongly argue that the inward rectifier current, I(K1,) is an important current during functional reentry because it mediates the electrotonic interactions between the unexcited core and its immediate surroundings. In addition, I(K1) is a stabilizer of reentry due to its ability to shorten action potential duration and reduce conduction velocity near the center of rotation. Increased I(K1) prevents wave front-wave tail interactions and thus averts rotor destabilization and breakup. Other studies have shown that while the slow component of the delayed rectifier potassium current I(Ks) does not significantly modify rotor frequency or stability, it plays a major role in postrepolarization refractoriness and wave break formation. Therefore, the interplay between I(K1) and the rapid sodium inward current (I(Na)) is a major factor in the control of cardiac excitability and thus the stability and frequency of reentry, while I(Ks) is an important determinant of fibrillatory conduction.

  1. Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon

    PubMed Central

    McNamara, Brian; Winter, Desmond C; Cuffe, John E; O'Sullivan, Gerald C; Harvey, Brian J

    1999-01-01

    In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin ΔISC = 63.8 ± 6.2 μA cm−2, n = 6; for PGE2 ΔISC = 34.3 ± 5.2 μA cm−2, n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 μM) and tetraethylammonium (10 mM). The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355

  2. ‘And then there were three’: highly efficient uptake of potassium by foliar trichomes of epiphytic bromeliads

    PubMed Central

    Winkler, Uwe; Zotz, Gerhard

    2010-01-01

    Background and Aims Vascular epiphytes have to acquire nutrients from atmospheric wash out, stem-flow, canopy soils and trapped litter. Physiological studies on the adaptations to nutrient acquisition and plant utilization of nutrients have focused on phosphorus and nitrogen; potassium, as a third highly abundant nutrient element, has received minor attention. In the present study, potassium uptake kinetics by leaves, within-plant distribution and nutrient accumulation were analysed to gain an improved understanding of physiological adaptations to non-terrestrial nutrient supply of plants. Methods Radioactively labelled 86RbCl was used as an analogue to study uptake kinetics of potassium absorbed from tanks of epiphytes, its plant distribution and the correlation between uptake efficiency and abundance of trichomes, functioning as uptake organs of leaves. Potassium in leaves was additionally analysed by atomic absorption spectroscopy to assess plant responses to potassium deficiency. Key Results Labelled rubidium was taken up from tanks over a wide range of concentrations, 0·01–90 mm, which was achieved by two uptake systems. In four tank epiphytes, the high-affinity transporters had average Km values of 41·2 µm, and the low-affinity transporters average Km values of 44·8 mm. Further analysis in Vriesea splenriet showed that high-affinity uptake of rubidium was an ATP-dependent process, while low-affinity uptake was mediated by a K+-channel. The kinetic properties of both types of transporters are comparable with those of potassium transporters in roots of terrestrial plants. Specific differences in uptake velocities of epiphytes are correlated with the abundance of trichomes on their leaf surfaces. The main sinks for potassium were fully grown leaves. These leaves thus function as internal potassium sources, which allow growth to be maintained during periods of low external potassium availability. Conclusions Vascular epiphytes possess effective mechanisms to take up potassium from both highly diluted and highly concentrated solutions, enabling the plant to incorporate this nutrient element quickly and almost quantitatively from tank solutions. A surplus not needed for current metabolism is stored, i.e. plants show luxury consumption. PMID:20542886

  3. Involvement of Potassium and Cation Channels in Hippocampal Abnormalities of Embryonic Ts65Dn and Tc1 Trisomic Mice

    PubMed Central

    Stern, Shani; Segal, Menahem; Moses, Elisha

    2015-01-01

    Down syndrome (DS) mouse models exhibit cognitive deficits, and are used for studying the neuronal basis of DS pathology. To understand the differences in the physiology of DS model neurons, we used dissociated neuronal cultures from the hippocampi of Ts65Dn and Tc1 DS mice. Imaging of [Ca2+]i and whole cell patch clamp recordings were used to analyze network activity and single neuron properties, respectively. We found a decrease of ~ 30% in both fast (A-type) and slow (delayed rectifier) outward potassium currents. Depolarization of Ts65Dn and Tc1 cells produced fewer spikes than diploid cells. Their network bursts were smaller and slower than diploids, displaying a 40% reduction in Δf / f0 of the calcium signals, and a 30% reduction in propagation velocity. Additionally, Ts65Dn and Tc1 neurons exhibited changes in the action potential shape compared to diploid neurons, with an increase in the amplitude of the action potential, a lower threshold for spiking, and a sharp decrease of about 65% in the after-hyperpolarization amplitude. Numerical simulations reproduced the DS measured phenotype by variations in the conductance of the delayed rectifier and A-type, but necessitated also changes in inward rectifying and M-type potassium channels and in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. We therefore conducted whole cell patch clamp measurements of M-type potassium currents, which showed a ~ 90% decrease in Ts65Dn neurons, while HCN measurements displayed an increase of ~ 65% in Ts65Dn cells. Quantitative real-time PCR analysis indicates overexpression of 40% of KCNJ15, an inward rectifying potassium channel, contributing to the increased inhibition. We thus find that changes in several types of potassium channels dominate the observed DS model phenotype. PMID:26501103

  4. Relationship between sodium and potassium intake and blood pressure in a sample of overweight adults.

    PubMed

    Ndanuko, Rhoda N; Tapsell, Linda C; Charlton, Karen E; Neale, Elizabeth P; O'Donnell, Katrina M; Batterham, Marijka J

    2017-01-01

    The aim of this study was to examine the relationship between sodium and potassium intakes and blood pressure (BP) in a clinical sample. Secondary analysis of baseline data from 328 participants (mean age: 43.6 ± 8 y, mean body mass index [BMI]: 32.4 ± 4.2 kg/m 2 , mean systolic BP [SBP]/diastolic BP [DBP]: 124.9 ± 14.5/73.3 ± 9.9 mm Hg) of the 12-mo HealthTrack randomized controlled weight loss trial was conducted. Resting BP and 24-h urine sodium and potassium were measured. Dietary intake was evaluated with 4-d food records and self-reported diet histories. Urinary sodium was positively correlated (Spearman's rho) with SBP (r = 0.176; P = 0.001) and DBP (r = 0.150; P = 0.003). The ratio of sodium to potassium was positively correlated with SBP (r = 0.1; P = 0.035). Urinary sodium (F [4,323] = 20.381; P < 0.0005; adjusted R 2  = 0.231) and sodium-to-potassium ratio (F[4,323] = 25.008; P < 0.0005; adjusted R 2  = 0.227) significantly predicted SBP after controlling for age, sex, BMI, and hypertension medication use. Dietary sodium and potassium significantly predicted urinary sodium (B = 0.33, t = 4.032, P < 0.01) and potassium (B = 0.67, t = 8.537, P < 0.01) excretion, respectively, after adjustment for energy and BMI. Median dietary sodium intake was 3197 mg/d and median dietary potassium intake was 2886 mg/d. Cereal-based products and dishes were the major contributors (22%) to total sodium intake. In the present study, a high dietary sodium intake and high sodium-to-potassium ratio predicted high SBP. This suggests a need to focus dietary advice on reduction of sources of sodium and increasing sources of potassium in weight loss interventions to improve BP control. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Urinary potassium excretion and risk of cardiovascular events.

    PubMed

    Kieneker, Lyanne M; Gansevoort, Ron T; de Boer, Rudolf A; Brouwers, Frank P; Feskens, Edith Jm; Geleijnse, Johanna M; Navis, Gerjan; Bakker, Stephan Jl; Joosten, Michel M

    2016-05-01

    Observational studies on dietary potassium and risk of cardiovascular disease (CVD) have reported weak-to-modest inverse associations. Long-term prospective studies with multiple 24-h urinary samples for accurate estimation of habitual potassium intake, however, are scarce. We examined the association between urinary potassium excretion and risk of blood pressure-related cardiovascular outcomes. We studied 7795 subjects free of cardiovascular events at baseline in the Prevention of Renal and Vascular End-stage Disease study, a prospective, observational cohort with oversampling of subjects with albuminuria at baseline. Main cardiovascular outcomes were CVD [including ischemic heart disease (IHD), stroke, and vascular interventions], IHD, stroke, and new-onset heart failure (HF). Potassium excretion was measured in two 24-h urine specimens at the start of the study (1997-1998) and midway through follow-up (2001-2003). Baseline median urinary potassium excretion was 70 mmol/24 h (IQR: 56-84 mmol/24 h). During a median follow-up of 10.5 y (IQR: 9.9-10.8 y), a total of 641 CVD, 465 IHD, 172 stroke, and 265 HF events occurred. After adjustment for age and sex, inverse associations were observed between potassium excretion and risk [HR per each 26-mmol/24-h (1-g/d) increase; 95% CI] of CVD (0.87; 0.78, 0.97) and IHD (0.86; 0.75, 0.97), as well as nonsignificant inverse associations for risk of stroke (0.85; 0.68, 1.06) and HF (0.94; 0.80, 1.10). After further adjustment for body mass index, smoking, alcohol consumption, education, and urinary sodium and magnesium excretion, urinary potassium excretion was not statistically significantly associated with risk (multivariable-adjusted HR per 1-g/d increment; 95% CI) of CVD (0.96; 0.85, 1.09), IHD (0.90; 0.81, 1.04), stroke (1.09; 0.86, 1.39), or HF (0.99; 0.83, 1.18). No associations were observed between the sodium-to-potassium excretion ratio and risk of CVD, IHD, stroke, or HF. In this cohort with oversampling of subjects with albuminuria at baseline, urinary potassium excretion was not independently associated with a lower risk of cardiovascular events. © 2016 American Society for Nutrition.

  6. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  7. Voltage gated potassium channel antibodies positive autoimmune encephalopathy in a child: A case report and literature review of an under-recognized condition

    PubMed Central

    Ganesan, Subramanian; Beri, Sushil; Khan, Beri; Hussain, Nahin

    2013-01-01

    Autoimmune limbic encephalitis (LE) associated with voltage gated potassium channel antibodies (VGKC-Abs) in children is more common than previously thought and is not always paraneoplastic. Non-neoplastic, autoimmune LE associated with VGKC-Abs has been described recently. However, only few case reports in children as the disease is predominantly described in the adult population. It is likely that this type of autoimmune encephalitis is currently under-diagnosed and hence, under-treated, especially in children. We present a 13-year-old previously fit and healthy African girl diagnosed with LE and we reviewed the literature for its current management. PMID:24339586

  8. Installation Restoration Program, Phase I: Records Search, Laughlin Air Force Base, Texas.

    DTIC Science & Technology

    1985-03-01

    and chemical * cleaning shops and consists of chromic acid, potassium permanganate, cadmium , and descaling solutions. The general trend in waste...0.016 Cadmium ɘ.010 mg/1 ɘ.010 Chromium 0.091 mg/l ɘ.050 Source: LAFB BES, 1984. STP Analysis Results, April 23, 1984. 3-33 -r --r - - - - 41 . N...consists of chromic acid, potassium permanganate, cadmium , and descaling solutions. The fire suppressants currently employed at LAFB and EPAux are AFFF

  9. Influence of preservation methods on the quality of colostrum sourced from New Zealand dairy farms.

    PubMed

    Denholm, K S; Hunnam, J C; Cuttance, E L; McDougall, S

    2017-09-01

    To assess the effect of two temperatures (ambient temperature and 4°C), three preservation methods (no preservative, yoghurt and potassium sorbate), and two periods of storage (3 and 7 days) on Brix and total bacterial and coliform counts of colostrum collected from New Zealand dairy farms. One litre of colostrum destined to be fed to newborn calves was collected from 55 New Zealand dairy farms in the spring of 2015. Six aliquots of 150 mL were obtained from each colostrum sample, with two aliquots left untreated, two treated with potassium sorbate and two with yoghurt, and one of each pair of aliquots stored at ambient temperature and the other at 4°C. All samples were tested for Brix, total bacterial counts and coliform counts before treatment (Day 0), and after 3 and 7 days of storage. The effect of preservation method and storage temperature on the change in Brix, bacterial and coliform counts after 3 or 7 days of storage was analysed using multivariable random effects models. For all outcome variables there was a temperature by preservation interaction. For aliquots preserved with potassium sorbate, changes in Brix and bacterial counts did not differ between aliquots stored at ambient temperature or 4°C, but for aliquots preserved with yoghurt or no preservative the decrease in Brix and increase in bacterial counts was greater for aliquots stored at ambient temperature than 4°C (p<0.001). For aliquots preserved with potassium sorbate, coliform counts decreased at both temperatures, but for aliquots preserved with yoghurt or no preservative coliform counts increased for aliquots stored at 4°C, but generally decreased at ambient temperatures (p<0.001). There was also an interaction between duration of storage and temperature for bacterial counts (p<0.001). The difference in the increase in bacterial counts between aliquots stored at 4°C and ambient temperature after 3 days was greater than between aliquots stored at 4°C and ambient temperature after 7 days. Use of potassium sorbate to preserve colostrum for 3 or 7 days resulted in little or no reduction in Brix and a lower increase in total bacterial counts than colostrum stored without preservative or with yoghurt added. Colostrum quality was not affected by storage temperature for samples preserved with potassium sorbate, but storage at 4°C resulted in better quality colostrum than storage at ambient temperatures for colostrum with no preservative or yoghurt added.

  10. Difference between 24-h diet recall and urine excretion for assessing population sodium and potassium intake in adults aged 18–39 y12345

    PubMed Central

    Cogswell, Mary E; Valderrama, Amy L; Wang, Chia-Yih; Loria, Catherine M; Moshfegh, Alanna J; Rhodes, Donna G; Carriquiry, Alicia L

    2015-01-01

    Background: Limited data are available on the accuracy of 24-h dietary recalls used to monitor US sodium and potassium intakes. Objective: We examined the difference in usual sodium and potassium intakes estimated from 24-h dietary recalls and urine collections. Design: We used data from a cross-sectional study in 402 participants aged 18–39 y (∼50% African American) in the Washington, DC, metropolitan area in 2011. We estimated means and percentiles of usual intakes of daily dietary sodium (dNa) and potassium (dK) and 24-h urine excretion of sodium (uNa) and potassium (uK). We examined Spearman's correlations and differences between estimates from dietary and urine measures. Multiple linear regressions were used to evaluate the factors associated with the difference between dietary and urine measures. Results: Mean differences between diet and urine estimates were higher in men [dNa – uNa (95% CI) = 936.8 (787.1, 1086.5) mg/d and dK – uK = 571.3 (448.3, 694.3) mg/d] than in women [dNa – uNa (95% CI) = 108.3 (11.1, 205.4) mg/d and dK – uK = 163.4 (85.3, 241.5 mg/d)]. Percentile distributions of diet and urine estimates for sodium and potassium differed for men. Spearman's correlations between measures were 0.16 for men and 0.25 for women for sodium and 0.39 for men and 0.29 for women for potassium. Urinary creatinine, total caloric intake, and percentages of nutrient intake from mixed dishes were independently and consistently associated with the differences between diet and urine estimates of sodium and potassium intake. For men, body mass index was also associated. Race was associated with differences in estimates of potassium intake. Conclusions: Low correlations and differences between dietary and urinary sodium or potassium may be due to measurement error in one or both estimates. Future analyses using these methods to assess sodium and potassium intake in relation to health outcomes may consider stratifying by factors associated with the differences in estimates from these methods. This trial was registered at clinicaltrials.gov as NCT01631240. PMID:25646336

  11. Difference between 24-h diet recall and urine excretion for assessing population sodium and potassium intake in adults aged 18-39 y.

    PubMed

    Mercado, Carla I; Cogswell, Mary E; Valderrama, Amy L; Wang, Chia-Yih; Loria, Catherine M; Moshfegh, Alanna J; Rhodes, Donna G; Carriquiry, Alicia L

    2015-02-01

    Limited data are available on the accuracy of 24-h dietary recalls used to monitor US sodium and potassium intakes. We examined the difference in usual sodium and potassium intakes estimated from 24-h dietary recalls and urine collections. We used data from a cross-sectional study in 402 participants aged 18-39 y (∼50% African American) in the Washington, DC, metropolitan area in 2011. We estimated means and percentiles of usual intakes of daily dietary sodium (dNa) and potassium (dK) and 24-h urine excretion of sodium (uNa) and potassium (uK). We examined Spearman's correlations and differences between estimates from dietary and urine measures. Multiple linear regressions were used to evaluate the factors associated with the difference between dietary and urine measures. Mean differences between diet and urine estimates were higher in men [dNa - uNa (95% CI) = 936.8 (787.1, 1086.5) mg/d and dK - uK = 571.3 (448.3, 694.3) mg/d] than in women [dNa - uNa (95% CI) = 108.3 (11.1, 205.4) mg/d and dK - uK = 163.4 (85.3, 241.5 mg/d)]. Percentile distributions of diet and urine estimates for sodium and potassium differed for men. Spearman's correlations between measures were 0.16 for men and 0.25 for women for sodium and 0.39 for men and 0.29 for women for potassium. Urinary creatinine, total caloric intake, and percentages of nutrient intake from mixed dishes were independently and consistently associated with the differences between diet and urine estimates of sodium and potassium intake. For men, body mass index was also associated. Race was associated with differences in estimates of potassium intake. Low correlations and differences between dietary and urinary sodium or potassium may be due to measurement error in one or both estimates. Future analyses using these methods to assess sodium and potassium intake in relation to health outcomes may consider stratifying by factors associated with the differences in estimates from these methods. This trial was registered at clinicaltrials.gov as NCT01631240. © 2015 American Society for Nutrition.

  12. Arrhythmogenic KCNE gene variants: current knowledge and future challenges

    PubMed Central

    Crump, Shawn M.; Abbott, Geoffrey W.

    2014-01-01

    There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking, and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances. PMID:24478792

  13. Incorporating Born solvation energy into the three-dimensional Poisson-Nernst-Planck model to study ion selectivity in KcsA K+ channels

    NASA Astrophysics Data System (ADS)

    Liu, Xuejiao; Lu, Benzhuo

    2017-12-01

    Potassium channels are much more permeable to potassium than sodium ions, although potassium ions are larger and both carry the same positive charge. This puzzle cannot be solved based on the traditional Poisson-Nernst-Planck (PNP) theory of electrodiffusion because the PNP model treats all ions as point charges, does not incorporate ion size information, and therefore cannot discriminate potassium from sodium ions. The PNP model can qualitatively capture some macroscopic properties of certain channel systems such as current-voltage characteristics, conductance rectification, and inverse membrane potential. However, the traditional PNP model is a continuum mean-field model and has no or underestimates the discrete ion effects, in particular the ion solvation or self-energy (which can be described by Born model). It is known that the dehydration effect (closely related to ion size) is crucial to selective permeation in potassium channels. Therefore, we incorporated Born solvation energy into the PNP model to account for ion hydration and dehydration effects when passing through inhomogeneous dielectric channel environments. A variational approach was adopted to derive a Born-energy-modified PNP (BPNP) model. The model was applied to study a cylindrical nanopore and a realistic KcsA channel, and three-dimensional finite element simulations were performed. The BPNP model can distinguish different ion species by ion radius and predict selectivity for K+ over Na+ in KcsA channels. Furthermore, ion current rectification in the KcsA channel was observed by both the PNP and BPNP models. The I -V curve of the BPNP model for the KcsA channel indicated an inward rectifier effect for K+ (rectification ratio of ˜3 /2 ) but indicated an outward rectifier effect for Na+ (rectification ratio of ˜1 /6 ) .

  14. Randomized, Controlled Trial of the Effect of Dietary Potassium Restriction on Nerve Function in CKD.

    PubMed

    Arnold, Ria; Pianta, Timothy J; Pussell, Bruce A; Kirby, Adrienne; O'Brien, Kate; Sullivan, Karen; Holyday, Margaret; Cormack, Christine; Kiernan, Matthew C; Krishnan, Arun V

    2017-10-06

    Neuromuscular complications are almost universal in CKD by the time that a patient commences dialysis. Recent studies have indicated that chronic hyperkalemia may contribute to the development of neuropathy in CKD. This study was undertaken to determine whether dietary restriction of potassium intake may be a neuroprotective factor in CKD. A 24-month prospective, single-blind, randomized, controlled trial was undertaken in 47 consecutively recruited patients with stages 3 and 4 CKD. The intervention arm ( n =23) was prescribed a diet focusing on potassium restriction to meet a monthly serum potassium level of ≤4.5 mEq/L, with oral sodium polystyrene sulfonate provided if dietary advice failed to achieve the target. The control arm ( n =24) received dietary advice regarding general nutrition. The primary outcome was the change in the total neuropathy score evaluated by a blinded observer. Secondary outcomes included electrolyte levels, gait speed, neurophysiologic parameters, and health-related quality of life scores. Five patients withdrew before initiation of treatment, and final analysis consisted of n =21 in each group. There was a greater increase in total neuropathy score from baseline to final assessment in the control arm compared with the intervention arm (6.1±6.2-8.6±7.9 controls; 7.8±7.4-8.2±7.5 intervention; change 2.8±3.3-0.4±2.2, respectively; P <0.01). The intervention significantly reduced mean serum potassium compared with controls (4.6±0.1-4.8±0.1 mEq/L mean recorded every 6 months over the trial duration; P =0.03). There were no adverse changes in other nutritional parameters. Improved gait speed was also noted in the intervention arm compared with the control arm, with a mean increase of 0.15±0.17 m/s in the intervention group versus 0.02±0.16 m/s in the control group ( P =0.01). Our results provide important preliminary evidence that dietary potassium restriction confers neuroprotection in CKD and should be confirmed in a larger multicenter trial. Copyright © 2017 by the American Society of Nephrology.

  15. The feasibility of meeting the WHO guidelines for sodium and potassium: a cross-national comparison study.

    PubMed

    Drewnowski, Adam; Rehm, Colin D; Maillot, Matthieu; Mendoza, Alfonso; Monsivais, Pablo

    2015-03-20

    To determine joint compliance with the WHO sodium-potassium goals in four different countries, using data from nationally representative dietary surveys. Compared to national and international recommendations and guidelines, the world's population consumes too much sodium and inadequate amounts of potassium. The WHO recommends consuming less than 2000 mg sodium (86 mmol) and at least 3510 mg potassium (90 mmol) per person per day. Dietary surveillance data were obtained from the National Health and Nutrition Examination Survey (NHANES 2007-2010) for the USA; the Encuesta Nacional de Salud y Nutrición 2012 for Mexico; the Individual and National Study on Food Consumption (INCA2) for France; and the National Diet and Nutrition Survey (NDNS) for the UK. We estimated the proportion of adults meeting the joint WHO sodium-potassium goals in the USA, the UK, France and Mexico. The upper bounds of joint compliance with the WHO sodium-potassium goals were estimated at 0.3% in the USA, 0.15% in Mexico, 0.5% in France and 0.1% in the UK. Given prevailing food consumption patterns and the current food supply, implementing WHO guidelines will be an enormous challenge for global public health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Metabolic effects of propranolol and hydroflumethiazide treatment in Kenyans with mild to moderate essential hypertension.

    PubMed

    Yonga, G O; Ogola, E N; Orinda, D A

    1993-11-01

    In a prospective single-blind comparative trial, sixty newly diagnosed mild to moderate hypertensives were randomly assigned to either propranolol or hydroflumethiazide monotherapy. Baseline fasting serum glucose lipid profiles, serum uric acid and potassium levels, were determined at the beginning of the trial. Repeat levels were determined at completion of twelve weeks of treatment. Propranolol treatment significantly reduced HDL-cholesterol (p < 0.02) and increased both VLDL and total serum triglycerides (p < 0.01). Hydroflumethiazide significantly increased total and LDL-chole-sterol, fasting serum glucose and uric acid levels (p < 0.01); potassium levels were significantly lowered (p < 0.01). Treatment with either propranolol or hydroflumethiazide is associated with significant metabolic side-effects which require regular monitoring and intervention as appropriate.

  17. Desensitizing toothpaste versus placebo for dentin hypersensitivity: a systematic review and meta-analysis.

    PubMed

    Bae, Ji-Hyun; Kim, Young-Kyun; Myung, Seung-Kwon

    2015-02-01

    The aim is to assess the effect of desensitizing toothpaste on dentin hypersensitivity. We searched PubMed, CENTRAL, and Embase on December 20, 2013. Out of the 626 articles searched, a total of 31 randomized controlled clinical trials were included. The Standardized mean differences (SMD) for potassium-containing toothpaste (n = 8) was -1.28 (95% Confidence interval (CI) -2.05 to -0.51; I(2) = 93%); Stannous fluoride- (n = 6) was -1.37 (95% CI, -2.30 to -0.44; I(2) = 95%); Potassium and stannous fluoride- (n = 3) was -2.50 (95% CI, -4.10 to -0.91; I(2) = 95%); Calcium sodium phosphosilicate- (n = 4) was -2.36 (95% CI, -3.72 to -1.00; I(2) = 92%); Arginine- (n = 8) was -3.25 (95% CI, -3.87 to -2.63; I(2) = 86%). The desensitizing effect was favoured in the intervention group treated with potassium-, stannous fluoride-, potassium and stannous fluoride-, calcium sodium phosphosilicate-, and arginine-containing toothpaste compared to placebo. Whereas, strontium-containing toothpaste (SMD, 0.05; 95% CI, -0.34 to 0.44; I(2) = 64%) was found to have no statistically significant desensitizing effect in the meta-analysis of four studies. The study reports that there is sufficient evidence to support the use of potassium-, stannous fluoride-, potassium and stannous fluoride-, calcium sodium phosphosilicate-, and arginine-containing desensitizing toothpastes for dentin hypersensitivity, but not the use of strontium-containing desensitizing toothpaste. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The concomitant prescribing of ethinyl estradiol/drospirenone and potentially interacting drugs.

    PubMed

    McAdams, Mara; Staffa, Judy A; Dal Pan, Gerald J

    2007-10-01

    Ethinyl estradiol 0.03 mg/drospirenone 3 mg (EE/DRSP) contains a progestin drospirenone with antimineralocorticoid properties that may cause potassium retention leading to hyperkalemia. We estimated the percentage of EE/DRSP users prescribed concomitant potassium-sparing drugs [nonsteroidal antiinflammatory drugs, diuretics, angiotensin-converting enzyme inhibitors (with diuretics), angiotensin II agonists (with diuretics), and potassium chloride] between January 1, 2002, and March 31, 2005. We analyzed a population-based data set of 62,527 EE/DRSP users (Dimension Rx, Caremark). We compared the fill date and end date for each prescription (Rx) for an interacting drug to the start and end date for each EE/DRSP episode (linked Rxs). If a day of an interacting Rx overlapped with an EE/DRSP episode, concomitant prescribing was recorded. A total of 17.6% of the women concomitantly used EE/DRSP and an interacting drug. Twenty-nine percent of concomitant use occurred within a month of EE/DRSP initiation. Nonsteroidal antiinflammatory drugs and diuretics were most frequently used concomitantly with EE/DRSP. Forty percent of the women with concomitant use were 35 yearsof age or older at EE/DRSP initiation compared with 29% without concomitant use (p<.001). Obstetricians/gynecologists and family practitioners were the most common prescribers of EE/DRSP and potassium-sparing drugs, respectively. Concomitant prescribing of EE/DRSP and potassium-sparing drugs occurred frequently in our study population. As EE/DRSP becomes more widely used, physicians prescribing it should monitor patients for potassium-sparing drug use.

  19. Dietary sodium, potassium, and alcohol: key players in the pathophysiology, prevention, and treatment of human hypertension.

    PubMed

    Koliaki, Chrysi; Katsilambros, Nicholas

    2013-06-01

    Western industrialized societies are currently experiencing an epidemic expansion of hypertension (HTN), which extends alarmingly even to children and adolescents. HTN constitutes an independent risk factor for cardiorenal disease and represents an extremely common comorbidity of diabetes and obesity. Numerous randomized clinical trials and meta-analyses have provided robust scientific evidence that reduced dietary salt intake, increased dietary potassium intake, moderation of alcohol consumption, optimal weight maintenance, and the adoption of "heart-friendly" dietary patterns such as the Dietary Approaches to Stop Hypertension or the Mediterranean diet can effectively lower blood pressure. Interestingly, the susceptibility of blood pressure to nutritional interventions is greatly variable among individuals, depending on age, race, genetic background, and comorbidities. The purpose of this review is to provide a comprehensive overview of currently available scientific evidence in the constantly evolving field of diet and HTN, placing particular emphasis on the key role of dietary sodium, dietary potassium, and alcohol intake in the pathophysiology, prevention, and treatment of human hypertension. © 2013 International Life Sciences Institute.

  20. Testosterone-mediated upregulation of delayed rectifier potassium channel in cardiomyocytes causes abbreviation of QT intervals in rats.

    PubMed

    Masuda, Kimiko; Takanari, Hiroki; Morishima, Masaki; Ma, FangFang; Wang, Yan; Takahashi, Naohiko; Ono, Katsushige

    2018-01-13

    Men have shorter rate-corrected QT intervals (QTc) than women, especially at the period of adolescence or later. The aim of this study was to elucidate the long-term effects of testosterone on cardiac excitability parameters including electrocardiogram (ECG) and potassium channel current. Testosterone shortened QT intervals in ECG in castrated male rats, not immediately after, but on day 2 or later. Expression of Kv7.1 (KCNQ1) mRNA was significantly upregulated by testosterone in cardiomyocytes of male and female rats. Short-term application of testosterone was without effect on delayed rectifier potassium channel current (I Ks ), whereas I Ks was significantly increased in cardiomyocytes treated with dihydrotestosterone for 24 h, which was mimicked by isoproterenol (24 h). Gene-selective inhibitors of a transcription factor SP1, mithramycin, abolished the effects of testosterone on Kv7.1. Testosterone increases Kv7.1-I Ks possibly through a pathway related to a transcription factor SP1, suggesting a genomic effect of testosterone as an active factor for cardiac excitability.

  1. Short- and long-term inhibition of cardiac inward-rectifier potassium channel current by an antiarrhythmic drug bepridil.

    PubMed

    Ma, Fangfang; Takanari, Hiroki; Masuda, Kimiko; Morishima, Masaki; Ono, Katsushige

    2016-07-01

    Bepridil is an effective antiarrhythmic drug on supraventricular and ventricular arrhythmias, and inhibitor of calmodulin. Recent investigations have been elucidating that bepridil exerts antiarrhythmic effects through its acute and chronic application for patients. The aim of this study was to identify the efficacy and the potential mechanism of bepridil on the inward-rectifier potassium channel in neonatal rat cardiomyocytes in acute- and long-term conditions. Bepridil inhibited inward-rectifier potassium current (I K1) as a short-term effect with IC50 of 17 μM. Bepridil also reduced I K1 of neonatal cardiomyocytes when applied for 24 h in the culture medium with IC50 of 2.7 μM. Both a calmodulin inhibitor (W-7) and an inhibitor of calmodulin-kinase II (KN93) reduced I K1 when applied for 24 h as a long-term effect in the same fashion, suggesting that the long-term application of bepridil inhibits I K1 more potently than that of the short-term application through the inhibition of calmodulin kinase II pathway in cardiomyocytes.

  2. Measurement of fine particulate and gas-phase species during the New Year's fireworks 2005 in Mainz, Germany

    NASA Astrophysics Data System (ADS)

    Drewnick, Frank; Hings, Silke S.; Curtius, Joachim; Eerdekens, Gunter; Williams, Jonathan

    The chemical composition and chemically resolved size distributions of fine aerosol particles were measured at high time resolution (5 min) with a time-of-flight aerosol mass spectrometer (TOF-AMS) during the New Year's 2005 fireworks in Mainz, central Germany. In addition, particle number concentrations and trace gas concentrations were measured using a condensation particle counter (CPC) and a proton transfer reaction mass spectrometer (PTR-MS). The main non-refractory components of the firework aerosol were potassium, sulfate, total organics and chloride. Increased trace gas mixing ratios of methanol, acetonitrile, acetone and acetaldehyde were observed. Aerosol nitrate and ammonium concentrations were not significantly affected by the fireworks as well as the measured aromatic trace gases. The sub-micron aerosol concentrations peaked about 20 min after midnight with total mass concentrations larger than 600 μg m -3. The trace gas concentrations peaked about 30 min later. Using the sulfur-to-potassium concentration ratio measured in another fireworks aerosol, it was for the first time possible to estimate the relative ionization efficiency of aerosol potassium, measured with the TOF-AMS. Here we found a value of RIE K=2.9.

  3. Pregnancy related changes in human salivary secretion and composition in a Nigerian population.

    PubMed

    Lasisi, T J; Ugwuadu, P N

    2014-12-01

    A variety of physiological changes occurring during pregnancy has been shown to affect the oral health. Saliva is critical for preserving and maintaining the health of oral tissues and has been used as a source of non-invasive investigation of different conditions in human and animal studies. This study was designed to evaluate changes in secretion and composition of saliva in pregnant women in a Nigerian population. This was a descriptive cross-sectional study using purposive sampling technique. Saliva samples were collected from 50 pregnant and age matched 50 non-pregnant women. Salivary flow rate, pH, total protein and concentrations of sodium, potassium, calcium, phosphate and bicarbonate were determined and compared using paired independent sample t test. Salivary pH,mean concentrations of potassium and bicarbonate were significantly reduced while mean concentrations of salivary sodium and phosphate were significantly elevated in pregnant women compared to non-pregnant women (P < 0.05). However, there was no significant difference in the salivary flow rate, concentrations of total protein and calcium. Salivary pH, bicarbonate and potassium concentrations were reduced while sodium and phosphate concentrations were elevated in pregnant women. These findings suggest that pregnant women may be predisposed to higher caries incidence.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuanwen Zhao; Xiaoping Chen; Changsui Zhao

    The CO{sub 2} capture characteristics of dry potassium-based sorbents were investigated with thermogravimetric analysis (TGA) and a bubbling fluidized-bed reactor. Potassium-based sorbents were prepared by impregnation with potassium carbonate on supports such as coconut activated charcoal (AC1), coal active carbon (AC2), silica gel (SG), and activated alumina (Al{sub 2}O{sub 3}). Sorbents such as K{sub 2}CO{sub 3}/AC1, K{sub 2}CO{sub 3}/AC2, and K{sub 2}CO{sub 3}/Al{sub 2}O{sub 3} showed excellent carbonation capacity; The total conversion rates of those sorbents were 97.2, 95.9, and 95.2%, respectively in the TG test, and 89.2, 87.9, and 87.6%, respectively, in the fluidized-bed test. However, K{sub 2}CO{sub 3}/SGmore » showed poor carbonation capacity, the total conversion rates were only 34.5 and 18.8%, respectively, in TG and fluidized-bed tests. The differences in carbonation capacity of those sorbents were analyzed by studying the microscopic structure and crystal structure of the supports and the sorbents with X-ray diffraction, scanning electron microscopy, and N{sub 2} adsorption tests. 23 refs., 10 figs.« less

  5. Mechanism for the oxidation of phenol by sulfatoferrate(VI): Comparison with various oxidants.

    PubMed

    Peings, Vanessa; Frayret, Jérôme; Pigot, Thierry

    2015-07-01

    The oxidative action of a solid and stable potassium sulfatoferrate(VI) material on phenol was studied in aqueous solution under different stoichiometries. The performance towards phenol and the total organic carbon is compared to that of potassium permanganate and calcium hypochlorite. The total mineralization of phenol is not completely achieved by the studied chemical oxidants, and some oxidation products have been identified by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector analysis. A radical reaction pathway, involving the formation of oxidation intermediates or by-products such as benzoquinone, phenoxyphenol and ring opening products, is proposed for the decomposition of phenol by ferrate(VI). Phenoxyphenol is also involved in the oxidation mechanism for permanganate whereas chlorinated phenols are produced by hypochlorite. The role of the chloride anion impurity of the potassium sulfatoferrate(VI) material has been highlighted in this study; no negative impact on the removal of phenol and its mineralization is observed compared to the use of a pure commercial ferrate(VI). The efficiency of sulfatoferrate(VI) for the oxidative removal of phenol from industrial wastewater is also confirmed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The effects of magnesium on potassium transport in ferret red cells.

    PubMed Central

    Flatman, P W

    1988-01-01

    1. The magnesium dependence of net and isotopic (using 86Rb as tracer) potassium transport was measured in fed ferret red cells. Bumetanide (0.1 mM) was used to dissect total flux into two components: bumetanide sensitive and bumetanide resistant. 2. Increasing the external magnesium concentration from zero (added) to 2 mM stimulated bumetanide-sensitive uptake by 16% but inhibited the bumetanide-resistant component by about 20%. 3. Ionophore A23187 was used to control internal magnesium concentration. A23187 was usually present in the cells during measurement of isotopic fluxes but was washed away before measurement of net fluxes. The magnesium-buffering characteristics of fed ferret red cells were assessed during these experiments. The cytoplasm acts as a high-capacity, low-affinity magnesium buffer over most of the range. Some high-affinity binding was seen in the presence of A23187 and 2 mM-EDTA. 4. A23187 itself slightly inhibits bumetanide-sensitive potassium transport. 5. Bumetanide-sensitive potassium transport is strongly dependent on the concentration of internal ionized magnesium. Transport is 35% maximal at 10(-7) M and increases up to the maximal rate at 1.3 mM. Further increase in ionized magnesium concentration to 3.5 mM has no additional effect. The curve relating activity to magnesium concentration is steepest at the physiological magnesium concentration. The effects of changing magnesium concentration are fully reversible. 6. Reduction of internal ionized magnesium concentration to 10(-7) M with A23187 and EDTA approximately doubles bumetanide-resistant potassium transport. 7. Bumetanide-sensitive fluxes occur via the sodium-potassium-chloride co-transport system under the conditions used. Results described in this paper thus suggest that internal magnesium may be an important physiological controller of sodium-potassium-chloride co-transport activity. PMID:3137332

  7. Potassium Inhibits Dietary Salt-Induced Transforming Growth Factor-β Production

    PubMed Central

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W.

