Gajek, J; Zieba, I; Zyśko, D
2000-08-01
Hyperthyreosis mimics the hyperadrenergic state and its symptoms were though to be dependent on increased level of catecholamines. Another reason for the symptoms could be the increased density or affinity of beta-adrenergic receptors to catecholamines. The aim of the study was to examine the elements of sympathetic nervous system, thyroid hormones level and their influence on heart rate control in patients with hyperthyreosis. The study was carried out in 18 women, mean age 48.9 +/- 8.7 yrs and 6 men, mean age 54.2 +/- 8.7 yrs. The control group consisted of 30 healthy persons matched for age and sex. We examined the density of beta-adrenergic receptors using radioligand labelling method with 125I-cyanopindolol, serum total catecholamines level with radioenzymatic assay kit, the levels of free thyroid hormones using radioimmunoassays and thyreotropine level with immunoradiometric assay. Maximal, minimal and mean heart rate were studied using Holter monitoring system. The density of beta-adrenergic receptors in hyperthyreosis was 37.3 +/- 21.7 vs 37.2 +/- 18.1 fmol/mg in the control group (p = NS). Total catecholamines level was significantly decreased in hyperthyreosis group: 1.5 +/- 0.89 vs 1.9 +/- 0.73 pmol/ml (p < 0.05). There was significantly higher minimal, maximal and mean heart rate in hyperthyreosis group (p < 0.0001, p < 0.0001 and p < 0.05 respectively). There was a weak inverse correlation between minimum heart rate and triiodothyronine level (r = -0.38, p < 0.05). An inverse correlation between triiodothyronine and catecholamines level (r = -0.49, p < 0.05) was observed. Beta-adrenergic receptors density is unchanged and catecholamines level is decreased in hyperthyreosis when compared to normal subjects. There is no correlation between minimal heart rate and adrenergic receptors density or catecholamines level in hyperthyreosis.
Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric
2016-05-01
Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.
Kappa2 opioid receptor subtype binding requires the presence of the DOR-1 gene.
Ansonoff, Michael A; Wen, Ting; Pintar, John E
2010-01-01
Over the past several years substantial evidence has documented that opioid receptor homo- and heterodimers form in cell lines expressing one or more of the opioid receptors. We used opioid receptor knockout mice to determine whether in vivo pharmacological characteristics of kappa1 and kappa2 opioid receptors changed following knockout of specific opioid receptors. Using displacement of the general opioid ligand diprenorphine, we observed that occupancy or knockout of the DOR-1 gene increases the binding density of kappa1 receptors and eliminates kappa2 receptors in crude membrane preparations while the total density of kappa opioid binding sites is unchanged. Further, the analgesic potency of U69,593 in cumulative dose response curves is enhanced in mice lacking the DOR-1 gene. These results demonstrate that the DOR-1 gene is required for the expression of the kappa2 opioid receptor subtype and are consistent with the possibility that a KOR-1/DOR-1 heterodimer mediates kappa2 pharmacology.
Bilheimer, David W.; Watanabe, Yoshio; Kita, Toru
1982-01-01
The homozygous WHHL (Watanabe heritable hyperlipidemic) rabbit displays either no or only minimal low density lipoprotein (LDL) receptor activity on cultured fibroblasts and liver membranes and has therefore been proposed as an animal model for human familial hypercholesterolemia. To assess the impact of this mutation on LDL metabolism in vivo, we performed lipoprotein turnover studies in normal and WHHL rabbits using both native rabbit LDL and chemically modified LDL (i.e., methyl-LDL) that does not bind to LDL receptors. The total fractional catabolic rate (FCR) for LDL in the normal rabbit was 3.5-fold greater than in the WHHL rabbit. Sixty-seven percent of the total FCR for LDL in the normal rabbit was due to LDL receptor-mediated clearance and 33% was attributable to receptor-independent processes; in the WHHL rabbit, essentially all of the LDL was catabolized via receptor-independent processes. Despite a 17.5-fold elevated plasma pool size of LDL apoprotein (apo-LDL) in WHHL as compared to normal rabbits, the receptor-independent FCR—as judged by the turnover of methyl-LDL—was similar in the two strains. Thus, the receptor-independent catabolic processes are not influenced by the mutation affecting the LDL receptor. The WHHL rabbits also exhibited a 5.6-fold increase in the absolute rate of apo-LDL synthesis and catabolism. In absolute terms, the WHHL rabbit cleared 19-fold more apo-LDL via receptor-independent processes than did the normal rabbit and cleared virtually none by the receptor-dependent pathway. These results indicate that the homozygous WHHL rabbit shares a number of metabolic features in common with human familial hypercholesterolemia and should serve as a useful model for the study of altered lipoprotein metabolism associated with receptor abnormalities. We also noted that the in vivo metabolic behavior of human and rabbit LDL in the normal rabbit differed such that the mean total FCR for human LDL was only 64% of the mean total FCR for rabbit LDL, whereas human and rabbit methyl-LDL were cleared at identical rates. Thus, if human LDL and methyl-LDL had been used in these studies, the magnitude of both the total and receptor-dependent FCR would have been underestimated. PMID:6285345
Catts, Vibeke Sørensen; Derminio, Dominique Suzanne; Hahn, Chang-Gyu; Weickert, Cynthia Shannon
2015-01-01
Background: There is converging evidence of involvement of N-methyl-d-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Our group recently identified a decrease in total NR1 mRNA and protein expression in the dorsolateral prefrontal cortex in a case-control study of individuals with schizophrenia (n=37/group). The NR1 subunit is critical to NMDA receptor function at the postsynaptic density, a cellular structure rich in the scaffolding protein, PSD-95. The extent to which the NMDA receptor NR1 subunit is altered at the site of action, in the postsynaptic density, is not clear. Aims: To extend our previous results by measuring levels of NR1 and PSD-95 protein in postsynaptic density-enriched fractions of prefrontal cortex from the same individuals in the case-control study noted above. Methods: Postsynaptic density-enriched fractions were isolated from fresh-frozen prefrontal cortex (BA10) and subjected to western blot analysis for NR1 and PSD-95. Results: We found a 20% decrease in NR1 protein (t(66)=−2.874, P=0.006) and a 30% decrease in PSD-95 protein (t(63)=−2.668, P=0.010) in postsynaptic density-enriched fractions from individuals with schizophrenia relative to unaffected controls. Conclusions: Individuals with schizophrenia have less NR1 protein, and therefore potentially fewer functional NMDA receptors, at the postsynaptic density. The associated decrease in PSD-95 protein at the postsynaptic density suggests that not only are glutamate receptors compromised in individuals with schizophrenia, but the overall spine architecture and downstream signaling supported by PSD-95 may also be deficient. PMID:27336043
Catts, Vibeke Sørensen; Derminio, Dominique Suzanne; Hahn, Chang-Gyu; Weickert, Cynthia Shannon
2015-01-01
There is converging evidence of involvement of N-methyl-d-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Our group recently identified a decrease in total NR1 mRNA and protein expression in the dorsolateral prefrontal cortex in a case-control study of individuals with schizophrenia (n=37/group). The NR1 subunit is critical to NMDA receptor function at the postsynaptic density, a cellular structure rich in the scaffolding protein, PSD-95. The extent to which the NMDA receptor NR1 subunit is altered at the site of action, in the postsynaptic density, is not clear. To extend our previous results by measuring levels of NR1 and PSD-95 protein in postsynaptic density-enriched fractions of prefrontal cortex from the same individuals in the case-control study noted above. Postsynaptic density-enriched fractions were isolated from fresh-frozen prefrontal cortex (BA10) and subjected to western blot analysis for NR1 and PSD-95. We found a 20% decrease in NR1 protein (t(66)=-2.874, P=0.006) and a 30% decrease in PSD-95 protein (t(63)=-2.668, P=0.010) in postsynaptic density-enriched fractions from individuals with schizophrenia relative to unaffected controls. Individuals with schizophrenia have less NR1 protein, and therefore potentially fewer functional NMDA receptors, at the postsynaptic density. The associated decrease in PSD-95 protein at the postsynaptic density suggests that not only are glutamate receptors compromised in individuals with schizophrenia, but the overall spine architecture and downstream signaling supported by PSD-95 may also be deficient.
Role of Stat3 and ErbB2 in Breast Cancer
2012-10-01
also activated by receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR) or platelet -derived growth factor receptor (PDGFR...cells were grown to different densities, up to 5 days post-confluence, as indicated. Detergent cell lysates were probed for Stat3-ptyr705, active Rac...and lysates probed for total cav1, cadherin 11 or tubulin as a loading control. 15 C Figure 7: Cadherin 11 and Rac1 downregulation
Tobina, Takuro; Mori, Yukari; Doi, Yukiko; Nakayama, Fuki; Kiyonaga, Akira; Tanaka, Hiroaki
2017-09-01
Muscle peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1)α gene expression is influenced by the Gly482Ser gene polymorphism, which is a candidate genetic risk factor for diabetes mellitus and obesity. This study investigated the effects of PGC-1 gene Gly482Ser polymorphisms on alterations in glucose and lipid metabolism induced by exercise training. A 12-week intervention study was performed for 119 participants who were more than 65 years of age and completed exercise training at lactate threshold intensity. Total cholesterol and low-density lipoprotein cholesterol were significantly reduced in Gly/Gly but not in Gly/Ser and Ser/Ser participants after exercise. The Gly/Gly genotype of the PGC-1 gene Gly482Ser polymorphism influences the effects of moderate-intensity exercise training on low-density lipoprotein cholesterol and total cholesterol concentrations in older people.
Effect of DHEA on Bone in Young Adults
1999-09-01
material from female subjects undergoing total hip replacement. Low-density mononuclear cells were isolated by centrifugation on Ficoll histopaque...affected genetic males that is similar to that of unaffected female animals (56). Another natural model is the case of a man with an estrogen receptor...transgenic estrogen receptor knockout mouse, has a BMD 20-25% that of normal mice (58). Similarly, male and female patients with aromatase deficiency have
2008-12-01
statistically significant. T. Chol indicates total cholesterol ; HDL, high - density lipoprotein . B, Hematoxylin and eosin staining of proximal aortas from...low density lipoprotein receptor null Ldlr/ mice transplanted with Stat1/ bone marrow. Conclusions—STAT1 is critical for endoplasmic reticulum...intracellular accumulation of lipoprotein - derived free cholesterol (FC).11 FC enrichment of macro- phages, like many ER stressors, activates the UPR
Ramakrishnan, Gopalakrishnan; Rana, Anita; Das, Chandana; Chandra, Nimai Chand
2007-10-01
The aim of this study was to compare in vitro the role of two oral contraceptives, desogestrel (a less androgenic derivative of levonorgestrel) and levonorgestrel--alone and in combination with ethinyl estradiol--on low-density lipoprotein (LDL) receptor regulation by assessing receptor protein expression and functional effectiveness. Placental tissue and cultured placental cells (JEG-3) were used to study the expression and endocytotic activity of LDL receptor protein. The expression of the receptor was assessed by immunocytochemistry and immunoblot assays with and without contraceptive challenge. Functioning activity of LDL receptor was studied by measuring the rate of uptake of LDL by placental cells. Quantification of LDL was based on the total cholesterol content of the lipoprotein. A combination of desogestrel (20 ng/mL of incubation medium) and ethinyl estradiol (10 ng/mL of incubation medium) maintained the LDL receptor at high level of expression and functioning mode. In contrast, the double-blind preparation of levonorgestrel (20 ng/mL) and ethinyl estradiol (10 ng/mL) had shown much lower expression as well as receptor-mediated LDL uptake. The concentration of contraceptives used in this study was similar to the prevailing concentration of oral contraceptives in clinical use. Higher expression of LDL receptor and enhanced rate of LDL uptake by the receptor protein projects the possibility that there might be less atherosclerosis-related disorders from the combination of desogestrol and ethinyl estradiol.
Kim, Won Hwa; Cho, Nariya; Kim, Young-Seon; Yi, Ann
2018-04-06
To evaluate the changes in mammographic density after tamoxifen discontinuation in premenopausal women with oestrogen receptor-positive breast cancers and the underlying factors METHODS: A total of 213 consecutive premenopausal women with breast cancer who received tamoxifen treatment after curative surgery and underwent three mammograms (baseline, after tamoxifen treatment, after tamoxifen discontinuation) were included. Changes in mammographic density after tamoxifen discontinuation were assessed qualitatively (decrease, no change, or increase) by two readers and measured quantitatively by semi-automated software. The association between % density change and clinicopathological factors was evaluated using univariate and multivariate regression analyses. After tamoxifen discontinuation, a mammographic density increase was observed in 31.9% (68/213, reader 1) to 22.1% (47/213, reader 2) by qualitative assessment, with a mean density increase of 1.8% by quantitative assessment compared to density before tamoxifen discontinuation. In multivariate analysis, younger age (≤ 39 years) and greater % density decline after tamoxifen treatment (≥ 17.0%) were independent factors associated with density change after tamoxifen discontinuation (p < .001 and p = .003, respectively). Tamoxifen discontinuation was associated with mammographic density change with a mean density increase of 1.8%, which was associated with younger age and greater density change after tamoxifen treatment. • Increased mammographic density after tamoxifen discontinuation can occur in premenopausal women. • Mean density increase after tamoxifen discontinuation was 1.8%. • Density increase is associated with age and density decrease after tamoxifen.
NASA Astrophysics Data System (ADS)
Ucisik, Melek N.; Dashti, Danial S.; Faver, John C.; Merz, Kenneth M.
2011-08-01
An energy expansion (binding energy decomposition into n-body interaction terms for n ≥ 2) to express the receptor-ligand binding energy for the fragmented HIV II protease-Indinavir system is described to address the role of cooperativity in ligand binding. The outcome of this energy expansion is compared to the total receptor-ligand binding energy at the Hartree-Fock, density functional theory, and semiempirical levels of theory. We find that the sum of the pairwise interaction energies approximates the total binding energy to ˜82% for HF and to >95% for both the M06-L density functional and PM6-DH2 semiempirical method. The contribution of the three-body interactions amounts to 18.7%, 3.8%, and 1.4% for HF, M06-L, and PM6-DH2, respectively. We find that the expansion can be safely truncated after n = 3. That is, the contribution of the interactions involving more than three parties to the total binding energy of Indinavir to the HIV II protease receptor is negligible. Overall, we find that the two-body terms represent a good approximation to the total binding energy of the system, which points to pairwise additivity in the present case. This basic principle of pairwise additivity is utilized in fragment-based drug design approaches and our results support its continued use. The present results can also aid in the validation of non-bonded terms contained within common force fields and in the correction of systematic errors in physics-based score functions.
Mann, T; Zilles, K; Dikow, H; Hellfritsch, A; Cremer, M; Piel, M; Rösch, F; Hawlitschka, A; Schmitt, O; Wree, A
2018-03-15
Parkinson's disease (PD) is characterized by a degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) that causes a dopamine (DA) deficit in the caudate-putamen (CPu) accompanied by compensatory changes in other neurotransmitter systems. These changes result in severe motor and non-motor symptoms. To disclose the role of various receptor binding sites for DA, noradrenaline, and serotonin in the hemiparkinsonian (hemi-PD) rat model induced by unilateral 6-hydroxydopamine (6-OHDA) injection, the densities of D 1 , D 2 /D 3 , α 1 , α 2 , and 5HT 2A receptors were longitudinally visualized and measured in the CPu of hemi-PD rats by quantitative in vitro receptor autoradiography. We found a moderate increase in D 1 receptor density 3 weeks post lesion that decreased during longer survival times, a significant increase of D 2 /D 3 receptor density, and 50% reduction in 5HT 2A receptor density. α 1 receptor density remained unaltered in hemi-PD and α 2 receptors demonstrated a slight right-left difference increasing with post lesion survival. In a second step, the possible role of receptors on the known reduction of apomorphine-induced rotations in hemi-PD rats by intrastriatally injected Botulinum neurotoxin-A (BoNT-A) was analyzed by measuring the receptor densities after BoNT-A injection. The application of this neurotoxin reduced D 2 /D 3 receptor density, whereas the other receptors mainly remained unaltered. Our results provide novel data for an understanding of the postlesional plasticity of dopaminergic, noradrenergic and serotonergic receptors in the hemi-PD rat model. The results further suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing the interhemispheric imbalance in D 2 /D 3 receptor density. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Damsteegt, Erin L; Mizuta, Hiroko; Hiramatsu, Naoshi; Lokman, P Mark
2015-09-15
Previous research using eels has shown that 11-ketotestosterone can induce ovarian triacylglyceride accumulation both in vivo and in vitro. Further, accumulation is dramatically enhanced in the presence of very-low density lipoprotein. This study examined the involvement of the low density lipoprotein receptor and vitellogenin receptor in oocyte lipid accumulation. Specific antisera were used in an attempt to block the vitellogenin receptor and/or the low density lipoprotein receptor. Accordingly, incubation with the low density lipoprotein receptor antiserum clearly reduced the oocyte diameter and the amount of oil present within the oocyte. In contrast, blocking the vitellogenin receptor had little effect on either oocyte surface area or the abundance of oil droplets in the cytosol. In keeping with birds, we conclude that the low density lipoprotein receptor is a major player involved in mediating ovarian fatty acid accumulation in the eel. However, lipoprotein lipase-mediated fatty acid accumulation also remains conceivable, for example through interactions between this enzyme and the low density lipoprotein receptor. Copyright © 2015 Elsevier Inc. All rights reserved.
Pedrera-Canal, Maria; Moran, Jose M; Vera, Vicente; Roncero-Martin, Raul; Lavado-Garcia, Jesus M; Aliaga, Ignacio; Pedrera-Zamorano, Juan D
2015-01-01
This study examined the association between bone mineral density (BMD) and the rs7975232 (ApaI) polymorphism of the vitamin receptor D (VDR) gene. The polymorphism was detected using the real-time PCR TaqMan method. The rs7975232 genotype was determined in 274 postmenopausal osteoporotic Spanish women who were 60.53±8.02 years old. The observed genotype frequencies were in agreement with Hardy-Weinberg equilibrium (χ(2)=1.85, P=0.1736). There were no significant differences in the rs7975232 genotype groups in our total sample of osteoporotic women regarding age, years since menopause, height, weight, and BMD at femoral neck, femoral trochanter and lumbar spine. Significant differences were found in menarche age (aa vs Aa; P=0.008) and BMI (aa vs AA; P=0.029). We conclude that the VDR gene rs7975232 polymorphism is not related to figures of bone mineral density in postmenopausal osteoporotic Spanish women.
Estrogen receptor is activated by korean red ginseng in vitro but not in vivo.
Shim, Myeong Kuk; Lee, Young Joo
2012-04-01
Ginseng has been used as a traditional medicine for treatment of many diseases and for general health maintenance in people of all ages. Ginseng is also used to ameliorate menopausal systems. We investigated the estrogenic activity of Korean red ginseng (KRG) in a transient transfection system, using estrogen receptor (ER) and estrogen-responsive luciferase plasmids in MCF-7 cells. The extract activated both ERα and ERβ. KRG modulated the mRNA levels of estrogen-responsive genes such as pS2 and ESR1 and decreased the protein level of ERα. In order to examine in vivo estrogenic activity of KRG, sixteen female Sprague-Dawley rats separated into four groups were studied for nine weeks: non-ovariectomized (OVX) rats treated with olive oil, OVX rats treated with olive oil, OVX rats treated with 17-β-estradiol (E2) in olive oil, and OVX rats treated with KRG extract in olive oil. The experiments were repeated for three times and the data of twelve rats were combined. Body weight of OVX rats was greater than that of sham-operated control rats and was decreased by E2 treatment. Uterine weight increased after E2 treatment compared to OVX rats. However, no difference in body or uterine weight was observed with KRG intake. KRG induced reductions in total cholesterol, low density lipoprotein cholesterol/total cholesterol, high density lipoprotein cholesterol/total cholesterol, and low density lipoprotein cholesterol/high density lipoprotein cholesterol, but not to the same degree as did E2 intake. These results show that KRG does contain estrogenic activity as manifested by in vitro study but the activity is not strong enough to elicit physiological responses.
Estrogen Receptor Is Activated by Korean Red Ginseng In Vitro but Not In Vivo
Shim, Myeong Kuk; Lee, Young Joo
2012-01-01
Ginseng has been used as a traditional medicine for treatment of many diseases and for general health maintenance in people of all ages. Ginseng is also used to ameliorate menopausal systems. We investigated the estrogenic activity of Korean red ginseng (KRG) in a transient transfection system, using estrogen receptor (ER) and estrogen-responsive luciferase plasmids in MCF-7 cells. The extract activated both ERα and ERβ. KRG modulated the mRNA levels of estrogen-responsive genes such as pS2 and ESR1 and decreased the protein level of ERα. In order to examine in vivo estrogenic activity of KRG, sixteen female Sprague-Dawley rats separated into four groups were studied for nine weeks: non-ovariectomized (OVX) rats treated with olive oil, OVX rats treated with olive oil, OVX rats treated with 17-β-estradiol (E2) in olive oil, and OVX rats treated with KRG extract in olive oil. The experiments were repeated for three times and the data of twelve rats were combined. Body weight of OVX rats was greater than that of sham-operated control rats and was decreased by E2 treatment. Uterine weight increased after E2 treatment compared to OVX rats. However, no difference in body or uterine weight was observed with KRG intake. KRG induced reductions in total cholesterol, low density lipoprotein cholesterol/total cholesterol, high density lipoprotein cholesterol/total cholesterol, and low density lipoprotein cholesterol/high density lipoprotein cholesterol, but not to the same degree as did E2 intake. These results show that KRG does contain estrogenic activity as manifested by in vitro study but the activity is not strong enough to elicit physiological responses. PMID:23717117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, K.A.; Ehrenkaufer, R.L.; Beaucage, S.
1985-02-01
A novel approach to in vivo receptor binding experiments is presented which allows direct quantitation of binding site densities. The method is based on an equilibrium model of tracer uptake and is designed to produce a static distribution proportional to receptor density and to minimize possible confounding influences of regional blood flow, blood-brain barrier permeability, and nonspecific binding. This technique was applied to the measurement of regional muscarinic cholinergic receptor densities in rat brain using (/sup 3/H)scopolamine. Specific in vivo binding of scopolamine demonstrated saturability, a pharmacologic profile, and regional densities which are consistent with interaction of the tracer withmore » the muscarinic receptor. Estimates of receptor density obtained with the in vivo method and in vitro measurements in homogenates were highly correlated. Furthermore, reduction in striatal muscarinic receptors following ibotenic acid lesions resulted in a significant decrease in tracer uptake in vivo, indicating that the correlation between scopolamine distribution and receptor density may be used to demonstrate pathologic conditions. We propose that the general method presented here is directly applicable to investigation of high affinity binding sites for a variety of radioligands.« less
DiBattista, Amanda Marie; Dumanis, Sonya B.; Song, Jung Min; Bu, Guojun; Weeber, Edwin; Rebeck, G. William; Hoe, Hyang-Sook
2015-01-01
Very Low Density Lipoprotein Receptor (VLDLR) is an apolipoprotein E receptor involved in synaptic plasticity, learning, and memory. However, it is unknown how VLDLR can regulate synaptic and cognitive function. In the present study, we found that VLDLR is present at the synapse both pre- and post-synaptically. Overexpression of VLDLR significantly increases, while knockdown of VLDLR decreases, dendritic spine number in primary hippocampal cultures. Additionally, knockdown of VLDLR significantly decreases synaptophysin puncta number while differentially regulating cell surface and total levels of glutamate receptor subunits. To identify the mechanism by which VLDLR induces these synaptic effects, we investigated whether VLDLR affects dendritic spine formation through the Ras signaling pathway, which is involved in spinogenesis and neurodegeneration. Interestingly, we found that VLDLR interacts with RasGRF1, a Ras effector, and knockdown of RasGRF1 blocks the effect of VLDLR on spinogenesis. Moreover, we found that VLDLR did not rescue the deficits induced by the absence of Ras signaling proteins CaMKIIα or CaMKIIβ. Taken together, our results suggest that VLDLR requires RasGRF1/CaMKII to alter dendritic spine formation. PMID:25644714
Besschetnova, Tatiana Y.; Montefusco, David J.; Asinas, Abdalin E.; Shrout, Anthony L.; Antommattei, Frances M.; Weis, Robert M.
2008-01-01
All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation—a slower process that restores kinase activity. These two opposing effects lead to robust adaptation toward stimuli through a physical mechanism that is not understood. Here, we provide evidence of a counterbalancing influence exerted by receptor density on kinase stimulation and receptor methylation. Receptor signaling complexes were reconstituted over a range of defined surface concentrations by using a template-directed assembly method, and the kinase and receptor methylation activities were measured. Kinase activity and methylation rates were both found to vary significantly with surface concentration—yet in opposite ways: samples prepared at high surface densities stimulated kinase activity more effectively than low-density samples, whereas lower surface densities produced greater methylation rates than higher densities. FRET experiments demonstrated that the cooperative change in kinase activity coincided with a change in the arrangement of the membrane-associated receptor domains. The counterbalancing influence of density on receptor methylation and kinase stimulation leads naturally to a model for signal regulation that is compatible with the known logic of the E. coli pathway. Density-dependent mechanisms are likely to be general and may operate when two or more membrane-related processes are influenced differently by the two-dimensional concentration of pathway elements. PMID:18711126
Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko
2015-02-01
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer.
Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko
2015-01-01
Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1α (HIF-1α). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1α and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1α levels increased in a cellular density-dependent manner. The knockdown of HIF-1α by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1α expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1α may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer. PMID:25692008
NASA Technical Reports Server (NTRS)
Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.
1999-01-01
We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.
Asano, K; Zisman, L S; Yoshikawa, T; Headley, V; Bristow, M R; Port, J D
2001-06-01
Bucindolol and carvedilol, nonselective beta1- and beta2-adrenergic receptor antagonists, have been widely used in clinical therapeutic trials of congestive heart failure. The aim of the current study was to investigate long-term effects of bucindolol or carvedilol on beta-adrenergic receptor protein and gene expression in cardiac myocytes. Embryonic chick cardiac myocytes were cultured and incubated with bucindolol (1 microM), carvedilol (1 microM), or norepinephrine (1 microM) for 24 h. 125I-iodocyanopindolol binding assays demonstrated that incubation with norepinephrine or bucindolol, but not carvedilol, significantly decreased beta-adrenergic receptor density in crude membranes prepared from the myocytes. Neither bucindolol nor carvedilol significantly stimulated adenylyl cyclase activity in membranes from drug-untreated cells. Unlike by norepinephrine, the receptor density reduction by bucindolol incubation was not accompanied by a change in beta1-adrenergic receptor messenger RNA abundance. A decrease in membrane beta-adrenergic receptor density without a change in cognate messenger RNA abundance was also observed in hamster DDT1 MF2 cell line incubated with bucindolol (1 microM, 24 h). We conclude that incubation with bucindolol, but not carvedilol, results in true reduction of beta-adrenergic receptor density in chick cardiac myocyte membranes by mechanisms that are distinct from those responsible for receptor density reduction by the agonist norepinephrine.
Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas.
Palomero-Gallagher, Nicola; Zilles, Karl
2017-08-12
Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here. Copyright © 2017. Published by Elsevier Inc.
Postmortem brain abnormalities of the glutamate neurotransmitter system in autism.
Purcell, A E; Jeon, O H; Zimmerman, A W; Blue, M E; Pevsner, J
2001-11-13
Studies examining the brains of individuals with autism have identified anatomic and pathologic changes in regions such as the cerebellum and hippocampus. Little, if anything, is known, however, about the molecules that are involved in the pathogenesis of this disorder. To identify genes with abnormal expression levels in the cerebella of subjects with autism. Brain samples from a total of 10 individuals with autism and 23 matched controls were collected, mainly from the cerebellum. Two cDNA microarray technologies were used to identify genes that were significantly up- or downregulated in autism. The abnormal mRNA or protein levels of several genes identified by microarray analysis were investigated using PCR with reverse transcription and Western blotting. alpha-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)- and NMDA-type glutamate receptor densities were examined with receptor autoradiography in the cerebellum, caudate-putamen, and prefrontal cortex. The mRNA levels of several genes were significantly increased in autism, including excitatory amino acid transporter 1 and glutamate receptor AMPA 1, two members of the glutamate system. Abnormalities in the protein or mRNA levels of several additional molecules in the glutamate system were identified on further analysis, including glutamate receptor binding proteins. AMPA-type glutamate receptor density was decreased in the cerebellum of individuals with autism (p < 0.05). Subjects with autism may have specific abnormalities in the AMPA-type glutamate receptors and glutamate transporters in the cerebellum. These abnormalities may be directly involved in the pathogenesis of the disorder.
Schotte, A; Rostène, W; Laduron, P M
1988-04-01
The subcellular localization of neurotensin-receptor sites (NT2 sites) and neurotensin-acceptor sites (NT1 sites) was studied in rat caudate-putamen by isopycnic centrifugation in sucrose density gradients. [3H]Neurotensin binding to NT2 sites occurred as a major peak at higher sucrose densities, colocalized with [3H]dopamine uptake, and as a small peak at a lower density; whereas binding to NT1 sites occurred as a single large peak at an intermediate density. 6-Hydroxydopamine lesions of the median forebrain bundle resulted in a total loss of NT2 sites in the caudate-putamen but did not affect NT2 sites in the nucleus accumbens and the olfactory tubercle. NT1 sites were not affected. Kainic acid injections into the rat caudate-putamen led to a partial decrease of NT1 sites in this region 5 days later. After a few weeks they returned to normal. Therefore NT2 sites are probably associated with presynaptic nigrostriatal dopaminergic terminals in the caudate-putamen but not in the nucleus accumbens and the olfactory tubercle. A possible association of NT1 sites with glial cells is suggested.
Roubalova, Lenka; Vosahlikova, Miroslava; Brejchova, Jana; Sykora, Jan; Rudajev, Vladimir; Svoboda, Petr
2015-01-01
HEK293 cells stably expressing PTX-insensitive δ-opioid receptor-Gi1α (C351I) fusion protein were homogenized, treated with low concentrations of non-ionic detergent Brij-58 at 0°C and fractionated by flotation in sucrose density gradient. In optimum range of detergent concentrations (0.025-0.05% w/v), Brij-58-treated, low-density membranes exhibited 2-3-fold higher efficacy of DADLE-stimulated, high-affinity [32P]GTPase and [35S]GTPγS binding than membranes of the same density prepared in the absence of detergent. The potency of agonist DADLE response was significantly decreased. At high detergent concentrations (>0.1%), the functional coupling between δ-opioid receptors and G proteins was completely diminished. The same detergent effects were measured in plasma membranes isolated from PTX-treated cells. Therefore, the effect of Brij-58 on δ-opioid receptor-G protein coupling was not restricted to the covalently bound Gi1α within δ-opioid receptor-Gi1α fusion protein, but it was also valid for PTX-sensitive G proteins of Gi/Go family endogenously expressed in HEK293 cells. Characterization of the direct effect of Brij-58 on the hydrophobic interior of isolated plasma membranes by steady-state anisotropy of diphenylhexatriene (DPH) fluorescence indicated a marked increase of membrane fluidity. The time-resolved analysis of decay of DPH fluorescence by the "wobble in cone" model of DPH motion in the membrane indicated that the exposure to the increasing concentrations of Brij-58 led to a decreased order and higher motional freedom of the dye. Limited perturbation of plasma membrane integrity by low concentrations of non-ionic detergent Brij-58 results in alteration of δ-OR-G protein coupling. Maximum G protein-response to agonist stimulation (efficacy) is increased; affinity of response (potency) is decreased. The total degradation plasma membrane structure at high detergent concentrations results in diminution of functional coupling between δ-opioid receptors and G proteins.
Burch, Micah L; Getachew, Robel; Osman, Narin; Febbraio, Mark A; Little, Peter J
2013-03-08
G protein-coupled receptor signaling is mediated by three main mechanisms of action; these are the classical pathway, β-arrestin scaffold signaling, and the transactivation of protein-tyrosine kinase receptors such as those for EGF and PDGF. Recently, it has been demonstrated that G protein-coupled receptors can also mediate signals via transactivation of serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Atherosclerosis is characterized by the development of lipid-laden plaques in blood vessel walls. Initiation of plaque development occurs via low density lipoprotein retention in the neointima of vessels due to binding with modified proteoglycans secreted by vascular smooth muscle cells. Here we show that transactivation of protein-tyrosine kinase receptors is mediated by matrix metalloproteinase triple membrane bypass signaling. In contrast, serine/threonine kinase receptor transactivation is mediated by a cytoskeletal rearrangement-Rho kinase-integrin system, and both protein-tyrosine kinase and serine/threonine kinase receptor transactivation concomitantly account for the total proteoglycan synthesis stimulated by thrombin in vascular smooth muscle. This work provides evidence of thrombin-mediated proteoglycan synthesis and paves the way for a potential therapeutic target for plaque development and atherosclerosis.
Hallberg, Mathias; Kindlundh, Anna M S; Nyberg, Fred
2005-07-01
Adult male Sprague-Dawley rats were treated with the anabolic androgenic steroid nandrolone decanoate (15 mg/kg day) or oil vehicle (sterile arachidis oleum) during 14 days. The effect on the densities of the neurokinin NK1 receptor in brain was examined with autoradiography. An overall tendency of attenuation of NK1 receptor density was observed after completed treatment with nandrolone decanoate. The density of the NK1 receptor was found to be significantly lower compared to control animals in the nucleus accumbens core (37% density reduction), in dentate gyrus (26%), in basolateral amygdaloid nucleus (23%), in ventromedial hypothalamic nucleus (36%), in dorsomedial hypothalamic nucleus (43%) and finally in the periaqueductal gray (PAG) (24%). In the cortex region, no structures exhibited any significant reduction of NK1 receptor density. This result provides additional support to the hypothesis that substance P and the NK1 receptor may be involved as important components that participate in mediating physiological responses including the adverse behaviors often associated with chronically administrated anabolic androgenic steroids in human.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, Boryana N.; Jackson, Bryan L.; Petit, Rebecca S.
2011-05-31
T cells react to extremely small numbers of activating agonist peptides. Spatial organization of T-cell receptors (TCR) and their peptide-major histocompatibility complex (pMHC) ligands into microclusters is correlated with T-cell activation. In this study, we have designed an experimental strategy that enables control over the number of agonist peptides per TCR cluster, without altering the total number engaged by the cell. Supported membranes, partitioned with grids of barriers to lateral mobility, provide an effective way of limiting the total number of pMHC ligands that may be assembled within a single TCR cluster. Observations directly reveal that restriction of pMHC contentmore » within individual TCR clusters can decrease T-cell sensitivity for triggering initial calcium flux at fixed total pMHC density. Further analysis suggests that triggering thresholds are determined by the number of activating ligands available to individual TCR clusters, not by the total number encountered by the cell. Results from a series of experiments in which the overall agonist density and the maximum number of agonist per TCR cluster are independently varied in primary T cells indicate that the most probable minimal triggering unit for calcium signaling is at least four pMHC in a single cluster for this system. In conclusion, this threshold is unchanged by inclusion of coagonist pMHC, but costimulation of CD28 by CD80 can modulate the threshold lower.« less
Blatt, G J; Fitzgerald, C M; Guptill, J T; Booker, A B; Kemper, T L; Bauman, M L
2001-12-01
Neuropathological studies in autistic brains have shown small neuronal size and increased cell packing density in a variety of limbic system structures including the hippocampus, a change consistent with curtailment of normal development. Based on these observations in the hippocampus, a series of quantitative receptor autoradiographic studies were undertaken to determine the density and distribution of eight types of neurotransmitter receptors from four neurotransmitter systems (GABAergic, serotoninergic [5-HT], cholinergic, and glutamatergic). Data from these single concentration ligand binding studies indicate that the GABAergic receptor system (3[H]-flunitrazepam labeled benzodiazepine binding sites and 3[H]-muscimol labeled GABA(A) receptors) is significantly reduced in high binding regions, marking for the first time an abnormality in the GABA system in autism. In contrast, the density and distribution of the other six receptors studied (3[H]-80H-DPAT labeled 5-HT1A receptors, 3[H]-ketanserin labeled 5-HT2 receptors, 3[H]-pirenzepine labled M1 receptors, 3[H]-hemicholinium labeled high affinity choline uptake sites, 3[H]-MK801 labeled NMDA receptors, and 3[H]-kainate labeled kainate receptors) in the hippocampus did not demonstrate any statistically significant differences in binding.
Moghadami, Sajjad; Jahanshahi, Mehrdad; Sepehri, Hamid; Amini, Hossein
2016-01-28
In the present study, the role of gonadectomy on memory impairment and the density of androgen receptor-immunoreactive neurons in rats' hippocampus as well as the ability of testosterone to compensate of memory and the density of androgen receptors in the hippocampus was evaluated. Adult male rats (except intact-no testosterone group) were bilaterally castrated, and behavioral tests performed 2 weeks later. Animals bilaterally cannulated into lateral ventricles and then received testosterone (10, 40 and 120 µg/0.5 µl DMSO) or vehicle (DMSO; 0.5 µl) for gonadectomized-vehicle group, 30 min before training in water maze test. The androgen receptor-immunoreactive neurons were detected by immunohistochemical technique in the hippocampal areas. In the gonadectomized male rats, a memory deficit was found in Morris water maze test on test day (5th day) after DMSO administration. Gonadectomy decreased density of androgen receptor-immunoreactive neurons in the rats' hippocampus. The treatment with testosterone daily for 5 days attenuated memory deficits induced by gonadectomy. Testosterone also significantly increased the density of androgen receptor-immunoreactive neurons in the hippocampal areas. The intermediate dose of this hormone (40 µg) appeared to have a significant effect on spatial memory and the density of androgen receptor-immunoreactive neurons in gonadectomized rats' hippocampus. The present study suggests that testosterone can compensate memory failure in gonadectomized rats. Also testosterone replacement can compensate the reduction of androgen receptor-immunoreactive neurons density in the rats' hippocampus after gonadectomy.
Hartman, Terryl J; Gapstur, Susan M; Gaudet, Mia M; Shah, Roma; Flanders, W Dana; Wang, Ying; McCullough, Marjorie L
2016-10-01
Dietary energy density (ED) is a measure of diet quality that estimates the amount of energy per unit of food (kilocalories per gram) consumed. Low-ED diets are generally high in fiber and fruits and vegetables and low in fat. Dietary ED has been positively associated with body mass index (BMI) and other risk factors for postmenopausal breast cancer. We evaluated the associations of total dietary ED and energy-dense (high-ED) foods with postmenopausal breast cancer incidence. Analyses included 56,795 postmenopausal women from the Cancer Prevention Study II Nutrition Cohort with no previous history of breast or other cancers and who provided information on diet, lifestyle, and medical history in 1999. Multivariable-adjusted breast cancer incidence rate ratios (RRs and 95% CIs) were estimated for quintiles of total dietary ED and for the consumption of high-ED foods in Cox proportional hazards regression models. During a median follow-up of 11.7 y, 2509 invasive breast cancer cases were identified, including 1857 estrogen receptor-positive and 277 estrogen receptor-negative tumors. Median dietary ED was 1.5 kcal/g (IQR: 1.3-1.7 kcal/g). After adjusting for age, race, education, reproductive characteristics, and family history, high compared with low dietary ED was associated with a statistically significantly higher risk of breast cancer (RR for fifth quintile compared with first quintile: 1.20; 95% CI: 1.05, 1.36; P-trend = 0.03). The association between the amount of high-ED foods consumed and breast cancer risk was not statistically significant. We observed no differences by estrogen receptor status or effect modification by BMI, age, or physical activity. These results suggest a modest positive association between total dietary ED and risk of postmenopausal breast cancer. © 2016 American Society for Nutrition.
Leite, Neiva; Lazarotto, Leilane; Milano, Gerusa Eisfeld; Titski, Ana Claudia Kapp; Consentino, Cássio Leandro Mühe; de Mattos, Fernanda; de Andrade, Fabiana Antunes; Furtado-Alle, Lupe
2015-01-01
Objective: To investigate the association of Arg16Gly and Gln27Glu polymorphisms of β2-adrenergic receptor gene (ADRB2) with the occurrence of asthma and overweight and the gene's influence on anthropometric, clinic, biochemical and physical fitness variables in children and adolescents. Methods: Subjects were evaluated for allelic frequencies of the β2-adrenergic receptor gene, height, weight, body mass index (BMI), BMI Z-score, waist circumference (WC), pubertal stage, resting heart rate (HRres), blood pressure (BP), total cholesterol (TC), glucose, insulin, high density lipoprotein (HDL-C), low density lipoprotein (LDL-C), triglyceride (TG), Homeostasis Metabolic Assessment (HOMA2-IR), Quantitative Insulin Sensitivity Check Index (QUICKI) and maximal oxygen uptake (VO2max). The participants were divided in four groups: overweight asthmatic (n=39), overweight non-asthmatic (n=115), normal weight asthmatic (n=12), and normal weight non-asthmatic (n=40). Results: Regarding the Gln27Glu polymorphism, higher total cholesterol was observed in usual genotype individuals than in genetic variant carriers (p=0.04). No evidence was found that the evaluated polymorphisms are influencing the physical fitness. The Arg16 allele was found more frequently among the normal weight asthmatic group when compared to the normal weight non-asthmatic group (p=0.02), and the Glu27 allele was more frequently found in the overweight asthmatics group when compared to the normal weight non-asthmatic group (p=0.03). Conclusions: The association of Arg16 allele with the occurrence of asthma and of the Glu27 allele with overweight asthmatic adolescents evidenced the contribution of the β2-adrenergic receptor gene to the development of obesity and asthma. PMID:26409918
A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System.
Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M
2017-01-04
The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT 1A , 5-HT 1B , 5-HT 2A , and 5-HT 4 ) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain. We present a high-resolution positron emission tomography (PET)- and magnetic resonance imaging-based human brain atlas of important serotonin receptors and the transporter. The regional PET-derived binding measures correlate strongly with the corresponding autoradiography protein levels. The strong correlation enables the transformation of the PET-derived human brain atlas into a protein density map of the serotonin (5-hydroxytryptamine, 5-HT) system. Next, we compared the regional receptor/transporter protein densities with mRNA levels and uncovered unique associations between protein expression and density at high detail. This new in vivo neuroimaging atlas of the 5-HT system not only provides insight in the human brain's regional protein synthesis, transport, and density, but also represents a valuable source of information for the neuroscience community as a comparative instrument to assess brain disorders. Copyright © 2017 the authors 0270-6474/17/370120-09$15.00/0.
Very low density lipoprotein receptor in Alzheimer disease.
Helbecque, N; Amouyel, P
2000-08-15
The apolipoprotein (APO) E4 isoform is associated with an accelerated rate of Alzheimer disease (AD) expression in sporadic as well as late-onset familial forms of the disease but the precise mechanism is unknown. In an attempt to approach the possible mechanisms involved, APOE receptors have been studied. They all belong to the low density lipoprotein (LDL) receptor family and share the same structural motifs. Some of them are preferentially expressed in the brain such as the LDL receptor related protein, the apolipoprotein E receptor 2, and the very low density lipoprotein (VLDL) receptor. These receptors have been suspected to be involved in Alzheimer disease at various levels. Among them, the VLDL receptor was extensively explored. Although genetic studies conducted on a polymorphism in the promoter of the VLDL receptor in Japanese and Caucasian populations gave divergent results, this does not exclude a possible involvement of the VLDL receptor in AD. Copyright 2000 Wiley-Liss, Inc.
Ito, Takehito; Kimura, Yasuyuki; Seki, Chie; Ichise, Masanori; Yokokawa, Keita; Kawamura, Kazunori; Takahashi, Hidehiko; Higuchi, Makoto; Zhang, Ming-Rong; Suhara, Tetsuya; Yamada, Makiko
2018-06-14
The histamine H 3 receptor is regarded as a drug target for cognitive impairments in psychiatric disorders. H 3 receptors are expressed in neocortical areas, including the prefrontal cortex, the key region of cognitive functions such as working memory. However, the role of prefrontal H 3 receptors in working memory has not yet been clarified. Therefore, using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) techniques, we aimed to investigate the association between the neural activity of working memory and the density of H 3 receptors in the prefrontal cortex. Ten healthy volunteers underwent both fMRI and PET scans. The N-back task was used to assess the neural activities related to working memory. H 3 receptor density was measured with the selective PET radioligand [ 11 C] TASP457. The neural activity of the right dorsolateral prefrontal cortex during the performance of the N-back task was negatively correlated with the density of H 3 receptors in this region. Higher neural activity of working memory was associated with lower H 3 receptor density in the right dorsolateral prefrontal cortex. This finding elucidates the role of H 3 receptors in working memory and indicates the potential of H 3 receptors as a therapeutic target for the cognitive impairments associated with neuropsychiatric disorders.
Multiple Transmitter Receptors in Regions and Layers of the Human Cerebral Cortex
Zilles, Karl; Palomero-Gallagher, Nicola
2017-01-01
We measured the densities (fmol/mg protein) of 15 different receptors of various transmitter systems in the supragranular, granular and infragranular strata of 44 areas of visual, somatosensory, auditory and multimodal association systems of the human cerebral cortex. Receptor densities were obtained after labeling of the receptors using quantitative in vitro receptor autoradiography in human postmortem brains. The mean density of each receptor type over all cortical layers and of each of the three major strata varies between cortical regions. In a single cortical area, the multi-receptor fingerprints of its strata (i.e., polar plots, each visualizing the densities of multiple different receptor types in supragranular, granular or infragranular layers of the same cortical area) differ in shape and size indicating regional and laminar specific balances between the receptors. Furthermore, the three strata are clearly segregated into well definable clusters by their receptor fingerprints. Fingerprints of different cortical areas systematically vary between functional networks, and with the hierarchical levels within sensory systems. Primary sensory areas are clearly separated from all other cortical areas particularly by their very high muscarinic M2 and nicotinic α4β2 receptor densities, and to a lesser degree also by noradrenergic α2 and serotonergic 5-HT2 receptors. Early visual areas of the dorsal and ventral streams are segregated by their multi-receptor fingerprints. The results are discussed on the background of functional segregation, cortical hierarchies, microstructural types, and the horizontal (layers) and vertical (columns) organization in the cerebral cortex. We conclude that a cortical column is composed of segments, which can be assigned to the cortical strata. The segments differ by their patterns of multi-receptor balances, indicating different layer-specific signal processing mechanisms. Additionally, the differences between the strata-and area-specific fingerprints of the 44 areas reflect the segregation of the cerebral cortex into functionally and topographically definable groups of cortical areas (visual, auditory, somatosensory, limbic, motor), and reveals their hierarchical position (primary and unimodal (early) sensory to higher sensory and finally to multimodal association areas). Highlights Densities of transmitter receptors vary between areas of human cerebral cortex.Multi-receptor fingerprints segregate cortical layers.The densities of all examined receptor types together reach highest values in the supragranular stratum of all areas.The lowest values are found in the infragranular stratum.Multi-receptor fingerprints of entire areas and their layers segregate functional systemsCortical types (primary sensory, motor, multimodal association) differ in their receptor fingerprints. PMID:28970785
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, N.G.; Wise, P.M.
Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silasticmore » capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with (/sup 3/H)prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland.« less
Association of ADRB2 polymorphism with triglyceride levels in Tongans.
Naka, Izumi; Ohashi, Jun; Kimura, Ryosuke; Inaoka, Tsukasa; Matsumura, Yasuhiro
2013-07-23
Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index.
Gabrielson, Marike; Chiesa, Flaminia; Paulsson, Janna; Strell, Carina; Behmer, Catharina; Rönnow, Katarina; Czene, Kamila; Östman, Arne; Hall, Per
2016-07-01
Following female sex and age, mammographic density is considered one of the strongest risk factors for breast cancer. Despite the association between mammographic density and breast cancer risk, little is known about the underlying histology and biological basis of breast density. To better understand the mechanisms behind mammographic density we assessed morphology, proliferation and hormone receptor status in relation to mammographic density in breast tissues from healthy women. Tissues were obtained from 2012-2013 by ultrasound-guided core needle biopsy from 160 women as part of the Karma (Karolinska mammography project for risk prediction for breast cancer) project. Mammograms were collected through routine mammography screening and mammographic density was calculated using STRATUS. The histological composition, epithelial and stromal proliferation status and hormone receptor status were assessed through immunohistochemical staining. Higher mammographic density was significantly associated with a greater proportion of stromal and epithelial tissue and a lower proportion of adipose tissue. Epithelial expression levels of Ki-67, oestrogen receptor (ER) and progesterone receptor (PR) were not associated with mammographic density. Epithelial Ki-67 was associated with a greater proportion of epithelial tissue, and epithelial PR was associated with a greater proportion of stromal and a lower proportion of adipose tissue. Epithelial ER was not associated with any tissues. In contrast, expression of ER in the stroma was significantly associated with a greater proportion of stroma, and negatively associated with the amount of adipose tissue. High mammographic density is associated with higher amount of stroma and epithelium and less amount of fat, but is not associated with a change in epithelial proliferation or receptor status. Increased expressions of both epithelial PR and stromal ER are associated with a greater proportion of stroma, suggesting hormonal involvement in regulating breast tissue composition.