    2009-01-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-β, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-β. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-β demonstrated increased (35.2%) amounts of active TGF-β in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-β but did not affect production of TGF-β by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the α subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-β but did not alter TGF-β production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-β in animals receiving the high-salt diet but did not change urinary active TGF-β in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake. PMID:19738156

  8. Seasonal acclimatization of the cardiac potassium currents (IK1 and IKr) in an arctic marine teleost, the navaga cod (Eleginus navaga).

    PubMed

    Abramochkin, Denis V; Vornanen, Matti

    2015-12-01

    Several freshwater fishes of north-temperate latitudes exhibit marked seasonal changes in cardiac action potential (AP) waveform as an outcome of temperature-dependent changes in the density of delayed rectifiers (IKr, IKs) and inward rectifier (IK1) potassium currents. Thus far, ionic mechanisms of cardiac excitability in arctic marine fishes have not been examined. To this end we examined ventricular AP and the role of two major potassium currents (IK1, IKr) in repolarization of cardiac AP in winter-acclimatized (WA, caught in March) and summer-acclimatized (SA, caught in September) navaga cod (Eleginus navaga) of the White Sea. The duration of ventricular AP of WA navaga at 3 °C (APD50 = 659.5 ± 32.8 ms) was similar to the AP duration of SA navaga at 12 °C (APD50 = 543.9 ± 14.6 ms) (p > 0.05) indicating complete thermal compensation of AP duration. This acclimation effect was associated with strong up-regulation of the cardiac potassium currents in winter. Densities of ventricular IK1 (at -120 mV) and IKr (at +50 mV) of the WA navaga at 3 °C were 2.9 times and 2.8 times, respectively, higher than those of the SA navaga at 12 °C, thus indicating marked thermal overcompensation. Qualitatively similar results were obtained from atrial myocytes. Seasonal changes in IK1 and IKr are more than sufficient to explain the complete thermal compensation of ventricular AP duration. The excellent acclimation capacity of cardiac excitability of the navaga cod is probably needed to maintain high cardiac performance at subzero temperatures in winter and to increase thermal resilience of cardiac function under seasonally variable arctic temperature conditions.

  9. FURTHER STUDIES ON CHEMICAL EVALUATION OF LAUHA BHASMA III

    PubMed Central

    Keshri, A.; Verma, P.R.P.; Prasad, C.M

    1996-01-01

    Samples of marketed Lauha bhasma from different manufactures were evaluated chemically. Apart from the 81 -85% iron content, the 15-19% other constituents were determined therein. Ferrous ferric and total iron in a single aliquot were determined spectrophotometrically, Qualitative and chromatographic analysis indicate the presence of sodium, potassium, calcium copper and cobalt in the samples, silicious matter and traces of ascorbic acid were present while tannin was absent in Lauha bhasma . Quantitatively sodium and potassium were determined by flame spectrometry. Upon fractionation, water soluble and acid soluble contents were determined. PMID:22556767

  10. Commercial fertilizers 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, J.T.; Montgomery, M.H.

    1992-12-01

    Fertilizer consumption information in the USA for 1992 submitted by state regulatory officials is presented. This includes total sales or shipments for farm and non-farm use. Liming materials were excluded. Materials used for manufacture or blending of reported fertilizers or for use in other fertilizers are excluded to avoid double-counting. The consumption of multiple-nutrient and single-nutrient fertilizers is listed. Dry bulk, fluid, and bagged classes are given. Typical fertilizers include: anhydrous ammonia, aqua ammonia, nitrogen solutions, urea, ammonium nitrates, ammonium sulfates, phosphoric acid, superphosphates, potassium chlorides, and potassium sulfates.

  11. NO involvement in the inhibition of ghrelin on voltage-dependent potassium currents in rat hippocampal cells.

    PubMed

    Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui

    2018-01-01

    Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Role of A-type potassium currents in excitability, network synchronicity and epilepsy

    PubMed Central

    Fransén, Erik; Tigerholm, Jenny

    2011-01-01

    A range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A-type potassium current (KA). Epileptogenic activity comprises a rich repertoire of characteristics, one of which is synchronized activity of principal cells as revealed by occurrences of for instance fast ripples. Synchronized activity of this kind is particularly efficient in driving target cells into spiking. In the recipient cell, this synchronized input generates large brief compound EPSPs. The fast activation and inactivation of KA lead us to hypothesize a potential role in suppression of such EPSPs. In this work, using computational modeling, we have studied the activation of KA by synaptic inputs of different levels of synchronicity. We find that KA participates particularly in suppressing inputs of high synchronicity. We also show that the selective suppression stems from the current's ability to become activated by potentials with high slopes. We further show that KA suppresses input mimicing the activity of a fast ripple. Finally, we show that the degree of selectivity of KA can be modified by changes to its kinetic parameters, changes of the type that are produced by the modulatory action of KChIPs and DPPs. We suggest that the wealth of modulators affecting KA might be explained by a need to control cellular excitability in general and suppression of responses to synchronicity in particular. We also suggest that compounds changing KA-kinetics may be used to pharmacologically improve epileptic status. PMID:19777555

  13. A Comparison of Concentrations of Sodium and Related Nutrients (Potassium, Total Dietary Fiber, Total and Saturated Fat, and Total Sugar) in Private-Label and National Brands of Popular, Sodium-Contributing, Commercially Packaged Foods in the United States.

    PubMed

    Ahuja, Jaspreet K C; Pehrsson, Pamela R; Cogswell, Mary

    2017-05-01

    Private-label brands account for about one in four foods sold in US supermarkets. They provide value to consumers due to their low cost. We know of no US studies comparing the nutrition content of private-label products with corresponding national brand products. The objective was to compare concentrations of sodium and related nutrients (potassium, total dietary fiber, total and saturated fat, and total sugar) in popular sodium-contributing, commercially packaged foods by brand type (national or private-label brand). During 2010 to 2014, the Nutrient Data Laboratory of the US Department of Agriculture obtained 1,706 samples of private-label and national brand products from up to 12 locations nationwide and chemically analyzed 937 composites for sodium and related nutrients. The samples came from 61 sodium-contributing, commercially packaged food products for which both private-label and national brands were among the top 75% to 80% of brands for US unit sales. In this post hoc comparative analysis, the authors assigned a variable brand type (national or private label) to each composite and determined mean nutrient contents by brand type overall and by food product and type. The authors tested for significant differences (P<0.05) by brand type using independent sample t tests or Mann-Whitney U tests when appropriate. Overall for all foods sampled, differences between brand types were not statistically significant for any of the nutrients studied. However, differences in both directions exist for a few individual food products and food categories. Concentrations of sodium and related nutrients (potassium, total dietary fiber, total and saturated fat, and total sugar) do not differ systematically between private-label and national brands, suggesting that brand type is not a consideration for nutritional quality of foods in the United States. The study data provide public health officials with baseline nutrient content by brand type to help focus US sodium-reduction efforts. Published by Elsevier Inc.

  14. Effect of Organic Substances on the Efficiency of Fe(Ii) to Fe(Iii) Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    NASA Astrophysics Data System (ADS)

    Krupińska, Izabela

    2017-09-01

    One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  15. Quality of major ion and total dissolved solids data from groundwater sampled by the National Water-Quality Assessment Program, 1992–2010

    USGS Publications Warehouse

    Gross, Eliza L.; Lindsey, Bruce D.; Rupert, Michael G.

    2012-01-01

    Field blank samples help determine the frequency and magnitude of contamination bias, and replicate samples help determine the sampling variability (error) of measured analyte concentrations. Quality control data were evaluated for calcium, magnesium, sodium, potassium, chloride, sulfate, fluoride, silica, and total dissolved solids. A 99-percent upper confidence limit is calculated from field blanks to assess the potential for contamination bias. For magnesium, potassium, chloride, sulfate, and fluoride, potential contamination in more than 95 percent of environmental samples is less than or equal to the common maximum reporting level. Contamination bias has little effect on measured concentrations greater than 4.74 mg/L (milligrams per liter) for calcium, 14.98 mg/L for silica, 4.9 mg/L for sodium, and 120 mg/L for total dissolved solids. Estimates of sampling variability are calculated for high and low ranges of concentration for major ions and total dissolved solids. Examples showing the calculation of confidence intervals and how to determine whether measured differences between two water samples are significant are presented.

  16. Hydrolysers of modified mycotoxins in maize: α-Amylase and cellulase induce an underestimation of the total aflatoxin content.

    PubMed

    Vidal, Arnau; Marín, Sonia; Sanchis, Vicente; De Saeger, Sarah; De Boevre, Marthe

    2018-05-15

    Aflatoxins are the most potent genotoxic and carcinogenic mycotoxins. To date, research has only focused on the presence of free aflatoxins in agricultural commodities. Therefore, the main objective of this study was to investigate the occurrence of possible modified aflatoxins in maize. Different hydrolysis methods were applied to convert modified mycotoxins into their free aflatoxins. Eighteen aflatoxin-contaminated maize samples were incubated with potassium hydroxide, trifluoromethanesulfonic acid and several enzymes to induce hydrolysis. Potassium hydroxide caused a total reduction of aflatoxins, while trifluoromethanesulfonic acid did not lead to an increase in free aflatoxins, neither did treatment with a protease. However, α-amylase and cellulase incubation caused significant increases in the total free aflatoxin content, 15 ± 8% and 13 ± 5%, respectively. These results show that a small proportion of aflatoxins could be associated to matrix substances in plants. Consequently, hydrolysis could occur during food processing and during mammalian digestion, leading to an underestimation of the total aflatoxin content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Effects of plateau zokor disturbance and restoration years on soil nutrients and microbial functional diversity in alpine meadow].

    PubMed

    Hu, Lei; Ade, Lu-ji; Zi, Hong-biao; Wang, Chang-ting

    2015-09-01

    To explore the dynamic process of restoration succession in degraded alpine meadow that had been disturbed by plateau zokors in the eastern Tibetan Plateau, we examined soil nutrients and microbial functional diversity using conventional laboratory analysis and the Biolog-ECO microplate method. Our study showed that: 1) The zokors disturbance significantly reduced soil organic matter, total nitrogen, available nitrogen and phosphorus contents, but had no significant effects on soil total phosphorus and potassium contents; 2) Soil microbial carbon utilization efficiency, values of Shannon, Pielou and McIntosh indexes increased with alpine meadow restoration years; 3) Principal component analysis (PCA) showed that carbohydrates and amino acids were the main carbon sources for maintaining soil microbial community; 4) Redundancy analysis ( RDA) indicated that soil pH, soil organic matter, total nitrogen, available nitrogen, and total potassium were the main factors influencing the metabolic rate of soil microbial community and microbial functional diversity. In summary, variations in soil microbial functional diversity at different recovery stages reflected the microbial response to aboveground vegetation, soil microbial composition and soil nutrients.

  18. Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve

    PubMed Central

    Dutta, Sara; Mincholé, Ana; Zacur, Ernesto; Quinn, T. Alexander; Taggart, Peter; Rodriguez, Blanca

    2016-01-01

    Aims Acute ischemia is a major cause of sudden arrhythmic death, further promoted by potassium current blockers. Macro-reentry around the ischemic region and early afterdepolarizations (EADs) caused by electrotonic current have been suggested as potential mechanisms in animal and isolated cell studies. However, ventricular and human-specific arrhythmia mechanisms and their modulation by repolarization reserve remain unclear. The goal of this paper is to unravel multiscale mechanisms underlying the modulation of arrhythmic risk by potassium current (IKr) block in human ventricles with acute regional ischemia. Methods and results A human ventricular biophysically-detailed model, with acute regional ischemia is constructed by integrating experimental knowledge on the electrophysiological ionic alterations caused by coronary occlusion. Arrhythmic risk is evaluated by determining the vulnerable window (VW) for reentry following ectopy at the ischemic border zone. Macro-reentry around the ischemic region is the main reentrant mechanism in the ischemic human ventricle with increased repolarization reserve due to the ATP-sensitive potassium current (IK(ATP)) activation. Prolongation of refractoriness by 4% caused by 30% IKr reduction counteracts the establishment of macro-reentry and reduces the VW for reentry (by 23.5%). However, a further decrease in repolarization reserve (50% IKr reduction) is less anti-arrhythmic despite further prolongation of refractoriness. This is due to the establishment of transmural reentry enabled by electrotonically-triggered EADs in the ischemic border zone. EADs are produced by L-type calcium current (ICaL) reactivation due to prolonged low amplitude electrotonic current injected during the repolarization phase. Conclusions Electrotonically-triggered EADs are identified as a potential mechanism facilitating intramural reentry in a regionally-ischemic human ventricles model with reduced repolarization reserve. PMID:26850675

  19. Down-regulation of A-type potassium channel in gastric-specific DRG neurons in a rat model of functional dyspepsia.

    PubMed

    Li, S; Chen, J D Z

    2014-07-01

    Although without evidence of organic structural abnormalities, pain or discomfort is a prominent symptom of functional dyspepsia and considered to reflect visceral hypersensitivity whose underlying mechanism is poorly understood. Here, we studied electrophysiological properties and expression of voltage-gated potassium channels in dorsal root ganglion (DRG) neurons in a rat model of functional dyspepsia induced by neonatal gastric irritation. Male Sprague-Dawley rat pups at 10-day old received 0.1% iodoacetamide (IA) or vehicle by oral gavage for 6 days and studied at adulthood. Retrograde tracer-labeled gastric-specific T8 -T12 DRG neurons were harvested for the patch-clamp study in voltage and current-clamp modes and protein expression of K(+) channel in T8 -T12 DRGs was examined by western blotting. (1) Gastric specific but not non-gastric DRG neurons showed an enhanced excitability in neonatal IA-treated rats compared to the control: depolarized resting membrane potentials, a lower current threshold for action potential (AP) activation, and an increase in the number of APs in response to current stimulation. (2) The current density of tetraethylammonium insensitive (transiently inactivating A-type current), but not the tetraethylammonium sensitive (slow-inactivating delayed rectifier K(+) currents), was significantly smaller in IA-treated rats (65.4 ± 6.9 pA/pF), compared to that of control (93.1 ± 8.3 pA/pF). (3) Protein expression of KV 4.3 was down-regulated in IA-treated rats. A-type potassium channels are significantly down-regulated in the gastric-specific DRG neurons in adult rats with mild neonatal gastric irritation, which in part contribute to the enhanced DRG neuron excitabilities that leads to the development of gastric hypersensitivity. © 2014 John Wiley & Sons Ltd.

  20. Genome-wide linkage and positional candidate gene study of blood pressure response to dietary potassium intervention: the genetic epidemiology network of salt sensitivity study.

    PubMed

    Kelly, Tanika N; Hixson, James E; Rao, Dabeeru C; Mei, Hao; Rice, Treva K; Jaquish, Cashell E; Shimmin, Lawrence C; Schwander, Karen; Chen, Chung-Shuian; Liu, Depei; Chen, Jichun; Bormans, Concetta; Shukla, Pramila; Farhana, Naveed; Stuart, Colin; Whelton, Paul K; He, Jiang; Gu, Dongfeng

    2010-12-01

    Genetic determinants of blood pressure (BP) response to potassium, or potassium sensitivity, are largely unknown. We conducted a genome-wide linkage scan and positional candidate gene analysis to identify genetic determinants of potassium sensitivity. A total of 1906 Han Chinese participants took part in a 7-day high-sodium diet followed by a 7-day high-sodium plus potassium dietary intervention. BP measurements were obtained at baseline and after each intervention using a random-zero sphygmomanometer. Significant linkage signals (logarithm of odds [LOD] score, >3) for BP responses to potassium were detected at chromosomal regions 3q24-q26.1, 3q28, and 11q22.3-q24.3. Maximum multipoint LOD scores of 3.09 at 3q25.2 and 3.41 at 11q23.3 were observed for absolute diastolic BP (DBP) and mean arterial pressure (MAP) responses, respectively. Linkage peaks of 3.56 at 3q25.1 and 3.01 at 11q23.3 for percent DBP response and 3.22 at 3q25.2, 3.01 at 3q28, and 4.48 at 11q23.3 for percent MAP response also were identified. Angiotensin II receptor, type 1 (AGTR1), single-nucleotide polymorphism rs16860760 in the 3q24-q26.1 region was significantly associated with absolute and percent systolic BP responses to potassium (P=0.0008 and P=0.0006, respectively). Absolute (95% CI) systolic BP responses for genotypes C/C, C/T, and T/T were -3.71 (-4.02 to -3.40), -2.62 (-3.38 to -1.85), and 1.03 (-3.73 to 5.79) mm Hg, respectively, and percent responses (95% CI) were -3.07 (-3.33 to -2.80), -2.07 (-2.74 to -1.41), and 0.90 (-3.20 to 4.99), respectively. Similar trends were observed for DBP and MAP responses. Genetic regions on chromosomes 3 and 11 may harbor important susceptibility loci for potassium sensitivity. Furthermore, the AGTR1 gene was a significant predictor of BP responses to potassium intake.

  1. Laser ablation-laser induced breakdown spectroscopy for the measurement of total elemental concentration in soils.

    PubMed

    Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro

    2013-04-10

    The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.

  2. Identification and Characterization of a Novel Association between Dietary Potassium and Risk of Crohn's Disease and Ulcerative Colitis.

    PubMed

    Khalili, Hamed; Malik, Sakshi; Ananthakrishnan, Ashwin N; Garber, John J; Higuchi, Leslie M; Joshi, Amit; Peloquin, Joanna; Richter, James M; Stewart, Kathleen O; Curhan, Gary C; Awasthi, Amit; Yajnik, Vijay; Chan, Andrew T

    2016-01-01

    Recent animal studies have identified that dietary salt intake may modify the risk and progression of autoimmune disorders through modulation of the IL-23/T H 17 pathway, which is critical in the pathogenesis of ulcerative colitis (UC) and Crohn's disease (CD). We conducted a prospective study of U.S. women enrolled in the Nurses' Health Study (NHS) and NHSII who provided detailed and validated information on diet and lifestyle beginning in 1984 in NHS and 1991 in NHSII. We confirmed incident cases of UC and CD reported through 2010 in NHS and 2011 in NHSII. We used Cox proportional hazards models to calculate hazard ratios and 95% confidence intervals. In a case-control study nested within these cohorts, we evaluated the interaction between single nucleotide polymorphisms (SNPs) in genes involved in T H 17 pathway and dietary potassium on risk of CD and UC. In a cohort of healthy volunteers, we also assessed the effect of supplemental potassium on development of naïve and memory T cells, differentiated with TGFβ1 or T H 17 conditions. Among a total of 194,711 women over a follow-up of 3,220,247 person-years, we documented 273 cases of CD and 335 cases of UC. Dietary intake of potassium ( P trend  = 0.005) but not sodium ( P trend  = 0.44) was inversely associated with risk of CD. Although, both dietary potassium and sodium were not significantly associated with risk of UC, there was a suggestion of an inverse association with dietary potassium ( P trend  = 0.08). The association of potassium with risk of CD and UC appeared to be modified by loci involved in the T H 17 pathway that have previously been associated with susceptibility to CD, particularly SNP rs7657746 ( IL21 ) ( P interaction  = 0.004 and 0.01, respectively). In vitro , potassium enhanced the expression of Foxp3 in both naïve and memory CD4+ T cells via activating Smad2/3 and inhibiting Smad7 in T H 17 cells. Dietary potassium is inversely associated with risk of CD with both in vitro and gene-environment interaction data suggesting a potential role for potassium in regulating immune tolerance through its effect on Tregs and T H 17 pathway.

  3. Potassium vanadate K0.23V2O5 as anode materials for lithium-ion and potassium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Cailing; Luo, Shaohua; Huang, Hongbo; Wang, Zhiyuan; Wang, Qing; Zhang, Yahui; Liu, Yanguo; Zhai, Yuchun; Wang, Zhaowen

    2018-06-01

    A layered potassium vanadate K0.23V2O5 has been successfully prepared by the hydrothermal method and evaluated as an anode material for lithium-ion and potassium-ion batteries. High structural stability is demonstrated by the ex situ X-ray diffraction (XRD) and ex situ scanning electron microscopy (SEM). When used as an anode material for lithium-ion batteries, the K0.23V2O5 exhibits a reversible capacity of 480.4 mAh g-1 at 20 mA g-1 after 100 cycles and 439.7 mAh g-1 at 200 mA g-1 after 300 cycles as well as good cycling stability. Even at a high current density of 800 mA g-1, a high reversible capacity of 202.5 mAh g-1 can be retained, indicating excellent rate performance. Whereas in potassium-ion batteries, it retains a capacity of 121.6 mAh g-1 after 150 cycles at 20 mA g-1 and 97.6 mAh g-1 at 100 mA g-1 after 100 cycles. Such superior electrochemical performance of K0.23V2O5 can be ascribed to the special flower-like morphology and structure. Overall, the results highlight the great potential of K0.23V2O5 as an anode material for both lithium-ion and potassium-ion batteries.

  4. Ethanol Effects on Dopaminergic Ventral Tegmental Area Neurons During Block of Ih: Involvement of Barium-Sensitive Potassium Currents

    PubMed Central

    McDaid, John; McElvain, Maureen A.; Brodie, Mark S.

    2008-01-01

    The dopaminergic neurons of the ventral tegmental area (DA VTA neurons) are important for the rewarding and reinforcing properties of drugs of abuse, including ethanol. Ethanol increases the firing frequency of DA VTA neurons from rats and mice. Because of a recent report on block of ethanol excitation in mouse DA VTA neurons with ZD7288, a selective blocker of the hyperpolarization-activated cationic current Ih, we examined the effect of ZD7288 on ethanol excitation in DA VTA neurons from C57Bl/6J and DBA/2J mice and Fisher 344 rats. Ethanol (80 mM) caused only increases in firing rate in mouse DA VTA neurons in the absence of ZD7288, but in the presence of ZD7288 (30 μM), ethanol produced a more transient excitation followed by a decrease of firing. This same biphasic phenomenon was observed in DA VTA neurons from rats in the presence of ZD7288 only at very high ethanol concentrations (160–240 mM) but not at lower pharmacologically relevant concentrations. The longer latency ethanol-induced inhibition was not observed in DA VTA neurons from mice or rats in the presence of barium (100 μM), which blocks G protein–linked potassium channels (GIRKs) and other inwardly rectifying potassium channels. Ethanol may have a direct effect to increase an inhibitory potassium conductance, but this effect of ethanol can only decrease the firing rate if Ih is blocked. PMID:18614756

  5. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3.

    PubMed

    Wright, Paul D; Veale, Emma L; McCoull, David; Tickle, David C; Large, Jonathan M; Ococks, Emma; Gothard, Gemma; Kettleborough, Catherine; Mathie, Alistair; Jerman, Jeffrey

    2017-11-04

    Two-pore domain potassium channels (K2Ps) are characterized by their four transmembrane domain and two-pore topology. They carry background (or leak) potassium current in a variety of cell types. Despite a number of important roles there is currently a lack of pharmacological tools with which to further probe K2P function. We have developed a cell-based thallium flux assay, using baculovirus delivered TASK3 (TWIK-related acid-sensitive K + channel 3, KCNK9, K2P9.1) with the aim of identifying novel, selective TASK3 activators. After screening a library of 1000 compounds, including drug-like and FDA approved molecules, we identified Terbinafine as an activator of TASK3. In a thallium flux assay a pEC50 of 6.2 ( ±0.12) was observed. When Terbinafine was screened against TASK2, TREK2, THIK1, TWIK1 and TRESK no activation was observed in thallium flux assays. Several analogues of Terbinafine were also purchased and structure activity relationships examined. To confirm Terbinafine's activation of TASK3 whole cell patch clamp electrophysiology was carried out and clear potentiation observed in both the wild type channel and the pathophysiological, Birk-Barel syndrome associated, G236R TASK3 mutant. No activity at TASK1 was observed in electrophysiology studies. In conclusion, we have identified the first selective activator of the two-pore domain potassium channel TASK3. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line.

    PubMed Central

    Cartwright, C A; McRoberts, J A; Mandel, K G; Dharmsathaphorn, K

    1985-01-01

    Vasoactive intestinal polypeptide (VIP) and the calcium ionophore A23187 caused dose-dependent changes in the potential difference and the short circuit current (Isc) across confluent T84 cell monolayers mounted in modified Ussing chambers. Both VIP and A23187 stimulated net chloride secretion without altering sodium transport. Net chloride secretion accounted for the increase in Isc. When A23187 was tested in combination with VIP, net chloride secretion was significantly greater than predicted from the calculated sum of their individual responses indicating a synergistic effect. VIP increased cellular cyclic AMP (cAMP) production in a dose-dependent manner, whereas A23187 had no effect on cellular cAMP. We then determined whether VIP and A23187 activated different transport pathways. Earlier studies suggest that VIP activates a basolaterally localized, barium-sensitive potassium channel as well as an apically localized chloride conductance pathway. In this study, stimulation of basolateral membrane potassium efflux by A23187 was documented by preloading the monolayers with 86Rb+. Stimulation of potassium efflux by A23187 was additive to the VIP-stimulated potassium efflux. By itself, 0.3 microM A23187 did not alter transepithelial chloride permeability, and its stimulation of basolateral membrane potassium efflux caused only a relatively small amount of chloride secretion. However, in the presence of an increased transepithelial chloride permeability induced by VIP, the effectiveness of A23187 on chloride secretion was greatly augmented. Our studies suggest that cAMP and calcium each activate basolateral potassium channels, but cAMP also activates an apically localized chloride channel. Synergism results from cooperative interaction of potassium channels and the chloride channel. PMID:2997291

  7. The Effect of Salt Intake and Potassium Supplementation on Serum Gastrin Levels in Chinese Adults: A Randomized Trial

    PubMed Central

    Wang, Yuan-Yuan; He, Wen-Wen; Liu, Yan-Chun; Lin, Yi-Feng; Hong, Lu-Fei

    2017-01-01

    Excess dietary salt is strongly correlated with cardiovascular disease, morbidity, and mortality. Conversely, potassium likely elicits favorable effects against cardiovascular disorders. Gastrin, which is produced by the G-cells of the stomach and duodenum, can increase renal sodium excretion and regulate blood pressure by acting on the cholecystokinin B receptor. The aim of our study was to assess the effects of altered salt and potassium supplementation on serum gastrin levels in humans. A total of 44 subjects (38–65 years old) were selected from a rural community in northern China. All subjects were sequentially maintained on a relatively low-salt diet for 7 days (3.0 g/day of NaCl), a high-salt diet for 7 days (18.0 g/day of NaCl), and then a high-salt diet supplemented with potassium for another 7 days (18.0 g/day of NaCl + 4.5 g/day of KCl). The high-salt intake significantly increased serum gastrin levels (15.3 ± 0.3 vs. 17.6 ± 0.3 pmol/L). This phenomenon was alleviated through potassium supplementation (17.6 ± 0.3 vs. 16.5 ± 0.4 pmol/L). Further analyses revealed that serum gastrin was positively correlated with 24 h urinary sodium excretion (r = 0.476, p < 0.001). By contrast, gastrin level was negatively correlated with blood pressure in all dietary interventions (r = −0.188, p = 0.031). The present study indicated that variations in dietary salt and potassium supplementation affected the serum gastrin concentrations in the Chinese subjects. PMID:28420122

  8. Dietary sodium, sodium-to-potassium ratio, and risk of stroke: A systematic review and nonlinear dose-response meta-analysis.

    PubMed

    Jayedi, Ahmad; Ghomashi, Farnoosh; Zargar, Mahdieh Sadat; Shab-Bidar, Sakineh

    2018-06-01

    The association of high sodium intake with risk of stroke has been accepted. But considering the proposed J/U-shaped association between sodium intake and risk of all-cause mortality, the shape of the dose-response relationship has not been determined yet. This study aimed to test the dose-response association of dietary sodium and sodium-to-potassium ratio with risk of stroke in adults aged 18 years or older. We performed a systematic search using PubMed and Scopus, from database inception up to October 2017. Prospective and retrospective observational studies reporting risk estimates of stroke for three or more quantitative categories of dietary sodium or sodium-to-potassium ratio were included. Studies that reported results as continuous were also included. Two independent authors extracted the information and assessed the quality of included studies. Pooled relative risk (RR) was calculated using a random-effects model. Publication bias was tested. Sensitivity and subgroup analyses were done. Of initial 20,412 studies identified, 14 prospective cohort studies, one case-cohort study, and one case-control study (total n = 261,732) with 10,150 cases of stroke were included. The Pooled RRs of stroke were 1.06 (95%CI: 1.02, 1.10; I 2  = 60%, n = 14 studies) for a 1 gr/d increment in dietary sodium intake, and 1.22 (95%CI: 1.04, 1.41; I 2  = 60%, n = 5 studies) for a one-unit increment in dietary sodium-to-potassium ratio (mmol/mmol). The risk of stroke increased linearly with increasing dietary sodium intake, and also along with the increase in dietary sodium-to-potassium ratio. No evidence of a J/U-shaped association was found in the analyses of total stroke, stroke incidence, and stroke mortality. High sodium intake was associated with a somewhat worse prognosis among Asian countries as compared to westerns. Higher sodium intake and higher dietary sodium-to-potassium ratio were associated with a higher risk of stroke. Reducing dietary sodium-to-potassium ratio can be considered as a supplementary approach in parallel with the decrease in sodium intake in order to decrease stroke risk. The interpretation of the results is limited by observational nature of studies examined. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Some blood chemistry values for five Chesapeake Bay area fishes

    USGS Publications Warehouse

    Hunn, J.B.; Robinson, P.F.

    1966-01-01

    Blood samples from gizzard shad,largemouth bass, white perch, pumpkinseed, and toadfish were analyzed for hemoglobin, total plasma protein, total plasma cholesterol, and ion concentrations of plasma sodium, potassium, and chloride. The hemoglobin concentration and total plasma cholesterol found in a given species seem to have positive correlation with the customary activity level of that species. The plasma ionic concentrations in general agree with those found by other authors.

  10. Enhanced Sensitivity to Hyperpolarizing Inhibition in Mesoaccumbal Relative to Nigrostriatal Dopamine Neuron Subpopulations

    PubMed Central

    2017-01-01

    Midbrain dopamine neurons recorded in vivo pause their firing in response to reward omission and aversive stimuli. While the initiation of pauses typically involves synaptic or modulatory input, intrinsic membrane properties may also enhance or limit hyperpolarization, raising the question of how intrinsic conductances shape pauses in dopamine neurons. Using retrograde labeling and electrophysiological techniques combined with computational modeling, we examined the intrinsic conductances that shape pauses evoked by current injections and synaptic stimulation in subpopulations of dopamine neurons grouped according to their axonal projections to the nucleus accumbens or dorsal striatum in mice. Testing across a range of conditions and pulse durations, we found that mesoaccumbal and nigrostriatal neurons differ substantially in rebound properties with mesoaccumbal neurons displaying significantly longer delays to spiking following hyperpolarization. The underlying mechanism involves an inactivating potassium (IA) current with decay time constants of up to 225 ms, and small-amplitude hyperpolarization-activated currents (IH), characteristics that were most often observed in mesoaccumbal neurons. Pharmacological block of IA completely abolished rebound delays and, importantly, shortened synaptically evoked inhibitory pauses, thereby demonstrating the involvement of A-type potassium channels in prolonging pauses evoked by GABAergic inhibition. Therefore, these results show that mesoaccumbal and nigrostriatal neurons display differential responses to hyperpolarizing inhibitory stimuli that favors a higher sensitivity to inhibition in mesoaccumbal neurons. These findings may explain, in part, observations from in vivo experiments that ventral tegmental area neurons tend to exhibit longer aversive pauses relative to SNc neurons. SIGNIFICANCE STATEMENT Our study examines rebound, postburst, and synaptically evoked inhibitory pauses in subpopulations of midbrain dopamine neurons. We show that pauses in dopamine neuron firing, evoked by either stimulation of GABAergic inputs or hyperpolarizing current injections, are enhanced by a subclass of potassium conductances that are recruited at voltages below spike threshold. Importantly, A-type potassium currents recorded in mesoaccumbal neurons displayed substantially slower inactivation kinetics, which, combined with weaker expression of hyperpolarization-activated currents, lengthened hyperpolarization-induced delays in spiking relative to nigrostriatal neurons. These results suggest that input integration differs among dopamine neurons favoring higher sensitivity to inhibition in mesoaccumbal neurons and may partially explain in vivo observations that ventral tegmental area neurons exhibit longer aversive pauses relative to SNc neurons. PMID:28219982

  11. Determination of mixing state and sources of wintertime organic aerosol in Paris using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Wiedensohler, A.; Jeong, C.; McGuire, M.; Evans, G. J.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J.

    2012-12-01

    The size-resolved chemical composition of single particles at an urban background site in Paris, France, was determined using an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) as part of the MEGAPOLI winter campaign in January/February 2010. A variety of mixing states were identified for organic aerosol by mass spectral clustering and apportioned to both fossil fuel and biomass burning sources. The ATOFMS data were scaled in order to produce mass concentration estimates for each organic aerosol particle type identified. Potassium-containing organic aerosol internally mixed with nitrate, associated with local wood burning, was observed to dominate during periods characterised by marine air masses. Sulfate-rich potassium-containing organic aerosol, associated with transboundary transport of biomass burning emissions, dominated during periods influenced by continental air masses. The scaled total mass concentration for potassium-containing particles was well correlated (R2 = 0.79) with concurrent measurements of potassium mass concentration measured with a Particle-Into-Liquid-Sampler (PILS). Another organic particle type, also containing potassium but rich in trimethylamine and sulfate, was detected exclusively during continental air mass events. These particles are postulated to have accumulated gas phase trimethylamine through heterogeneous reaction before arriving at the sampling site. Potential source regions for transboundary organic aerosols have been investigated using the potential source contribution function (PSCF). Comparison with aerosol mass spectrometer (AMS) measurements will also be discussed.

  12. Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water

    USDA-ARS?s Scientific Manuscript database

    Irrigation with high salinity water influences plant growth, production of photosynthetic pigments and total phenols, leading to reduction in crop yield and quality. Foliar application of macro- and/or micro-nutrients can, to some extent, mitigate negative effects of high salinity irrigation water o...

  13. Experiment K-317: Bone resorption in rats during spaceflight

    NASA Technical Reports Server (NTRS)

    Cann, C. E.; Adachi, R. R.

    1981-01-01

    Direct measurement of bone resorption in flight and synchronous control rats is described. Continuous tracer administration techniques were used, with replacement of dietary calcium with isotopically enriched Ca40 and measurement by neutron activation analysis of the Ca48 released by the skeleton. There is no large change in bone resorption in rats. Based on the time course of changes, the measured 20-25% decrease in resorption is probably secondary to a decrease in total body calcium turnover. The excretion of sodium, potassium and zinc all increase during flight, sodium and potassium to a level 4-5 times control values.

  14. A Quantitative Tunneling/Desorption Model for the Exchange Current at the Porous Electrode/Beta - Alumina/Alkali Metal Gas Three Phase Zone at 700-1300K

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Ryan, M. A.; Saipetch, C.; LeDuc, H. G.

    1996-01-01

    The exchange current observed at porous metal electrodes on sodium or potassium beta -alumina solid electrolytes in alkali metal vapor is quantitatively modeled with a multi-step process with good agreement with experimental results.

  15. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

    PubMed

    Mafé, Salvador; Pellicer, Julio

    2005-02-01

    We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.

  16. Diadenosine pentaphosphate affects electrical activity in guinea pig atrium via activation of potassium acetylcholine-dependent inward rectifier.

    PubMed

    Abramochkin, Denis V; Karimova, Viktoria M; Filatova, Tatiana S; Kamkin, Andre

    2017-07-01

    Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10 -4  M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10 -7  M) or selective GIRK channels blocker tertiapin (10 -6  M) completely abolished all Ap5A effects, while P2 blocker PPADS (10 -4  M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh ). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.

  17. Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes.

    PubMed

    Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2017-03-04

    Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current I K1 , which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential I K1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that I K1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.

  18. Modulation of A-type potassium channels by a family of calcium sensors.

    PubMed

    An, W F; Bowlby, M R; Betty, M; Cao, J; Ling, H P; Mendoza, G; Hinson, J W; Mattsson, K I; Strassle, B W; Trimmer, J S; Rhodes, K J

    2000-02-03

    In the brain and heart, rapidly inactivating (A-type) voltage-gated potassium (Kv) currents operate at subthreshold membrane potentials to control the excitability of neurons and cardiac myocytes. Although pore-forming alpha-subunits of the Kv4, or Shal-related, channel family form A-type currents in heterologous cells, these differ significantly from native A-type currents. Here we describe three Kv channel-interacting proteins (KChIPs) that bind to the cytoplasmic amino termini of Kv4 alpha-subunits. We find that expression of KChIP and Kv4 together reconstitutes several features of native A-type currents by modulating the density, inactivation kinetics and rate of recovery from inactivation of Kv4 channels in heterologous cells. All three KChIPs co-localize and co-immunoprecipitate with brain Kv4 alpha-subunits, and are thus integral components of native Kv4 channel complexes. The KChIPs have four EF-hand-like domains and bind calcium ions. As the activity and density of neuronal A-type currents tightly control responses to excitatory synaptic inputs, these KChIPs may regulate A-type currents, and hence neuronal excitability, in response to changes in intracellular calcium.

  19. Reconstruction of the action potential of ventricular myocardial fibres

    PubMed Central

    Beeler, G. W.; Reuter, H.

    1977-01-01

    1. A mathematical model of membrane action potentials of mammalian ventricular myocardial fibres is described. The reconstruction model is based as closely as possible on ionic currents which have been measured by the voltage-clamp method. 2. Four individual components of ionic current were formulated mathematically in terms of Hodgkin—Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, iNa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, ix1, primarily carried by potassium ions, are further elements of the model. 3. The iNa is primarily responsible for the rapid upstroke of the action potential, while the other current components determine the configuration of the plateau of the action potential and the re-polarization phase. The relative importance of inactivation of is and of activation of ix1 for termination of the plateau is evaluated by the model. 4. Experimental phenomena like slow recovery of the sodium system from inactivation, frequency dependence of the action potential duration, all-or-nothing re-polarization, membrane oscillations are adequately described by the model. 5. Possible inadequacies and shortcomings of the model are discussed. PMID:874889

  20. Evaluation of the impact of a total automation system in a large core laboratory on turnaround time.

    PubMed

    Lou, Amy H; Elnenaei, Manal O; Sadek, Irene; Thompson, Shauna; Crocker, Bryan D; Nassar, Bassam

    2016-11-01

    Growing financial and workload pressures on laboratories coupled with user demands for faster turnaround time (TAT) has steered the implementation of total laboratory automation (TLA). The current study evaluates the impact of a complex TLA on core laboratory efficiency through the analysis of the In-lab to Report TAT (IR-TAT) for five representative tests based on the different requested priorities. Mean, median and outlier percentages (OP) for IR-TAT were determined following TLA implementation and where possible, compared to the pre-TLA era. The shortest mean IR-TAT via the priority lanes of the TLA was 22min for Complete Blood Count (CBC), followed by 34min, 39min and 40min for Prothrombin time (PT), urea and potassium testing respectively. The mean IR-TAT for STAT CBC loaded directly on to the analyzers was 5min shorter than that processed via the TLA. The mean IR-TATs for both STAT potassium and urea via offline centrifugation were comparable to that processed by the TLA. The longest mean IR-TAT via regular lanes of the TLA was 62min for Thyroid-Stimulating Hormone (TSH) while the shortest was 17min for CBC. All parameters for IR-TAT for CBC and PT tests decreased significantly post- TLA across all requested priorities in particular the outlier percentage (OP) at 30 and 60min. TLA helps to efficiently manage substantial volumes of samples across all requested priorities. Manual processing for small STAT volumes, at both the initial centrifugation stage and front loading directly on to analyzers, is however likely to yield the shortest IR-TAT. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Exploring the hidden interior of the Earth with directional neutrino measurements.

    PubMed

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-07-10

    Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth's radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.

  2. Genetic variants in adiponectin and blood pressure responses to dietary sodium or potassium interventions: a family-based association study

    PubMed Central

    Chu, C; Wang, Y; Ren, K-y; Yan, D-y; Guo, T-s; Zheng, W-l; Yuan, Z-y; Mu, J-j

    2016-01-01

    Previous studies have shown that genetic factors might have an important role in blood pressure (BP) responses to dietary salt or potassium intake. The aim of this study was to assess the association of common genetic variants of the adiponectin gene with BP responses to controlled dietary sodium or potassium interventions. Subjects (n=334) from 124 families in rural areas of Northern China were recruited. After a 3-day baseline observation, participants sequentially maintained a 7-day low-sodium diet (NaCl, 3 g per day; or sodium, 51.3 mmol per day), followed by a 7-day high-sodium diet (NaCl, 18 g per day; or sodium, 307.8 mmol per day) and a 7-day high-sodium plus potassium supplementation intervention (KCl, 4.5 g per day; or potassium, 60 mmol per day). A total of seven single nucleotide polymorphisms (SNPs) in the adiponectin gene were selected as the study sites. After adjustment for multiple testing, the adiponectin SNP rs16861205 was significantly associated with the diastolic BP (DBP) response to low-salt intervention, and the DBP and mean arterial pressure (MAP) responses to high-salt intervention (P=0.028, 0.023 and 0.027, respectively). SNP rs822394 was associated with the DBP and MAP responses to low-salt intervention and the DBP response to high-salt intervention (P=0.023, 0.030 and 0.033 respectively). Meanwhile, significant association also existed between SNP rs16861194 and the systolic BP response to potassium supplementation intervention (P=0.026). In addition, SNP rs822394 was significantly associated with basal DBP after adjustment for multiple testing (P=0.033). Our study indicated that the genetic polymorphisms in the adiponectin gene are significantly associated with BP responses to dietary sodium and potassium intake. PMID:27011258

  3. Genetic variants in adiponectin and blood pressure responses to dietary sodium or potassium interventions: a family-based association study.

    PubMed

    Chu, C; Wang, Y; Ren, K-Y; Yan, D-Y; Guo, T-S; Zheng, W-L; Yuan, Z-Y; Mu, J-J

    2016-09-01

    Previous studies have shown that genetic factors might have an important role in blood pressure (BP) responses to dietary salt or potassium intake. The aim of this study was to assess the association of common genetic variants of the adiponectin gene with BP responses to controlled dietary sodium or potassium interventions. Subjects (n=334) from 124 families in rural areas of Northern China were recruited. After a 3-day baseline observation, participants sequentially maintained a 7-day low-sodium diet (NaCl, 3 g per day; or sodium, 51.3 mmol per day), followed by a 7-day high-sodium diet (NaCl, 18 g per day; or sodium, 307.8 mmol per day) and a 7-day high-sodium plus potassium supplementation intervention (KCl, 4.5 g per day; or potassium, 60 mmol per day). A total of seven single nucleotide polymorphisms (SNPs) in the adiponectin gene were selected as the study sites. After adjustment for multiple testing, the adiponectin SNP rs16861205 was significantly associated with the diastolic BP (DBP) response to low-salt intervention, and the DBP and mean arterial pressure (MAP) responses to high-salt intervention (P=0.028, 0.023 and 0.027, respectively). SNP rs822394 was associated with the DBP and MAP responses to low-salt intervention and the DBP response to high-salt intervention (P=0.023, 0.030 and 0.033 respectively). Meanwhile, significant association also existed between SNP rs16861194 and the systolic BP response to potassium supplementation intervention (P=0.026). In addition, SNP rs822394 was significantly associated with basal DBP after adjustment for multiple testing (P=0.033). Our study indicated that the genetic polymorphisms in the adiponectin gene are significantly associated with BP responses to dietary sodium and potassium intake.

  4. Oral potassium supplementation for management of essential hypertension: A meta-analysis of randomized controlled trials

    PubMed Central

    Zeraati, Fatemeh; Soltanian, Ali Reza; Sheikh, Vida; Hooshmand, Elham; Maleki, Akram

    2017-01-01

    Importance Increased dietary potassium intake is thought to be associated with low blood pressure (BP). Whether potassium supplementation may be used as an antihypertensive agent is a question that should be answered. Objective To assess the effect of oral potassium supplementation on blood pressure in patients with primary hypertension. Search methods We searched Medline, Web of Science, Scopus, Cochrane Central Register of Controlled Trials until October 2016. We also screened reference lists of articles and previous reviews. We applied no language restrictions. Selection criteria We included randomized placebo-controlled clinical trials addressing the effect of potassium supplementation on primary hypertension for a minimum of 4 weeks. Data collection and analysis We extracted data on systolic and diastolic BP (SBP and DBP) at the final follow-up. We explored the heterogeneity across studies using Cochran's test and I2 statistic and assessed the probability of publication bias using Begg's and Egger's tests. We reported the mean difference (MD) of SBP and DBP in a random-effects model. Results We found a total of 9059 articles and included 23 trials with 1213 participants. Compared to placebo, potassium supplementation resulted in modest but significant reductions in both SBP (MD -4.25 mmHg; 95% CI: -5.96 to -2.53; I2 = 41%) and DBP (MD -2.53 mmHg; 95% CI: -4.05 to -1.02; I2 = 65%). According to the change-score analysis, based on 8 out of 23 trials, compared to baseline, the mean changes in SBP (MD -8.89 mmHg; 95% CI: -13.67 to -4.11) and DBP (MD -6.42 mmHg; 95% CI: -10.99 to -1.84) was significantly higher in the intervention group than the control group. Conclusions Our findings indicated that potassium supplementation is a safe medication with no important adverse effects that has a modest but significant impact BP and may be recommended as an adjuvant antihypertensive agent for patients with essential hypertension. PMID:28419159

  5. Urinary Potassium Excretion and Renal and Cardiovascular Complications in Patients with Type 2 Diabetes and Normal Renal Function

    PubMed Central

    Haneda, Masakazu; Koya, Daisuke; Kondo, Keiko; Tanaka, Sachiko; Arima, Hisatomi; Kume, Shinji; Nakazawa, Jun; Chin-Kanasaki, Masami; Ugi, Satoshi; Kawai, Hiromichi; Araki, Hisazumi; Uzu, Takashi; Maegawa, Hiroshi

    2015-01-01

    Background and objectives We investigated the association of urinary potassium and sodium excretion with the incidence of renal failure and cardiovascular disease in patients with type 2 diabetes. Design, setting, participants, & measurements A total of 623 Japanese type 2 diabetic patients with eGFR≥60 ml/min per 1.73 m2 were enrolled in this observational follow-up study between 1996 and 2003 and followed-up until 2013. At baseline, a 24-hour urine sample was collected to estimate urinary potassium and sodium excretion. The primary end point was renal and cardiovascular events (RRT, myocardial infarction, angina pectoris, stroke, and peripheral vascular disease). The secondary renal end points were the incidence of a 50% decline in eGFR, progression to CKD stage 4 (eGFR<30 ml/min per 1.73 m2), and the annual decline rate in eGFR. Results During the 11-year median follow-up period, 134 primary end points occurred. Higher urinary potassium excretion was associated with lower risk of the primary end point, whereas urinary sodium excretion was not. The adjusted hazard ratios for the primary end point in Cox proportional hazards analysis were 0.56 (95% confidence interval [95% CI], 0.33 to 0.95) in the third quartile of urinary potassium excretion (2.33–2.90 g/d) and 0.33 (95% CI, 0.18 to 0.62) in the fourth quartile (>2.90 g/d) compared with the lowest quartile (<1.72 g/d). Similar associations were observed for the secondary renal end points. The annual decline rate in eGFR in the fourth quartile of urinary potassium excretion (–1.3 ml/min per 1.73 m2/y; 95% CI, –1.5 to –1.0) was significantly slower than those in the first quartile (–2.2; 95% CI, –2.4 to –1.8). Conclusions Higher urinary potassium excretion was associated with the slower decline of renal function and the lower incidence of cardiovascular complications in type 2 diabetic patients with normal renal function. Interventional trials are necessary to determine whether increasing dietary potassium is beneficial. PMID:26563378

  6. Adenosine triphosphate-sensitive potassium channel blocking agent ameliorates, but the opening agent aggravates, ischemia/reperfusion-induced injury. Heart function studies in nonfibrillating isolated hearts.

    PubMed

    Tosaki, A; Hellegouarch, A

    1994-02-01

    This study was conducted to elucidate the role of the adenosine triphosphate (ATP)-sensitive potassium channel blocking agent glibenclamide and the opener cromakalim in the mechanism of reperfusion-induced injury. Recently, ATP-sensitive potassium channel openers have been proposed to reduce ischemia/reperfusion-induced injury, including arrhythmias and heart function. Thus, one might hypothesize that pharmacologic agents that enhance the loss of potassium ions in the myocardium through ATP-sensitive potassium channels would be arrhythmogenic, and agents that interfere with tissue potassium ion loss would be antiarrhythmic. Isolated "working" guinea pig hearts and phosphorus-31 nuclear magnetic resonance spectroscopy were used to study the recovery of myocardial function and phosphorus compounds after 30, 40 and 50 min of normothermic global ischemia followed by reperfusion in untreated control and glibenclamide- and cromakalim-treated groups. After 30 min of ischemia, 1, 3, 10 and 30 mumol/liter of glibenclamide dose-dependently reduced the incidence of reperfusion-induced ventricular fibrillation (total) from its control value of 92% to 75%, 33% (p < 0.05), 33% (p < 0.05) and 42% (p < 0.05), respectively. The incidence of ventricular tachycardia followed the same pattern. A reduction of arrhythmias was also observed after 40 and 50 min of ischemia followed by reperfusion in the glibenclamide-treated hearts. Cromakalim, at the same concentrations, did not reduce the incidence of reperfusion-induced arrhythmias. During reperfusion, glibenclamide (3 and 10 mumol/liter) improved the recovery of coronary blood flow, aortic flow, myocardial contractility and tissue ATP and creatine phosphate content, but cromakalim failed to ameliorate the recovery of postischemic myocardium compared with that in the drug-free control hearts. The preservation of myocardial potassium ions and phosphorus compounds by glibenclamide can improve the recovery of postischemic function, but the use of ATP-sensitive potassium channel openers as antihypertensive or antiarrhythmic agents may be of particular concern in those postinfarction patients who are known to be at high risk for sudden cardiac death.

  7. Severe hyperkalemia is rescued by low-potassium diet in renal βENaC-deficient mice.

    PubMed

    Boscardin, Emilie; Perrier, Romain; Sergi, Chloé; Maillard, Marc; Loffing, Johannes; Loffing-Cueni, Dominique; Koesters, Robert; Rossier, Bernard Claude; Hummler, Edith

    2017-10-01

    In adulthood, an induced nephron-specific deficiency of αENaC (Scnn1a) resulted in pseudohypoaldosteronism type 1 (PHA-1) with sodium loss, hyperkalemia, and metabolic acidosis that is rescued through high-sodium/low-potassium (HNa + /LK + ) diet. In the present study, we addressed whether renal βENaC expression is required for sodium and potassium balance or can be compensated by remaining (α and γ) ENaC subunits using adult nephron-specific knockout (Scnn1b Pax8/LC1 ) mice. Upon induction, these mice present a severe PHA-1 phenotype with weight loss, hyperkalemia, and dehydration, but unlike the Scnn1a Pax8/LC1 mice without persistent salt wasting. This is followed by a marked downregulation of STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and Na + /Cl - co-transporter (NCC) protein expression and activity. Most of the experimental Scnn1b Pax8/LC1 mice survived with a HNa + /LK + diet that partly normalized NCC phosphorylation, but not total NCC expression. Since salt loss was minor, we applied a standard-sodium/LK + diet that efficiently rescued these mice resulting in normokalemia and normalization of NCC phosphorylation, but not total NCC expression. A further switch to LNa + /standard-K + diet induced again a severe PHA-1-like phenotype, but with only transient salt wasting indicating that low-K + intake is critical to decrease hyperkalemia in a NCC-dependent manner. In conclusion, while the βENaC subunit plays only a minor role in sodium balance, severe hyperkalemia results in downregulation of NCC expression and activity. Our data demonstrate the importance to primarily correct the hyperkalemia with a low-potassium diet that normalizes NCC activity.

  8. Cochlear potential difference between endolymph fluid and the hair cell's interior: a retold interpretation based on the Goldman equation.

    PubMed

    Kurbel, Sven; Borzan, Vladimir; Golem, Hilda; Dinjar, Kristijan

    2017-02-01

    Reported cochlear potential values of near 150 mV are often attributed to endolymph itself, although membrane potentials result from ion fluxes across the adjacent semipermeable membranes due to concentration gradients. Since any two fluids separated by a semipermeable membrane develop potential due to differences in solute concentrations, a proposed interpretation here is that positive potential emanates from the Reissner membrane due to small influx of sodium from perilymph to endolymph. Basolateral hair cell membranes leak potassium into the interstitial fluid and this negative potential inside hair cells further augments the electric gradient of cochlear potential. Taken together as a sum, these two potentials are near the reported values of cochlear potential. This is based on reported data for cochlear fluids used for the calculation of Nernst and Goldman potentials. The reported positive potential of Reissner membrane can be explained almost entirely by the traffic of Na+ that enters endolymph through this membrane. At the apical membrane of hair cells, acoustic stimulation modulates stereocillia permeability to potassium. Potassium concentration gradients on the apical membrane are low (the calculated Nernst value is <+3 mV), suggesting that the potassium current is not caused by the local potassium concentration gradient, but an electric field between the positive sodium generated potential on the Reissner membrane and negative inside hair cells. Potassium is forced by this overall electric field to enter hair cells when stereocilia are permeable due to mechanical bending. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  9. Potassium Homeostasis in Health and Disease: A Scientific Workshop Cosponsored by the National Kidney Foundation and the American Society of Hypertension.

    PubMed

    Kovesdy, Csaba P; Appel, Lawrence J; Grams, Morgan E; Gutekunst, Lisa; McCullough, Peter A; Palmer, Biff F; Pitt, Bertram; Sica, Dominic A; Townsend, Raymond R

    2017-12-01

    While much emphasis, and some controversy, centers on recommendations for sodium intake, there has been considerably less interest in recommendations for dietary potassium intake, in both the general population and patients with medical conditions, particularly acute and chronic kidney disease. Physiology literature and cohort studies have noted that the relative balance in sodium and potassium intakes is an important determinant of many of the sodium-related outcomes. A noteworthy characteristic of potassium in clinical medicine is the extreme concern shared by many practitioners when confronted by a patient with hyperkalemia. Fear of this often asymptomatic finding limits enthusiasm for recommending potassium intake and often limits the use of renin-angiotensin-aldosterone system blockers in patients with heart failure and chronic kidney diseases. New agents for managing hyperkalemia may alter the long-term management of heart failure and the hypertension, proteinuria, and further function loss in chronic kidney diseases. In this jointly sponsored effort between the American Society of Hypertension and the National Kidney Foundation, 3 panels of researchers and practitioners from various disciplines discussed and summarized current understanding of the role of potassium in health and disease, focusing on cardiovascular, nutritional, and kidney considerations associated with both hypo- and hyperkalemia. Copyright © 2017 Published jointly in American Journal of Kidney Diseases and the Journal of the American society of Hypertension by Elsevier Inc, on behalf of the National Kidney Foundation and the American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  10. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    PubMed Central

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  11. Salivary analytes in patients with oral squamous cell carcinoma.

    PubMed

    Fuchs, Petra Nola; Rogić, Dunja; Vidović-Juras, Danica; Susić, Mato; Milenović, Aleksandar; Brailo, Vlaho; Boras, Vanja Vucićević

    2011-06-01

    Literature data indicates that measurement of certain salivary constituents might serve as a useful diagnostic/prognostic tool in the patients with oral squamous cell carcinoma (OSCC). In 24 patients with OSCC (60 +/- 2.5 yrs) and in 24 controls (24 +/- 3.7 yrs) we have determined levels of salivary magnesium, calcium, copper, chloride, phosphate, potassium, sodium, total proteins and amylase. Sodium, potassium and chloride were determined by indirect potentiometry whereas copper, magnesium and phosphate were determined by atomic absorption spectrophotometry. Total proteins were determined by pyrogalol colorimetric method. Amylase levels were determined by continued colorimetric method. Statistical analysis was performed by use of chi2 test and Spearman's correlation test. The results of this study indicate that the concentrations of sodium and chloride were significantly elevated in patients with OSCC when compared to the controls. However, level of total protein was significantly decreased when compared to the healthy controls. Furthermore, there was a negative correlation between alcohol consumption and total protein concentration in patients with oral carcinoma. We might conclude that in patients with OSCC increased salivary sodium and chloride might reflect their overall dehydration status due to alcohol consumption rather than consequence of OSCC itself.

  12. Jujube honey from China: physicochemical characteristics and mineral contents.

    PubMed

    Zhou, Juan; Suo, Zhirong; Zhao, Pinpin; Cheng, Ni; Gao, Hui; Zhao, Jing; Cao, Wei

    2013-03-01

    We investigated and compared the physicochemical properties (moisture, color, ash, pH, electrical conductivity, free acidity, lactonic acidity, total acidity, fructose, glucose, sucrose, diastase activity, and HMF) and mineral contents (Al, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, As, Cd, Pb, and Zn), as well as total proline and total protein contents of 23 jujube honey samples collected from different regions of China. The mineral content was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The physicochemical values were in the range of approved limits (conforming to EU legislation) in all 23 samples. The physicochemical properties of jujube honey showed significant variations among samples. The mean pH value of the jujube honeys was 6.71. The most abundant minerals were potassium, calcium, sodium, and magnesium, ranging between 1081.4 and 2642.9, 97.1 and 194.2, 7.79 and 127.8, and 10.36 and 24.67 mg/kg, respectively, and potassium made up 71% of the total mineral content. This study demonstrated remarkable variation in physicochemical parameters and mineral contents of jujube honey, mainly depending on its geographic source. © 2013 Institute of Food Technologists®

  13. Quantitative analysis of total starch content in wheat flour by reaction headspace gas chromatography.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-09-01

    This paper proposed a new reaction headspace gas chromatographic (HS-GC) method for efficiently quantifying the total starch content in wheat flours. A certain weight of wheat flour was oxidized by potassium dichromate in an acidic condition in a sealed headspace vial. The results show that the starch in wheat flour can be completely transferred to carbon dioxide at the given conditions (at 100 °C for 40 min) and the total starch content in wheat flour sample can be indirectly quantified by detecting the CO 2 formed from the oxidation reaction. The data showed that the relative standard deviation of the reaction HS-GC method in the precision test was less than 3.06%, and the relative differences between the new method and the reference method (titration method) were no more than 8.90%. The new reaction HS-GC method is automated, accurate, and can be a reliable tool for determining the total starch content in wheat flours in both laboratory and industrial applications. Graphical abstract The total starch content in wheat flour can be indirectly quantified by the GC detection of the CO 2 formed from the oxidation reaction between wheat flour and potassium dichromate in an acidic condition.

  14. [Responses of soil nematode communities to long-term application of inorganic fertilizers in upland red soil].

    PubMed

    Zhang, Wei; Liu, Man-Qiang; He, Yuan-Qiu; Fan, Jian-Bo; Chen, Yan

    2014-08-01

    Soil biota plays a key role in ecosystem functioning of red soil. Based on the long-term inorganic fertilization field experiment (25-year) in an upland red soil, the impacts of different inorganic fertilization managements, including NPK (nitrogen, phosphorus and potassium fertilizers), NPKCaS (NPK plus gypsum fertilizers), NP (nitrogen and phosphorus fertilizers), NK (nitrogen and potassium fertilizers) and PK (phosphorus and potassium fertilizers), on the assemblage of soil nematodes during the growing period of peanut were investigated. Significant differences among the treatments were observed for total nematode abundance, trophic groups and ecological indices (P < 0.01). The total nematode abundance decreased in the order of PK > NPKCaS > NPK > NP > NK. The total number of nematodes was significantly higher in NPKCaS and PK than in NPK, NP and NK except in May. Plant parasitic nematodes were the dominant trophic group in all treatments excepted in NPKCaS, and their proportion ranged between 38% and 65%. The dominant trophic group in NPKCaS was bacterivores and represented 42.1%. Furthermore, the higher values of maturity index, Wasilewska index and structure index in NPKCaS indicated that the combined application of NPK and gypsum could remarkably relieve soil acidification, resulting in a more mature and stable soil food web structure. While, that of the NK had the opposite effect. In conclusion, our study suggested that the application of both gypsum and phosphate is an effective practice to improve soil quality. Moreover, the analysis of nematode assemblage is relevant to reflect the impact of different inorganic fertilizer on the red soil ecosystem.

  15. Permeation of iodide from iodine-enriched yeast through porcine intestine.

    PubMed

    Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew

    2013-01-01

    Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.

  16. A bursting potassium channel in isolated cholinergic synaptosomes of Torpedo electric organ.

    PubMed Central

    Edry-Schiller, J; Ginsburg, S; Rahamimoff, R

    1991-01-01

    1. Pinched-off cholinergic nerve terminals (synaptosomes) prepared from the electric organ of Torpedo ocelata were fused into large structures (greater than 20 microns) using dimethyl sulphoxide and polyethylene glycol 1500, as previously described for synaptic vesicles from the same organ. 2. The giant fused synaptosomes were easily amenable to the patch clamp technique and 293 seals with a resistance greater than 4 G omega were obtained in the 'cell-attached' configuration. In a large fraction of the experiments, an 'inside-out' patch configuration was achieved. 3. Several types of unitary ionic currents were observed. This study describes the most frequently observed single-channel activity which was found in 247 out of the 293 membrane patches (84.3%). 4. The single-channel current-voltage relation was linear between -60 and 20 mV and showed a slope conductance of 23.8 +/- 1.3 pS when the pipette contained 350-390 mM-Na+ and the bath facing the inside of the synaptosomal membrane contained 390 mM-K+. 5. From extrapolated reversal potential measurements, it was concluded that this channel has a large selectivity for K+ over Na+ (70.4 +/- 11.5, mean +/- S.E.M.). Chloride ions are not transported significantly through this potassium channel. 6. This potassium channel has a low probability of opening. The probability of being in the open state increases upon depolarization and reaches about 1% when the inside of the patch is 20 mV positive compared to the pipette side. 7. The mean channel open time increases with depolarization; thus the product current x time (= charge) also increases upon depolarization, showing properties of an outward rectifier. 8. The potassium channel in the giant synaptosome membrane has a bursting behaviour. Open-time distribution, closed-time distribution and a Poisson analysis indicate that the minimal kinetic scheme requires one open state and three closed states. PMID:1654418

  17. Ethnic disparities among food sources of energy and nutrients of public health concern and nutrients to limit in adults in the United States: NHANES 2003-2006.

    PubMed

    O'Neil, Carol E; Nicklas, Theresa A; Keast, Debra R; Fulgoni, Victor L

    2014-01-01

    Identification of current food sources of energy and nutrients among US non-Hispanic whites (NHW), non-Hispanic blacks (NHB), and Mexican American (MA) adults is needed to help with public health efforts in implementing culturally sensitive and feasible dietary recommendations. The objective of this study was to determine the food sources of energy and nutrients to limit [saturated fatty acids (SFA), added sugars, and sodium] and nutrients of public health concern (dietary fiber, vitamin D, calcium, and potassium) by NHW, NHB, and MA adults. This was a cross-sectional analysis of a nationally representative sample of NWH (n=4,811), NHB (2,062), and MA (n=1,950) adults 19+ years. The 2003-2006 NHANES 24-h recall (Day 1) dietary intake data were analyzed. An updated USDA Dietary Source Nutrient Database was developed using current food composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from food sources were sample-weighted. Percentages of total dietary intake contributed from food sources were ranked. Multiple differences in intake among ethnic groups were seen for energy and all nutrients examined. For example, energy intake was higher in MA as compared to NHB; SFA, added sugars, and sodium intakes were higher in NHW than NHB; dietary fiber was highest in MA and lowest in NHB; vitamin D was highest in NHW; calcium was lowest in NHB; and potassium was higher in NHW as compared to NHB. Food sources of these nutrients also varied. Identification of intake of nutrients to limit and of public health concern can help health professionals implement appropriate dietary recommendations and plan interventions that are ethnically appropriate.

  18. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels.

    PubMed

    Elinder, Fredrik; Liin, Sara I

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (Na V ), potassium (K V ), calcium (Ca V ), and proton (H V ) channels, as well as calcium-activated potassium (K Ca ), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1 : The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2 : The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3 : The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4 : The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5 : The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.

  19. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels

    PubMed Central

    Elinder, Fredrik; Liin, Sara I.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels. PMID:28220076

  20. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

    PubMed Central

    Frolova, Sheyda R.; Gaiko, Olga; Tsvelaya, Valeriya A.; Pimenov, Oleg Y.; Agladze, Konstantin I.

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  1. Biophysically realistic minimal model of dopamine neuron

    NASA Astrophysics Data System (ADS)

    Oprisan, Sorinel

    2008-03-01

    We proposed and studied a new biophysically relevant computational model of dopaminergic neurons. Midbrain dopamine neurons are involved in motivation and the control of movement, and have been implicated in various pathologies such as Parkinson's disease, schizophrenia, and drug abuse. The model we developed is a single-compartment Hodgkin-Huxley (HH)-type parallel conductance membrane model. The model captures the essential mechanisms underlying the slow oscillatory potentials and plateau potential oscillations. The main currents involved are: 1) a voltage-dependent fast calcium current, 2) a small conductance potassium current that is modulated by the cytosolic concentration of calcium, and 3) a slow voltage-activated potassium current. We developed multidimensional bifurcation diagrams and extracted the effective domains of sustained oscillations. The model includes a calcium balance due to the fundamental importance of calcium influx as proved by simultaneous electrophysiological and calcium imaging procedure. Although there are significant evidences to suggest a partially electrogenic calcium pump, all previous models considered only elecrtogenic pumps. We investigated the effect of the electrogenic calcium pump on the bifurcation diagram of the model and compared our findings against the experimental results.

  2. Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1

    PubMed Central

    Schauf, Charles L.; Wilson, Kathryn J.

    1987-01-01

    Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712

  3. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    PubMed

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  4. Induction of Defense-Related Physiological and Antioxidant Enzyme Response against Powdery Mildew Disease in Okra (Abelmoschus esculentus L.) Plant by Using Chitosan and Potassium Salts.

    PubMed

    Soliman, Mona H; El-Mohamedy, Riad S R

    2017-12-01

    Foliar sprays of three plant resistance inducers, including chitosan (CH), potassium sorbate (PS) (C 6 H 7 kO 2 ), and potassium bicarbonates (PB) (KHCO 3 ), were used for resistance inducing against Erysiphe cichoracearum DC (powdery mildew) infecting okra plants. Experiments under green house and field conditions showed that, the powdery mildew disease severity was significantly reduced with all tested treatments of CH, PS, and PB in comparison with untreated control. CH at 0.5% and 0.75% (w/v) plus PS at 1.0% and 2.0% and/or PB at 2.0% or 3.0% recorded as the most effective treatments. Moreover, the highest values of vegetative studies and yield were observed with such treatments. CH and potassium salts treatments reflected many compounds of defense singles which leading to the activation power defense system in okra plant. The highest records of reduction in powdery mildew were accompanied with increasing in total phenolic, protein content and increased the activity of polyphenol oxidase, peroxidase, chitinase, and β-1,3-glucanase in okra plants. Meanwhile, single treatments of CH, PS, and PB at high concentration (0.75%, 2.0%, and/or 3.0%) caused considerable effects. Therefore, application of CH and potassium salts as natural and chemical inducers by foliar methods can be used to control of powdery mildew disease at early stages of growth and led to a maximum fruit yield in okra plants.

  5. Relationship between dietary sodium, potassium, and calcium, anthropometric indexes, and blood pressure in young and middle aged Korean adults.

    PubMed

    Park, Juyeon; Lee, Jung-Sug; Kim, Jeongseon

    2010-04-01

    Epidemiological evidence of the effects of dietary sodium, calcium, and potassium, and anthropometric indexes on blood pressure is still inconsistent. To investigate the relationship between dietary factors or anthropometric indexes and hypertension risk, we examined the association of systolic and diastolic blood pressure (SBP and DBP) with sodium, calcium, and potassium intakes and anthropometric indexes in 19~49-year-olds using data from Korean National Health and Nutrition Examination Survey (KNHANES) III. Total of 2,761 young and middle aged adults (574 aged 19~29 years and 2,187 aged 30~49 years) were selected from KNHANES III. General information, nutritional status, and anthropometric data were compared between two age groups (19~29 years old and 30~49 years old). The relevance of blood pressure and risk factors such as age, sex, body mass index (BMI), weight, waist circumference, and the intakes of sodium, potassium, and calcium was determined by multiple regression analysis. Multiple regression models showed that waist circumference, weight, and BMI were positively associated with SBP and DBP in both age groups. Sodium and potassium intakes were not associated with either SBP or DBP. Among 30~49-year-olds, calcium was inversely associated with both SBP and DBP (P = 0.012 and 0.010, respectively). Our findings suggest that encouraging calcium consumption and weight control may play an important role in the primary prevention and management of hypertension in early adulthood.

  6. Sodium and potassium in the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1991-01-01

    The discovery that sodium and potassium vapor can be observed in the lunar atmosphere using ground-based telescopes has opened up a field of investigation that was closed after the last Apollo mission to the Moon. Sodium has been detected at altitudes up to 1500 km above the surface. This implies a high effective temperature for sodium, of the order of 1000 K. However, there is some evidence for two populations of sodium and potassium, one at temperatures corresponding to the surface, and another corresponding to high temperatures. The sources for the lunar atmosphere are not understood. Meteoric bombardment of the surface, solar wind sputtering of the surface, and photo-sputtering of the surface have all been suggested as possible sources for the lunar atmosphere. One of the objectives of the current research is to test different hypotheses by measurements of the atmosphere under different conditions of solar illumination and shielding from the solar wind by the Earth.

  7. Renal potassium physiology: integration of the renal response to dietary potassium depletion.

    PubMed

    Kamel, Kamel S; Schreiber, Martin; Halperin, Mitchell L

    2018-01-01

    We summarize the current understanding of the physiology of the renal handling of potassium (K + ), and present an integrative view of the renal response to K + depletion caused by dietary K + restriction. This renal response involves contributions from different nephron segments, and aims to diminish the rate of excretion of K + as a result of: decreasing the rate of electrogenic (and increasing the rate of electroneutral) reabsorption of sodium in the aldosterone-sensitive distal nephron (ASDN), decreasing the abundance of renal outer medullary K + channels in the luminal membrane of principal cells in the ASDN, decreasing the flow rate in the ASDN, and increasing the reabsorption of K + in the cortical and medullary collecting ducts. The implications of this physiology for the association between K + depletion and hypertension, and K + depletion and formation of calcium kidney stones are discussed. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. The Pure Rotational Spectrum of KO

    NASA Astrophysics Data System (ADS)

    Burton, Mark; Russ, Benjamin; Sheridan, Phillip M.; Bucchino, Matthew; Ziurys, Lucy M.

    2017-06-01

    The pure rotational spectrum of potassium monoxide (KO) has been recorded using millimeter-wave direct absorption spectroscopy. KO was synthesized by the reaction of potassium vapor, produced in a Broida-type oven, with nitrous oxide. No DC discharge was necessary. Eleven rotational transitions belonging to the ^{2}Π_{3/2} spin-orbit component have been measured and have been fit successfully to a case (c) Hamiltonian. Rotational and lambda-doubling constants for this spin-orbit component have been determined. It has been suggested that the ground electronic state of KO is either ^{2}Π (as for LiO and NaO) or ^{2}Σ (as for RbO and CsO), both of which lie close in energy. Recent computational studies favor a ^{2}Σ ground state. Further measurements of the rotational transitions of the ^{2}Π_{1/2} spin-orbit component and the ^{2}Σ state are currently in progress, as well as the potassium hyperfine structure.

  9. Nonnutritive Sweeteners in Breast Milk.

    PubMed

    Sylvetsky, Allison C; Gardner, Alexandra L; Bauman, Viviana; Blau, Jenny E; Garraffo, H Martin; Walter, Peter J; Rother, Kristina I

    2015-01-01

    Nonnutritive sweeteners (NNS), including saccharin, sucralose, aspartame, and acesulfame-potassium, are commonly consumed in the general population, and all except for saccharin are considered safe for use during pregnancy and lactation. Sucralose (Splenda) currently holds the majority of the NNS market share and is often combined with acesulfame-potassium in a wide variety of foods and beverages. To date, saccharin is the only NNS reported to be found in human breast milk after maternal consumption, while there is no apparent information on the other NNS. Breast milk samples were collected from 20 lactating volunteers, irrespective of their habitual NNS intake. Saccharin, sucralose, and acesulfame-potassium were present in 65% of participants' milk samples, whereas aspartame was not detected. These data indicate that NNS are frequently ingested by nursing infants, and thus prospective clinical studies are necessary to determine whether early NNS exposure via breast milk may have clinical implications.

  10. NONNUTRITIVE SWEETENERS IN BREAST MILK

    PubMed Central

    Sylvetsky, Allison C.; Gardner, Alexandra L.; Bauman, Viviana; Blau, Jenny E.; Garraffo, H. Martin; Walter, Peter J.; Rother, Kristina I.

    2017-01-01

    Nonnutritive sweeteners (NNS), including saccharin, sucralose, aspartame, and acesulfame-potassium, are commonly consumed in the general population, and all except for saccharin are considered safe for use during pregnancy and lactation. Sucralose (Splenda) currently holds the majority of the NNS market share and is often combined with acesulfame-potassium in a wide variety of foods and beverages. To date, saccharin is the only NNS reported to be found in human breast milk after maternal consumption, while there is no apparent information on the other NNS. Breast milk samples were collected from 20 lactating volunteers, irrespective of their habitual NNS intake. Saccharin, sucralose, and acesulfame-potassium were present in 65% of participants’ milk samples, whereas aspartame was not detected. These data indicate that NNS are frequently ingested by nursing infants, and thus prospective clinical studies are necessary to determine whether early NNS exposure via breast milk may have clinical implications. PMID:26267522

  11. A Comparison of Concentrations of Sodium and Related Nutrients (Potassium, Total Dietary Fiber, Total and Saturated Fat, and Total Sugar) in Private-Label and National Brands of Popular, Sodium-Contributing, Commercially Pack

    USDA-ARS?s Scientific Manuscript database

    Private-label brands account for about one in four foods sold in U.S. supermarkets. They provide value to consumers due to their low cost. We know of no U.S. studies comparing the nutrition content of private-label with corresponding national-brand products. The objective of this study was to compar...