Hausrat, Torben J.; Muhia, Mary; Gerrow, Kimberly; Thomas, Philip; Hirdes, Wiebke; Tsukita, Sachiko; Heisler, Frank F.; Herich, Lena; Dubroqua, Sylvain; Breiden, Petra; Feldon, Joram; Schwarz, Jürgen R; Yee, Benjamin K.; Smart, Trevor G.; Triller, Antoine; Kneussel, Matthias
2015-01-01
Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs. PMID:25891999
Braun, Anne; Zhang, Songwen; Miettinen, Helena E.; Ebrahim, Shamsah; Holm, Teresa M.; Vasile, Eliza; Post, Mark J.; Yoerger, Danita M.; Picard, Michael H.; Krieger, Joshua L.; Andrews, Nancy C.; Simons, Michael; Krieger, Monty
2003-01-01
Mice with homozygous null mutations in the high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) and apolipoprotein E genes fed a low-fat diet exhibit a constellation of pathologies shared with human atherosclerotic coronary heart disease (CHD): hypercholesterolemia, occlusive coronary atherosclerosis, myocardial infarctions, cardiac dysfunction (heart enlargement, reduced systolic function and ejection fraction, and ECG abnormalities), and premature death (mean age 6 weeks). They also exhibit a block in RBC maturation and abnormally high plasma unesterified-to-total cholesterol ratio (0.8) with associated abnormal lipoprotein morphology (lamellar/vesicular and stacked discoidal particles reminiscent of those in lecithin/cholesterol acyltransferase deficiency and cholestasis). Treatment with the lipid-lowering, antiatherosclerosis, and antioxidation drug probucol extended life to as long as 60 weeks (mean 36 weeks), and at 5–6 weeks of age, virtually completely reversed the cardiac and most RBC pathologies and corrected the unesterified to total cholesterol ratio (0.3) and associated distinctive abnormal lipoprotein morphologies. Manipulation of the timing of administration and withdrawal of probucol could control the onset of death and suggested that critical pathological changes usually occurred in untreated double knockout mice between ≈3 (weaning) and 5 weeks of age and that probucol delayed heart failure even after development of substantial CHD. The ability of probucol treatment to modulate pathophysiology in the double knockout mice enhances the potential of this murine system for analysis of the pathophysiology of CHD and preclinical testing of new approaches for the prevention and treatment of cardiovascular disease. PMID:12771386
Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch
2015-05-01
Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Gillard, Baiba K.; Rosales, Corina; Pillai, Biju K.; Lin, Hu Yu; Courtney, Harry S.; Pownall, Henry J.
2010-01-01
Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM), that contains the cholesterol esters (CE) of up to ~400,000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. [3H]CE uptake by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was respectively 2.4 and 4.5 times faster than from control HDL. CERM-[3H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[3H]CE uptake by both receptors. RAP and heparin inhibit CERM-[3H]CE but not HDL-[3H]CE uptake thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase hepatic disposal of plasma cholesterol in a way that is therapeutically useful. PMID:20879789
Gupta, Rahul
2018-02-01
AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn.
Dynamic dual-tracer MRI-guided fluorescence tomography to quantify receptor density in vivo
Davis, Scott C.; Samkoe, Kimberley S.; Tichauer, Kenneth M.; Sexton, Kristian J.; Gunn, Jason R.; Deharvengt, Sophie J.; Hasan, Tayyaba; Pogue, Brian W.
2013-01-01
The up-regulation of cell surface receptors has become a central focus in personalized cancer treatment; however, because of the complex nature of contrast agent pharmacokinetics in tumor tissue, methods to quantify receptor binding in vivo remain elusive. Here, we present a dual-tracer optical technique for noninvasive estimation of specific receptor binding in cancer. A multispectral MRI-coupled fluorescence molecular tomography system was used to image the uptake kinetics of two fluorescent tracers injected simultaneously, one tracer targeted to the receptor of interest and the other tracer a nontargeted reference. These dynamic tracer data were then fit to a dual-tracer compartmental model to estimate the density of receptors available for binding in the tissue. Applying this approach to mice with deep-seated gliomas that overexpress the EGF receptor produced an estimate of available receptor density of 2.3 ± 0.5 nM (n = 5), consistent with values estimated in comparative invasive imaging and ex vivo studies. PMID:23671066
Scheperjans, Filip; Palomero-Gallagher, Nicola; Grefkes, Christian; Schleicher, Axel; Zilles, Karl
2005-11-01
Regional distributions of ligand binding sites of 12 different neurotransmitter receptors (glutamatergic: AMPA, kainate, NMDA; GABAergic: GABA(A), GABA(B); cholinergic: muscarinic M2, nicotinic; adrenergic: alpha1, alpha2; serotonergic: 5-HT1A, 5-HT2; dopaminergic: D1) were studied in human postmortem brains by means of quantitative receptor autoradiography. Binding site densities were measured in the superior parietal lobule (SPL) (areas 5L, 5M, 5Ci, and different locations within Brodmann's area (BA) 7), somatosensory (BA 2), and visual cortical areas (BA 17, and different locations within BAs 18 and 19). Similarities of receptor distribution between cortical areas were analyzed by cluster analysis, uni- and multivariate statistics of mean receptor densities (averaged over all cortical layers), and profiles representing the laminar distribution patterns of receptors. A considerable heterogeneity of regional receptor densities and laminar patterns between the sites was found in the SPL and the visual cortex. The most prominent regional differences were found for M2 receptors. In the SPL, rostrocaudally oriented changes of receptor densities were more pronounced than those in mediolateral direction. The receptor distribution in the rostral SPL was more similar to that of the somatosensory cortex, whereas caudal SPL resembled the receptor patterns of the dorsolateral extrastriate visual areas. These results suggest a segregation of the different SPL areas based on receptor distribution features typical for somatosensory or visual areas, which fits to the dual functional role of this cortical region, i.e., the involvement of the human SPL in visuomotor and somatosensory motor transformations.
Angiotensin II receptors in cortical and medullary adrenal tumors.
Opocher, G; Rocco, S; Cimolato, M; Vianello, B; Arnaldi, G; Mantero, F
1997-03-01
Several pieces of evidences suggest that angiotensin II (Ang II) has mitogenic effects, and a link between Ang II receptors and adrenal tumors can be suggested. In various adrenal tumors, aldosterone-producing adenoma (APA), Cushing's adrenal adenomas (Cush), pheochromocytomas (Pheo), and adrenal carcinomas, we studied the density, affinity, and subtype of Ang II receptors. Ang II binding was tested in cell membrane homogenates. [125I]Ang II was used as ligand, and Losartan and CGP 42112 were used as selective Ang II type 1 and type 2 antagonists, respectively. In APA, Ang II receptor density was 178.5 +/- 82.7 fmol/mg: however, due to the high degree of variability, the receptor density was not significantly higher than that in nontumorous adrenal cortex (59.3 +/- 8.4 fmol/mg). In Cush, the receptor density (27.6 +/- 8.2 fmol/mg; P < 0.05) was significantly lower than that in controls, whereas in Pheo and cortical carcinoma, Ang II binding was very low and in several cases almost undetectable. There was no remarkable difference in the Ang II receptor affinity among all tissues tested. The ratio between type 1 and type 2 Ang II receptors showed a large prevalence of type 1 in controls, APA, and three cases of Cush; in two cases of Cush, this ratio was reversed. In conclusion, our data indicate that Ang II receptors are normally expressed in APA and can also be detected in Cush, whereas they have a very low density in Pheo and adrenal carcinoma. Therefore, Ang II receptors are not involved in the lack of response to Ang II that is characteristic of APA; additionally, a reduction of Ang II receptors can be associated with dedifferentiation or malignancy of adrenal tumors. Further investigation of the expression and functional characterization of Ang II receptors is required to better clarify their possible role in adrenal tumorigenesis.
Cremer, J N; Amunts, K; Schleicher, A; Palomero-Gallagher, N; Piel, M; Rösch, F; Zilles, K
2015-12-17
Parkinson's disease (PD) is a well-characterized neurological disorder with regard to its neuropathological and symptomatic appearance. At the genetic level, mutations of particular genes, e.g. Parkin and DJ-1, were found in human hereditary PD with early onset. Neurotransmitter receptors constitute decisive elements in neural signal transduction. Furthermore, since they are often altered in neurological and psychiatric diseases, receptors have been successful targets for pharmacological agents. However, the consequences of PD-associated gene mutations on the expression of transmitter receptors are largely unknown. Therefore, we studied the expression of 16 different receptor binding sites of the neurotransmitters glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine by means of quantitative receptor autoradiography in Parkin and DJ-1 knockout mice. These knockout mice exhibit electrophysiological and behavioral deficits, but do not show the typical dopaminergic cell loss. We demonstrated differential changes of binding site densities in eleven brain regions. Most prominently, we found an up-regulation of GABA(B) and kainate receptor densities in numerous cortical areas of Parkin and DJ-1 knockout mice, as well as increased NMDA but decreased AMPA receptor densities in different brain regions of the Parkin knockout mice. The alterations of three different glutamate receptor types may indicate the potential relevance of the glutamatergic system in the pathogenesis of PD. Furthermore, the cholinergic M1, M2 and nicotinic receptors as well as the adrenergic α2 and the adenosine A(2A) receptors showed differentially increased densities in Parkin and DJ-1 knockout mice. Taken together, knockout of the PD-associated genes Parkin or DJ-1 results in differential changes of neurotransmitter receptor densities, highlighting a possible role of altered non-dopaminergic, and in particular of glutamatergic neurotransmission in PD pathogenesis. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Regulation of plasma cholesterol by hepatic low-density lipoprotein receptors.
Kovanen, P T
1987-02-01
The endogenous lipoprotein system (very low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL] cascade) holds the key to understanding the mechanisms by which hormones, diet, and drugs interact to regulate the plasma cholesterol level. Crucial components of this system are hepatic LDL receptors that mediate the uptake and degradation of plasma LDL. With experimental animals, it has been possible to demonstrate that hepatic LDL receptors are sensitive to hormonal, dietary, and pharmacologic manipulation. The decrease in number of hepatic LDL receptors in hypothyroidism or after cholesterol feeding leads to elevation of plasma LDL cholesterol levels. Conversely, the increase in number of hepatic LDL receptors results in lowering of plasma LDL cholesterol levels. This can be observed in hyperthyroidism, during administration of pharmacologic doses of 17 alpha-ethinyl estradiol, or during treatment with cholesterol-lowering drugs such as the bile acid-binding resins and cholesterol-synthesis inhibitors. Since cholesterol excretion from the body occurs via the liver, the increased efficiency of disposal of plasma cholesterol by increasing hepatic LDL receptors will ultimately lead to depletion of excessive body cholesterol. Pharmacologic regulation of hepatic LDL receptors should be a valuable tool in the prevention and therapy of atherosclerosis.
Association of ADRB2 polymorphism with triglyceride levels in Tongans
2013-01-01
Background Our previous study demonstrated that the A-allele of the single nucleotide polymorphism (SNP) rs34623097 located in the upstream region of the β2 adrenergic receptor gene (ADRB2) is significantly associated with risk for obesity in Oceanic populations. Methods To investigate whether the ADRB2 polymorphisms explain part of the individual differences in lipid mobilization, energy expenditure and glycogen breakdown, the associations of 10 ADRB2 SNPs with total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride levels were examined in 128 adults in Tonga. Results A multiple linear regression analysis adjusted for age, sex, and body mass index revealed that rs34623097 was significantly associated with triglyceride levels (P-value = 0.037). A copy of the rs34623097-A allele increased serum triglyceride levels by 70.1 mg/dL (0.791 mmol/L). None of the ADRB2 SNPs showed a significant association with total-cholesterol, high-density lipoprotein cholesterol, or low-density lipoprotein cholesterol. Conclusions In a Tongan population, a SNP located in the upstream region of ADRB2 is associated with triglyceride levels independent of body mass index. PMID:23875540
Yu, Jin-bo; Ke, Yao-hua; He, Jin-wei; Zhang, Hao; Hu, Wei-wei; Hu, Yun-qiu; Li, Miao; Liu, Yu-juan; Gu, Jie-mei; Fu, Wen-zhen; Gao, Gao; Yue, Hua; Xiao, Wen-jin; Zhang, Zhen-lin
2010-11-01
To investigate the effect of low-density lipoprotein receptor-related protein 5 (LRP5) gene polymorphisms on bone and obesity phenotypes in young Chinese men. A total of 1244 subjects from 411 Chinese nuclear families were genotyped by using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique at the Q89R, N740N, and A1330V sites in the LRP5 gene. Bone mineral density (BMD) in the lumbar spine and the hip, total fat mass and total lean mass were measured using dual-energy X-ray absorptiometry. The association between LRP5 gene polymorphisms and peak BMD, body mass index (BMI), total fat mass, total lean mass and percentage of fat mass was assessed using a quantitative transmission disequilibrium test (QTDT). No significant within-family associations were found between genotypes or haplotypes of the LRP5 gene and peak BMD, BMI, total fat mass, total lean mass and percentage of fat mass. The 1000 permutations that were subsequently simulated were in agreement with these within-family association results. Our results suggest that common polymorphic variations of the LRP5 gene do not influence peak bone mass acquisition and obesity phenotypes in young Chinese men.
LOHITH, TALAKAD G.; XU, RONG; TSUJIKAWA, TETSUYA; MORSE, CHERYL L.; ANDERSON, KACEY B.; GLADDING, ROBERT L.; ZOGHBI, SAMI S.; FUJITA, MASAHIRO; INNIS, ROBERT B.; PIKE, VICTOR W.
2014-01-01
The serotonin subtype-4 (5-HT4) receptor, which is known to be involved physiologically in learning and memory, and pathologically in Alzheimer’s disease, anxiety and other neuropsychiatric disorders – has few radioligands readily available for imaging in vivo. We have previously reported two novel 5-HT4 receptor radioligands, namely [methoxy-11C](1-butylpiperidin-4-yl)methyl 4-amino-3-methoxybenzoate; [11C]RX-1) and the [18F]3-fluoromethoxy analog ([18F]RX-2), and in this study we evaluated them by PET in rhesus monkey. Brain scans were performed at baseline, receptor preblock or displacement conditions using SB 207710, a 5-HT4 receptor antagonist, on the same day for [11C]RX-1 and on different days for [18F]RX-2. Specific-to-nondisplaceable ratio (BPND) was measured with the simplified reference tissue model from all baseline scans. To determine specific binding, total distribution volume (VT) was also measured in some monkeys by radiometabolite-corrected arterial input function after ex vivo inhibition of esterases from baseline and blocked scans. Both radioligands showed moderate to high peak brain uptake of radioactivity (2–6 SUV). Regional BPND values were in the rank order of known 5-HT4 receptor distribution with a trend for higher BPND values from [18F]RX-2. One-tissue compartmental model provided good fits with well identified VT values for both radioligands. In the highest 5-HT4 receptor density region, striatum, 50–60% of total binding was specific. The VT in receptor-poor cerebellum reached stable values by about 60 min for both radioligands indicating little influence of radiometabolites on brain signal. In conclusion, both [11C]RX-1 and [18F]RX-2 showed positive attributes for PET imaging of brain 5-HT4 receptors, validating the radioligand design strategy. PMID:25088028
Genetic studies at the receptor level: investigations in human twins and experimental animals.
Propping, P; Friedl, W; Hebebrand, J; Lentes, K U
1986-01-01
In receptors, as in enzymes, quantitative as well as qualitative genetic variation may exist. Studies in inbred strains of mice have shown for various receptors that the receptor density as determined by Bmax values is under genetic control. In healthy adult twins we have shown that the density of alpha-adrenoceptors on platelets is also influenced by genetic factors, since monozygotic twins were much more similar to one another than dizygotic twins. However, Bmax values are up-regulated and down-regulated by endogenous neurotransmitters and pharmacologically active agents. Thus, receptor densities are under considerable regulatory influences. Bmax values therefore reflect regulatory mechanisms rather than innate characteristics of the receptor protein. In another twin study we failed to find evidence for a genetic influence on the density of imipramine-binding sites on platelets. Since qualitative variation (polymorphism) is well known in enzymes, it may also apply to receptors. Qualitative differences in the receptor protein within one species would be of particular interest because of possible functional implications. As a first approach we examined central benzodiazepine receptors by photoaffinity labelling and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. A comparison of fish, frog, chicken, mouse, rat and calf led to the detection of variation between species. Investigations in five inbred mouse and rat strains have not so far revealed genetic variation in benzodiazepine receptors. Nevertheless variation may be detectable by more sensitive methods such as peptide mapping after limited proteolysis or two-dimensional electrophoresis.
Choi, Seong H; Gharahmany, Ghazal; Walzem, Rosemary L; Meade, Thomas H; Smith, Stephen B
2018-03-01
We hypothesized that consumption of saturated fatty acids in the form of high-fat ground beef for 5 weeks would depress liver X receptor signaling targets in peripheral blood mononuclear cells (PBMC) and that changes in gene expression would be associated with the corresponding changes in lipoprotein cholesterol (C) concentrations. Older men (n = 5, age 68.0 ± 4.6 years) and postmenopausal women (n = 7, age 60.9 ± 3.1 years) were assigned randomly to consume ground-beef containing 18% total fat (18F) or 25% total fat (25F), five patties per week for 5 weeks with an intervening 4-week washout period. The 25F and 18F ground-beef increased (p < 0.05) the intake of saturated fat, monounsaturated fat, palmitic acid, and stearic acid, but the 25F ground-beef increased only the intake of oleic acid (p < 0.05). The ground-beefs 18F and 25F increased the plasma concentration of palmitic acid (p < 0.05) and decreased the plasma concentrations of arachidonic, eicosapentaenoic, and docosahexaenic acids (p < 0.05). The interventions of 18F and 25F ground-beef decreased very low-density lipoprotein C concentrations and increased particle diameters and low-density lipoprotein (LDL)-I-C and LDL-II-C concentrations (p < 0.05). The ground-beef 25F decreased PBMC mRNA levels for the adenosine triphosphate (ATP) binding cassette A, ATP binding cassette G1, sterol regulatory element binding protein-1, and LDL receptor (LDLR) (p < 0.05). The ground-beef 18F increased mRNA levels for stearoyl-CoA desaturase-1 (p < 0.05). We conclude that the increased LDL particle size and LDL-I-C and LDL-II-C concentrations following the 25F ground-beef intervention may have been caused by decreased hepatic LDLR gene expression. © 2018 AOCS.
Gupta, Rahul
2018-01-01
AMPA receptors (AMPARs) and their associations with auxiliary transmembrane proteins are bulky structures with large steric-exclusion volumes. Hence, self-crowding of AMPARs, depending on the local density, may affect their lateral diffusion in the postsynaptic membrane as well as in the highly crowded postsynaptic density (PSD) at excitatory synapses. Earlier theoretical studies considered only the roles of transmembrane obstacles and the AMPAR-binding submembranous scaffold proteins in shaping receptor diffusion within PSD. Using lattice model of diffusion, the present study investigates the additional impacts of self-crowding on the anomalousity and effective diffusion coefficient (Deff) of AMPAR diffusion. A recursive algorithm for avoiding false self-blocking during diffusion simulation is also proposed. The findings suggest that high density of AMPARs in the obstacle-free membrane itself engenders strongly anomalous diffusion and severe decline in Deff. Adding transmembrane obstacles to the membrane accentuates the anomalousity arising from self-crowding due to the reduced free diffusion space. Contrarily, enhanced AMPAR-scaffold binding, either through increase in binding strength or scaffold density or both, ameliorates the anomalousity resulting from self-crowding. However, binding has differential impacts on Deff depending on the receptor density. Increase in binding causes consistent decrease in Deff for low and moderate receptor density. For high density, binding increases Deff as long as it reduces anomalousity associated with intense self-crowding. Given a sufficiently strong binding condition when diffusion acquires normal behavior, further increase in binding causes decrease in Deff. Supporting earlier experimental observations are mentioned and implications of present findings to the experimental observations on AMPAR diffusion are also drawn. PMID:29444074
Direct-acting antiviral agents against hepatitis C virus and lipid metabolism.
Kanda, Tatsuo; Moriyama, Mitsuhiko
2017-08-21
Hepatitis C virus (HCV) infection induces steatosis and is accompanied by multiple metabolic alterations including hyperuricemia, reversible hypocholesterolemia and insulin resistance. Total cholesterol, low-density lipoprotein-cholesterol and triglyceride levels are increased by peginterferon and ribavirin combination therapy when a sustained virologic response (SVR) is achieved in patients with HCV. Steatosis is significantly more common in patients with HCV genotype 3 but interferon-free regimens are not always effective for treating HCV genotype 3 infections. HCV infection increases fatty acid synthase levels, resulting in the accumulation of fatty acids in hepatocytes. Of note, low-density lipoprotein receptor, scavenger receptor class B type I and Niemann-Pick C1-like 1 proteins are candidate receptors that may be involved in HCV. They are also required for the uptake of cholesterol from the external environment of hepatocytes. Among HCV-infected patients with or without human immunodeficiency virus infection, changes in serum lipid profiles are observed during interferon-free treatment and after the achievement of an SVR. It is evident that HCV affects cholesterol metabolism during interferon-free regimens. Although higher SVR rates were achieved with interferon-free treatment of HCV, special attention must also be paid to unexpected adverse events based on host metabolic changes including hyperlipidemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Haesung; Yee, S.; Geddes, J.
1991-03-11
Methylmercury (MeHg) is reported to inhibit several stages of cholinergic neurotransmission in brain tissue in-vitro and in-vivo. To examine whether or not behavioral disturbances and/or selective vulnerability of specific neuronal groups in MeHg poisoning may be related to MeHg effects on cholinergic receptors in specific regions of the brain, the density and distribution of muscarinic receptors in the brains of C57BL/6J mice were determined following repeated injections of 5 mg/kg of methylmercuric chloride (MMC). The receptor densities in six cortical laminae of seven cerebral cortical regions, hippocampus and striatum were quantitated by computer-assisted imaging system following in-vitro labeling with ({supmore » 3}H)-pirenzepine (M1) and ({sup 3}H)N-methyl scopolamine (M2). The results showed heterogeneous distribution of M1 and M2 sites in different regions of the brain, and significant reduction in the density of both receptor subtypes following MeHg poisoning in many cortical and subcortical regions. However, the changes in the density were variable in different laminae even in the same cortical regions. Prominent reductions in M1 densities were noted in the temporal and entorhinal cortices, CA3 and hilar regions of the hippocampus as compared to control, whereas the reduction in M2 receptor density was most prominently noted in the frontal, perirhinal and entorhinal cortices, and CA1 and hilar regions of the hippocampus. Thus, it is apparent that MeHg significantly affects muscarinic receptors in the mouse brain, and that these data when used in conjunction with immunocytochemical and other morphological studies would provide further insights into the mechanisms of neurotoxic effects of MeHg.« less
Schütt, Janin; Falley, Katrin; Richter, Dietmar; Kreienkamp, Hans-Jürgen; Kindler, Stefan
2009-01-01
Functional absence of fragile X mental retardation protein (FMRP) causes the fragile X syndrome, a hereditary form of mental retardation characterized by a change in dendritic spine morphology. The RNA-binding protein FMRP has been implicated in regulating postsynaptic protein synthesis. Here we have analyzed whether the abundance of scaffold proteins and neurotransmitter receptor subunits in postsynaptic densities (PSDs) is altered in the neocortex and hippocampus of FMRP-deficient mice. Whereas the levels of several PSD components are unchanged, concentrations of Shank1 and SAPAP scaffold proteins and various glutamate receptor subunits are altered in both adult and juvenile knock-out mice. With the exception of slightly increased hippocampal SAPAP2 mRNA levels in adult animals, altered postsynaptic protein concentrations do not correlate with similar changes in total and synaptic levels of corresponding mRNAs. Thus, loss of FMRP in neurons appears to mainly affect the translation and not the abundance of particular brain transcripts. Semi-quantitative analysis of RNA levels in FMRP immunoprecipitates showed that in the mouse brain mRNAs encoding PSD components, such as Shank1, SAPAP1–3, PSD-95, and the glutamate receptor subunits NR1 and NR2B, are associated with FMRP. Luciferase reporter assays performed in primary cortical neurons from knock-out and wild-type mice indicate that FMRP silences translation of Shank1 mRNAs via their 3′-untranslated region. Activation of metabotropic glutamate receptors relieves translational suppression. As Shank1 controls dendritic spine morphology, our data suggest that dysregulation of Shank1 synthesis may significantly contribute to the abnormal spine development and function observed in brains of fragile X syndrome patients. PMID:19640847
Wu, Lihong; Chen, Guoxiong; Liu, Wen; Yang, Xuechao; Gao, Jie; Huang, Liwen; Guan, Hongbing; Li, Zhengmao; Zheng, Zhichao; Li, Meiling; Gu, Weiwang; Ge, Linhu
2017-10-01
Obesity, diabetes and fatty liver disease are extremely common in leptin-resistant patients. Dysfunction of leptin or its receptor is associated with obesity. The present study aimed to assess the effects of intramuscular injection of exogenous leptin or its receptor on fat deposition and leptin-insulin feedback regulation. Forty-five 40-day old female Sprague Dawley (SD) rats were injected thrice with leptin or its receptor intramuscularly. Adiposity and fat deposition were assessed by assessing the Lee's index, body weight, food intake, and total cholesterol, high density lipoprotein, low density lipoprotein, and triglyceride levels, as well as histological properties (liver and adipose tissue). Serum glucose, leptin, and insulin amounts were evaluated, and glucose tolerance assessed to monitor glucose metabolism in SD rats; pancreas specimens were analyzed immunohistochemically. Hypothalamic phosphorylated Janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and phosphatidylinositol-3-kinase (PI3K) signaling, and hepatic sterol regulatory element binding protein-1 (SREBP-1) were qualified by Western blotting. Leptin receptor immunogen reduced fat deposition, increased appetite, and lowered serum leptin levels, enhancing STAT3 signaling in hypothalamus and down-regulating hepatic SREBP-1. In contrast, SD rats administered leptin immunogen displayed significantly increased body weight and fat deposition, with up-regulated SREBP-1, indicating adiposity occurrence. SD rats administered leptin immunogen also showed glucose intolerance, β- cell reduction in the pancreas, and deregulation of JAK2-STAT3/PI3K signaling, indicating that Lep rats were at risk of diabetes. In conclusion, intramuscular injection of exogenous leptin or its receptor, a novel rat model approach, can be used in obesity pathogenesis and therapeutic studies. Copyright © 2017. Published by Elsevier Inc.
Zou, Fanggeng; Gopalraj, Rangaraj K.; Lok, Johann; Zhu, Haiyan; Ling, I-Fang; Simpson, James F.; Tucker, H. Michael; Kelly, Jeremiah F.; Younkin, Samuel G.; Dickson, Dennis W.; Petersen, Ronald C; Graff-Radford, Neill R.; Bennett, David A.; Crook, Julia E.; G.Younkin, Steven; Estus, Steven
2008-01-01
Since apoE allele status is the predominant Alzheimers disease (AD) genetic risk factor, functional single nucleotide polymorphisms (SNP)s in brain apoE receptors represent excellent candidates for association with AD. Recently, we identified a SNP, rs688, as modulating the splicing efficiency of low-density lipoprotein receptor (LDLR) exon 12 in the female human liver and in minigene transfected HepG2 cells. Moreover, the rs688T minor allele associated with significantly higher LDL and total cholesterol in women in the Framingham Offspring Study. Since LDLR is a major apoE receptor in the brain, we hypothesized that rs688 modulates LDLR splicing in neural tissues and associates with AD. To evaluate this hypothesis, we first transfected LDLR minigenes into SH-SY5Y neuroblastoma cells and found that rs688T reduces exon 12 inclusion in this neural model. We then evaluated rs688 association with exon 12 splicing efficiency in vivo by quantifying LDLR splicing in human anterior cingulate tissue obtained at autopsy; the rs688T allele associated with decreased LDLR exon 12 splicing efficiency in aged men but not women. Lastly, we evaluated whether rs688 associates with AD by genotyping DNA from 1,457 men and 2,055 women drawn from three case-control series. The rs688T/T genotype was associated with increased AD odds in males (recessive model, odds ratio (OR) of 1.49, 95% confidence interval (CI) of 1.13−1.97, uncorrected p=0.005), but not in females. In summary, these studies identify a functional apoE receptor SNP that is associated with AD in a sex-dependent fashion. PMID:18065781
Wass, Christopher; Sauce, Bruno; Pizzo, Alessandro; Matzel, Louis D
2018-03-14
In both humans and mice, performance on tests of intelligence or general cognitive ability (GCA) is related to dopamine D1 receptor-mediated activity in the prelimbic cortex, and levels of DRD1 mRNA predict the GCA of mice. Here we assessed the turnover rate of D1 receptors as well as the expression level of the D1 chaperone protein (DRiP78) in the medial PPC (mPFC) of mice to determine whether rate of receptor turnover was associated with variations in the GCA of genetically heterogeneous mice. Following assessment of GCA (aggregate performance on four diverse learning tests) mice were administered an irreversible dopamine receptor antagonist (EEDQ), after which the density of new D1 receptors were quantified. GCA was positively correlated with both the rate of D1 receptor recovery and levels of DRiP78. Additionally, the density of D1 receptors was observed to increase within 60 min (or less) in response to intense demands on working memory, suggesting that a pool of immature receptors was available to accommodate high cognitive loads. These results provide evidence that innate general cognitive abilities are related to D1 receptor turnover rates in the prefrontal cortex, and that an intracellular pool of immature D1 receptors are available to accommodate cognitive demands.
Blanco-Lezcano, L; Rocha-Arrieta, L L; Martínez-Martí, L; Alvarez-González, L; Pavón-Fuentes, N; Macías-González, R; Serrano-Sánchez, T; Rosillo-Martí, J C; Coro-Grave de Peralta, Y; Bauza-Calderín, Y; Briones, M
Several studies that has focused to the dopaminergic transmission in the basal ganglia in parkinsonian condition, but only a few article has taking into account the imbalance between dopaminergic and cholinergic transmission. To evaluate the muscarinic cholinergic receptors density in SNc and PPN in the 6-OHDA model. Were organized five experimental groups in correspondence to the place of the lesion: I. Non treated rats, II. 6-OHDA lesion in SNc, III. 6-OHDA lesion in SNc + quinolinic acid lesion in NST, IV. Sham operated rats, V. Quinolinic acid in STN. Were obtained coronal sections of 20 microm thickness of SNc and PPN from rats and in these sections was evaluated the muscarinic receptors density through autoradiographic technique with [3H]quinuclidinylbenzilate (QNB) (1.23 nM). The muscarinic antagonist atropine (1 microM) was utilized as non-specific union. The density was evaluated in both hemispheres and the density optical was converted in fentomolas/mg of tissue with base to values obtained from tritium standards. Significant diminution of the muscarinic receptors density was found in the SNc ipsilateral to the 6-OHDA lesion from experimental groups II (t=2.76; p<0.05) and III (t=4.06; p<0.05). In the group V, was seen a significant increase of muscarinic receptor density in the SNc ipsilateral to the 6-OHDA lesion. The comparison between experimental groups evidenced significant differences among them (F=13.13; p<0.001) with a significant decrease in the density from SNc of groups II and III and significant increase in the density from SNc of group V in comparison of the others groups. In relation to PPN, muscarinic receptors density from right PPN ipsilateral to the 6-OHDA lesion, shown significant differences (F=3.93; p<0.01) between the experimental groups with a significant increase of this variable in the group II. These results signal a modification of cholinergic activity after 6-OHDA lesion. The changes in the muscarinic receptors populations located in SNc and PPN could be part of different compensatory mechanisms to attempt ameliorate the imbalance between dopaminergic and cholinergic transmission that it was installed after denervation of nigrostriatal forebrain bundle. The excitotoxic lesion of STN impose a new adjust mechanism for cell from PPN, which could be expressed in the changes of muscarinic cholinergic receptors population at the level of SNc.
Renal atrial natriuretic factor receptors in hamster cardiomyopathy.
Mukaddam-Daher, S; Jankowski, M; Dam, T V; Quillen, E W; Gutkowska, J
1995-12-01
Hamsters with cardiomyopathy (CMO), an experimental model of congestive heart failure, display stimulated renin-angiotensin-aldosterone and enhanced sympathetic nervous activity, all factors that lead to sodium retention, volume expansion and subsequent elevation of plasma atrial natriuretic factor (ANF) by the cardiac atria. However, sodium and water retention persist in CMO, indicating hyporesponsiveness to endogenous ANF. These studies were undertaken to fully characterize renal ANF receptor subtypes in normal hamsters and to evaluate whether alterations in renal ANF receptors may contribute to renal resistance to ANF in cardiomyopathy. Transcripts of the guanylyl cyclase-A (GC-A) and guanylyl cyclase B (GC-B) receptors were detected by quantitative polymerase chain reaction (PCR) in renal cortex, and outer and inner medullas. Compared to normal controls, the cardiomyopathic hamster's GC-A mRNA was similar in cortex but significantly increased in outer and inner medulla. Levels of GC-B mRNA were not altered by the disease. On the other hand, competitive binding studies, autoradiography, and affinity cross-linking demonstrated the absence of functional GC-B receptors in the kidney glomeruli and inner medulla. Also, C-type natriuretic peptide (CNP), the natural ligand for the GC-B receptors, failed to stimulate glomerular production of its second messenger cGMP. In CMO, sodium and water excretion were significantly reduced despite elevated plasma ANF (50.5 +/- 11.1 vs. 309.4 +/- 32.6 pg/ml, P < 0.001). Competitive binding studies of renal glomerular ANF receptors revealed no change in total receptor density, Bmax (369.6 +/- 27.4 vs. 282.8 +/- 26.2 fmol/mg protein), nor in dissociation constant, Kd (647.4 +/- 79.4 vs. 648.5 +/- 22.9 pM). Also, ANF-C receptor density (254.3 +/- 24.8 vs. 233.8 +/- 23.5 fmol/mg protein), nor affinity were affected by heart failure. Inner medullary receptors were exclusively of the GC-A subtype with Bmax (153.2 +/- 26.4 vs. 134.5 +/- 21.2 fmol/mg protein) and Kd (395.7 +/- 148.0 vs. 285.8 +/- 45.0 pM) not altered by cardiomyopathy. The increase in ANF-stimulated glomerular cGMP production was similar in normal and CMO hamsters (94- vs. 75-fold). These results demonstrate that renal ANF receptors do not contribute to the attenuated renal responses to ANF in hamster cardiomyopathy.
Qhattal, Hussaini Syed Sha; Liu, Xinli
2011-01-01
Hyaluronan (HA) is a biocompatible and biodegradable linear polysaccharide which is of interest for tumor targeting through cell surface CD44 receptors. HA binds with high affinity to CD44 receptors, which are overexpressed in many tumors and involved in cancer metastasis. In the present study, we investigated the impact of HA molecular weight (MW), grafting density, and CD44 receptor density on endocytosis of HA-grafted liposomes (HA-liposomes) by cancer cells. Additionally, the intracellular localization of the HA-liposomes was determined. HAs of different MWs (5-8, 10-12, 175-350, and 1600 kDa) were conjugated to liposomes with varying degrees of grafting density. HA surface density was quantified using the hexadecyltrimethylammonium bromide turbidimetric method. Cellular uptake and subcellular localization of HA-liposomes were evaluated by flow cytometry and fluorescence microscopy. Mean particle sizes of HA-liposomes ranged from 120 to 180 nm and increased with the bigger size of HA. HA-liposome uptake correlated with HA MW (5-8 < 10-12 < 175-350 kDa), grafting density, and CD44 receptor density and exceeded that obtained with unconjugated plain liposomes. HA-liposomes were taken up into cells via lipid raft-mediated endocytosis, which is both energy- and cholesterol-dependent. Once within cells, HA-liposomes localized primarily to endosomes and lysosomes. The results demonstrate that cellular targeting efficiency of HA-liposomes depends strongly upon HA MW, grafting density, and cell surface receptor CD44 density. The results support a role of HA-liposomes for targeted drug delivery. PMID:21696190
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina
2014-03-01
Accurate assessment of a woman's risk to develop specific subtypes of breast cancer is critical for appropriate utilization of chemopreventative measures, such as with tamoxifen in preventing estrogen-receptor positive breast cancer. In this context, we investigate quantitative measures of breast density and parenchymal texture, measures of glandular tissue content and tissue structure, as risk factors for estrogen-receptor positive (ER+) breast cancer. Mediolateral oblique (MLO) view digital mammograms of the contralateral breast from 106 women with unilateral invasive breast cancer were retrospectively analyzed. Breast density and parenchymal texture were analyzed via fully-automated software. Logistic regression with feature selection and was performed to predict ER+ versus ER- cancer status. A combined model considering all imaging measures extracted was compared to baseline models consisting of density-alone and texture-alone features. Area under the curve (AUC) of the receiver operating characteristic (ROC) and Delong's test were used to compare the models' discriminatory capacity for receptor status. The density-alone model had a discriminatory capacity of 0.62 AUC (p=0.05). The texture-alone model had a higher discriminatory capacity of 0.70 AUC (p=0.001), which was not significantly different compared to the density-alone model (p=0.37). In contrast the combined density-texture logistic regression model had a discriminatory capacity of 0.82 AUC (p<0.001), which was statistically significantly higher than both the density-alone (p<0.001) and texture-alone regression models (p=0.04). The combination of breast density and texture measures may have the potential to identify women specifically at risk for estrogen-receptor positive breast cancer and could be useful in triaging women into appropriate risk-reduction strategies.
Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice
Blue, Mary E.; Kaufmann, Walter E.; Bressler, Joseph; Eyring, Charlotte; O’Driscoll, Cliona; Naidu, SakkuBai; Johnston, Michael V.
2014-01-01
Our previous postmortem study of girls with Rett Syndrome (RTT), a development disorder caused by MECP2 mutations, found increases in the density of NMDA receptors in the prefrontal cortex of 2–8 year-old girls, while girls older than 10 years had reductions in NMDA receptors compared to age matched controls (Blue et al., 1999b). Using [3H]-CGP to label NMDA type glutamate receptors in 2 and 7 week old wildtype (WT), Mecp2-null and Mecp2-heterozygous (HET) mice (Bird model), we found that frontal areas of the brain also exhibited a bimodal pattern in NMDA expression, with increased densities of NMDA receptors in Mecp2-null mice at 2 weeks of age, but decreased densities at 7 weeks of age. Visual cortex showed a similar pattern, while other cortical regions only exhibited changes in NMDA receptor densities at 2 weeks (retrosplenial granular) or 7 weeks (somatosensory). In thalamus of null mice, NMDA receptors were increased at 2 and 7 weeks. No significant differences in density were found between HET and WT mice at both ages. Western blots for NMDAR1 expression in frontal brain showed higher levels of expression in Mecp2-null mice at two weeks of age, but not at 1 or 7 weeks of age. Our mouse data support the notion that deficient MeCP2 function is the primary cause of the NMDA receptor changes we observed in RTT. Furthermore, the findings of regional and temporal differences in NMDA expression illustrate the importance of age and brain region in evaluating different genotypes of mice. PMID:21901842
Sialylated Receptor Setting Influences Mycoplasma pneumoniae Attachment and Gliding Motility.
Williams, Caitlin R; Chen, Li; Driver, Ashley D; Arnold, Edward A; Sheppard, Edward S; Locklin, Jason; Krause, Duncan C
2018-06-08
Mycoplasma pneumoniae is a common cause of human respiratory tract infections, including bronchitis and atypical pneumonia. M. pneumoniae binds glycoprotein receptors having terminal sialic acid residues via the P1 adhesin protein. Here we explored the impact of sialic acid presentation on M. pneumoniae adherence and gliding on surfaces coated with sialylated glycoproteins, or chemically functionalized with α-2,3- and α-2,6-sialyllactose ligated individually or in combination to a polymer scaffold in precisely controlled densities. In both models, gliding required a higher receptor density threshold than adherence, and receptor density influenced gliding frequency but not gliding speed. However, very high densities of α-2,3-sialyllactose actually reduced gliding frequency over peak levels observed at lower densities. Both α-2,3- and α-2,6-sialyllactose supported M. pneumoniae adherence, but gliding was only observed on the former. Finally, gliding on α-2,3-sialyllactose was inhibited on surfaces also conjugated with α-2,6-sialyllactose, suggesting that both moieties bind P1 despite the inability of the latter to support gliding. Our results indicate that the nature and density of host receptor moieties profoundly influences M. pneumoniae gliding, which could affect pathogenesis and infection outcome. Furthermore, precise functionalization of polymer scaffolds shows great promise for further analysis of sialic acid presentation and M. pneumoniae adherence and gliding. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.
Kleitz, Hayley K; Cornil, Charlotte A; Balthazart, Jacques; Ball, Gregory F
2009-01-01
Evidence has accumulated that the regulation of male sexual behavior by dopamine might not be the same in Japanese quail (and perhaps all birds) as it is in mammals. For example, the non-selective dopamine receptor agonist, apomorphine (APO), facilitates male sexual behavior in rats but inhibits it in quail. Although the general organization of the dopamine system is similar in birds and mammals, it is possible that the relative distribution and/or density of binding sites are different. We therefore compared the relative densities of D1-like and D2-like receptor subtypes in Japanese quail and rats, with the use of in vitro quantitative receptor autoradiography. Brain sections from 8 male rats and 8 male quail were labeled with [(3)H]SCH-23390 and [(3)H]Spiperone. In general we found a systematic species difference in the relative density of D1- vs. D2-like receptors such that the D2/D1 ratio is higher in quail than in rats in areas, known to be important target sites for dopamine action such as striatal regions or the preoptic area, which is also associated with activation of sexual behavior. This difference might explain the variation in the behavioral effectiveness of APO in rats as compared to quail; with a higher relative density of D2-like receptors in quail, a similar dose of APO would be more likely to activate inhibitory processes in quail than in rats. (c) 2009 S. Karger AG, Basel.
Steyn, K; Goldberg, Y P; Kotze, M J; Steyn, M; Swanepoel, A S; Fourie, J M; Coetzee, G A; Van der Westhuyzen, D R
1996-10-01
We have determined the prevalence of familial hypercholesterolaemia (FH) in a rural Afrikaner community by means of direct DNA screening for three founder-related Afrikaner low density lipoprotein (LDL) receptor gene mutations. A random sample of 1612 persons, aged 15-64 years, was selected as a subsample of 4583 subjects from an Afrikaner community living in the south-western Cape, South Africa. Participants who had a total serum cholesterol (TC) in the high TC category as defined in the consensus recommendations by the Southern African Heart Foundation, were screened for three founder-related LDL receptor gene mutations, causing FH in 90% of Afrikaners. Of the subsample, 201 participants (12.5%) had TC levels above the 80th percentile. In this group the combined prevalence of the three common Afrikaner LDL receptor gene defects (D206E, FH Afrikaner-1; V408M, FH Afrikaner-2; D154N, FH Afrikaner-3) was calculated as 1: 83. When taking into account the reported background prevalence of other FH gene defects of 1:500 in this community, their overall prevalence of FH was estimated to be 1:72. The significant differences found between the FH patients and other high risk patients with raised cholesterol levels were higher TC and LDL cholesterol levels and lower high density lipoprotein cholesterol levels in FH patients. The treatment status of the molecularly identified FH patients and other hypercholesterolaemic persons suggests that this condition is inadequately diagnosed and poorly managed in this study population. An extrapolation to the entire South African population suggests that there are about 112000 FH patients in the country who are under-diagnosed as a group and therefore not receiving the care that would help to reduce the burden of FH-associated ischaemic heart disease in South Africa.
The influence of synaptic size on AMPA receptor activation: a Monte Carlo model.
Montes, Jesus; Peña, Jose M; DeFelipe, Javier; Herreras, Oscar; Merchan-Perez, Angel
2015-01-01
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors.
The Influence of Synaptic Size on AMPA Receptor Activation: A Monte Carlo Model
Montes, Jesus; Peña, Jose M.; DeFelipe, Javier; Herreras, Oscar; Merchan-Perez, Angel
2015-01-01
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors. PMID:26107874
Serum concentration of adipocytokines in prepubertal vegetarian and omnivorous children.
Ambroszkiewicz, Jadwiga; Klemarczyk, Witold; Gajewska, Joanna; Chełchowska, Magdalena; Rowicka, Grażyna; Ołtarzewski, Mariusz; Laskowska-Klita, Teresa
2011-01-01
THE AIM of our study was to investigate associations between serum adipocytokines status and anthropometric parameters as well as total energy and macronutrient intake in vegetarian, normal-weight omnivorous and obese omnivorous children. We examined 90 healthy prepubertal children aged 4-10 years who had been referred to the Department of Nutrition at the Institute of Mother and Child in Warsaw for dietary consultation. Patients with endocrine disorders or genetic syndromes, as well as those who were taking medications that could affect growth, pubertal development or nutritional status were excluded. Children were divided into groups: vegetarians (n=30), normal-weight omnivores (n=30) and obese omnivores (n=30). Anthropometric measurement (weight, height) was performed in all children and body mass index (BMI) was calculated. A whole body dual-energy X-ray absorptiometry (DXA) scan was performed to determine fat mass, the percentage of body fat and lean body mass using a Lunar Prodigy (GE, USA). Dietary constituents were assessed by questionnaire (nutrient intake from a 3-day period: 2 weekdays and 1 weekend day) and calculated using the nutritional computer program Dietetyk2®. Serum total cholesterol, high-density and low-density lipoproteins, and triglycerides concentrations were assessed by standard enzymatic methods. Serum levels of leptin, soluble leptin receptor and adiponectin were determined by immunoenzymatic assays. There were no significant differences in body weight, height, BMI and lean mass values between vegetarians and normal-weight children on traditional mixed diet. Children on vegetarian diet had lower fat mass (p<0.05) and fat mass/lean mass ratio (p<0.05) than normal-weight omnivores. However, omnivorous children with simple obesity had significantly higher body weight, height, BMI, fat and lean mass in comparison to vegetarian as well to normal-weight omnivorous children. The fat mass/lean mass ratio in obese children was about 2.5-fold higher than in normal-weight subjects on traditional diet. Total energy and percentage of energy from macronutrients in diets of all children were within the recommended daily intake. Children on vegetarian diet was related with lower fat and higher carbohydrates intake in comparison to their omnivorous peers. Vegetarian children had significantly lower mean total cholesterol (151.5±18.0 mg/dL), low-density lipoprotein (81.0±13.6 mg/dL) and triglycerides (61.6±20.5 mg/dL) than omnivores, especially the obese ones (165.0±22.3 mg/dL, 94.7±19.2 mg/dL, 82.4±32.3 mg/dL, respectively). These differences were statistically significant (p<0.05). Serum concentration of leptin was significantly lower in vegetarian children (3.0±2.1 ng/ml) compared with omnivores (6.8±3.4 ng/ml in normal weight versus 37.8±12.7 ng/ml in obese) (p<0.0001). However, serum soluble leptin receptor as well as adiponectin were at higher levels in vegetarians than in omnivores (p<0.001 and p<0.05, respectively). We observed that serum leptin levels positively and soluble leptin receptor negatively correlated with body mass index and fat mass in prepubertal children. Moreover, leptin levels negatively correlated with its soluble receptor and with adiponectin. In children different kinds of diet might modify not only body mass and lipid profile but also serum concentration of adipocytokines. Determination of leptin and its soluble receptor, as well as adiponectin levels may be clinically useful in the medical and nutritional care of obese as well as vegetarian prepubertal children.
Zhao, Ruozhi; Ghazzawi, Nora; Wu, Jiansu; Le, Khuong; Li, Chunyang; Moghadasian, Mohammed H; Siow, Yaw L; Apea-Bah, Franklin B; Beta, Trust; Yin, Zhengfeng; Shen, Garry X
2018-05-02
The present study investigates the impact of germinated brown rice (GBR) on atherosclerosis and the underlying mechanism in low-density lipoprotein receptor-knockout (LDLr-KO) mice. The intensity of atherosclerosis in aortas of LDLr-KO mice receiving diet supplemented with 60% GBR (weight/weight) was significantly less than that in mice fed with 60% white rice (WR) or control diet ( p < 0.05); all diets contained 0.06% cholesterol. WR or GBR diet did not significantly alter plasma total or LDL-cholesterol, fecal sterols, or glucose, or the activities of antioxidant enzymes, compared to the control diet. The adhesion of monocytes to aortas from LDLr-KO mice fed with WR diet was significantly more than that from mice receiving the control diet ( p < 0.01). GBR diet decreased monocyte adhesion to aortas compared to WR diet ( p < 0.01). GBR diet also reduced the levels of plasminogen activator inhibitor-1 (PAI-1), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α) in plasma, and the abundances of MCP-1, PAI-1, TNF-α, intracellular cell adhesion molecule-1, toll-like receptor-4, PAI-1, LDLr-like protein, and urokinase plasminogen activator and its receptor in aortas or hearts from LDLr-KO mice in comparison to the WR diet ( p < 0.05, 0.01, respectively). The findings suggest that GBR administration attenuated atherosclerosis and vascular inflammation in LDLr-KO mice compared to WR. The anti-atherosclerotic effect of GBR in LDLr-KO mice at least in part results from its anti-inflammatory activity.