  12. Synthesis and Side Chain Liquid Crystal Polymers by Living Ring Opening Metathesis Polymerization. 5. Influence of Mesogenic Group and Interconnecting Group on the Thermotropic Behavior of the Resulting Polymers

    DTIC Science & Technology

    1992-07-22

    Scheme I. The first nucleophilic displacement of halide of an n-haloalkan-l-ol with 4-cyano-4’-hydroxybiphenyl employed potassium carbonate in...21 𔃼 polysiloxanes, 23.24 and polyacrylates . 2- All these polymers exhibit an odd-even effect. If one considers the total number of atoms between the...0.019 mol) and 4’-methoxy-4-hydroxybiphenyl (4.0g, 0.020 tool) were heated at 100°C in 40 mL of dimethylformamide in the presence of potassium carbonate

  13. Mass attenuation coefficient of chromium and manganese compounds around absorption edge.

    PubMed

    Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B

    2009-01-01

    The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.

  14. [Hyperkalemia - current therapuetic strategies].

    PubMed

    Głogowski, Tomasz; Wojtaszek, Ewa

    Hyperkalemia is a medical emergency that requires immediate therapy, followed by interventions aimed at preventing its recurrence. Hyperkalemia occurs especially frequently in patients with chronic kidney disease (CKD), in part because of impaired kidney function and in part due to coexisting comorbidities such as diabetes or heart failure and the medications used to treat them, first of all the inhibitors of renin-angiotensin-aldosterone system (RAASi). Both acute and chronic management of hyperkalemia are equally important, though, with currently available therapeutic possibilities, the effective restoration of potassium homeostasis are in fact limited to the correction of its triggers. The emergence of new medications (patiromer and ZS-9) could lead to a therapeutic paradigm shift from intermittent treatment of incidentally discovered hyperkalemia toward preventive measures preventing fluctuations in serum potassium levels and enabling the continuation of beneficial, but hyperkalemia inducing agents.

  15. An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes.

    PubMed Central

    van Dijk, C; de Levie, R

    1985-01-01

    The continuum and single jump treatments of ion transport through black lipid membranes predict experimentally distinguishable results, even when the same mechanistic assumptions are made and the same potential-distance profile is used. On the basis of steady-state current-voltage curves for nonactin-mediated transport of potassium ions, we find that the continuum model describes the data accurately, whereas the single jump model fails to do so, for all cases investigated in which capacitance measurements indicate that the membrane thickness varies little with applied potential. PMID:3839420

  16. Fibrous Carbon-Metallic Materials and a Method of Manufacturing Carbon-Metallic Fibrous Materials,

    DTIC Science & Technology

    1983-05-12

    for obtaining solid compositions. Example 1. A carbon unwoven fabric obtained through carbonization of polyacrylic fabric is polarized anodically in...a l.5n solution of potassium carbonate, using a current load of l5mA/cm2 for 30 seconds, and then is cathodically polarized in the same solution using...bathcontaining 30g/l Of CuCO3’Cu(OH)2, 100g/1 of potassium -sodium tartrate,50g/l of KOH and 25g/l of 40% formalin. • i The length of time in the

  17. Fertilizer consumption and energy input for 16 crops in the United States

    USGS Publications Warehouse

    Amenumey, Sheila E.; Capel, Paul D.

    2014-01-01

    Fertilizer use by U.S. agriculture has increased over the past few decades. The production and transportation of fertilizers (nitrogen, N; phosphorus, P; potassium, K) are energy intensive. In general, about a third of the total energy input to crop production goes to the production of fertilizers, one-third to mechanization, and one-third to other inputs including labor, transportation, pesticides, and electricity. For some crops, fertilizer is the largest proportion of total energy inputs. Energy required for the production and transportation of fertilizers, as a percentage of total energy input, was determined for 16 crops in the U.S. to be: 19–60% for seven grains, 10–41% for two oilseeds, 25% for potatoes, 12–30% for three vegetables, 2–23% for two fruits, and 3% for dry beans. The harvested-area weighted-average of the fraction of crop fertilizer energy to the total input energy was 28%. The current sources of fertilizers for U.S. agriculture are dependent on imports, availability of natural gas, or limited mineral resources. Given these dependencies plus the high energy costs for fertilizers, an integrated approach for their efficient and sustainable use is needed that will simultaneously maintain or increase crop yields and food quality while decreasing adverse impacts on the environment.

  18. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus

    PubMed Central

    Mohamed, Zahurin; Abdullah, Nor Azizan; Haghvirdizadeh, Pantea; Haerian, Monir Sadat

    2015-01-01

    Diabetes mellitus (DM) is a major worldwide health problem and its prevalence has been rapidly increasing in the last century. It is caused by defects in insulin secretion or insulin action or both, leading to hyperglycemia. Of the various types of DM, type 2 occurs most frequently. Multiple genes and their interactions are involved in the insulin secretion pathway. Insulin secretion is mediated through the ATP-sensitive potassium (KATP) channel in pancreatic beta cells. This channel is a heteromeric protein, composed of four inward-rectifier potassium ion channel (Kir6.2) tetramers, which form the pore of the KATP channel, as well as sulfonylurea receptor 1 subunits surrounding the pore. Kir6.2 is encoded by the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene, a member of the potassium channel genes. Numerous studies have reported the involvement of single nucleotide polymorphisms of the KCNJ11 gene and their interactions in the susceptibility to DM. This review discusses the current evidence for the contribution of common KCNJ11 genetic variants to the development of DM. Future studies should concentrate on understanding the exact role played by these risk variants in the development of DM. PMID:26448950

  19. Advances in the management of hyperkalemia in chronic kidney disease.

    PubMed

    Cowan, Andrea C J; Gharib, Elie G; Weir, Matthew A

    2017-05-01

    Patients with chronic kidney disease (CKD) have an increased risk of hyperkalemia that increases both short-term and long-term mortality. Historically, managing hyperkalemia has relied upon dietary modifications, augmentation of urinary potassium excretion and enhanced enteral potassium elimination. This review discusses current treatments and their limitations and summarizes the evidence supporting novel agents for potassium lowering in patients with CKD. The introduction of two novel ion exchange resins represents the first new pharmacologic therapies for hyperkalemia in the last 50 years. Patiromer, which was recently approved for use in the United States, has been shown to be well tolerated and effective for decreasing serum potassium in patients with CKD when taken for up to a year. Sodium zirconium cyclosilicate for which approval is pending has also shown promise in treating both acute and chronic hyperkalemia in patients with CKD. Both medications have been well tolerated with minimal adverse events in relatively short-term follow-up. Novel ion exchange resins have the potential to provide new strategies for safely and effectively managing hyperkalemia in the CKD population. This may decrease morbidity and mortality associated with hyperkalemia and allow more broad use of medications whose use is otherwise limited by hyperkalemia.

  20. Using Zero Balance Ultrafiltration with Dialysate as a Replacement Fluid for Hyperkalemia during Cardiopulmonary Bypass

    PubMed Central

    Heath, Michele; Raghunathan, Karthik; Welsby, Ian; Maxwell, Cory

    2014-01-01

    Abstract: Avoiding or managing hyperkalemia during cardiac surgery, especially in a patient with chronic renal insufficiency, can be challenging. Hyperkalemic cardioplegia solution is usually administered to achieve and maintain an electrical arrest of the heart. This solution eventually mixes in with the systemic circulation, contributing to elevated systemic potassium levels. Administration of packed red blood cells, hemolysis, tissue damage, and acidosis are also common causes of hyperkalemia. Current strategies to avoid or manage hyperkalemia include minimizing the volume of cardioplegia administered, shifting potassium from the extracellular into the intracellular space (by the administration of sodium bicarbonate when the pH is low and/or dextrose–insulin when effects relatively independent of serum pH are desired), using zero-balanced ultrafiltration (Z-BUF) with normal saline as the replacement fluid (to remove potassium from the body rather than simply shift the electrolyte across cellular membranes), and, occasionally, hemodialysis (1). We report the application of Z-BUF using an electrolyte-balanced, low potassium dialysate solution rather than isotonic saline to avoid a high chloride load and the potential for hyperchloremic acidosis to successfully treat hyperkalemia while on cardiopulmonary bypass. PMID:26357794

  1. Revisiting RAAS blockade in CKD with newer potassium-binding drugs.

    PubMed

    Georgianos, Panagiotis I; Agarwal, Rajiv

    2018-02-01

    Among patients with proteinuric chronic kidney disease (CKD), current guideline recommendations mandate the use of agents blocking the renin angiotensin aldosterone system (RAAS) as first-line antihypertensive therapy based on randomized trials demonstrating that RAAS inhibitors are superior to other antihypertensive drug classes in slowing nephropathy progression to end-stage renal disease. However, the opportunities for adequate RAAS blockade in CKD are often limited, and an important impediment is the risk of hyperkalemia, especially when RAAS inhibitors are used in maximal doses or are combined. Accordingly, a large proportion of patients with proteinuric CKD may not have the anticipated renoprotective benefits since RAAS blockers are often discontinued due to incident hyperkalemia or are administered at suboptimal doses for fear of the development of hyperkalemia. Two newer potassium binders, patiromer and sodium zirconium cyclosilicate (ZS-9), have been shown to effectively and safely reduce serum potassium levels and maintain long-term normokalemia in CKD patients receiving background therapy with RAAS inhibitors. Whether these novel potassium-lowering therapies can overcome the barrier of hyperkalemia and enhance the tolerability of RAAS inhibitor use in proteinuric CKD awaits randomized trials. Published by Elsevier Inc.

  2. Evaluation of the Pharmacodynamic Effects of the Potassium Binder RDX7675 in Mice.

    PubMed

    Davidson, James P; King, Andrew J; Kumaraswamy, Padmapriya; Caldwell, Jeremy S; Korner, Paul; Blanks, Robert C; Jacobs, Jeffrey W

    2018-05-01

    Hyperkalemia is a common complication in patients with heart failure or chronic kidney disease, particularly those who are taking inhibitors of the renin-angiotensin-aldosterone system. RDX7675, the calcium salt of a reengineered polystyrene sulfonate-based resin, is a potassium binder that is being investigated as a novel treatment for hyperkalemia. This study evaluated the pharmacodynamic effects of RDX7675 in mice, compared to 2 current treatments, sodium polystyrene sulfonate (SPS) and patiromer. Seven groups of 8 male CD-1 mice were given either standard chow (controls) or standard chow containing 4.0% or 6.6% active moiety of RDX7675, patiromer, or SPS for 72 hours. Stool and urine were collected over the final 24 hours of treatment for ion excretion analyses. RDX7675 increased stool potassium (mean 24-hour excretion: 4.0%, 9.19 mg; 6.6%, 18.11 mg; both P < .0001) compared with controls (4.47 mg) and decreased urinary potassium (mean 24-hour excretion: 4.0%, 12.05 mg, P < .001; 6.6%, 6.68 mg, P < .0001; vs controls, 20.38 mg). The potassium-binding capacity of RDX7675 (stool potassium/gram of resin: 4.0%, 1.14 mEq/g; 6.6%, 1.32 mEq/g) was greater (all P < .0001) than for patiromer (4.0%, 0.63 mEq/g; 6.6%, 0.48 mEq/g) or SPS (4.0%, 0.73 mEq/g; 6.6% 0.55 mEq/g). RDX7675 and patiromer decreased urinary sodium (mean 24-hour excretion: 0.07-1.38 mg; all P < .001) compared to controls (5.01 mg). In contrast, SPS increased urinary sodium excretion (4.0%, 13.31 mg; 6.6%, 17.60 mg; both P < .0001) compared to controls. RDX7675 reduced intestinal potassium absorption and had a greater potassium-binding capacity than patiromer or SPS in mice. The calcium-based resins RDX7675 and patiromer reduced intestinal sodium absorption, unlike sodium-based SPS. These results support further studies in humans to confirm the potential of RDX7675 for the treatment of patients with hyperkalemia.

  3. Increased BLSS closure using mineralized human waste in plant cultivation on a neutral substrate

    NASA Astrophysics Data System (ADS)

    Ushakova, S.; Tikhomirov, A.; Shikhov, V.; Kudenko, Yu.; Anischenko, O.; Gros, J.-B.; Lasseur, Ch.

    2009-10-01

    The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plant cultivation in a biological life support system (BLSS). Plants that are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitaminny variety, were used. The plants were grown hydroponically on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During plant growth, a determined amount of human mineralized waste was added daily to the nutrient solution. The nutrient solution remained unchanged throughout the vegetation period. Estimated plant requirements for macro-elements were based on a total biological productivity of 0.04 kg day -1 m -2. As the plant requirements for potassium exceeded the potassium content of human waste, a water extract of wheat straw containing the required amount of potassium was added to the nutrient solution. The Knop's solution was used in the control experiments. The experimental and control plants showed no significant differences in state or productivity of their photosynthetic apparatus. A small decrease in total productivity of the experimental plants was observed, which might result in some reduction of О 2 production in a BLSS.

  4. Activation of µ-opioid receptors and block of KIR3 potassium channels and NMDA receptor conductance by l- and d-methadone in rat locus coeruleus

    PubMed Central

    Matsui, Aya; Williams, John T

    2010-01-01

    BACKGROUND AND PURPOSE Methadone activates opioid receptors to increase a potassium conductance mediated by G-protein-coupled, inwardly rectifying, potassium (KIR3) channels. Methadone also blocks KIR3 channels and N-methyl-D-aspartic acid (NMDA) receptors. However, the concentration dependence and stereospecificity of receptor activation and channel blockade by methadone on single neurons has not been characterized. EXPERIMENTAL APPROACH Intracellular and whole-cell recording were made from locus coeruleus neurons in brain slices and the activation of µ-opioid receptors and blockade of KIR3 and NMDA channels with l- and d-methadone was examined. KEY RESULTS The potency of l-methadone, measured by the amplitude of hyperpolarization was 16.5-fold higher than with d-methadone. A maximum hyperpolarization was caused by both enantiomers (∼30 mV); however, the maximum outward current measured with whole-cell voltage-clamp recording was smaller than the current induced by [Met]5enkephalin. The KIR3 conductance induced by activation of α2-adrenoceptors was decreased with high concentrations of l- and d-methadone (10–30 µM). In addition, methadone blocked the resting inward rectifying conductance (KIR). Both l- and d-methadone blocked the NMDA receptor-dependent current. The block of NMDA receptor-dependent current was voltage-dependent suggesting that methadone acted as a channel blocker. CONCLUSIONS AND IMPLICATIONS Methadone activated µ-opioid receptors at low concentrations in a stereospecific manner. KIR3 and NMDA receptor channel block was not stereospecific and required substantially higher concentrations. The separation in the concentration range suggests that the activation of µ-opioid receptors rather than the channel blocking properties mediate both the therapeutic and toxic actions of methadone. PMID:20659105

  5. Desensitization of chemical activation by auxiliary subunits: convergence of molecular determinants critical for augmenting KCNQ1 potassium channels.

    PubMed

    Gao, Zhaobing; Xiong, Qiaojie; Sun, Haiyan; Li, Min

    2008-08-15

    Chemical openers for KCNQ potassium channels are useful probes both for understanding channel gating and for developing therapeutics. The five KCNQ isoforms (KCNQ1 to KCNQ5, or Kv7.1 to Kv7.5) are differentially localized. Therefore, the molecular specificity of chemical openers is an important subject of investigation. Native KCNQ1 normally exists in complex with auxiliary subunits known as KCNE. In cardiac myocytes, the KCNQ1-KCNE1 (IsK or minK) channel is thought to underlie the I(Ks) current, a component critical for membrane repolarization during cardiac action potential. Hence, the molecular and pharmacological differences between KCNQ1 and KCNQ1-KCNE1 channels have been important topics. Zinc pyrithione (ZnPy) is a newly identified KCNQ channel opener, which potently activates KCNQ2, KCNQ4, and KCNQ5. However, the ZnPy effects on cardiac KCNQ1 potassium channels remain largely unknown. Here we show that ZnPy effectively augments the KCNQ1 current, exhibiting an increase in current amplitude, reduction of inactivation, and slowing of both activation and deactivation. Some of these are reminiscent of effects by KCNE1. In addition, neither the heteromultimeric KCNQ1-KCNE1 channels nor native I(Ks) current displayed any sensitivity to ZnPy, indicating that the static occupancy by a KCNE subunit desensitizes the reversible effects by a chemical opener. Site-directed mutagenesis of KCNQ1 reveals that residues critical for the potentiation effects by either ZnPy or KCNE are clustered together in the S6 region overlapping with the critical gating determinants. Thus, the convergence of potentiation effects and molecular determinants critical for both an auxiliary subunit and a chemical opener argue for a mechanistic overlap in causing potentiation.

  6. A novel muscarinic receptor-independent mechanism of KCNQ2/3 potassium channel blockade by Oxotremorine-M.

    PubMed

    Zwart, Ruud; Reed, Hannah; Clarke, Sophie; Sher, Emanuele

    2016-11-15

    Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The changes of potassium currents in RCS rat Müller cell during retinal degeneration.

    PubMed

    Zhao, TongTao; Li, YaoChen; Weng, ChuanHuang; Yin, ZhengQin

    2012-01-03

    Müller cells are the principal glial cells expressing membrane-bound potassium channel and predominantly mediating the homeostatic regulation of extracellular K+ produced by neuronal activity in retina. It's well known that Müller cells can be activated in many pathological conditions, but little is known about the change of potassium currents of Müller cells during the progression of retinitis pigmentosa. Herein, the Royal College of Surgeons rats (RCS rat) were employed to investigate some phenotypic and functional changes of Müller cells during retinal degeneration such as the expression of Kir4.1, membrane properties and K+ channel currents by using immunohistochemistry, RT-PCR, western blot and whole-cell patch clamping respectively. Compared with Müller cells in control retina, increased glutamine synthetase (GS) mRNA levels were seen at P30 and P60, and then decreased gradually in RCS rat retina. Morphologically, Müller cells showed significant hypertrophy and proliferation after p60. The increased expression of intermediate filament, glial fibrillary acidic protein (GFAP) and vimentin began at P30 and reached a peak at p60. Kir4.1 channels presented a peak expression at P30. Concomitantly, K(+) currents of Müller cells increased at P30 and decreased at P90 significantly. We concluded that retinal Müller cells of RCS rats underwent an activation initiated by the onset of retinal degeneration before p60 and then an obvious reactive gliosis, which led the basic membrane properties to suffer marked changes, and caused the Kir4.1 channels of Müller cells to occur a clear functional shift, even lose their normal electrophysiological properties. This process aggravates the impairment caused by the initial photoreceptor degeneration. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Lethal Injection for Execution: Chemical Asphyxiation?

    PubMed Central

    Zimmers, Teresa A; Sheldon, Jonathan; Lubarsky, David A; López-Muñoz, Francisco; Waterman, Linda; Weisman, Richard; Koniaris, Leonidas G

    2007-01-01

    Background Lethal injection for execution was conceived as a comparatively humane alternative to electrocution or cyanide gas. The current protocols are based on one improvised by a medical examiner and an anesthesiologist in Oklahoma and are practiced on an ad hoc basis at the discretion of prison personnel. Each drug used, the ultrashort-acting barbiturate thiopental, the neuromuscular blocker pancuronium bromide, and the electrolyte potassium chloride, was expected to be lethal alone, while the combination was intended to produce anesthesia then death due to respiratory and cardiac arrest. We sought to determine whether the current drug regimen results in death in the manner intended. Methods and Findings We analyzed data from two US states that release information on executions, North Carolina and California, as well as the published clinical, laboratory, and veterinary animal experience. Execution outcomes from North Carolina and California together with interspecies dosage scaling of thiopental effects suggest that in the current practice of lethal injection, thiopental might not be fatal and might be insufficient to induce surgical anesthesia for the duration of the execution. Furthermore, evidence from North Carolina, California, and Virginia indicates that potassium chloride in lethal injection does not reliably induce cardiac arrest. Conclusions We were able to analyze only a limited number of executions. However, our findings suggest that current lethal injection protocols may not reliably effect death through the mechanisms intended, indicating a failure of design and implementation. If thiopental and potassium chloride fail to cause anesthesia and cardiac arrest, potentially aware inmates could die through pancuronium-induced asphyxiation. Thus the conventional view of lethal injection leading to an invariably peaceful and painless death is questionable. PMID:17455994

  9. Sodium and potassium intakes among US adults: NHANES 2003–20081234

    PubMed Central

    Zhang, Zefeng; Carriquiry, Alicia L; Gunn, Janelle P; Kuklina, Elena V; Saydah, Sharon H; Yang, Quanhe; Moshfegh, Alanna J

    2012-01-01

    Background: The American Heart Association (AHA), Institute of Medicine (IOM), and US Departments of Health and Human Services and Agriculture (USDA) Dietary Guidelines for Americans all recommend that Americans limit sodium intake and choose foods that contain potassium to decrease the risk of hypertension and other adverse health outcomes. Objective: We estimated the distributions of usual daily sodium and potassium intakes by sociodemographic and health characteristics relative to current recommendations. Design: We used 24-h dietary recalls and other data from 12,581 adults aged ≥20 y who participated in NHANES in 2003–2008. Estimates of sodium and potassium intakes were adjusted for within-individual day-to-day variation by using measurement error models. SEs and 95% CIs were assessed by using jackknife replicate weights. Results: Overall, 99.4% (95% CI: 99.3%, 99.5%) of US adults consumed more sodium daily than recommended by the AHA (<1500 mg), and 90.7% (89.6%, 91.8%) consumed more than the IOM Tolerable Upper Intake Level (2300 mg). In US adults who are recommended by the Dietary Guidelines to further reduce sodium intake to 1500 mg/d (ie, African Americans aged ≥51 y or persons with hypertension, diabetes, or chronic kidney disease), 98.8% (98.4%, 99.2%) overall consumed >1500 mg/d, and 60.4% consumed >3000 mg/d—more than double the recommendation. Overall, <2% of US adults and ∼5% of US men consumed ≥4700 mg K/d (ie, met recommendations for potassium). Conclusion: Regardless of recommendations or sociodemographic or health characteristics, the vast majority of US adults consume too much sodium and too little potassium. PMID:22854410

  10. Reciprocal Modulation of IK1–INa Extends Excitability in Cardiac Ventricular Cells

    PubMed Central

    Varghese, Anthony

    2016-01-01

    The inwardly rectifying potassium current (IK1) and the fast inward sodium current (INa) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for IK1–INa reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, GK1, of the inwardly rectifying potassium current, and GNa, of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of GK1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal GK1–GNa modulation and unlike those due to independent modulation of GNa alone, indicating that GK1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent GNa modulation and for tandem changes in GK1–GNa, suggesting that GNa is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on GK1–GNa is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both GK1 and the intercellular gap junction conductance, Ggj, were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of GK1 rendered cardiac fibers inexcitable at higher levels of GK1 whereas tandem GK1–GNa changes allowed fibers to remain excitable at high GK1 values. Reciprocal modulation of the inwardly rectifying potassium current and the fast inward sodium current may have a functional role in allowing cardiac tissue to remain excitable when IK1 is upregulated. PMID:27895596

  11. Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Zeng, Ying; Tang, Qunli; Hu, Aiping; Xiao, Kuikui; Zhang, Shiying; Deng, Weina; Fan, Binbin; Zhu, Yanfei; Chen, Xiaohua

    2017-09-01

    Ultrahigh graphitized carbon microspheres with rich hierarchical pores (AGHPCM-1) have been successfully synthesized through the one-step activation-carbonization strategy (OACS) with porous sulfonated poly-divinylbenzene as the carbon precursor, iron as the hard template and catalyst, and potassium hydroxide (KOH) as activation agent. Through the XRD, TEM, Raman and BET analysis, AGHPCM-1 shows very high graphitization degree and rich micro-, meso- and macro-pores. More importantly, the mechanism for KOH to improve the graphitization degree of carbon materials in OACS has been illustrated by the thermodynamical theory. The tremendous heat releasing from the reaction between the catalyst precursor of Fe2O3 and potassium vapor plays a key role in the formation of graphitized carbon. It may provide a general direction to prepare highly graphitized porous carbon at a moderate temperature. Integrating the advantages of high graphitization degree and rich hierarchical porous structure, the AGHPCM-1 exhibits an excellent rate performance with a response to up to the high current density of 150 A g-1 and high scan rate of 2000 mV s-1. No obvious capacitance decay can be observed after 10000 charge/discharge cycles even at the high current density of 20 A g-1.

  12. Vonoprazan fumarate, a novel potassium-competitive acid blocker, in the management of gastroesophageal reflux disease: safety and clinical evidence to date

    PubMed Central

    Sugano, Kentaro

    2018-01-01

    Potassium-competitive acid blocker (P-CAB) is a class of drug that competitively blocks the potassium-binding site of H+, K+-adenosine triphosphate (ATP)ase. Although the history of this class of drugs started over 30 years ago, clinical use of two P-CABs, revaprazan and vonoprazan, were only recently approved in Korea and Japan, respectively. Among them, vonoprazan has several advantages over conventional proton-pump inhibitors (PPIs), including rapid onset of action, long duration of acid suppression, fewer interindividual variations in terms of acid suppression, and minimum dietary influence on its action. These advantages of vonoprazan have been proved in clinical trials conducted for license approvals for several acid-related diseases. In this review article, current evidence of vonoprazan in the management of gastroesophageal reflux disease (GERD) will be summarized. Since the clinical trial data, as well as postmarketed clinical data, have consistently demonstrated superiority of vonoprazan over conventional PPIs in terms of achieving healing of mucosal breaks and maintaining the healing, it may provide an excellent, if not complete, option for fulfilling some of the unmet needs for current GERD therapy. The safety problem of vonoprazan is also discussed, as more pronounced hypergastrinemia inevitably ensues with its use. PMID:29383028

  13. Kir 4.1 inward rectifier potassium channel is upregulated in astrocytes in a murine multiple sclerosis model.

    PubMed

    Mercado, Francisco; Almanza, Angélica; Rubio, Nazario; Soto, Enrique

    2018-06-11

    Multiple sclerosis (MS) is a high prevalence degenerative disease characterized at the cellular level by glial and neuronal cell death. The causes of cell death during the disease course are not fully understood. In this work we demonstrate that in a MS model induced by Theiler's murine encephalomyelitis virus (TMEV) infection, the inward rectifier (Kir) 4.1 potassium channel subunit is overexpressed in astrocytes. In voltage clamp experiments the inward current density from TMEV-infected astrocytes was significantly larger than in mock-infected ones. The cRNA hybridization analysis from mock- and TMEV-infected cells showed an upregulation of a potassium transport channel coding sequence. We validated this mRNA increase by RT-PCR and quantitative PCR using Kir 4.1 specific primers. Western blotting experiments confirmed the upregulation of Kir 4.1, and alignment between sequences provided the demonstration that the over-expressed gene encodes for a Kir family member. Flow cytometry showed that the Kir 4.1 protein is located mainly in the cell membrane in mock and TMEV-infected astrocytes. Our results demonstrate an increase in K + inward current in TMEV-infected glial cells, this increment may reduce the neuronal depolarization, contributing to cell resilience mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia

    PubMed Central

    Irani, Sarosh R.; Alexander, Sian; Waters, Patrick; Kleopa, Kleopas A.; Pettingill, Philippa; Zuliani, Luigi; Peles, Elior; Buckley, Camilla; Lang, Bethan

    2010-01-01

    Antibodies that immunoprecipitate 125I-α-dendrotoxin-labelled voltage-gated potassium channels extracted from mammalian brain tissue have been identified in patients with neuromyotonia, Morvan’s syndrome, limbic encephalitis and a few cases of adult-onset epilepsy. These conditions often improve following immunomodulatory therapies. However, the proportions of the different syndromes, the numbers with associated tumours and the relationships with potassium channel subunit antibody specificities have been unclear. We documented the clinical phenotype and tumour associations in 96 potassium channel antibody positive patients (titres >400 pM). Five had thymomas and one had an endometrial adenocarcinoma. To define the antibody specificities, we looked for binding of serum antibodies and their effects on potassium channel currents using human embryonic kidney cells expressing the potassium channel subunits. Surprisingly, only three of the patients had antibodies directed against the potassium channel subunits. By contrast, we found antibodies to three proteins that are complexed with 125I-α-dendrotoxin-labelled potassium channels in brain extracts: (i) contactin-associated protein-2 that is localized at the juxtaparanodes in myelinated axons; (ii) leucine-rich, glioma inactivated 1 protein that is most strongly expressed in the hippocampus; and (iii) Tag-1/contactin-2 that associates with contactin-associated protein-2. Antibodies to Kv1 subunits were found in three sera, to contactin-associated protein-2 in 19 sera, to leucine-rich, glioma inactivated 1 protein in 55 sera and to contactin-2 in five sera, four of which were also positive for the other antibodies. The remaining 18 sera were negative for potassium channel subunits and associated proteins by the methods employed. Of the 19 patients with contactin-associated protein-antibody-2, 10 had neuromyotonia or Morvan’s syndrome, compared with only 3 of the 55 leucine-rich, glioma inactivated 1 protein-antibody positive patients (P < 0.0001), who predominantly had limbic encephalitis. The responses to immunomodulatory therapies, defined by changes in modified Rankin scores, were good except in the patients with tumours, who all had contactin-associated-2 protein antibodies. This study confirms that the majority of patients with high potassium channel antibodies have limbic encephalitis without tumours. The identification of leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 as the major targets of potassium channel antibodies, and their associations with different clinical features, begins to explain the diversity of these syndromes; furthermore, detection of contactin-associated protein-2 antibodies should help identify the risk of an underlying tumour and a poor prognosis in future patients. PMID:20663977

  15. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Huang, Long; Wang, Chun-Ni; Pu, Zhong-Sheng

    2013-02-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio xNa (and xK), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio xNa (and xK) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered.

  16. Simultaneous optical and electrical recording of a single ion-channel.

    PubMed

    Ide, Toru; Takeuchi, Yuko; Aoki, Takaaki; Yanagida, Toshio

    2002-10-01

    In recent years, the single-molecule imaging technique has proven to be a valuable tool in solving many basic problems in biophysics. The technique used to measure single-molecule functions was initially developed to study electrophysiological properties of channel proteins. However, the technology to visualize single channels at work has not received as much attention. In this study, we have for the first time, simultaneously measured the optical and electrical properties of single-channel proteins. The large conductance calcium-activated potassium channel (BK-channel) labeled with fluorescent dye molecules was incorporated into a planar bilayer membrane and the fluorescent image captured with a total internal reflection fluorescence microscope simultaneously with single-channel current recording. This innovative technology will greatly advance the study of channel proteins as well as signal transduction processes that involve ion permeation processes.

  17. Performance analysis of a potassium-base AMTEC cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.; Hendricks, T.J.; Hunt, T.K.

    1998-07-01

    Sodium-BASE Alkali-Metal-Thermal-to-Electric-Conversion (AMTEC) cells have been receiving increased attention and funding from the Department of Energy, NASA and the United States Air Force. Recently, sodium-BASE (Na-BASE) AMTEC cells were selected for the Advanced Radioisotope Power System (ARPS) program for the next generation of deep-space missions and spacecraft. Potassium-BASE (K-BASE) AMTEC cells have not received as much attention to date, even though the vapor pressure of potassium is higher than that of sodium at the same temperature. So that, K-BASE AMTEC cells with potentially higher open circuit voltage and higher power output than Na-BASE AMTEC cells are possible. Because the surfacemore » tension of potassium is about half of the surface tension of sodium at the same temperature, the artery and evaporator design in a potassium AMTEC cell has much more challenging pore size requirements than designs using sodium. This paper uses a flexible thermal/fluid/electrical model to predict the performance of a K-BASE AMTEC cell. Pore sizes in the artery of K-BASE AMTEC cells must be smaller by an order of magnitude than in Na-BASE AMTEC cells. The performance of a K-BASE AMTEC cell was higher than a Na-BASE AMTEC cell at low voltages/high currents. K-BASE AMTEC cells also have the potential of much better electrode performance, thereby creating another avenue for potentially better performance in K-BASE AMTEC cells.« less

  18. Computational Reconstruction of Pacemaking and Intrinsic Electroresponsiveness in Cerebellar Golgi Cells

    PubMed Central

    Solinas, Sergio; Forti, Lia; Cesana, Elisabetta; Mapelli, Jonathan; De Schutter, Erik; D'Angelo, Egidio

    2007-01-01

    The Golgi cells have been recently shown to beat regularly in vitro (Forti et al., 2006. J. Physiol. 574, 711–729). Four main currents were shown to be involved, namely a persistent sodium current (I Na-p), an h current (I h), an SK-type calcium-dependent potassium current (I K-AHP), and a slow M-like potassium current (I K-slow). These ionic currents could take part, together with others, also to different aspects of neuronal excitability like responses to depolarizing and hyperpolarizing current injection. However, the ionic mechanisms and their interactions remained largely hypothetical. In this work, we have investigated the mechanisms of Golgi cell excitability by developing a computational model. The model predicts that pacemaking is sustained by subthreshold oscillations tightly coupled to spikes. I Na-p and I K-slow emerged as the critical determinants of oscillations. I h also played a role by setting the oscillatory mechanism into the appropriate membrane potential range. I K-AHP, though taking part to the oscillation, appeared primarily involved in regulating the ISI following spikes. The combination with other currents, in particular a resurgent sodium current (I Na-r) and an A-current (I K-A), allowed a precise regulation of response frequency and delay. These results provide a coherent reconstruction of the ionic mechanisms determining Golgi cell intrinsic electroresponsiveness and suggests important implications for cerebellar signal processing, which will be fully developed in a companion paper (Solinas et al., 2008. Front. Neurosci. 2:4). PMID:18946520

  19. How far can sodium substitute for potassium in red beet?

    NASA Technical Reports Server (NTRS)

    Subbarao, G. V.; Wheeler, R. M.; Stutte, G. W.; Levine, L. H.; Sager, J. C. (Principal Investigator)

    1999-01-01

    Sodium (Na) movement between plants and humans is one of the more critical aspects of bioregenerative systems of life support, which NASA is studying for the establishment of long-term bases on the Lunar or Martian surface. This study was conducted to determine the extent to which Na can replace potassium (K) in red beet (Beta vulgaris L. ssp vulgaris) without adversely affecting metabolic functions such as water relations, photosynthetic rates, and thus growth. Two cultivars, Ruby Queen and Klein Bol, were grown for 42 days at 1200 micromoles mol-1 CO2 in a growth chamber using a re-circulating nutrient film technique with 0%, 75%, 95%, and 98% Na substitution for K in a modified half-strength Hoagland solution. Total biomass of Ruby Queen was greatest at 95% Na substitution and equal at 0% and 98% Na substitution. For Klein Bol, there was a 75% reduction in total biomass at 98% Na substitution. Nearly 95% of the total plant K was replaced with Na at 98% Na substitution in both cultivars. Potassium concentrations in leaves decreased from 120 g kg-1 dwt in 0% Na substitution to 3.5 g kg-1 dwt at 98% Na substitution. Leaf chlorophyll concentration, photosynthetic rate, and osmotic potential were not affected in either cultivar by Na substitution for K. Leaf glycinebetaine levels were doubled at 75% Na substitution in Klein Bol, but decreased at higher levels of Na substitution. For Ruby Queen, glycinebetaine levels in leaf increased with the first increase of Na levels and were maintained at the higher Na levels. These results indicate that in some cultivars of red beet, 95% of the normal tissue K can be replaced by Na without a reduction in growth.