Selb, Regina; Eckl-Dorna, Julia; Neunkirchner, Alina; Schmetterer, Klaus; Marth, Katharina; Gamper, Jutta; Jahn-Schmid, Beatrice; Pickl, Winfried F; Valenta, Rudolf; Niederberger, Verena
2017-01-01
Increasing evidence suggests that the low-affinity receptor for IgE, CD23, plays an important role in controlling the activity of allergen-specific T cells through IgE-facilitated allergen presentation. We sought to determine the number of CD23 molecules on immune cells in allergic patients and to investigate whether the number of CD23 molecules on antigen-presenting cells is associated with IgE levels and influences allergen uptake and allergen-specific T-cell activation. Numbers of CD23 molecules on immune cells of allergic patients were quantified by using flow cytometry with QuantiBRITE beads and compared with total and allergen-specific IgE levels, as well as with allergen-induced immediate skin reactivity. Allergen uptake and allergen-specific T-cell activation in relation to CD23 surface density were determined by using flow cytometry in combination with confocal microscopy and T cells transfected with the T-cell receptor specific for the birch pollen allergen Bet v 1, respectively. Defined IgE-allergen immune complexes were formed with human monoclonal allergen-specific IgE and Bet v 1. In allergic patients the vast majority of CD23 molecules were expressed on naive IgD + B cells. The density of CD23 molecules on B cells but not the number of CD23 + cells correlated with total IgE levels (R S = 0.53, P = .03) and allergen-induced skin reactions (R S = 0.63, P = .008). Uptake of allergen-IgE complexes into B cells and activation of allergen-specific T cells depended on IgE binding to CD23 and were associated with CD23 surface density. Addition of monoclonal IgE to cultured PBMCs significantly (P = .04) increased CD23 expression on B cells. CD23 surface density on B cells of allergic patients is correlated with allergen-specific IgE levels and determines allergen uptake and subsequent activation of T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats.
Bădescu, S V; Tătaru, C P; Kobylinska, L; Georgescu, E L; Zahiu, D M; Zăgrean, A M; Zăgrean, L
2016-01-01
Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations : STZ = streptozotocin, OFT = Open Field Test.
Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela; Wedekind, Franziska; Kroll, Tina; McCarley, Robert W; Strecker, Robert E; Bauer, Andreas
2015-10-01
Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. © 2015 European Sleep Research Society.
Herrmann, Edwin; Tiemann, Arne; Eltze, Elke; Bolenz, Christian; Bremer, Christoph; Persigehl, Thorsten; Hertle, Lothar; Wülfing, Christian
2009-10-01
The endothelin axis consists of endothelin-1 (ET-1) and its two receptors, ET(A)- and ET(B)-receptor (ET(A)-R and ET(B)-R). In several tumor entities, the ET(A)-R plays a significant role as a drug target. In our study, we investigated whether inhibition of ET(A)-R with atrasentan leads to an antitumor effect in urinary bladder carcinoma as well. Twenty nude mice with thymic aplasia were subcutaneously administered 2 x 10(6) KU-19-19 bladder cancer cells in the right flank. Starting on the 22nd day after the injection, ten animals were treated with atrasentan (2.5 mg/kg BW intraperitoneally), and another ten animals were treated with placebo. During treatment, absolute tumor growth and relative growth rate over time were determined. After the end of treatment, the mitosis and necrosis rates, microvessel density, and receptor density in the tumor tissue were analyzed by immunohistochemistry. In addition, the expression intensities of ET-1, ET(A)-R, and ET(B)-R were evaluated semiquantitatively and compared between the groups. No significant differences between the active-treatment and placebo groups were detected, either with respect to absolute tumor growth (P = 0.333) or mitosis rate (P = 0.217). In the analysis of the necrosis rate and receptor density for ET(A)-R, a trend toward higher values in the active-treatment group (mean necrosis rate = 63.67%, receptor density: 1.417) than in the placebo group (mean necrosis rate = 46.25%, receptor density: 1.270) was found; however, neither difference was statistically significant (P = 0.08 and 0.219, respectively). ET(A)-R blockade with atrasentan in a bladder cancer xenograft model shows no significant antitumor effect.
Pawar, Mohit; Kumar, Priyank; Sunkaraneni, Soujanya; Sirohi, Sunil; Walker, Ellen A; Yoburn, Byron C
2007-06-01
It has been proposed that opioid agonist efficacy may play a role in tolerance and the regulation of opioid receptor density. To address this issue, the present studies estimated the in vivo efficacy of three opioid agonists and then examined changes in spinal mu-opioid receptor density following chronic treatment in the mouse. In addition, tolerance and regulation of the trafficking protein dynamin-2 were determined. To evaluate efficacy, the method of irreversible receptor alkylation was employed and the efficacy parameter tau estimated. Mice were injected with the irreversible mu-opioid receptor antagonist clocinnamox (0.32-25.6 mg/kg, i.p), and 24 h later, the analgesic potency of s.c. morphine, oxycodone and etorphine were determined. Clocinnamox dose-dependently antagonized the analgesic effects of morphine, etorphine and oxycodone. The shift to the right of the dose-response curves was greater for morphine and oxycodone compared to etorphine and the highest dose of clocinnamox reduced the maximal effect of morphine and oxycodone, but not etorphine. The order of efficacy calculated from these results was etorphine>morphine>oxycodone. Other mice were infused for 7 days with oxycodone (10-150 mg/kg/day, s.c.) or etorphine (50-250 microg/kg/day, s.c.) and the analgesic potency of s.c. morphine determined. The low efficacy agonist (oxycodone) produced more tolerance than the high efficacy agonist (etorphine) at equi-effective infusion doses. In saturation binding experiments, the low efficacy opioid agonists (morphine, oxycodone) did not regulate the density of spinal mu-opioid receptors, while etorphine produced approximately 40% reduction in mu-opioid receptor density. Furthermore, etorphine increased spinal dynamin-2 abundance, while oxycodone did not produce any significant change in dynamin-2 abundance. Overall, these data indicate that high efficacy agonists produce less tolerance at equi-effective doses. Furthermore, increased efficacy was associated with mu-opioid receptor downregulation and dynamin-2 upregulation. Conversely, lower efficacy agonists produced more tolerance at equi-effective doses, but did not regulate mu-opioid receptor density or dynamin-2 abundance. Taken together, these studies indicate that agonist efficacy plays an important role in tolerance and regulation of receptors and trafficking proteins.
Abdominal pain and the neurotrophic system in ulcerative colitis.
Deberry, Jennifer J; Bielefeldt, Klaus; Davis, Brian M; Szigethy, Eva M; Hartman, Douglas J; Coates, Matthew D
2014-12-01
We undertook a study to test the hypothesis that inflammation alters peripheral sensory mechanisms, thereby contributing to chronic abdominal pain in ulcerative colitis (UC). Patients with UC and healthy individuals rated abdominal pain using a visual analog scale and completed surveys describing anxiety or depression (Hospital Anxiety and Depression Score) and gastrointestinal symptoms (Rome III questionnaire). Patient age, sex, and severity of inflammation were determined. Rectal biopsies were processed using immunohistochemical techniques to assess nerve fiber density and real-time PCR to determine transcript expression of neurotrophins (nerve growth factor, glial cell-derived neurotrophic factor, artemin, neurturin), ion channels (transient receptor potential vanilloid type 1, transient receptor potential ankyrin 1) and inflammatory mediators (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, IL-10, IL-17). A total of 77 patients with UC (27 female, 50 male) and 21 controls (10 female, 11 male) were enrolled. Patients with UC with pain had significantly higher depression scores than controls and patients with UC without pain (P < 0.05). There was no correlation between any of the inflammatory markers and pain scores. Visual analog scale pain scores significantly correlated with younger age, higher depression scores, increased expression of neurturin and decreased expression of transient receptor potential ankyrin 1 in the mucosa. Mucosal nerve fiber density did not correlate with any measures of inflammation or pain. Only higher depression scores independently predicted pain in UC (r > 0.5). We did not observe changes in mucosal innervation and did not see a significant relationship between nerve fiber density, inflammatory mediators, neurotrophic factors, or mucosal ion channel expression and pain. In contrast, the importance of depression as the only independent predictor of pain ratings mirrors functional disorders, where central processes significantly contribute to symptom development and/or perpetuation.
Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr
2016-08-01
Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.
Amano, Yuichiro; Nishimoto, Tomoyuki; Tozawa, Ryu ichi; Ishikawa, Eiichiro; Imura, Yoshimi; Sugiyama, Yasuo
2003-04-11
The lipid-lowering effects of 1-[2-[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-1,2,3,5-tetrahydro-2-oxo-5-(2,3-dimethoxyphenyl)-4,1-benzoxazepine-3-yl] acetyl] piperidin-4-acetic acid (TAK-475), a novel squalene synthase inhibitor, were examined in two models of familial hypercholesterolemia, low-density lipoprotein (LDL) receptor knockout mice and Watanabe heritable hyperlipidemic (WHHL) rabbits. Two weeks of treatment with TAK-475 in a diet admixture (0.02% and 0.07%; approximately 30 and 110 mg/kg/day, respectively) significantly lowered plasma non-high-density lipoprotein (HDL) cholesterol levels by 19% and 41%, respectively, in homozygous LDL receptor knockout mice. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, simvastatin and atorvastatin (in 0.02% and 0.07% admixtures), also reduced plasma levels of non-HDL cholesterol. In homozygous WHHL rabbits, 4 weeks of treatment with TAK-475 (0.27%; approximately 100 mg/kg/day) lowered plasma total cholesterol, triglyceride and phospholipid levels by 17%, 52% and 26%, respectively. In Triton WR-1339-treated rabbits, TAK-475 inhibited to the same extent the rate of secretion from the liver of the cholesterol, triglyceride and phospholipid components of very-low-density lipoprotein (VLDL). These results suggest that the lipid-lowering effects of TAK-475 in WHHL rabbits are based partially on the inhibition of secretion of VLDL from the liver. TAK-475 had no effect on plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the squalene synthase inhibitor TAK-475 revealed lipid-lowering effects in both LDL receptor knockout mice and WHHL rabbits.
Gajek, Jacek; Zyśko, Dorota
2002-12-01
Sympathetic nervous system may play an important role in development and maintenance of hypertension. Its activity can be assessed by plasma levels of catecholamines, neuropeptide Y (NPY) and adrenergic receptor density. Hypertensive subjects may be more prone to reveal overactivity of sympathetic nervous system, for instance as a result of physical stress. The aim of the study was to determine the activity of sympathetic nervous system in young patients with newly recognized, untreated mild hypertension. The study was carried out in 22 patients (age 38.5 +/- 10.3 years) and 20 normotensive volunteers (age 38.5 +/- 8.6 years) as a control group, matched for sex. Density of alpha 2- and beta-adrenergic receptors using 3H-yohimbine and 125I-cyanopindolol respectively, total catecholamines and plasma renin activity using radioenzymatic assay, neuropeptide Y and aldosterone using radioimmunoassay were assessed in the blood taken in the supine position and after moderate bicycle ergometer exercise. Plasma concentration of NPY at rest did not differ between the groups, but increased significantly after exercise and was greater in hypertensive patients (p < 0.05). The density of alpha 2- and beta-adrenergic receptors at rest and after exercise in hypertensive subjects was unchanged when comparing to healthy individuals. The plasma concentrations of endogenous catecholamines, plasma renin activity and aldosterone level increase during exercise in both studied groups (p < 0.05). Aldosterone level was higher in hypertensive patients at rest (p < 0.05). There was a negative correlation between baseline aldosterone and NPY levels in hypertensive patients (r = -0.44, p < 0.05). Moderate exercise in hypertensive subjects causes the hyperactivity of sympathetic nervous system expressed as increase of NPY plasma level.
Katugampola, Sidath D; Davenport, Anthony P
2001-01-01
The aim of this study was to establish how thromboxane receptors (TP) respond to the increase in levels of plasma thromboxane observed in both cardiac (cardiomyopathy, ischaemic heart disease and pulmonary hypertension) and vascular disease (atherosclerosis of coronary artery disease and accelerated atherosclerosis of saphenous vein grafts).The agonist radioligand [125I]-BOP, bound rapidly to TP receptors in normal human cardiovascular tissue, displaying high affinity in left ventricle (KD 0.23±0.06 nM, Bmax 28.4±5.7 fmol mg−1 protein) and reversibility with a t1/2 of 10 min (n=five individuals±s.e.mean).In the heart, TP receptor density in the right ventricle of primary pulmonary hypertensive patients were significantly increased (66.6±6 fmol mg−1 protein) compared to non-diseased right ventricle (37.9±4.1 fmol mg−1 protein, n=six individuals±s.e.mean, P<0.05).In diseased vessels, TP receptor densities were significantly increased (3 fold in the intimal layer) in atherosclerotic coronary arteries, saphenous vein grafts with severe intimal thickening (n=8 – 12 individuals, P<0.05) and aortic tissue (n=5 – 6 individuals, P<0.05), compared with normal vessels.Losartan, tested at therapeutic doses, competed for [125I]-BOP binding to human vascular tissue, suggesting that some of the anti-hypertensive effects of this AT1 receptor antagonist could also be mediated by blocking human TP receptors.The differential distribution of TP receptors in the human cardiovascular system and the alteration of receptor density, accompanying the increase in endogenous thromboxane levels in cardiovascular disease, suggest that TP receptors represent a significant target for therapeutic interventions and highlights the importance for the development of novel selective antagonist for use in humans. PMID:11724743
Cam, Judy A; Bu, Guojun
2006-08-18
Amyloid-beta peptide (Abeta) accumulation in the brain is an early, toxic event in the pathogenesis of Alzheimer's disease (AD). Abeta is produced by proteolytic processing of a transmembrane protein, beta-amyloid precursor protein (APP), by beta- and gamma-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Abeta. Recent studies have shown that members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apolipoprotein E (apoE) receptor 2, interact with APP and regulate its endocytic trafficking. Another common feature of these receptors is their ability to bind apoE, which exists in three isoforms in humans and the presence of the epsilon4 allele represents a genetic risk factor for AD. In this review, we summarize the current understanding of the function of these apoE receptors with a focus on their role in APP trafficking and processing. Knowledge of the interactions between these distinct low-density lipoprotein receptor family members and APP may ultimately influence future therapies for AD.
Cudnoch-Jedrzejewska, Agnieszka; Gomolka, Ryszard; Szczepanska-Sadowska, Ewa; Czarzasta, Katarzyna; Wrzesien, Robert; Koperski, Lukasz; Puchalska, Liana; Wsol, Agnieszka
2015-01-01
Central application of apelin elevates blood pressure and influences neuroendocrine responses to stress and food consumption. However, it is not known whether the central cardiovascular effects of apelin depend also on caloric intake or chronic stress. The purpose of the present study was to determine the effects of intracerebroventricular administration of apelin on blood pressure (mean arterial blood pressure) and heart rate in conscious Sprague-Dawley rats consuming either a normal-fat diet (NFD) or high-fat diet (HFD) for 12 weeks. During the last 4 weeks of the food regime, the rats were exposed (NFDS and HFDS groups) or not exposed (NFDNS and HFDNS groups) to chronic stress. Each group was divided into two subgroups receiving intracerebroventricular infusions of either vehicle or apelin. Apelin elicited significant increase of mean arterial blood pressure and heart rate in the NFDNS rats. This effect was abolished in the HFDNS, HFDS and NFDS groups. HFD resulted in a significant elevation of blood concentrations of total cholesterol, triglycerides glucose and insulin. Chronic stress reduced plasma concentration of total and high-density lipoprotein cholesterol, and increased plasma corticosterone concentration and APJ receptor mRNA expression in the hypothalamus, whereas a combination of a HFD with chronic stress resulted in the elevation of plasma triglycerides, total cholesterol and low-density lipoprotein cholesterol, and in increased plasma corticosterone concentration, apelin concentration and APJ receptor mRNA expression in the hypothalamus. It is concluded that a HFD and chronic stress result in significant suppression of the central pressor action of apelin, and cause significant though not unidirectional changes of metabolic and endocrine parameters. © 2014 Wiley Publishing Asia Pty Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, K.A.; Hichwa, R.D.; Ehrenkaufer, R.L.
1985-10-01
A tracer kinetic method is developed for the in vivo estimation of high-affinity radioligand binding to central nervous system receptors. Ligand is considered to exist in three brain pools corresponding to free, nonspecifically bound, and specifically bound tracer. These environments, in addition to that of intravascular tracer, are interrelated by a compartmental model of in vivo ligand distribution. A mathematical description of the model is derived, which allows determination of regional blood-brain barrier permeability, nonspecific binding, the rate of receptor-ligand association, and the rate of dissociation of bound ligand, from the time courses of arterial blood and tissue tracer concentrations.more » The term ''free receptor density'' is introduced to describe the receptor population measured by this method. The technique is applied to the in vivo determination of regional muscarinic acetylcholine receptors in the rat, with the use of (TH)scopolamine. Kinetic estimates of free muscarinic receptor density are in general agreement with binding capacities obtained from previous in vivo and in vitro equilibrium binding studies. In the striatum, however, kinetic estimates of free receptor density are less than those in the neocortex--a reversal of the rank ordering of these regions derived from equilibrium determinations. A simplified model is presented that is applicable to tracers that do not readily dissociate from specific binding sites during the experimental period.« less
Dietary corn fractions reduce atherogenesis in low-density lipoprotein receptor knockout mice.
Masisi, Kabo; Le, Khuong; Ghazzawi, Nora; Moghadasian, Mohammed H; Beta, Trust
2017-01-01
Accumulating evidence has suggested that intake of whole grains is a protective factor against pathogenesis of coronary artery disease. The exact mechanisms, however, are still not clearly understood. In this study, we hypothesized that adequate intake of corn fractions (aleurone, endosperm and germ) can modify lipid profiles in relation to atherosclerotic lesion development in low-density lipoprotein receptor knockout (LDLr-KO) mice. The purpose of the present study was to investigate the potential cardiovascular benefits of corn fractions in LDLr-KO mice through a number of biomarkers including lipid profile, and morphologic and morphometrical analysis of atherosclerotic lesions in aortic root. Four groups of male LDLr-KO mice were fed with the experimental diets supplemented with (3 treated) or without (control) 5% (wt/wt) of each of corn fractions for 10 weeks. All diets were supplemented with 0.06% (wt/wt) cholesterol. Compared with mice in the control group, atherosclerotic lesions in the aortic roots were significantly reduced (P=.003) in the mice that were fed diet supplemented with aleurone and germ fractions. This effect was associated with significant reductions in plasma total (P=.02) and LDL (P=.03) cholesterol levels, and an increase in fecal cholesterol excretion (P=.04). Furthermore, abdominal fat mass was significantly reduced by consumption of aleurone (P=.03). In summary, the consumption of aleurone and germ may help attenuate atherosclerosis by reducing plasma total and LDL cholesterol levels. Copyright © 2016 Elsevier Inc. All rights reserved.
Józefiak, D; Ptak, A; Kaczmarek, S; Mackowiak, P; Sassek, M; Slominski, B A
2010-09-01
The effect of a combination of carbohydrase and phytase enzymes on growth performance, insulin-like growth factor 1 gene expression, insulin status, and insulin receptor sensitivity in broiler chickens fed wheat-soybean meal diets containing 6% (starter) and 12% (grower-finisher) of full-fat rapeseed (canola type; low glucosinolate, low erucic acid) from 1 to 42 d of age was studied. A total of 510 one-day-old male broiler chickens were randomly assigned to 3 dietary treatments, with 17 pens per treatment and 10 birds per pen. The dietary treatments consisted of a control diet and P- and Ca-deficient diets supplemented with either phytase (500 U/kg) or a combination of phytase and a multi-carbohydrase enzyme (Superzyme OM). The diets were pelleted at 78 degrees C and were fed ad libitum throughout the starter (9 d), grower (18 d), and finisher (15 d) phases of the experiment. Over the entire trial, growth performance of birds fed the phytase-supplemented diet did not differ from birds fed the control diet. The use of phytase in combination with a multicarbohydrase enzyme improved (P = 0.007) the feed conversion ratio from 1.90 to 1.84. Insulin liver receptor sensitivity increased by 9.3 and 12.3% (P = 0.004) for the phytase- and the carbohydrase-phytase-supplemented diets, respectively. There was no effect of phytase alone or carbohydrase and phytase supplementation on total plasma cholesterol, high-density lipoprotein cholesterol, and blood glucose levels. However, low-density lipoprotein cholesterol decreased (P = 0.007) for the phytase-carbohydrase treatment. Gene expression of insulin-like growth factor 1 tended to decrease by 32% (P = 0.083) after phytase-carbohydrase supplementation. The combination of carbohydrase and phytase enzymes may serve as an attractive means of facilitating nutrient availability for digestion and thus enhance the feeding value of wheat-soybean meal-based diets containing full-fat rapeseed. However, the extent to which the effects of enzyme addition on insulin receptors are associated with growth performance of broiler chicken requires further research.
Dal-Secco, Daniela; DalBó, Silvia; Lautherbach, Natalia E S; Gava, Fábio N; Celes, Mara R N; Benedet, Patricia O; Souza, Adriana H; Akinaga, Juliana; Lima, Vanessa; Silva, Katiussia P; Kiguti, Luiz Ricardo A; Rossi, Marcos A; Kettelhut, Isis C; Pupo, André S; Cunha, Fernando Q; Assreuy, Jamil
2017-07-01
G protein-coupled receptor kinase isoform 2 (GRK2) has a critical role in physiological and pharmacological responses to endogenous and exogenous substances. Sepsis causes an important cardiovascular dysfunction in which nitric oxide (NO) has a relevant role. The present study aimed to assess the putative effect of inducible NO synthase (NOS2)-derived NO on the activity of GRK2 in the context of septic cardiac dysfunction. C57BL/6 mice were submitted to severe septic injury by cecal ligation and puncture (CLP). Heart function was assessed by isolated and perfused heart, echocardiography, and β-adrenergic receptor binding. GRK2 was determined by immunofluorescence and Western blot analysis in the heart and isolated cardiac myocytes. Sepsis increased NOS2 expression in the heart, increased plasma nitrite + nitrate levels, and reduced isoproterenol-induced isolated ventricle contraction, whole heart tension development, and β-adrenergic receptor density. Treatment with 1400W or with GRK2 inhibitor prevented CLP-induced cardiac hyporesponsiveness 12 and 24 h after CLP. Increased labeling of total and phosphorylated GRK2 was detected in hearts after CLP. With treatment of 1400W or in hearts taken from septic NOS2 knockout mice, the activation of GRK2 was reduced. 1400W or GRK2 inhibitor reduced mortality, improved echocardiographic cardiac parameters, and prevented organ damage. Therefore, during sepsis, NOS2-derived NO increases GRK2, which leads to a reduction in β-adrenergic receptor density, contributing to the heart dysfunction. Isolated cardiac myocyte data indicate that NO acts through the soluble guanylyl cyclase/cGMP/PKG pathway. GRK2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction. NEW & NOTEWORTHY The main novelty presented here is to show that septic shock induces cardiac hyporesponsiveness to isoproterenol by a mechanism dependent on nitric oxide and mediated by G protein-coupled receptor kinase isoform 2. Therefore, G protein-coupled receptor kinase isoform 2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction. Copyright © 2017 the American Physiological Society.
Natsag, J; Kendall, M A; Sellmeyer, D E; McComsey, G A; Brown, T T
2016-03-01
The aim of the study was to determine the effect of alendronate (ALN) on inflammatory markers and osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL), and to explore the associations of baseline systemic inflammation and vitamin D status on the bone mineral density (BMD) response to ALN. Eighty-two HIV-positive patients with lumbar spine T-score ≤ -1.5 were randomized to ALN 70 mg weekly or placebo for 48 weeks; all received calcium carbonate 500 mg/vitamin D3 200 IU twice daily. Serum C-telopeptide (CTx) and BMD were assessed at baseline and week 48. Stored plasma samples in 70 subjects were assayed for levels of 25-hydroxyvitamin D (25(OH)D), OPG, RANKL, interleukin (IL)-6 and soluble receptors for tumour necrosis factor (TNF)-α 1 and 2 (sTNFR 1 and 2). ALN increased BMD more than placebo at both the lumbar spine (difference ALN - placebo 2.64%; P = 0.011) and the total hip (difference 2.27%; P = 0.016). No within- or between-arm differences in OPG, RANKL or inflammatory markers were observed over 48 weeks. High baseline CTx and sTNFR2 were associated with a more robust BMD response to ALN over 48 weeks at the lumbar spine [difference 5.66%; 95% confidence interval (CI) 3.50, 7.82; P < 0.0001] and total hip (difference 4.99%; 95% CI 2.40, 7.57; P = 0.0002), respectively. Baseline 25(OH)D < 32 ng/mL was associated with larger increases in total hip BMD over 48 weeks, independent of ALN treatment (P = 0.014). Among HIV-positive patients, higher baseline bone resorption and TNF-α activity were associated with an increased BMD response to ALN. The greater BMD response in those with lower vitamin D reinforces the importance of vitamin D supplementation with bisphosphonate treatment. © 2015 British HIV Association.
Elevation of D4 dopamine receptor mRNA in postmortem schizophrenic brain.
Stefanis, N C; Bresnick, J N; Kerwin, R W; Schofield, W N; McAllister, G
1998-01-01
The D4 dopamine (DA) receptor has been proposed to be a target for the development of a novel antipsychotic drug based on its pharmacological and distribution profile. There is much interest in whether D4 DA receptor levels are altered in schizophrenia, but the lack of an available receptor subtype-specific radioligand made this difficult to quantitate. In this study, we examined whether D4 mRNA levels are altered in different brain regions of schizophrenics compared to controls. Ribonuclease protection assays were carried out on total RNA samples isolated postmortem from frontal cortex and caudate brain regions of schizophrenics and matched controls. 32P-labelled RNA probes to the D4 DA receptor and to the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), were hybridised with the RNA samples, digested with ribonucleases to remove unhybridised probe, and separated on 6% sequencing gels. Densitometer analysis on the subsequent autoradiogams was used to calculate the relative optical density of D4 mRNA compared to G3PDH mRNA. Statistical analysis of the data revealed a 3-fold higher level (P<0.011) of D4 mRNA in the frontal cortex of schizophrenics compared to controls. No increase was seen in caudate. D4 receptors could play a role in mediating dopaminergic activity in frontal cortex, an activity which may be malfunctioning in schizophrenia.
The regulation of delta-opiate receptor density on 108CC15 neuroblastoma X glioma hybrid cells.
Moses, M. A.; Snell, C. R.
1984-01-01
The effect of exogenous substances on the expression of opiate receptors on 108CC15 neuroblastoma X glioma hybrid cells has been studied. Cell differentiation by culture in the presence of N6-O2-dibutyryl adenosine 3',5'-cyclic monophosphate induced a three fold increase in opiate receptor density. When the cells were grown in the presence of 10(-5) M morphine hydrochloride for up to 23 days, opiate receptor densities were reduced by only 30% when compared with matched controls. Culture in the presence of 10(-7) M D-Ala2-D-Leu5-enkephalin produced opiate receptor down regulation of 73% compared to controls after only 4 h of treatment. The down regulation process could be inhibited by continued exposure to D-Ala2 D-Leu5-enkephalin at concentrations greater than 4 nM; below this concentration down regulation was rapid and irreversible. A model to explain these observations is described. PMID:6322893
Nakazato, K; Ishibashi, T; Nagata, K; Seino, Y; Wada, Y; Sakamoto, T; Matsuoka, R; Teramoto, T; Sekimata, M; Homma, Y; Maruyama, Y
2001-04-01
Although very low density lipoprotein (VLDL) receptor expression by macrophages has been shown in the vascular wall, it is not clear whether or not circulating monocytes express the VLDL receptor. We investigated the expression of VLDL receptor mRNA in human peripheral blood monocytes and monocyte-derived macrophages by reverse transcriptase polymerase chain reaction (RT-PCR) and nucleotide sequencing after subcloning of PCR product. VLDL receptor mRNA was detected both in peripheral blood monocytes and monocyte-derived macrophages. Expression of VLDL receptor mRNA was upregulated by hypoxia in monocytes, whereas treatment with oxidized LDL, interleukin-1beta or monocyte chemoattractant protein-1 did not affect the levels of VLDL receptor mRNA in monocytes and macrophages. The present study shows a novel response of VLDL receptor mRNA to hypoxia, suggesting a role for VLDL receptor in the metabolism of lipoproteins in the vascular wall and the development of atherosclerosis.
Effect of raclopride on dopamine D2 receptor mRNA expression in rat brain.
Kopp, J; Lindefors, N; Brené, S; Hall, H; Persson, H; Sedvall, G
1992-01-01
Prolonged treatment with dopamine D2 receptor antagonists is known to elevate the density of dopamine D2 receptor binding sites in caudate-putamen and nucleus accumbens in rat and human brain. In this study we used the dopamine D2 receptor antagonist raclopride (3 mumol/kg, s.c.) to determine if a single injection or daily administration of this drug for up to 18 days changed the expression of dopamine D2 receptor mRNA in rat caudate-putamen and accumbens as measured by in situ hybridization. A single injection of raclopride did not significantly change the numerical density of dopamine D2 receptor mRNA-expressing neurons in any of the regions examined. A daily administration of raclopride for 18 days resulted in a 31% increase in the number of cells expressing detectable amounts of dopamine D2 receptor mRNA in dorsolateral caudate-putamen and in a 20% increase in the area of silver grains over individual hybridization-positive neurons in this brain region measured on emulsion-dipped slides. The region-specific increase in the D2 receptor mRNA level in dorsolateral caudate-putamen was confirmed by measurement of the hybridization signal on X-ray film autoradiograms. The levels of D2 receptor mRNA remained unchanged in medial caudate-putamen and accumbens after 18 days' treatment. The region-selective increase in dopamine D2 receptor mRNA expression in dorsolateral caudate-putamen indicates a differential regulation of dopamine D2 receptor mRNA expression in a subpopulation of caudate-putamen neurons by this neuroleptic. We suggest that the increase in dopamine D2 receptor density in caudate-putamen known to follow prolonged dopamine D2 receptor blockade to some extent is regulated at the level of gene expression.
Jensen, Jan K.; Malmendal, Anders; Schiøtt, Birgit; Skeldal, Sune; Pedersen, Katrine E.; Celik, Leyla; Nielsen, Niels Chr.; Andreasen, Peter A.; Wind, Troels
2006-01-01
The functions of the serpin PAI-1 (plasminogen activator inhibitor-1) are based on molecular interactions with its target proteases uPA and tPA (urokinase-type and tissue-type plasminogen activator respectively), with vitronectin and with endocytosis receptors of the low-density-lipoprotein family. Understanding the significance of these interactions would be facilitated by the ability to block them individually. Using phage display, we have identified the disulfide-constrained peptide motif CFGWC with affinity for natural human PAI-1. The three-dimensional structure of a peptide containing this motif (DVPCFGWCQDA) was determined by liquid-state NMR spectroscopy. A binding site in the so-called flexible joint region of PAI-1 was suggested by molecular modelling and validated through binding studies with various competitors and site-directed mutagenesis of PAI-1. The peptide with an N-terminal biotin inhibited the binding of the uPA–PAI-1 complex to the endocytosis receptors low-density-lipoprotein-receptor-related protein 1A (LRP-1A) and very-low-density-lipoprotein receptor (VLDLR) in vitro and inhibited endocytosis of the uPA–PAI-1 complex in U937 cells. We conclude that the isolated peptide represents a novel approach to pharmacological interference with the functions of PAI-1 based on inhibition of one specific molecular interaction. PMID:16813566
Acetylcholine receptors in the human retina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchins, J.B.; Hollyfield, J.G.
1985-11-01
Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer ofmore » the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.« less
Morin, Jean-Pascal; Díaz-Cintra, Sofía; Bermúdez-Rattoni, Federico; Delint-Ramírez, Ilse
2016-11-01
It was recently suggested that alteration in lipid raft composition in Alzheimer's disease may lead to perturbations in neurons signalosome, which may help explain the deficits observed in synaptic plasticity mechanisms and long-term memory impairments in AD models. As a first effort to address this issue, we evaluated lipid-raft contents of distinct NMDA and AMPA receptor subunits in the hippocampus of the 3xTg-AD model of Alzheimer's disease. Our results show that compared to controls, 10 months-old 3xTg-AD mice have diminished levels of NMDA receptors in rafts but not in post-synaptic density or total fractions. Additionally, the levels of GluR1 were unaltered in all the analyzed fractions. Finally, we went on to show that the diminished levels of NMDA receptors in rafts correlated with diminished global levels of Arc/Arg3.1, a synaptic protein with a central role in long-term memory formation. This study adds to our current understanding of the signaling pathways disruptions observed in current Alzheimer's disease models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Predazzi, Irene M; Martínez-Labarga, Cristina; Vecchione, Lucia; Mango, Ruggiero; Ciccacci, Cinzia; Amati, Francesca; Ottoni, Claudio; Crawford, Michael H; Rickards, Olga; Romeo, Francesco; Novelli, Giuseppe
2010-04-01
Several studies have demonstrated a link between cardiovascular disease (CVD) susceptibility and the genetic background of populations. Endothelial activation and dysfunction induced by oxidized low-density lipoprotein (ox-LDL) is one of the key steps in the initiation of atherosclerosis. The oxidized low density lipoprotein (lectin-like) receptor 1 (OLR1) gene is the main receptor of ox-LDL. We have previously characterized two polymorphisms (rs3736235 and rs11053646) associated with the risk for coronary artery disease (CAD) and acute myocardial infarction (AMI). Given their clinical significance, it is of interest to know the distribution of these variants in populations from different continents. A total of 1229 individuals from 17 different African, Asian and European populations was genotyped for the two considered markers. The high frequencies of ancestral alleles in South-Saharan populations is concordant with the African origin of our species. The results highlight that African populations are closer to Asians, and clearly separated from the Europeans. The results confirm significant genetic structuring among populations and suggest a possible basis for varying susceptibility to CVD among groups correlated with the geographical location of populations linked with the migrations out of Africa, or with different lifestyle.
Diffusion-Based Model for Synaptic Molecular Communication Channel.
Khan, Tooba; Bilgin, Bilgesu A; Akan, Ozgur B
2017-06-01
Computational methods have been extensively used to understand the underlying dynamics of molecular communication methods employed by nature. One very effective and popular approach is to utilize a Monte Carlo simulation. Although it is very reliable, this method can have a very high computational cost, which in some cases renders the simulation impractical. Therefore, in this paper, for the special case of an excitatory synaptic molecular communication channel, we present a novel mathematical model for the diffusion and binding of neurotransmitters that takes into account the effects of synaptic geometry in 3-D space and re-absorption of neurotransmitters by the transmitting neuron. Based on this model we develop a fast deterministic algorithm, which calculates expected value of the output of this channel, namely, the amplitude of excitatory postsynaptic potential (EPSP), for given synaptic parameters. We validate our algorithm by a Monte Carlo simulation, which shows total agreement between the results of the two methods. Finally, we utilize our model to quantify the effects of variation in synaptic parameters, such as position of release site, receptor density, size of postsynaptic density, diffusion coefficient, uptake probability, and number of neurotransmitters in a vesicle, on maximum number of bound receptors that directly affect the peak amplitude of EPSP.
Genetic spectrum of low density lipoprotein receptor gene variations in South Indian population.
ArulJothi, K N; Suruthi Abirami, B; Devi, Arikketh
2018-03-01
Low density lipoprotein receptor (LDLR) is a membrane bound receptor maintaining cholesterol homeostasis along with Apolipoprotein B (APOB), Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) and other genes of lipid metabolism. Any pathogenic variation in these genes alters the function of the receptor and leads to Familial Hypercholesterolemia (FH) and other cardiovascular diseases. This study was aimed at screening the LDLR, APOB and PCSK9 genes in Hypercholesterolemic patients to define the genetic spectrum of FH in Indian population. Familial Hypercholesterolemia patients (n=78) of South Indian Tamil population with LDL cholesterol and Total cholesterol levels above 4.9mmol/l and 7.5mmol/l with family history of Myocardial infarction were involved. DNA was isolated by organic extraction method from blood samples and LDLR, APOB and PCSK9 gene exons were amplified using primers that cover exon-intron boundaries. The amplicons were screened using High Resolution Melt (HRM) Analysis and the screened samples were sequenced after purification. This study reports 20 variations in South Indian population for the first time. In this set of variations 9 are novel variations which are reported for the first time, 11 were reported in other studies also. The in silico analysis for all the variations detected in this study were done to predict the probabilistic effect in pathogenicity of FH. This study adds 9 novel variations and 11 recurrent variations to the spectrum of LDLR gene mutations in Indian population. All these variations are reported for the first time in Indian population. This spectrum of variations was different from the variations of previous Indian reports. Copyright © 2017 Elsevier B.V. All rights reserved.
Rodier, M E; Laferrière, A; Moss, I R
2001-03-29
This work focused on the postnatal development of substance P-bound neurotachykinin-1 (NK-1) receptors in the porcine brainstem using 2-3-, 6-11-, 16-18-, and 21-28-day-old piglets versus adult, and on alterations in these receptors after single and six-daily repeated clustered hypoxia using 6-11- and 21-28-day-old piglets. NK-1 receptor localization and densities were determined by quantitative autoradiography using mono-iodinated Bolton-Hunter substance P ([(125)I]BHSP). Slide-mounted brainstem sections, incubated in [(125)I]BHSP and then exposed to film, have shown [(125)I]BHSP binding throughout many brainstem nuclei and tracts, including the ambigual/periambigual (nAmb), dorsal motor vagal (dmnv), gigantocellular (nGC), hypoglossal (nHyp), medial parabrachial (nPBM), lateral reticular (nRL), raphe magnus (nRMg), raphe obscurus (nROb) and solitary tract (nTS) nuclei. NK-1 receptor densities decreased with age. As compared to normoxia, NK-1 receptor densities increased significantly after the six-daily hypoxia protocol in nAmb, dmnv, nHyp, nRL, nRMg, nROb, and nTS of both the young and older age groups. This increase may represent receptor upregulation as an adaptation to repeated hypoxia.
Xie, P; Wan, X P; Bu, Z; Diao, E J; Gong, D Q; Zou, X T
2018-06-01
The present study was conducted to determine the changes in concentrations of hormones and growth factors and their related receptor gene expressions in crop tissue, relative organ weight, and serum biochemical parameters in male and female pigeons during incubation and chick-rearing periods under artificial farming conditions. Seventy-eight pairs of 60-week-old White King pigeons with 2 fertile eggs per pair were randomly divided into 13 groups by different breeding stages. Serum prolactin and insulin-like growth factor-1 (IGF-1) concentrations in crop tissue homogenates were the highest in both male and female pigeons at 1 d of chick-rearing (R1), while epidermal growth factor (EGF) in female pigeons peaked at d 17 of incubation (I17) (P < 0.05). mRNA expression of the prolactin and EGF receptors in the crop tissue increased at the end of incubation and the early chick-rearing stage in both sexes. However, estrogen, progesterone, and growth hormone receptor expression each decreased during the early chick-rearing stage (P < 0.05). In male pigeons, IGF-1 receptor gene expression reached its peak at R7, while in female pigeons, it increased at the end of incubation. The relative weight of breast and abdominal fat in both sexes and thighs in the males was lowest at R7, and then gradually increased to the incubation period level. Serum total protein, albumin, and globulin concentrations increased to the highest levels at I17 (P < 0.05). Total cholesterol, triglyceride, and low-density lipoprotein reached their highest values at I17 in male pigeons and R25 in female pigeons (P < 0.05). In conclusion, hormones, growth factors, and their receptors potentially underlie pigeon crop tissue development. Changes in organs and serum biochemical profiles suggested their different breeding-cycle patterns with sexual effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhabuwala, C.B.; Ramakrishna, C.V.; Anderson, G.F.
Beta adrenergic receptor binding was performed with /sup 125/I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptormore » density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of /sup 125/iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype.« less
Jaferi, A; Lane, D A; Pickel, V M
2009-09-29
Chronic opiate administration alters the expression levels of the stress-responsive peptide, corticotropin-releasing factor (CRF), in the bed nucleus of the stria terminalis (BNST). This brain region contains CRF receptors that drive drug-seeking behavior exacerbated by stress. We used electron microscopy to quantitatively compare immunolabeling of the corticotropin-releasing factor receptor (CRFr) and CRF in the anterolateral bed nucleus of the stria terminalis (BSTal) of mice injected with saline or morphine in escalating doses for 14 days. We also compared the results with those in non-injected control mice. The tissue was processed for CRFr immunogold and CRF immunoperoxidase labeling. The non-injected controls had a significantly lower plasmalemmal density of CRFr immunogold particles in dendrites compared with mice receiving saline, but not those receiving morphine, injections. Compared with saline, however, mice receiving chronic morphine showed a significantly lower plasmalemmal, and greater cytoplasmic, density of CRFr immunogold in dendrites. Within the cytoplasmic compartment of somata and dendrites of the BSTal, the proportion of CRFr gold particles associated with mitochondria was three times as great in mice receiving morphine compared with saline. This subcellular distribution is consistent with morphine,- and CRFr-associated modulation of intracellular calcium release or oxidative stress. The between-group changes occurred without effect on the total number of dendritic CRFr immunogold particles, suggesting that chronic morphine enhances internalization or decreases delivery of the CRFr to the plasma membrane, a trafficking effect that is also affected by the stress of daily injections. In contrast, saline and morphine treatment groups showed no significant differences in the total number of CRF-immunoreactive axon terminals, or the frequency with which these terminals contacted CRFr-containing dendrites. This suggests that morphine does not influence axonal availability of CRF in the BSTal. The results have important implications for drug-associated adaptations in brain stress systems that may contribute to the motivation to continue drug use during dependence.
Gajek, J; Zyśko, D; Spring, A
2000-08-01
Left ventricular hypertrophy (LVH) is one of the more important risk factors for sudden death. There are multiple factors for development of LVH in patients with hypertension. Sympathetic nervous system may play a key role causing afterload increase and neurohumoral mechanisms activation. The aim of the study was to determine beta-adrenergic receptors density and its relations to left ventricular mass in hypertensive subjects. The study was carried out in 63 patients (23 women and 40 men), mean age 43.3 +/- 11.6 yrs with primary hypertension: stage I--42 pts and stage II--21 pts. The control group consisted of 26 healthy persons matched for age and sex. We evaluated the density of beta-adrenergic receptors using 125I-cyanopindolol radioligand labeling method. Left ventricular dimensions were assessed by echocardiography (Hewlett-Packard 77010 CF) and left ventricular mass index (LVMI) was calculated. Systolic and diastolic blood pressure and LVMI was significantly higher in hypertension group 156.7 +/- 12.5 vs. 119.8 +/- 8.8 mmHg, p < 0.0001, 95.9/5.5 vs. 78.8 +/- 6.5 mmHg, p < 0.0001, 126.5 +/- 41.9 vs. 93.1 +/- 19.9 g/m2, p < 0.001 respectively. Beta-adrenergic receptors density was 40.7 +/- 29.9 fmol/ml in the hypertensive vs. 37.2 +/- 17.8 fmol/ml in control group (p = NS). There was no correlation between beta-adrenergic receptors density and LVMI. There was a statistically significant positive correlation between LVMI and systolic and diastolic blood pressure (r = 0.44, p < 0.05; r = 0.60, p < 0.01 respectively). 1. Beta-adrenergic receptors density was unchanged in patients with hypertension and did not correlate with LVMI. 2. A high positive correlation between blood pressure values and LVMI, but only in stage II hypertension was revealed.
Sarcoplasmic Reticulum Calcium Release Channels in Ventricles of Older Adult Hamsters
ERIC Educational Resources Information Center
Nicholl, Peter A.; Howlett, Susan E.
2006-01-01
Whether the density of sarcoplasmic reticulum (SR) calcium release channels/ryanodine receptors in the heart declines with age is not clear. We investigated age-related changes in the density of [3H]-ryanodine receptors in crude ventricular homogenates, which contained all ligand binding sites in heart and in isolated junctional SR membranes.…
MDMA ("Ecstasy") and its association with cerebrovascular accidents: preliminary findings.
Reneman, L; Habraken, J B; Majoie, C B; Booij, J; den Heeten, G J
2000-01-01
Abuse of the popular recreational drug "Ecstasy" (MDMA) has been linked to the occurrence of cerebrovascular accidents. It is known that MDMA alters brain serotonin (5-HT) concentrations and that brain postsynaptic 5-HT(2) receptors play a role in the regulation of brain microvasculature. Therefore, we used brain imaging to find out whether MDMA use predisposes one to cerebrovascular accidents by altering brain 5-HT neurotransmission. The effects of MDMA use on brain cortical 5-HT(2A) receptor densities were studied using [(123)I]R91150 single-photon emission CT in 10 abstinent recent MDMA users, five former MDMA users, and 10 healthy control subjects. Furthermore, to examine whether changes in brain 5-HT(2A) receptor densities are associated with alterations in blood vessel volumes, we calculated relative cerebral blood volume maps from dynamic MR imaging sets in five MDMA users and six healthy control subjects. An analysis of variance revealed that mean cortical [(123)I]R91150 binding ratios were significantly lower in recent MDMA users than in former MDMA users and control subjects. This finding suggests down-regulation of 5-HT(2) receptors caused by MDMA-induced 5-HT release. Furthermore, in MDMA users, low cortical 5-HT(2) receptor densities were significantly associated with low cerebral blood vessel volumes (implicating vasoconstriction) and high cortical 5-HT(2) receptor densities with high cerebral blood vessel volumes (implicating vasodilatation) in specific brain regions. These findings suggest a relationship between the serotonergic system and an altered regulation of 5-HT(2) receptors in human MDMA users. MDMA users may therefore be at risk for cerebrovascular accidents resulting from alterations in the 5-HT neurotransmission system.
Cohen, MW; Weldon, PR
1980-01-01
In cultures of xenopus myotomal muscle cells and spinal cord (SC) some of the nerve-muscle contacts exhibit a high density of acetylcholine receptors (AchRs [Anderson et al., 1977, J. Physiol. (Lond.). 268:731- 756,757-773]) and synaptic ultrastructure (Weldon and Cohen, 1979, J. Neurocytol. 8:239-259). We have examined whether similarly specialized contacts are established when the muscle cells are cultured with explants of xenopus dorsal root ganglia (DRG) or sympathetic ganglia (SG). The outgrowth from the ganglionic explants contained neuronal and non- neuronal cell processes. Although both types of processes approached within 100 A of muscle cells, synaptic ultrastructure was rarely observed at these contacts. Because patches of postsynaptic ultrastructure also develop on noncontacted muscle cells, the very few examples of contacts with such specializations probably occurred by chance. AChRs were stained with fluroscent α-bungarotoxin. More than 70 percent of the SC-contacted muscle cells exhibited a high receptor density along the path of contact. The corresponding values for DRG- and SG- contacted muscle cells were 10 and 6 percent. Similar values were obtained when the ganlionic and SC explants were cultured together in the same chamber. The few examples of high receptor density at ganglionic-muscle contacts resembled the characteristic receptor patches of noncontacted muscle cells rather than the narrow bands of high receptor density seen at SC-muscle contacts. In addition, more than 90 percent of these ganglionic- contacted muscle cells had receptor patches elsewhere, compared to less than 40 percent for the SC-contacted muscle cells. These findings indicate that the SC neurites possess a specific property which is important for the establishment of synaptically specialized contacts with muscle and that this property is lacking in the DRG and SG neurites. PMID:7400212
Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats
Bădescu, SV; Tătaru, CP; Kobylinska, L; Georgescu, EL; Zahiu, DM; Zăgrean, AM; Zăgrean, L
2016-01-01
Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations: STZ = streptozotocin, OFT = Open Field Test PMID:27974933
Yan, Yu-Xiang; Dong, Jing; Wu, Li-Juan; Shao, Shuang; Zhang, Jie; Zhang, Ling; Wang, Wei; He, Yan; Liu, You-Qin
2013-01-01
Background Glucocorticoid is an important regulator of energy homeostasis. Glucocorticoid receptor (GR) gene polymorphisms that contribute to variability in glucocorticoid sensitivity have been identified. We explored the associations of single-nucleotide polymorphisms (SNPs) of the GR gene with traditional cardiovascular risk factors in the Chinese Han population. Methods We recruited 762 consecutive adults who underwent a regular physical examination at Beijing Xuanwu Hospital. Blood pressure, glucose, lipid levels (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein [LDL] cholesterol and triglycerides), body mass index (BMI), and waist-to-hip ratio were measured. Fourteen tag SNPs and 5 functional SNPs were selected and genotyped using the high-throughput Sequenom genotyping platform. Differences between genotypes/alleles for each SNP were adjusted for sex and age and tested using a general linear model procedure. Various models of inheritance, including additive, dominant, and recessive, were tested. Results Among the 19 SNPs examined, 5 markers were associated with cardiovascular risk factors. The rs41423247 GG genotype and the rs7701443 AA genotype were associated with higher BMI and systolic blood pressure (P < 0.0004), and the rs17209251 GG genotype was associated with higher systolic blood pressure (P < 0.0004). Lower systolic blood pressure, total cholesterol, and LDL cholesterol were observed among rs10052957 A allele carriers (P < 0.0004), and lower plasma glucose and LDL-cholesterol concentrations were observed among rs2963156 TT carriers (P < 0.0004). Conclusions Polymorphism of the GR gene was associated with cardiovascular risk factors and may contribute to susceptibility to cardiovascular disease. PMID:23892712
Wolfárd, Antal; Császár, József; Gera, László; Petri, András; Simonka, János Aurél; Balogh, Adáa; Boros, Mihály
2002-12-01
To examine the microcirculatory changes in the rat tibial periosteum after hindlimb ischemia and reperfusion and to evaluate the effects of endothelin-A (ET-A) receptor antagonist therapy in this condition. The healing and functioning of vascularized bone autografts depend mainly on the patency of the microcirculation, and the activation of ET-A receptors may be an important component of the tissue response that occurs during ischemia-reoxygenation injuries. Wistar rats were subjected to 1 hour of hindlimb ischemia and 3 hours of reperfusion. The periosteal microcirculation was visualized by intravital fluorescence microscopy. The leukocyte rolling and adherence in the postcapillary venules and the functional capillary density of the periosteum were determined. Two separate groups were treated with the selective ET-A receptor antagonist BQ 610 or the novel ET-A receptor antagonist ETR-p1/fl peptide at the onset of reperfusion. Reperfusion was accompanied by a significant decrease in functional capillary density and by an increase in the primary and secondary leukocyte-endothelial cell interactions. ET-A receptor inhibition reduced the leukocyte rolling and firm adherence and attenuated the decrease in functional capillary density in both treated groups. ET-1 plays a major role in microvascular dysfunction in the periosteum during reperfusion. The ET-1-ET-A receptor system might be an important target for tissue salvage therapy in transplantation surgery.
Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R
2000-01-01
Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.
Multireceptor fingerprints in progressive supranuclear palsy.
Chiu, Wang Zheng; Donker Kaat, Laura; Boon, Agnita J W; Kamphorst, Wouter; Schleicher, Axel; Zilles, Karl; van Swieten, John C; Palomero-Gallagher, Nicola
2017-04-17
Progressive supranuclear palsy (PSP) with a frontal presentation, characterized by cognitive deficits and behavioral changes, has been recognized as an early clinical picture, distinct from the classical so-called Richardson and parkinsonism presentations. The midcingulate cortex is associated with executive and attention tasks and has consistently been found to be impaired in imaging studies of patients with PSP. The aim of the present study was to determine alterations in neurotransmission underlying the pathophysiology of PSP, as well as their significance for clinically identifiable PSP subgroups. In vitro receptor autoradiography was used to quantify densities of 20 different receptors in the caudate nucleus and midcingulate area 24' of patients with PSP (n = 16) and age- and sex-matched control subjects (n = 14). Densities of γ-aminobutyric acid type B, peripheral benzodiazepine, serotonin receptor type 2, and N-methyl-D-aspartate receptors were significantly higher in area 24' of patients with PSP, where tau impairment was stronger than in the caudate nucleus. Kainate and nicotinic cholinergic receptor densities were significantly lower, and adenosine receptor type 1 (A 1 ) receptors significantly higher, in the caudate nucleus of patients with PSP. Receptor fingerprints also segregated PSP subgroups when clinical parameters such as occurrence of frontal presentation and tau pathology severity were taken into consideration. We demonstrate, for the first time to our knowledge, that kainate and A 1 receptors are altered in PSP and that clinically identifiable PSP subgroups differ at the neurochemical level. Numerous receptors were altered in the midcingulate cortex, further suggesting that it may prove to be a key region in PSP. Finally, we add to the evidence that nondopaminergic systems play a role in the pathophysiology of PSP, thus highlighting potential novel treatment strategies.
Mangan, Patrick S.; Kapur, Jaideep
2010-01-01
Factors contributing to reduced magnesium-induced neuronal action potential bursting were investigated in primary hippocampal cell culture at high and low culture density. In nominally zero external magnesium medium, pyramidal neurons from high-density cultures produced recurrent spontaneous action potential bursts superimposed on prolonged depolarizations. These bursts were partially attenuated by the NMDA receptor antagonist D-APV. Pharmacological analysis of miniature excitatory postsynaptic currents (EPSCs) revealed 2 components: one sensitive to D-APV and another to the AMPA receptor antagonist DNQX. The components were kinetically distinct. Participation of NMDA receptors in reduced magnesium-induced synaptic events was supported by the localization of the NR1 subunit of the NMDA receptor with the presynaptic vesicular protein synaptophysin. Presynaptically, zero magnesium induced a significant increase in EPSC frequency likely attributable to increased neuronal hyperexcitability induced by reduced membrane surface charge screening. Mean quantal content was significantly increased in zero magnesium. Cells from low-density cultures did not exhibit action potential bursting in zero magnesium but did show increased EPSC frequency. Low-density neurons had less synaptophysin immunofluorescence and fewer active synapses as determined by FM1-43 analysis. These results demonstrate that multiple factors are involved in network bursting. Increased probability of transmitter release presynaptically, enhanced NMDA receptor-mediated excitability postsynaptically, and extent of neuronal interconnectivity contribute to initiation and maintenance of elevated network excitability. PMID:14534286
Chatterjee, S; Sunitha, T A; Velayudhan, A; Khanna, S
1997-06-01
The aim of the present study was to explore a psychobiological perspective in the aetiology of social phobia. The emphasis was on serotonergic function and personality. A total of 20 social phobics according to ICD-10 DCR criteria were assessed with the Schedule for Clinical Assessment in Neuropsychiatry and the International Personality Disorder Examination. They were compared with an age-matched normal population with regard to scores on the Fear of Negative Evaluation Scale, the Social Avoidance and Distress Scale, the Temperament and Character Inventory, and platelet 5HT2 receptor function. Other Axis-I disorders and cluster C personality disorders were frequently encountered. The social phobia group was characterized by high levels of harm avoidance, and low levels of novelty seeking, co-operativeness and self-directedness. Platelet 5HT2 receptor density did not differentiate between the groups, but was associated with severity of social phobia. An integrated psychobiological model is presented.
Evaluating the importance of faecal sources in human-impacted waters.
Schoen, Mary E; Soller, Jeffrey A; Ashbolt, Nicholas J
2011-04-01
Quantitative microbial risk assessment (QMRA) was used to evaluate the relative contribution of faecal indicators and pathogens when a mixture of human sources impacts a recreational waterbody. The waterbody was assumed to be impacted with a mixture of secondary-treated disinfected municipal wastewater and untreated (or poorly treated) sewage, using Norovirus as the reference pathogen and enterococci as the reference faecal indicator. The contribution made by each source to the total waterbody volume, indicator density, pathogen density, and illness risk was estimated for a number of scenarios that accounted for pathogen and indicator inactivation based on the age of the effluent (source-to-receptor), possible sedimentation of microorganisms, and the addition of a non-pathogenic source of faecal indicators (such as old sediments or an animal population with low occurrence of human-infectious pathogens). The waterbody indicator density was held constant at 35 CFU 100 mL(-1) enterococci to compare results across scenarios. For the combinations evaluated, either the untreated sewage or the non-pathogenic source of faecal indicators dominated the recreational waterbody enterococci density assuming a culture method. In contrast, indicator density assayed by qPCR, pathogen density, and bather gastrointestinal illness risks were largely dominated by secondary disinfected municipal wastewater, with untreated sewage being increasingly less important as the faecal indicator load increased from a non-pathogenic source. The results support the use of a calibrated qPCR total enterococci indicator, compared to a culture-based assay, to index infectious human enteric viruses released in treated human wastewater, and illustrate that the source contributing the majority of risk in a mixture may be overlooked when only assessing faecal indicators by a culture-based method. Published by Elsevier Ltd.
Van Zoelen, E J; Peters, P H; Afink, G B; Van Genesen, S; De Roos, D G; Van Rotterdam, W; Theuvenet, A P
1994-01-01
Normal rat kidney fibroblasts, grown to density arrest in the presence of epidermal growth factor (EGF), can be induced to undergo phenotypic transformation by treatment with transforming growth factor beta or retinoic acid. Here we show that bradykinin blocks this growth-stimulus-induced loss of density-dependent growth arrest by a specific receptor-mediated mechanism. The effects of bradykinin are specific, and are not mimicked by other phosphoinositide-mobilizing agents such as prostaglandin F2 alpha. Northern-blot analysis and receptor-binding studies demonstrate that bradykinin also inhibits the retinoic acid-induced increase in EGF receptor levels in these cells. These studies provide additional evidence that EGF receptor levels modulate EGF-induced expression of the transformed phenotype in these cells. Images Figure 5 PMID:8135739
Reagan, L P; Ye, X; Maretzski, C H; Fluharty, S J
1993-01-01
Murine neuroblastoma N1E-115 cells possess membranous receptors for the octapeptide angiotensin II (AngII) whose density is substantially increased by in vitro differentiation. Incubation of differentiated N1E-115 cells with AngII produced a rapid decrease in receptor density, but did not alter the affinity of these receptors for either 125I-AngII or the high-affinity antagonist 125I-[Sarc1,Ile8]-AngII. This apparent down-regulation was dose related with an ED50 of 1 nM, and maximal decreases of approximately 90% were obtained with 100 nM AngII. Receptor loss from differentiated cell membranes was unaffected by incubations of membranes obtained from agonist-exposed cells with non-hydrolyzable analogues of GTP for 60 min at 37 degrees C to ensure dissociation of the ligand. Partial loss of AngII receptors was apparent within 5 min of agonist exposure, whereas maximal declines were not observed until 30 min. This temporal pattern resulted from a preferential decrease in the AT1 receptor subtype during the first 5 min, followed by a decline in both AT1 and AT2 receptors with longer periods of agonist exposure. The loss of membranous receptors was reversible with partial recovery observed after 4 h, and with nearly full recovery observed 18 h after exposure of the cells to AngII. However, the long-term recovery of receptor density was blocked by the protein synthesis inhibitor, cycloheximide. The heptapeptide angiotensin III produced a similar down-regulation of receptors, and the high-affinity antagonist [Sarc1,Thr8]-AngII blocked agonist-induced down-regulation. Finally, the apparent loss of cell surface AngII receptors decreased the ability of AngII to stimulate cyclic GMP production within intact N1E-115 cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Shih, Cheryl; Cold, Christopher J; Yang, Claire C
2013-07-01
The female genital sensory pathways that initiate sexual arousal reflexes begin with cutaneous corpuscular receptors in the glabrous genital skin, including those of the glans clitoris. The aim of this study is to characterize the corpuscular receptors of the glans clitoris. In addition, we compared basic features with the receptors of the glans penis. Number of stained receptors. Five cadaveric vulvectomy specimens and four cadaveric penile specimens were used. They were serially sectioned and stained with hematoxylin and eosin. Selected blocks were stained with Masson's trichrome, and immunohistochemical staining was done with neuronal markers S-100 and neurofilament. Using the three stains, we identified an abundance of corpuscular receptors within the glans clitoris, as compared with the surrounding prepuce. These receptors were of varied arrangements, situated in the subepithelial tissues of the glans clitoris. They were indistinguishable from the receptors of the glans penis. The number of receptors per 100× high-powered field ranged from 1 to 14, whereas the receptor density in the glans penis ranged from 1 to 3. A second type of receptor, the Pacinian corpuscle, was identified within the suspensory ligament along the trunks of the dorsal nerve but not within the glans itself. The glans clitoris is densely innervated with cutaneous corpuscular receptors, and these receptors are morphologically similar to the corpuscular receptors of the glans penis. The glans clitoris has greater variability in receptor density compared with the glans penis. © 2013 International Society for Sexual Medicine.
Dennis, V A; Klei, T R; Chapman, M R; Jeffers, G W
1988-12-01
Eosinophils and neutrophils from ponies with Strongylus vulgaris-induced eosinophilia (eosinophilic ponies; activated eosinophils and neutrophils) were assayed in vitro for chemotactic and chemokinetic responses to zymosan-activated serum (ZAS) using the filter system in Boyden chambers, for Fc and complement (C) receptors using the EA and EAC-rosette assays, respectively, and for phagocytic and bactericidal activities using opsonized Escherichia coli and the acridine orange method. The responses of activated eosinophils and neutrophils in the above assays were compared with those of eosinophils and neutrophils from S. vulgaris-naive ponies without eosinophilia (noneosinophilic ponies; nonactivated eosinophils and neutrophils). Differences in cell density following centrifugation in a continuous Percoll gradient were used to further characterize the heterogeneity of activated eosinophils and neutrophils. Activated and nonactivated eosinophils demonstrated similar chemotactic responses to ZAS while activated and nonactivated neutrophils demonstrated similar chemokinetic responses to ZAS. A higher percentage of activated eosinophils and neutrophils expressed Fc and C receptors compared with nonactivated cells (P less than 0.05). Generally, higher percentages of eosinophils and neutrophils expressed C than Fc receptors. However, the percentage of neutrophils with both receptors was higher than that of eosinophils. Phagocytosis and killing of E. coli by either type of eosinophil were not consistently observed. Both activated and nonactivated neutrophils phagocytized E. coli and significant differences between the two cell types were not observed. The bacterial activity, however, of activated neutrophils was significantly greater than that obtained using nonactivated neutrophils (P less than 0.05). Activated eosinophils and neutrophils were both separated into two distinct fractions based on differences in cell densities. A higher percentage of band 2 eosinophils (density of 1.106) expressed C receptors than did band 1 eosinophils (density of 1.049) (P less than 0.05). A higher percentage of band 1 neutrophils (density of 1.072) expressed both Fc and C receptors and these neutrophils were more phagocytic and bactericidal than were band 2 neutrophils (density of 1.082) (P less than 0.05). These data suggest that equine eosinophils and neutrophils are activated by chronic S. vulgaris infections.
Diet-induced obesity: dopamine transporter function, impulsivity and motivation.
Narayanaswami, V; Thompson, A C; Cassis, L A; Bardo, M T; Dwoskin, L P
2013-08-01
A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. Striatal D2-receptor density was determined by in vitro kinetic analysis of [(3)H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [(3)H]dopamine uptake, methamphetamine-evoked [(3)H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [(3)H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that motivation for high-fat food, but not impulsive behavior, predicts the development of obesity, whereas decreases in striatal DAT function are exhibited only after the development of obesity.
Diet-induced obesity: dopamine transporter function, impulsivity and motivation
Narayanaswami, V; Thompson, AC; Cassis, LA; Bardo, MT; Dwoskin, LP
2013-01-01
OBJECTIVE A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. DESIGN To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. METHODS Striatal D2-receptor density was determined by in vitro kinetic analysis of [3H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [3H]dopamine uptake, methamphetamine-evoked [3H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. RESULTS Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [3H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. CONCLUSION Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that motivation for high-fat food, but not impulsive behavior, predicts the development of obesity, whereas decreases in striatal DAT function are exhibited only after the development of obesity. PMID:23164701
Galle, Marianela; Kladniew, Boris Rodenak; Castro, María Agustina; Villegas, Sandra Montero; Lacunza, Ezequiel; Polo, Mónica; de Bravo, Margarita García; Crespo, Rosana
2015-07-15
Geraniol (G) is a natural isoprenoid present in the essential oils of several aromatic plants, with various biochemical and pharmacologic properties. Nevertheless, the mechanisms of action of G on cellular metabolism are largely unknown. We propose that G could be a potential agent for the treatment of hyperlipidemia that could contribute to the prevention of cardiovascular disease. The aim of the present study was to advance our understanding of its mechanism of action on cholesterol and TG metabolism. NIH mice received supplemented diets containing 25, 50, and 75 mmol G/kg chow. After a 3-week treatment, serum total-cholesterol and triglyceride levels were measured by commercial kits and lipid biosynthesis determined by the [(14)C] acetate incorporated into fatty acids plus nonsaponifiable and total hepatic lipids of the mice. The activity of the mRNA encoding HMGCR-the rate-limiting step in cholesterol biosynthesis-along with the enzyme levels and catalysis were assessed by real-time RT-PCR, Western blotting, and HMG-CoA-conversion assays, respectively. In-silico analysis of several genes involved in lipid metabolism and regulated by G in cultured cells was also performed. Finally, the mRNA levels encoded by the genes for the low-density-lipoprotein receptor (LDLR), the sterol-regulatory-element-binding transcription factor (SREBF2), the very-low-density-lipoprotein receptor (VLDLR), and the acetyl-CoA carboxylase (ACACA) were determined by real-time RT-PCR. Plasma total-cholesterol and triglyceride levels plus hepatic fatty-acid, total-lipid, and nonsaponifiable-lipid biosynthesis were significantly reduced by feeding with G. Even though an up-regulation of the mRNA encoding HMGCR occurred in the G treated mouse livers, the protein levels and specific activity of the enzyme were both inhibited. G also enhanced the mRNAs encoding the LDL and VLDL receptors and reduced ACACA mRNA, without altering the transcription of the mRNA encoding the SREBF2. The following mechanisms may have mediated the decrease in plasma lipids levels in mice: a down-regulation of hepatocyte-cholesterol synthesis occurred as a result of decreased HMGCR protein levels and catalytic activity; the levels of LDLR mRNA became elevated, thus suggesting an increase in the uptake of serum LDL, especially by the liver; and TG synthesis became reduced very likely because of a decrease in fatty-acid synthesis. Copyright © 2015 Elsevier GmbH. All rights reserved.
McGregor, Iain S; Clemens, Kelly J; Van der Plasse, Geoffrey; Li, Kong M; Hunt, Glenn E; Chen, Feng; Lawrence, Andrew J
2003-08-01
Male Wistar rats were treated with 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") using either a high dose (4 x 5 mg/kg over 4 h) or low dose (1 x 5 mg/kg over 4 h) regimen on each of 2 consecutive days. After 10 weeks, rats were tested in the social interaction and emergence tests of anxiety. Rats previously given either of the MDMA dose regimens were significantly more anxious on both tests. After behavioral testing, and 3 months after the MDMA treatment, the rats were killed and their brains examined. Rats given the high-, but not the low-, dose MDMA treatment regimen exhibited significant loss of 5-hydroxytryptamine (5-HT) and 5-HIAA in the amygdala, hippocampus, striatum, and cortex. Quantitative autoradiography showed loss of SERT binding in cortical, hippocampal, thalamic, and hypothalamic sites with the high-dose MDMA regime, while low-dose MDMA only produced significant loss in the medial hypothalamus. Neither high- nor low-dose MDMA affected 5HT(1A) receptor density. High-dose MDMA increased 5HT(1B) receptor density in the nucleus accumbens and lateral septum but decreased binding in the globus pallidus, insular cortex and medial thalamus. Low-dose MDMA decreased 5HT(1B) receptor density in the hippocampus, globus pallidus, and medial thalamus. High-dose MDMA caused dramatic decreases in cortical, striatal, thalamic, and hypothalamic 5HT(2A)/(2C) receptor density, while low-dose MDMA tended to produce similar effects but only significantly in the piriform cortex. These data suggest that even brief, relatively low-dose MDMA exposure can produce significant, long-term changes in 5-HT receptor and transporter function and associated emotional behavior. Interestingly, long-term 5-HT depletion may not be necessary to produce lasting effects on anxiety-like behavior after low-dose MDMA.
Gogoi, Dhrubajyoti; Baruah, Vishwa Jyoti; Chaliha, Amrita Kashyap; Kakoti, Bibhuti Bhushan; Sarma, Diganta; Buragohain, Alak Kumar
2016-12-21
Human epidermal growth factor receptor 2 (HER2) is one of the four members of the epidermal growth factor receptor (EGFR) family and is expressed to facilitate cellular proliferation across various tissue types. Therapies targeting HER2, which is a transmembrane glycoprotein with tyrosine kinase activity, offer promising prospects especially in breast and gastric/gastroesophageal cancer patients. Persistence of both primary and acquired resistance to various routine drugs/antibodies is a disappointing outcome in the treatment of many HER2 positive cancer patients and is a challenge that requires formulation of new and improved strategies to overcome the same. Identification of novel HER2 inhibitors with improved therapeutics index was performed with a highly correlating (r=0.975) ligand-based pharmacophore model (Hypo1) in this study. Hypo1 was generated from a training set of 22 compounds with HER2 inhibitory activity and this well-validated hypothesis was subsequently used as a 3D query to screen compounds in a total of four databases of which two were natural product databases. Further, these compounds were analyzed for compliance with Veber's drug-likeness rule and optimum ADMET parameters. The selected compounds were then subjected to molecular docking and Density Functional Theory (DFT) analysis to discern their molecular interactions at the active site of HER2. The findings thus presented would be an important starting point towards the development of novel HER2 inhibitors using well-validated computational techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-01-01
Background Dyslipidemia increases circulating levels of oxidized low-density lipoprotein (OxLDL) and this may induce alveolar bone loss through toll-like receptor (TLR) 2 and 4. The purpose of this study was to investigate the effects of dyslipidemia on osteoclast differentiation associated with TLR2 and TLR4 in periodontal tissues using a rat dyslipidemia (apolipoprotein E deficient) model. Methods Levels of plasma OxLDL, and the cholesterol and phospholipid profiles in plasma lipoproteins were compared between apolipoprotein E-deficient rats (16-week-old males) and wild-type (control) rats. In the periodontal tissue, we evaluated the changes in TLR2, TLR4, receptor activator of nuclear factor kappa B ligand (RANKL) and tartrate resistant acid phosphatase (TRAP) expression. Results Apolipoprotein E-deficient rats showed higher plasma levels of OxLDL than control rats (p<0.05), with higher plasma levels of total cholesterol (p<0.05) and LDL-cholesterol (p<0.05) and lower plasma levels of high-density lipoprotein cholesterol (p<0.05). Their periodontal tissue also exhibited a higher ratio of RANKL-positive cells and a higher number of TRAP-positive osteoclasts than control rats (p<0.05). Furthermore, periodontal gene expression of TLR2, TLR4 and RANKL was higher in apolipoprotein E-deficient rats than in control rats (p<0.05). Conclusion These findings underscore the important role for TLR2 and TLR4 in mediating the osteoclast differentiation on alveolar bone response to dyslipidemia. PMID:23295061
Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees
Dobrin, Scott E.; Herlihy, J. Daniel; Robinson, Gene E.; Fahrbach, Susan E.
2011-01-01
The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells. PMID:21262388
Subramanian, Chitra; White, Peter T; Kuai, Rui; Kalidindi, Avinaash; Castle, Valerie P; Moon, James J; Timmermann, Barbara N; Schwendeman, Anna; Cohen, Mark S
2018-05-09
Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. Synthetic high-density lipoprotein is a promising platform to improve the delivery of anticancer drug 4,19,27-triacetyl withalongolide A to neuroblastomas and neuroblastoma cancer stem cells through SR-B1 targeting in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
Woodward, Neil D.; Zald, David H.; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Li, Rui; Kessler, Robert M.
2009-01-01
The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D2/D3 ligand [18F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BPND) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BPND were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BPND throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BPND and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BPND were observed. Overall, grey matter density appeared more strongly correlated with BPND than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [18F]fallypride BPND in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization. PMID:19457373
Woodward, Neil D; Zald, David H; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M Sib; Baldwin, Ronald M; Cowan, Ronald L; Li, Rui; Kessler, Robert M
2009-05-15
The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.
Sommer, Martha E; Hofmann, Klaus Peter; Heck, Martin
2011-03-04
In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.
Himber, J
1993-08-01
A high efficiency transfer of the low density lipoprotein (LDL) receptor proteins from polyacrylamide slab gel onto immobilizing nitrocellulose membranes using the horizontal semi-dry electrophoretic system is described. The transfer of the LDL receptors from solubilized rat liver microsomes was performed between two graphite plate electrodes in a continuous buffer system containing methanol and sodium dodecyl sulfate. The protein transfer was achieved in only 150 min at a constant current of 0.8 mA/cm2 at room temperature with very low Joule heat development. The homogeneous electric field yield between the two electrode plates produced a satisfactory transfer of the LDL-receptor protein band in spite of its high molecular weight, and only few protein traces remained in the polyacrylamide gel after blotting. This improved method allows a rapid and quantitative transfer of the LDL receptors without protein denaturation, since the specific binding activity of the blotted receptor is retained as demonstrated by ligand-blotting and immunoblotting.
Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies.
Mach, Robert H; Luedtke, Robert R
2018-03-01
The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [ 11 C]raclopride, [ 18 F]fallypride, and [ 11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET. Copyright © 2017 John Wiley & Sons, Ltd.
Ontogenesis of the angiotensin II (ANGII) receptor system in the duck brain.
Müller, A R; Gerstberger, R
1994-03-18
The ontogenetic development of the central nervous angiotensin II (ANGII) receptor system in the duck was studied at embryonic days E20 and E27 and at postnatal days P3 and P14 by computerized semiquantitative autoradiography employing the receptor antagonist 125I[1Sar,8Ile]ANGII as radioligand. For circumventricular structures involved in the sensing of brain-intrinsic (AV3V region) or blood-borne (subfornical organ, SFO) ANGII, binding sites for 125I[1Sar,8Ile]ANGII were first detectable at E27, with a steady rise in binding density up to P14. The choroid plexus of the lateral (PCVL) and third (PCVIII) cerebral ventricles responsible for cerebrospinal fluid (CSF) production were endowed with maximal ANGII receptor densities at E20 with subsequent reduction to constant medium (PCVIII) or low (PCVL) values. Besides the choroid plexus, the magnocellular paraventricular nucleus (PVN) was the only structure presenting ANGII specific binding sites at E20, although at low density. As for the SFO and AV3V region, labelling of ANGII binding sites in the PVN increased continuously during development to high values at P14. Nuclear components of the limbic system (archistriatum, amygdala and habenular complex) did not reveal specific labelling by the radioligand at E20 with constant, moderate binding densities evaluated for E27, P3 and P14. In the duck brain, functionally related structures exhibited a homogeneous ontogenetic development of their ANGII receptor system.
Development of antibodies against the rat brain somatostatin receptor.
Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T
1992-05-15
Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).
Type II hyperlipoproteinemia; Hypercholesterolemic xanthomatosis; Low density lipoprotein receptor mutation ... defect makes the body unable to remove low density lipoprotein (LDL, or bad) cholesterol from the blood. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ha Young, E-mail: hayoung@skku.edu; Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714; Kim, Sang Doo
2013-03-29
Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foammore » cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.« less
Gluskin, B S; Mickey, B J
2016-03-01
The D2 dopamine receptor mediates neuropsychiatric symptoms and is a target of pharmacotherapy. Inter-individual variation of D2 receptor density is thought to influence disease risk and pharmacological response. Numerous molecular imaging studies have tested whether common genetic variants influence D2 receptor binding potential (BP) in humans, but demonstration of robust effects has been limited by small sample sizes. We performed a systematic search of published human in vivo molecular imaging studies to estimate effect sizes of common genetic variants on striatal D2 receptor BP. We identified 21 studies examining 19 variants in 11 genes. The most commonly studied variant was a single-nucleotide polymorphism in ANKK1 (rs1800497, Glu713Lys, also called 'Taq1A'). Fixed- and random-effects meta-analyses of this variant (5 studies, 194 subjects total) revealed that striatal BP was significantly and robustly lower among carriers of the minor allele (Lys713) relative to major allele homozygotes. The weighted standardized mean difference was -0.57 under the fixed-effect model (95% confidence interval=(-0.87, -0.27), P=0.0002). The normal relationship between rs1800497 and BP was not apparent among subjects with neuropsychiatric diseases. Significant associations with baseline striatal D2 receptor BP have been reported for four DRD2 variants (rs1079597, rs1076560, rs6277 and rs1799732) and a PER2 repeat polymorphism, but none have yet been tested in more than two independent samples. Our findings resolve apparent discrepancies in the literature and establish that rs1800497 robustly influences striatal D2 receptor availability. This genetic variant is likely to contribute to important individual differences in human striatal function, neuropsychiatric disease risk and pharmacological response.
Lee, Junga; Scheri, Richard C.; Zhang, Yuan; Curtis, Lawrence R.
2008-01-01
Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [14C]CD or [14C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor α (ERα) in a concentration-dependent manner (0–50 μM). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice. PMID:18789348
De Bundel, Dimitri; Fafouri, Assia; Csaba, Zsolt; Loyens, Ellen; Lebon, Sophie; El Ghouzzi, Vincent; Peineau, Stéphane; Vodjdani, Guilan; Kiagiadaki, Foteini; Aourz, Najat; Coppens, Jessica; Walrave, Laura; Portelli, Jeanelle; Vanderheyden, Patrick; Chai, Siew Yeen; Thermos, Kyriaki; Bernard, Véronique; Collingridge, Graham; Auvin, Stéphane; Gressens, Pierre; Smolders, Ilse; Dournaud, Pascal
2015-08-26
Within the hippocampus, the major somatostatin (SRIF) receptor subtype, the sst2A receptor, is localized at postsynaptic sites of the principal neurons where it modulates neuronal activity. Following agonist exposure, this receptor rapidly internalizes and recycles slowly through the trans-Golgi network. In epilepsy, a high and chronic release of somatostatin occurs, which provokes, in both rat and human tissue, a decrease in the density of this inhibitory receptor at the cell surface. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. In addition, IRAP ligands display anticonvulsive properties. We therefore sought to assess by in vitro and in vivo experiments in hippocampal rat tissue whether IRAP ligands could regulate the trafficking of the sst2A receptor and, consequently, modulate limbic seizures. Using pharmacological and cell biological approaches, we demonstrate that IRAP ligands accelerate the recycling of the sst2A receptor that has internalized in neurons in vitro or in vivo. Most importantly, because IRAP ligands increase the density of this inhibitory receptor at the plasma membrane, they also potentiate the neuropeptide SRIF inhibitory effects on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures and possibly for other neurological conditions in which downregulation of G-protein-coupled receptors occurs. The somatostatin type 2A receptor (sst2A) is localized on principal hippocampal neurons and displays anticonvulsant properties. Following agonist exposure, however, this receptor rapidly internalizes and recycles slowly. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. We therefore assessed by in vitro and in vivo experiments whether IRAP could regulate the trafficking of this receptor. We demonstrate that IRAP ligands accelerate sst2A recycling in hippocampal neurons. Because IRAP ligands increase the density of sst2A receptors at the plasma membrane, they also potentiate the effects of this inhibitory receptor on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures. Copyright © 2015 the authors 0270-6474/15/3511961-16$15.00/0.
Marques-Lopes, Jose; Van Kempen, Tracey; Waters, Elizabeth M.; Pickel, Virginia M.; Iadecola, Costantino; Milner, Teresa A.
2014-01-01
The incidence of hypertension increases after menopause. Similar to humans, “slow-pressor” doses of angiotensin II (AngII) increase blood pressure in young males, but not in young female mice. However, AngII increases blood pressure in aged female mice, paralleling reproductive hormonal changes. These changes could influence receptor trafficking in central cardiovascular circuits and contribute to hypertension. Increased post-synaptic NMDA receptor activity in the hypothalamic paraventricular nucleus (PVN) is crucial for the sympathoexcitation driving AngII hypertension. Estrogen receptors beta (ERβ) are present in PVN neurons. We tested the hypothesis that changes in ovarian hormones with age promote susceptibility to AngII hypertension, and influence NMDA receptor NR1 subunit trafficking in ERβ-containing PVN neurons. Transgenic mice expressing enhanced green fluorescent protein (EGFP) in ERβ-containing cells were implanted with osmotic minipumps delivering AngII (600 ng/kg/min) or saline for 2 weeks. AngII increased blood pressure in 2 month-old males and 18 month-old females, but not in 2 month-old females. By electron microscopy, NR1-silver-intensified immunogold (SIG) was mainly in ERβ-EGFP dendrites. At baseline, NR1-SIG density was greater in 2 month-old females than in 2 month-old males or 18 month-old females. After AngII infusion, NR1-SIG density was decreased in 2 month-old females, but increased in 2 month-old males and 18 month-old females. These findings suggest that, in young female mice, NR1 density is decreased in ERβ-PVN dendrites thus reducing NMDA receptor activity and preventing hypertension. Conversely, in young males and aged females, NR1 density is upregulated in ERβ-PVN dendrites and ultimately leads to the neurohumoral dysfunction driving hypertension. PMID:24639345
Reelin Supplementation Enhances Cognitive Ability, Synaptic Plasticity, and Dendritic Spine Density
ERIC Educational Resources Information Center
Rogers, Justin T.; Rusiana, Ian; Trotter, Justin; Zhao, Lisa; Donaldson, Erika; Pak, Daniel T.S.; Babus, Lenard W.; Peters, Melinda; Banko, Jessica L.; Chavis, Pascale; Rebeck, G. William; Hoe, Hyang-Sook; Weeber, Edwin J.
2011-01-01
Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive…
Kou, Shuming; Han, Bing; Wang, Yue; Huang, Tao; He, Kai; Han, Yulong; Zhou, Xia; Ye, Xiaoli; Li, Xuegang
2016-04-15
Hyperlipidemia contributes to the progression of cardiovascular diseases. Main alkaloids from Rhizoma Coptidis including berberine (BBR), coptisine (COP), palmatine (PAL), epiberberine (EPI) and jatrorrhizine (JAT), improved dyslipidemia in hypercholesterolemic hamsters to a different degree. In this study, HepG2 cells and hypercholesterolemic hamsters were used to investigate the synergetic cholesterol-lowering efficacy of these five main alkaloids. The cellular lipid and cholesterol accumulation and in HepG2 cells were evaluated by Oil Red O staining and HPLC analysis. LDL receptor, 3-Hydroxy-3-methylglutaryl CoA reductase (HMGCR) and cholesterol 7-alpha-hydroxylase (CYP7A1) that involving cholesterol metabolism in HepG2 cells were measured by qRT-PCR, western blot and immunofluorescence analysis. The serum profiles including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c), as well as TC and total bile acids (TBA) of feces in hypercholesterolemic hamsters were also measured. As compared to single alkaloids, the combination of five main alkaloids (COM) reduced the lipid and cholesterol accumulation in HepG2 cells more effectively and performed an advantageous effect on controlling TC, TG, LDL-c and HDL-c in hypercholesterolemic hamsters. More effective reduction of TBA and TC levels in feces of hamsters were achieved after the administration of COM. These effects were derived from the up-regulation of LDL receptor and CYP7A1, as well as HMGCR downregulation. Our results demonstrated that COM showed a synergetic cholesterol-lowering efficacy, which was better than single alkaloids and it might be considered as a potential therapy for hypercholesterolemia. Copyright © 2016 Elsevier Inc. All rights reserved.
Thompson, Owen A.; Snoek, L. Basten; Nijveen, Harm; Sterken, Mark G.; Volkers, Rita J. M.; Brenchley, Rachel; van’t Hof, Arjen; Bevers, Roel P. J.; Cossins, Andrew R.; Yanai, Itai; Hajnal, Alex; Schmid, Tobias; Perkins, Jaryn D.; Spencer, David; Kruglyak, Leonid; Andersen, Erik C.; Moerman, Donald G.; Hillier, LaDeana W.; Kammenga, Jan E.; Waterston, Robert H.
2015-01-01
The Hawaiian strain (CB4856) of Caenorhabditis elegans is one of the most divergent from the canonical laboratory strain N2 and has been widely used in developmental, population, and evolutionary studies. To enhance the utility of the strain, we have generated a draft sequence of the CB4856 genome, exploiting a variety of resources and strategies. When compared against the N2 reference, the CB4856 genome has 327,050 single nucleotide variants (SNVs) and 79,529 insertion–deletion events that result in a total of 3.3 Mb of N2 sequence missing from CB4856 and 1.4 Mb of sequence present in CB4856 but not present in N2. As previously reported, the density of SNVs varies along the chromosomes, with the arms of chromosomes showing greater average variation than the centers. In addition, we find 61 regions totaling 2.8 Mb, distributed across all six chromosomes, which have a greatly elevated SNV density, ranging from 2 to 16% SNVs. A survey of other wild isolates show that the two alternative haplotypes for each region are widely distributed, suggesting they have been maintained by balancing selection over long evolutionary times. These divergent regions contain an abundance of genes from large rapidly evolving families encoding F-box, MATH, BATH, seven-transmembrane G-coupled receptors, and nuclear hormone receptors, suggesting that they provide selective advantages in natural environments. The draft sequence makes available a comprehensive catalog of sequence differences between the CB4856 and N2 strains that will facilitate the molecular dissection of their phenotypic differences. Our work also emphasizes the importance of going beyond simple alignment of reads to a reference genome when assessing differences between genomes. PMID:25995208
Kim, Na-Hyung; Choi, Sun-Kyung; Kim, Su-Jin; Moon, Phil-Dong; Lim, Hun-Sun; Choi, In-Young; Na, Ho-Jeong; An, Hyo-Jin; Myung, Noh-Yil; Jeong, Hyun-Ja; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min
2008-11-01
Given that tea contains a number of chemical constituents possessing medicinal and pharmacological properties, green tea seed is also believed to contain many biologically active compounds such as saponin, flavonoids, vitamins, and oil materials. However, little is known about the physiologic functions of green tea seed oil. The aim of this study is to investigate the anti-obesity effects of green tea seed oil in C57BL/6J mice and in preadipocyte 3T3L-1 cell lines. In vivo, three groups of mice were fed with a standard diet, a high-fat diet containing 30% shortening, or 30% of green tea seed oil based on a standard diet for 85 days. The levels of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, glucose, and alanine aminotransferase in blood were analyzed at the end of the study. The mice given green tea seed oil gained less weight compared to mice given the shortening diet (p < 0.01). The plasma level of total cholesterol was decreased by a significant level of 32.4% in mice given the green tea seed oil compared to the mice given the shortening diet (p < 0.01). In addition, 3T3-L1 cells were treated for 2 days to evaluate effects of green tea seed oil on adipocyte differentiation. Green tea seed oil inhibited expression of peroxisome proliferator-activated receptor-gamma(2) and CCAAT/enhancer binding protein-alpha in adipocytes and adipose tissue from the experimental animals. These results indicate that the anti-obesity effects of green tea seed oil might be, in part, through suppression of transcription factors related to adipocyte differentiation.
Kappa opioid receptors in rat spinal cord vary across the estrous cycle.
Chang, P C; Aicher, S A; Drake, C T
2000-04-07
Kappa opioid receptors (KORs) were immunocytochemically localized in the lumbosacral spinal cord of female rats in different stages of the estrous cycle to examine the influence of hormonal status on receptor density. KOR labeling was primarily in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that rats in diestrus had significantly lower KOR densities than those in proestrus or estrus. This suggests that female reproductive hormones regulate spinal KOR levels, which may contribute to variations in analgesic effectiveness of KOR agonists across the estrous cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christie, R.H.; Chung, Haeyong; Rebeck, G.W.
1996-04-01
The very low density lipoprotein receptor (VLDL-r) is a cell-surface molecule specialized for the internalization of multiple diverse ligands, including apolipoprotein E (apoE)-containing lipoprotein particles, via clathrin-coated pits. Its structure is similar to the low-density lipoprotein receptor (LDL-r), although the two have substantially different systemic distributions and regulatory pathways. The present work examines the distribution of VLDL-r in the central nervous system (CNS) and in relation to senile plaques in Alzheimer disease (AD). VLDL-r is present on resting and activated microglia, particularly those associated with senile plaques (SPs). VLDL-r immunoreactivity is also found in cortical neurons. Two exons of VLDL-rmore » mRNA are differentially spliced in the mature receptor mRNA. One set of splice forms gives rise to receptors containing (or lacking) an extracellular O-linked glycosylation domain near the transmembrane portion of the molecule. The other set of splice forms appears to be brain-specific, and is responsible for the presence or absence of one of the cysteine-rich repeat regions in the binding region of the molecule. Ratios of the receptor variants generated from these splice forms do not differ substantially across different cortical areas or in AD. We hypothesize that VLDL-r might contribute to metabolism of apoE and apoE/A{beta} complexes in the brain. Further characterization of apoE receptors in Alzheimer brain may help lay the groundwork for understanding the role of apoE in the CNS and in the pathophysiology of AD. 43 refs., 5 figs.« less
Viana Gonçalves, Igor Cândido; Cerdeira, Cláudio Daniel; Poletti Camara, Eduardo; Dias Garcia, José Antônio; Ribeiro Pereira Lima Brigagão, Maísa; Bessa Veloso Silva, Roberta; Bitencourt Dos Santos, Gérsika
2017-09-01
Dyslipidemia is associated with increased risk of cardiovascular disease and atherosclerosis, and hence with high morbidity and mortality. This study investigated the effects of the nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol) on lipid profile and cardiac morphology in low-density lipoprotein (LDL) receptor gene knockout (LDLr-/-) mice. Male LDLr-/- mice (three months old, approximately 22 g weight) were divided into the following groups: controls, including (1) standard chow (SC, n=8) and (2) high-fat diet (HFD, n=8); and treatment, including (3) standard chow + Tempol (SC+T, n=8) (30 mg/kg administered by gavage, once daily) and (4) high-fat diet + Tempol (HFD+T, n=8) (30 mg/kg). After 30 days of the diet/treatment, whole blood was collected for analysis of biochemical parameters (total cholesterol, triglycerides [TG], high-density lipoprotein [HDL], LDL, and very low-density lipoprotein [VLDL]). The heart was removed through thoracotomy and histological analysis of the left ventricle was performed. A significant increase in TG, LDL, and VLDL and marked left ventricular hypertrophy (LVH) were demonstrated in the HFD group relative to the SC group (p<0.05), while Tempol treatment (HFD+T group) significantly (p<0.05) prevented increases in the levels of these lipid profile markers and attenuated LVH compared with the HFD group. In this study, Tempol showed potential for the prevention of events related to serious diseases of the cardiovascular system. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
Ouda, Ryota; Onomoto, Koji; Takahasi, Kiyohiro; Edwards, Michael R.; Kato, Hiroki; Yoneyama, Mitsutoshi; Fujita, Takashi
2011-01-01
In mammals, viral infections are detected by innate immune receptors, including Toll-like receptor and retinoic acid inducible gene I (RIG-I)-like receptor (RLR), which activate the type I interferon (IFN) system. IFN essentially activates genes encoding antiviral proteins that inhibit various steps of viral replication as well as facilitate the subsequent activation of acquired immune responses. In this study, we investigated the expression of non-coding RNA upon viral infection or RLR activation. Using a microarray, we identified several microRNAs (miRNA) specifically induced to express by RLR signaling. As suggested by Bioinformatics (miRBase Target Data base), one of the RLR-inducible miRNAs, miR-23b, actually knocked down the expression of very low density lipoprotein receptor (VLDLR) and LDLR-related protein 5 (LRP5). Transfection of miR-23b specifically inhibited infection of rhinovirus 1B (RV1B), which utilizes the low density lipoprotein receptor (LDLR) family for viral entry. Conversely, introduction of anti-miRNA-23b enhanced the viral yield. Knockdown experiments using small interfering RNA (siRNA) revealed that VLDLR, but not LRP5, is critical for an efficient infection by RV1B. Furthermore, experiments with the transfection of infectious viral RNA revealed that miR-23b did not affect post-entry viral replication. Our results strongly suggest that RIG-I signaling results in the inhibitions of infections of RV1B through the miR-23b-mediated down-regulation of its receptor VLDLR. PMID:21642441
Ouda, Ryota; Onomoto, Koji; Takahasi, Kiyohiro; Edwards, Michael R; Kato, Hiroki; Yoneyama, Mitsutoshi; Fujita, Takashi
2011-07-22
In mammals, viral infections are detected by innate immune receptors, including Toll-like receptor and retinoic acid inducible gene I (RIG-I)-like receptor (RLR), which activate the type I interferon (IFN) system. IFN essentially activates genes encoding antiviral proteins that inhibit various steps of viral replication as well as facilitate the subsequent activation of acquired immune responses. In this study, we investigated the expression of non-coding RNA upon viral infection or RLR activation. Using a microarray, we identified several microRNAs (miRNA) specifically induced to express by RLR signaling. As suggested by Bioinformatics (miRBase Target Data base), one of the RLR-inducible miRNAs, miR-23b, actually knocked down the expression of very low density lipoprotein receptor (VLDLR) and LDLR-related protein 5 (LRP5). Transfection of miR-23b specifically inhibited infection of rhinovirus 1B (RV1B), which utilizes the low density lipoprotein receptor (LDLR) family for viral entry. Conversely, introduction of anti-miRNA-23b enhanced the viral yield. Knockdown experiments using small interfering RNA (siRNA) revealed that VLDLR, but not LRP5, is critical for an efficient infection by RV1B. Furthermore, experiments with the transfection of infectious viral RNA revealed that miR-23b did not affect post-entry viral replication. Our results strongly suggest that RIG-I signaling results in the inhibitions of infections of RV1B through the miR-23b-mediated down-regulation of its receptor VLDLR.
P2 receptor-stimulation influences axonal outgrowth in the developing hippocampus in vitro.
Heine, C; Heimrich, B; Vogt, J; Wegner, A; Illes, P; Franke, Heike
2006-01-01
Extracellular ATP might act as a trophic factor on growing axons during development of the CNS via P2 receptors. In the present study the postnatal presence of selected P2 receptor subtypes was analyzed and their putative trophic capacity in entorhino-hippocampal slice co-cultures of mouse brain was tested. The effect of the P2 receptor ligands 2-methylthioadenosine-5'-triphosphate (P2X/Y receptor agonist) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (P2X/Y receptor antagonist) on axonal growth and fiber density of biocytin-labeled hippocampal projections was compared both with untreated cultures and with cultures treated with artificial cerebrospinal fluid. After 10 days in vitro, double immunofluorescence labeling revealed the expression of P2X(1), P2X(2), P2X(4) as well as P2Y(1) and P2Y(2) receptors in the examined regions of entorhinal fiber termination. Further, quantitative analysis of identified biocytin-traced entorhinal fibers showed a significant increase in fiber density in the dentate gyrus after incubation of the slices with the P2 receptor agonist 2-methylthioadenosine-5'-triphosphate. This neurite outgrowth promoting effect was completely abolished by the P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid. Our in vitro data indicate that ATP via its P2X and P2Y receptors can shape hippocampal connectivity during development.
Knott, P. G.; Henry, P. J.; McWilliam, A. S.; Rigby, P. J.; Fernandes, L. B.; Goldie, R. G.
1996-01-01
1. In this study we have compared the effects of parainfluenza-1 respiratory tract viral infection on the density and function of ETA and ETB receptors in rat and mouse tracheal airway smooth muscle. 2. The bronchoconstrictor effect of inhaled methacholine was significantly enhanced in virus-infected rats, at both 4 and 12 days post-inoculation. That is, the concentration of methacholine causing an increase in resistance of 100% (PC100 methacholine) was significantly lower in virus-infected animals at both 4 and 12 days post-inoculation (n = 6-8; P < 0.05). 3. Total specific binding of [125I]-endothelin-1 and the relative proportions of ETA and ETB binding sites for [125I]-endothelin-1 were assessed in tracheal airway smooth muscle in parainfluenza-1-infected rats and mice at days 2, 4 and 12 post-inoculation using the ligands BQ-123 (1 microM; ETA receptor-selective) and sarafotoxin S6c (100 nM; ETB receptor-selective). Total specific binding in mice was significantly reduced at day 2 post-inoculation (n = 5; P < 0.05) but not at days 4 and 12 post-inoculation (n = 5). In control mice, the proportions of ETA and ETB binding sites were 53%:47% at day 2 and 43%:57% at day 4 and these were significantly altered by parainfluenza-1 infection such that, the ratios were 81%:19% at day 2 and 89%:11% at day 4 (P < 0.05). By day 12 post-inoculation, the proportion of ETA and ETB binding sites in tracheal smooth muscle from mice infected with parainfluenza-1 was not significantly different from control. In rat tracheal airway smooth muscle, neither total specific binding nor the ETA and ETB binding site ratio (64%:36%) were significantly altered in virus-inoculated rats at days 2, 4 or 12 post-inoculation (n = 5). 4. Parainfluenza-1 infection in mice had no effect on the sensitivity or maximal contractile effect of endothelin-1 in tracheal smooth muscle at days 2, 4 or 12 post-inoculation (n = 4). In contrast, contraction in response to the ETB receptor-selective agonist sarafotoxin S6c was attenuated by 39% at day 2 and by 93% at day 4 post-inoculation (P < 0.05). However, by day 12 post-inoculation, contractions to sarafotoxin S6c were not significantly different between control and virus-infected mice. In parainfluenza-1-infected rats, there were small but significant reductions in the sensitivity to carbachol, endothelin-1 and sarafotoxin S6c whilst the maximal responses to the highest concentrations of these agonists were not significantly altered by virus infection (n = 8). 5. BQ-123 (3 microM) had no significant effect on cumulative concentration-effect curves to endothelin-1 in tracheal preparations from control mice (n = 4) or parainfluenza-1-infected rats (n = 8). In contrast, in tissues taken from virus-infected mice at day 4 post-inoculation, BQ-123 caused a marked 9.6 fold rightward shift in the concentration-effect curve to endothelin-1 (n = 4). 6. In summary, we have demonstrated that parainfluenza-1 infection in mice transiently reduced the density of tracheal airway smooth muscle ETB receptors and this was reflected in reduced responsiveness to the ETB receptor-selective agonist sarafotoxin S6c. In contrast, whilst parainfluenza-1 infection in rats was associated with the pathological features and bronchial hyperresponsiveness common to respiratory tract viral infection, there was no selective down-regulation of ETB receptor expression or functional activity. The reasons for these species differences are not clear, but may relate to differences in the airway inflammatory response to parainfluenza-1 virus. PMID:8886411
Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.
2008-01-01
The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063
Lim, M M; Hammock, E A D; Young, L J
2004-02-01
Receptor autoradiography using selective radiolabeled ligands allows visualization of brain receptor distribution and density on film. The resolution of specific brain regions on the film often can be difficult to discern owing to the general spread of the radioactive label and the lack of neuroanatomical landmarks on film. Receptor binding is a chemically harsh protocol that can render the tissue virtually unstainable by Nissl and other conventional stains used to delineate neuroanatomical boundaries of brain regions. We describe a method for acetylcholinesterase (AChE) staining of slides previously processed for receptor binding. AChE staining is a useful tool for delineating major brain nuclei and tracts. AChE staining on sections that have been processed for receptor autoradiography provides a direct comparison of brain regions for more precise neuroanatomical description. We report a detailed thiocholine protocol that is a modification of the Koelle-Friedenwald method to amplify the AChE signal in brain sections previously processed for autoradiography. We also describe several temporal and experimental factors that can affect the density and clarity of the AChE signal when using this protocol.