  20. Mechanism of potassium ion uptake by the Na+/K+-ATPase

    PubMed Central

    Castillo, Juan P.; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2015-01-01

    The Na+/K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion. PMID:26205423

  1. Sporotrichosis: The Story of an Endemic Region in Peru over 28 Years (1985 to 2012)

    PubMed Central

    Ramírez Soto, Max Carlos

    2015-01-01

    Background Abancay province is a long-standing geographical focus of sporotrichosis in the south central highlands of Peru. Therefore, we examined the features of 36 newly identified cases of sporotrichosis from two hospital centers in Abancay province. We also performed a literature review of studies conducted in this endemic geographical focus over a period of 28 years (1998 to 2012), and analyzed the demographic, clinical and epidemiological features of sporotrichosis in the cases reported in these studies. Methodology We examined the features of 36 new cases of sporotrichosis identified from two hospital centers in Abancay. Furthermore, we searched for relevant studies of cases of sporotrichosis in the endemic region using healthcare databases and literature sources. We analyzed a detailed subset of data on cases collected in Abancay, neighboring provinces, and other regions of Peru. Results A total of nine studies were identified, with 1467 cases included in the final analysis. We also analyzed 36 new cases found in the two hospital centers. Therefore, the combined total of cases analyzed was 1503. Of this total, 58% were male, and approximately 62% were aged ≤14 years. As expected, most cases were from Abancay province (88%), although 12% were from neighboring provinces and other regions of Peru. The lymphocutaneous form (939 cases) was the commonest. The face was the most commonly affected region (647 cases). A total of 1224 patients (81.4%) received treatment: 95.8% received potassium iodide, 2.6% ketoconazole and 1.6% itraconazole. The overall success rates were 60.7% with potassium iodide, 32.2% with ketoconazole and 85% with itraconazole. Conclusions The epidemic of sporotrichosis has been occurring for three decades in the province of Abancay in Peru. This mycosis affects primarily the pediatric population, with predominantly the lymphocutaneous form in the facial region. Although treatment with potassium iodide is safe and effective, response and adherence to treatment are influenced by its duration, cost, accessibility, and side effects. PMID:26030742

  2. Sporotrichosis: The Story of an Endemic Region in Peru over 28 Years (1985 to 2012).

    PubMed

    Ramírez Soto, Max Carlos

    2015-01-01

    Abancay province is a long-standing geographical focus of sporotrichosis in the south central highlands of Peru. Therefore, we examined the features of 36 newly identified cases of sporotrichosis from two hospital centers in Abancay province. We also performed a literature review of studies conducted in this endemic geographical focus over a period of 28 years (1998 to 2012), and analyzed the demographic, clinical and epidemiological features of sporotrichosis in the cases reported in these studies. We examined the features of 36 new cases of sporotrichosis identified from two hospital centers in Abancay. Furthermore, we searched for relevant studies of cases of sporotrichosis in the endemic region using healthcare databases and literature sources. We analyzed a detailed subset of data on cases collected in Abancay, neighboring provinces, and other regions of Peru. A total of nine studies were identified, with 1467 cases included in the final analysis. We also analyzed 36 new cases found in the two hospital centers. Therefore, the combined total of cases analyzed was 1503. Of this total, 58% were male, and approximately 62% were aged ≤14 years. As expected, most cases were from Abancay province (88%), although 12% were from neighboring provinces and other regions of Peru. The lymphocutaneous form (939 cases) was the commonest. The face was the most commonly affected region (647 cases). A total of 1224 patients (81.4%) received treatment: 95.8% received potassium iodide, 2.6% ketoconazole and 1.6% itraconazole. The overall success rates were 60.7% with potassium iodide, 32.2% with ketoconazole and 85% with itraconazole. The epidemic of sporotrichosis has been occurring for three decades in the province of Abancay in Peru. This mycosis affects primarily the pediatric population, with predominantly the lymphocutaneous form in the facial region. Although treatment with potassium iodide is safe and effective, response and adherence to treatment are influenced by its duration, cost, accessibility, and side effects.

  3. Biophysical Properties of ATP-sensitive Potassium Channels in CA3 Hippocampal Neurons

    NASA Astrophysics Data System (ADS)

    Obregón-Herrera, Armando; Márquez-Gamiño, Sergio; Onetti, Carlos G.

    2004-09-01

    Single-channel activity of glucose-sensitive channels from CA3 neurons of the rat hippocampus, was studied in cell-attached membrane patches. Single-channel activity was totally abolished at 20 mM external glucose. Glucose-sensitive channels were selective to K+ ions; the unitary conductance was 170 pS in 140 mM K+, and the K+ permeability was 3.86×10-13 cmṡs-1. The open-state probability (PO) increased with membrane depolarization as a result of mean open time enhancement and shortening of the closure periods. The activation midpoint was -79 mV. Glucose-sensitive K+ channel of CA3 neurons could be considered as an ATP-sensitive potassium channel.

  4. Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

    PubMed

    Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-09-01

    Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Dietary magnesium and potassium intakes and circulating magnesium are associated with heel bone ultrasound attenuation and osteoporotic fracture risk in the EPIC-Norfolk cohort study.

    PubMed

    Hayhoe, Richard P G; Lentjes, Marleen A H; Luben, Robert N; Khaw, Kay-Tee; Welch, Ailsa A

    2015-08-01

    In our aging population, maintenance of bone health is critical to reduce the risk of osteoporosis and potentially debilitating consequences of fractures in older individuals. Among modifiable lifestyle and dietary factors, dietary magnesium and potassium intakes are postulated to influence bone quality and osteoporosis, principally via calcium-dependent alteration of bone structure and turnover. We investigated the influence of dietary magnesium and potassium intakes, as well as circulating magnesium, on bone density status and fracture risk in an adult population in the United Kingdom. A random subset of 4000 individuals from the European Prospective Investigation into Cancer and Nutrition-Norfolk cohort of 25,639 men and women with baseline data was used for bone density cross-sectional analyses and combined with fracture cases (n = 1502) for fracture case-cohort longitudinal analyses (mean follow-up 13.4 y). Relevant biological, lifestyle, and dietary covariates were used in multivariate regression analyses to determine associations between dietary magnesium and potassium intakes and calcaneal broadband ultrasound attenuation (BUA), as well as in Prentice-weighted Cox regression to determine associated risk of fracture. Separate analyses, excluding dietary covariates, investigated associations of BUA and fractures with serum magnesium concentration. Statistically significant positive trends in calcaneal BUA for women (n = 1360) but not men (n = 968) were apparent across increasing quintiles of magnesium plus potassium (Mg+K) z score intake (P = 0.03) or potassium intake alone (P = 0.04). Reduced hip fracture risk in both men (n = 1958) and women (n = 2755) was evident for individuals in specific Mg+K z score intake quintiles compared with the lowest. Statistically significant trends in fracture risk in men across serum magnesium concentration groups were apparent for spine fractures (P = 0.02) and total hip, spine, and wrist fractures (P = 0.02). None of these individual statistically significant associations remained after adjustment for multiple testing. These findings enhance the limited literature studying the association of magnesium and potassium with bone density and demonstrate that further investigation is warranted into the mechanisms involved and the potential protective role against osteoporosis. © 2015 American Society for Nutrition.

  6. A pharmacokinetic-pharmacodynamic model for the quantitative prediction of dofetilide clinical QT prolongation from human ether-a-go-go-related gene current inhibition data.

    PubMed

    Jonker, Daniël M; Kenna, Leslie A; Leishman, Derek; Wallis, Rob; Milligan, Peter A; Jonsson, E Niclas

    2005-06-01

    QT prolongation is an important biomarker of the arrhythmia torsades de pointes and appears to be related mainly to blockade of delayed inward cardiac rectifier potassium currents. The aim of this study was to quantify the relationship between in vitro human ether-a-go-go-related gene (hERG) potassium channel blockade and the magnitude of QT prolongation in humans for the class III antiarrhythmic dofetilide. The in vitro affinity and activity of dofetilide were determined in recombinant cell cultures expressing the hERG channel, and the QT-prolonging effect of dofetilide was assessed in 5 clinical studies (80 healthy volunteers and 17 patients with ischemic heart disease). A population pharmacokinetic-pharmacodynamic analysis of the in vitro and in vivo data was performed in NONMEM by use of the operational model of pharmacologic agonism to estimate the efficiency of transduction from ion channel binding to Fridericia-corrected QT response. A 3-compartment pharmacokinetic model with first-order absorption characterized the time course of dofetilide concentrations. On the basis of an in vitro potency of 5.13 ng/mL for potassium current inhibition and predicted unbound dofetilide concentrations, the estimated transducer ratio (tau) of 6.2 suggests that the QT response plateaus before currents are fully blocked. In our study population, 10% hERG blockade corresponds to a QT prolongation of 20 ms (95% confidence interval, 12-32 ms). With long-term dofetilide administration, tolerance develops with a half-life of 4.7 days. The current mechanism-based pharmacokinetic-pharmacodynamic model quantified the relationship between in vitro hERG channel blockade and clinical QT prolongation for dofetilide. This model may prove valuable for assessing the risk of QT prolongation in humans for other drugs that selectively block the hERG channel on the basis of in vitro assays and pharmacokinetic properties.

  7. Exploring the hidden interior of the Earth with directional neutrino measurements

    DOE PAGES

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-07-10

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here in this paper we present a method for measuring previously unresolved components of Earth’s radiogenic heatingmore » using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors.We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.« less

  8. Exploring the hidden interior of the Earth with directional neutrino measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here in this paper we present a method for measuring previously unresolved components of Earth’s radiogenic heatingmore » using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors.We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.« less

  9. Exploring the hidden interior of the Earth with directional neutrino measurements

    PubMed Central

    Leyton, Michael; Dye, Stephen; Monroe, Jocelyn

    2017-01-01

    Roughly 40% of the Earth’s total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth’s radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth. PMID:28691700

  10. Effects of nonlethal sea lamprey attack on the blood chemistry of lake trout

    USGS Publications Warehouse

    Edsall, Carol Cotant; Swink, William D.

    2001-01-01

    A laboratory study examined changes in the blood chemistry of field-caught and hatchery-reared lake trout Salvelinus namaycush subjected to a nonlethal attack by sea lampreys Petromyzon marinus. We measured glucose, total protein, amylase, alkaline phosphatase (ALKP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase, calcium, magnesium, triglycerides, sodium, and potassium with a Kodak Ektachem DT60 Analyzer, Ektachem DTSC Module, and the DTE Module. Mean levels of total protein, AST, ALKP, hematocrit, calcium, magnesium, and sodium decreased significantly (Pa?? 0.05), and mean levels of ALT and potassium increased significantly (Pa?? 0.05) after sea lamprey feeding. Lake trout condition (K) and hematocrit levels also decreased significantly (Pa?? 0.05) after the sea lamprey attack. Frequency distributions of eight lake trout blood chemistry variables and the hematocrit were significantly different before and after a sea lamprey attack. A second study that used hatchery lake trout broodstock measured changes in hematocrit before and after a sea lamprey attack.

  11. Spectroscopic and theoretical investigations of alkali metal linoleates and oleinates

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata; Regulska, Ewa; Jarońko, Paweł; Lewandowski, Włodzimierz

    2017-11-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the linoleic (cis-9,cis-12-octadecadienoic) and oleic (cis-9-octadecenoic) acids was investigated. The complementary analytical methods: vibrational (IR, Raman) and electronic (UV) molecular absorption spectroscopy as well as DFT quantum mechanical calculations (charge distribution, angles between bonds, bond lengths, theoretical IR and NMR spectra) were carried out. The regular shifts of bands connected with carboxylate anion in the spectra of studied salts were observed. Some bonds and angles reduced or elongated in the series: acid→Li→Na→K linoleates/oleinates. The highest changes were noted for bond lengths and angles concerning COO- ion. The electronic charge distribution in studied molecules was also discussed. Total atomic charges of carboxylate anion decrease as a result of the replacement of hydrogen atom with alkali metal cation. The increasing values of dipole moment and decreasing values of total energy in the order: linoleic/oleic acid→lithium→sodium→potassium linoleates/oleinates indicate an increase in stability of the compounds.

  12. Management of food industry waste employing vermicomposting technology.

    PubMed

    Garg, V K; Suthar, S; Yadav, Anoop

    2012-12-01

    This paper reports the vermicomposting of food industry sludges (FIS) mixed with different organic wastes employing Eisenia fetida. A total of 10 vermicomposting units containing different wastes combinations were established. After 15 weeks significant increase in total nitrogen (N(total)) (60-214%), total available phosphorous (P(avail)) (35.8-69.6%), total sodium (Na(total)) (39-95%), and total potassium (K(total)) (43.7-74.1%), while decrease in pH (8.45-19.7%), total organic carbon (OC(total)) (28.4-36.1%) and C:N ratio (61.2-77.8%) was recorded. The results indicated that FIS may be converted into good quality manure by vermicomposting if spiked with other organic wastes in appropriate quantities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Nongenomic Glucocorticoid Suppression of a Postsynaptic Potassium Current via Emergent Autocrine Endocannabinoid Signaling in Hypothalamic Neuroendocrine Cells following Chronic Dehydration

    PubMed Central

    Wu, Ning

    2017-01-01

    Glucocorticoids rapidly stimulate endocannabinoid synthesis and modulation of synaptic transmission in hypothalamic neuroendocrine cells via a nongenomic signaling mechanism. The endocannabinoid actions are synapse-constrained by astrocyte restriction of extracellular spatial domains. Exogenous cannabinoids have been shown to modulate postsynaptic potassium currents, including the A-type potassium current (IA), in different cell types. The activity of magnocellular neuroendocrine cells is shaped by a prominent IA. We tested for a rapid glucocorticoid modulation of the postsynaptic IK and IA in magnocellular neuroendocrine cells of the hypothalamic paraventricular nucleus (PVN) using whole-cell recordings in rat brain slices. Application of the synthetic glucocorticoid dexamethasone (Dex) had no rapid effect on the IK or IA amplitude, voltage dependence, or kinetics in magnocellular neurons in slices from untreated rats. In magnocellular neurons from salt-loaded rats, however, Dex application caused a rapid suppression of the IA and a depolarizing shift in IA voltage dependence. Exogenously applied endocannabinoids mimicked the rapid Dex modulation of the IA, and CB1 receptor antagonists and agonists blocked and occluded the Dex-induced changes in the IA, respectively, suggesting an endocannabinoid dependence of the rapid glucocorticoid effect. Preincubation of control slices in a gliotoxin resulted in the partial recapitulation of the glucocorticoid-induced rapid suppression of the IA. These findings demonstrate a glucocorticoid suppression of the postsynaptic IA in PVN magnocellular neurons via an autocrine endocannabinoid-dependent mechanism following chronic dehydration, and suggest a possible role for astrocytes in the control of the autocrine endocannabinoid actions. PMID:28966975

  14. Forskolin and protein kinase inhibitors differentially affect hair cell potassium currents and transmitter release at the cytoneural junction in the isolated frog labyrinth.

    PubMed

    Rossi, Maria Lisa; Rubbini, Gemma; Martini, Marta; Canella, Rita; Fesce, Riccardo

    2017-08-15

    The post-transductional elaboration of sensory input at the frog semicircular canal has been studied by correlating the effects of drugs that interfere with phosphorylation processes on: (i) potassium conductances in isolated hair cell and (ii) transmitter release at the cytoneural junction in the intact labyrinth. At hair cells, delayed potassium currents (IKD) undergo voltage- and time-dependent inactivation; inactivation removal requires ATP, is sensitive to kinase blockade, but is unaffected by exogenous application of cyclic nucleotides. We report here that forskolin, an activator of endogenous adenylyl cyclase, enhances IKD inactivation removal in isolated hair cells, but produces an overall decrease in IKD amplitude consistent with the direct blocking action of the drug on several families of K channels. In the intact labyrinth, forskolin enhances transmitter release, consistent with such depression of K conductances. Kinase blockers - H-89 and KT5823 - have been shown to reduce IKD inactivation removal and IKD amplitude at isolated hair cells. In the labyrinth, the effects of these drugs on junctional activity are quite variable, with predominant inhibition of transmitter release, rather than the enhancement expected from the impairment of K currents. The overall action of forskolin and kinase inhibitors on K conductances is similar (depression), but they have opposite effects on transmitter release: this indicates that some intermediate steps between the bioelectric control of hair cell membrane potential and transmitter release are affected in opposite ways and therefore are presumably regulated by protein phosphorylation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Neurovascular coupling protects neurons against hypoxic injury via inhibition of potassium currents by generation of nitric oxide in direct neuron and endothelium cocultures.

    PubMed

    Wu, Kun-Wei; Kou, Zeng-Wei; Mo, Jia-Lin; Deng, Xu-Xu; Sun, Feng-Yan

    2016-10-15

    This study examined the effect of neuron-endothelial coupling on the survival of neurons after ischemia and the possible mechanism underlying that effect. Whole-cell patch-clamp experiments were performed on cortical neurons cultured alone or directly cocultured with brain microvascular endothelial cells (BMEC). Propidium iodide (PI) and NeuN staining were performed to examine neuronal death following oxygen and glucose deprivation (OGD). We found that the neuronal transient outward potassium currents (I A ) decreased in the coculture system, whereas the outward delayed-rectifier potassium currents (I K ) did not. Sodium nitroprusside, a NO donor, enhanced BMEC-induced I A inhibition and nitro-l-arginine methylester, a NOS inhibitor, partially prevented this inhibition. Moreover, the neurons directly cocultured with BMEC showed more resistance to OGD-induced injury compared with the neurons cultured alone, and that neuroprotective effect was abolished by treatment with NS5806, an activator of the I A . These results indicate that vascular endothelial cells assist neurons to prevent hypoxic injury via inhibiting neuronal I A by production of NO in the direct neuron-BMEC coculture system. These results further provide direct evidence of functional coupling between neurons and vascular endothelial cells. This study clearly demonstrates that vascular endothelial cells play beneficial roles in the pathophysiological processes of neurons after hypoxic injury, suggesting that the improvement of neurovascular coupling or functional remodeling may become an important therapeutic target for preventing brain injury. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Inhibitory Effects of Honokiol on the Voltage-Gated Potassium Channels in Freshly Isolated Mouse Dorsal Root Ganglion Neurons.

    PubMed

    Sheng, Anqi; Zhang, Yan; Li, Guang; Zhang, Guangqin

    2018-02-01

    Voltage-gated potassium (K V ) currents, subdivided into rapidly inactivating A-type currents (I A ) and slowly inactivating delayed rectifier currents (I K ), play a fundamental role in modulating pain by controlling neuronal excitability. The effects of Honokiol (Hon), a natural biphenolic compound derived from Magnolia officinalis, on K V currents were investigated in freshly isolated mouse dorsal root ganglion neurons using the whole-cell patch clamp technique. Results showed that Hon inhibited I A and I K in concentration-dependent manner. The IC 50 values for block of I A and I K were 30.5 and 25.7 µM, respectively. Hon (30 µM) shifted the steady-state activation curves of I A and I K to positive potentials by 17.6 and 16.7 mV, whereas inactivation and recovery from the inactivated state of I A were unaffected. These results suggest that Hon preferentially interacts with the active states of the I A and I K channels, and has no effect on the resting state and inactivated state of the I A channel. Blockade on K + channels by Hon may contribute to its antinociceptive effect, especially anti-inflammatory pain.

  17. Association between Blood Pressure Responses to Cold Pressor Test and Dietary Sodium Intervention in the Chinese Population

    PubMed Central

    Chen, Jing; Gu, Dongfeng; Jaquish, Cashell E.; Chen, Chung-Shiuan; Rao, DC; Liu, Depei; Hixson, James E.; Hamm, L. Lee; Gu, C. Charles; Whelton, Paul K.; He, Jiang

    2008-01-01

    Background Blood pressure (BP) responses to the cold pressor test (CPT) and to dietary sodium intake might be related to the risk of hypertension. We examined the association between BP responses to the CPT and to dietary sodium and potassium interventions. Methods The CPT and dietary intervention were conducted among 1,906 study participants in rural China. The dietary intervention included three 7-day periods of low-sodium-feeding (51.3 mmol/day), high-sodium-feeding (307.8 mmol/day), and high-sodium-feeding plus potassium-supplementation (60 mmol/day). A total of 9 BP measurements were obtained during the 3-day baseline observation and the last 3 days of each intervention using a random-zero sphygmomanometer. Results BP response to the CPT was significantly associated with BP changes during the sodium and potassium interventions (all p<0.0001). Compared to the lowest quartile of BP response to the CPT, systolic BP changes (95% confident interval) for the top 3 quartiles, respectively, were −2.02 (−2.87, −1.16), −3.17 (−4.05, −2.28), and −5.98 (−6.89, −5.08) mm Hg during the low-sodium intervention. Corresponding systolic BP changes during the high-sodium intervention were 0.40 (−0.36, 1.16), 0.44 (−0.35, 1.22), and 2.30 (1.50, 3.10) mm Hg, and during the potassium-supplementation were −0.26 (−0.99, 0.46), −0.95 (−1.70, −0.20), and −1.59 (−2.36, −0.83) mm Hg, respectively. Conclusions These results indicated that BP response to the CPT was associated with salt-sensitivity and potassium-sensitivity. Furthermore, a low-sodium or high-potassium diet might be more effective to lower BP among individuals with high responses to the CPT. PMID:18779460

  18. Dietary sodium and potassium intake were associated with hypertension, kidney damage and adverse perinatal outcome in pregnant women with preeclampsia.

    PubMed

    Yılmaz, Zehra Vural; Akkaş, Elif; Türkmen, Gülenay Gençosmanoğlu; Kara, Özgür; Yücel, Aykan; Uygur, Dilek

    2017-02-01

    In this study, we hypothesized that dietary salt and potassium intake may be related with blood pressure, kidney damage and perinatal outcome in pregnants with preeclampsia (PE). In total, 200 women (50 control women with healthy pregnancy, 150 women with PE) were recruited for the study. Daily salt and potassium intake was estimated based on calculation of 24-hour urinary sodium U[Na+] and potassium U[K+] excretion. U[Na+]/[K+] was calculated by dividing U[Na+] by U[K+]. At the end of the measurements, the pregnant women with PE (n=150) were divided into tertiles according to U[Na+]/[K+]: low Na/K group (n=50, mean U[Na+]/[K+]: 1,04±0,32), medium Na/K group (n=50, mean U[Na+]/[K+]: 2,49± 0,54), high Na/K group (n=50, mean U[Na+]/[K+]: 6,62±3,41). The mean SBP and DBP levels were significantly lower in low Na/K group compared with medium or high Na/K groups (p=0.024, p=0.0002; respectively). Serum creatinine was significantly lower in low Na/K group than high Na/K group (p=0.025). Frequency of severe preeclampsia is lower in low Na/K group than medium or high Na/K groups (p=0.002, p=0.0001; respectively). Birth weight and gestational age at birth were higher in low Na/K group compared with high Na/K group (p=0.045, p=0.0002; respectively). After adjusting for covariates, SBP and DBP and creatinine levels were independently associated with 24 hours urinary [Na+]/[K+] Conclusion: These findings suggest that pregnant with PE with high dietary salt and low potassium intake may have greater maternal and neonatal morbidity risk than pregnant with PE under low dietary salt and high potassium intake.

  19. Ion-selective detection by plasticized poly(vinyl chloride) membrane in glass nanopipette with alternating voltage modulation.

    PubMed

    Deng, Xiao Long; Takami, Tomohide; Son, Jong Wan; Kang, Eun Ji; Kawai, Tomoji; Park, Bae Ho

    2013-08-01

    An alternating current (AC) voltage modulation was applied to ion-selective observations with plasticized poly(vinyl chloride) membranes in glass nanopipettes. The liquid confronting the membranes in the nanopipettes, the conditioning process, and AC voltage modulation play important roles in the ion-selective detection. In the AC detection system developed by us, where distilled water was used as the liquid within the nanopipettes, potassium ions were selectively detected in the sample solution of sodium and potassium ions because sodium ions were captured at the membrane containing bis(12-crown-4) ionophores, before the saturation of the ionophores. The membrane lost the selectivity after the saturation. On using sodium chloride as the liquid within the nanopipette, the membrane selectively detected potassium and sodium ions before and after the saturation of ionophores, respectively. The ion-selective detection of our system can be explained by the ion extraction-diffusion-dissolution mechanism through the bis(12-crown-4) ionophores with AC voltage modulation.

  20. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  1. Generation Mechanism of Alternans in Luo-Rudy Model

    NASA Astrophysics Data System (ADS)

    Kitajima, Hiroyuki; Ioka, Eri; Yazawa, Toru

    Electrical alternans is the alternating amplitude from beat to beat in the action potential of the cardiac cell. It has been associated with ventricular arrhythmias in many clinical studies; however, its dynamical mechanisms remain unknown. The reason is that we do not have realistic network models of the heart system. Recently, Yazawa clarified the network structure of the heart and the central nerve system in the crustacean heart. In this study, we construct a simple model of the heart system based on Yazawa’s experimental data. Using this model, we clarify that two parameters (the conductance of sodium ions and free concentration of potassium ions in the extracellular compartment) play the key roles of generating alternans. In particular, we clarify that the inactivation gate of the time-independent potassium channel is the most important parameter. Moreover, interaction between the membrane potential and potassium ionic currents is significant for generating alternate rhythms. This result indicates that if the muscle cell has problems such as channelopathies, there is great risk of generating alternans.

  2. Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia.

    PubMed

    Tomasello, Danielle L; Hurley, Edward; Wrabetz, Lawrence; Bhattacharjee, Arin

    2017-01-01

    The Slick (Kcnt2) sodium-activated potassium (K Na ) channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs), we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene-related peptide (CGRP)-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV)-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO) mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs), and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  3. Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Zhao, Chunsong; Dai, Xuezeng; Lin, Hong; Cui, Bai; Li, Jianbao

    2013-12-01

    A novel amorphous cobalt potassium phosphate hydrate compound (KCoPO4·H2O) is identified to be active photocatalyst for oxygen evolution reaction (OER) to facilitate hydrogen generation from water photolysis. It has been synthesized through a facile and cost-effective solution-based precipitation method using earth-abundant materials. Its highly porous structure and large surface areas are found to be responsible for the excellent electrochemical performance featuring a low OER onset at ∼550 mVSCE and high current density in alkaline condition. Unlike traditional cobalt-based spinel oxides (Co3O4, NiCo2O4) and phosphate (Co-Pi, Co(PO3)2) electrocatalysts, with proper energy band alignment for light-assisted water oxidation, cobalt potassium phosphate hydrate also exhibits robust visible-light response, generating a photocurrent density of ∼200 μA cm-2 at 0.7 VSCE. This catalyst could thus be considered as a promising candidate to perform photoelectrochemical water splitting.

  4. New Molecular Targets for Antiepileptic Drugs: α2δ, SV2A, and Kv7/KCNQ/M Potassium Channels

    PubMed Central

    Rogawski, Michael A.; Bazil, Carl W.

    2008-01-01

    Many currently prescribed antiepileptic drugs (AEDs) act via voltage-gated sodium channels, through effects on γ-aminobutyric acid–mediated inhibition, or via voltage-gated calcium channels. Some newer AEDs do not act via these traditional mechanisms. The molecular targets for several of these nontraditional AEDs have been defined using cellular electrophysiology and molecular approaches. Here, we describe three of these targets: α2δ, auxiliary subunits of voltage-gated calcium channels through which the gabapentinoids gabapentin and pregabalin exert their anticonvulsant and analgesic actions; SV2A, a ubiquitous synaptic vesicle glycoprotein that may prepare vesicles for fusion and serves as the target for levetiracetam and its analog brivaracetam (which is currently in late-stage clinical development); and Kv7/KCNQ/M potassium channels that mediate the M-current, which acts a brake on repetitive firing and burst generation and serves as the target for the investigational AEDs retigabine and ICA-105665. Functionally, all of the new targets modulate neurotransmitter output at synapses, focusing attention on presynaptic terminals as critical sites of action for AEDs. PMID:18590620

  5. New molecular targets for antiepileptic drugs: alpha(2)delta, SV2A, and K(v)7/KCNQ/M potassium channels.

    PubMed

    Rogawski, Michael A; Bazil, Carl W

    2008-07-01

    Many currently prescribed antiepileptic drugs (AEDs) act via voltage-gated sodium channels, through effects on gamma-aminobutyric acid-mediated inhibition, or via voltage-gated calcium channels. Some newer AEDs do not act via these traditional mechanisms. The molecular targets for several of these nontraditional AEDs have been defined using cellular electrophysiology and molecular approaches. Here, we describe three of these targets: alpha(2)delta, auxiliary subunits of voltage-gated calcium channels through which the gabapentinoids gabapentin and pregabalin exert their anticonvulsant and analgesic actions; SV2A, a ubiquitous synaptic vesicle glycoprotein that may prepare vesicles for fusion and serves as the target for levetiracetam and its analog brivaracetam (which is currently in late-stage clinical development); and K(v)7/KCNQ/M potassium channels that mediate the M-current, which acts a brake on repetitive firing and burst generation and serves as the target for the investigational AEDs retigabine and ICA-105665. Functionally, all of the new targets modulate neurotransmitter output at synapses, focusing attention on presynaptic terminals as critical sites of action for AEDs.

  6. Kv7 potassium channel subunits and M currents in cultured hippocampal interneurons.

    PubMed

    Grigorov, Alexej; Moskalyuk, Anastasia; Kravchenko, Mykola; Veselovsky, Nikolai; Verkhratsky, Alexei; Fedulova, Svetlana

    2014-09-01

    Potassium channels of the Kv7 family that mediate the non-inactivating M current regulate the excitability of many types of neurons in the central nervous system, including some in the hippocampus. We report here that individual interneurons from newborn rat hippocampi in long-term culture strongly express messenger RNA specific for Kv7.2 and Kv7.3 and, to a lesser extent, Kv7.5 channel subunits but not for the Kv7.4 subunit. An M-like current was electrophysiologically identified in two subpopulations of interneurons distinct in their spiking behaviour (regular or fast spiking). The M-channel enhancer retigabine reduced interneuronal excitability by constraining the number of action potentials generated during imposed depolarisations; this effect was inhibited by specific the M-channel blocking drugs. In paired synaptically connected interneuron-target cell recordings, anatomically localised applications of retigabine indicated that M channels were present in both the interneuron soma and its GABA-ergic inhibitory axon. We conclude that M-channel subunits and functional M channels are broadly expressed in hippocampal interneurons and their axons and are potentially capable of strongly regulating their firing properties.

  7. Investigation of the Prussian Blue Analog Co3 [Co(CN)6 ]2 as an Anode Material for Nonaqueous Potassium-Ion Batteries.

    PubMed

    Deng, Leqing; Yang, Zhao; Tan, Lulu; Zeng, Liang; Zhu, Yujie; Guo, Lin

    2018-06-21

    Nonaqueous potassium-ion batteries (KIBs) are attracting increasing attention as a potential low-cost energy-storage system due to the abundance of potassium resources. Here, cobalt hexacyanocobaltate (Co 3 [Co(CN) 6 ] 2 ), a typical Prussian blue analog (PBA), is reported as an anode material for nonaqueous KIBs. The as-prepared Co 3 [Co(CN) 6 ] 2 exhibits a highly reversible capacity of 324.5 mAh g -1 at a current density of 0.1 A g -1 , a superior rate capability (221 mAh g -1 at 1 A g -1 ), and a favorable long-term cycling stability (200 cycles with 82% capacity retention). Based on a series of characterizations, it is found that potassiation/depotassiation in Co 3 [Co(CN) 6 ] 2 proceeds via solid-state diffusion-limited K-ion insertion/extraction process, in which both carbon- and nitrogen-coordinated cobalt are electrochemically active toward K-ion storage. Finally, the reaction pathway between potassium and Co 3 [Co(CN) 6 ] 2 is proposed. The present study provides new insights on further exploration of PBAs as high-performance electrode materials for KIBs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering

    PubMed Central

    Thrane, Vinita Rangroo; Thrane, Alexander S; Wang, Fushun; Cotrina, Maria L; Smith, Nathan A; Chen, Michael; Xu, Qiwu; Kang, Ning; Fujita, Takumi; Nagelhus, Erlend A; Nedergaard, Maiken

    2013-01-01

    Ammonia is a ubiquitous waste product of protein metabolism that can accumulate in numerous metabolic disorders, causing neurological dysfunction ranging from cognitive impairment to tremor, ataxia, seizures, coma and death1. The brain is especially vulnerable to ammonia as it readily crosses the blood-brain barrier in its gaseous form, NH3, and rapidly saturates its principal removal pathway located in astrocytes2. Thus, we wanted to determine how astrocytes contribute to the initial deterioration of neurological functions characteristic of hyperammonemia in vivo. Using a combination of two-photon imaging and electrophysiology in awake head-restrained mice, we show that ammonia rapidly compromises astrocyte potassium buffering, increasing extracellular potassium concentration and overactivating the Na+-K+-2Cl− cotransporter isoform 1 (NKCC1) in neurons. The consequent depolarization of the neuronal GABA reversal potential (EGABA) selectively impairs cortical inhibitory networks. Genetic deletion of NKCC1 or inhibition of it with the clinically used diuretic bumetanide potently suppresses ammonia-induced neurological dysfunction. We did not observe astrocyte swelling or brain edema in the acute phase, calling into question current concepts regarding the neurotoxic effects of ammonia3,4. Instead, our findings identify failure of potassium buffering in astrocytes as a crucial mechanism in ammonia neurotoxicity and demonstrate the therapeutic potential of blocking this pathway by inhibiting NKCC1. PMID:24240184

  9. Effects of tetraethylammonium on potassium currents in a molluscan neurons

    PubMed Central

    1981-01-01

    The effects of tetraethylammonium (TEA) on the delayed K+ current and on the Ca2+-activated K+ current of the Aplysia pacemaker neurons R-15 and L-6 were studied. The delayed outward K+ current was measured in Ca2+-free ASW containing tetrodotoxin (TTX), using brief depolarizing clamp pulses. External TEA blocks the delayed K+ current reversibly in a dose-dependent manner. The experimental results are well fitted with a Michaelis-Menten expression, assuming a one-to-one reaction between TEA and a receptor site, with an apparent dissociation constant of 6.0 mM. The block depends on membrane voltage and is reduced at positive membrane potentials. The Ca2+-activated K+ current was measured in Ca2+- free artificial seawater (ASW) containing TTX, using internal Ca2+ ion injection to directly activate the K+ conductance. External TEA and a number of other quaternary ammonium ions block the Ca2+-activated K+ current reversibly in a dose-dependent manner. TEA is the most effective blocker, with an apparent dissociation constant, for a one-to- one reaction with a receptor site, of 0.4 mM. The block decreases with depolarization. The Ca2+-activated K+ current was also measured after intracellular iontophoretic TEA injection. Internal TEA blocks the Ca2+- activated K+ current (but the block is only apparent at positive membrane potentials), is increased by depolarization, and is irreversible. The effects of external and internal TEA can be seen in measurements of the total outward K+ current at different membrane potentials in normal ASW. PMID:6265594

  10. Calculation of Manure Production and Excretion of Nitrogen, Phosphorous and Potassium by Dairy Cattle in the Comarca Lagunera

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to show how to calculate dairy manure production and the manure content of N, P and K. At the regional level, 7.5 x 106 ton yr-1 of fresh manure is produced, with 12.3% of dry matter (DM) content, for a total of 925,000 ton yr-1 (DM). Total N excreted is 46,200 ton yr-...

  11. The muscarinic inhibition of the potassium M-current modulates the action-potential discharge in the vestibular primary-afferent neurons of the rat.

    PubMed

    Pérez, C; Limón, A; Vega, R; Soto, E

    2009-02-18

    There is consensus that muscarinic and nicotinic receptors expressed in vestibular hair cells and afferent neurons are involved in the efferent modulation of the electrical activity of the afferent neurons. However the underlying mechanisms of postsynaptic control in neurons are not well understood. In our work we show that the activation of muscarinic receptors in the vestibular neurons modulates the potassium M-current modifying the activity of afferent neurons. Whole-cell patch-clamp recordings were made on vestibular-afferent neurons isolated from Wistar rats (postnatal days 7-10) and held in primary culture (18-24 h). The M-current was studied during its deactivation after depolarizing voltage-clamp pulses. In 68% of the cells studied, those of larger capacitance, the M-current antagonists linopirdine and XE-991 reduced the amplitude of the M-current by 54%+/-7% and 50%+/-3%. The muscarinic-receptor agonist oxotremorine-M also significantly reduced the M-current by 58%+/-12% in the cells. The action of oxotremorine-M was blocked by atropine, thus indicating its cholinergic nature. The erg-channel blocker E-4031 did not significantly modify the M-current amplitude. In current-clamp experiments, linopirdine, XE-991, and oxotremorine-M modified the discharge response to current pulses from single spike to multiple spiking, reducing the adaptation of the electrical discharge. Our results indicate that large soma-size cultured vestibular-afferent neurons (most probably calyx-bearing neurons) express the M-current and that the modulation of this current by activation of muscarinic-receptor reduces its spike-frequency adaptation.

  12. A novel RP-HPLC method for simultaneous determination of potassium sorbate and sodium benzoate in soft drinks using C18-bonded monolithic silica column.

    PubMed

    Can, Nafiz O; Arli, Goksel; Lafci, Yigit

    2011-08-01

    Potassium sorbate and sodium benzoate are food additives that are generally employed for prevention of food spoilage originating from bacteria, molds or yeasts. Although these compounds were generally recognized as safe due to their low risk of acute and chronic toxicity, they have limitations of usage to protect human health. Development and validation of a novel RP-HPLC method, in which a C18-bonded monolithic silica column was used as stationary phase to assay these compounds, is described for the first time. Aliquots of 10 μL of samples were injected into chromatograph and eluted using phosphate buffer (0.025 M, pH 2.0)-water-acetonitrile (50:45:5, v/v/v) solution, which was pumped at the rate of 3.0 mL/min. To sharpen the peaks, 10 mM octylamine was added to the mobile phase. Potassium sorbate and sodium benzoate were detected at about 12(th) and 14(th) min, respectively, and quantified at 230 nm using photodiode array detector. A total of 41 samples were prepared by simply filtering through 0.45 μm filters after sonication, and injected into the system without any pre-treatment steps. Applicability of the method was demonstrated by performing total procedure on samples of different brands and types, and their compliance to official regulations was assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Performance of electrolyte measurements assessed by a trueness verification program.