Kim, Kyong-Chol; Chun, Hyejin; Lai, ChaoQiang; Parnell, Laurence D; Jang, Yangsoo; Lee, Jongho; Ordovas, Jose M
2015-03-01
Contrary to the traditional belief that obesity acts as a protective factor for bone, recent epidemiologic studies have shown that body fat might be a risk factor for osteoporosis and bone fracture. Accordingly, we evaluated the association between the phenotypes of osteoporosis or vertebral fracture and variants of obesity-related genes, peroxisome proliferator-activated receptor-gamma (PPARG), runt-related transcription factor 2 (RUNX2), leptin receptor (LEPR), and adiponectin (ADIPOQ). In total, 907 postmenopausal healthy women, aged 60-79 years, were included in this study. BMD and biomarkers of bone health and adiposity were measured. We genotyped for four single nucleotide polymorphisms (SNPs) from four genes (PPARG, RUNX2, LEPR, ADIPOQ). A general linear model for continuous dependent variables and a logistic regression model for categorical dependent variables were used to analyze the statistical differences among genotype groups. Compared with the TT subjects at rs7771980 in RUNX2, C-carrier (TC + CC) subjects had a lower vertebral fracture risk after adjusting for age, smoking, alcohol, total calorie intake, total energy expenditure, total calcium intake, total fat intake, weight, body fat. Odds ratio (OR) and 95% interval (CI) for the vertebral fracture risk was 0.55 (95% CI 0.32-0.94). After adjusting for multiple variables, the prevalence of vertebral fracture was highest in GG subjects at rs1501299 in ADIPOQ (p = 0.0473). A high calcium intake (>1000 mg/day) contributed to a high bone mineral density (BMD) in GT + TT subjects at rs1501299 in ADIPOQ (p for interaction = 0.0295). Even if the mechanisms between obesity-related genes and bone health are not fully established, the results of our study revealed the association of certain SNPs from obesity-related genes with BMD or vertebral fracture risk in postmenopausal Korean women.
Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy
Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph
2017-01-01
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944
Matthews-Bellinger, J; Salpeter, M M
1978-01-01
1. The distribution of acetylcholine receptors (AChR) at frog cutaneous pectoris neuromuscular junctions was studied quantitatively using [1125]alpha-bungarotoxin (alpha-BTX) labelling and EM autoradiography. 2. We found that, as in mouse end-plates, the AChR is localized uniformly along the thickened post-junctional membrane. In the frog muscle this specialized membrane constitutes approximately the top 50% of the junctional folds. 3. The receptor site density is approximately 26,000 +/- 6000 sites/micrometer2 on the thickened post-junctional membrane and falls sharply to approximately 50 sites/micrometer2 within 15 micrometer from the axon terminal. 4. alpha-BTX site density on the presynaptic axonal membrane was directly determined to be at most 5% of the value on the thickened post-junctional membrane. 5. The high post junctional AChR site density leads us to conclude that: (a) each quantum of ACh needs to spread only over a very small post-junctional area (to be called the 'critical area') before it encounters as many AChR (plus AchE) sites as there are ACh molecules in the quantum (for a packet of 10(4) ACh molecules this critical area is approximately 0.3 micrometer2), (b) the average concentration of ACh prevailing in the cleft over this critical area during a quantal response will be approximately 10(-3)M (independent of the size of the quantal packet), and (c) since 10(-3)M-ACh is large compared to any estimates of the dissociation constant Kd for ACh binding to the AChR, the ACh will essentially saturate the AChR within the critical area (provided the ACh binding rate is sufficiently faster than the ACh spreading rate). 6. The total receptive surface for a frog end-plate is calculated to be approximately 1500 micrometer2, and therefore an end-plate potential resulting from 300 quanta will be due to the activation of less than 10% of the total receptive area. 7. Free diffusion would allow each small post-junctional critical area to be reached in less than 15 musec. Therefore, either the recorded rise time of the miniature end-plate is not predominantly a function of ACh diffusion time, or, as suggested by Gage & McBurney (1975), the net rate of movement of ACh in the cleft is much slower than indicated by the free diffusion constant. Images Fig. 1a and b Fig. 2 Figs. 3, 5 Fig. 4 PMID:307600
Presenilin 1 mutations influence processing and trafficking of the ApoE receptor apoER2.
Wang, Wei; Moerman-Herzog, Andrea M; Slaton, Arthur; Barger, Steven W
2017-01-01
Presenilin (PS)-1 is an intramembrane protease serving as the catalytic component of γ-secretase. Mutations in the PS1 gene are the most common cause of familial Alzheimer's disease (FAD). The low-density lipoprotein (LDL)-receptor family member apoER2 is a γ-secretase substrate that has been associated with AD in several ways, including acting as a receptor for apolipoprotein E (ApoE). ApoER2 is processed by γ-secretase into a C-terminal fragment (γ-CTF) that appears to regulate gene expression. FAD PS1 mutations were tested for effects on apoER2. PS1 mutation R278I showed impaired γ-secretase activity for apoER2 in the basal state or after exposure to Reelin. PS1 M146V mutation permitted accumulation of apoER2 CTFs after Reelin treatment, whereas no difference was seen between wild-type (WT) and M146V in the basal state. PS1 L282V mutation, combined with the γ-secretase inhibitor N-(N-[3,5-Difluorophenacetyl]-L-alanyl)-S-phenylglycine t-butyl ester, greatly reduced the cell-surface levels of apoER2 without affecting total apoER2 levels, suggesting a defect in receptor trafficking. These findings indicate that impaired processing or localization of apoER2 may contribute to the pathogenic effects of FAD mutations in PS1. Published by Elsevier Inc.
Bauzá, Antonio; Quiñonero, David; Frontera, Antonio; Ballester, Pablo
2015-01-01
In this manuscript we consider from a theoretical point of view the recently reported experimental quantification of anion–π interactions (the attractive force between electron deficient aromatic rings and anions) in solution using aryl extended calix[4]pyrrole receptors as model systems. Experimentally, two series of calix[4]pyrrole receptors functionalized, respectively, with two and four aryl rings at the meso positions, were used to assess the strength of chloride–π interactions in acetonitrile solution. As a result of these studies the contribution of each individual chloride–π interaction was quantified to be very small (<1 kcal/mol). This result is in contrast with the values derived from most theoretical calculations. Herein we report a theoretical study using high-level density functional theory (DFT) calculations that provides a plausible explanation for the observed disagreement between theory and experiment. The study reveals the existence of molecular interactions between solvent molecules and the aromatic walls of the receptors that strongly modulate the chloride–π interaction. In addition, the obtained theoretical results also suggest that the chloride-calix[4]pyrrole complex used as reference to dissect experimentally the contribution of the chloride–π interactions to the total binding energy for both the two and four-wall aryl-extended calix[4]pyrrole model systems is probably not ideal. PMID:25913375
Dietary fish oil stimulates hepatic low density lipoprotein transport in the rat.
Ventura, M A; Woollett, L A; Spady, D K
1989-01-01
These studies were undertaken to examine the effect of fish oil, safflower oil, and hydrogenated coconut oil on the major processes that determine the concentration of low density lipoprotein (LDL) in plasma, i.e., the rate of LDL production and the rates of receptor-dependent and receptor-independent LDL uptake in the various organs of the body. When fed at the 20% level, fish oil reduced plasma LDL-cholesterol levels by 38% primarily by increasing LDL receptor activity in the liver. Dietary safflower oil also increased hepatic LDL receptor activity; however, since the rate of LDL production also increased, plasma LDL-cholesterol levels remained essentially unchanged. Hydrogenated coconut oil had no effect on LDL receptor activity but increased the rate of LDL-cholesterol production causing plasma LDL-cholesterol levels to increase 46%. Dietary fish oil had no effect on the receptor-dependent transport of asialofetuin by the liver, suggesting that the effect of fish oil on hepatic LDL receptor activity was specific and not due to a generalized alteration in the physical properties of hepatic membranes. Finally, dietary fish oil increased hepatic cholesteryl ester levels and suppressed hepatic cholesterol synthesis rates, suggesting that the up-regulation of hepatic LDL receptor activity in these animals was not simply a response to diminished cholesterol availability in the liver. PMID:2760200
Androgen Receptor Content of the Normal and Hyperplastic Canine Prostate
Shain, Sydney A.; Boesel, Robert W.
1978-01-01
A procedure was developed for measurement of androgen receptors in cytoplasmic extracts of prostates from intact dogs. The protocol utilized exchange saturation analysis at 15°C employing the synthetic androgen R1881 (17β-hydroxy-17α-methylestra-4,9,11-trien-3-one) as the ligand probe and quantitatively detected total cytoplasmic androgen receptor (Rc, androgen-free receptor, and RcA, androgen-occupied receptor) present at the initiation of the assay. This protocol was employed in conjunction with a tissue mince saturation analysis procedure (for quantitation of nuclear androgen receptor) to quantitate total androgen receptor content of normal and hyperplastic prostates obtained from young (2.5- or 4.6-yr old) and aged (12.5-yr old) purebred dogs of known birth date. The total cytoplasmic androgen receptor content (picomoles per prostate) of hyperplastic prostates was 4.6-fold greater than that of normal prostates. The total nuclear androgen receptor content of hyperplastic prostates (picomoles per prostate measured in crude nuclear preparations) was either 5.0- (4.6-yr-old dogs) or 7.8-fold (2.5-yr-old dogs) greater than that of normal prostates. However, androgen receptor content per cell was identical for hyperplastic and normal canine prostates, with the exception that nuclear androgen receptor was diminished in prostates from 2.5-yr-old dogs. The cell content per gram dry weight was identical for hyperplastic and normal canine prostates. We conclude that canine prostate hyperplasia is characterized by coordinate proliferation of androgen receptor-positive and androgen receptor-negative cells and is not a consequence of increased accumulation of 5α-dihydrotestosterone due to proliferation of androgen receptors per prostate cell. PMID:76635
A Monte Carlo model reveals independent signaling at central glutamatergic synapses.
Franks, Kevin M; Bartol, Thomas M; Sejnowski, Terrence J
2002-01-01
We have developed a biophysically realistic model of receptor activation at an idealized central glutamatergic synapse that uses Monte Carlo techniques to simulate the stochastic nature of transmission following release of a single synaptic vesicle. For the a synapse with 80 AMPA and 20 NMDA receptors, a single quantum, with 3000 glutamate molecules, opened approximately 3 NMDARs and 20 AMPARs. The number of open receptors varied directly with the total number of receptors, and the fraction of open receptors did not depend on the ratio of co-localized AMPARs and NMDARs. Variability decreased with increases in either total receptor number or quantal size, and differences between the variability of AMPAR and NMDAR responses were due solely to unequal numbers of receptors at the synapse. Despite NMDARs having a much higher affinity for glutamate than AMPARs, quantal release resulted in similar occupancy levels in both receptor types. Receptor activation increased with number of transmitter molecules released or total receptor number, whereas occupancy levels were only dependent on quantal size. Tortuous diffusion spaces reduced the extent of spillover and the activation of extrasynaptic receptors. These results support the conclusion that signaling is spatially independent within and between central glutamatergic synapses. PMID:12414671
Graham, Mark J; Lemonidis, Kristina M; Whipple, Charles P; Subramaniam, Amuthakannan; Monia, Brett P; Crooke, Stanley T; Crooke, Rosanne M
2007-04-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of a family of proteases that is thought to promote the degradation of the low density lipoprotein receptor (LDLR) through an as yet undefined mechanism. We developed second generation antisense oligonucleotide (ASO) inhibitors targeting murine PCSK9 to determine their potential as lipid-lowering agents. Administration of a PCSK9 ASO to high fat-fed mice for 6 weeks reduced total cholesterol and LDL by 53% and 38%, respectively. Moreover, inhibition of PCSK9 expression resulted in a 2-fold increase in hepatic LDLR protein levels. This phenotype closely resembles that reported previously in Pcsk9-deficient mice. The absence of cholesterol lowering in Ldlr-deficient mice effectively demonstrated a critical role for this receptor in mediating the lipid-lowering effects of PCSK9 inhibition. Antisense inhibition of PCSK9 is an attractive and novel therapeutic approach for treating hypercholesterolemia in human.
Density functional theory and conductivity studies of boron-based anion receptors
Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; ...
2015-07-10
Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor ismore » sufficiently electrophilic that organic solvent molecules compete with F – for boron-site binding, and specific solvent effects must be considered when predicting its F – affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F – and organic solvent molecules. After accounting for specific solvent effects, however, its net F – affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F – ions.« less
Ishida, S; Makino, N; Masutomo, K; Hata, T; Yanaga, T
1993-05-01
We investigated the effect of the beta 1-selective blocker metoprolol on the beta-adrenergic receptor density of circulating lymphocytes in patients with dilated cardiomyopathy. Nine men in New York Heart Association functional classes II (six patients) and III were given metoprolol for 6 months (mean dose 45.6 +/- 18.1 mg). Their cardiac function was assessed by echocardiography. Although there was no difference in the heart rate or pressure rate products, the end-systolic and end-diastolic dimensions significantly decreased in six patients after metoprolol treatment. The ejection fraction, fractional shortening, and mean left ventricular circumferential shortening were significantly increased after the treatment. beta-Adrenoceptor densities of lymphocytes, examined by iodine 125-labeled iodocyanopindolol, were reduced in patients at entry but recovered to normal levels after the metoprolol treatment. The dissociation constants did not differ at any stage of the disease. The relationship between beta-adrenoceptor densities in lymphocytes and echocardiographic parameters showed a positive correlation with the plasma norepinephrine concentration. This study thus provides evidence that long-term metoprolol therapy for dilated cardiomyopathy is associated with beta-receptor up-regulation, and the restoration of myocardial beta-receptor density may be associated with the improved cardiac function as determined by echocardiography.
Agirbasli, Deniz; Hyatt, Tommy; Agirbasli, Mehmet
2018-04-26
This is a case report of a 38-year-old Syrian refugee male with early-onset extensive atherosclerosis. The physical and laboratory examination were remarkable with severe xanthomas in the upper and lower extremities and with low-density lipoprotein cholesterol (LDL-C) 417 mg/dL, total cholesterol 495 mg/dL, high-density lipoprotein cholesterol 30 mg/dL, and triglycerides 242 mg/dL. LDL-C level responded poorly to the high-dose statin treatment. The genetic analysis indicated that the patient had a large homozygous deletion in LDL receptor gene including the exons 7-14. A 12-kb deletion had occurred between the 2 Alu repetitive sequences that were oriented in opposite directions, one in intron 6 and the other in intron 14. This deletion eliminated exons 7-14, which exactly corresponded to the entire exon sequence coding the epidermal growth factor precursor homology domain. This deletion in LDL receptor was previously reported. This rare case of homozygous familial hypercholesterolemia presenting with multiple large and widely distributed xanthomas implicates the need for novel treatment options in familial hypercholesterolemia patients. The case is a Syrian refugee and emphasizes the urgent need to address orphan disease in refugee populations throughout the world. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Li, Cong-Hui; Gong, Duo; Chen, Ling-Yan; Zhang, Min; Xia, Xiao-Dan; Cheng, Hai-Peng; Huang, Chong; Zhao, Zhen-Wang; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke
2017-09-15
It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade. Copyright © 2017 Elsevier B.V. All rights reserved.
Bell, Thomas A; Brown, J Mark; Graham, Mark J; Lemonidis, Kristina M; Crooke, Rosanne M; Rudel, Lawrence L
2006-08-01
The purpose of this study was to determine the effects of liver-specific inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) on the development of hypercholesterolemia and atherosclerosis in mice. Apolipoprotein B100-only low-density lipoprotein (LDL) receptor-/- mice were given saline, a nontargeting control antisense oligonucleotide (ASO), or ASOs targeting ACAT2 biweekly for a period spanning 16 weeks. Mice treated with ACAT2 targeting ASOs had liver-specific reduction in ACAT2 mRNA, yet intestinal ACAT2 and cholesterol absorption was left undisturbed. ASO-mediated knockdown of ACAT2 resulted in reduction of total plasma cholesterol, increased levels of plasma triglyceride, and a shift in LDL cholesteryl ester (CE) fatty acid composition from mainly saturated and monounsaturated to polyunsaturated fatty acid enrichment. Furthermore, the liver-specific depletion of ACAT2 resulted in protection against diet-induced hypercholesterolemia and aortic CE deposition. This is the first demonstration that specific pharmacological inhibition of ACAT2, without affecting ACAT1, is atheroprotective. Hepatic ACAT2 plays a critical role in driving the production of atherogenic lipoproteins, and therapeutic interventions, such as the ACAT2-specific ASOs used here, which reduce acyltransferase 2 (ACAT2) function in the liver without affecting ACAT1, may provide clinical benefit for cardiovascular disease prevention.
Montgomery, M D; Bylund, D B
2010-02-01
The alpha(2C)-adrenoceptor has multiple functions, including inhibiting release of noradrenaline from presynaptic nerve terminals. A human alpha(2C) polymorphism, Del322-325, a potential risk factor for heart failure, has been reported to exhibit reduced signalling in CHO cells. To further understand the role of the Del322-325 polymorphism on receptor signalling, we attempted to replicate and further study the reduced signalling in HEK293 cells. Human alpha(2C) wild-type (WT) and Del322-325 adrenoceptors were stably transfected into HEK293 cells. Radioligand binding was performed to determine affinities for both receptors. In intact cells, inhibition of forskolin-stimulated cyclic AMP production by WT and Del322-325 clones with a range of receptor densities (200-2320 fmol.mg(-1) protein) was measured following agonist treatment. Noradrenaline, brimonidine and clonidine exhibited similar binding affinities for WT and Del322-325. Brimonidine and clonidine also had similar efficacies and potencies for both receptors for the inhibition of cyclic AMP production at all receptor densities tested. A linear regression analysis comparing efficacy and potency with receptor expression levels showed no differences in slopes between WT and Del322-325. The alpha(2C) WT and Del322-325 adrenoceptors exhibited similar binding properties. Additionally, inhibition of cyclic AMP production by Del322-325 was similar to that of WT over a range of receptor densities. Therefore, in intact HEK293 cells, the alpha(2C)-Del322-325 polymorphism does not exhibit reduced signalling to adenylyl cyclase and may not represent a clinically important phenotype.
Cyto- and receptor architecture of area 32 in human and macaque brains.
Palomero-Gallagher, Nicola; Zilles, Karl; Schleicher, Axel; Vogt, Brent A
2013-10-01
Human area 32 plays crucial roles in emotion and memory consolidation. It has subgenual (s32), pregenual (p32), dorsal, and midcingulate components. We seek to determine whether macaque area 32 has subgenual and pregenual subdivisions and the extent to which they are comparable to those in humans by means of NeuN immunohistochemistry and multireceptor analysis of laminar profiles. The macaque has areas s32 and p32. In s32, layer IIIa/b neurons are larger than those of layer IIIc. This relationship is reversed in p32. Layer Va is thicker and Vb thinner in s32. Area p32 contains higher kainate, benzodiazepine (BZ), and serotonin (5-HT)1A but lower N-methyl-D-aspartate (NMDA) and α2 receptor densities. Most differences were found in layers I, II, and VI. Together, these differences support the dual nature of macaque area 32. Comparative analysis of human and macaque s32 and p32 supports equivalences in cyto- and receptor architecture. Although there are differences in mean areal receptor densities, there are considerable similarities at the layer level. Laminar receptor distribution patterns in each area are comparable in the two species in layers III-Va for kainate, NMDA, γ-aminobutyric acid (GABA)B , BZ, and 5-HT1A receptors. Multivariate statistical analysis of laminar receptor densities revealed that human s32 is more similar to macaque s32 and p32 than to human p32. Thus, macaque 32 is more complex than hitherto known. Our data suggest a homologous neural architecture in anterior cingulate s32 and p32 in human and macaque brains. © 2013 Wiley Periodicals, Inc.
Cordes, M; Hosten, N; Gräf, K J; Wenzel, K W; Venz, S; Keske, U; Eichstädt, H; Felix, R
1994-01-01
Recently, [111In]-DTPA-D-phenylalanine-octreotide was introduced for clinical use. This radioligand binds specifically to somatostatin receptors and is suitable for SPECT examinations. The aim of this study was to clarify whether an increased somatostatin receptor density can be imaged and quantified in patients with endocrine ophthalmopathy (e.o.). 7 patients between 34 and 55 years with e.o. at stages III to VI and 4 controls between 38 and 63 years were examined. All patients and controls received approximately 200 MBq [111In]-DTPA-D-phenylalanine-octreotide by IV injection. A SPECT examination was performed 4 hours after injection and a normalised tracer uptake (A(n)) was calculated for both orbitae. In patients with e.o. the values of A(n) were significantly higher compared with controls (P = 0.002). There was a correlation between A(n) and exophthalmus stages according to Hertel with r = 0.844 (P = 0.001). These results indicate that [111In]-DTPA-D-phenylalanine-octreotide SPECT might be useful for the in vivo assessment of an increased somatostatin receptor density in e.o. These findings could have an impact on the treatment with somatostatin analogous in e.o.
Lundquist, Joseph T; Harnish, Douglas C; Kim, Callain Y; Mehlmann, John F; Unwalla, Rayomand J; Phipps, Kristin M; Crawley, Matthew L; Commons, Thomas; Green, Daniel M; Xu, Weixin; Hum, Wah-Tung; Eta, Julius E; Feingold, Irene; Patel, Vikram; Evans, Mark J; Lai, Kehdih; Borges-Marcucci, Lisa; Mahaney, Paige E; Wrobel, Jay E
2010-02-25
In an effort to develop orally active farnesoid X receptor (FXR) agonists, a series of tetrahydroazepinoindoles with appended solubilizing amine functionalities were synthesized. The crystal structure of the previously disclosed FXR agonist, 1 (FXR-450), aided in the design of compounds with tethered solubilizing functionalities designed to reach the solvent cavity around the hFXR receptor. These compounds were soluble in 0.5% methylcellulose/2% Tween-80 in water (MC/T) for oral administration. In vitro and in vivo optimization led to the identification of 14dd and 14cc, which in a dose-dependent fashion regulated low density lipoprotein cholesterol (LDLc) in low density lipoprotein receptor knockout (LDLR(-/-)) mice. Compound 14cc was dosed in female rhesus monkeys for 4 weeks at 60 mg/kg daily in MC/T vehicle. After 7 days, triglyceride (TG) levels and very low density lipoprotein cholesterol (VLDLc) levels were significantly decreased and LDLc was decreased 63%. These data are the first to demonstrate the dramatic lowering of serum LDLc levels by a FXR agonist in primates and supports the potential utility of 14cc in treating dyslipidemia in humans beyond just TG lowering.
Kovalev, G I; Kondrakhin, E A; Salimov, R M; Neznamov, G G
2013-01-01
The influence of acute and long-term piracetam administration on the dynamics of rapid (non-specific, anxiolytic) and slow (specific, nootropic) behavioral drug effects, as well as on their interrelation with NMDA- and BDZ-receptors was studied in inbred mice strains differing in cognitive and emotional status--C57BL/6 and BALB/c. The BALB/c strain contained 17% less [3H]-flunitrazepam binding sites in frontal cortex and 22% less [3H]-MK801 binding sites in hippocampus as compared to those in C57BL/6 mice. Based on these data, BALB/c strain was used as a model of psychopathology, combining increased anxiety and cognitive deficit. Under the action of single, 7-fold, and 14-fold piracetam i.p. injections (200 mg/kg body weight, daily), a fast increase in NMDA-receptor density and slow escalation of the specific nootropic effect was observed in BALB/c mice. Non-specific anxiolytic effects in these mice increased for the first 1 - 7 days without any changes in BDZ-binding and then decreased to initial values accompanied by decrement of brain receptor concentration. Thus, in BALB/c mice, a slowly manifested specific nootropic action of piracetam develops, following an increase in NMDA receptor density, whereas the non-specific anxiolytic effect precedes the fast-paced changes in BDZ-binding site density.
1987-01-01
After receptor-mediated uptake, asialoglycoproteins are routed to lysosomes, while transferrin is returned to the medium as apotransferrin. This sorting process was analyzed using 3,3'- diaminobenzidine (DAB) cytochemistry, followed by Percoll density gradient cell fractionation. A conjugate of asialoorosomucoid (ASOR) and horseradish peroxidase (HRP) was used as a ligand for the asialoglycoprotein receptor. Cells were incubated at 0 degree C in the presence of both 131I-transferrin and 125I-ASOR/HRP. Endocytosis of prebound 125I-ASOR/HRP and 131I-transferrin was monitored by cell fractionation on Percoll density gradients. Incubation of the cell homogenate in the presence of DAB and H2O2 before cell fractionation gave rise to a density shift of 125I-ASOR/HRP-containing vesicles due to HRP-catalyzed DAB polymerization. An identical change in density for 125I-transferrin and 125I-ASOR/HRP, induced by DAB cytochemistry, is taken as evidence for the concomitant presence of both ligands in the same compartment. At 37 degrees C, sorting of the two ligands occurred with a half-time of approximately 2 min, and was nearly completed within 10 min. The 125I-ASOR/HRP-induced shift of 131I-transferrin was completely dependent on the receptor-mediated uptake of 125I-ASOR/HRP in the same compartment. In the presence of a weak base (0.3 mM primaquine), the recycling of transferrin receptors was blocked. The cell surface transferrin receptor population was decreased within 6 min to 15% of its original size. DAB cytochemistry showed that sorting between endocytosed 131I-transferrin and 125I-ASOR/HRP was also blocked in the presence of primaquine. These results indicate that transferrin and asialoglycoprotein are taken up via the same compartments and that segregation of the transferrin-receptor complex and asialoglycoprotein occurs very efficiently soon after uptake. PMID:3032986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothstein, R.D.; Johnson, E.; Ouyang, A.
1991-06-01
Autoradiography was used to localize and quantify substance P receptors in the feline gastrointestinal tract. The specific binding of {sup 125}I-Bolton Hunter substance P was determined in the esophagus, lower esophageal sphincter, antrum, pylorus, duodenum, jejunum, ileum, ileocecal sphincter, and colon. Competitive binding studies indicated that substance P binding sites or NK-1 receptor sites were demonstrated. The concentration of NK-1 receptors was greatest in the distal half of the gastrointestinal tract, with the highest concentrations in the proximal colon. The circular muscle layer contained the greatest amount of substance P binding. The location and density of binding sites for substancemore » P may be important in understanding the relative importance of both the pharmacological responses to this neuropeptide and the immunohistochemical evidence of the peptide at different sites in the intestine.« less
Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor
1983-01-01
Treatment of short-term monolayer cultures of rat hepatocytes with the proton ionophore, monensin, abolishes asialoglycoprotein degradation, despite little effect of the drug on either surface binding of ligand or internalization of prebound ligand. Centrifuging cell homogenates on Percoll density gradients indicates that, as a result of monensin treatment, ligand does not enter lysosomes but sediments instead in a lower density subcellular fraction that is likely an endocytic vesicle. Analyzing the degree of receptor association of intracellular ligand revealed that monensin prevents the dissociation of the receptor-ligand complex that normally occurs subsequent to endocytosis. The weak base, chloroquine, also blocks this intracellular dissociation. Evidence from sequential substitution experiments is presented, indicating that monensin and chloroquine act at the same point in the sequence of events leading to ligand dissociation. These data are discussed in terms of a pH-mediated dissociation of the receptor-ligand complex within a prelysosomal endocytic vesicle. PMID:6304116
Spady, D K; Dietschy, J M
1985-07-01
The liver plays a key role in the regulation of circulating levels of low density lipoproteins (LDL) because it is both the site for the production of and the major organ for the degradation of this class of lipoproteins. In this study, the effects of feeding polyunsaturated or saturated triacylglycerols on receptor-dependent and receptor-independent hepatic LDL uptake were measured in vivo in the hamster. In control animals, receptor-dependent LDL transport manifested an apparent Km value of 85 mg/dl (plasma LDL-cholesterol concentration) and reached a maximum transport velocity of 131 micrograms of LDL-cholesterol/hr per g, whereas receptor-independent uptake increased as a linear function of plasma LDL levels. Thus, at normal plasma LDL-cholesterol concentrations, the hepatic clearance rate of LDL equaled 120 and 9 microliter/hr per g by receptor-dependent and receptor-independent mechanisms, respectively. As the plasma LDL-cholesterol was increased, the receptor-dependent (but not the receptor-independent) component declined. When cholesterol (0.12%) alone or in combination with polyunsaturated triacylglycerols was fed for 30 days, receptor-dependent clearance was reduced to 36-42 microliter/hr per g, whereas feeding of cholesterol plus saturated triacylglycerols essentially abolished receptor-dependent LDL uptake (5 microliter/hr per g). When compared to the appropriate kinetic curves, these findings indicated that receptor-mediated LDL transport was suppressed approximately equal to 30% by cholesterol feeding alone and this was unaffected by the addition of polyunsaturated triacylglycerols to the diet. In contrast, receptor-dependent uptake was suppressed approximately equal to 90% by the intake of saturated triacylglycerols. As compared to polyunsaturated triacylglycerols, the intake of saturated lipids was also associated with significantly higher plasma LDL-cholesterol concentrations and lower levels of cholesteryl esters in the liver.
Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice
2008-01-01
Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765
Dose-dependent effect of mammographic breast density on the risk of contralateral breast cancer.
Chowdhury, Marzana; Euhus, David; O'Donnell, Maureen; Onega, Tracy; Choudhary, Pankaj K; Biswas, Swati
2018-07-01
Increased mammographic breast density is a significant risk factor for breast cancer. It is not clear if it is also a risk factor for the development of contralateral breast cancer. The data were obtained from Breast Cancer Surveillance Consortium and included women diagnosed with invasive breast cancer or ductal carcinoma in situ between ages 18 and 88 and years 1995 and 2009. Each case of contralateral breast cancer was matched with three controls based on year of first breast cancer diagnosis, race, and length of follow-up. A total of 847 cases and 2541 controls were included. The risk factors included in the study were mammographic breast density, age of first breast cancer diagnosis, family history of breast cancer, anti-estrogen treatment, hormone replacement therapy, menopausal status, and estrogen receptor status, all from the time of first breast cancer diagnosis. Both univariate analysis and multivariate conditional logistic regression analysis were performed. In the final multivariate model, breast density, family history of breast cancer, and anti-estrogen treatment remained significant with p values less than 0.01. Increasing breast density had a dose-dependent effect on the risk of contralateral breast cancer. Relative to 'almost entirely fat' category of breast density, the adjusted odds ratios (and p values) in the multivariate analysis for 'scattered density,' 'heterogeneously dense,' and 'extremely dense' categories were 1.65 (0.036), 2.10 (0.002), and 2.32 (0.001), respectively. Breast density is an independent and significant risk factor for development of contralateral breast cancer. This risk factor should contribute to clinical decision making.
Nicotine Administration Attenuates Methamphetamine-Induced Novel Object Recognition Deficits
Vieira-Brock, Paula L.; McFadden, Lisa M.; Nielsen, Shannon M.; Smith, Misty D.; Hanson, Glen R.
2015-01-01
Background: Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms. Methods: Adolescent or adult male Sprague-Dawley rats received either nicotine water (10–75 μg/mL) or tap water for several weeks. Methamphetamine (4×7.5mg/kg/injection) or saline was administered either before or after chronic nicotine exposure. Novel object recognition was evaluated 6 days after methamphetamine or saline. Serotonin transporter function and density and α4β2 nicotinic acetylcholine receptor density were assessed on the following day. Results: Chronic nicotine intake via drinking water beginning during either adolescence or adulthood attenuated the novel object recognition deficits caused by a high-dose methamphetamine administration. Similarly, nicotine attenuated methamphetamine-induced deficits in novel object recognition when administered after methamphetamine treatment. However, nicotine did not attenuate the serotonergic deficits caused by methamphetamine in adults. Conversely, nicotine attenuated methamphetamine-induced deficits in α4β2 nicotinic acetylcholine receptor density in the hippocampal CA1 region. Furthermore, nicotine increased α4β2 nicotinic acetylcholine receptor density in the hippocampal CA3, dentate gyrus and perirhinal cortex in both saline- and methamphetamine-treated rats. Conclusions: Overall, these findings suggest that nicotine-induced increases in α4β2 nicotinic acetylcholine receptors in the hippocampus and perirhinal cortex might be one mechanism by which novel object recognition deficits are attenuated by nicotine in methamphetamine-treated rats. PMID:26164716
Christie, R. H.; Freeman, M.; Hyman, B. T.
1996-01-01
The macrophage scavenger receptor is a multifunctional receptor whose ligands include oxidized low density lipoprotein (LDL), as well as several other polyanionic macromolecules. Although the capacity of the receptor to bind modified LDL has implicated it in the process of atherosclerosis, its physiological role remains uncertain. We have examined human brain for expression of macrophage scavenger receptor as part of ongoing studies of lipoprotein receptors in the central nervous system. The receptor is expressed on microglia, but not on astrocytes, neurons, or vessel-associated structures. In Alzheimer disease, there is strong expression of the scavenger receptor in association with senile plaques. Images Figure 2 Figure 3 Figure 4 PMID:8579103
Chronic hypoxia up-regulates expression of adenosine A1 receptors in DDT1-MF2 cells.
Hammond, Lucy C; Bonnet, Claire; Kemp, Paul J; Yates, Michael S; Bowmer, Christopher J
2004-02-01
As the first step to understand how chronic hypoxia might regulate smooth muscle function in health and disease, we have employed an established immortalised cell model of smooth muscle, DDT1-MF2 cells, to address the hypothesis that adenosine A1 receptor density is modulated by O2 availability. Maximal specific binding (Bmax) of the selective adenosine A1 receptor antagonist, [3H]-DPCPX, to cell membranes increased 3.5-fold from 0.48 +/- 0.02 pmol/mg to 1.7 +/- 0.5 pmol/mg protein after 16 hr of hypoxia and this effect was not accompanied by any statistically significant changes in either binding affinity (0.84 +/- 0.2 nM vs. 1.2 +/- 0.3 nM) or Hill coefficient (1.1 +/- 0.1 vs. 0.99 +/- 0.03). Hypoxia-evoked increases in membrane receptor density were paralleled in intact DDT1-MF2 cells. In addition, the increase in [3H]-DPCPX binding to intact cells was inhibited by co-incubation during hypoxia with the translational inhibitor cycloheximide, the transcriptional blocker actinomycin D and the NFkappaB inhibitor sulphasalazine. Together, these data show that adenosine A1 receptor density is modulated, at least in part, by O2-dependent activation of the transcription factor NFkappaB and adds to the list of processes dynamically regulated by ambient oxygen availability. Since hypoxia is an initiating factor in acute renal failure, similar changes in transcription may account for up-regulation of adenosine A1 receptors noted previously in the renal vasculature of rats with acute renal failure.
The LDL receptor gene family: signaling functions during development.
Howell, B W; Herz, J
2001-02-01
The traditional views regarding the biological functions of the low-density lipoprotein (LDL) receptor gene family have been revisited recently with new evidence that at least some of the members of this receptor family act as signal-transduction molecules. Known for their role in endocytosis, particularly of their namesake the LDLs, and for their role in the prevention of atherosclerosis, these receptors belong to an ancient family with numerous ligands, effector molecules and functions. Recent evidence implicates this family of receptors in diverse signaling pathways, long-term potentiation and neuronal degeneration.
van den Buuse, Maarten; Low, Jac Kee; Kwek, Perrin; Martin, Sally; Gogos, Andrea
2017-09-01
Altered glutamate NMDA receptor function is implicated in schizophrenia, and gender differences have been demonstrated in this illness. This study aimed to investigate the interaction of gonadal hormones with NMDA receptor-mediated locomotor hyperactivity and PPI disruption in mice. The effect of 0.25 mg/kg of MK-801 on locomotor activity was greater in male mice than in female mice. Gonadectomy (by surgical castration) significantly reduced MK-801-induced hyperlocomotion in male mice, but no effect of gonadectomy was seen in female mice or on amphetamine-induced locomotor hyperactivity. The effect of MK-801 on prepulse inhibition of startle (PPI) was similar in intact and castrated male mice and in ovariectomized (OVX) female mice. In contrast, there was no effect of MK-801 on PPI in intact female mice. Forebrain NMDA receptor density, as measured with [ 3 H]MK-801 autoradiography, was significantly higher in male than in female mice but was not significantly altered by either castration or OVX. These results suggest that male sex hormones enhance the effect of NMDA receptor blockade on psychosis-like behaviour. This interaction was not seen in female mice and was independent of NMDA receptor density in the forebrain. Male sex hormones may be involved in psychosis by an interaction with NMDA receptor hypofunction.
Suzuki, Hideo; Lucas, Louis R.
2015-01-01
Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085
Marsh, Tanya G; Straub, Rachel K; Villalobos, Fatima; Hong, Mee Young
2011-12-01
Animal and human studies have indicated that the presence of soy in the diet improves cardiovascular health. Inflammation plays a pivotal role in the progression of cardiovascular disease (CVD). However, little is known about how dextran sodium sulfate (DSS)-induced systemic inflammation impacts overall heart health and, correspondingly, how soy protein modulates risk of CVD development in DSS-induced systemic inflammation. We hypothesized that soy protein-fed rats would have a lower risk of CVD by beneficial alteration of gene expression involving lipid metabolism and antioxidant capacity in DSS-induced systemic inflammation. Forty Sprague-Dawley rats were divided into 4 groups: casein, casein + DSS, soy protein, and soy protein + DSS. After 26 days, inflammation was induced in one group from each diet by incorporating 3% DSS in drinking water for 48 hours. Soy protein-fed rats had lower final body weights (P = .010), epididymal fat weights (P = .049), total cholesterol (P < .001), and low-density lipoprotein cholesterol (P < .001). In regard to gene expression, soy protein-fed rats had lower sterol regulatory element-binding protein-2 (P = .032) and hydroxymethylglutaryl-coenzyme A reductase (P = .028) levels and higher low-density lipoprotein receptor levels (P = .036). Antioxidant enzyme activity of superoxide dismutase and catalase was higher among the soy protein groups (P = .037 and P = .002, respectively). These results suggest that soy protein positively influences cardiovascular health by regulating serum lipids through modified expression of sterol regulatory element-binding protein-2 and its downstream genes (ie, hydroxymethylglutaryl-coenzyme A reductase and low-density lipoprotein receptor) and by promoting the antioxidant enzyme activity of superoxide dismutase and catalase. Copyright © 2011 Elsevier Inc. All rights reserved.
Tseng, Nancy; Seedorf, Gregory; Kuhn, Katherine; Abman, Steven H.
2016-01-01
Bronchopulmonary dysplasia (BPD) is the chronic lung disease associated with premature birth, characterized by impaired vascular and alveolar growth. In neonatal rats bleomycin decreases lung growth and causes pulmonary hypertension (PH), which is poorly responsive to nitric oxide. In the developing lung, through Rho kinase (ROCK) activation, ET-1 impairs endothelial cell function; however, whether ET-1–ROCK interactions contribute to impaired vascular and alveolar growth in experimental BPD is unknown. Neonatal rats were treated daily with intraperitoneal bleomycin with and without selective ETA (BQ123/BQ610) and ETB (BQ788) receptor blockers, nonselective ET receptor blocker (ETRB) (bosentan), or fasudil (ROCK inhibitor). At day 14, lungs were harvested for morphometrics, and measurements of Fulton's index (RV/LV+S), medial wall thickness (MWT), and vessel density. Lung ET-1 protein and ROCK activity (phospho-MYPT-1:total MYPT-1 ratio) were also measured by Western blot analysis. Bleomycin increased lung ET-1 protein expression by 65%, RV/LV+S by 60%, mean linear intercept (MLI) by 212%, and MWT by 140% and decreased radial alveolar count (RAC) and vessel density by 40 and 44%, respectively (P < 0.01 for each comparison). After bleomycin treatment, fasudil and bosentan partially restored RAC and vessel density and decreased MLI, RV/LV+S, and MWT to normal values. Bleomycin increased ROCK activity by 120%, which was restored to normal values by bosentan but not selective ETRB. We conclude that ET-1–ROCK interactions contribute to decreased alveolar and vascular growth and PH in experimental BPD. We speculate that nonselective ETRB and ROCK inhibitors may be effective in the treatment of infants with BPD and PH. PMID:27760762
Gien, Jason; Tseng, Nancy; Seedorf, Gregory; Kuhn, Katherine; Abman, Steven H
2016-12-01
Bronchopulmonary dysplasia (BPD) is the chronic lung disease associated with premature birth, characterized by impaired vascular and alveolar growth. In neonatal rats bleomycin decreases lung growth and causes pulmonary hypertension (PH), which is poorly responsive to nitric oxide. In the developing lung, through Rho kinase (ROCK) activation, ET-1 impairs endothelial cell function; however, whether ET-1-ROCK interactions contribute to impaired vascular and alveolar growth in experimental BPD is unknown. Neonatal rats were treated daily with intraperitoneal bleomycin with and without selective ET A (BQ123/BQ610) and ET B (BQ788) receptor blockers, nonselective ET receptor blocker (ETRB) (bosentan), or fasudil (ROCK inhibitor). At day 14, lungs were harvested for morphometrics, and measurements of Fulton's index (RV/LV+S), medial wall thickness (MWT), and vessel density. Lung ET-1 protein and ROCK activity (phospho-MYPT-1:total MYPT-1 ratio) were also measured by Western blot analysis. Bleomycin increased lung ET-1 protein expression by 65%, RV/LV+S by 60%, mean linear intercept (MLI) by 212%, and MWT by 140% and decreased radial alveolar count (RAC) and vessel density by 40 and 44%, respectively (P < 0.01 for each comparison). After bleomycin treatment, fasudil and bosentan partially restored RAC and vessel density and decreased MLI, RV/LV+S, and MWT to normal values. Bleomycin increased ROCK activity by 120%, which was restored to normal values by bosentan but not selective ETRB. We conclude that ET-1-ROCK interactions contribute to decreased alveolar and vascular growth and PH in experimental BPD. We speculate that nonselective ETRB and ROCK inhibitors may be effective in the treatment of infants with BPD and PH. Copyright © 2016 the American Physiological Society.
Maliqueo, Manuel; Benrick, Anna; Alvi, Asif; Johansson, Julia; Sun, Miao; Labrie, Fernand; Ohlsson, Claes; Stener-Victorin, Elisabet
2015-09-05
Acupuncture with combined manual and low-frequency electrical stimulation, or electroacupuncture (EA), reduces endocrine and reproductive dysfunction in women with polycystic ovary syndrome (PCOS), likely by modulating sympathetic nerve activity or sex steroid synthesis. To test this hypothesis, we induced PCOS in rats by prepubertal implantation of continuous-release letrozole pellets (200 µg/day) or vehicle. Six weeks later, rats were treated for 5-6 weeks with low-frequency EA 5 days/week, subcutaneous injection of 17β-estradiol (2.0 µg) every fourth day, or a β-adrenergic blocker (propranolol hydrochloride, 0.1 mg/kg) 5 days/week. Letrozole controls were handled without needle insertion or injected with sesame oil every fourth day. Estrous cyclicity, ovarian morphology, sex steroids, gonadotropins, insulin-like growth factor I, bone mineral density, and gene and protein expression in ovarian tissue were measured. Low-frequency EA induced estrous-cycle changes, decreased high levels of circulating luteinizing hormone (LH) and the LH/follicle-stimulating hormone (FSH) ratio, decreased high ovarian gene expression of adiponectin receptor 2, and increased expression of adiponectin receptor 2 protein and phosphorylation of ERK1/2. EA also increased cortical bone mineral density. Propranolol decreased ovarian expression of Foxo3, Srd5a1, and Hif1a. Estradiol decreased circulating LH, induced estrous cycle changes, and decreased ovarian expression of Adipor1, Foxo3, and Pik3r1. Further, total bone mineral density was higher in the letrozole-estradiol group. Thus, EA modulates the circulating gonadotropin levels independently of sex steroids or β-adrenergic action and affects the expression of ovarian adiponectin system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ugwu, David I; Okoro, Uchechukwu C; Mishra, Narendra K; Okafor, Sunday N
2018-05-22
The use of statin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for the treatment of dyslipidemia has been associated with dose limiting hepatoxicity, mytotoxicity and tolerability due to myalgias thereby necessitating the synthesis of new drug candidates for the treatment of lipid disorder. The reaction of appropriate benzenesulphonamide with substituted phenoxazinone in the presence of phenylboronic acid gave the targeted compounds. The molecular docking study were carried out using autodock tool against peroxisome proliferator activated receptor alpha. The in vivo lipid profile were assayed using conventional methods. The kidney and liver function test were carried out to assess the effect of the derivatives on the organs. The LD 50 of the most active derivatives were determined using mice. The targeted compounds were successfully synthesized in excellent yields and characterized using spectroscopic techniques. The results of the molecular docking experiment showed that they were good stimulant of peroxisome proliferator activated receptor alpha. Compound 9f showed activity at Ki of 2.8 nM and binding energy of 12.6 kcal/mol. All the compounds tested reduced triglyceride, total cholesterol, low density lipoprotein cholesterol and very low density lipoprotein cholesterol level in the mice model. Some of the reported compounds also increased high density lipoprotein cholesterol level in the mice. The compounds did not have appreciable effect on the kidney and liver of the mice used. The LD 50 showed that the novel compounds have improved toxicity profile. The synthesis of fifteen new derivatives of carboxamides bearing phenoxazinone and sulphonamide were successful. The compounds possessed comparable activity to gemfibrozil. The reported compounds had better toxicity profile than gemfibrozil and could serve as a replacement for the statins and fibrate class of lipid agents.
Kurt, Ozlem; Yilmaz-Aydogan, Hulya; Uyar, Mehmet; Isbir, Turgay; Seyhan, Mehmet Fatih; Can, Ayse
2012-06-01
It has been suggested that the estrogen receptor alpha (ERα) and vitamin D receptor (VDR) genes as possibly implicated in reduced bone mineral density (BMD) in osteoporosis. The present study investigated the relation of ERα PvuII/XbaI polymorphisms and VDR FokI/TaqI polymorphisms with BMD in Turkish postmenopausal women. Eighty-one osteoporotic and 122 osteopenic postmenopausal women were recruited. For detection of the polymorphisms, polymerase chain reaction-restriction fragment lenght polymorphism techniques have been used. BMD was measured at the lumbar spine and hip by dual-energy X-ray absorptiometry. Distributions of ERα (PvuII dbSNP: rs2234693, XbaI dbSNP: rs9340799) and VDR genotypes (FokI dbSNP rs10735810, TaqI dbSNP: rs731236) were similar in study population. Although overall prevalence of osteoporosis had no association with these genotypes, the prevalence of decreased femoral neck BMD values were higher in the subjects with ERα PvuII "PP" and ERα XbaI "XX" genotypes than in those with "Pp/pp" genotypes and "xx" genotype, respectively (P < 0.05). Furthermore, subjects with VDR FokI "FF" genotype had lower BMD values of femoral neck and total hip compared to those with "Ff" genotype (P < 0.05). In the logistic regression analysis, we confirmed the presence of relationships between the VDR FokI "FF" genotypes, BMI ≤ 27.5, age ≥ 55 and the increased risk of femoral neck BMD below 0.8 value in postmenopausal women. The present data suggests that the ERα PvuII/XbaI and VDR FokI polymorphisms may contribute to the determination of bone mineral density in Turkish postmenopausal women.
Kim, Na-Hyung; Moon, Phil-Dong; Kim, Su-Jin; Choi, In-Young; An, Hyo-Jin; Myung, Noh-Yil; Jeong, Hyun-Ja; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min
2008-01-01
Lactic acid bacteria are known to exert various physiologic functions in humans. In the current study, we investigated the effects of Soypro, a new soymilk fermented with lactic acid bacteria, like Leuconostoc kimchii, Leuconostoc citreum, and Lactobacillus plantarum, isolated from Kimchi, on adipocyte differentiation in preadipocyte 3T3-L1 cell lines and weight gain or the plasma lipid profile in Sprague-Dawley rats. Adipocyte 3T3-L1 cells treated with Soypro (10 microg/ml) significantly reduced the contents of cellular triglyceride and inhibited cell differentiation by Oil red O staining. Treatment with Soypro (10 microg/ml) for an additional two days in adipocytes inhibited the expression of peroxisome proliferator-activated receptor-gamma2 and CCAAT/enhancer binding protein-alpha, transcription factors of adipocyte differentiation. Based on these in vitro studies, we examined the anti-obesity effect of Soypro in rats for six weeks. Soypro had no significant effect on high-fat diet-induced increases in body weight, food intake, or feed gain ratio. However, the administration of Soypro significantly reduced the concentration of the plasma low density lipoprotein cholesterol. Changes in the plasma levels of total cholesterol and glucose were inclined to decrease in Soypro administrated groups compared with saline treated group. Triglyceride and high density lipoprotein cholesterol values in Soypro fed groups were similar compared to those of saline fed groups. Although further research is needed, these findings suggest that Soypro decreased the levels of low density lipoprotein cholesterol in high-fat diet-induced obesity and might partially inhibit the adipocyte differentiation through the suppression of a transcription factors peroxisome proliferator-activated receptor-gamma2 and CCAAT/enhancer binding protein-alpha.