    PubMed

    Ge, Menglei; Zhao, Haijian; Yan, Ying; Zhang, Tianjiao; Zeng, Jie; Zhou, Weiyan; Wang, Yufei; Meng, Qinghui; Zhang, Chuanbao

    2016-08-01

    In this study, we analyzed frozen sera with known commutabilities for standardization of serum electrolyte measurements in China. Fresh frozen sera were sent to 187 clinical laboratories in China for measurement of four electrolytes (sodium, potassium, calcium, and magnesium). Target values were assigned by two reference laboratories. Precision (CV), trueness (bias), and accuracy [total error (TEa)] were used to evaluate measurement performance, and the tolerance limit derived from the biological variation was used as the evaluation criterion. About half of the laboratories used a homogeneous system (same manufacturer for instrument, reagent and calibrator) for calcium and magnesium measurement, and more than 80% of laboratories used a homogeneous system for sodium and potassium measurement. More laboratories met the tolerance limit of imprecision (coefficient of variation [CVa]) than the tolerance limits of trueness (biasa) and TEa. For sodium, calcium, and magnesium, the minimal performance criterion derived from biological variation was used, and the pass rates for total error were approximately equal to the bias (<50%). For potassium, the pass rates for CV and TE were more than 90%. Compared with the non homogeneous system, the homogeneous system was superior for all three quality specifications. The use of commutable proficiency testing/external quality assessment (PT/EQA) samples with values assigned by reference methods can monitor performance and provide reliable data for improving the performance of laboratory electrolyte measurement. The homogeneous systems were superior to the non homogeneous systems, whereas accuracy of assigned values of calibrators and assay stability remained challenges.

  14. Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions.

    PubMed

    Dutta, Sara; Mincholé, Ana; Quinn, T Alexander; Rodriguez, Blanca

    2017-10-01

    Acute myocardial ischemia is one of the main causes of sudden cardiac death. The mechanisms have been investigated primarily in experimental and computational studies using different animal species, but human studies remain scarce. In this study, we assess the ability of four human ventricular action potential models (ten Tusscher and Panfilov, 2006; Grandi et al., 2010; Carro et al., 2011; O'Hara et al., 2011) to simulate key electrophysiological consequences of acute myocardial ischemia in single cell and tissue simulations. We specifically focus on evaluating the effect of extracellular potassium concentration and activation of the ATP-sensitive inward-rectifying potassium current on action potential duration, post-repolarization refractoriness, and conduction velocity, as the most critical factors in determining reentry vulnerability during ischemia. Our results show that the Grandi and O'Hara models required modifications to reproduce expected ischemic changes, specifically modifying the intracellular potassium concentration in the Grandi model and the sodium current in the O'Hara model. With these modifications, the four human ventricular cell AP models analyzed in this study reproduce the electrophysiological alterations in repolarization, refractoriness, and conduction velocity caused by acute myocardial ischemia. However, quantitative differences are observed between the models and overall, the ten Tusscher and modified O'Hara models show closest agreement to experimental data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Achieving the Benefits of a High-Potassium, Paleolithic Diet, Without the Toxicity.

    PubMed

    Palmer, Biff F; Clegg, Deborah J

    2016-04-01

    The average US dietary intake of K(+) is well below the current recommended nutritional requirements. This deficiency is even more striking when comparing our current intake with that of our ancestors, who consumed large amounts of dietary K(+). K(+) deficiency has been implicated in many diseases including cardiovascular disease, kidney stones, and osteoporosis. Importantly, dietary supplementation of K(+) has favorable effects on reducing blood pressure, decreasing the risk of stroke, improving bone health, and reducing the risk of nephrolithiasis. For this comprehensive review, we scanned the literature using PubMed and MEDLINE using the following search terms: potassium intake, renal potassium excretion, and prevention of hyperkalemia. Articles were selected for inclusion if they represented primary data or review articles published between 1980 and 2015 in high-impact journals. The normal kidney has the capacity to tightly regulate K(+) homoeostasis. We discuss new findings with respect to sensing mechanisms by which the kidney maintains K(+) homeostasis in the gastrointestinal tract and distal tubule. There are widely prescribed hypertensive medications that cause hyperkalemia and thus require dietary K(+) restriction. We conclude by discussing newly approved drugs capable of binding K(+) in the gastrointestinal tract and speculate that this new pharmacology might allow diet liberalization in patients at risk for hyperkalemia, affording them the numerous benefits of a K(+)-rich diet. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  16. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb).

    PubMed

    Saa, Sebastian; Olivos-Del Rio, Andres; Castro, Sebastian; Brown, Patrick H

    2015-01-01

    The use of biostimulants has become a common practice in agriculture. However, there is little peer-reviewed research on this topic. In this study we tested, under controlled and replicated conditions, the effect of one biostimulant derived from seaweed extraction (Bio-1) and another biostimulant derived from microbial fermentation (Bio-2). This experiment utilized 2-years-old almond plants over two growing seasons in a randomized complete design with a full 2 × 4 factorial structure with two soil potassium treatments (125 μg g(-1) of K vs. 5 μg g(-1)) and four foliar treatments (No spray, Foliar-K, Bio-1, Bio-2). Rubidium was utilized as a surrogate for short-term potassium uptake and plant growth, nutrient concentration, and final plant biomass were evaluated. There was a substantial positive effect of both biostimulant treatments on total shoot leaf area, and significant increases in shoot length and biomass under adequate soil potassium supply with a positive effect of Bio-1 only under low K supply. Rubidium uptake was increased by Bio-1 application an effect that was greater under the low soil K treatment. Though significant beneficial effects of the biostimulants used on plant growth were observed, it is not possible to determine the mode of action of these materials. The results presented here illustrate the promise and complexity of research involving biostimulants.

  17. Release of chromaffin granule glycoproteins and proteoglycans from potassium-stimulated PC12 pheochromocytoma cells.

    PubMed

    Salton, S R; Margolis, R U; Margolis, R K

    1983-10-01

    Cultured PC12 pheochromocytoma cells were labeled with [3H]glucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM). The released complex carbohydrates include chromogranins, dopamine beta-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(beta 1 leads to 3)N-acetylgalactosamine, as well as several mono- and disialyl O-glycosidically-linked oligosaccharides, and the tetrasaccharide AcNeu(alpha 2 leads to 3)Gal(beta 1 leads to 3)[AcNeu(alpha 2 leads to 6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23-68%), heparan sulfate (16-23%), and glycoprotein oligosaccharides (16-54%), which are of the tri- and tetraantennary and O-glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.

  18. Abnormalities of serum potassium concentration in dialysis-associated hyperglycemia and their correction with insulin: review of published reports.

    PubMed

    Tzamaloukas, Antonios H; Ing, Todd S; Elisaf, Moses S; Raj, Dominic S C; Siamopoulos, Kostas C; Rohrscheib, Mark; Murata, Glen H

    2011-06-01

    The main difference between dialysis-associated hyperglycemia (DH) and diabetic ketoacidosis (DKA) or nonketotic hyperglycemia (NKH) occurring in patients with preserved renal function is the absence of osmotic diuresis in DH, which eliminates the need for large fluid and solute (including potassium) replacement. We analyzed published reports of serum potassium (K(+)) abnormalities and their treatment in DH. Hyperkalemia was often present at presentation of DH with higher frequency and severity than in hyperglycemic syndromes in patients with preserved renal function. The frequency and severity of hyperkalemia were higher in DH episodes with DKA than those with NKH in both hemodialysis and peritoneal dialysis. For DKA, the frequency and severity of hyperkalemia were similar in hemodialysis and peritoneal dialysis. For NKH, hyperkalemia was more severe and frequent in hemodialysis than in peritoneal dialysis. Insulin infusion corrected the hyperkalemia of DH in most cases. Additional measures for the management of hyperkalemia or modest potassium infusions for hypokalemia were needed in a few DH episodes. The predictors of the decrease in serum K(+) during treatment of DH with insulin included the starting serum K(+) level, the decreases in serum values of glucose concentration and tonicity, and the increase in serum total carbon dioxide level. DH represents a risk factor for hyperkalemia. Insulin infusion is the only treatment for hyperkalemia usually required.

  19. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus.

    PubMed

    Khositseth, Sookkasem; Uawithya, Panapat; Somparn, Poorichaya; Charngkaew, Komgrid; Thippamom, Nattakan; Hoffert, Jason D; Saeed, Fahad; Michael Payne, D; Chen, Shu-Hui; Fenton, Robert A; Pisitkun, Trairak

    2015-12-17

    Hypokalemia (low serum potassium level) is a common electrolyte imbalance that can cause a defect in urinary concentrating ability, i.e., nephrogenic diabetes insipidus (NDI), but the molecular mechanism is unknown. We employed proteomic analysis of inner medullary collecting ducts (IMCD) from rats fed with a potassium-free diet for 1 day. IMCD protein quantification was performed by mass spectrometry using a label-free methodology. A total of 131 proteins, including the water channel AQP2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the down-regulated proteins were associated with the biological processes of generation of precursor metabolites and energy, actin cytoskeleton organization, and cell-cell adhesion. Targeted LC-MS/MS and immunoblotting studies further confirmed the down regulation of 18 selected proteins. Electron microscopy showed autophagosomes/autophagolysosomes in the IMCD cells of rats deprived of potassium for only 1 day. An increased number of autophagosomes was also confirmed by immunofluorescence, demonstrating co-localization of LC3 and Lamp1 with AQP2 and several other down-regulated proteins in IMCD cells. AQP2 was also detected in autophagosomes in IMCD cells of potassium-deprived rats by immunogold electron microscopy. Thus, enhanced autophagic degradation of proteins, most notably including AQP2, is an early event in hypokalemia-induced NDI.

  20. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus

    PubMed Central

    Khositseth, Sookkasem; Uawithya, Panapat; Somparn, Poorichaya; Charngkaew, Komgrid; Thippamom, Nattakan; Hoffert, Jason D.; Saeed, Fahad; Michael Payne, D.; Chen, Shu-Hui; Fenton, Robert A.; Pisitkun, Trairak

    2015-01-01

    Hypokalemia (low serum potassium level) is a common electrolyte imbalance that can cause a defect in urinary concentrating ability, i.e., nephrogenic diabetes insipidus (NDI), but the molecular mechanism is unknown. We employed proteomic analysis of inner medullary collecting ducts (IMCD) from rats fed with a potassium-free diet for 1 day. IMCD protein quantification was performed by mass spectrometry using a label-free methodology. A total of 131 proteins, including the water channel AQP2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the down-regulated proteins were associated with the biological processes of generation of precursor metabolites and energy, actin cytoskeleton organization, and cell-cell adhesion. Targeted LC-MS/MS and immunoblotting studies further confirmed the down regulation of 18 selected proteins. Electron microscopy showed autophagosomes/autophagolysosomes in the IMCD cells of rats deprived of potassium for only 1 day. An increased number of autophagosomes was also confirmed by immunofluorescence, demonstrating co-localization of LC3 and Lamp1 with AQP2 and several other down-regulated proteins in IMCD cells. AQP2 was also detected in autophagosomes in IMCD cells of potassium-deprived rats by immunogold electron microscopy. Thus, enhanced autophagic degradation of proteins, most notably including AQP2, is an early event in hypokalemia-induced NDI. PMID:26674602

  1. The pore-lining region of shaker voltage-gated potassium channels: comparison of beta-barrel and alpha-helix bundle models.

    PubMed Central

    Kerr, I D; Sansom, M S

    1997-01-01

    Although there is a large body of site-directed mutagenesis data that identify the pore-lining sequence of the voltage-gated potassium channel, the structure of this region remains unknown. We have interpreted the available biochemical data as a set of topological and orientational restraints and employed these restraints to produce molecular models of the potassium channel pore region, H5. The H5 sequence has been modeled either as a tetramer of membrane-spanning beta-hairpins, thus producing an eight-stranded beta-barrel, or as a tetramer of incompletely membrane-spanning alpha-helical hairpins, thus producing an eight-staved alpha-helix bundle. In total, restraints-directed modeling has produced 40 different configurations of the beta-barrel model, each configuration comprising an ensemble of 20 structures, and 24 different configurations of the alpha-helix bundle model, each comprising an ensemble of 24 structures. Thus, over 1300 model structures for H5 have been generated. Configurations have been ranked on the basis of their predicted pore properties and on the extent of their agreement with the biochemical data. This ranking is employed to identify particular configurations of H5 that may be explored further as models of the pore-lining region of the voltage-gated potassium channel pore. Images FIGURE 7 FIGURE 12 PMID:9251779

  2. Topical 5% potassium permanganate solution accelerates the healing process in chronic diabetic foot ulcers.

    PubMed

    Delgado-Enciso, Iván; Madrigal-Perez, Violeta M; Lara-Esqueda, Agustin; Diaz-Sanchez, Martha G; Guzman-Esquivel, Jose; Rosas-Vizcaino, Luis E; Virgen-Jimenez, Oscar O; Kleiman-Trujillo, Juleny; Lagarda-Canales, Maria R; Ceja-Espiritu, Gabriel; Rangel-Salgado, Viridiana; Lopez-Lemus, Uriel A; Delgado-Enciso, Josuel; Lara-Basulto, Agustin D; Soriano Hernández, Alejandro D

    2018-02-01

    Potassium permanganate has been reported to be an effective treatment for certain types of wounds. The aim of the present study was to evaluate the use of potassium permanganate in the treatment of diabetic foot ulcers. A single-blind, randomized, controlled clinical trial was conducted on patients with type 2 diabetes mellitus that presented with a foot ulcer persisting for >3 months. The control group (n=10) was treated with the current standard treatment, which comprises of measures for reducing pressure in the ulcerated area, daily cleansing of the ulcer with potable water and antiseptic wash solution, and the application of a disinfectant solution on the entire surface area of the ulcer; while the intervention group (n=15) received the standard treatment plus 5% topical potassium permanganate solution applied once a day for 21 days. In the intervention group, 1 patient did not tolerate the treatment and was eliminated from the study on the first day. The remaining patients tolerated the interventions well. At the end of the treatment period, ulcers in the control group had decreased by 38% whereas those in the intervention group decreased by 73% (P<0.009). The degree of decrease was also investigated; the ulcer size was ≥50% decreased in 40% of patients in the control group and in 86% of patients in the intervention group (P=0.02). In conclusion, the results of the present study indicate that topical potassium permanganate is well tolerated and significantly accelerates the healing process of diabetic foot ulcers.

  3. Topical 5% potassium permanganate solution accelerates the healing process in chronic diabetic foot ulcers

    PubMed Central

    Delgado-Enciso, Iván; Madrigal-Perez, Violeta M.; Lara-Esqueda, Agustin; Diaz-Sanchez, Martha G.; Guzman-Esquivel, Jose; Rosas-Vizcaino, Luis E.; Virgen-Jimenez, Oscar O.; Kleiman-Trujillo, Juleny; Lagarda-Canales, Maria R.; Ceja-Espiritu, Gabriel; Rangel-Salgado, Viridiana; Lopez-Lemus, Uriel A.; Delgado-Enciso, Josuel; Lara-Basulto, Agustin D.; Soriano Hernández, Alejandro D.

    2018-01-01

    Potassium permanganate has been reported to be an effective treatment for certain types of wounds. The aim of the present study was to evaluate the use of potassium permanganate in the treatment of diabetic foot ulcers. A single-blind, randomized, controlled clinical trial was conducted on patients with type 2 diabetes mellitus that presented with a foot ulcer persisting for >3 months. The control group (n=10) was treated with the current standard treatment, which comprises of measures for reducing pressure in the ulcerated area, daily cleansing of the ulcer with potable water and antiseptic wash solution, and the application of a disinfectant solution on the entire surface area of the ulcer; while the intervention group (n=15) received the standard treatment plus 5% topical potassium permanganate solution applied once a day for 21 days. In the intervention group, 1 patient did not tolerate the treatment and was eliminated from the study on the first day. The remaining patients tolerated the interventions well. At the end of the treatment period, ulcers in the control group had decreased by 38% whereas those in the intervention group decreased by 73% (P<0.009). The degree of decrease was also investigated; the ulcer size was ≥50% decreased in 40% of patients in the control group and in 86% of patients in the intervention group (P=0.02). In conclusion, the results of the present study indicate that topical potassium permanganate is well tolerated and significantly accelerates the healing process of diabetic foot ulcers. PMID:29435274

  4. The hydro-chemical and physical conditions of the environment of the immature stages of some species of the simulium (Edwardsellum) damnosum complex (Diptera).

    PubMed

    Grunewald, J

    1976-12-01

    Water samples were collected from breeding sites of species of the Simulium (Edwardsellum) damnoslm complex in Upper Volta, Liberia and Cameroon during the dry season; and in Tanzania and Kenya at various seasons during a period of two years. The following 20 factors were analysed at 45 breeding sites: water temperature, current velocity, pH value, conductivity free carbon dioxide, oxygen content, calcium, magnesium, potassium, sodium, alkalinity, chloride, sulphate, nitrite, nitrate, ammonium, phosphate, silicate, total iron and organic substance (consumption of potassium permanganate). A number of notable differences in the chemical composition of the water of the breeding sites of 13 S. damnosum complex species were found, particularly with regard to the pH and conductivity. On the basis of these differences the various species can be divided into three main groups: Group I: 3 species (S. sanctipauli, S. yahense, "Menge"); breeding in sites with pH values always below 7 and conductivity values below 50 mumhos. Group II: 8 species (S. sirbanum, S. sudanense, S. damnosum s.s., S. squamosum, "Sanje", "Nkusi", "Nyamagasani", "Jovi"); breeding in watercourses with neutral, weakly acid or weakly alkaline reactions and conductivity values ranging from 50 to 150 mumhos. Group III: 2 species ("Kibwezi", "Kisiwani"); breeding in watercourses characterized by highly alkaline reactions with pH values between 7.7 and 10 and by conductivity values between 400 and 950 mumhos. The vectors of Onchocerca volvulus are included in group I and II only.

  5. Characterization of ionic currents of cells of the subfornical organ that project to the supraoptic nuclei

    NASA Technical Reports Server (NTRS)

    Johnson, R. F.; Beltz, T. G.; Jurzak, M.; Wachtel, R. E.; Johnson, A. K.

    1999-01-01

    The subfornical organ (SFO) is a forebrain structure that converts peripheral blood-borne signals reflecting the hydrational state of the body to neural signals and then through efferent fibers conveys this information to several central nervous system structures. One of the forebrain areas receiving input from the SFO is the supraoptic nucleus (SON), a source of vasopressin synthesis and control of release from the posterior pituitary. Little is known of the transduction and transmission processes by which this conversion of systemic information to brain input occurs. As a step in elucidating these mechanisms, the present study characterized the ionic currents of dissociated cells of the SFO that were identified as neurons that send efferents to the SON. A retrograde tracer was injected into the SON area in eleven-day-old rats. After three days for retrograde transport of the label, the SFOs of these animals were dissociated and plated for tissue culture. The retrograde tracer was used to identify the soma of SFO cells projecting to the SON so that voltage-dependent ionic currents using whole-cell voltage clamp methods could be studied. The three types of currents in labeled SFO neurons were characterized as a 1) rapid, transient inward current that can be blocked by tetrodotoxin (TTX) characteristic of a sodium current; 2) slow-onset sustained outward current that can be blocked by tetraethylammonium (TEA) characteristic of a delayed rectifier potassium current; and 3) remaining outward current that has a rapid-onset and transient characteristic of a potassium A-type current. Copyright 1999 Elsevier Science B.V.

  6. Novel application of vacuum sealing drainage with continuous irrigation of potassium permanganate for managing infective wounds of gas gangrene.

    PubMed

    Hu, Ning; Wu, Xing-Huo; Liu, Rong; Yang, Shu-Hua; Huang, Wei; Jiang, Dian-Ming; Wu, Qiang; Xia, Tian; Shao, Zeng-Wu; Ye, Zhe-Wei

    2015-08-01

    Traumatic gas gangrene is a fatal infection mainly caused by Clostridium perfringens. It is a challenge to manage gas gangrene in open wounds and control infection after debridement or amputation. The aim of the present study was to use vacuum sealing drainage (VSD) with continuous irrigation of potassium permanganate to manage infective wounds of gas gangrene and observe its clinical efficacy. A total of 48 patients with open traumatic gas gangrene infection were included in this study. Amputations were done for 27 patients, and limb salvage procedures were performed for the others. After amputation or aggressive debridement, the VSD system, including polyvinyl alcohol (PVA) foam dressing and polyurethane (PU) film, with continuous irrigation of 1:5000 potassium permanganate solutions, was applied to the wounds. During the follow-up, all the patients healed without recurrence within 8-18 months. There were four complications. Cardiac arrest during amputation surgery occurred in one patient who suffered from severe septic shock. Emergent resuscitation was performed and the patient returned to stable condition. One patient suffered from mixed infection of Staphylococcal aureus, and a second-stage debridement was performed. One patient suffered from severe pain of the limb after the debridement. Exploratory operation was done and the possible reason was trauma of a local peripheral nerve. Three cases of crush syndrome had dialysis treatment for concomitant renal failure. In conclusion, VSD can convert open wound to closed wound, and evacuate necrotic tissues. Furthermore, potassium permanganate solutions help eliminate anaerobic microenvironment and achieve good therapeutic effect on gas gangrene and mixed infection. VSD with continuous irrigation of potassium permanganate is a novel, simple and feasible alternative for severe traumatic open wounds with gas gangrene infection.

  7. Oral potassium supplementation in surgical patients.

    PubMed

    Hainsworth, Alison J; Gatenby, Piers A

    2008-08-01

    Hospital inpatients are frequently hypokalaemic. Low plasma potassium levels may cause life threatening complications, such as cardiac arrhythmias. Potassium supplementation may be administered parenterally or enterally. Oral potassium supplements have been associated with oesophageal ulceration, strictures and gastritis. An alternative to potassium salt tablets or solution is dietary modification with potassium rich food stuffs, which has been proven to be a safe and effective method for potassium supplementation. The potassium content of one medium banana is equivalent to a 12 mmol potassium salt tablet. Potassium supplementation by dietary modification has been shown to be equally efficacious to oral potassium salt supplementation and is preferred by the majority of patients. Subsequently, it is our practice to replace potassium using dietary modification, particularly in surgical patients having undergone oesophagogastrectomy or in those with peptic ulcer disease.

  8. Effects of Potassium Sulfate [K2SO4] on The Element Contents, Polyphenol Content, Antioxidant and Antimicrobial Activities of Milk Thistle [Silybum Marianum].

    PubMed

    Yaldiz, Gulsum

    2017-01-01

    Silybum marianum L. (Milk thistle) is native to the Mediterranean basin and is now widespread throughout the world. It's sprout is used as a herbal medicine for the treatment of liver disease for centuries. The seeds of milk thistle contain silymarin, an isomeric mixture of flavonolignans [silybin, silychristin, and silydianin]. Silymarin acts as a strong anti-hepatotoxic. The objective of this study was to evaluate the influences of potassium sulfate [K 2 SO 4 ] fertilizer doses on polyphenol content, some nutrient elements, antioxidant and antimicrobial activities of milk thistle at experimental fields of Ordu University in Turkey. The antimicrobial activities of seed ethanol extracts and seed oil were tested in vitro against Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli, (E. coli) Staphylococcus aureus (S. aureus), Aspergillus niger (A. niger) and Candida albicans (C. albicans) using the disc diffusion method. Free radical scavenging activity of the ethanolic extracts of milk thistle was determined spectrophotometrically by monitoring the disappearance of 2, 2-diphenyl-1-picrylhydrazil (DPPH•) at 517 nm according to the method described by Brand-Williams et al .[17] The phenolic contents in the ethanolic extracts of milk thistle were determined according to the procedure described by Slinkard and Singleton[19] with a slight modification of using a Folin-Ciocalteu phenolic reagent. The amount of total flavonoid in the ethanolic extracts was measured by aluminum chloride [AlCl 3 ] colorimetric assay. The ions in aerosol samples were determined by using Dionex ICS 1100 Series ion chromatography. Seed and seed oils obtained from obvious doses of potassium sulfate [0, 30, 60, 90 and 120 kg ha -1 fertilizer applications showed antimicrobial activities against E. coli , A. niger and P. aeruginosa . The application of 90 kg ha -1 of K 2 SO 4 on seed oil resulted in the highest antimicrobial activities. At 100 µg mL -1 and 200 µg mL -1 , except the highest potassium application [120 kg ha -1 extract, all extracts showed high and similar DPPH scavenging activity. The highest phenolic compounds were obtained with 30 kg ha -1 of K 2 SO 4 , whereas the use of 60 kg ha -1 caused the highest total flavonoid content. This plant is a good source of K + , Ca +2 , PO4 -3 , and Cl -1 . In this study, increasing doses of potassium sulfate had significant effect on element, polyphenol content, antioxidant and antimicrobial activities of the milk thistle. All tested extracts were active against all tested microbial species.All extracts have shown high and similar DPPH scavenging activity.There was a gradual increase in the biological properties of the milk thistle seeds with rising levels of potassium sulfate.The milk thistle seeds are rather rich sources of K + , Ca +2 , PO4 -3 and Cl -1 potentially bioavailable for human consumption. Abbreviations used: AlCl 3 : aluminum chloride, Ca +2 : calcium, Cl - : chloride, Cr: chromium CE: catechol equivalents, DPPH: 2,2-diphenylpicrylhydrazyl, ABTS: 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid, DAP: diamonyum fosfat, F - : fluoride, Fe: iron, K 2 SO 4 : potassium sulfate, K+ : potassium, Li+: lithium, Mg +2 : magnesium, NH 4 + : amonyum, Na + : sodium, NO 2 - : nitrite, NO 3 - : nitrate, Ni: nickel, NaNO 2 : sodium nitrite, NaOH: sodium hidroksit. ND: Not detectable, PO4 -3 : phosphorus, Zn: zinc.

  9. Effects of Potassium Sulfate [K2SO4] on The Element Contents, Polyphenol Content, Antioxidant and Antimicrobial Activities of Milk Thistle [Silybum Marianum

    PubMed Central

    Yaldiz, Gulsum

    2017-01-01

    Background: Silybum marianum L. (Milk thistle) is native to the Mediterranean basin and is now widespread throughout the world. It's sprout is used as a herbal medicine for the treatment of liver disease for centuries. The seeds of milk thistle contain silymarin, an isomeric mixture of flavonolignans [silybin, silychristin, and silydianin]. Silymarin acts as a strong anti-hepatotoxic. Objectives: The objective of this study was to evaluate the influences of potassium sulfate [K2SO4] fertilizer doses on polyphenol content, some nutrient elements, antioxidant and antimicrobial activities of milk thistle at experimental fields of Ordu University in Turkey. Methods: The antimicrobial activities of seed ethanol extracts and seed oil were tested in vitro against Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli, (E. coli) Staphylococcus aureus (S. aureus), Aspergillus niger (A. niger) and Candida albicans (C. albicans) using the disc diffusion method. Free radical scavenging activity of the ethanolic extracts of milk thistle was determined spectrophotometrically by monitoring the disappearance of 2, 2-diphenyl-1-picrylhydrazil (DPPH•) at 517 nm according to the method described by Brand-Williams et al.[17] The phenolic contents in the ethanolic extracts of milk thistle were determined according to the procedure described by Slinkard and Singleton[19] with a slight modification of using a Folin-Ciocalteu phenolic reagent. The amount of total flavonoid in the ethanolic extracts was measured by aluminum chloride [AlCl3] colorimetric assay. The ions in aerosol samples were determined by using Dionex ICS 1100 Series ion chromatography. Results: Seed and seed oils obtained from obvious doses of potassium sulfate [0, 30, 60, 90 and 120 kg ha -1 fertilizer applications showed antimicrobial activities against E. coli, A. niger and P. aeruginosa. The application of 90 kg ha -1 of K2SO4 on seed oil resulted in the highest antimicrobial activities. At 100 µg mL-1 and 200 µg mL-1, except the highest potassium application [120 kg ha -1 extract, all extracts showed high and similar DPPH scavenging activity. The highest phenolic compounds were obtained with 30 kg ha -1 of K2SO4, whereas the use of 60 kg ha -1 caused the highest total flavonoid content. This plant is a good source of K+, Ca+2, PO4-3, and Cl-1. Conclusion: In this study, increasing doses of potassium sulfate had significant effect on element, polyphenol content, antioxidant and antimicrobial activities of the milk thistle. SUMMARY All tested extracts were active against all tested microbial species.All extracts have shown high and similar DPPH scavenging activity.There was a gradual increase in the biological properties of the milk thistle seeds with rising levels of potassium sulfate.The milk thistle seeds are rather rich sources of K+, Ca+2, PO4-3 and Cl-1 potentially bioavailable for human consumption. Abbreviations used: AlCl3: aluminum chloride, Ca+2: calcium, Cl-: chloride, Cr: chromium CE: catechol equivalents, DPPH: 2,2-diphenylpicrylhydrazyl, ABTS: 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid, DAP: diamonyum fosfat, F-: fluoride, Fe: iron, K2SO4: potassium sulfate, K+ : potassium, Li+: lithium, Mg+2 : magnesium, NH4+ : amonyum, Na+: sodium, NO2-: nitrite, NO3-: nitrate, Ni: nickel, NaNO2: sodium nitrite, NaOH: sodium hidroksit. ND: Not detectable, PO4-3: phosphorus, Zn: zinc PMID:28216891

  10. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    PubMed

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Arrhythmic hazard map for a 3D whole-ventricles model under multiple ion channel block.

    PubMed

    Okada, Jun-Ichi; Yoshinaga, Takashi; Kurokawa, Junko; Washio, Takumi; Furukawa, Tetsushi; Sawada, Kohei; Sugiura, Seiryo; Hisada, Toshiaki

    2018-05-10

    To date, proposed in silico models for preclinical cardiac safety testing are limited in their predictability and usability. We previously reported a multi-scale heart simulation that accurately predicts arrhythmogenic risk for benchmark drugs. We extend this approach and report the first comprehensive hazard map of drug-induced arrhythmia based on the exhaustive in silico electrocardiogram (ECG) database of drug effects, developed using a petaflop computer. A total of 9075 electrocardiograms constitute the five-dimensional hazard map, with coordinates representing the extent of the block of each of the five ionic currents (rapid delayed rectifier potassium current (IKr), fast (INa) and late (INa,L) components of the sodium current, L-type calcium current (ICa,L) and slow delayed rectifier current (IKs)), involved in arrhythmogenesis. Results of the evaluation of arrhythmogenic risk based on this hazard map agreed well with the risk assessments reported in three references. ECG database also suggested that the interval between the J-point and the T-wave peak is a superior index of arrhythmogenicity compared to other ECG biomarkers including the QT interval. Because concentration-dependent effects on electrocardiograms of any drug can be traced on this map based on in vitro current assay data, its arrhythmogenic risk can be evaluated without performing costly and potentially risky human electrophysiological assays. Hence, the map serves as a novel tool for use in pharmaceutical research and development. This article is protected by copyright. All rights reserved.

  12. Calcium Currents of Olfactory Bulb Juxtaglomerular Cells: Profile and Multiple Conductance Plateau Potential Simulation

    PubMed Central

    Masurkar, Arjun V.; Chen, Wei R.

    2011-01-01

    The olfactory glomerulus is the locus of information transfer between olfactory sensory neurons and output neurons of the olfactory bulb. Juxtaglomerular cells (JGCs) may influence intraglomerular processing by firing plateau potentials that support multiple spikes. It is unclear what inward currents mediate this firing pattern. In previous work, we characterized potassium currents of JGCs. We focus here on the inward currents using whole cell current clamp and voltage recording in a rat in vitro slice preparation, as well as computer simulation. We first showed that sodium current was not required to mediate plateau potentials. Voltage clamp characterization of calcium current (ICa) determined that ICa consisted of a slow activating, rapidly inactivating (τ10%–90% rise 6–8ms, τinactivation 38–77ms) component Icat1, similar to T-type currents, and a sustained (τinactivation≫500ms) component Icat2, likely composed of L-type and P/Q-type currents. We used computer simulation to test their roles in plateau potential firing. We robustly modeled Icat1 and Icat2 to Hodgkin-Huxley schemes (m3h and m2, respectively) and simulated a JGC plateau potential with 6 conductances: calcium currents as above, potassium currents from our prior study (A-type Ikt1, D-type Ikt2, delayed rectifier Ikt3), and a fast sodium current (INa). We demonstrated that Icat1 was required for mediating the plateau potential, unlike INa and Icat2, and its τinactivation determined plateau duration. We also found that Ikt1 dictated plateau potential shape more than Ikt2 and Ikt3. The influence of these two transient and opposing conductances suggests a unique mechanism of plateau potential physiology. PMID:21704681

  13. Potassium channels cloned from neuroblastoma cells display slowly inactivating outward currents in Xenopus oocytes.

    PubMed

    Ito, Y; Yokoyama, S; Higashida, H

    1992-05-22

    Messenger RNAs (mRNAs) specific for NGK1 and NGK2 potassium channels were synthesized from complementary DNAs (cDNAs) that had been cloned from mouse neuroblastoma x rat glioma hybrid NG108-15 cells. Outward pottasium currents were evoked by 5 s depolarizing voltage commands in Xenopus oocytes injected with NGK1- or NGK2-specific mRNAs. The NGK1 or NGK2 currents showed different activation and inactivation kinetics, and different pharmacological sensitivities. The threshold potential for activation of the NGK2 current (-14 mV) was more positive than that for the NGK1 (-36 mV). The NGK2 current showed faster inactivation during a 5 s depolarizing pulse than did the NGK1 current. Inactivation was best fit by time constants of 0.37, 1.5 and 19 s for the NGK2 current and 4.4 and 19 s for NGK1. Extracellularly applied tetraethylammonium chloride (TEA) was 1000 times more potent on the NGK2 current than the NGK1 current. Furthermore we examined outward current following co-injection of an equal amount of mRNAs for NGK1 and NGK2. The timecourse of inactivation differed from either alone or from a simple sum of the two individual currents. TEA sensitivity could not be explained by summation of the two homomultimeric channels. These findings suggest that both NGK1 and NGK2 proteins assemble to form heteromultimeric K+ channels in addition to homomultimeric K+ channels. NGK2 channels and the heteromultimeric channels may be responsible for the native transient outward current with slow inactivation in NG108-15 hybrid cells.

  14. Preferential inhibition of Ih in rat trigeminal ganglion neurons by an organic blocker.

    PubMed

    Janigro, D; Martenson, M E; Baumann, T K

    1997-11-15

    The potency and specificity of a novel organic Ih current blocker DK-AH 268 (DK, Boehringer) was studied in cultured rat trigeminal ganglion neurons using whole-cell patch-clamp recording techniques. In neurons current-clamped at the resting potential, the application of 10 microM DK caused a slight hyperpolarization of the membrane potential and a small increase in the threshold for action potential discharge without any major change in the shape of the action potential. In voltage-clamped neurons, DK caused a reduction of a hyperpolarization-activated current. Current subtraction protocols revealed that the time-dependent, hyperpolarization-activated currents blocked by 10 microM DK or external Cs+ (3 mM) had virtually identical activation properties, suggesting that DK and Cs+ caused blockade of the same current, namely Ih. The block of Ih by DK was dose-dependent. At the intermediate and higher concentrations of DK (10 and 100 microM) a decrease in specificity was observed so that time-independent, inwardly rectifying and noninactivating, voltage-gated outward potassium currents were also reduced by DK but to a much lesser extent than the time-dependent, hyperpolarization-activated currents. Blockade of the time-dependent, hyperpolarization-activated currents by DK appeared to be use-dependent since it required hyperpolarization for the effect to take place. Relief of DK block was also aided by membrane hyperpolarization. Since both the time-dependent current blocked by DK and the Cs+-sensitive time-dependent current behaved as Ih, we conclude that 10 microM DK can preferentially reduce Ih without a major effect on other potassium currents. Thus, DK may be a useful agent in the investigation of the function of Ih in neurons.

  15. Dynamic, nonlinear feedback regulation of slow pacemaking by A-type potassium current in ventral tegmental area neurons.

    PubMed

    Khaliq, Zayd M; Bean, Bruce P

    2008-10-22

    We analyzed ionic currents that regulate pacemaking in dopaminergic neurons of the mouse ventral tegmental area by comparing voltage trajectories during spontaneous firing with ramp-evoked currents in voltage clamp. Most recordings were made in brain slice, with key experiments repeated using acutely dissociated neurons, which gave identical results. During spontaneous firing, net ionic current flowing between spikes was calculated from the time derivative of voltage multiplied by cell capacitance, signal-averaged over many firing cycles to enhance resolution. Net inward interspike current had a distinctive nonmonotonic shape, reaching a minimum (generally <1 pA) between -60 and -55 mV. Under voltage clamp, ramps over subthreshold voltages elicited a time- and voltage-dependent outward current that peaked near -55 mV. This current was undetectable with 5 mV/s ramps and increased steeply with depolarization rate over the range (10-50 mV/s) typical of natural pacemaking. Ramp-evoked subthreshold current was resistant to alpha-dendrotoxin, paxilline, apamin, and tetraethylammonium but sensitive to 4-aminopyridine and 0.5 mM Ba2+, consistent with A-type potassium current (I(A)). Same-cell comparison of currents elicited by various ramp speeds with natural spontaneous depolarization showed how the steep dependence of I(A) on depolarization rate results in small net inward currents during pacemaking. These results reveal a mechanism in which subthreshold I(A) is near zero at steady state, but is engaged at depolarization rates >10 mV/s to act as a powerful, supralinear feedback element. This feedback mechanism explains how net ionic current can be constrained to <1-2 pA but reliably inward, thus enabling slow, regular firing.

  16. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.

    2005-04-15

    The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na{sub v}) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na{sub v} channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons,more » P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na{sub v} currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na{sub v} channel gating, observed clinically in response to ciguatera poisoning.« less

  17. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells

    PubMed Central

    Gu, Ning; Vervaeke, Koen; Storm, Johan F

    2007-01-01

    Neuronal potassium (K+) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K+ channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing in rat CA1 pyramidal cells. Blockade of BK channels by iberiotoxin (IbTX) selectively reduced the initial discharge frequency in response to strong depolarizing current injections, thus reducing the early spike frequency adaptation. IbTX also blocked the fast afterhyperpolarization (fAHP), slowed spike rise and decay, and elevated the spike threshold. Simulations with a computational model of a CA1 pyramidal cell confirmed that the BK channel-mediated rapid spike repolarization and fAHP limits activation of slower K+ channels (in particular the delayed rectifier potassium current (IDR)) and Na+ channel inactivation, whereas M-, sAHP- or SK-channels seem not to be important for the early facilitating effect. Since the BK current rapidly inactivates, its facilitating effect diminishes during the initial discharge, thus producing early spike frequency adaptation by an unconventional mechanism. This mechanism is highly frequency dependent. Thus, IbTX had virtually no effect at spike frequencies < 40 Hz. Furthermore, extracellular field recordings demonstrated (and model simulations supported) that BK channels contribute importantly to high-frequency burst firing in response to excitatory synaptic input to distal dendrites. These results strongly support the idea that BK channels play an important role for early high-frequency, rapidly adapting firing in hippocampal pyramidal neurons, thus promoting the type of bursting that is characteristic of these cells in vivo, during behaviour. PMID:17303637

  18. Ionic mechanisms of action of prion protein fragment PrP(106-126) in rat basal forebrain neurons.

    PubMed

    Alier, Kwai; Li, Zongming; Mactavish, David; Westaway, David; Jhamandas, Jack H

    2010-08-01

    Prion diseases are neurodegenerative disorders that are characterized by the presence of the misfolded prion protein (PrP). Neurotoxicity in these diseases may result from prion-induced modulation of ion channel function, changes in neuronal excitability, and consequent disruption of cellular homeostasis. We therefore examined PrP effects on a suite of potassium (K(+)) conductances that govern excitability of basal forebrain neurons. Our study examined the effects of a PrP fragment [PrP(106-126), 50 nM] on rat neurons using the patch clamp technique. In this paradigm, PrP(106-126) peptide, but not the "scrambled" sequence of PrP(106-126), evoked a reduction of whole-cell outward currents in a voltage range between -30 and +30 mV. Reduction of whole-cell outward currents was significantly attenuated in Ca(2+)-free external media and also in the presence of iberiotoxin, a blocker of calcium-activated potassium conductance. PrP(106-126) application also evoked a depression of the delayed rectifier (I(K)) and transient outward (I(A)) potassium currents. By using single cell RT-PCR, we identified the presence of two neuronal chemical phenotypes, GABAergic and cholinergic, in cells from which we recorded. Furthermore, cholinergic and GABAergic neurons were shown to express K(v)4.2 channels. Our data establish that the central region of PrP, defined by the PrP(106-126) peptide used at nanomolar concentrations, induces a reduction of specific K(+) channel conductances in basal forebrain neurons. These findings suggest novel links between PrP signalling partners inferred from genetic experiments, K(+) channels, and PrP-mediated neurotoxicity.

  19. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes.

    PubMed

    Alvin, Zikiar V; Laurence, Graham G; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E

    2011-07-01

    Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.

  20. Effects of Long-term Fertilization on Potassium Fixation Capacity in Brown Soil

    NASA Astrophysics Data System (ADS)

    Li, Na; Guo, Chunlei; Wang, Yue; Gao, Tianyi; Yang, Jinfeng; Han, Xiaori

    2018-01-01

    This study concentrated on the research of features of fixation. The objective of this study was to provide theoretical foundation of rational application of potassium fertilizer along with improving fertilizer availability ratio. A 32 years long-term experiment was conducted to evaluate the effects of fertilizer application on potassium changes and the factors affecting K fixation on brown soil by simulation in laboratory. When the concentration of exogenous potassium was in range of 400∼4000 mg·kg-1, potassium fixation capacity increased along with the rise of concentration of exogenous potassium, whereas K fixation rate reduced; Compared with no-potassium fertilizer, application of potassium fertilizer and organic fertilizer reduced soil potassium fixation capacity. Potassium rate and fixation-release of potassium character in soil should be taken into comprehensive consideration for rational fertilization to maintain or improve soil fertility for increasing potassium fertilizers efficiency in agriculture.

  1. Time to Consider Use of the Sodium-to-Potassium Ratio for Practical Sodium Reduction and Potassium Increase

    PubMed Central

    Miura, Katsuyuki; Ueshima, Hirotsugu

    2017-01-01

    Pathogenetic studies have demonstrated that the interdependency of sodium and potassium affects blood pressure. Emerging evidences on the sodium-to-potassium ratio show benefits for a reduction in sodium and an increase in potassium compared to sodium and potassium separately. As presently there is no known review, this article examined the practical use of the sodium-to-potassium ratio in daily practice. Epidemiological studies suggest that the urinary sodium-to-potassium ratio may be a superior metric as compared to separate sodium and potassium values for determining the relation to blood pressure and cardiovascular disease risks. Higher correlations and better agreements are seen for the casual urine sodium-to-potassium ratio than for casual urine sodium or potassium alone when compared with the 24-h urine values. Repeated measurements of the casual urine provide reliable estimates of the 7-day 24-h urine value with less bias for the sodium-to-potassium ratio as compared to the common formulas used for estimating the single 24-h urine from the casual urine for sodium and potassium separately. Self-monitoring devices for the urinary sodium-to-potassium ratio measurement makes it possible to provide prompt onsite feedback. Although these devices have been evaluated with a view to support an individual approach for sodium reduction and potassium increase, there has yet to be an accepted recommended guideline for the sodium-to-potassium ratio. This review concludes with a look at the practical use of the sodium-to-potassium ratio for assistance in practical sodium reduction and potassium increase. PMID:28678188

  2. Cations and microbial indicators: strong relationships in waters of urban/mixed land use watersheds of Southwest, VA

    NASA Astrophysics Data System (ADS)

    Steele, M.; Badgley, B.

    2016-12-01

    Background The salinity and composition of salts in freshwater streams, rivers, and waterbodies varies substantially, often impacted by human urban, agricultural, and mining land uses. While extreme fluctuations in salinity have been shown to influence both microbial communities and biogeochemical cycles, the differential effects of specific ion species at low salinity levels is poorly understood. The objective of this study was to examine the relationship between water chemistry and microbial water quality indicators. We collected weekly grab samples from nine sub-watersheds in Southwest Virginia. Samples were measured for standard physical and chemical properties: dissolved oxygen, temperature, specific conductance, pH, calcium, magnesium, potassium, chloride, fluoride, sulfate, nitrogen species, phosphorus, and dissolved organic carbon. In addition, three types of microbial fecal indicators were measured: total coliforms, E. coli, and HF183 (a human specific genomic marker). Results The relationships within and between water chemistry and water quality indicators are complex and frequently co-correlated. Concentrations of traditional biogeochemical elements (N, P, C) were less strongly related to water quality indicators than were Ca, Mg, Na in watersheds. Ca and Mg were strongly correlated with total coliforms, r2 = 0.88 and r2 = 0.86 respectively. While potassium is very strongly related to E. coli (r2 = 0.96). Currently, we cannot reasonably explain these relationships by the land use composition or common sources within the landscape. The human specific fecal indicator was not well correlated with other microbial water quality indicators, and yet found ubiquitously across the developed watersheds and most strongly correlated with sodium concentrations (r2 = 0.84). The results suggest that 1) wastewater via subsurface flowpaths may more broadly impact surface water chemistry and quality than expected, and 2) that cation chemistry may influence the microbial community and serve as a mediator of watershed biogeochemical cycling.

  3. Comprehensive Analyses of Ventricular Myocyte Models Identify Targets Exhibiting Favorable Rate Dependence

    PubMed Central

    Bugana, Marco; Severi, Stefano; Sobie, Eric A.

    2014-01-01

    Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP). The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD) antiarrhythmics remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP. We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular myocyte models. By simulating populations of myocytes with varying properties and analyzing population results statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz) and fast (2 Hz) rates. The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this study provides new insights, both specific and general, into the determinants of AP duration rate dependence, and illustrates a strategy for the design of potentially beneficial antiarrhythmic drugs. PMID:24675446

  4. Comprehensive analyses of ventricular myocyte models identify targets exhibiting favorable rate dependence.

    PubMed

    Cummins, Megan A; Dalal, Pavan J; Bugana, Marco; Severi, Stefano; Sobie, Eric A

    2014-03-01

    Reverse rate dependence is a problematic property of antiarrhythmic drugs that prolong the cardiac action potential (AP). The prolongation caused by reverse rate dependent agents is greater at slow heart rates, resulting in both reduced arrhythmia suppression at fast rates and increased arrhythmia risk at slow rates. The opposite property, forward rate dependence, would theoretically overcome these parallel problems, yet forward rate dependent (FRD) antiarrhythmics remain elusive. Moreover, there is evidence that reverse rate dependence is an intrinsic property of perturbations to the AP. We have addressed the possibility of forward rate dependence by performing a comprehensive analysis of 13 ventricular myocyte models. By simulating populations of myocytes with varying properties and analyzing population results statistically, we simultaneously predicted the rate-dependent effects of changes in multiple model parameters. An average of 40 parameters were tested in each model, and effects on AP duration were assessed at slow (0.2 Hz) and fast (2 Hz) rates. The analysis identified a variety of FRD ionic current perturbations and generated specific predictions regarding their mechanisms. For instance, an increase in L-type calcium current is FRD when this is accompanied by indirect, rate-dependent changes in slow delayed rectifier potassium current. A comparison of predictions across models identified inward rectifier potassium current and the sodium-potassium pump as the two targets most likely to produce FRD AP prolongation. Finally, a statistical analysis of results from the 13 models demonstrated that models displaying minimal rate-dependent changes in AP shape have little capacity for FRD perturbations, whereas models with large shape changes have considerable FRD potential. This can explain differences between species and between ventricular cell types. Overall, this study provides new insights, both specific and general, into the determinants of AP duration rate dependence, and illustrates a strategy for the design of potentially beneficial antiarrhythmic drugs.

  5. Diagnostic value of potassium level in a spot urine sample as an index of 24-hour urinary potassium excretion in unselected patients hospitalized in a hypertension unit

    PubMed Central

    Symonides, Bartosz; Wojciechowska, Ewa; Gryglas, Adam; Gaciong, Zbigniew

    2017-01-01

    Background Primary hyperaldosteronism may be associated with elevated 24-hour urinary potassium excretion. We evaluated the diagnostic value of spot urine (SU) potassium as an index of 24-hour urinary potassium excretion. Methods We measured SU and 24-hour urinary collection potassium and creatinine in 382 patients. Correlations between SU and 24-hour collections were assessed for potassium levels and potassium/creatinine ratios. We used the PAHO formula to estimate 24-hour urinary potassium excretion based on SU potassium level. The agreement between estimated and measured 24-hour urinary potassium excretion was evaluated using the Bland-Altman method. To evaluate diagnostic performance of SU potassium, we calculated areas under the curve (AUC) for SU potassium/creatinine ratio and 24-hour urinary potassium excretion estimated using the PAHO formula. Results Strongest correlation between SU and 24-hour collection was found for potassium/creatinine ratio (r = 0.69, P<0.001). The PAHO formula underestimated 24-hour urinary potassium excretion by mean 8.3±18 mmol/d (95% limits of agreement -28 to +44 mmol/d). Diagnostic performance of SU potassium/creatinine ratio was borderline good only if 24-hour urinary potassium excretion was largely elevated (AUC 0.802 for 120 mmol K+/24 h) but poor with lower values (AUC 0.696 for 100 mmol K+/24 h, 0.636 for 80 mmol K+/24 h, 0.675 for 40 mmol K+/24 h). Diagnostic performance of 24-hour urinary potassium excretion estimated by the PAHO formula was excellent with values above 120 mmol/d and good with lower values (AUC 0.941 for 120 mmol K+/24 h, 0.819 for 100 mmol K+/24 h, 0.823 for 80 mmol K+/24 h, 0.836 for 40 mmol K+/24 h). Conclusions Spot urine potassium/creatinine ratio might be a marker of increased 24-hour urinary potassium excretion and a potentially useful screening test when reliable 24-hour urine collection is not available. The PAHO formula allowed estimation of the 24-hour urinary potassium excretion based on SU measurements with reasonable clinical accuracy. PMID:28662194

  6. Comparative Efficacy of Potassium Levulinate with/without Potassium Diacetate and Potassium Propionate vs Potassium Lactate and Sodium Diacetate for Control of Listeria monocytogenes on commercially prepared uncured t.breast

    USDA-ARS?s Scientific Manuscript database

    We evaluated the efficacy of potassium levulinate, potassium diacetate, and potassium propionate to inhibit Listeria monocytogenes on commercially-prepared, uncured turkey breast during refrigerated storage. Whole muscle, uncured turkey breast chubs (ca. 5 kg each) were formulated with or without po...

  7. Stabilisation and dewatering of primary sludge using ferrate(VI) pre-treatment followed by freeze-thaw in simulated drainage beds.

    PubMed

    Diak, James; Örmeci, Banu

    2018-06-15

    This study evaluated the ability of potassium ferrate(VI) and freeze-thaw to stabilise and dewater primary sludge. Potassium ferrate(VI) additions of 0.5 and 5.0 g/L were used as a pre-treatment prior to freeze-thaw. Samples were frozen at -10, -20 and -30 °C, and were kept frozen for 1, 8 and 15 days. The samples were subsequently thawed at room temperature in a setup which allowed meltwater to be separated from the sludge cake via gravity drainage. The meltwater was characterised in terms of fecal coliform, soluble chemical oxygen demand (COD), soluble proteins, soluble carbohydrates, pH and turbidity. The sludge cake was characterised in terms of fecal coliform, total solids (TS) and volatile solids (VS). Freeze-thaw with gravity meltwater drainage reduced the sludge volume by up to 79%. After being frozen for only 1 day, the concentrations of fecal coliform in many of the primary sludge samples were reduced to <1000 MPN/g dry solids (DS), representing >3-log inactivation in some cases. However, pre-treatment of the primary sludge with ≤5.0 g/L potassium ferrate(VI) resulted in significant increases in soluble proteins, soluble carbohydrates, and sCOD, and reduced the effectiveness of stand-alone freeze-thaw. Follow-up experiments using higher doses ranging from 5.1 to 24.9 g/L of potassium ferrate(VI) demonstrated that >5-log inactivation of fecal coliform in raw primary sludge can be achieved within 15 min using 15 g/L of potassium ferrate(VI), and the resulting concentration of fecal coliform in the sludge was 1023 MPN/g DS. Pre-treatment with 22.0 g/L of potassium ferrate(VI), followed by freeze-thaw, with only 3 days frozen, reduced the concentration of fecal coliform to below the detection limit in the meltwater and the sludge cake. This demonstrates that potassium ferrate(VI) and freeze-thaw offers the flexibility to adjust the ferrate(VI) dose to meet treatment requirements for land application, and can be used as a stand-alone sludge treatment technology for primary sludge that achieves both treatment and dewatering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A role of stretch-activated potassium currents in the regulation of uterine smooth muscle contraction

    PubMed Central

    Buxton, Iain L O; Heyman, Nathanael; Wu, Yi-ying; Barnett, Scott; Ulrich, Craig

    2011-01-01

    Rates of premature birth are alarming and threaten societies and healthcare systems worldwide. Premature labor results in premature birth in over 50% of cases. Preterm birth accounts for three-quarters of infant morbidity and mortality. Children that survive birth before 34 weeks gestation often face life-long disability. Current treatments for preterm labor are wanting. No treatment has been found to be generally effective and none are systematically evaluated beyond 48 h. New approaches to the treatment of preterm labor are desperately needed. Recent studies from our laboratory suggest that the uterine muscle is a unique compartment with regulation of uterine relaxation unlike that of other smooth muscles. Here we discuss recent evidence that the mechanically activated 2-pore potassium channel, TREK-1, may contribute to contraction-relaxation signaling in uterine smooth muscle and that TREK-1 gene variants associated with human labor and preterm labor may lead to a better understanding of preterm labor and its possible prevention. PMID:21642947

  9. Multiple modes of a-type potassium current regulation.

    PubMed

    Cai, Shi-Qing; Li, Wenchao; Sesti, Federico

    2007-01-01

    Voltage-dependent potassium (K+) channels (Kv) regulate cell excitability by controlling the movement of K+ ions across the membrane in response to changes in the cell voltage. The Kv family, which includes A-type channels, constitute the largest group of K+ channel genes within the superfamily of Na+, Ca2+ and K+ voltage-gated channels. The name "A-type" stems from the typical profile of these currents that results form the opposing effects of fast activation and inactivation. In neuronal cells, A-type currents (I(A)), determine the interval between two consecutive action potentials during repetitive firing. In cardiac muscle, A-type currents (I(to)), control the initial repolarization of the myocardium. Structurally, A-type channels are tetramers of alpha-subunits each containing six putative transmembrane domains including a voltage-sensor. A-type channels can be modulated by means of protein-protein interactions with so-called beta-subunits that control inactivation voltage sensitivity and other properties, and by post-transcriptional modifications such as phosphorylation or oxidation. Recently a new mode of A-type regulation has been discovered in the form of a class of hybrid beta-subunits that posses their own enzymatic activity. Here, we review the biophysical and physiological properties of these multiple modes of A-type channel regulation.

  10. Potassium dynamics and seizures: Why is potassium ictogenic?

    PubMed

    de Curtis, Marco; Uva, Laura; Gnatkovsky, Vadym; Librizzi, Laura

    2018-07-01

    Potassium channels dysfunction and altered genes encoding for molecules involved in potassium homeostasis have been associated with human epilepsy. These observations are in agreement with a control role of extracellular potassium on neuronal excitability and seizure generation. Epileptiform activity, in turn, regulates potassium homeostasis through mechanisms that are still not well established. We review here how potassium-associated processes are regulated in the brain and examine the mechanisms that support the role of potassium in triggering epileptiform activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Dietary ω-3 polyunsaturated fatty acids improves learning performance of diabetic rats by regulating the neuron excitability.

    PubMed

    Yang, R-H; Wang, F; Hou, X-H; Cao, Z-P; Wang, B; Xu, X-N; Hu, S-J

    2012-06-14

    Previous research has demonstrated that diabetes induced learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Dietary fatty acids, especially polyunsaturated fatty acids (PUFA), have been shown to enhance learning and memory and prevent memory deficits in various experimental conditions. Sprague-Dawley rats were used in the present study to investigate the effect of fish oil supplementation on spatial learning and memory of streptozotocin (STZ)-induced diabetic rats with the Morris Water Maze. The excitability of CA1 pyramidal neurons and the related ionic currents was also examined. Diabetes impaired spatial learning and memory of rats. Diabetes decreased the sodium currents and increased the potassium currents, and further led to the reduction of excitability of CA1 pyramidal neurons, effects which may contribute to the behavioral deficits. Fish oil dietary supplementation decreased the transient currents and Kv4.2 expression in the hippocampus and partially improved learning performance of diabetic rats. The results of the present study suggested that sodium and potassium currents contributed to the inhibitory effect of diabetes on neuron excitability, further influencing learning and memory processing. Dietary fish oil may modulate the membrane excitability and is a possible strategy for preventing the impairments of diabetes on hippocampal function. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Rapid communication between neurons and astrocytes in primary cortical cultures.

    PubMed

    Murphy, T H; Blatter, L A; Wier, W G; Baraban, J M

    1993-06-01

    The identification of neurotransmitter receptors and voltage-sensitive ion channels on astrocytes (reviewed by Barres, 1991) has renewed interest in how these cells respond to neuronal activity. To investigate the physiology of neuron astrocyte signaling, we have employed primary cortical cultures that contain both neuronal and glial cells. As the neurons in these cultures exhibit synchronous spontaneous synaptic activity, we have used both calcium imaging and whole-cell recording techniques to identify physiological activity in astrocytes related to neuronal activity. Whole-cell voltage-clamp records from astrocytes revealed rapid inward currents that coincide with bursts of electrical activity in neighboring neurons. Calcium imaging studies demonstrate that these currents in astrocytes are not always associated with slowly propagating calcium waves. Inclusion of the dye Lucifer yellow within patch pipettes confirmed that astrocytes are extensively coupled to each other but not to adjacent neurons, indicating that the currents observed are not due to gap junction connections between these cell types. These currents do not reflect widespread diffusion of glutamate or potassium released during neuronal activity since a population of small, round, multipolar presumed glial cells that are not dye coupled to adjacent cells did not display electrical currents coincident with neuronal firing, even though they respond to locally applied glutamate and potassium. These findings indicate that, in addition to the relatively slow signaling conveyed by calcium waves, astrocytes also display rapid electrical responses to neuronal activity.

  13. Hyperpolarization-Activated Current Induces Period-Doubling Cascades and Chaos in a Cold Thermoreceptor Model

    PubMed Central

    Xu, Kesheng; Maidana, Jean P.; Caviedes, Mauricio; Quero, Daniel; Aguirre, Pablo; Orio, Patricio

    2017-01-01

    In this article, we describe and analyze the chaotic behavior of a conductance-based neuronal bursting model. This is a model with a reduced number of variables, yet it retains biophysical plausibility. Inspired by the activity of cold thermoreceptors, the model contains a persistent Sodium current, a Calcium-activated Potassium current and a hyperpolarization-activated current (Ih) that drive a slow subthreshold oscillation. Driven by this oscillation, a fast subsystem (fast Sodium and Potassium currents) fires action potentials in a periodic fashion. Depending on the parameters, this model can generate a variety of firing patterns that includes bursting, regular tonic and polymodal firing. Here we show that the transitions between different firing patterns are often accompanied by a range of chaotic firing, as suggested by an irregular, non-periodic firing pattern. To confirm this, we measure the maximum Lyapunov exponent of the voltage trajectories, and the Lyapunov exponent and Lempel-Ziv's complexity of the ISI time series. The four-variable slow system (without spiking) also generates chaotic behavior, and bifurcation analysis shows that this is often originated by period doubling cascades. Either with or without spikes, chaos is no longer generated when the Ih is removed from the system. As the model is biologically plausible with biophysically meaningful parameters, we propose it as a useful tool to understand chaotic dynamics in neurons. PMID:28344550

  14. The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr) and human ether-a-go-go-related gene (hERG) expression.

    PubMed

    Teah, Yi Fan; Abduraman, Muhammad Asyraf; Amanah, Azimah; Adenan, Mohd Ilham; Sulaiman, Shaida Fariza; Tan, Mei Lan

    2017-09-01

    Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac I Kr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 μM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 μM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and I kr blocker. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Experimental patch testing with chromium-coated materials.

    PubMed

    Bregnbak, David; Thyssen, Jacob P; Jellesen, Morten S; Zachariae, Claus; Johansen, Jeanne D

    2017-06-01

    Chromium coatings on metal alloys can be decorative, and prevent corrosion and metal ion release. We recently showed that handling of a chromium-containing disc resulted in chromium deposition on the skin. To examine patch test reactivity to chromium-coated discs. We included 15 patients: 10 chromium-allergic patients, and 5 patients without chromium allergy. All were patch tested with potassium dichromate, cobalt chloride, nickel sulfate, and nine different metallic discs. The chromium-allergic patients were also patch tested with serial dilutions of potassium dichromate. Positive/weaker reactions were observed to disc B (1 of 10), disc C (1 of 10), and disc D, disc E, and disc I (4 of 10 each). As no controls reacted to any of the discs, the weak reactions indicate allergic reactions. Positive patch test reactions to 1770 ppm chromium(VI) in the serial dilutions of potassium dichromate were observed in 7 of 10 patients. When the case group was narrowed down to include only the patients with a current positive patch test reaction to potassium dichromate, elicitation of dermatitis by both chromium(III) and chromium(VI) discs was observed in 4 of 7 of patients. Many of the patients reacted to both chromium(III) and chromium(VI) surfaces. Our results indicate that both chromium(VI) and chromium(III) pose a risk to chromium-allergic patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. [Water regulation in the cochlea : Do molecular water channels facilitate potassium-dependent sound transduction?].

    PubMed

    Eckhard, A; Löwenheim, H

    2014-06-01

    Sound transduction in the cochlea critically depends on the circulation of potassium ions (K(+)) along so-called "K(+) recycling routes" between the endolymph and perilymph. These K(+) currents generate high ionic and osmotic gradients, which potentially impair the excitability of sensory hair cells and threaten cell survival in the entire cochlear duct. Molecular water channels-aquaporins (AQP)-are expressed in all cochlear supporting cells along the K(+) recycling routes; however, their significance for osmotic equilibration in cochlear duct cells is unknown. The diffusive and osmotic water permeabilies of Reissner's membrane, the organ of Corti and the entire cochlear duct epithelium were determined. Expression of the potassium channel Kir4.1 and the water channel AQP4 in the cochlear duct was investigated by immunohistochemistry. The calculated water permeability values indicate the extent of AQP-facilitated water flux across the cochlear duct epithelium. Immunohistochemically, Kir4.1 and AQP4 were found to colocalize in distinct membrane domains of supporting cells along the K(+)-recycling routes. These observations suggest the presence of a rapid AQP-mediated water exchange between the endolymph, the cells of the cochlear duct and the perilymph. The subcellular colocalization of Kir4.1 and AQP4 in epithelial supporting cells indicates functional coupling of potassium and water flow in the cochlea. Finally, this offers an explanation for the hearing impairment observed in individuals with mutations in the AQP4 gene.

  17. Serum potassium level and dietary potassium intake as risk factors for stroke.

    PubMed

    Green, D M; Ropper, A H; Kronmal, R A; Psaty, B M; Burke, G L

    2002-08-13

    Numerous studies have found that low potassium intake and low serum potassium are associated with increased stroke mortality, but data regarding stroke incidence have been limited. Serum potassium levels, dietary potassium intake, and diuretic use in relation to risk for stroke in a prospectively studied cohort were investigated. The study comprised 5,600 men and women older than 65 years who were free of stroke at enrollment. Baseline data included serum potassium level, dietary potassium intake, and diuretic use. Participants were followed for 4 to 8 years, and the incidence and types of strokes were recorded. Low serum potassium was defined as less than 4.1 mEq/L, and low potassium intake as less than 2.4 g/d. Among diuretic users, there was an increased risk for stroke associated with lower serum potassium (relative risk [RR]: 2.5, p < 0.0001). Among individuals not taking diuretics, there was an increased risk for stroke associated with low dietary potassium intake (RR: 1.5, p < 0.005). The small number of diuretic users with lower serum potassium and atrial fibrillation had a 10-fold greater risk for stroke compared with those with higher serum potassium and normal sinus rhythm. A lower serum potassium level in diuretic users, and low potassium intake in those not taking diuretics were associated with increased stroke incidence among older individuals. Lower serum potassium was associated with a particularly high risk for stroke in the small number of diuretic users with atrial fibrillation. Further study is required to determine if modification of these factors would prevent strokes.

  18. 40 CFR 142.60 - Variances from the maximum contaminant level for total trihalomethanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disinfectant or oxidant. (2) Use of chlorine dioxide as an alternate or supplemental disinfectant or oxidant... to reduce TTHM formation and, where necessary, substituting for the use of chlorine as a pre-oxidant chloramines, chlorine dioxide or potassium permanganate. (5) Use of powdered activated carbon for THM...

  19. Fission Yeast Model Study for Dissection of TSC Pathway

    DTIC Science & Technology

    2010-04-01

    prepared as follows. A total of 1010 cells were incubated at 37! for 1 hr in spheroplasts buffer [50 mm citrate–phosphate (pH 5.6) and 1.2 m sorbitol ...potassium acetate, and 0.1 m sorbitol ] containing 0.4 mm phenylmethyl- sulfonyl fluoride and 13 protease inhibitor cocktail (Nacalai Tesque) and downed

  20. 14 CFR 139.317 - Aircraft rescue and firefighting: Equipment and agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF to total 100 gallons for simultaneous dry chemical and AFFF application. (b) Index B. Either of the following: (1) One... gallons of water and the commensurate quantity of AFFF for foam production. (2) Two vehicles— (i) One...

  1. 14 CFR 139.317 - Aircraft rescue and firefighting: Equipment and agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF to total 100 gallons for simultaneous dry chemical and AFFF application. (b) Index B. Either of the following: (1) One... gallons of water and the commensurate quantity of AFFF for foam production. (2) Two vehicles— (i) One...

  2. 14 CFR 139.317 - Aircraft rescue and firefighting: Equipment and agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF to total 100 gallons for simultaneous dry chemical and AFFF application. (b) Index B. Either of the following: (1) One... gallons of water and the commensurate quantity of AFFF for foam production. (2) Two vehicles— (i) One...

  3. 14 CFR 139.317 - Aircraft rescue and firefighting: Equipment and agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF to total 100 gallons for simultaneous dry chemical and AFFF application. (b) Index B. Either of the following: (1) One... gallons of water and the commensurate quantity of AFFF for foam production. (2) Two vehicles— (i) One...

  4. 14 CFR 139.317 - Aircraft rescue and firefighting: Equipment and agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pounds of potassium-based dry chemical and water with a commensurate quantity of AFFF to total 100 gallons for simultaneous dry chemical and AFFF application. (b) Index B. Either of the following: (1) One... gallons of water and the commensurate quantity of AFFF for foam production. (2) Two vehicles— (i) One...

  5. Cubozoan Venom-Induced Cardiovascular Collapse Is Caused by Hyperkalemia and Prevented by Zinc Gluconate in Mice

    PubMed Central

    Yanagihara, Angel A.; Shohet, Ralph V.

    2012-01-01

    Chironex fleckeri (Australian box jellyfish) stings can cause acute cardiovascular collapse and death. We developed methods to recover venom with high specific activity, and evaluated the effects of both total venom and constituent porins at doses equivalent to lethal envenomation. Marked potassium release occurred within 5 min and hemolysis within 20 min in human red blood cells (RBC) exposed to venom or purified venom porin. Electron microscopy revealed abundant ∼12-nm transmembrane pores in RBC exposed to purified venom porins. C57BL/6 mice injected with venom showed rapid decline in ejection fraction with progression to electromechanical dissociation and electrocardiographic findings consistent with acute hyperkalemia. Recognizing that porin assembly can be inhibited by zinc, we found that zinc gluconate inhibited potassium efflux from RBC exposed to total venom or purified porin, and prolonged survival time in mice following venom injection. These findings suggest that hyperkalemia is the critical event following Chironex fleckeri envenomation and that rapid administration of zinc could be life saving in human sting victims. PMID:23251508

  6. Bioconversion of garden waste, kitchen waste and cow dung into value-added products using earthworm Eisenia fetida

    PubMed Central

    Wani, K.A.; Mamta; Rao, R.J.

    2013-01-01

    Solid waste management is a worldwide problem and it is becoming more and more complicated day by day due to rise in population, industrialization and changes in our life style. Transformation of industrial sludges into vermicompost is of double interest: on the one hand, a waste is converted into value added product, and, on the other, it controls a pollutant that is a consequence of increasing industrialization. Garden waste, kitchen waste and cow dung were subjected to recycle through vermicomposting by using the epigeic earthworm Eisenia fetida under field conditions. The pH, moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium in vermicompost was analysed. It was found that moisture content, total organic carbon, humus, nitrogen, phosphorous and potassium was high in cow dung, followed by kitchen waste and garden waste. This study clearly indicates that vermicomposting of garden waste, kitchen waste and cow dung can not only produce a value added produce (vermicomposting) but at the same time reduce the quantity of waste. PMID:23961230

  7. Inactivation of muscle adenylate kinase by site-specific destruction of tyrosine 95 using potassium ferrate.

    PubMed

    Crivellone, M D; Hermodson, M; Axelrod, B

    1985-03-10

    Potassium ferrate, an analog of orthophosphate and a potent oxidizing agent, was found to irreversibly inactivate porcine muscle adenylate kinase. Inhibition was prevented by competitive inhibitors or substrates, indicating that the action of ferrate was site-specific. Inactivation was accompanied by the loss of Cys-25 and Tyr-95. P1,P5-di(adenosine 5')-pentaphosphate (10(-7) M), a powerful competitive inhibitor, gave 50% protection to the enzyme from ferrate inactivation. No loss of tyrosine or cysteine residues was observed under conditions of total protection. The degree of inactivation was proportional to the amount of Tyr-95 destroyed. However, Cys-25 was totally oxidized when only 55% inactivation had occurred. Partially inactivated enzyme exhibited a Km for ATP and AMP similar to that of the untreated enzyme. It appears that Cys-25 may be proximate to a phosphate-binding site but is not directly involved in the catalytic reaction. The results suggest that Tyr-95 is located in the vicinity of a phosphate-binding region of adenylate kinase and is essential for enzyme activity.

  8. Effect of the biota diversity on the composition of low-molecular-weight water-soluble organic compounds in southern tundra soils

    NASA Astrophysics Data System (ADS)

    Shamrikova, E. V.; Kubik, O. S.; Punegov, V. V.; Gruzdev, I. V.

    2014-03-01

    Water extracts from the organic horizons of southern-tundra loamy permafrost-affected soils (a surface-gleyed tundra soil, a surface-gleyed soddy tundra soil (Haplic Stagnosols (Gelic)), and a peaty tundra soil (Histic Cryosol (Reductaquic)) and their undecomposed moss layers have been analyzed. The total weight concentration of the cations (Ca2+, Mg2+, K+, and Na+) determined by the atomic absorption method reaches 20 mg/dm3 in the organic horizons and 40-90 mg/dm3 in the undecomposed moss layers. Potassium and calcium ions dominate in all the organic horizons (80-90% of the total weight); potassium ions prevail in the mosses (about 70%). The weight concentration of carbon in the water-soluble organic compounds is 0.04-0.07 g/dm3 in the organic horizons and 0.20-0.40 g/dm3 in the undecomposed moss layers. The content of low-molecular-weight organic compounds (alcohols, carbohydrates, and acids) identified by gas chromatography and chromatomass spectrometry is 1-30 mg/dm3 in the organic horizons of the soils and 80-180 mg/dm3 in the mosses, which does not exceed 26% of the total organic carbon in the extracts.

  9. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...

  10. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating...

  11. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating...

  12. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...

  13. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating...

  14. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...

  15. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...

  16. Race, Serum Potassium, and Associations With ESRD and Mortality.

    PubMed

    Chen, Yan; Sang, Yingying; Ballew, Shoshana H; Tin, Adrienne; Chang, Alex R; Matsushita, Kunihiro; Coresh, Josef; Kalantar-Zadeh, Kamyar; Molnar, Miklos Z; Grams, Morgan E

    2017-08-01

    Recent studies suggest that potassium levels may differ by race. The basis for these differences and whether associations between potassium levels and adverse outcomes differ by race are unknown. Observational study. Associations between race and potassium level and the interaction of race and potassium level with outcomes were investigated in the Racial and Cardiovascular Risk Anomalies in Chronic Kidney Disease (RCAV) Study, a cohort of US veterans (N=2,662,462). Associations between African ancestry and potassium level were investigated in African Americans in the Atherosclerosis Risk in Communities (ARIC) Study (N=3,450). Race (African American vs non-African American and percent African ancestry) for cross-sectional analysis; serum potassium level for longitudinal analysis. Potassium level for cross-sectional analysis; mortality and end-stage renal disease for longitudinal analysis. The RCAV cohort was 18% African American (N=470,985). Potassium levels on average were 0.162mmol/L lower in African Americans compared with non-African Americans, with differences persisting after adjustment for demographics, comorbid conditions, and potassium-altering medication use. In the ARIC Study, higher African ancestry was related to lower potassium levels (-0.027mmol/L per each 10% African ancestry). In both race groups, higher and lower potassium levels were associated with mortality. Compared to potassium level of 4.2mmol/L, mortality risk associated with lower potassium levels was lower in African Americans versus non-African Americans, whereas mortality risk associated with higher levels was slightly greater. Risk relationships between potassium and end-stage renal disease were weaker, with no difference by race. No data for potassium intake. African Americans had slightly lower serum potassium levels than non-African Americans. Consistent associations between potassium levels and percent African ancestry may suggest a genetic component to these differences. Higher and lower serum potassium levels were associated with mortality in both racial groups. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K1[OPEN

    PubMed Central

    Schneider, Hannah M.