Ribas, Catalina; Miralles, Antonio; Busquets, Xavier; García-Sevilla, Jesús A
2001-01-01
This study was designed to assess the molecular and cellular events involved in the up-regulation (and receptor supersensitivity) of brain α2-adrenoceptors as a result of chronic depletion of noradrenaline (and other monoamines) by reserpine. Chronic reserpine (0.25 mg kg−1 s.c., every 48 h for 6 – 14 days) increased significantly the density (Bmax values) of cortical α2-adrenoceptor agonist sites (34 – 48% for [3H]-UK14304, 22 – 32% for [3H]-clonidine) but not that of antagonist sites (11 – 18% for [3H]-RX821002). Competition of [3H]-RX821002 binding by (−)-adrenaline further indicated that chronic reserpine was associated with up-regulation of the high-affinity state of α2-adrenoceptors. In cortical membranes of reserpine-treated rats (0.25 mg kg−1 s.c., every 48 h for 20 days), the immunoreactivities of various G proteins (Gαi1/2, Gαi3, Gαo and Gαs) were increased (25 – 34%). Because the high-affinity conformation of the α2-adrenoceptor is most probably related to the complex with Gαi2 proteins, these results suggested an increase in signal transduction through α2-adrenoceptors (and other monoamine receptors) induced by chronic reserpine. After α2-adrenoceptor alkylation, the analysis of receptor recovery (Bmax for [3H]-UK14304) indicated that the increased density of cortical α2-adrenoceptors in reserpine-treated rats was probably due to a higher appearance rate constant of the receptor (Δr=57%) and not to a decreased disappearance rate constant (Δk=7%). Northern- and dot-blot analyses of RNA extracted from the cerebral cortex of saline- and reserpine-treated rats (0.25 mg kg−1, s.c., every 48 h for 20 days) revealed that reserpine markedly increased the expression of α2a-adrenoceptor mRNA in the brain (125%). This transcriptional activation of the receptor gene expression appears to be the cellular mechanism by which reserpine induces up-regulation in the density of brain α2-adrenoceptors. PMID:11264240
Wang, Qingshan; Oyarzabal, Esteban; Wilson, Belinda; Qian, Li; Hong, Jau-Shyong
2015-10-01
The distribution of microglia varies greatly throughout the brain. The substantia nigra (SN) contains the highest density of microglia among different brain regions. However, the mechanism underlying this uneven distribution remains unclear. Substance P (SP) is a potent proinflammatory neuropeptide with high concentrations in the SN. We recently demonstrated that SP can regulate nigral microglial activity. In the present study, we further investigated the involvement of SP in modulating nigral microglial density in postnatal developing mice. Nigral microglial density was quantified in wild-type (WT) and SP-deficient mice from postnatal day 1 (P1) to P30. SP was detected at high levels in the SN as early as P1 and microglial density did not peak until around P30 in WT mice. SP-deficient mice (TAC1(-/-)) had a significant reduction in nigral microglial density. No differences in the ability of microglia to proliferate were observed between TAC1(-/-) and WT mice, suggesting that SP may alter microglial density through chemotaxic recruitment. SP was confirmed to dose-dependently attract microglia using a trans-well culture system. Mechanistic studies revealed that both the SP receptor neurokinin-1 receptor (NK1R) and the superoxide-producing enzyme NADPH oxidase (NOX2) were necessary for SP-mediated chemotaxis in microglia. Furthermore, genetic ablation and pharmacological inhibition of NK1R or NOX2 attenuated SP-induced microglial migration. Finally, protein kinase Cδ (PKCδ) was recognized to couple SP/NK1R-mediated NOX2 activation. Altogether, we found that SP partly accounts for the increased density of microglia in the SN through chemotaxic recruitment via a novel NK1R-NOX2 axis-mediated pathway. © 2015 Authors; published by Portland Press Limited.
Surface receptors on human haematopoietic cell lines.
Huber, C; Sundström, C; Nilsson, K; Wigzell, H
1976-01-01
The expression of complement receptors, of Fc receptors, of SRBC receptors and of S-Ig was investigated on human haematopoietic cell lines of proved malignant derivation. According to their origin and to a panel of phenotypic markers these lines have been classified into lymphoma lines, myeloma lines and leukemia lines. Results were compared with those obtained on non-malignant EBV carrying lymphoblastoid cell lines (LCL). Among the lymphoid cell lines the LCL showed a pattern of B-lymphocyte surface markers, i.e. surface immunoglobulins, C3 receptors but low density of Fc receptors. The non-Burkitt lymphoma lines bore in varying degree these B-lymphocyte markers. The lines U-698 M and DG-75 were exceptional in having only surface immunoglobulin. The Burkitt lymphoma lines had all B-lymphocyte markers. The myeloma lines differed from the lymphoid lines in lacking C3 and Fc receptors and showed only trace amounts of surface immunoglobulins. In contrast to lymphoid and myeloma lines, the leukaemia lines were completely lacking surface immunoglobulins, but showed C3 and Fc receptors in variable densities. On line, the ALL derived line MOLT-3 showed the capacity to spontaneous rosette formation with SRBC. The findings that LCL presented a homogeneous pattern of B-lymphocyte surface markers may be of value in order to discriminate between these lines and lines derived from haematopoietic malignancies other than Burkitt lymphomas. PMID:963908
USDA-ARS?s Scientific Manuscript database
Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C l...
Modulation of Fc gamma receptors on I cells and monocytes by 15 hydroperoxyeicosatetranoic acid.
Goodwin, J S; Gualde, N; Aldigier, J; Rigaud, M; Vanderhoek, J Y
1984-01-01
We investigated the effects of the 15-lipoxygenase products, 15 hydroperoxyeicosatetranoic acid (15 HPETE) and 15 hydroxyeicosatetranoic acid (15 HETE) on Fc gamma receptor expression on human T cells and monocytes. Incubation of these cells with 15 HPETE but not 15 HETE results in a shift to decreased density of Fc gamma receptors on the cell surface.
Tomé, Angelo R; Castro, Enrique; Santos, Rosa M; Rosário, Luís M
2007-06-14
Adrenal chromaffin cells mediate acute responses to stress through the release of epinephrine. Chromaffin cell function is regulated by several receptors, present both in adrenergic (AD) and noradrenergic (NA) cells. Extracellular ATP exerts excitatory and inhibitory actions on chromaffin cells via ionotropic (P2X) and metabotropic (P2Y) receptors. We have taken advantage of the actions of the purinergic agonists ATP and UTP on cytosolic free Ca2+ concentration ([Ca2+]i) to determine whether P2X and P2Y receptors might be asymmetrically distributed among AD and NA chromaffin cells. The [Ca2+]i and the [Na+]i were recorded from immunolabeled bovine chromaffin cells by single-cell fluorescence imaging. Among the ATP-sensitive cells ~40% did not yield [Ca2+]i responses to ATP in the absence of extracellular Ca2+ (Ca2+o), indicating that they expressed P2X receptors and did not express Ca2+- mobilizing P2Y receptors; the remainder expressed Ca2+-mobilizing P2Y receptors. Relative to AD-cells approximately twice as many NA-cells expressed P2X receptors while not expressing Ca2+- mobilizing P2Y receptors, as indicated by the proportion of cells lacking [Ca2+]i responses and exhibiting [Na+]i responses to ATP in the absence and presence of Ca2+o, respectively. The density of P2X receptors in NA-cells appeared to be 30-50% larger, as suggested by comparing the average size of the [Na+]i and [Ca2+]i responses to ATP. Conversely, approximately twice as many AD-cells expressed Ca2+-mobilizing P2Y receptors, and they appeared to exhibit a higher (~20%) receptor density. UTP raised the [Ca2+]i in a fraction of the cells and did not raise the [Na+]i in any of the cells tested, confirming its specificity as a P2Y agonist. The cell density of UTP-sensitive P2Y receptors did not appear to vary among AD- and NA-cells. Although neither of the major purinoceptor types can be ascribed to a particular cell phenotype, P2X and Ca2+-mobilizing P2Y receptors are preferentially located to noradrenergic and adrenergic chromaffin cells, respectively. ATP might, in addition to an UTP-sensitive P2Y receptor, activate an UTP-insensitive P2Y receptor subtype. A model for a short-loop feedback interaction is presented whereby locally released ATP acts upon P2Y receptors in adrenergic cells, inhibiting Ca2+ influx and contributing to terminate evoked epinephrine secretion.
Mizuno, Márcia Sanae; Crisma, Amanda Rabello; Borelli, Primavera; Schäfer, Bárbara Tavares; Silveira, Mariana Póvoa; Castelucci, Patricia
2014-01-01
AIM: To investigate the colocalization, density and profile of neuronal areas of enteric neurons in the ileum of male obese mice. METHODS: The small intestinal samples of male mice in an obese group (OG) (C57BL/6J ob/ob) and a control group (CG) (+/+) were used. The tissues were analyzed using a double immunostaining technique for immunoreactivity (ir) of the P2X2 receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT) and calretinin (Calr). Also, we investigated the density and profile of neuronal areas of the NOS-, ChAT- and Calr-ir neurons in the myenteric plexus. Myenteric neurons were labeled using an NADH-diaphorase histochemical staining method. RESULTS: The analysis demonstrated that the P2X2 receptor was expressed in the cytoplasm and in the nuclear and cytoplasmic membranes only in the CG. Neuronal density values (neuron/cm2) decreased 31% (CG: 6579 ± 837; OG: 4556 ± 407) and 16.5% (CG: 7796 ± 528; OG: 6513 ± 610) in the NOS-ir and calretinin-ir neurons in the OG, respectively (P < 0.05). Density of ChAT-ir (CG: 6200 ± 310; OG: 8125 ± 749) neurons significantly increased 31% in the OG (P < 0.05). Neuron size studies demonstrated that NOS, ChAT, and Calr-ir neurons did not differ significantly between the CG and OG groups. The examination of NADH-diaphorase-positive myenteric neurons revealed an overall similarity between the OG and CG. CONCLUSION: Obesity may exert its effects by promoting a decrease in P2X2 receptor expression and modifications in the density of the NOS-ir, ChAT-ir and CalR-ir myenteric neurons. PMID:25320527
O'Neal, Wesley T; Griffin, William F; Kent, Susan D; Faiz, Filza; Hodges, Jonathan; Vuncannon, Jackson; Virag, Jitka A I
2014-01-01
EphrinA1-EphA-receptor signaling is protective during myocardial infarction (MI). The EphA2-receptor (EphA2-R) potentially mediates cardiomyocyte survival. To determine the role of the EphA2-R in acute non-reperfused myocardial injury in vivo, infarct size, inflammatory cell density, NF-κB, p-AKT/Akt, and MMP-2 protein levels, and changes in ephrinA1/EphA2-R gene expression profile were assessed 4 days post-MI in B6129 wild-type (WT) and EphA2-R-mutant (EphA2-R-M) mice lacking a functional EphA2-R. Fibrosis, capillary density, morphometry of left ventricular chamber and infarct dimensions, and cardiac function also were measured 4 weeks post-MI to determine the extent of ventricular remodeling. EphA2-R-M infarct size and area of residual necrosis were 31.7% and 113% greater than WT hearts, respectively. Neutrophil and macrophage infiltration were increased by 46% and 84% in EphA2-R-M hearts compared with WT, respectively. NF-κB protein expression was 1.9-fold greater in EphA2-R-M hearts at baseline and 56% less NF-κB after infarction compared with WT. EphA6 gene expression was 2.5-fold higher at baseline and increased 9.8-fold 4 days post-MI in EphA2-R-M hearts compared with WT. EphrinA1 gene expression in EphA2-R-M hearts was unchanged at baseline and decreased by 42% 4 days post-MI compared with WT hearts. EphA2-R-M hearts had 66.7% less expression of total Akt protein and 59% less p-Akt protein than WT hearts post-MI. EphA2-R-M hearts 4 weeks post-MI had increased chamber dilation and interstitial fibrosis and decreased MMP-2 expression and capillary density compared with WT. In conclusion, the EphA2-R is necessary to appropriately modulate the inflammatory response and severity of early injury during acute MI, thereby influencing the progression of ischemic cardiomyopathy.
O'Neal, Wesley T.; Griffin, William F.; Kent, Susan D.; Faiz, Filza; Hodges, Jonathan; Vuncannon, Jackson; Virag, Jitka A. I.
2014-01-01
EphrinA1-EphA-receptor signaling is protective during myocardial infarction (MI). The EphA2-receptor (EphA2-R) potentially mediates cardiomyocyte survival. To determine the role of the EphA2-R in acute non-reperfused myocardial injury in vivo, infarct size, inflammatory cell density, NF-κB, p-AKT/Akt, and MMP-2 protein levels, and changes in ephrinA1/EphA2-R gene expression profile were assessed 4 days post-MI in B6129 wild-type (WT) and EphA2-R-mutant (EphA2-R-M) mice lacking a functional EphA2-R. Fibrosis, capillary density, morphometry of left ventricular chamber and infarct dimensions, and cardiac function also were measured 4 weeks post-MI to determine the extent of ventricular remodeling. EphA2-R-M infarct size and area of residual necrosis were 31.7% and 113% greater than WT hearts, respectively. Neutrophil and macrophage infiltration were increased by 46% and 84% in EphA2-R-M hearts compared with WT, respectively. NF-κB protein expression was 1.9-fold greater in EphA2-R-M hearts at baseline and 56% less NF-κB after infarction compared with WT. EphA6 gene expression was 2.5-fold higher at baseline and increased 9.8-fold 4 days post-MI in EphA2-R-M hearts compared with WT. EphrinA1 gene expression in EphA2-R-M hearts was unchanged at baseline and decreased by 42% 4 days post-MI compared with WT hearts. EphA2-R-M hearts had 66.7% less expression of total Akt protein and 59% less p-Akt protein than WT hearts post-MI. EphA2-R-M hearts 4 weeks post-MI had increased chamber dilation and interstitial fibrosis and decreased MMP-2 expression and capillary density compared with WT. In conclusion, the EphA2-R is necessary to appropriately modulate the inflammatory response and severity of early injury during acute MI, thereby influencing the progression of ischemic cardiomyopathy. PMID:24795639
Relationship between ploidy and steroid hormone receptors in primary invasive breast cancer.
Horsfall, D. J.; Tilley, W. D.; Orell, S. R.; Marshall, V. R.; Cant, E. L.
1986-01-01
The relationship between ploidy, as measured by flow cytometry, and the presence of oestrogen and progesterone receptors was investigated in 145 primary invasive breast cancers. The tumours were considered as an integral group, and as subgroups of lobular and ductal carcinomas. An association was found between the presence of aneuploid stemlines and an absence of oestrogen receptors (ER), for the total tumour population (P less than 0.02), and for the ductal carcinoma group (P less than 0.05). An association between aneuploidy and an absence of progesterone receptors (PR) was observed for the total tumour group (P less than 0.05). Evaluation of a combined oestrogen and progesterone receptor status indicated that the association between aneuploidy and an absence of both receptors was highly significant. The probability of such an association was P less than 0.001 for the total tumour population, and P less than 0.01 for the ductal tumour group. Assessment of progesterone receptor expression by breast cancers containing oestrogen receptors indicated that aneuploid tumours were as likely to express PR as were diploid tumours. Hence, the biological activity of oestrogen receptors appears unmodified by the presence of aneuploid nuclei. PMID:3004547
van den Biggelaar, Maartje; Madsen, Jesper J; Faber, Johan H; Zuurveld, Marleen G; van der Zwaan, Carmen; Olsen, Ole H; Stennicke, Henning R; Mertens, Koen; Meijer, Alexander B
2015-07-03
Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and SPR interaction analysis on a library of lysine replacement variants as two independent approaches, we demonstrate that the interaction between factor VIII (FVIII) and LRP1 occurs over an extended surface containing multiple lysine residues. None of the individual lysine residues account completely for LRP1 binding, suggesting an additive binding model. Together with structural docking studies, our data suggest that FVIII interacts with LRP1 via an extended surface of multiple lysine residues that starts at the bottom of the C1 domain and winds around the FVIII molecule. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Regulation of atrial natriuretic peptide clearance receptors in mesangial cells by growth factors.
Paul, R V; Wackym, P S; Budisavljevic, M; Everett, E; Norris, J S
1993-08-25
Rat mesangial cells can express both 130-kDa guanylyl cyclase-coupled and 66-kDa non-coupled atrial natriuretic peptide (ANP) receptors (ANPR-A and ANPR-C, respectively). Exposure of mesangial cells, grown in 20% fetal calf serum, to 0.1% serum for 24 h increased total ANP receptor density more than 2-fold (Bmax = 87 versus 37 fmol/mg of cell protein) without changing binding affinity (Kd = 94 versus 88 pM). Radioligand binding and cross-linking studies demonstrated that up-regulation of ANP binding after serum deprivation was entirely due to an increase in ANPR-C, with little or no change in ANPR-A. Inhibition of protein synthesis with cycloheximide blocked up-regulation after serum deprivation. Steady-state ANPR-C mRNA level was increased 15-fold by serum deprivation, as judged by Northern blotting. There was no change in ANPR-A mRNA. Platelet-derived growth factor and phorbol myristate acetate, when added to low serum medium, blocked or reversed the effect of serum deprivation on ANPR-C. We conclude that synthesis and expression of ANPR-C but not ANPR-A is suppressed by serum, platelet-derived growth factor, and phorbol myristate acetate. Suppression of ANPR-C in vivo could contribute to mesangial cell proliferative responses to growth factors.
Shao, Feng; Gu, Lifei; Chen, Huijuan; Liu, Ronghua; Huang, Huilian; Ren, Gang
2016-01-01
Background: Hawthorn (Crataegus pinnatifida) is a Chinese medicinal plant traditionally used in the treatment of hyperlipidemia. Recently, studies indicated free radical scavenging was one of the major pathways to alleviate hyperlipidemia. Moreover, hawthorn fruit is a rich source of phenols, which quench free radical and attenuate hyperlipidemia. However, the phenols vary with processing methods, especially solvent type. Objective: Our aim was to compare hypolipidemic and antioxidant effects of aqueous and ethanol extracts of hawthorn fruit in hyperlipidemia rats. Materials and Methods: After a 4-week treatment of high-fat emulsion, lipid profile levels and antioxidant levels of two extracts were determined using commercial analysis. Total phenols content in the extract of hawthorn fruit was determined colorimetrically by the Folin–Ciocalteu method. Results: Both ethanol and aqueous extracts of hawthorn fruit possessed hypolipidemic and antioxidant activities. Simultaneously, stronger activities were observed in ethanol extract. Besides, total phenols content in ethanol extract from the same quality of hawthorn fruit was 3.9 times more than that in aqueous extract. Conclusion: The obvious difference of hypolipidemic and antioxidant effects between ethanol extract and aqueous extract of hawthorn fruit was probably due to the presence of total phenols content, under the influence of extraction solvent. SUMMARY Ethanol extract of hawthorn fruit exhibited more favorable hypolipidemic and antioxidant effects than aqueous extract. The higher effects could be due to the higher content of total phenols that varies with extraction solvent. Abbreviations used: TC: Total cholesterol, TG: Triglyceride, LDL-C: Low-density lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol, GSH-Px: Glutathione peroxidase, SOD: Superoxide dismutase, MDA: Malondialdehyde, CAT: Catalase, NO: Nitric oxide, NOS: Nitric oxide synthase, SR-BI: Scavenger receptor Class B Type I PMID:27019563
Shao, Feng; Gu, Lifei; Chen, Huijuan; Liu, Ronghua; Huang, Huilian; Ren, Gang
2016-01-01
Hawthorn (Crataegus pinnatifida) is a Chinese medicinal plant traditionally used in the treatment of hyperlipidemia. Recently, studies indicated free radical scavenging was one of the major pathways to alleviate hyperlipidemia. Moreover, hawthorn fruit is a rich source of phenols, which quench free radical and attenuate hyperlipidemia. However, the phenols vary with processing methods, especially solvent type. Our aim was to compare hypolipidemic and antioxidant effects of aqueous and ethanol extracts of hawthorn fruit in hyperlipidemia rats. After a 4-week treatment of high-fat emulsion, lipid profile levels and antioxidant levels of two extracts were determined using commercial analysis. Total phenols content in the extract of hawthorn fruit was determined colorimetrically by the Folin-Ciocalteu method. Both ethanol and aqueous extracts of hawthorn fruit possessed hypolipidemic and antioxidant activities. Simultaneously, stronger activities were observed in ethanol extract. Besides, total phenols content in ethanol extract from the same quality of hawthorn fruit was 3.9 times more than that in aqueous extract. The obvious difference of hypolipidemic and antioxidant effects between ethanol extract and aqueous extract of hawthorn fruit was probably due to the presence of total phenols content, under the influence of extraction solvent. Ethanol extract of hawthorn fruit exhibited more favorable hypolipidemic and antioxidant effects than aqueous extract. The higher effects could be due to the higher content of total phenols that varies with extraction solvent. Abbreviations used: TC: Total cholesterol, TG: Triglyceride, LDL-C: Low-density lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol, GSH-Px: Glutathione peroxidase, SOD: Superoxide dismutase, MDA: Malondialdehyde, CAT: Catalase, NO: Nitric oxide, NOS: Nitric oxide synthase, SR-BI: Scavenger receptor Class B Type I.
Renal hemodynamic effects of activation of specific renal sympathetic nerve fiber groups.
DiBona, G F; Sawin, L L
1999-02-01
To examine the effect of activation of a unique population of renal sympathetic nerve fibers on renal blood flow (RBF) dynamics, anesthetized rats were instrumented with a renal sympathetic nerve activity (RSNA) recording electrode and an electromagnetic flow probe on the ipsilateral renal artery. Peripheral thermal receptor stimulation (external heat) was used to activate a unique population of renal sympathetic nerve fibers and to increase total RSNA. Total RSNA was reflexly increased to the same degree with somatic receptor stimulation (tail compression). Arterial pressure and heart rate were increased by both stimuli. Total RSNA was increased to the same degree by both stimuli but external heat produced a greater renal vasoconstrictor response than tail compression. Whereas both stimuli increased spectral density power of RSNA at both cardiac and respiratory frequencies, modulation of RBF variability by fluctuations of RSNA was small at these frequencies, with values for the normalized transfer gain being approximately 0.1 at >0.5 Hz. During tail compression coherent oscillations of RSNA and RBF were found at 0.3-0.4 Hz with normalized transfer gain of 0.33 +/- 0.02. During external heat coherent oscillations of RSNA and RBF were found at both 0.2 and 0.3-0.4 Hz with normalized transfer gains of 0. 63 +/- 0.05 at 0.2 Hz and 0.53 +/- 0.04 to 0.36 +/- 0.02 at 0.3-0.4 Hz. Renal denervation eliminated the oscillations in RBF at both 0.2 and 0.3-0.4 Hz. These findings indicate that despite similar increases in total RSNA, external heat results in a greater renal vasoconstrictor response than tail compression due to the activation of a unique population of renal sympathetic nerve fibers with different frequency-response characteristics of the renal vasculature.
Gu, Jie-mei; Xiao, Wen-jin; He, Jin-wei; Zhang, Hao; Hu, Wei-wei; Hu, Yun-qiu; Li, Miao; Liu, Yu-juan; Fu, Wen-zhen; Yu, Jin-bo; Gao, Gao; Yue, Hua; Ke, Yao-hua; Zhang, Zhen-lin
2009-12-01
The goal of this study was to determine whether polymorphisms in the vitamin D receptor (VDR) and estrogen receptor alpha (ESR1) genes are associated with variations of peak bone mineral density (BMD) and obesity phenotypes in young Chinese men. A total of 1215 subjects from 400 Chinese nuclear families were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele-specific multiple PCR (ASM-PCR) analysis at the ApaI, FokI, and CDX2 sites in the VDR gene and the PvuII and XbaI sites in the ESR1 gene. BMD at the lumbar spine and hip, total fat mass, and total lean mass were measured using dual energy X-ray absorptiometry. The associations between VDR and ESR1 gene polymorphisms with peak BMD, body mass index (BMI), total fat mass, total lean mass, and percentage fat mass (PFM) were determined using quantitative transmission disequilibrium tests (QTDTs). Using QTDTs, no significant within-family associations were obtained between genotypes or haplotypes of the VDR and ESR1 genes and peak BMD. For the obesity phenotypes, the within-family associations were significant between CDX2 genotypes and BMI (P=0.046), fat mass (P=0.004), and PFM (P=0.020). Further, PvuII was significantly associated with the variation of fat mass and PFM (P=0.002 and P=0.039, respectively). A subsequent 1000 permutations were in agreement with these within-family association results. Our findings showed that VDR and ESR1 polymorphisms were associated with total fat mass in young Chinese men, but we failed to find a significant association between VDR and ESR1 genotypes and peak BMD. These findings suggested that the VDR and ESR1 genes are quantitative trait loci (QTL) underlying fat mass variation in young Chinese men.
Fitts, James M; Klein, Robert M; Powers, C Andrew
2011-07-01
Tamoxifen is a selective estrogen receptor (ER) modulator, but it is also a deactivating ligand for estrogen-related receptor-γ (ERRγ) and a full agonist for the G protein-coupled estrogen receptor (GPER). Fulvestrant is a selective ER down-regulator that lacks agonist effects on ERα/ERβ, is inactive on ERRγ, but acts as a full agonist on GPER. Fulvestrant effects on tamoxifen actions on uterine and somatic growth, bone, the growth hormone (GH)-insulin-like growth factor I (IGF-I) axis, and pituitary prolactin were analyzed to pharmacologically discriminate tamoxifen effects that may be mediated by ERα/ERβ versus ERRγ versus GPER. Ovariectomized rats received tamoxifen (0.6 mg/kg/daily) plus fulvestrant at 0, 3, 6, or 12 mg/kg/daily for 5 weeks; controls received vehicle or 6 mg/kg fulvestrant daily. Tamoxifen effects to increase uterine weight, decrease serum IGF-I, increase pituitary prolactin, and increase bone mineral density could be fully blocked by fulvestrant, indicating mediation by ERα/ERβ. Tamoxifen effects to decrease pituitary GH, tibia length, and body weight were only partially blocked by fulvestrant, indicating involvement of mechanisms unrelated to ERα/ERβ. Fulvestrant did not inhibit tamoxifen actions to reduce total pituitary protein, again indicating effects not mediated by ERα/ERβ. Tamoxifen actions to reduce serum GH were mimicked rather than inhibited by fulvestrant, pharmacological features consistent with GPER involvement. However, fulvestrant alone increased IGF-I and also blocked tamoxifen-evoked IGF-I decreases; thus fulvestrant effects on serum GH might reflect increased IGF-I feedback inhibition. Fulvestrant alone had no effect on the other parameters. The findings indicate that mechanisms unrelated to ERα/ERβ contribute to tamoxifen effects on body weight, bone growth, and pituitary function.
Nido, Sonia Agostinho; Shituleni, Shituleni Andreas; Mengistu, Berhe Mekonnen; Liu, Yunhuan; Khan, Alam Zeb; Gan, Fang; Kumbhar, Shahnawaz; Huang, Kehe
2016-06-01
A total of 80 female albino mice were randomly allotted into five groups (n = 16) as follows: (A) normal control, (B) high-fat diet (HFD),; (C) HFD + probiotics (P), (D) HFD + sodium selenite (SS), and (E) HFD + selenium-enriched probiotics (SP). The selenium content of diets in groups A, B, C, D, and E was 0.05, 0.05, 0.05, 0.3, and 0.3 μg/g, respectively. The amount of probiotics contained in groups C and E was similar (Lactobacillus acidophilus 0.25 × 10(11)/mL and Saccharomyces cerevisiae 0.25 × 10(9)/mL colony-forming units (CFU)). The high-fat diet was composed of 15 % lard, 1 % cholesterol, 0.3 % cholic acid, and 83.7 % basal diet. At the end of the 4-week experiment, blood and liver samples were collected for the measurements of lipid metabolism, antioxidative status, histopathological lesions, and related gene expressions. The result shows that HFD significantly increased the body weights and liver damages compared to control, while P, SS, or SP supplementation attenuated the body weights and liver damages in mice. P, SS, or SP supplementation also significantly reversed the changes of alanine aminotransferase (AST), aspartate aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), total protein (TP), high-density lipoprotein (HDL), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalasa (CAT), and malondialdehyde (MDA) levels induced by HFD. Generally, adding P, SS, or SP up-regulated mRNA expression of carnitine palmitoyltransferase-I (CPT1), carnitine palmitoyltransferase II (CPT2), acetyl-CoA acetyltransferase II (ACAT2), acyl-coenzyme A oxidase (ACOX2), and peroxisome proliferator-activated receptor alpha (PPARα) and down-regulated mRNA expression of fatty acid synthase (FAS), lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol regulatory element-binding protein-1 (SREBP1) involved in lipid metabolism. Among the group, adding SP has a maximum effect in improving lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a HFD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchsbaum, M.S.; Wu, J.; Haier, R.
1987-06-22
Patients with generalized anxiety disorder (n = 18) entered a 21-day, double-blind, placebo-controlled random assignment trial of clorazepate. Positron emission tomography with YF-deoxyglucose was carried out before and after treatment. Decreases in glucose metabolic rate in visual cortex and relative increases in the basal ganglia and thalamus were found. A correlation between regional changes in metabolic rate and regional benzodiazepine receptor binding density from other human autopsy studies was observed; brain regions highest in receptor density showed the greatest decrease in rate.
Prosser, E S; Pruthi, R; Csernansky, J G
1989-01-01
The onset and persistence of changes in 3H-spiroperidol binding to dopamine (DA) D2 receptors were examined in rat mesolimbic and striatal brain regions following daily administration of haloperidol, molindone, or sulpiride for 3, 7, 14, or 28 days. Neuroleptic dose equivalencies were determined by inhibition of 3H-spiroperidol in vivo binding in several rat brain regions. Changes in locomotor and stereotyped responses to the specific DA D2 agonist quinpirole were examined 3 days after the last treatment dose. Haloperidol or molindone administration increased mean stereotypy scores and striatal DA D2 receptor densities throughout the 28-day treatment period. In contrast, mesolimbic DA D2 receptor densities were transiently increased and returned to control values, after 28 days of haloperidol or molindone treatment. Sulpiride treatment increased mean stereotypy scores and striatal Bmax values, but had no effect on locomotion or mesolimbic dopamine receptor density. Additionally, the magnitude of change in the various measures of brain DA function varied among the three neuroleptic treatment groups. Results from this study suggest that mesolimbic and striatal brain regions differ in their response to long-term neuroleptic administration and that drug choice may influence the magnitude of neuroleptic-induced dopaminergic supersensitivity.
Atkinson, Charlotte; Warren, Ruth ML; Sala, Evis; Dowsett, Mitch; Dunning, Alison M; Healey, Catherine S; Runswick, Shirley; Day, Nicholas E; Bingham, Sheila A
2004-01-01
Introduction Isoflavones are hypothesized to protect against breast cancer, but it is not clear whether they act as oestrogens or anti-oestrogens in breast tissue. Our aim was to determine the effects of taking a red clover-derived isoflavone supplement daily for 1 year on mammographic breast density. Effects on oestradiol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), lymphocyte tyrosine kinase activity and menopausal symptoms were also assessed. Methods A total of 205 women (age range 49–65 years) with Wolfe P2 or DY mammographic breast patterns were randomly assigned to receive either a red clover-derived isoflavone tablet (26 mg biochanin A, 16 mg formononetin, 1 mg genistein and 0.5 mg daidzein) or placebo. Change in mammographic breast density, serum oestradiol, FSH, LH, menopausal symptoms and lymphocyte tyrosine kinase activity from baseline to 12 months were assessed. Results A total of 177 women completed the trial. Mammographic breast density decreased in both groups but the difference between the treatment and placebo was not statistically significant. There was a significant interaction between treatment group and oestrogen receptor (ESR1) PvuII polymorphism for the change in estimated percentage breast density (mean ± standard deviation): TT isoflavone 1.4 ± 12.3% and TT placebo -9.6 ± 14.2%; CT isoflavone -5.2 ± 12.0% and CT placebo -2.8 ± 10.3%; and CC isoflavone -3.4 ± 9.7% and CC placebo -1.1 ± 9.5%. There were no statistically significant treatment effects on oestradiol, FSH, or LH (assessed only in postmenopausal women), or on lymphocyte tyrosine kinase activity. Baseline levels of menopausal symptoms were low, and there were no statistically significant treatment effects on frequency of hot flushes or other menopausal symptoms. Conclusion In contrast to studies showing that conventional hormone replacement therapies increase mammographic breast density, the isoflavone supplement did not increase mammographic breast density in this population of women. Furthermore, there were no effects on oestradiol, gonadotrophins, lymphocyte tyrosine kinase activity, or menopausal symptoms. PMID:15084240
Holley, R W; Armour, R; Baldwin, J H; Brown, K D; Yeh, Y C
1977-01-01
BSC-1 cells grow slowly, to high cell density, in medium with 0.1% calf serum. An increase in the serum concentration increases both the growth rate of the cells and the final cell density. The serum can be replaced to some extent by epidermal growth factor (EGF). Initiation of DNA synthesis in BSC-1 cells that have spread into a "wound" in a crowded cell layer requires the addition of a trace of serum or EGF, if the cells have previously been deprived of serum. The binding of 125I-labeled EGF to low-density and high-density BSC-1 cells has been studied. Binding is faster to low-density cells. Cells at low cell density also bind much more EGF per cell than cells at high cell density. The fraction of bound 125I-labeled EGF that is present on the cell surface as intact EGF is larger at low than at high cell density. The results indicate that the number of available EGF receptors per cell decreases drastically as the cell density increases. It is suggested that a decrease in the number of available EGF receptor sites per cell, and the accompanying decrease in sensitivity of the cells to EGF, contributes to density-dependent regulation of growth of these cells. Images PMID:303774
Bartuzi, Paulina; Billadeau, Daniel D; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K; Elliott, Alison M; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D; Burstein, Ezra; Hofker, Marten H; van de Sluis, Bart
2016-03-11
The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking.
Popova, Nina K; Naumenko, Vladimir S; Tibeikina, Marina A; Kulikov, Alexander V
2009-12-01
Prepulse inhibition (PPI), the reduction in acoustic startle produced when it is preceded by a weak prepulse stimulus, is impaired in schizophrenic patients. The DBA/2J mouse strain displayed deficient PPI and is therefore suggested as an experimental animal model for the loss of sensorimotor gating in schizophrenia. Brain serotonin (5-HT) has been implicated in the pathophysiology of several psychiatric disorders, including major depressive disorder and schizophrenia. In the present study, behavior, 5-HT transporter (5-HTT) mRNA level, 5-HT(1A) receptor mRNA level, and 5-HT(1A) receptor density in the brain regions were studied in DBA/2J mice in comparison with four inbred mouse strains (CBA/Lac, C57BL/6, BALB/c, and ICR). A decrease in 5-HTT mRNA level in the midbrain and a reduced density of 5-HT(1A) receptors in the frontal cortex without significant changes in 5-HT(1A) receptor mRNA level in DBA/2J mice were found. It was shown that, along with decreased PPI, DBA/2J mice demonstrated considerably reduced immobility in the tail suspension test and in the forced swim test. No significant interstrain differences in intermale aggression, or in light-dark box and elevated plus-maze tests, were found. The results suggested the involvement of decreased 5-HTT gene expression and 5-HT(1A) receptor density in genetically defined PPI deficiency and showed a lack of any association between PPI deficiency and predisposition to aggressive, anxiety, and depressive-like behaviors. Copyright 2009 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer
2009-04-24
Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline,more » the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.« less
Kekesi, Orsolya; Tuboly, Gabor; Szucs, Maria; Birkas, Erika; Morvay, Zita; Benedek, Gyorgy; Horvath, Gyongyi
2011-07-01
Ketamine treatments and social isolation of rats reflect certain features of schizophrenia, among them altered pain sensitivity. To study the underlying mechanisms of these phenomena, rats were either housed individually or grouped for 33 days after weaning, and treated with either ketamine or saline for 14 days. After one month re-socialization, the urinary bladder capacity by ultrasound examination in the anesthetized animals, and changes of μ-opioid receptors by saturation binding experiments using a specific μ-opioid agonist [(3)H]DAMGO were determined. G-protein signaling was investigated in DAMGO-stimulated [(35)S]GTPγS functional assays. Ketamine treatment significantly decreased the bladder volume and isolation decreased the receptor density in cortical membranes. Among all groups, the only change in binding affinity was an increase induced by social isolation in the cortex. G-protein signaling was significantly decreased by either ketamine or social isolation in this tissue. Ketamine treatment, but not housing, significantly increased μ-opioid receptor densities in hippocampal membranes. Both ketamine and isolation increased the efficacy, while the potency of signaling was decreased by any treatment. Ketamine increased the receptor density and G-protein activation; while isolation decreased the efficacy of G-protein signaling in hippocampal membranes. The changes in the co-treated group were similar to those of the isolated animals in most tests. The distinct changes of opioid receptor functioning in different areas of the CNS may, at least partially, explain the augmented nociceptive threshold and morphine potency observed in these animals. Changes in the relative urinary bladder suggest a detrusor hyperreflexia, another sign of schizophrenia. Copyright © 2011 Elsevier B.V. All rights reserved.
Estrogen Receptors Alpha and Beta in Bone
Khalid, Aysha B.; Krum, Susan A.
2016-01-01
Estrogens are important for bone metabolism via a variety of mechanisms in osteoblasts, osteocytes, osteoclasts, immune cells and other cells to maintain bone mineral density. Estrogens bind to estrogen receptor alpha (ERα) and ERβ, and the roles of each of these receptors are beginning to be elucidated through whole body and tissue-specific knockouts of the receptors. In vitro and in vivo experiments have shown that ERα and ERβ antagonize each other in bone and in other tissues. This review will highlight the role of these receptors in bone, with particular emphasis on their antagonism. PMID:27072516
Sbragia, L.; Nassr, A.C.C.; Gonçalves, F.L.L.; Schmidt, A.F.; Zuliani, C.C.; Garcia, P.V.; Gallindo, R.M.; Pereira, L.A.V.
2014-01-01
Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression. PMID:24519134
Scheving, Lawrence A; Zhang, Xiuqi; Garcia, Oscar A; Wang, Rebecca F; Stevenson, Mary C; Threadgill, David W; Russell, William E
2014-03-01
Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies.
Şener, Ebru; Şipal, Sare; Gündoğdu, Cemal
2016-01-01
Angiogenesis plays a key role in tumor growth and metastasis. Determination of microvessel density is the most common technique used to evaluate the amount of the intratumoral angiogenesis in breast cancer. We have aimed to investigate the relationship with tumor angiogenesis and prognostic parameters in breast invasive ductal carcinomas. In this study, a total of 100 invasive ductal carcinoma patients, who were diagnosed at the Department of Pathology, Ataturk University Faculty of Medicine between the years 2003-2008, were re-evaluated. Patient characteristics and clinicopathological findings were obtained from archival records. In the present study, microvessel density was determined by immunohistochemical staining by using anti-CD34 monoclonal antibody in the paraffin blocks. First, the most vascular area was selected in the tumor under a low magnification (40x) by a light microscope and then microvessels were counted under a higher magnification (200x). Patients were classified as low and high microvessel density depending on their microvessel counts. Chi-square test and multivariate linear regression analysis were used for statistical analysis (p≤0.05). We have determined that microvessel density increases as tumor size increases (p=0.001). Microvessel density was higher in patients with at least 10 lymph node metastases compared to those with no metastasis (p=0.05). However, there was no statistically significant difference between microvessel density and other prognostic factors such as histological grade, nuclear grade, patient age, vascular invasion, estrogen, progesterone receptor status, HER2/neu expression. In our study, we have found that microvessel density is associated with tumor size and lymph node metastasis in patients with invasive ductal carcinoma.
NASA Astrophysics Data System (ADS)
Lunghi, Laura; Deseri, Luca
2013-03-01
Chemicals hitting the surface of cell aggregates are known to give arise to cyclic Adenosine Mono Phosphate (cAMP), a second messenger that transduces inside the cell the effects of species that cannot get through the cell membrane. Ligands bind to a specific receptor following the so called ``lock and key mechanism'' (beta)-adrenergic receptors are proteins embedded in the lipid bilayer characterized by seven transmembrane helices. Thinning and thickening in cell membranes may be initiated by conformational changes of some of three of the seven domains above. The cell response is linked to the coupling of chemical, conformational and mechanical effects. Part of the cAMP remains intracellular, whereas the remaining fractions migrates outside the cell due to membrane transporters. A new Helmholtz free energy, accounting for receptor and transporter densities, receptor conformation field and membrane elasticity is investigated. It is shown how the density of active receptors is directly related to the conformation field and it enters the resulting balance equation for the membrane stress. Balance laws for fluxes of transporters and receptors, coupled with the former because of the outgoing cAMP flux caused by the transporters, as well as for the diffusive powers must be supplied. The Center for Nonlinear Analysis through the NSF Grant No. DMS-0635983 is gratefully acknowledged.
Gjedde, Albert; Kumakura, Yoshitaka; Cumming, Paul; Linnet, Jakob; Møller, Arne
2010-01-01
Sensation seeking is a core personality trait that declines with age in both men and women, as do also both density and availability of the dopamine D2/3 receptors in striatum and cortical regions. In contrast, novelty seeking at a given age relates inversely to dopamine receptor availability. The simplest explanation of these findings is an inverted-U-shaped correlation between ratings of sensation seeking on the Zuckerman scale and dopamine D2/3 receptor availability. To test the claim of an inverted-U-shaped relation between ratings of the sensation-seeking personality and measures of dopamine receptor availability, we used PET to record [11C]raclopride binding in striatum of 18 healthy men. Here we report that an inverted-U shape significantly matched the receptor availability as a function of the Zuckerman score, with maximum binding potentials observed in the midrange of the scale. The inverted-U shape is consistent with a negative correlation between sensation seeking and the reactivity (“gain”) of dopaminergic neurotransmission to dopamine. The correlation reflects Zuckerman scores that are linearly linked to dopamine receptor densities in the striatum but nonlinearly linked to dopamine concentrations. Higher dopamine occupancy and dopamine concentrations explain the motivation that drives afflicted individuals to seek sensations, in agreement with reduced protection against addictive behavior that is characteristic of individuals with low binding potentials. PMID:20133675
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Verena; Sengupta, D; Ketteler, Robin
The formation of signal-promoting dimeric or oligomeric receptor complexes at the cell surface is modulated by self-interaction of their transmembrane (TM) domains. To address the importance of TM domain packing density for receptor functionality, we examined a set of asparagine mutants in the TM domain of the erythropoietin receptor (EpoR). We identified EpoR-T242N as a receptor variant that is present at the cell surface similar to wild-type EpoR but lacks visible localization in vesicle-like structures and is impaired in efficient activation of specific signaling cascades. Analysis by a molecular modeling approach indicated an increased interhelical distance for the EpoR-T242N TMmore » dimer. By employing the model, we designed additional mutants with increased or decreased packing volume and confirmed a correlation between packing volume and biological responsiveness. These results propose that the packing density of the TM domain provides a novel layer for fine-tuned regulation of signal transduction and cellular decisions.« less
Bertolino, Alessandro; Fazio, Leonardo; Caforio, Grazia; Blasi, Giuseppe; Rampino, Antonio; Romano, Raffaella; Di Giorgio, Annabella; Taurisano, Paolo; Papp, Audrey; Pinsonneault, Julia; Wang, Danxin; Nardini, Marcello; Popolizio, Teresa; Sadee, Wolfgang
2009-02-01
Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case-control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.
Fazio, Leonardo; Caforio, Grazia; Blasi, Giuseppe; Rampino, Antonio; Romano, Raffaella; Di Giorgio, Annabella; Taurisano, Paolo; Papp, Audrey; Pinsonneault, Julia; Wang, Danxin; Nardini, Marcello; Popolizio, Teresa; Sadee, Wolfgang
2009-01-01
Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case–control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density. PMID:18829695
Hydromorphone efficacy and treatment protocol impact on tolerance and mu-opioid receptor regulation.
Kumar, Priyank; Sunkaraneni, Soujanya; Sirohi, Sunil; Dighe, Shveta V; Walker, Ellen A; Yoburn, Byron C
2008-11-12
This study examined the antinociceptive (analgesic) efficacy of hydromorphone and hydromorphone-induced tolerance and regulation of mu-opioid receptor density. Initially s.c. hydromorphone's time of peak analgesic (tail-flick) effect (45 min) and ED50 using standard and cumulative dosing protocols (0.22 mg/kg, 0.37 mg/kg, respectively) were determined. The apparent analgesic efficacy (tau) of hydromorphone was then estimated using the operational model of agonism and the irreversible mu-opioid receptor antagonist clocinnamox. Mice were injected with clocinnamox (0.32-25.6 mg/kg, i.p.) and 24 h later, the analgesic potency of hydromorphone was determined. The tau value for hydromorphone was 35, which suggested that hydromorphone is a lower analgesic efficacy opioid agonist. To examine hydromorphone-induced tolerance, mice were continuously infused s.c. with hydromorphone (2.1-31.5 mg/kg/day) for 7 days and then morphine cumulative dose response studies were performed. Other groups of mice were injected with hydromorphone (2.2-22 mg/kg/day) once, or intermittently every 24 h for 7 days. Twenty-four hours after the last injection, mice were tested using morphine cumulative dosing studies. There was more tolerance with infusion treatments compared to intermittent treatment. When compared to higher analgesic efficacy opioids, hydromorphone infusions induced substantially more tolerance. Finally, the effect of chronic infusion (31.5 mg/kg/day) and 7 day intermittent (22 mg/kg/day) hydromorphone treatment on spinal cord mu-opioid receptor density was determined. Hydromorphone did not produce any change in mu-opioid receptor density following either treatment. These results support suggestions that analgesic efficacy is correlated with tolerance magnitude and regulation of mu-opioid receptors when opioid agonists are continuously administered. Taken together, these studies indicate that analgesic efficacy and treatment protocol are important in determining tolerance and regulation of mu-opioid receptors.
IGF-1 receptor cleavage in hypertension.
Cirrik, Selma; Schmid-Schönbein, Geert W
2018-06-01
Increased protease activity causes receptor dysfunction due to extracellular cleavage of different membrane receptors in hypertension. The vasodilatory effects of insulin-like growth factor-1 (IGF-1) are decreased in hypertension. Therefore, in the present study the association of an enhanced protease activity and IGF-1 receptor cleavage was investigated using the spontaneously hypertensive rats (SHRs) and their normotensive Wistar Kyoto (WKY) controls (n = 4). Matrix metalloproteinase (MMP) activities were determined using gelatin zymography on plasma and different tissue samples. WKY aorta rings were incubated in WKY or SHR plasma with or without MMP inhibitors, and immunohistochemistry was used to quantify the densities of the alpha and beta IGF-1 receptor (IGF-1R) subunits and to determine receptor cleavage. The pAkt and peNOS levels in the aorta were investigated using immunoblotting as a measure of IGF-IR function. Increased MMP-2 and MMP-9 activities were detected in plasma and peripheral tissues of SHRs. IGF-1R beta labeling was similar in both groups without plasma incubation, but the fraction of immunolabeled area for IGF-1R alpha was lower in the endothelial layer of the SHR aorta (p < 0.05). A 24-h incubation of WKY aorta with SHR plasma did not affect the IGF-1R beta labeling density, but reduced the IGF-1R alpha labeling density in the endothelium (p < 0.05). MMP inhibitors prevented this decrease (p < 0.01). Western blot analyses revealed that the pAkt and peNOS levels under IGF-1-stimulated and -unstimulated conditions were lower in SHRs (p < 0.05). A reduced IGF-1 cellular response in the aorta was associated with the decrease in the IGF-1R alpha subunit in the SHR hypertension model. Our results indicate that MMP-dependent receptor cleavage contributed to the reduced IGF-1 response in SHRs.
Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O
2012-01-10
Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors. Copyright © 2011. Published by Elsevier Inc.
Life and death in the microcirculation: a role for angiotensin II
NASA Technical Reports Server (NTRS)
Greene, A. S.; Cowley, A. W. (Principal Investigator)
1998-01-01
OBJECTIVE: Angiotensin II (ANGII) plays a critical role in the maintenance of the microcirculation and in the anatomical loss of microvessels (rarefaction) that occurs in low renin forms of hypertension and in animals fed a high-salt diet. Elevations in sodium intake can trigger a series of hemodynamic and hormonal responses culminating in a substantial rarefaction of small arterioles and capillaries in both normal and reduced renal mass hypertensive rats. METHODS: Immunohistochemistry, Northern blot, and reverse transcription-polymerase chain reaction (RT-PCR) analysis of microdissected blood vessels were used to localize ANGII receptors in the microcirculation. Chronic infusion of ANGII and other physiologic and pharmacologic manipulations of the reninangiotensin system in rats was combined with morphologic and mathematical analysis of the network architecture. RESULTS: We have shown that rarefaction of the microcirculation can cause an increase in total peripheral resistance, reduced tissue perfusion, decreased oxygen delivery, and impaired organ function. Although the mechanisms by which this occurs are not well understood, a number of key observations point to a role for the renin-angiotensin system in this effect. First, ANGII infused systemically at subpressor levels, or locally into the skeletal muscle interstitium, can induce significant microvessel growth. Second, localization of ANGII receptor proteins by immunohistochemistry and Western blotting and RNA localization by RT-PCR confirm the presence of AT1 receptors, which are growth-stimulatory, and AT2 receptors, which are growth-inhibitory in the microcirculation. Third, maintenance of ANGII at normal levels during periods of hypertension or high-salt diet completely eliminates rarefaction. CONCLUSIONS: Taken together, these results support the hypothesis that ANGII acting through AT1- and AT2-receptor mechanisms modulate vessel density during high-salt diet and hypertension.