    2017-01-01

    Root cortical senescence (RCS) in Triticeae reduces nutrient uptake, nutrient content, respiration, and radial hydraulic conductance of root tissue. We used the functional-structural model SimRoot to evaluate the functional implications of RCS in barley (Hordeum vulgare) under suboptimal nitrate, phosphorus, and potassium availability. The utility of RCS was evaluated using sensitivity analyses in contrasting nutrient regimes. At flowering (80 d), RCS increased simulated plant growth by up to 52%, 73%, and 41% in nitrate-, phosphorus-, and potassium-limiting conditions, respectively. Plants with RCS had reduced nutrient requirement of root tissue for optimal plant growth, reduced total cumulative cortical respiration, and increased total carbon reserves. Nutrient reallocation during RCS had a greater effect on simulated plant growth than reduced respiration or nutrient uptake. Under low nutrient availability, RCS had greater benefit in plants with fewer tillers. RCS had greater benefit in phenotypes with fewer lateral roots at low nitrate availability, but the opposite was true in low phosphorus or potassium availability. Additionally, RCS was quantified in field-grown barley in different nitrogen regimes. Field and virtual soil coring simulation results demonstrated that living cortical volume per root length (an indicator of RCS) decreased with depth in younger plants, while roots of older plants had very little living cortical volume per root length. RCS may be an adaptive trait for nutrient acquisition by reallocating nutrients from senescing tissue and secondarily by reducing root respiration. These simulated results suggest that RCS merits investigation as a breeding target for enhanced soil resource acquisition and edaphic stress tolerance. PMID:28667049

  18. Comparative analysis of salivary glucose and electrolytes in diabetic individuals with periodontitis.

    PubMed

    Lasisi, T J; Fasanmade, A A

    2012-06-01

    A high incidence of periodontal disease has been reported among diabetics, however the role of saliva in the occurrence of this oral disease in these patients is yet to be understood. To determine the effects of type-2 diabetes and periodontal disease on salivary flow rate and biochemical composition. A prospective study involving 40 adult human subjects divided equally into four groups of diabetics with periodontitis (group 1), diabetics without periodontitis (group 2), non diabetics with periodontitis (group 3) and non diabetics without periodontitis (group 4). Saliva samples were collected and analyzed for salivary glucose, total protein, calcium, sodium, potassium, chloride and bicarbonate. Salivary flow rates were also determined. Salivary glucose and potassium levels were significantly higher (P = 0.002 and 0.04 respectively) in diabetic patients regardless of periodontal disease (mean = 100.7 ± 9.33 mg/dl; 111.5 ± 32.85 mg/dl and 23.79 ± 5.19 mg/dl; 22.9 ± 6.25 mg/dl respectively) compared with non diabetic participants (mean = 80.5 ± 30.85 mg/ dl; 62.5 ± 31.89 mg/dl and 19.23 ± 5.04 mg/dl; 17.74 ± 4.68 mg/dl respectively). In contrast, there was no significant difference in saliva flow rates and levels of total protein, Na(+), Ca(++), Cl(-) and HCO3 (-)between the groups. Salivary glucose and potassium levels were significantly higher among diabetics with or without periodontitis compared with non-diabetics with or without periodontitis. However, biochemical composition of saliva in diabetic individuals has probably little role in their susceptibility to periodontitis.

  19. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg. No. 1310-58-3) is also... powders. Potassium hydroxide is obtained commercially from the electrolysis of potassium chloride solution...

  20. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium salt...

  1. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium salt...

  2. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food... Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate (K2CO3, CAS... potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating a...

  3. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium salt...

  4. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets the...

  5. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate is...

  6. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium salt...

  7. Recovery and regeneration of spent MHD seed material by the formate process

    DOEpatents

    Sheth, A.C.; Holt, J.K.; Rasnake, D.G.; Solomon, R.L.; Wilson, G.L.; Herrigel, H.R.

    1991-10-15

    The specification discloses a spent seed recovery and regeneration process for an MHD power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to suppress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate. 5 figures.

  8. Recovery and regeneration of spent MHD seed material by the formate process

    DOEpatents

    Sheth, Atul C.; Holt, Jeffrey K.; Rasnake, Darryll G.; Solomon, Robert L.; Wilson, Gregory L.; Herrigel, Howard R.

    1991-01-01

    The specification discloses a spent seed recovery and regeneration process for an MHM power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to supress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate.

  9. Dietary sources of energy and nutrient intake among children and adolescents with chronic kidney disease.

    PubMed

    Chen, Wen; Ducharme-Smith, Kirstie; Davis, Laura; Hui, Wun Fung; Warady, Bradley A; Furth, Susan L; Abraham, Alison G; Betoko, Aisha

    2017-07-01

    Our purpose was to identify the main food contributors to energy and nutrient intake in children with chronic kidney disease (CKD). In this cross-sectional study of dietary intake assessed using Food Frequency Questionnaires (FFQ) in the Chronic Kidney Disease in Children (CKiD) cohort study, we estimated energy and nutrient intake and identified the primary contributing foods within this population. Completed FFQs were available for 658 children. Of those, 69.9% were boys, median age 12 (interquartile range (IQR) 8-15 years). The average daily energy intake was 1968 kcal (IQR 1523-2574 kcal). Milk was the largest contributor to total energy, protein, potassium, and phosphorus intake. Fast foods were the largest contributors to fat and sodium intake, the second largest contributors to energy intake, and the third largest contributors to potassium and phosphorus intake. Fruit contributed 12.0%, 8.7%, and 6.7% to potassium intake for children aged 2-5, 6-13, and 14-18 years old, respectively. Children with CKD consumed more sodium, protein, and calories but less potassium than recommended by the National Kidney Foundation (NKF) guidelines for pediatric CKD. Energy, protein, and sodium intake is heavily driven by consumption of milk and fast foods. Limiting contribution of fast foods in patients with good appetite may be particularly important for maintaining recommended energy and sodium intake, as overconsumption can increase the risk of obesity and cardiovascular complications in that population.

  10. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb)

    PubMed Central

    Saa, Sebastian; Olivos-Del Rio, Andres; Castro, Sebastian; Brown, Patrick H.

    2015-01-01

    The use of biostimulants has become a common practice in agriculture. However, there is little peer-reviewed research on this topic. In this study we tested, under controlled and replicated conditions, the effect of one biostimulant derived from seaweed extraction (Bio-1) and another biostimulant derived from microbial fermentation (Bio-2). This experiment utilized 2-years-old almond plants over two growing seasons in a randomized complete design with a full 2 × 4 factorial structure with two soil potassium treatments (125 μg g-1 of K vs. 5 μg g-1) and four foliar treatments (No spray, Foliar-K, Bio-1, Bio-2). Rubidium was utilized as a surrogate for short-term potassium uptake and plant growth, nutrient concentration, and final plant biomass were evaluated. There was a substantial positive effect of both biostimulant treatments on total shoot leaf area, and significant increases in shoot length and biomass under adequate soil potassium supply with a positive effect of Bio-1 only under low K supply. Rubidium uptake was increased by Bio-1 application an effect that was greater under the low soil K treatment. Though significant beneficial effects of the biostimulants used on plant growth were observed, it is not possible to determine the mode of action of these materials. The results presented here illustrate the promise and complexity of research involving biostimulants. PMID:25755660

  11. Igneous rocks of the East Pacific Rise

    USGS Publications Warehouse

    Engel, A.E.J.; Engel, C.G.

    1964-01-01

    The apical parts of large volcanoes along the East Pacific Rise (islands and seamounts) are encrusted with rocks of the alkali volcanic suite (alkali basalt, andesine- and oligoclase-andesite, and trachyte). In contrast, the more submerged parts of the Rise are largely composed of a tholeiitic basalt which has low concentrations of K, P, U, Th, Pb, and Ti. This tholeiitic basalt is either the predominant or the only magma generated in the earth's mantle under oceanic ridges and rises. It is at least 1000-fold more abundant than the alkali suite, which is probably derived from tholeiitic basalt by magmatic differentiation in and immediately below the larger volcanoes. Distinction of oceanic tholeiites from almost all continental tholeiites is possible on the simple basis of total potassium content, with the discontinuity at 0.3 to 0.5 percent K2O by weight. Oceanic tholeiites also are readily distinguished from some 19 out of 20 basalts of oceanic islands and seamount cappings by having less than 0.3 percent K2O by weight and more than 48 percent SiO2. Deep drilling into oceanic volcanoes should, however, core basalts transitional between the oceanic tholeiites and the presumed derivative alkali basalts.The composition of the oceanic tholeiites suggests that the mantle under the East Pacific Rise contains less than 0.10 percent potassium oxide by weight; 0.1 part per million of uranium and 0.4 part of thorium; a potassium:rubidium ratio of about 1200 and a potassium: uranium ratio of about 104.

  12. Effect of processing on the biochemical contents of Acanthus montanus (Nees) T. Anderson (Acanthaceae) leaves.

    PubMed

    Igwe, Andrew; Eleazu, Chinedum

    2018-03-01

    The effect of processing on the biochemical contents of Acanthus montanus leaves was investigated. The moisture, crude protein, lipid, fiber, ash, and total carbohydrate contents of the raw vegetable were 59.15, 1.85, 2.32, 3.76, 2.04, and 34.65 g/100 g, respectively. The saponin, alkaloid, tannin, flavonoid, phenol, and anthocyanin contents of the raw vegetable were 5.35, 4.04, 1.10, 3.53, 2.87, and 1.27 g/100 g, respectively, while it contained 2.65 mg/100 g calcium, 1.14 mg/100 g magnesium, 7.66 mg/100 g potassium, 350.75 μg/g vitamin A, 50.87 mg/100 g vitamin C, and 0.25% titratable acidity. There were significant reductions ( p  < .05) in the protein, lipid, fiber, ash, saponin, alkaloid, tannin, phenol, anthocyanin, calcium, magnesium, potassium, vitamin A, vitamin C, and titratable acidity of the boiled or boiled + sun-dried A. montanus leaves; significant elevation of the moisture contents but significant reduction of the total carbohydrate contents of the boiled; and significant reduction of the moisture contents of the boiled + sun-dried vegetable compared with the raw. There were significant increases ( p  < .05) in the total carbohydrate contents of the boiled + sun-dried leaves; significant reductions ( p  < .05) in the moisture, saponin, alkaloid, and vitamins A and C contents of the sun-dried vegetable; and no significant differences ( p  > .05) in the lipid, calcium, potassium, and ash, but significant increases ( p  < .05) in the protein, crude fiber, total carbohydrates, tannins, flavonoids, phenols, anthocyanin, magnesium, and titratable acidity of the sun-dried vegetable when compared with the raw. Sun drying alone either retained or enhanced the release of some important bioactive compounds in A. montanus leaves. Furthermore, the reduced moisture content of the sun-dried vegetable together with its increased titratable acidity will make the sun-dried vegetable uninhabitable for microorganisms, thereby increasing its shelf life.

  13. Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation

    PubMed Central

    Tsai, Chia-Ti; Hsieh, Chia-Shan; Chang, Sheng-Nan; Chuang, Eric Y.; Ueng, Kwo-Chang; Tsai, Chin-Feng; Lin, Tsung-Hsien; Wu, Cho-Kai; Lee, Jen-Kuang; Lin, Lian-Yu; Wang, Yi-Chih; Yu, Chih-Chieh; Lai, Ling-Ping; Tseng, Chuen-Den; Hwang, Juey-Jen; Chiang, Fu-Tien; Lin, Jiunn-Lee

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Previous genome-wide association studies had identified single-nucleotide polymorphisms in several genomic regions to be associated with AF. In human genome, copy number variations (CNVs) are known to contribute to disease susceptibility. Using a genome-wide multistage approach to identify AF susceptibility CNVs, we here show a common 4,470-bp diallelic CNV in the first intron of potassium interacting channel 1 gene (KCNIP1) is strongly associated with AF in Taiwanese populations (odds ratio=2.27 for insertion allele; P=6.23 × 10−24). KCNIP1 insertion is associated with higher KCNIP1 mRNA expression. KCNIP1-encoded protein potassium interacting channel 1 (KCHIP1) is physically associated with potassium Kv channels and modulates atrial transient outward current in cardiac myocytes. Overexpression of KCNIP1 results in inducible AF in zebrafish. In conclusions, a common CNV in KCNIP1 gene is a genetic predictor of AF risk possibly pointing to a functional pathway. PMID:26831368

  14. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    NASA Astrophysics Data System (ADS)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  15. Insulin increases excitability via a dose-dependent dual inhibition of voltage-activated K+ currents in differentiated N1E-115 neuroblastoma cells.

    PubMed

    Lima, Pedro A; Vicente, M Inês; Alves, Frederico M; Dionísio, José C; Costa, Pedro F

    2008-04-01

    A role in the control of excitability has been attributed to insulin via modulation of potassium (K(+)) currents. To investigate insulin modulatory effects on voltage-activated potassium currents in a neuronal cell line with origin in the sympathetic system, we performed whole-cell voltage-clamp recordings in differentiated N1E-115 neuroblastoma cells. Two main voltage-activated K(+) currents were identified: (a) a relatively fast inactivating current (I(fast) - time constant 50-300 ms); (b) a slow delayed rectifying K(+) current (I(slow) - time constant 1-4 s). The kinetics of inactivation of I(fast), rather than I(slow), showed clear voltage dependence. I(fast) and I(slow) exhibited different activation and inactivation dependence for voltage, and have different but nevertheless high sensitivities to tetraethylammonium, 4-aminopyridine and quinidine. In differentiated cells - rather than in non-differentiated cells - application of up to 300 nm insulin reduced I(slow) only (IC(50) = 6.7 nm), whereas at higher concentrations I(fast) was also affected (IC(50) = 7.7 microm). The insulin inhibitory effect is not due to a change in the activation or inactivation current-voltage profiles, and the time-dependent inactivation is also not altered; this is not likely to be a result of activation of the insulin-growth-factor-1 (IGF1) receptors, as application of IGF1 did not result in significant current alteration. Results suggest that the current sensitive to low concentrations of insulin is mediated by erg-like channels. Similar observations concerning the insulin inhibitory effect on slow voltage-activated K(+) currents were also made in isolated rat hippocampal pyramidal neurons, suggesting a widespread neuromodulator role of insulin on K(+) channels.

  16. Direct block of hERG potassium channels by the protein kinase C inhibitor bisindolylmaleimide I (GF109203X).

    PubMed

    Thomas, Dierk; Hammerling, Bettina C; Wimmer, Anna-Britt; Wu, Kezhong; Ficker, Eckhard; Kuryshev, Yuri A; Scherer, Daniel; Kiehn, Johann; Katus, Hugo A; Schoels, Wolfgang; Karle, Christoph A

    2004-12-01

    The human ether-a-go-go-related gene (hERG) encodes the rapid component of the cardiac repolarizing delayed rectifier potassium current, I(Kr). The direct interaction of the commonly used protein kinase C (PKC) inhibitor bisindolylmaleimide I (BIM I) with hERG, KvLQT1/minK, and I(Kr) currents was investigated in this study. hERG and KvLQT1/minK channels were heterologously expressed in Xenopus laevis oocytes, and currents were measured using the two-microelectrode voltage clamp technique. In addition, hERG currents in stably transfected human embryonic kidney (HEK 293) cells, native I(Kr) currents and action potentials in isolated guinea pig ventricular cardiomyocytes were recorded using whole-cell patch clamp electrophysiology. Bisindolylmaleimide I blocked hERG currents in HEK 293 cells and Xenopus oocytes in a concentration-dependent manner with IC(50) values of 1.0 and 13.2 muM, respectively. hERG channels were primarily blocked in the open state in a frequency-independent manner. Analysis of the voltage-dependence of block revealed a reduction of inhibition at positive membrane potentials. BIM I caused a shift of -20.3 mV in the voltage-dependence of inactivation. The point mutations tyrosine 652 alanine (Y652A) and phenylalanine 656 alanine (F656A) attenuated hERG current blockade, indicating that BIM I binds to a common drug receptor within the pore region. KvLQT1/minK currents were not significantly altered by BIM I. Finally, 1 muM BIM I reduced native I(Kr) currents by 69.2% and lead to action potential prolongation. In summary, PKC-independent effects have to be carefully considered when using BIM I as PKC inhibitor in experimental models involving hERG channels and I(Kr) currents.

  17. Kv1 channels and neural processing in vestibular calyx afferents.

    PubMed

    Meredith, Frances L; Kirk, Matthew E; Rennie, Katherine J

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

  18. Intracellular spermine blocks TRPC4 channel via electrostatic interaction with C-terminal negative amino acids.

    PubMed

    Kim, Jinsung; Moon, Sang Hui; Shin, Young-Cheul; Jeon, Ju-Hong; Park, Kyu Joo; Lee, Kyu Pil; So, Insuk

    2016-04-01

    Transient receptor potential canonical (TRPC) 4 channels are calcium-permeable, nonselective cation channels and are widely expressed in mammalian tissue, especially in the GI tract and brain. TRPC4 channels are known to be involved in neurogenic contraction of ileal smooth muscle cells via generating cationic current after muscarinic stimulation (muscarinic cationic current (mIcat)). Polyamines exist in numerous tissues and are believed to be involved in cell proliferation, differentiation, scar formation, wound healing, and carcinogenesis. Besides, physiological polyamines are essential to maintain inward rectification of cardiac potassium channels (Kir2.1). At membrane potentials more positive than equilibrium potential, intracellular polyamines plug the cytosolic surface of the Kir2.1 so that potassium ions cannot pass through the pore. Recently, it was reported that polyamines inhibit not only cardiac potassium channels but also nonselective cation channels that mediate the generation of mIcat. Here, we report that TRPC4, a definite mIcat mediator, is inhibited by intracellular spermine with great extent. The inhibition was specific to TRPC4 and TRPC5 channels but was not effective to TRPC1/4, TRPC1/5, and TRPC3 channels. For this inhibition to occur, we found that glutamates at 728th and 729th position of TRPC4 channels are essential whereby we conclude that spermine blocks the TRPC4 channel with electrostatic interaction between negative amino acids at the C-terminus of the channel.

  19. Aldosterone downregulates delayed rectifier potassium currents through an angiotensin type 1 receptor-dependent mechanism.

    PubMed

    Lv, Yankun; Wang, Yanjun; Zhu, Xiaoran; Zhang, Hua

    2018-01-01

    We have previously shown that aldosterone downregulates delayed rectifier potassium currents (I Ks ) via activation of the mineralocorticoid receptor (MR) in adult guinea pig cardiomyocytes. Here, we investigate whether angiotensin II/angiotensin type 1 receptor (AngII/AT1R) and intracellular calcium also play a role in these effects. Ventricular cardiomyocytes were isolated from adult guinea pigs and incubated with aldosterone (1 μmol·L -1 ) either alone or in combination with enalapril (1 μmol·L -1 ), losartan (1 μmol·L -1 ), nimodipine (1 μmol·L -1 ), or BAPTA-AM (2.5 μmol·L -1 ) for 24 h. We used the conventional whole cell patch-clamp technique to record the I Ks component. In addition, we evaluated expression of the I Ks subunits KCNQ1 and KCNE1 using Western blotting. Our results showed that both enalapril and losartan, but not nimodipine or BAPTA-AM, completely reversed the aldosterone-induced inhibition of I Ks and its effects on KCNQ1/KCNE1 protein levels. Furthermore, we found that AngII/AT1R mediates the inhibitory effects of aldosterone on I Ks . Finally, the downregulation of I Ks induced by aldosterone did not occur secondarily to a change in intracellular calcium concentrations. Taken together, our findings demonstrate that crosstalk between MR and AT1R underlies the effects of aldosterone, and provide new insights into the mechanism underlying potassium channels.

  20. Energy generation by fermentation of glucose in a batch flow microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Badea, Silviu-Laurentiu; Enache, Stanica; Tamaian, Radu; Buga, Mihaela-Ramona; Pirvu, Cristian; Varlam, Mihai

    2016-04-01

    In the last years, microbial fuel cells (MFCs) have emerged like a novel research technologies for production of sustainable and clean electricity energy through bioxidation of organic materials, representing a promising alternative to combustion energy sources. In this study, production of bioelectricity in MFC in batch system (dual chambered MFC) was investigated. A dual chambered MFC from glass was built for this purpose. Saccharomyces cerevisiae as an active biocatalyst was explored for power generation. Graphite plates were used as electrodes and glucose as substrate. Saccharomyces cerevisiae was initially grown on a period of 72h at 30 degree Celsius, on medium of modified Sabouraud liquid medium containing 30 g glucose/L. A volume of inoculated medium (80 mL) was transferred in the anode compartment of MFC together with 20 mL glucose 1M, while neutral red was used as mediator (electron shuttle) in concentration of 200 μM in anaerobic anode chamber. Potassium permanganate (KMnO4) was used as oxidizing agent in the cathode in wide concentration range (400 μM-40 000 μM). Cathodic compartment was loaded initially with 40 mM potassium permanganate, and afterwards was supplied two times more with KMnO4 of the same concentration, in order to maintain MFC functionality. The MFC was operated on a water bath heated by a combined hot-plate magnetic-stirrer device at 30 degree Celsius and mixed at 180 rpm. The maximum open circuit potential (OCV) recorded of about 0.6 V was reached after the 3rd loading with 40 milimolles of potassium permanganate. Using a potentiostat, the polarization curve was recorded by varying the potential between 0.5 V and 0.0 V, while the intensity of current increased from 0.0 to about 1.5 mA respectively, corresponding to an anodic current density of about 0.81 A/m2. In order to optimize the design and performance of the MFC, the goal of the further research is to use variously concentrations of potassium permanganate. Furthermore, a dual chambered MFC of large volume (0.5 L), a nafion membrane between anodic and cathodic compartments, and recirculation flows of glucose and potassium permanganate are planned to be used for a longer operability of the MFC.

  1. Accumulation of K+ in the synaptic cleft modulates activity by influencing both vestibular hair cell and calyx afferent in the turtle

    PubMed Central

    Contini, Donatella; Price, Steven D.

    2016-01-01

    Key points In the synaptic cleft between type I hair cells and calyceal afferents, K+ ions accumulate as a function of activity, dynamically altering the driving force and permeation through ion channels facing the synaptic cleft.High‐fidelity synaptic transmission is possible due to large conductances that minimize hair cell and afferent time constants in the presence of significant membrane capacitance.Elevated potassium maintains hair cells near a potential where transduction currents are sufficient to depolarize them to voltages necessary for calcium influx and synaptic vesicle fusion.Elevated potassium depolarizes the postsynaptic afferent by altering ion permeation through hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels, and contributes to depolarizing the afferent to potentials where a single EPSP (quantum) can generate an action potential.With increased stimulation, hair cell depolarization increases the frequency of quanta released, elevates [K+]cleft and depolarizes the afferent to potentials at which smaller and smaller EPSPs would be sufficient to trigger APs. Abstract Fast neurotransmitters act in conjunction with slower modulatory effectors that accumulate in restricted synaptic spaces found at giant synapses such as the calyceal endings in the auditory and vestibular systems. Here, we used dual patch‐clamp recordings from turtle vestibular hair cells and their afferent neurons to show that potassium ions accumulating in the synaptic cleft modulated membrane potentials and extended the range of information transfer. High‐fidelity synaptic transmission was possible due to large conductances that minimized hair cell and afferent time constants in the presence of significant membrane capacitance. Increased potassium concentration in the cleft maintained the hair cell near potentials that promoted the influx of calcium necessary for synaptic vesicle fusion. The elevated potassium concentration also depolarized the postsynaptic neuron by altering ion permeation through hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels. This depolarization enabled the afferent to reliably generate action potentials evoked by single AMPA‐dependent EPSPs. Depolarization of the postsynaptic afferent could also elevate potassium in the synaptic cleft, and would depolarize other hair cells enveloped by the same neuritic process increasing the fidelity of neurotransmission at those synapses as well. Collectively, these data demonstrate that neuronal activity gives rise to potassium accumulation, and suggest that potassium ion action on HCN channels can modulate neurotransmission, preserving the fidelity of high‐speed synaptic transmission by dynamically shifting the resting potentials of both presynaptic and postsynaptic cells. PMID:27633787

  2. Effects of n-alkanols and a methyl ester on a transient potassium (IA) current in identified neurones from Helix aspersa.

    PubMed Central

    Winpenny, J P; Elliott, J R; Harper, A A

    1992-01-01

    1. A two-microelectrode voltage clamp was used to determine the effects of n-butanol, n-hexanol, n-octanol, n-decanol and methyl hexanoate on a transient potassium (IA) current in identified Helix aspersa neurones. Experiments were carried out at a temperature of 10-12 degrees C. 2. Each n-alkanol reversibly reduced the amplitude of the IA current. Logarithmic dose-response curves for the current reduction by each homologue were sigmoidal and had slope factors of around four. The concentrations required to reduce the peak (with time) current at -30 mV by 50% (ED50 +/- fitted standard error) were: 57 +/- 5 mM (n-butanol); 2.0 +/- 0.1 mM (n-hexanol); 0.28 +/- 0.02 mM (n-octanol) and 0.016 +/- 0.001 mM (n-decanol). Methyl hexanoate also reduced the current amplitude, with an ED50 of 1-2 mM. The Helix IA current thus showed a similar sensitivity to n-alkanols to that of squid and rat sodium currents but was rather more sensitive than the squid delayed rectifier potassium current. 3. The n-alkanol ED50 concentrations were used to calculate a standard free energy per methylene group for adsorption to a site of action in the cell of -3.1 +/- 0.2 kJ/mol. This suggested a hydrophobic site or sites of action. The regularity of the change in free energy with chain length was maintained up to, and including, n-decanol. This implied that the site(s) could accommodate a ten-carbon chain as readily as an eight-carbon chain. 4. The voltage dependencies of IA current activation and steady-state inactivation were not consistently altered by treatment with n-alkanols at concentrations around or above their current suppression ED50 concentrations. 5. The kinetics of current activation and inactivation were affected, particularly by lower chain length compounds. At 60 mM n-butanol reduced the time constant for development of inactivation of open channels (tau b) by 56%, while 0.016 mM n-decanol produced only a 13% reduction. n-Butanol (60 mM) also caused a substantial (76%) reduction in the time constant for development of inactivation in channels which were presumed to be closed. The effects of n-alkanols on the current time-to-peak (tc) were complex, showing both increases and decreases, but these actions also declined with chain length. Methyl hexanoate (1 mM) reduced tau b by around 30% and tc by around 20%. 6. n-Alkanols have now been shown to inhibit a number of voltage-gated ion conductances.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1293276

  3. Electrical Engineering (Selected Articles).

    DTIC Science & Technology

    1980-05-15

    Homopolar Machine with Sodium-Potassium Ring-Shaped Contacts, by L.A. Sukhanov , G.A. Karmonov .......... 19 ACCESSION forWht hieSeto NTISuf ecine 1DOCS...3663 FACE 19 DIFECT-CURRENT HOMOPOLAS AACHIhI ITH SCIIUM-ECIASSIUM RING-SHAPED CONTACTS L. A. Sukhanov , Cand. tech. sciences, G. A. Karmanov, eng. ThA

  4. The mineral content of tap water in United States households

    USDA-ARS?s Scientific Manuscript database

    The composition of tap water contributes to dietary intake of minerals. The USDA’s Nutrient Data Laboratory (NDL) conducted a study of the mineral content of residential tap water, to generate current data for the USDA National Nutrient Database. Sodium, potassium, calcium, magnesium, iron, copper...

  5. Chronic potassium depletion increases adrenal progesterone production that is necessary for efficient renal retention of potassium.

    PubMed

    Elabida, Boutaïna; Edwards, Aurélie; Salhi, Amel; Azroyan, Anie; Fodstad, Heidi; Meneton, Pierre; Doucet, Alain; Bloch-Faure, May; Crambert, Gilles

    2011-08-01

    Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.

  6. Potassium in diet

    MedlinePlus

    ... the diet; Hypokalemia - potassium in the diet; Chronic kidney disease - potassium in diet; Kidney failure - potassium in diet ... are also excellent sources of potassium. People with kidney problems, especially those on dialysis, should not eat ...

  7. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  8. Low Potassium (Hypokalemia)

    MedlinePlus

    Symptoms Low potassium (hypokalemia) By Mayo Clinic Staff Low potassium (hypokalemia) refers to a lower than normal potassium level ... 2 millimoles per liter (mmol/L). A very low potassium level (less than 2.5 mmol/L) ...

  9. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also known as acesulfame K, may be... following conditions: (a) Acesulfame potassium is the potassium salt of 6-methyl-1,2,3-oxathiazine-4(3H)-one...

  10. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium carbonate...

  11. Agreement of arterial sodium and arterial potassium levels with venous sodium and venous potassium in patients admitted to intensive care unit.

    PubMed

    Nanda, Sunil Kumar; Ray, Lopamudra; Dinakaran, Asha

    2015-02-01

    Electrolyte abnormalities are one of the common causes of morbidity and mortality in critically ill patients. The turnaround time for electrolyte reporting should be as low as possible. Electrolytes are measured conventionally in serum obtained from venous blood by electrolyte analyser which takes 20 to 30 min. Point of care analysers are now available where in electrolytes can be measured in arterial blood within 5 min. This study was done to study the agreement of arterial sodium and arterial potassium with venous sodium and venous potassium levels. Venous sodium and venous potassium levels and arterial sodium and arterial potassium levels were analysed on 206 patient samples admitted to Intensive Care Unit (ICU). The venous values were compared with the arterial values for correlation. Venous sodium was compared with arterial sodium by spearman correlation. Venous potassium was compared with arterial potassium by pearson correlation. The mean value of arterial sodium was 134 and venous sodium was 137. The mean value of arterial potassium was 3.6 and venous potassium was 4.1. The correlation coefficient obtained for sodium was 0.787 and correlation coefficient obtained for potassium was 0.701. There was positive correlation of arterial sodium and arterial potassium with venous sodium and venous potassium indicating agreement between the parameters. Arterial sodium and arterial potassium can be used instead of venous sodium and venous potassium levels in management of critically ill patients.

  12. Calcineurin inhibitors block sodium-chloride cotransporter dephosphorylation in response to high potassium intake.

    PubMed

    Shoda, Wakana; Nomura, Naohiro; Ando, Fumiaki; Mori, Yutaro; Mori, Takayasu; Sohara, Eisei; Rai, Tatemitsu; Uchida, Shinichi

    2017-02-01

    Dietary potassium intake is inversely related to blood pressure and mortality. Moreover, the sodium-chloride cotransporter (NCC) plays an important role in blood pressure regulation and urinary potassium excretion in response to potassium intake. Previously, it was shown that NCC is activated by the WNK4-SPAK cascade and dephosphorylated by protein phosphatase. However, the mechanism of NCC regulation with acute potassium intake is still unclear. To identify the molecular mechanism of NCC regulation in response to potassium intake, we used adult C57BL/6 mice fed a 1.7% potassium solution by oral gavage. We confirmed that acute potassium load rapidly dephosphorylated NCC, which was not dependent on the accompanying anions. Mice were treated with tacrolimus (calcineurin inhibitor) and W7 (calmodulin inhibitor) before the oral potassium loads. Dephosphorylation of NCC induced by potassium was significantly inhibited by both tacrolimus and W7 treatment. There was no significant difference in WNK4, OSR1, and SPAK expression after high potassium intake, even after tacrolimus and W7 treatment. Another phosphatase, protein phosphatase 1, and its endogenous inhibitor I-1 did not show a significant change after potassium intake. Hyperkaliuria, induced by high potassium intake, was significantly suppressed by tacrolimus treatment. Thus, calcineurin is activated by an acute potassium load, which rapidly dephosphorylates NCC, leading to increased urinary potassium excretion. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Dialysate Potassium and Mortality in a Prospective Hemodialysis Cohort.

    PubMed

    Ferrey, Antoney; You, Amy S; Kovesdy, Csaba P; Nakata, Tracy; Veliz, Mary; Nguyen, Danh V; Kalantar-Zadeh, Kamyar; Rhee, Connie M

    2018-06-07

    Studies examining the association of dialysate potassium concentration and mortality in hemodialysis patients show conflicting findings. We hypothesized that low dialysate potassium concentrations are associated with higher mortality, particularly in patients with high pre-dialysis serum potassium concentrations. We evaluated 624 hemodialysis patients from the prospective Malnutrition, Diet, and Racial Disparities in Kidney Disease study recruited from 16 outpatient dialysis facilities over 2011-2015 who underwent protocolized collection of dialysis treatment characteristics every 6 months. We examined the association of dialysate potassium concentration, categorized as 1, 2, and 3 mEq/L, with all-cause mortality risk in the -overall cohort, and stratified by pre-dialysis serum potassium (< 5 vs. ≥5 mEq/L) using case-mix adjusted Cox models. In baseline analyses, dialysate potassium concentrations of 1 mEq/L were associated with higher mortality, whereas concentrations of 3 mEq/L were associated with similar mortality in the overall cohort (reference: 2 mEq/L): adjusted hazard ratios (aHRs; 95% CI) 1.70 (1.01-2.88) and 0.95 (0.64-1.39), respectively. In analyses stratified by serum potassium, baseline dialysate potassium concentrations of 1 mEq/L were associated with higher mortality in patients with serum potassium ≥5 mEq/L but not in those with serum potassium < 5 mEq/L: aHRs (95% CI) 2.87 (1.51-5.46) and 0.74 (0.27-2.07), respectively (p interaction = 0.04). These findings were robust with incremental adjustment for serum potassium, potassium-binding resins, and potassium-modifying medications. Low (1 mEq/L) dialysate potassium -concentrations were associated with higher mortality, particularly in hemodialysis patients with high pre-dialysis serum potassium. Further studies are needed to identify therapeutic strategies that mitigate inter-dialytic serum potassium accumulation and subsequent high dialysate serum potassium gradients in this population. © 2018 S. Karger AG, Basel.

  14. Properties of the calcium-activated chloride current in heart.

    PubMed

    Zygmunt, A C; Gibbons, W R

    1992-03-01

    We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.

  15. Potassium supplements for oral diarrhoea regimens.

    PubMed

    Clements, M L; Levine, M M; Black, R E; Hughes, T P; Rust, J; Tome, F C

    1980-10-18

    A study is proposed for supplementing potassium loss from diarrhea in rehydration therapies with fresh fruit and other naturally potassium-rich foods. Bananas contain .1 mol of potassium per gm. Freshly squeezed lemon or orange juices were tested for potassium and sodium content and found to have very low potassium concentration. Therefore, the banana was chosen for an upcoming study that will determine if infants and children suffering from diarrhea can ingest the amounts of the fruit necessary to elevate the potassium level sufficiently. Bananas as the potassium source are thought to be well-accepted in developing areas.

  16. A ditopic fluorescent sensor for potassium fluoride.

    PubMed

    Koskela, Suvi J M; Fyles, Thomas M; James, Tony D

    2005-02-21

    The addition of potassium fluoride 'switches on' the fluorescence of sensors and while potassium chloride and bromide cause no fluorescence change; the fluorescence can be 'switched off' by removing the potassium cation from the benzocrown ether receptors of sensors and through the addition of [2.2.2]-cryptand and restored by the addition of the potassium cation as potassium chloride.

  17. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing.

    PubMed

    Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2017-01-01

    Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata , Avicennia marina , and Ceriops tagal , was undertaken using high - throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.

  18. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing

    PubMed Central

    Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2017-01-01

    Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata, Avicennia marina, and Ceriops tagal, was undertaken using high-throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem. PMID:29093705

  19. Long-life high performance fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1985-01-01

    A multihundred kilowatt Regenerative Fuel Cell for use in a space station is envisioned. Three 0.508 sq ft (471.9 cm) active area multicell stacks were assembled and endurance tested. The long term performance stability of the platinum on carbon catalyst configuration suitability of the lightweight graphite electrolyte reservoir plate, the stability of the free standing butyl bonded potassium titanate matrix structure, and the long life potential of a hybrid polysulfone cell edge frame construction were demonstrated. A 18,000 hour demonstration test of multicell stack to a continuous cyclical load profile was conducted. A total of 12,000 cycles was completed, confirming the ability of the alkaline fuel cell to operate to a load profile simulating Regenerative Fuel Cell operation. An orbiter production hydrogen recirculation pump employed in support of the cyclical load profile test completed 13,000 hours of maintenance free operation. Laboratory endurance tests demonstrated the suitability of the butyl bonded potassium matrix, perforated nickel foil electrode substrates, and carbon ribbed substrate anode for use in the alkaline fuel cell. Corrosion testing of materials at 250 F (121.1 C) in 42% wgt. potassium identified ceria, zirconia, strontium titanate, strontium zirconate and lithium cobaltate as candidate matrix materials.

  20. Diabetic ketoacidosis producing extreme hyperkalemia in a patient with type 1 diabetes on hemodialysis.

    PubMed

    Yamada, Hodaka; Funazaki, Shunsuke; Kakei, Masafumi; Hara, Kazuo; Ishikawa, San-E

    2017-01-01

    Diabetic ketoacidosis (DKA) is a critical complication of type 1 diabetes associated with water and electrolyte disorders. Here, we report a case of DKA with extreme hyperkalemia (9.0 mEq/L) in a patient with type 1 diabetes on hemodialysis. He had a left frontal cerebral infarction resulting in inability to manage his continuous subcutaneous insulin infusion pump. Electrocardiography showed typical changes of hyperkalemia, including absent P waves, prolonged QRS interval and tented T waves. There was no evidence of total body water deficit. After starting insulin and rapid hemodialysis, the serum potassium level was normalized. Although DKA may present with hypokalemia, rapid hemodialysis may be necessary to resolve severe hyperkalemia in a patient with renal failure. Patients with type 1 diabetes on hemodialysis may develop ketoacidosis because of discontinuation of insulin treatment.Patients on hemodialysis who develop ketoacidosis may have hyperkalemia because of anuria.Absolute insulin deficit alters potassium distribution between the intracellular and extracellular space, and anuria abolishes urinary excretion of potassium.Rapid hemodialysis along with intensive insulin therapy can improve hyperkalemia, while fluid infusions may worsen heart failure in patients with ketoacidosis who routinely require hemodialysis.

Top