Fusco, Fernanda B.; Gomes, Diego J.; Bispo, Kely C. S.; Toledo, Veronica P.; Barbeiro, Denise F.; Capelozzi, Vera L.; Furukawa, Luzia N. S.; Velosa, Ana P. P.; Teodoro, Walcy R.; Heimann, Joel C.; Quintao, Eder C. R.; Passarelli, Marisa; Nakandakare, Edna R.; Catanozi, Sergio
2017-01-01
This study investigated the influence of sodium restriction and antihypertensive drugs on atherogenesis utilizing hypertensive (H) low-density lipoprotein-receptor knockout mice treated or not with losartan (Los) or hydralazine (Hyd) and fed low-sodium (LS) or normal-sodium (NS) chow. Despite reducing the blood pressure (BP) of H-LS mice, the LS diet caused arterial lipid infiltration due to increased plasma total cholesterol (TC) and triglycerides (TG). Los and Hyd reduced the BP of H-LS mice, and Los effectively prevented arterial injury, likely by reducing plasma TG and nonesterified fatty acids. Aortic lipid infiltration was lower in Los-treated H-LS mice (H-LS+Los) than in normotensive (N)-LS and H-LS mice. Aortic angiotensin II type 1 (AT1) receptor content was greater in H-NS than H-LS mice and in H-LS+Hyd than H-LS+Los mice. Carboxymethyl-lysine (CML) and receptor for advanced glycation end products (RAGE) immunostaining was greater in H-LS than H-NS mice. CML and RAGE levels were lower in LS animals treated with antihypertensive drugs, and Hyd enhanced the AT1 receptor level. Hyd also increased the gene expression of F4/80 but not tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-10, intercellular adhesion molecule-1 or cluster of differentiation 66. The novelty of the current study is that in a murine model of simultaneous hypertension and hyperlipidemia, the pleiotropic effect of chronic, severe sodium restriction elicited aortic damage even with reduced BP. These negative effects on the arterial wall were reduced by AT1 receptor antagonism, demonstrating the influence of angiotensin II in atherogenesis induced by a severely LS diet. PMID:28481921
Expression and nutritional regulation of the (pro)renin receptor in rat visceral adipose tissue.
Achard, V; Tassistro, V; Boullu-Ciocca, S; Grino, M
2011-12-01
Early life nutritional environment plays an important role in the development of visceral adipose tissue and interacts with nutritional regulations in adulthood, leading to metabolic dysregulations. We hypothesized that the renin-angiotensin system may play a role in the programming-induced development of visceral adipose tissue. We studied, using a model of programming of overweight and glucose intolerance, obtained by post-natal overfeeding with consecutive highfat diet, the status of plasma renin activity and mesenteric adipose renin-angiotensin system, including the recently identified (pro)renin receptor, in adult rats. Post-natal overfeeding or high-fat feeding lead to overweight with increased visceral fat mass and adipocytes surface. When both paradigms were associated, adipocytes surface showed a disproportionate increase. A strong immunoreactivity for (pro)renin receptor was found in stromal cells. Plasma renin activity increased in programmed animals whereas (pro)renin receptor expressing cells density was stimulated by high-fat diet. There was a positive, linear relationship between plasma renin activity and (pro)renin receptor expressing cells density and adipocytes surface. Our experiments demonstrate that association of post-natal overfeeding and high-fat diet increased plasma renin activity and adipose (pro)renin receptor expression. Such phenomenon could explain, at least in part, the associated disproportionate adipocyte hypertrophy and its accompanying increased glucose intolerance.
Tomasetti, Carmine; Iasevoli, Felice; Buonaguro, Elisabetta Filomena; De Berardis, Domenico; Fornaro, Michele; Fiengo, Annastasia Lucia Carmela; Martinotti, Giovanni; Orsolini, Laura; Valchera, Alessandro; Di Giannantonio, Massimo; de Bartolomeis, Andrea
2017-01-01
Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of “synapse-based” psychiatric therapeutic strategies. PMID:28085108
Yap, Roseline Wai Kuan; Shidoji, Yoshihiro; Yap, Wai Sum; Masaki, Motofumi
2017-01-01
Gene-diet interaction using a multifactorial approach is preferred to study the multiple risk factors of cardiovascular disease (CVD). This study examined the association and gene-diet interaction effects of the angiotensin II type 1 receptor (AGTR1) gene (rs5186), and type 2 receptor (AGTR2) gene (rs1403543) polymorphisms on metabolic risk factors of CVD in Malaysian adults. CVD parameters (BMI, blood pressure, glycated hemoglobin, total cholesterol (TC), triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), and TC/HDL-C ratio), and constructed dietary patterns “vegetables, fruits, and soy diet” (VFSD), and “rice, egg, and fish diet” (REFD) were obtained from previous studies. Genotyping analysis was performed by real-time PCR using Taqman probes. The subjects were 507 adults (151 Malays; 179 Chinese; and 177 Indians). Significant genetic associations were obtained on blood lipids for rs5186 in Malays and Chinese, and rs1403543 in Chinese females. The significant gene-diet interaction effects after adjusting for potential confounders were: rs5186 × VFSD on blood pressure in Malays (p = 0.016), and in Chinese on blood lipids for rs5186 × REFD (p = 0.009–0.023), and rs1403543 × VFSD in female subjects (p = 0.001–0.011). Malays and Chinese showed higher risk for blood pressure and/or lipids involving rs5186 and rs1403543 SNPs together with gene-diet interactions, but not Indians. PMID:28792482
Gao, Siyuan; Han, Xue; Fu, Jihua; Yuan, Xiaoling; Sun, Xing; Li, Qiang
2012-07-01
We determined the influence of chronic stress (CS) on the compositions of hepatic cholesterol and triglyceride (TG) in rats fed a high fat diet (HFD). Male Wistar rats were fed either a standard diet or a HFD and half of the HFD fed rats were given CS (electric foot shock assisted with noise) for 8 weeks. Compared with the control group, the levels of hepatic total cholesterol (TC) and TG were significantly elevated in the HFD and HFD with chronic stress (HFD+CS) groups, and the more severe elevations of them were found in the HFD group. Inversely, the more severe elevations of hepatic water-soluble parts of TC and TG were found in the HFD+CS group, as the elevations of low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol in liver and serum, tumor necrosis factor-α, interleukin-1β and malondialdehyde in liver. Meanwhile, downregulated mRNA expressions of hepatic liver X receptor-α (LXR-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were also more severe in the HFD+CS group. CS can aggravate the high levels of water-soluble compositions of hepatic TC and TG induced by HFD as it aggravates hepatic inflammation and oxidative stress; in spite of that, however, it cannot further promote hepatic lipidosis. This is consistent with the downregulated mRNA expressions of LXR-α and PPAR-γ. © 2012 The Japan Society of Hepatology.
Yap, Roseline Wai Kuan; Shidoji, Yoshihiro; Yap, Wai Sum; Masaki, Motofumi
2017-08-09
Gene-diet interaction using a multifactorial approach is preferred to study the multiple risk factors of cardiovascular disease (CVD). This study examined the association and gene-diet interaction effects of the angiotensin II type 1 receptor ( AGTR1 ) gene (rs5186), and type 2 receptor ( AGTR2 ) gene (rs1403543) polymorphisms on metabolic risk factors of CVD in Malaysian adults. CVD parameters (BMI, blood pressure, glycated hemoglobin, total cholesterol (TC), triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), and TC/HDL-C ratio), and constructed dietary patterns "vegetables, fruits, and soy diet" (VFSD), and "rice, egg, and fish diet" (REFD) were obtained from previous studies. Genotyping analysis was performed by real-time PCR using Taqman probes. The subjects were 507 adults (151 Malays; 179 Chinese; and 177 Indians). Significant genetic associations were obtained on blood lipids for rs5186 in Malays and Chinese, and rs1403543 in Chinese females. The significant gene-diet interaction effects after adjusting for potential confounders were: rs5186 × VFSD on blood pressure in Malays ( p = 0.016), and in Chinese on blood lipids for rs5186 × REFD ( p = 0.009-0.023), and rs1403543 × VFSD in female subjects ( p = 0.001-0.011). Malays and Chinese showed higher risk for blood pressure and/or lipids involving rs5186 and rs1403543 SNPs together with gene-diet interactions, but not Indians.
Chen, Jing; Stahl, Andreas; Krah, Nathan M; Seaward, Molly R; Joyal, Jean-Sebastian; Juan, Aimee M; Hatton, Colman J; Aderman, Christopher M; Dennison, Roberta J; Willett, Keirnan L; Sapieha, Przemyslaw; Smith, Lois E H
2012-01-01
Mutations in low-density lipoprotein receptor-related protein 5 (Lrp5) impair retinal angiogenesis in patients with familial exudative vitreoretinopathy (FEVR), a rare type of blinding vascular eye disease. The defective retinal vasculature phenotype in human FEVR patients is recapitulated in Lrp5 knockout (Lrp5(-/-)) mouse with delayed and incomplete development of retinal vessels. In this study we examined gene expression changes in the developing Lrp5(-/-) mouse retina to gain insight into the molecular mechanisms that underlie the pathology of FEVR in humans. Gene expression levels were assessed with an Illumina microarray on total RNA from Lrp5(-/-) and WT retinas isolated on postnatal day (P) 8. Regulated genes were confirmed using RT-qPCR analysis. Consistent with a role in vascular development, we identified expression changes in genes involved in cell-cell adhesion, blood vessel morphogenesis and membrane transport in Lrp5(-/-) retina compared to WT retina. In particular, tight junction protein claudin5 and amino acid transporter slc38a5 are both highly down-regulated in Lrp5(-/-) retina. Similarly, several Wnt ligands including Wnt7b show decreased expression levels. Plasmalemma vesicle associated protein (plvap), an endothelial permeability marker, in contrast, is up-regulated consistent with increased permeability in Lrp5(-/-) retinas. Together these data suggest that Lrp5 regulates multiple groups of genes that influence retinal angiogenesis and may contribute to the pathogenesis of FEVR.
Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P
2003-01-01
Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA receptor density differs between pyramidal cells and interneurons. Some interneurons may have a high NMDA receptor content, whereas others, like some parvalbumin-expressing cells, a particularly low synaptic NMDA receptor content. Consequently, fast glutamatergic activation of interneurons is expected to show cell type-specific time course and state-dependent dynamics.
Tachado, S D; Akhtar, R A; Yousufzai, S Y; Abdel-Latif, A A
1991-12-01
The effects of substance P (SP) on inositol trisphosphate (IP3) accumulation, myosin light chain (MLC) phosphorylation, cAMP formation and contraction were studied in iris sphincter smooth muscle of different mammalian species. SP receptor density was also examined in membrane fractions from this tissue. The data obtained can be summarized as follows. (1) In the iris sphincters of rabbit, bovine and pig, SP receptors are coupled to the phospholipase C system, whereas in dog, cat and human these receptors are coupled to the adenylate cyclase system. (2) In those species which employ the phospholipase C system, SP induced IP3 accumulation, MLC phosphorylation and contraction in a dose-dependent manner; in contrast, in those species in which SP induced the formation of cAMP we found the neuropeptide to cause muscle relaxation. The findings on cAMP formation in intact tissue were confirmed in iris sphincter membranes. Both the effect of SP on IP3 accumulation in rabbit and bovine sphincters and its effect on cAMP formation in the dog were blocked by the SP antagonist, (D-Pro2, D-Trp7, 9)-SP. (3) The density of SP receptors in rabbit, bovine and dog were found to be 227, 110.9 and 13.6 fmol mg-1 protein, respectively, and the Kd values were 1.9, 1.8 and 1.3 nM, respectively. (4) Of the neuropeptides investigated SP, neurokinin A and neurokinin B had significant stimulatory effects on IP3 accumulation and on contraction in the rabbit iris sphincter; however, neither neurokinin Y nor the calcitonin gene-related peptide (CGRP) had any effect on these responses. In addition, none of the neuropeptides studied had any effect on IP3 or on contraction in the dog iris sphincter. While it is possible that SP may have dual actions, with the predominant action dependent on the species, the data presented could suggest the presence of two SP receptor subtypes, one coupled to phospholipase C and the other to adenylate cyclase. The results of this investigation indicate major species differences in biochemical and functional responsiveness to SP and in SP receptor density in the iris sphincter of the mammalian eye, and support a modulatory role for the neuropeptide in muscle response in this tissue.
Siemens, I R; Yee, D K; Reagan, L P; Fluharty, S J
1994-01-01
The murine neuroblastoma N1E-115 cell line possesses type 1 and type 2 angiotensin II (AngII) receptor subtypes. In vitro differentiation of these cells substantially increases the density of the AT2-receptor subtype, whereas the density of the AT1 receptors remains unchanged. In the present study, we report that the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) selectively solubilized AT2 receptors from N1E-115 cell membranes and that these receptors could be purified further to near homogeneity by affinity chromatography. More specifically, the presence of an agonist (AngII) during affinity purification of AT2 receptors resulted in the elution of high (110-kDa) and low (66-kDa) molecular mass proteins as determined by gel electrophoresis under nonreducing conditions. In contrast, when the nonselective antagonist Sar1,Ile8-AngII was used during purification, only the lower 66-kDa protein was observed. Affinity purification in the presence of the peptide and nonpeptide AT2-receptor antagonists CGP42112A and PD123319 also resulted in elution of the same 66-kDa protein, but unlike that in the presence of Sar1,Ile8-AngII, some of the high molecular weight site was observed as well. On the other hand, Losartan, an AT1-receptor antagonist, was completely ineffective in eluting any AngII receptors from the affinity column, further confirming their AT2 identity. After agonist elution, the 110-kDa band dissociated into two low molecular mass bands of 66 kDa and 54 kDa when sodium dodecyl sulfate-gel electrophoresis was run under reducing conditions.(ABSTRACT TRUNCATED AT 250 WORDS)
Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli.
Ballermann, B J; Hoover, R L; Karnovsky, M J; Brenner, B M
1985-01-01
Isolated rat renal glomeruli and cultured glomerular mesangial and epithelial cells were examined for atrial natriuretic peptide (ANP) receptors, and for ANP-stimulated cyclic guanosine monophosphate (cGMP) generation. In glomeruli from normal rats, human (1-28) 125I-ANP bound to a single population of high affinity receptors with a mean equilibrium dissociation constant of 0.46 nM. Human (1-28) ANP markedly stimulated cGMP generation, but not cAMP generation in normal rat glomeruli. Analogues of ANP that bound to the glomerular ANP receptor with high affinity stimulated cGMP accumulation, whereas the (13-28) ANP fragment, which failed to bind to the receptor, was devoid of functional activity. Cell surface receptors for ANP were expressed on cultured glomerular mesangial but not epithelial cells, and appreciable ANP-stimulated cGMP accumulation was elicited only in mesangial cells. Approximately 12,000 ANP receptor sites were present per mesangial cell, with an average value for the equilibrium dissociation constant of 0.22 nM. Feeding of a low-salt diet to rats for 2 wk resulted in marked up regulation of the glomerular ANP receptor density to a mean of 426 fmol/mg protein, compared with 116 fmol/mg in rats given a high-salt diet. A modest reduction in the affinity of glomerular ANP receptors was also observed in rats fed the low-salt diet. ANP-stimulated cGMP generation in glomeruli did not change with alterations in salt intake. We conclude that high salt feeding in the rat results in reduced glomerular ANP receptor density relative to values in salt restricted rats. Furthermore, the mesangial cell is a principal target for ANP binding in the glomerulus. Images PMID:3001139
Vlodavsky, I; Fielding, P E; Fielding, C J; Gospodarowicz, D
1978-01-01
Bovine vascular endothelial cells during logarithmic growth bind, internalize, and degrade low density lipoprotein (LDL) via a receptor-mediated pathway. However, contact-inhibited (confluent) monolayers bind but do not internalize LDL. This is in contrast to aortic smooth muscle cells or endothelial cells that have lost the property of contact inhibition. These cells internalize and degrade LDL at both high and low cell densities. The LDL receptors of smooth muscle and sparse endothelial cells down-regulate in response to LDL. In contrast, normal endothelial cells at confluency show little response. When contact inhibition in endothelial monolayers was locally released by wounding, and LDL was present, only cells released from contact inhibition accumulated LDL cholesterol. In smooth muscle cells under the same conditions, the entire culture interiorized lipid. It thus appears that in endothelial cells, unlike smooth muscle cells, contact inhibition is the major factor regulating cellular uptake of LDL cholesteryl ester. Reversal of contact inhibition by wounding provides a mechanism by which the endothelium could be the primary initiator of the atherosclerotic plaque. Images PMID:203937
Mooney, S J; Coen, C W; Holmes, M M; Beery, A K
2015-09-10
Naturally occurring variations in neuropeptide receptor distributions in the brain contribute to numerous mammalian social behaviors. In naked mole-rats, which live in large social groups and exhibit remarkable reproductive skew, colony-related social behaviors vary with reproductive status. Here we examined whether variation in social status is associated with variations in the location and/or density of oxytocin binding in this species. Autoradiography was performed to assess forebrain oxytocin receptor (OTR) densities in breeding and non-breeding naked mole-rats of both sexes. Overall, males exhibited higher OTR binding in the medial amygdala in comparison to females. While there were no main effects of reproductive status in any region, a sex difference in OTR binding in the nucleus accumbens was mediated by status. Specifically, breeding males tended to have more OTR binding than breeding females in the nucleus accumbens, while no sex difference was observed in subordinates. These effects suggest that oxytocin may act in a sex- and region-specific way that corresponds to reproductive status and associated social behaviors. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Salleh, Mohd Nizar; Runnie, Irine; Roach, Paul D; Mohamed, Suhaila; Abeywardena, Mahinda Y
2002-06-19
Twelve edible plant extracts rich in polyphenols were screened for their potential to inhibit oxidation of low-density lipoprotein (LDL) in vitro and to modulate LDL receptor (LDLr) activity in cultured HepG2 cells. The antioxidant activity (inhibition of LDL oxidation) was determined by measuring the formation of conjugated dienes (lag time) and thiobarbituric acid reagent substances (TBARS). Betel leaf (94%), cashew shoot (63%), Japanese mint (52%), semambu leaf (50%), palm frond (41%), sweet potato shoot, chilli fruit, papaya shoot, roselle calyx, and maman showed significantly increased lag time (>55 min, P < 0.05) and inhibition of TBARS formation (P < 0.05) compared to control. LDLr was significantly up-regulated (P < 0.05) by Japanese mint (67%), semambu (51%), cashew (50%), and noni (49%). Except for noni and betel leaf, most plant extracts studied demonstrated a positive association between antioxidant activity and the ability to up-regulate LDL receptor. Findings suggest that reported protective actions of plant polyphenols on lipoprotein metabolism might be exerted at different biochemical mechanisms.
Zheng, Gang; Li, Hui; Zhang, Min; Lund-Katz, Sissel; Chance, Britton; Glickson, Jerry D
2002-01-01
To target tumors overexpressing low-density lipoprotein receptors (LDLr), a pyropheophorbide cholesterol oleate conjugate was synthesized and successfully reconstituted into the low-density lipoprotein (LDL) lipid core. Laser scanning confocal microscopy studies demonstrated that this photosensitizer-reconstituted LDL can be internalized via LDLr by human hepatoblastoma G(2) (HepG(2)) tumor cells.
Han, Jong-Min; Kim, Min-Jung; Baek, Seung-Hwa; An, Sojin; Jin, Yue-Yan; Chung, Hae-Gon; Baek, Nam-In; Choi, Myung-Sook; Lee, Kyung-Tae; Jeong, Tae-Sook
2009-02-25
Antiatherosclerotic effects of ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal (ESJ) were investigated in low-density lipoprotein receptor deficient (LDLR(-/-)) mice. The Western diet-induced high levels of total cholesterol and triglyceride were similar in the ESJ and control groups. However, circulating oxidized LDL was significantly decreased in the ESJ group (p < 0.05). ESJ also markedly decreased aortic expression levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta), and reduced the aortic lesion formation and macrophage accumulation by 36.7% (p < 0.05) and 43% (p < 0.01) in the control group, respectively. Additionally, ESJ inhibited atherogenic properties with cytokine-induced surface expression of cell adhesion molecules, chemokines, and monocyte adhesion to the human umbilical vein endothelial cells (HUVECs), and simultaneously suppressed nuclear factor-kappaB (NF-kappaB) activation. These results suggest that ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal contributes to the antiatherosclerotic and anti-inflammatory activities in LDLR(-/-) mice.
Wilck, Nicola; Fechner, Mandy; Dan, Cristian; Stangl, Verena; Stangl, Karl; Ludwig, Antje
2017-01-01
Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in atherosclerosis development. However, the nature of UPS dysfunction has been proposed to be specific to certain stages of atherosclerosis development, which has implications for proteasome inhibition as a potential treatment option. Recently, low-dose proteasome inhibition with bortezomib has been shown to attenuate early atherosclerosis in low-density lipoprotein receptor-deficient (LDLR−/−) mice. The present study investigates the effect of low-dose proteasome inhibition with bortezomib on pre-existing advanced atherosclerosis in LDLR−/− mice. We found that bortezomib treatment of LDLR−/− mice with pre-existing atherosclerosis does not alter lesion burden. Additionally, macrophage infiltration of aortic root plaques, total plasma cholesterol levels, and pro-inflammatory serum markers were not influenced by bortezomib. However, plaques of bortezomib-treated mice exhibited larger necrotic core areas and a significant thinning of the fibrous cap, indicating a more unstable plaque phenotype. Taking recent studies on favorable effects of proteasome inhibition in early atherogenesis into consideration, our data support the hypothesis of stage-dependent effects of proteasome inhibition in atherosclerosis. PMID:28387708
More Than Cholesterol Transporters: Lipoprotein Receptors in CNS Function and Neurodegeneration
Lane-Donovan, Courtney E.; Philips, Gary T.; Herz, Joachim
2014-01-01
Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease pathogenesis and neurodegeneration. This review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction. PMID:25144875
Demers, Annie; Samami, Samaneh; Lauzier, Benjamin; Des Rosiers, Christine; Ngo Sock, Emilienne Tudor; Ong, Huy; Mayer, Gaetan
2015-12-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independently of its action on low-density lipoprotein receptor, and that other yet unidentified receptors could mediate this effect. Therefore, we assessed whether PCSK9 enhances the degradation of CD36, a major receptor involved in transport of long-chain fatty acids and triglyceride storage. Overexpressed or recombinant PCSK9 induced CD36 degradation in cell lines and primary adipocytes and reduced the uptake of the palmitate analog Bodipy FL C16 and oxidized low-density lipoprotein in 3T3-L1 adipocytes and hepatic HepG2 cells, respectively. Surface plasmon resonance, coimmunoprecipitation, confocal immunofluorescence microscopy, and protein degradation pathway inhibitors revealed that PCSK9 directly interacts with CD36 and targets the receptor to lysosomes through a mechanism involving the proteasome. Importantly, the level of CD36 protein was increased by >3-fold upon small interfering RNA knockdown of endogenous PCSK9 in hepatic cells and similarly increased in the liver and visceral adipose tissue of Pcsk9(-/-) mice. In Pcsk9(-/-) mice, increased hepatic CD36 was correlated with an amplified uptake of fatty acid and accumulation of triglycerides and lipid droplets. Our results demonstrate an important role of PCSK9 in modulating the function of CD36 and triglyceride metabolism. PCSK9-mediated CD36 degradation may serve to limit fatty acid uptake and triglyceride accumulation in tissues, such as the liver. © 2015 American Heart Association, Inc.
Grau, Cristina; Arató, Krisztina; Fernández-Fernández, José M; Valderrama, Aitana; Sindreu, Carlos; Fillat, Cristina; Ferrer, Isidre; de la Luna, Susana; Altafaj, Xavier
2014-01-01
N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser(1048) of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser(1048) hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser(1048) increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons.
Grau, Cristina; Arató, Krisztina; Fernández-Fernández, José M.; Valderrama, Aitana; Sindreu, Carlos; Fillat, Cristina; Ferrer, Isidre; de la Luna, Susana; Altafaj, Xavier
2014-01-01
N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser1048 of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser1048 hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser1048 increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons. PMID:25368549
Lidow, M S; Goldman-Rakic, P S; Rakic, P; Innis, R B
1989-01-01
An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D1 receptors in the cortex have been well documented. Comparable information on cortical D2 sites is lacking. We report here the results of binding studies in the cortex and neostriatum of rat and monkey using the D2 selective antagonist [3H]raclopride. In both structures [3H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D2 receptors. D2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study establishes the presence and widespread distribution of dopamine D2 receptors in the cortex. PMID:2548214
Mu-opioid receptors modulate the stability of dendritic spines
Liao, Dezhi; Lin, Hang; Law, Ping Yee; Loh, Horace H.
2005-01-01
Opioids classically regulate the excitability of neurons by suppressing synaptic GABA release from inhibitory neurons. Here, we report a role for opioids in modulating excitatory synaptic transmission. By activating ubiquitously clustered μ-opioid receptor (MOR) in excitatory synapses, morphine caused collapse of preexisting dendritic spines and decreased synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Meanwhile, the opioid antagonist naloxone increased the density of spines. Chronic treatment with morphine decreased the density of dendritic spines even in the presence of Tetrodotoxin, a sodium channel blocker, indicating that the morphine's effect was not caused by altered activity in neural network through suppression of GABA release. The effect of morphine on dendritic spines was absent in transgenic mice lacking MORs and was blocked by CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-ThrNH2), a μ-receptor antagonist. These data together with others suggest that endogenous opioids and/or constitutive activity of MORs participate in maintaining normal morphology and function of spines, challenging the classical model of opioids. Abnormal alteration of spines may occur in drug addiction when opioid receptors are overactivated by exogenous opiates. PMID:15659552
Schachter, J B; Wolfe, B B
1995-01-01
The effect of chronic exposure of DDT1-MF2 smooth muscle cells to the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) was investigated with regard to the dynamics of alpha-1-adrenergic receptors. After 48 hr of exposure to 750 microM IBMX, the magnitude of the maximal phospholipase C response to norepinephrine was increased approximately 2-fold and the potency of norepinephrine was increased almost 3-fold. Similar effects were noted for the response to ATP. The density of alpha-1-adrenergic receptors, as defined by [3H]-prazosin binding to membranes was increased 2-fold. In addition, chronic treatment with IBMX prevented agonist-induced desensitization of alpha-1-adrenergic receptors and enhanced the rate of receptor resensitization subsequent to desensitization by a combination of agonist and phorbol ester. These effects appear to be regulated by a cyclic AMP-dependent mechanism. Thus, chronic exposure of smooth muscle cells to phosphodiesterase inhibition may activate compensatory mechanisms that lead to enhanced sensitivity to contractile stimuli. The potential importance of such compensatory mechanisms in the treatment and etiology of smooth muscle dysfunction is briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Xiaohong, E-mail: xuxh63@zjnu.cn; Ye Yinping; Li Tao
Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs.more » The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.« less
Shin, Angela H; Thayer, Stanley A
2013-05-01
Human immunodeficiency virus (HIV) infection of the CNS produces dendritic damage that correlates with cognitive decline in patients with HIV-associated neurocognitive disorders (HAND). HIV-induced neurotoxicity results in part from viral proteins shed from infected cells, including the HIV transactivator of transcription (Tat). We previously showed that Tat binds to the low density lipoprotein receptor-related protein (LRP), resulting in overactivation of NMDA receptors, activation of the ubiquitin-proteasome pathway, and subsequent loss of postsynaptic densities. Here, we show that Tat also induces a loss of presynaptic terminals. The number of presynaptic terminals was quantified using confocal imaging of synaptophysin fused to green fluorescent protein (Syn-GFP). Tat-induced loss of presynaptic terminals was secondary to excitatory postsynaptic mechanisms because treatment with an LRP antagonist or an NMDA receptor antagonist inhibited this loss. Treatment with nutlin-3, an E3 ligase inhibitor, prevented Tat-induced loss of presynaptic terminals. These data suggest that Tat-induced loss of presynaptic terminals is a consequence of excitotoxic postsynaptic activity. We previously found that ifenprodil, an NR2B subunit-selective NMDA receptor antagonist, induced recovery of postsynaptic densities. Here we show that Tat-induced loss of presynaptic terminals was reversed by ifenprodil treatment. Thus, Tat-induced loss of presynaptic terminals is reversible, and this recovery can be initiated by inhibiting a subset of postsynaptic NMDA receptors. Understanding the dynamics of synaptic changes in response to HIV infection of the CNS may lead to the design of improved pharmacotherapies for HAND patients. Copyright © 2012 Elsevier Inc. All rights reserved.
Negatively Cooperative Binding of High Density Lipoprotein to the HDL Receptor SR-BI†
Nieland, Thomas J.F.; Xu, Shangzhe; Penman, Marsha; Krieger, Monty
2011-01-01
Scavenger receptor class B, type I (SR-BI) is a high-density lipoprotein (HDL) receptor, which also binds low density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a co-receptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high affinity binding sites (one site model). We have re-investigated the ligand concentration dependence of 125I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [3H]CE from [3H]CE-HDL using an expanded range of ligand concentrations (<1 µg protein/ml, lower than previously reported). Scatchard and non-linear least squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites, or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects (‘ lattice model’). Similar results were observed for LDL. Application of the ‘infinite dilution’ dissociation rate method established that the binding of 125I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport and cell signaling. PMID:21254782
Yahya, Reyhana; Mulder, Monique T; Sijbrands, Eric J G; Williams, Monique; Roeters van Lennep, Jeanine E
We present the case history of 2 patients with low-density lipoprotein receptor-negative compound heterozygous familial hypercholesterolemia who did not receive lipoprotein apheresis. We describe the subsequent effect of all lipid-lowering medications during their life course including resins, statins, ezetimibe, nicotinic acid/laropiprant, mipomersen, and lomitapide. These cases tell the story of siblings affected with this rare disease, who are free of symptoms but still are at a very high cardiovascular disease risk, and their treatment from childhood. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Adrenergic receptors in human fetal liver membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falkay, G.; Kovacs, L.
1990-01-01
The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment ofmore » premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.« less
Neurotransmitter-mediated anxiogenic action of PACAP-38 in rats.
Telegdy, G; Adamik, A
2015-03-15
The action of PACAP-38 was studied by measuring the anxiogenic-anxiolytic behavior of rats in an elevated plus maze. PACAP-38 was administered into the lateral brain ventricle and the behavior of the animals was measured 3h later. The possible involvement of transmitters was measured by pretreating the animals with receptor blockers which alone did not influence the task, but in the doses used were effective with other neuropeptides. The receptor antagonist PACAP 6-38 (a PAC 1/VPAC2 receptor antagonist of PACAP-38 receptor), haloperidol (a non-selective dopamine receptor antagonist), phenoxybenzamine (an α1/α2β-adrenergic receptor antagonist), propranolol(a β-adrenergic receptor antagonist), bicuculline (a gamma-aminobutyric acid subunit A receptor antagonist), methysergide (a nonselective 5-HT2 serotonergic receptor antagonist), atropine (a nonselective muscarinic acetylcholine receptor antagonist), naloxone (a nonselective opioid receptor antagonist) and nitro-l-arginine which acts by blocking the enzyme nitric oxide synthase, thereby blocking the nitric oxide synthesis, were tested. The following parameters were measured: the time spent in open arms/the time spent in total entries. PACAP-38 decreased the ratio of time spent in open arms to the time spent in total entries, indicating anxiogenic action. The total number of entries was not altered significantly either by PACAP-38 or by the receptor blockers. The following receptor blockers diminished the action of PACAP-38: PACAP 6-38,haloperidol, methysergide, naloxone and nitro-l-arginine. Pretreatment with atropine, phenoxybenzamine, propranolol and bicuculline did not influence the action of PACAP-38 on the time spent in open arms. The results demonstrate that PACAP-38 administered into the lateral brain ventricle exerted anxiogenic action at 3 h following treatment. Pretreatment of the animals with various receptor blockers indicated that a nonselective dopaminergic receptor antagonist, 5HT2 serotonergic and opioid receptors, nitric oxide and PAC1 receptors are involved in the anxiogenic action induced by PACAP-38. Copyright © 2014 Elsevier B.V. All rights reserved.
Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology
NASA Astrophysics Data System (ADS)
Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye
2013-05-01
We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.
Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists.
Rivera, Alicia
2007-09-01
Elevated plasma levels of cytokines such as endothelin-1 (ET-1) have been shown to be associated with sickle cell disease (SCD). However, the role of ET-1 in the pathophysiology of SCD is not entirely clear. I now show that treatment of SAD mice, a transgenic mouse model of SCD, with BQ-788 (0.33 mg.kg(-1).day(-1) intraperitoneally for 14 days), an ET-1 receptor B (ET(B)) antagonist, induced a significant decrease in Gardos channel activity (1.7 +/- 0.1 to 1.0 +/- 0.4 mmol.10(13) cell(-1).h(-1), n = 3, P = 0.019) and reduced the erythrocyte density profile by decreasing the mean density (D(50); n = 4, P = 0.012). These effects were not observed in mice treated with BQ-123, an ET-1 receptor A (ET(A)) antagonist. A mixture of both antagonists induced a similar change in density profile as with BQ-788 alone that was associated with an increase in mean cellular volume and a decrease in corpuscular hemoglobin concentration mean. I also observed in vitro effects of ET-1 on human sickle erythrocyte dehydration that was blocked by BQ-788 and a mixture of ET(B)/ET(A) antagonists but not by ET(A) antagonist alone. These results show that erythrocyte hydration status in vivo is mediated via activation of the ET(B) receptor, leading to Gardos channel modulation in SCD.
Gómez, C; Briñón, J G; Orio, L; Colado, M I; Lawrence, A J; Zhou, F C; Vidal, M; Barbado, M V; Alonso, J R
2007-02-01
The serotonergic system plays a key role in the modulation of olfactory processing. The present study examined the plastic response of this centrifugal system after unilateral naris occlusion, analysing both serotonergic afferents and receptors in the main olfactory bulb. After 60 days of sensory deprivation, the serotonergic system exhibited adaptive changes. Olfactory deprivation caused a general increase in the number of fibres immunopositive for serotonin but not of those immunopositive for the serotonin transporter. HPLC data revealed an increase in serotonin levels but not in those of its major metabolite, 5-hydroxyindole acetic acid, resulting in a decrease in the 5-hydroxyindole acetic acid/serotonin ratio. These changes were observed not only in the deprived but also in the contralateral olfactory bulb. Double serotonin-tyrosine hydroxylase immunolabelling revealed that the glomerular regions of the deprived olfactory bulb with a high serotonergic fibre density showed a strong reduction in tyrosine hydroxylase. Finally, the serotonin(2A) receptor distribution density and the number of juxtaglomerular cells immunopositive for serotonin(2A) receptor remained unaltered after olfactory deprivation. Environmental stimulation modulated the serotonergic afferents to the olfactory bulb. Our results indicate the presence of a bilateral accumulation of serotonin in the serotonergic axon network, with no changes in serotonin(2A) receptor density after unilateral olfactory deprivation.
Triiodothyronine, beta-adrenergic receptors, agonist responses, and exercise capacity.
Martin, W H
1993-07-01
Although thyroid hormone excess results in increased beta-adrenergic receptor density or agonist responses in some cells of experimental animals, the role of these effects in contributing to clinical manifestations of hyperthyroidism in human subjects is unclear. To shed further light on this issue, we characterized the effect of 2 weeks of excess triiodothyronine administration on cardiac and metabolic responses to graded-dose isoproterenol infusion, skeletal muscle beta-adrenergic receptor density, and physiologic determinants of exercise capacity in young healthy subjects. The slope of the heart rate response to isoproterenol was 36% greater (p < 0.05) after triiodothyronine administration. In addition, beta-adrenergic receptor density was increased (p < 0.01) in all types of skeletal muscle fibers. Maximal oxygen uptake during treadmill exercise declined 5% (p < 0.001) after triiodothyronine administration because of a decrease in the arteriovenous oxygen difference (p < 0.05). The plasma lactate response to submaximal exercise was 25% greater (p < 0.01) in the hyperthyroid state. These effects were paralleled by a decrement in skeletal muscle oxidative capacity and a decrease in cross-sectional area of type 2A skeletal myocytes. Thus, thyroid hormone excess enhances cardiac beta-adrenergic sensitivity under in vivo conditions in human subjects. Nevertheless, exercise capacity is diminished in the hyperthyroid state, an effect that may be related to reduced skeletal muscle oxidative capacity and type 2A fiber atrophy.
Breast density measurements using ultrasound tomography for patients undergoing tamoxifen treatment
NASA Astrophysics Data System (ADS)
Sak, Mark; Duric, Neb; Littrup, Peter; Li, Cuiping; Bey-Knight, Lisa; Sherman, Mark; Boyd, Norman; Gierach, Gretchen
2013-03-01
Women with high breast density have an increased risk of developing breast cancer. Women treated with the selective estrogen receptor modulator tamoxifen for estrogen receptor positive breast cancer experience a 50% reduction in risk of contralateral breast cancer and overall reduction of similar magnitude has been identified among high-risk women receiving the drug for prevention. Tamoxifen has been shown to reduce mammographic density, and in the IBIS-1 chemoprevention trial, risk reduction and decline in density were significantly associated. Ultrasound tomography (UST) is an imaging modality that can create tomographic sound speed images of the breast. These sound speed images are useful because breast density is proportional to sound speed. The aim of this work is to examine the relationship between USTmeasured breast density and the use of tamoxifen. So far, preliminary results for a small number of patients have been observed and are promising. Correlations between the UST-measured density and mammographic density are strong and positive, while relationships between UST density with some patient specific risk factors behave as expected. Initial results of UST examinations of tamoxifen treated patients show that approximately 45% of the patients have a decrease in density in the contralateral breast after only several months of treatment. The true effect of tamoxifen on UST-measured density cannot yet be fully determined until more data are collected. However, these promising results suggest that UST can be used to reliably assess quantitative changes in breast density over short intervals and therefore suggest that UST may enable rapid assessment of density changes associated with therapeutic and preventative interventions.
Hussmann, G Patrick; DeDominicis, Kristen E; Turner, Jill R; Yasuda, Robert P; Klehm, Jacquelyn; Forcelli, Patrick A; Xiao, Yingxian; Richardson, Janell R; Sahibzada, Niaz; Wolfe, Barry B; Lindstrom, Jon; Blendy, Julie A; Kellar, Kenneth J
2014-05-01
Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking. © 2014 International Society for Neurochemistry.
Dambacher, Julia; Beigel, Florian; Seiderer, Julia; Haller, Dirk; Göke, Burkhard; Auernhammer, Christoph J; Brand, Stephan
2007-01-01
Background/aim Interleukin 31 (IL31), primarily expressed in activated lymphocytes, signals through a heterodimeric receptor complex consisting of the IL31 receptor alpha (IL31Rα) and the oncostatin M receptor (OSMR). The aim of this study was to analyse IL31 receptor expression, signal transduction, and specific biological functions of this cytokine system in intestinal inflammation. Methods Expression studies were performed by RT‐PCR, quantitative PCR, western blotting, and immunohistochemistry. Signal transduction was analysed by western blotting. Cell proliferation was measured by MTS assays, cell migration by restitution assays. Results Colorectal cancer derived intestinal epithelial cell (IEC) lines express both IL31 receptor subunits, while their expression in unstimulated primary murine IEC was low. LPS and the proinflammatory cytokines TNF‐α, IL1β, IFN‐γ, and sodium butyrate stimulation increased IL31, IL31Rα, and OSMR mRNA expression, while IL31 itself enhanced IL8 expression in IEC. IL31 mediates ERK‐1/2, Akt, STAT1, and STAT3 activation in IEC resulting in enhanced IEC migration. However, at low cell density, IL31 had significant antiproliferative capacities (p<0.005). IL31 mRNA expression was not increased in the TNFΔARE mouse model of ileitis but in inflamed colonic lesions compared to non‐inflamed tissue in patients with Crohn's disease (CD; average 2.4‐fold increase) and in patients with ulcerative colitis (UC; average 2.6‐fold increase) and correlated with the IL‐8 expression in these lesions (r = 0.564 for CD; r = 0.650 for UC; total number of biopsies analysed: n = 88). Conclusion IEC express the functional IL31 receptor complex. IL31 modulates cell proliferation and migration suggesting a role in the regulation of intestinal barrier function particularly in intestinal inflammation. PMID:17449633
Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury
Di Siena, S; Gimmelli, R; Nori, S L; Barbagallo, F; Campolo, F; Dolci, S; Rossi, P; Venneri, M A; Giannetta, E; Gianfrilli, D; Feigenbaum, L; Lenzi, A; Naro, F; Cianflone, E; Mancuso, T; Torella, D; Isidori, A M; Pellegrini, M
2016-01-01
The role of endogenous c-Kit receptor activation on cardiac cell homeostasis and repair remains largely unexplored. Transgenic mice carrying an activating point mutation (TgD814Y) in the kinase domain of the c-Kit gene were generated. c-KitTgD814Y receptor was expressed in the heart during embryonic development and postnatal life, in a similar timing and expression pattern to that of the endogenous gene, but not in the hematopoietic compartment allowing the study of a cardiac-specific phenotype. c-KitTgD814Y mutation produced a constitutive active c-Kit receptor in cardiac tissue and cells from transgenic mice as demonstrated by the increased phosphorylation of ERK1/2 and AKT, which are the main downstream molecular effectors of c-Kit receptor signaling. In adult transgenic hearts, cardiac morphology, size and total c-Kit+ cardiac cell number was not different compared with wt mice. However, when c-KitTgD814Y mice were subjected to transmural necrotic heart damage by cryoinjury (CI), all transgenic survived, compared with half of wt mice. In the sub-acute phase after CI, transgenic and wt mice showed similar heart damage. However, 9 days after CI, transgenic mice exhibited an increased number of c-Kit+CD31+ endothelial progenitor cells surrounding the necrotic area. At later follow-up, a consistent reduction of fibrotic area, increased capillary density and increased cardiomyocyte replenishment rate (as established by BrdU incorporation) were observed in transgenic compared with wt mice. Consistently, CD45−c-Kit+ cardiac stem cells isolated from transgenic c-KitTgD814Y mice showed an enhanced endothelial and cardiomyocyte differentiation potential compared with cells isolated from the wt. Constitutive activation of c-Kit receptor in mice is associated with an increased cardiac myogenic and vasculogenic reparative potential after injury, with a significant improvement of survival. PMID:27468693
Xie, Liyang; Vance, Terrence; Kim, Bohkyung; Lee, Sang Gil; Caceres, Christian; Wang, Ying; Hubert, Patrice A; Lee, Ji-Young; Chun, Ock K; Bolling, Bradley W
2017-01-01
Former smokers are at increased risk for cardiovascular disease. We hypothesized that dietary aronia polyphenols would reduce biomarkers of cardiovascular disease risk, inflammation, and oxidative stress in former smokers. We also determined the extent these effects were associated with polyphenol bioavailability. A 12-week, randomized, placebo-controlled trial was conducted in 49 healthy adult former smokers (n = 24/placebo, n = 25/aronia) to evaluate if daily consumption of 500 mg aronia extract modulated plasma lipids, blood pressure, biomarkers of inflammation and oxidative stress, and lipid transport genes of peripheral blood mononuclear cells. The primary outcome was change in low-density lipoprotein cholesterol (LDL-C) from baseline, and multivariate correlation analysis was performed to determine if changes in lipids were associated with urinary polyphenol excretion. Aronia consumption reduced fasting plasma total cholesterol by 8% (P = .0140), LDL-C by 11% (P = .0285), and LDL receptor protein in peripheral blood mononuclear cells (P = .0036) at 12 weeks compared with the placebo group. Positive changes in the urinary polyphenol metabolites peonidin-3-O-galactoside, 3-(4-hydroxyphenyl) propionic acid, and unmetabolized anthocyanin cyanidin-3-O-galactoside were associated with lower plasma total cholesterol and LDL-C in the aronia group. Aronia consumption did not change blood pressure or biomarkers of inflammation and oxidative stress. Aronia polyphenols reduced total and LDL-C in former smokers but did not improve biomarkers of oxidative stress and chronic inflammation. The cholesterol-lowering activity of aronia extract was most closely associated with urinary levels of cyanidin-3-O-galactoside and peonidin-3-O-galactoside, its methylated metabolite. This trial was registered at ClinicalTrials.gov as NCT01541826. Copyright © 2016 Elsevier Inc. All rights reserved.
Identification of a Chrysanthemic Ester as an Apolipoprotein E Inducer in Astrocytes
Zhao, Wenchen; Shimizu, Yoko; Pfeifer, Tom A.; Tak, Jun-Hyung; Isman, Murray B.; Van den Hoven, Bernard; Duggan, Mark E.; Wood, Michael W.; Wellington, Cheryl L.
2016-01-01
The apolipoprotein E (APOE) gene is the most highly associated susceptibility locus for late onset Alzheimer’s Disease (AD), and augmenting the beneficial physiological functions of apoE is a proposed therapeutic strategy. In a high throughput phenotypic screen for small molecules that enhance apoE secretion from human CCF-STTG1 astrocytoma cells, we show the chrysanthemic ester 82879 robustly increases expressed apoE up to 9.4-fold and secreted apoE up to 6-fold and is associated with increased total cholesterol in conditioned media. Compound 82879 is unique as structural analogues, including pyrethroid esters, show no effect on apoE expression or secretion. 82879 also stimulates liver x receptor (LXR) target genes including ATP binding cassette A1 (ABCA1), LXRα and inducible degrader of low density lipoprotein receptor (IDOL) at both mRNA and protein levels. In particular, the lipid transporter ABCA1 was increased by up to 10.6-fold upon 82879 treatment. The findings from CCF-STTG1 cells were confirmed in primary human astrocytes from three donors, where increased apoE and ABCA1 was observed along with elevated secretion of high-density lipoprotein (HDL)-like apoE particles. Nuclear receptor transactivation assays revealed modest direct LXR agonism by compound 82879, yet 10 μM of 82879 significantly upregulated apoE mRNA in mouse embryonic fibroblasts (MEFs) depleted of both LXRα and LXRβ, demonstrating that 82879 can also induce apoE expression independent of LXR transactivation. By contrast, deletion of LXRs in MEFs completely blocked mRNA changes in ABCA1 even at 10 μM of 82879, indicating the ability of 82879 to stimulate ABCA1 expression is entirely dependent on LXR transactivation. Taken together, compound 82879 is a novel chrysanthemic ester capable of modulating apoE secretion as well as apoE-associated lipid metabolic pathways in astrocytes, which is structurally and mechanistically distinct from known LXR agonists. PMID:27598782
Ateba, Sylvin Benjamin; Njamen, Dieudonné; Medjakovic, Svjetlana; Hobiger, Stefanie; Mbanya, Jean Claude; Jungbauer, Alois; Krenn, Liselotte
2013-10-28
Eriosema laurentii De Wild (Leguminosae) is a medicinal plant used in West and Central Africa for different diseases. In Cameroon, this plant is used as a treatment for infertility, and various gynecological and menopausal complaints. However, despite this use as a natural remedy, the biological activity of Eriosema laurentii has not been studied until now. In order to determine the potential use of this plant in gynecological conditions/disorders, we evaluated the estrogenic properties of a methanol extract of its aerial parts and its ability to prevent different menopausal health problems induced by bilateral oophorectomy. Two approaches were used. In vitro, recombinant yeast systems were applied, featuring either the respective human receptors (ERα, AR, and PR) or into chromosome III integrated human aryl hydrocarbon receptor (AhR) and the respective reporter plasmid. In vivo, the investigation was carried out using the 3 days uterotrophic assay and 9 weeks oral treatment in ovariectomized rats. The results showed that the methanol extract of the aerial parts of Eriosema laurentii transactivated the estrogen receptor-α and displayed AhR agonistic activity but was neither androgenic nor progesteronic. In rats, the extract did not induce endometrium proliferation either in the 3-day or the 9-week treatment regimens, but induced vaginal stratification and cornification, prevented loss of femur bone mass, increased high density lipoprotein cholesterol (HDL-C), and reduced total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), TC/HDL-C ratio, LDL-C/HDL-C ratio and the atherogenic index of plasma (AIP). These results suggest that the methanol extract of the aerial parts of Eriosema laurentii does not seem to have an undesirable influence on the endometrium but might prevent vaginal dryness and bone mass loss and improve the lipid profile. © 2013 Elsevier Ireland Ltd. All rights reserved.
Ladd, Charlotte O; Thrivikraman, K V; Huot, Rebecca L; Plotsky, Paul M
2005-07-01
Burgeoning evidence supports a preeminent role for early- and late-life stressors in the development of physio- and psychopathology. Handling-maternal separation (HMS) in neonatal Long Evans hooded rats leads to stable phenotypes ranging from resilient to vulnerable to later stressor exposure. Handling with 180 min of maternal separation yields a phenotype of stress hyper-responsiveness associated with facilitation of regional CRF neurocircuits and glucocorticoid resistance. This study assessed whether or not prolonged HMS (180 min/day, HMS180) on post-natal days 2-14 sensitizes the adult limbic hypothalamo-pituitary-adrenal (LHPA) axis to chronic variable stress (CS) compared to brief HMS (15 min/day, HMS15). We examined regional mRNA densities of corticotropin-releasing factor (CRF), its receptor CRF1, glucocorticoid receptor (GR), and mineralocorticoid receptor (MR); regional CRF1 and CRF2alpha binding, and pituitary-adrenal responses to an acute air-puff startle (APS) stressor in four groups: HMS15, nonstressed; HMS15, stressed; HMS180, nonstressed; HMS180, stressed. As expected we observed exaggerated pituitary-adrenal responses to APS, increased regional CRF mRNA density, decreased regional CRF1 binding, and decreased cortical GR mRNA density in nonstressed HMS180 vs. HMS15 animals. However, in contrast to our hypothesis, CS decreased pituitary-adrenal reactivity and central amygdala CRF mRNA density in HMS180 rats, while increasing cortical GR mRNA density and CRF1 binding. CS had no effect on the pituitary-adrenal response to APS in HMS15 rats, despite tripling hypothalamic paraventricular CRF mRNA density. The data suggest that many effects of prolonged HMS are reversible in adulthood by CS, while the neuroendocrine adaptations imbued by brief HMS are sufficiently stable to restrain pituitary-adrenal stress responses even following CS.
Smith, Caroline J W; Poehlmann, Max L; Li, Sara; Ratnaseelan, Aarane M; Bredewold, Remco; Veenema, Alexa H
2017-03-01
Oxytocin (OT) and vasopressin (AVP) regulate various social behaviors via activation of the OT receptor (OTR) and the AVP V1a receptor (V1aR) in the brain. Social behavior often differs across development and between the sexes, yet our understanding of age and sex differences in brain OTR and V1aR binding remains incomplete. Here, we provide an extensive analysis of OTR and V1aR binding density throughout the brain in juvenile and adult male and female rats, with a focus on regions within the social decision-making network. OTR and V1aR binding density were higher in juveniles than in adults in regions associated with reward and socio-spatial memory and higher in adults than in juveniles in key regions of the social decision-making network and in cortical regions. We discuss possible implications of these shifts in OTR and V1aR binding density for the age-specific regulation of social behavior. Furthermore, sex differences in OTR and V1aR binding density were less numerous than age differences. The direction of these sex differences was region-specific for OTR but consistently higher in females than in males for V1aR. Finally, almost all sex differences in OTR and V1aR binding density were already present in juveniles and occurred in regions with denser binding in adults compared to juveniles. Possible implications of these sex differences for the sex-specific regulation of behavior, as well potential underlying mechanisms, are discussed. Overall, these findings provide an important framework for testing age- and sex-specific roles of OTR and V1aR in the regulation of social behavior.
Skrabal, F; Gruber, G; Meister, B; Ledochowski, M; Doll, P; Lang, F; Cerny, E
1985-12-01
Using long-term automatic blood pressure recording it has previously been shown that subjects with family history of hypertension show a minute fall of blood pressure during sodium restriction, which is reversible by high sodium intake. Thus normotensives with hypertensive antecedents as a group are salt-sensitive, whereas normotensives without heredity of hypertension as a group are salt-resistant. The present study compares intracellular sodium, potassium and calcium, sodium pump activity, NaK-cotransport of red blood cells and density and affinity of alpha 2-adrenergic receptors of platelets in normotensive subjects classified according to family history of hypertension and according to 'salt sensitivity' and 'salt resistance'. Neither the family history of hypertension nor salt sensitivity correlated with intracellular sodium, potassium, calcium, Na-pump activity and NaK-cotransport. Alpha 2-adrenergic density was higher in salt-sensitive than in salt-resistant subjects (P < 0.05) but similar in subjects with a positive and negative family history of hypertension. However, alpha 2-adrenergic receptor density decreased significantly during 2 weeks of moderate salt restriction from 169.6 +/- 34.2 to 142.6 +/- 30.8 (P < 0.01, paired t-test), which may explain the decreased pressor response to infused noradrenaline observed in a previous study during moderate salt restriction. It is concluded that in humans there is no association of genetic predisposition of hypertension or of salt sensitivity to an alteration of sodium pump activity, NaK-cotransport, intracellular sodium and calcium. Alpha 2-receptor density of platelets deserves further study as a possible predictor of salt sensitivity in normotensives.
β3 Integrin Haplotype Influences Gene Regulation and Plasma von Willebrand Factor Activity
Payne, Katie E; Bray, Paul F; Grant, Peter J; Carter, Angela M
2008-01-01
The Leu33Pro polymorphism of the gene encoding β3 integrin (ITGB3) is associated with acute coronary syndromes and influences platelet aggregation. Three common promoter polymorphisms have also been identified. The aims of this study were to (1) investigate the influence of the ITGB3 −400C/A, −425A/C and −468G/A promoter polymorphisms on reporter gene expression and nuclear protein binding and (2) determine genotype and haplotype associations with platelet αIIbβ3 receptor density. Promoter haplotypes were introduced into an ITGB3 promoter-pGL3 construct by site directed mutagenesis and luciferase reporter gene expression analysed in HEL and HMEC-1 cells. Binding of nuclear proteins was assessed by electrophoretic mobility shift assay. The association of ITGB3 haplotype with platelet αIIbβ3 receptor density was determined in 223 subjects. Species conserved motifs were identified in the ITGB3 promoter in the vicinity of the 3 polymorphisms. The GAA, GCC, AAC, AAA and ACC constructs induced ~50% increased luciferase expression relative to the GAC construct in both cell types. Haplotype analysis including Leu33Pro indicated 5 common haplotypes; no associations between ITGB3 haplotypes and receptor density were found. However, the GCC-Pro33 haplotype was associated with significantly higher vWF activity (128.6 [112.1–145.1]%) compared with all other haplotypes (107.1 [101.2–113.0]%, p=0.02). In conclusion, the GCC-Pro33 haplotype was associated with increased vWF activity but not with platelet αIIbβ3 receptor density, which may indicate ITGB3 haplotype influences endothelial function. PMID:18045606
Curley, JP; Jensen, CL; Franks, B; Champagne, FA
2012-01-01
The relationship between anxiety and maternal behavior has been explored across species using a variety of approaches, yet there is no clear consensus on the nature or direction of this relationship. In the current study, we have assessed stable individual differences in anxiety-like behavior in a large cohort (n=57) of female F2 hybrid mice. Using open-field behavior as a continuous and categorical (high vs. low) measure we examined the relationship between the anxiety-like behavior of virgin F2 females and the subsequent maternal behavior of these females. In addition, we quantified oxytocin (OTR) and vasopressin (V1a) receptor density within the lateral septum to determine the possible correlation with anxiety-like and maternal behavior. We find that, though activity levels within the open-field do predict latency to engage in pup retrieval, anxiety-like measures on this test are otherwise not associated with subsequent maternal behavior. OTR density in the dorsal lateral septum was found to be negatively correlated with activity levels in the open-field and positively correlated with frequency of nursing behavior. V1a receptor density was significantly correlated with postpartum licking/grooming of pups. Though we do not find support for the hypothesis that individual differences in trait anxiety predict variation in maternal behavior, we do find evidence for the role of OTR and V1a receptors in predicting maternal behavior in mice and suggest possible methodological issues (such as distinguishing between trait and state anxiety) that will be a critical consideration for subsequent studies of the anxiety-maternal behavior relationship. PMID:22300676
Zhang, Wenjian; Huynh, Carolyn P; Abramovitch, Kenneth; Leon, Inga-Lill K; Arvizu, Liliana
2012-06-01
The objective of this study was to compare the technical errors of intraoral radiographs exposed on film v photostimulable phosphor (PSP) plates. The intraoral radiographic images exposed on phantoms from preclinical practical exams of dental and dental hygiene students were used. Each exam consisted of 10 designated periapical and bitewing views. A total of 107 film sets and 122 PSP sets were evaluated for technique errors, including placement, elongation, foreshortening, overlapping, cone cut, receptor bending, density, mounting, dot in apical area, and others. Some errors were further subcategorized as minor, major, or remake depending on the severity. The percentages of radiographs with various errors were compared between film and PSP by the Fisher's Exact Test. Compared with film, there was significantly less PSP foreshortening, elongation, and bending errors, but significantly more placement and overlapping errors. Using a wrong sized receptor due to the similarity of the color of the package sleeves is a unique PSP error. Optimum image quality is attainable with PSP plates as well as film. When switching from film to a PSP digital environment, more emphasis is necessary for placing the PSP plates, especially those with excessive packet edge, and then correcting the corresponding angulation for the beam alignment. Better design for improving intraoral visibility and easy identification of different sized PSP will improve the clinician's technical performance with this receptor.
Roehrborn, C G; Lange, J L; George, F W; Wilson, J D
1987-01-01
To provide insight into the factors that control growth of the penis we measured the amount and intracellular distribution of specific high affinity androgen receptor in foreskins obtained at circumcision from 49 males varying in age from newborn to 59 yr. Total (cytosolic plus nuclear extract) androgen receptor decreased from approximately 40 fmol/g tissue weight in newborn foreskins to approximately 25 fmol/g by 1 yr of age. The amount of receptor rose in childhood to approximately 180 fmol/g in the late teenage years and fell thereafter to approximately 20-40 fmol/g in men older than 40 yr. The amount of receptor in the nuclear fraction increased at the time of puberty and subsequently decreased in parallel with the decline in total receptor level. These changes in androgen-receptor amount are similar when expressed per milligram DNA or per milligram protein. Images PMID:3491838
Liu, Xin; Guo, Chun-Yu; Ma, Xiao-Juan; Wu, Cai-Feng; Zhang, Ying; Sun, Ming-Yue; Pan, Yu-Ting; Yin, Hui-Jun
2015-01-01
Estrogen plays a protective role in atherosclerosis. Our preliminary work demonstrated that the active conformation of Tanshinone IIA(TanIIA) is similar to the 17β-estradiol and it can bind to the estrogen receptor. Here, we hypothesized that Tanshinone IIA might have anti-inflammatory and anti-oxidative effects in atherosclerosis, mediated through estrogen receptor activation. Subjects for this study were 120 apoE(-/-) female mice and 20 C57/BL female mice. The apoE(-/-) mice were ovariectomized (OVX) and the C57/BL mice were sham ovariectomized. The sham OVX mice were maintained on a normal diet (NOR) group. The OVX apoE(-/-) mice were fed a high fat diet and randomly divided into 6 groups: Model (MOD) group which was fed a high fat diet only, E2 group were given estrogen (E2) 0.13 mg/kg/d; E2+ICI group were given E2:0.13 mg/kg/d and ICI182780:65 mg/kg/m; TLD group (TanIIA low dose) were given TanIIA: 30 mg/kg/d; THD group (TanIIA high dose) were given TanIIA:60 mg/kg/d; and TLD+ICI group were given TanIIA 30 mg/kg/d and ICI182780 65 mg/kg/m. After three months of treatment, the aorta and the blood of the mice from each group was collected. The aorta were used for testing the lipid deposition by using hematoxylin and eosin(HE) and oil red O staining and for testing the expression of p-ERK1/2 by Western blot. The blood was used for testing the serum cholesterol, superoxide dismutase (SOD), methane dicarboxylic aldehyde (MDA), nuclear factor kappa (NF-κB), soluble intercellular cell adhesion molecule-1 (sICAM-1), activating protein-1 (AP-1), E-selectin and 17β-estradiol in serum. Tanshinone IIA significantly reduced the lipid deposition in aorta, decreased the levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), very low density lipoprotein (VLDL), MDA, NF-κB, sICAM-1, AP-1, and E-selectin in serum but increased the levels of high density lipoprotein (HDL) and SOD in serum. Tanshinone IIA also suppressed the expression of p-ERK1/2. Tanshinone IIA had no effect of level of serum 17β-estradiol levels. All of the effects of Tanshinone IIA were similar to estrogen and were inhibited by the estrogen receptor antagonist ICI182780. Tanshinone IIA may play an anti-inflammatory and anti-oxidative stress role in OVX atherosclerotic apoE(-/-) mice by activating the estrogen receptor through the ERK signaling pathway. Therefore, Tanshinone IIA, as a phytoestrogen, could be used for estrogen replacement therapy for cardiovascular disease of postmenopausal women. © 2015 S. Karger AG, Basel.
Biochemical correlates in an animal model of depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.O.
1986-01-01
A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus.more » Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javitt, D.C.; Zukin, S.R.
1989-01-01
N-Methyl-D-aspartate (N-Me-D-Asp) and phencyclidine receptors interactively mediate central nervous system processes including psychotomimetic effects of drugs as well as neurodegenerative, cognitive, and developmental events. To elucidate the mechanism of this interaction, effects of N-Me-D-Asp agonists and antagonists and of glycine-like agents upon binding of the radiolabeled phencyclidine receptor ligand ({sup 3}H)MK-801 were determined in rat brain. Scatchard analysis revealed two discrete components of ({sup 3}H)MK-801 binding after 4 hr of incubation. Incubation in the presence of L-glutamate led to an increase in apparent densities but not in affinities of both components of ({sup 3}H)MK-801 binding as well as conversion ofmore » sites from apparent low to high affinity. Incubation in the presence of combined D-serine and L-glutamate led to an increase in the apparent density of high-affinity ({sup 3}H)MK-801 binding compared with incubation in the presence of either L-glutamate or D-serine alone. These data support a model in which phencyclidine receptor ligands bind differentially to closed as well as open conformations of the N-Me-D-Asp receptor complex and in which glycine-like agents permit or facilitate agonist-induced conversion of N-Me-D-Asp receptors from closed to open conformations.« less
Reconstitution of Homomeric GluA2flop Receptors in Supported Lipid Membranes
Baranovic, Jelena; Ramanujan, Chandra S.; Kasai, Nahoko; Midgett, Charles R.; Madden, Dean R.; Torimitsu, Keiichi; Ryan, John F.
2013-01-01
AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2flop receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain. PMID:23382380
Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns?
Banerjee, Yajnavalka; Santos, Raul D; Al-Rasadi, Khalid; Rizzo, Manfredi
2016-05-01
Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) regulates the expression of low-density lipoprotein (LDL)-receptors, through reducing their recycling by binding to the receptor along with LDL and targeting it for lysosomal destruction. PCSK9 also enhances the degradation of very-low-density-lipoprotein receptor (VLDLR) and lipoprotein receptor-related protein 1 (LRP-1) in a LDL-receptor independent manner. This role in lipid homeostasis presents PCSK9 as an attractive target for the therapeutic management of familial hypercholesterolemia as well as other refractory dyslipidaemias. However, PCSK9 mediates multifarious functions independent of its role in lipid homeostasis, which can be grouped under "pleiotropic functions" of the protein. This includes PCSK9's role in: trafficking of epithelial sodium channel; hepatic regeneration; pancreatic integrity and glucose homeostasis; antiviral activity; antimalarial activity; regulation of different cell signalling pathways; cortical neural differentiation; neuronal apoptosis and Alzheimer's disease. The question that needs to be investigated in depth is "How will the pleotropic functions of PCSK9, be affected by the therapeutic intervention of the protease's LDL-receptor lowering activity?" In this review, we appraise the different lipid lowering strategies targeting PCSK9 in light of the protein's different pleiotropic functions. Additionally, we delineate the key areas that require further examination, to ensure the long-term safety of the above lipid-lowering strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.
2015-01-01
Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164
USDA-ARS?s Scientific Manuscript database
As a peroxisome proliferator-activated receptor alpha (PPAR Alpha) agonist, fenofibrate favorably modulates dyslipidemia and inflammation markers, which are associated with cardiovascular risk. To determine whether variation in the PPAR Alpha receptor gene was associated with lipid and inflammatory ...
INF-gamma rearranges membrane topography of MHC-I and ICAM-1 in colon carcinoma cells.
Bacsó, Zsolt; Bene, László; Damjanovich, László; Damjanovich, Sándor
2002-01-18
Flow-cytometric fluorescence energy transfer (FCET) measurements between fluorescently labeled cell surface MHC-I and ICAM-1 molecules indicated similar receptor patterns in the plasma membrane of interferon-gamma (INF-gamma)-treated colon carcinoma cells as those observed earlier at the surface of lymphoid cells. INF-gamma activation significantly increased the density of MHC-I and ICAM-1 proteins in the membrane. This increase in receptor density was accompanied by decreased proximity level of the homo-associated MHC-I receptors. Hetero-association of MHC-I and ICAM-1 molecules was increased by INF-gamma treatment. INF-gamma changed neither hetero- nor homo-association of transferrin receptors. By staining the sphingomyelin/cholesterol-enriched lipid microdomains with fluorescently labeled cholera toxin B subunit, we found an increase in the amount of lipid-raft associated G(M1)-gangliosides due to INF-gamma treatment. Confocal microscopic results and FCET measurements show that MHC-I and ICAM-1 are components of G(M1)-ganglioside containing lipid-rafts and also support an increase in the size of these lipid-rafts upon INF-gamma treatment.
Theileria parva infection induces autocrine growth of bovine lymphocytes.
Dobbelaere, D A; Coquerelle, T M; Roditi, I J; Eichhorn, M; Williams, R O
1988-01-01
Bovine lymphocytes infected with the parasite Theileria parva continuously secrete a growth factor that is essential for their proliferation in vitro and also constitutively express interleukin 2 receptors on their surface. Dilution of the secreted growth factor, caused by culturing cells at low density, results in retardation of culture growth. Human recombinant interleukin 2, however, effectively substitutes for the diluted growth factor by restoring normal growth rates and also allows Theileria-infected cells to be grown at low density without the use of feeder layers. Secretion of the growth factor and expression of the interleukin 2 receptor depend on the presence of the parasite in the cytoplasm of the host cell. Elimination of the parasite from the cell cytoplasm by the specific antitheilerial drug BW 720c results in the arrest of growth factor secretion and the disappearance of interleukin 2 receptors from the cell surface. This is accompanied by growth arrest and reversion of the infected cells to the morphology of resting lymphocytes. We propose that the continuous proliferation of infected cells in vitro is mediated by autocrine receptor activation. Images PMID:3133661
Nelson, Erik R.; DuSell, Carolyn D.; Wang, Xiaojuan; Howe, Matthew K.; Evans, Glenda; Michalek, Ryan D.; Umetani, Michihisa; Rathmell, Jeffrey C.; Khosla, Sundeep; Gesty-Palmer, Diane
2011-01-01
Osteoporosis and age-related bone loss are important public health concerns. Therefore, there is a high level of interest in the development of medical interventions and lifestyle changes that reduce the incidence of osteoporosis and age-related bone loss. Decreased bone mineral density is associated with high cholesterol, and patients on statins have increased bone mineral densities, strongly implicating cholesterol as a negative regulator of bone homeostasis. In this study, using both molecular and pharmacological approaches, we have been able to demonstrate that the primary cholesterol metabolite, 27-hydroxycholesterol, through its actions on both estrogen receptors and liver X receptors, decreases osteoblast differentiation and enhances osteoclastogenesis, resulting in increased bone resorbtion in mice. Induction of the short heterodimer partner protein by estrogens in osteoblasts can attenuate the liver X receptor-mediated actions of 27-hydroxycholesterol in bone. These data establish a mechanistic link between cholesterol and bone quality, highlight an unexpected target of estrogens in osteoblasts, and define a signaling axis, the therapeutic exploitation of which is likely to yield novel antiosteoporotic drugs. PMID:21933863
The Sigma-2 (σ2) Receptor: A Novel Protein for the Imaging and Treatment of Cancer
Mach, Robert H.; Zeng, Chenbo; Hawkins, William G.
2014-01-01
The sigma-2 (σ2) receptor is an important target for the development of molecular probes in oncology because of its 10-fold higher density in proliferating tumor cells than in quiescent tumor cells, and the observation that σ2 receptor agonists are able to kill tumor cells via apoptotic and non-apoptotic mechanisms. Although recent evidence indicates the σ2 receptor binding site is localized within the progesterone receptor membrane component 1 (PGRMC1), most information regarding this protein has been obtained using either radiolabeled or fluorescent receptor-based probes, and from biochemical analysis of the effect of σ2 selective ligands on cells grown in culture. This article reviews the development of σ2 receptor ligands, and presents an overview of how they have been used in vitro and in vivo to increase our understanding of the role of the σ2 receptor in cancer and proliferation. PMID:23734634
Staffend, Nancy A; Hedges, Valerie L; Chemel, Benjamin R; Watts, Val J; Meisel, Robert L
2014-11-01
Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor-expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse.
Staffend, Nancy A.; Hedges, Valerie L.; Chemel, Benjamin R.; Watts, Val J.; Meisel, Robert L.
2013-01-01
Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse. PMID:23934655
Brink, P A; Brink, L T; Torrington, M; Bester, A J
1990-03-17
Overlap of clinical and biochemical characteristics between hypercholesterolaemia in members of the general population and familial hypercholesterolaemic (FH) individuals may lead to misdiagnosis. Quantitative analysis of family data may circumvent this problem. A way of looking for an association between plasma cholesterol levels and restriction fragment length polymorphism markers (RFLP) on the low-density lipoprotein (LDL) receptor gene by using reference cholesterol distributions was explored. Linkage, with a logarithm of the odds (LOD) score of 6.8 at theta 0, was detected between cholesterol levels and the LDL receptor in an extended Afrikaner family. Two RFLP-haplotypes, one previously found in a majority of Afrikaner FH homozygotes, and a second, Stu I-, BstE II+, Pvu II+, Nco I+, were associated with high cholesterol levels in this pedigree.
Freeman, Spencer A; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E; Wong, Harikesh S; Abraham, Libin; Graves, Marcia L; Coombs, Daniel; Roskelley, Calvin D; Das, Raibatak; Grinstein, Sergio; Gold, Michael R
2015-02-03
Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection.
Freeman, Spencer A.; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E.; Wong, Harikesh S.; Abraham, Libin; Graves, Marcia L.; Coombs, Daniel; Roskelley, Calvin D.; Das, Raibatak; Grinstein, Sergio; Gold, Michael R.
2015-01-01
Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection. PMID:25644899
CD16b associates with high-density, detergent-resistant membranes in human neutrophils
Fernandes, Maria J. G.; Rollet-Labelle, Emmanuelle; Paré, Guillaume; Marois, Sébastien; Tremblay, Marie-Lisane; Teillaud, Jean-Luc; Naccache, Paul H.
2005-01-01
CD16b is unique in that it is the only Fc receptor linked to the plasma membrane by a GPI (glycosylphosphatidylinositol) anchor. GPI-anchored proteins often preferentially localize to DRMs (detergent-resistant membranes) that are rich in sphingolipids and cholesterol and play an important role in signal transduction. Even though the responses to CD16b engagement have been intensively investigated, the importance of DRM integrity for CD16b signalling has not been characterized in human neutrophils. We provide direct evidence that CD16b constitutively partitions with both low- and high-density DRMs. Moreover, upon CD16b engagement, a significant increase in the amount of the receptor is observed in high-density DRMs. Similarly to CD16b, CD11b also resides in low- and high-density DRMs. In contrast with CD16b, the partitioning of CD11b in DRMs does not change in response to CD16b engagement. We also provide evidence for the implication of Syk in CD16b signalling and its partitioning to DRMs in resting and activated PMNs (polymorphonuclear neutrophils). Additionally, DRM-disrupting agents, such as nystatin and methyl-β-cyclodextrin, alter cellular responses to CD16b receptor ligation. Notably, a significant increase in the mobilization of intracellular Ca2+ and in tyrosine phosphorylation of intracellular substrates after CD16b engagement is observed. Altogether, the results of this study provide evidence that high-density DRMs play a role in CD16b signalling in human neutrophils. PMID:16171455
Tadokoro, Shigenori; Okamura, Naoe; Sekine, Yoshimoto; Kanahara, Nobuhisa; Hashimoto, Kenji; Iyo, Masaomi
2012-01-01
Background: Long-term treatment of schizophrenia with antipsychotics is crucial for relapse prevention, but a prolonged blockade of D2 dopamine receptors may lead to the development of supersensitivity psychosis. We investigated the chronic effects of aripiprazole (ARI) on dopamine sensitivity. Methods: We administered ARI (1.5 mg/kg/d), haloperidol (HAL; 0.75 mg/kg/d), or vehicle (VEH) via minipump for 14 days to drug-naive rats or to rats pretreated with HAL (0.75 mg/kg/d) or VEH via minipump for 14 days. On the seventh day following treatment cessation, we examined the effects of the treatment conditions on the locomotor response to methamphetamine and on striatal D2 receptor density (N = 4-10/condition/experiment). Results: Chronic treatment with HAL led to significant increases in locomotor response and D2 receptor density, compared with the effects of chronic treatment with either VEH or ARI; there were no significant differences in either locomotor response or D2 density between the VEH- and ARI-treated groups. We also investigated the effects of chronic treatment with HAL, ARI, or VEH preceded by HAL or VEH treatment on locomotor response and D2 density. ANOVA analysis indicated that the rank ordering of groups for both locomotor response and D2 density was HAL-HAL > HAL-VEH > HAL-ARI > VEH-VEH. Conclusions: Chronic treatment with ARI prevents development of dopamine supersensitivity and potentially supersensitivity psychosis, suggesting that by reducing excessive sensitivity to dopamine and by stabilizing sensitivity for an extended period of time, ARI may be helpful for some patients with treatment-resistant schizophrenia. PMID:21402722
Pharmacological Regulation of Peroxisome Number in Glia
2008-09-01
histone deacetylase HDL high - density lipoprotein LXR liver X receptor NPC Niemann Pick type C disease PBD peroxisome...transporters ABCA1 and ABCG1 with lipoproteins in the extracellular space, such as apoE; transportation to the liver occurs via high density lipoprotein ...mechanisms involved in the athero-protective effect of high density lipoproteins . Journal of internal medicine, 263, 256-273. Tobin, K. A., Steineger, H
de Souza, Melina Oliveira; Souza E Silva, Lorena; de Brito Magalhães, Cíntia Lopes; de Figueiredo, Bianca Barros; Costa, Daniela Caldeira; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia
2012-12-01
Previous studies have demonstrated that the ingestion of açaí pulp can improve serum lipid profile in various animal models; therefore, we hypothesized that açaí pulp (Euterpe oleracea Mart.) may modulate the expression of the genes involved in cholesterol homeostasis in the liver and increase fecal excretion, thus reducing serum cholesterol. To test this hypothesis, we analyzed the expression of 7α-hydroxylase and ATP-binding cassette, subfamily G transporters (ABCG5 and ABCG8), which are genes involved with the secretion of cholesterol in the rat. We also evaluated the expression of sterol regulatory element-binding protein 2, 3-hydroxy-3-methylglutaryl CoA reductase, low-density lipoprotein receptor (LDL-R), and apolipoprotein B100, which are involved in cholesterol biosynthesis. Female Fischer rats were divided into 4 groups: the C group, which was fed a standard AIN-93 M diet; the CA group, which was fed a standard diet supplemented with 2% açaí pulp; the H group, which was fed a hypercholesterolemic diet (25% soy oil and 1% cholesterol); and the HA group, which was fed a hypercholesterolemic diet supplemented with 2% açaí pulp. At the end of the experimental period, the rats were euthanized, and their blood and livers were collected. The HA group exhibited a significant decrease in serum total cholesterol, low-density lipoprotein cholesterol, and atherogenic index and also had increased high-density lipoprotein cholesterol and cholesterol excretion in feces compared with the H group. In addition, the expression of the LDL-R, ABCG5, and ABCG8 genes was significantly increased by the presence of açaí pulp. These results suggest that açaí pulp promotes a hypocholesterolemic effect in a rat model of dietary-induced hypercholesterolemia through an increase in the expression of ATP-binding cassette, subfamily G transporters, and LDL-R genes. Copyright © 2012 Elsevier Inc. All rights reserved.
Scheuler, W
Spectral analysis was performed to study the response of various EEG sleep activities to a modification of GABAergic sleep regulation by flunitrazepam. We observed sleep stage- and sleep cycle-dependent differences in the topographic distribution of the reactions. An increase in power density was found in the frontal regions for the alpha 2 and sigma 1 frequency band whereas a decrease in power density was emphasized in the posterior regions for the delta and alpha 1 frequency band. These topographic differences might be related to the regional distribution of benzodiazepine receptor subtypes.
Parallel processing and learning in simple systems. Annual report, 10 January 1987-9 January 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mpitsos, G.J.
1988-03-11
To date it has been demonstrated that an experimental animal, the sea slug Pleurobranchaea, is capable of one-trial food-aversion learning, and that the muscarinic antagonist scopolamine in low doses causes an enhancement of learning. Pharmacologic binding studies using a new, /sup 125/I-form of quinuclidinyl benzilate, in addition to studies using the /sup 3/H form of this ligand, have uncovered not only the classical types of muscarinic receptors that are typical of vertebrate cortex, but also a new form that is not found in other invertebrates tested. Usually muscarinic receptors are found in low densities in invertebrate neural membranes, but themore » density of the new form in this animal's neural membranes is similar to the density of the classic receptors in mammalian cortex. Neurophysiological studies of individual neurons in small groups of identifiable neurons have shown that their activity is variable, as is the behavior that they take part in generating, and that the variability fits the definition of low-dimensional chaos. Findings show that such variability is an important feature of the emergence of adaptive responses arising from parallel, distributed neural networks in biological systems.« less
Reduced Serotonin Receptor Subtypes in a Limbic and a Neocortical Region in Autism
Oblak, Adrian; Gibbs, Terrell T.; Blatt, Gene J.
2013-01-01
Autism is a behaviorally defined, neurological disorder with symptom onset before the age of three. Abnormalities in social-emotional behaviors are a core deficit in autism and are characterized by impaired reciprocal social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5HT systems have been implicated in several psychiatric disorders including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5HT in autism, there is emerging evidence that 5HT systems in the CNS, including various 5HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5HT1A receptor binding density in superficial and deep layers of the PCC and FG, and in the density of 5HT2A receptors in superficial layers of the PCC and FG. Significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. These studies provide potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. PMID:23894004
Reduced serotonin receptor subtypes in a limbic and a neocortical region in autism.
Oblak, Adrian; Gibbs, Terrell T; Blatt, Gene J
2013-12-01
Autism is a behaviorally defined, neurological disorder with symptom onset before the age of 3. Abnormalities in social-emotional behaviors are a core deficit in autism, and are characterized by impaired reciprocal-social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5-HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5-HT systems have been implicated in several psychiatric disorders, including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5-HT in autism, there is emerging evidence that 5-HT systems in the central nervous system, including various 5-HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5-HT1A receptor-binding density in superficial and deep layers of the PCC and FG, and in the density of 5-HT(2A) receptors in superficial layers of the PCC and FG. A significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. This study provides potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
Wu, Di; Gore, Andrea C
2010-07-01
Reproductive aging in males is characterized by a diminution in sexual behavior beginning in middle age. We investigated the relationships among testosterone, androgen receptor (AR) and estrogen receptor alpha (ERalpha) cell numbers in the hypothalamus, and their relationship to sexual performance in male rats. Young (3months) and middle-aged (12months) rats were given sexual behavior tests, then castrated and implanted with vehicle or testosterone capsules. Rats were tested again for sexual behavior. Numbers of AR and ERalpha immunoreactive cells were counted in the anteroventral periventricular nucleus and the medial preoptic nucleus, and serum hormones were measured. Middle-aged intact rats had significant impairments of all sexual behavior measures compared to young males. After castration and testosterone implantation, sexual behaviors in middle-aged males were largely comparable to those in the young males. In the hypothalamus, AR cell density was significantly (5-fold) higher, and ERalpha cell density significantly (6-fold) lower, in testosterone- than vehicle-treated males, with no age differences. Thus, restoration of serum testosterone to comparable levels in young and middle-aged rats resulted in similar preoptic AR and ERalpha cell density concomitant with a reinstatement of most behaviors. These data suggest that age-related differences in sexual behavior cannot be due to absolute levels of testosterone, and further, the middle-aged brain retains the capacity to respond to exogenous testosterone with changes in hypothalamic AR and ERalpha expression. Our finding that testosterone replacement in aging males has profound effects on hypothalamic receptors and behavior has potential medical implications for the treatment of age-related hypogonadism in men. Copyright 2010 Elsevier Inc. All rights reserved.
Nguyen, Crystal N; Young, Tom Kurtzman; Gilson, Michael K
2012-07-28
The displacement of perturbed water upon binding is believed to play a critical role in the thermodynamics of biomolecular recognition, but it is nontrivial to unambiguously define and answer questions about this process. We address this issue by introducing grid inhomogeneous solvation theory (GIST), which discretizes the equations of inhomogeneous solvation theory (IST) onto a three-dimensional grid situated in the region of interest around a solute molecule or complex. Snapshots from explicit solvent simulations are used to estimate localized solvation entropies, energies, and free energies associated with the grid boxes, or voxels, and properly summing these thermodynamic quantities over voxels yields information about hydration thermodynamics. GIST thus provides a smoothly varying representation of water properties as a function of position, rather than focusing on hydration sites where solvent is present at high density. It therefore accounts for full or partial displacement of water from sites that are highly occupied by water, as well as for partly occupied and water-depleted regions around the solute. GIST can also provide a well-defined estimate of the solvation free energy and therefore enables a rigorous end-states analysis of binding. For example, one may not only use a first GIST calculation to project the thermodynamic consequences of displacing water from the surface of a receptor by a ligand, but also account, in a second GIST calculation, for the thermodynamics of subsequent solvent reorganization around the bound complex. In the present study, a first GIST analysis of the molecular host cucurbit[7]uril is found to yield a rich picture of hydration structure and thermodynamics in and around this miniature receptor. One of the most striking results is the observation of a toroidal region of high water density at the center of the host's nonpolar cavity. Despite its high density, the water in this toroidal region is disfavored energetically and entropically, and hence may contribute to the known ability of this small receptor to bind guest molecules with unusually high affinities. Interestingly, the toroidal region of high water density persists even when all partial charges of the receptor are set to zero. Thus, localized regions of high solvent density can be generated in a binding site without strong, attractive solute-solvent interactions.
Nguyen, Crystal N.; Kurtzman Young, Tom; Gilson, Michael K.
2012-01-01
The displacement of perturbed water upon binding is believed to play a critical role in the thermodynamics of biomolecular recognition, but it is nontrivial to unambiguously define and answer questions about this process. We address this issue by introducing grid inhomogeneous solvation theory (GIST), which discretizes the equations of inhomogeneous solvation theory (IST) onto a three-dimensional grid situated in the region of interest around a solute molecule or complex. Snapshots from explicit solvent simulations are used to estimate localized solvation entropies, energies, and free energies associated with the grid boxes, or voxels, and properly summing these thermodynamic quantities over voxels yields information about hydration thermodynamics. GIST thus provides a smoothly varying representation of water properties as a function of position, rather than focusing on hydration sites where solvent is present at high density. It therefore accounts for full or partial displacement of water from sites that are highly occupied by water, as well as for partly occupied and water-depleted regions around the solute. GIST can also provide a well-defined estimate of the solvation free energy and therefore enables a rigorous end-states analysis of binding. For example, one may not only use a first GIST calculation to project the thermodynamic consequences of displacing water from the surface of a receptor by a ligand, but also account, in a second GIST calculation, for the thermodynamics of subsequent solvent reorganization around the bound complex. In the present study, a first GIST analysis of the molecular host cucurbit[7]uril is found to yield a rich picture of hydration structure and thermodynamics in and around this miniature receptor. One of the most striking results is the observation of a toroidal region of high water density at the center of the host's nonpolar cavity. Despite its high density, the water in this toroidal region is disfavored energetically and entropically, and hence may contribute to the known ability of this small receptor to bind guest molecules with unusually high affinities. Interestingly, the toroidal region of high water density persists even when all partial charges of the receptor are set to zero. Thus, localized regions of high solvent density can be generated in a binding site without strong, attractive solute-solvent interactions. PMID:22852591
Naga, Mazen; Amin, Mona; Algendy, Dina; Elbadry, Ahmed; Fawzi, May; Foda, Ayman; Esmat, Serag; Sabry, Dina; Rashed, Laila; Gabal, Samia; Kamal, Manal
2015-01-01
AIM: To correlate a genetic polymorphism of the low-density lipoprotein (LDL) receptor with antiviral responses in Egyptian chronic hepatitis C virus (HCV) patients. METHODS: Our study included 657 HCV-infected patients with genotype 4 who received interferon-based combination therapy. Patients were divided into two groups based on their response to therapy: 356 were responders, and 301 were non-responders. Patients were compared to 160 healthy controls. All patients and controls underwent a thorough physical examination, measurement of body mass index (BMI) and the following laboratory tests: serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total bilirubin, direct bilirubin, prothrombin time, prothrombin concentration, INR, complete blood count, serum creatinine, fasting blood sugar, HCV antibody, and hepatitis B surface antigen. All HCV patients were further subjected to the following laboratory tests: HCV-RNA using quantitative polymerase chain reaction (PCR), antinuclear antibodies, thyroid-stimulating hormone, an LDL receptor (LDLR) genotype study of LDLR exon8c.1171G>A and exon10c.1413G>A using real-time PCR-based assays, abdominal ultrasonography, ultrasonographic-guided liver biopsy, and histopathological examination of liver biopsies. Correlations of LDL receptor polymorphisms with HAI, METAVIR score, presence of steatosis, and BMI were performed in all cases. RESULTS: There were no statistically significant differences in response rates between the different types of interferon used or LDLR exon10c.1413G>A. However, there was a significant difference in the frequency of the LDL receptor exon8c.1171G>A genotype between cases (AA: 25.9%, GA: 22.2%, GG: 51.9%) and controls (AA: 3.8%, GA: 53.1% and GG: 43.1%) (P < 0.001). There was a statistically significant difference in the frequency of the LDLR exon 8C:1171 G>A polymorphism between responders (AA: 3.6%, GA: 15.2%, GG: 81.2%) and non-responders (AA: 52.2%, GA: 30.6%, GG: 17.2%) (P < 0.001). The G allele of LDL receptor exon8c.1171G>A predominated in cases and controls over the A allele, and a statistically significant association with response to interferon was observed. The frequency of the LDLR exon8c.1171G>A allele in non-responders was: A: 67.4% and G: 32.6 vs A: 11.2% and G: 88.8% in responders (P < 0.001). Therefore, carriers of the A allele exhibited a 16.4 times greater risk for non-response. There was a significant association between LDL receptors exon8 c.1171G>A and HAI (P < 0.011). There was a significant association between LDL receptors exon8c.1171G>A and BMI. The mean BMI level was highest in patients carrying the AA genotype (28.7 ± 4.7 kg/m2) followed by the GA genotype (28.1 ± 4.8 kg/m2). The lowest BMI was the GG genotype (26.6 ± 4.3 kg/m2) (P < 0.001). The only significant associations were found between LDL receptors exon8 c.1171G>A and METAVIR score or steatosis (P < 0.001). CONCLUSION: LDL receptor gene polymorphisms play a role in the treatment response of HCV and the modulation of disease progression in Egyptians infected with chronic HCV. PMID:26494968
Naga, Mazen; Amin, Mona; Algendy, Dina; Elbadry, Ahmed; Fawzi, May; Foda, Ayman; Esmat, Serag; Sabry, Dina; Rashed, Laila; Gabal, Samia; Kamal, Manal
2015-10-21
To correlate a genetic polymorphism of the low-density lipoprotein (LDL) receptor with antiviral responses in Egyptian chronic hepatitis C virus (HCV) patients. Our study included 657 HCV-infected patients with genotype 4 who received interferon-based combination therapy. Patients were divided into two groups based on their response to therapy: 356 were responders, and 301 were non-responders. Patients were compared to 160 healthy controls. All patients and controls underwent a thorough physical examination, measurement of body mass index (BMI) and the following laboratory tests: serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total bilirubin, direct bilirubin, prothrombin time, prothrombin concentration, INR, complete blood count, serum creatinine, fasting blood sugar, HCV antibody, and hepatitis B surface antigen. All HCV patients were further subjected to the following laboratory tests: HCV-RNA using quantitative polymerase chain reaction (PCR), antinuclear antibodies, thyroid-stimulating hormone, an LDL receptor (LDLR) genotype study of LDLR exon8c.1171G>A and exon10c.1413G>A using real-time PCR-based assays, abdominal ultrasonography, ultrasonographic-guided liver biopsy, and histopathological examination of liver biopsies. Correlations of LDL receptor polymorphisms with HAI, METAVIR score, presence of steatosis, and BMI were performed in all cases. There were no statistically significant differences in response rates between the different types of interferon used or LDLR exon10c.1413G>A. However, there was a significant difference in the frequency of the LDL receptor exon8c.1171G>A genotype between cases (AA: 25.9%, GA: 22.2%, GG: 51.9%) and controls (AA: 3.8%, GA: 53.1% and GG: 43.1%) (P < 0.001). There was a statistically significant difference in the frequency of the LDLR exon 8C:1171 G>A polymorphism between responders (AA: 3.6%, GA: 15.2%, GG: 81.2%) and non-responders (AA: 52.2%, GA: 30.6%, GG: 17.2%) (P < 0.001). The G allele of LDL receptor exon8c.1171G>A predominated in cases and controls over the A allele, and a statistically significant association with response to interferon was observed. The frequency of the LDLR exon8c.1171G>A allele in non-responders was: A: 67.4% and G: 32.6 vs A: 11.2% and G: 88.8% in responders (P < 0.001). Therefore, carriers of the A allele exhibited a 16.4 times greater risk for non-response. There was a significant association between LDL receptors exon8 c.1171G>A and HAI (P < 0.011). There was a significant association between LDL receptors exon8c.1171G>A and BMI. The mean BMI level was highest in patients carrying the AA genotype (28.7 ± 4.7 kg/m(2)) followed by the GA genotype (28.1 ± 4.8 kg/m(2)). The lowest BMI was the GG genotype (26.6 ± 4.3 kg/m(2)) (P < 0.001). The only significant associations were found between LDL receptors exon8 c.1171G>A and METAVIR score or steatosis (P < 0.001). LDL receptor gene polymorphisms play a role in the treatment response of HCV and the modulation of disease progression in Egyptians infected with chronic HCV.
Panther, P; Nullmeier, S; Dobrowolny, H; Schwegler, H; Wolf, R
2012-04-21
Schizophrenia is characterized by disturbances in social behavior, sensorimotor gating and cognitive function, that are discussed to be caused by a termination of different transmitter systems. Beside morphological alterations in cortical and subcortical areas reduced AMPA- NMDA-, 5-HT2-receptor densities and increased 5-HT1-receptor densities are found in the hippocampus.The two inbred mouse strains CPB-K and BALB/cJ are known to display considerable differences in cognitive function and prepulse inhibition, a stable marker of sensorimotor gating. Furthermore, CPB-K mice exhibit lower NMDA-, AMPA- and increased 5-HT-receptor densities in the hippocampus as compared to BALB/cJ mice. We investigated both mouse strains in social interaction test for differences in social behavior and with immuncytochemical approaches for alterations of dopaminergic and serotonergic parameters. Our results can be summarized as follows: compared to BALB/cJ, CPB-K mice showed:(1) significantly reduced traveling distance and number of contacts in social interaction test, (2) differences in the number of serotonin transporter-immunoreactive neurons and volume of raphe nuclei and a lower serotonergic fiber density in the ventral and dorsal hippocampal subfields CA1 and CA3, (3) no alterations of dopaminergic markers like neuron number, neuron density and volume in subregions of substantia nigra and ventral tegmental area, but a significantly higher dopaminergic fiber density in the dorsal hippocampus, the ventral hippocampus of CA1 and gyrus dentatus, (4) no significant differences in serotonergic and dopaminergic fiber densities in the amygdala.Based on our results and previous studies, CPB-K mice compared to BALB/cJ may serve as an important model to understand the interaction of the serotonergic and dopaminergic system and their impact on sensorimotor gating and cognitive function as related to neuropsychiatric disorders like schizophrenia. 2012 Elsevier B.V. All rights reserved.
Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters.
Dai, Fan-Jhen; Hsu, Wei-Hsuan; Huang, Jan-Jeng; Wu, She-Ching
2013-03-01
Obesity is associated with increased systemic and airway oxidative stress, which may result from a combination of adipokine imbalance and antioxidant defenses reduction. Obesity-mediated oxidative stress plays an important role in the pathogenesis of dyslipidemia, vascular disease, and nonalcoholic hepatic steatosis. The antidyslipidemic activity of pigeon pea were evaluated by high-fat diet (HFD) hamsters model, in which the level of high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), and total triglyceride (TG) were examined. We found that pigeon pea administration promoted cholesterol converting to bile acid in HFD-induced hamsters, thereby exerting hypolipidemic activity. In the statistical results, pigeon pea significantly increased hepatic carnitine palmitoyltransferase-1 (CPT-1), LDL receptor, and cholesterol 7α-hydroxylase (also known as cytochrome P450 7A1, CYP7A1) expression to attenuate dyslipidemia in HFD-fed hamsters; and markedly elevated antioxidant enzymes in the liver of HFD-induced hamsters, further alleviating lipid peroxidation. These effects may attribute to pigeon pea contained large of unsaturated fatty acids (UFA; C18:2) and phytosterol (β-sitosterol, campesterol, and stigmasterol). Moreover, the effects of pigeon pea on dyslipidemia were greater than β-sitosterol administration (4%), suggesting that phytosterone in pigeon pea could prevent metabolic syndrome. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dexamethasone upregulates ANP C-receptor protein in human mesangial cells without affecting mRNA.
Ardaillou, N; Blaise, V; Placier, S; Amestoy, F; Ardaillou, R
1996-03-01
The objective of this study was to examine the role of dexamethasone on the expression of natriuretic peptide B-type and C-type receptors (ANPR-B and ANPR-C) in cultured human mesangial cells, which only possess these two subtypes. Dexamethasone caused concentration- and time-dependent increases in 125I-labeled ANP binding, which were prevented by glucocorticoid receptor inhibition with RU-38486. A lag time of 24 h and a concentration of dexamethasone of at least 1 nmol/l were necessary for this effect to occur. Dexamethasone-induced upregulation of 125I-ANP binding resulted from increased receptor density. No change in dissociation constant (Kd) was observed. Only ANPR-C were affected by dexamethasone. Indeed, dexamethasone did not modify C-type natriuretic peptide (i.e., CNP)-dependent cGMP production by mesangial cells. Moreover, dexamethasone upregulated ANPR-C protein expression as shown by Western blot analysis and by an increase in ANPR-C immunoreactivity at the cell surface. In contrast, dexamethasone did not modify ANPR-C mRNA expression. In conclusion, glucocorticoids increase ANPR-C density on mesangial cells through a mechanism implying, successively, interaction with the glucocorticoid receptor and increase of ANPR-C protein synthesis at a posttranscriptional stage. Thus dexamethasone may influence availability of natriuretic peptides at their glomerular target sites.
Weizman, A; Bidder, M; Fares, F; Gavish, M
1990-12-03
The effect of 5 days of food deprivation followed by 5 days of refeeding on gamma-aminobutyric acid (GABA) receptors, central benzodiazepine receptors (CBR), and peripheral benzodiazepine binding sites (PBzS) was studied in female Sprague-Dawley rats. Starvation induced a decrease in the density of PBzS in peripheral organs: adrenal (35%; P less than 0.001), kidney (33%; P less than 0.01), and heart (34%; P less than 0.001). Restoration of [3H]PK 11195 binding to normal values was observed in all three organs after 5 days of refeeding. The density of PBzS in the ovary, pituitary, and hypothalamus was not affected by starvation. Food deprivation resulted in a 35% decrease in cerebellar GABA receptors (P less than 0.01), while CBR in the hypothalamus and cerebral cortex remained unaltered. The changes in PBzS observed in the heart and kidney may be related to the long-term metabolic stress associated with starvation and to the functional changes occurring in these organs. The down-regulation of the adrenal PBzS is attributable to the suppressive effect of hypercortisolemia on pituitary ACTH release. The reduction in cerebellar GABA receptors may be an adaptive response to food deprivation stress and may be relevant to the proaggressive effect of hunger.
PSD-95 regulates synaptic kainate receptors at mouse hippocampal mossy fiber-CA3 synapses.
Suzuki, Etsuko; Kamiya, Haruyuki
2016-06-01
Kainate-type glutamate receptors (KARs) are the third class of ionotropic glutamate receptors whose activation leads to the unique roles in regulating synaptic transmission and circuit functions. In contrast to AMPA receptors (AMPARs), little is known about the mechanism of synaptic localization of KARs. PSD-95, a major scaffold protein of the postsynaptic density, is a candidate molecule that regulates the synaptic KARs. Although PSD-95 was shown to bind directly to KARs subunits, it has not been tested whether PSD-95 regulates synaptic KARs in intact synapses. Using PSD-95 knockout mice, we directly investigated the role of PSD-95 in the KARs-mediated components of synaptic transmission at hippocampal mossy fiber-CA3 synapse, one of the synapses with the highest density of KARs. Mossy fiber EPSCs consist of AMPA receptor (AMPAR)-mediated fast component and KAR-mediated slower component, and the ratio was significantly reduced in PSD-95 knockout mice. The size of KARs-mediated field EPSP reduced in comparison with the size of the fiber volley. Analysis of KARs-mediated miniature EPSCs also suggested reduced synaptic KARs. All the evidence supports critical roles of PSD-95 in regulating synaptic KARs. Copyright © 2015 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Wu, Jinghuan; Zhuo, Qin; Chen, Xi; Tian, Yuan; Piao, Jianhua; Yang, Xiaoguang
2016-05-01
To investigate the relationship of leptin receptor gene rs1137100 and rs1137101 single nucleotide polymorphrism (SNP) with metabolic syndrome (MS) in older Han adults from major cities in China. A total of 2082 older Han adults were selected from 18 major cities including 15 provinces/municipalities of China National Nutrition and Health Survey in 2002. According to the MS definition proposed by Joint Interim Statement (JIS), the subjects were divided into MS and control groups. Plasma leptin and insulin levels were measured. The genotypes of rs1137100 and rs1137101 were detected by Taqman method. Association of genotypes of leptin receptor gene SNPs with MS was investigated. The MS group showed higher body mass index (BMI), waist circumference, fasting serum glucose, systolic blood pressure (SBP) and diastolic blood pressure (DBP), triglycerides (TG), serum total cholesterol (TC), insulin, homeostasis model of assessment for insulin resistence index (HOMA-IR) and leptin levels than those of control individuals, while the high density lipoprotein cholesterol (HDL-c) was significantly lower than the control group. The, GG, AA, GA genotypes distribution and the A allele frequency of rs1137100 and rs1137101 were similar between the two groups. The DBP and SBP level were obviously higher in AA genotype. The HDL-c concentration Was significantly lower in AA and GA + AA genotype. The AA and GA genotypes carriers in rs1137100 had similar risk for MS when comparing with the GG genotypes, and the OR values were 1.23 (95% CI 0.90-1.67) and 2.23 (95% CI 0.83-6.44), respectively. The AA and GA genotypes carriers in rs1137101 had similar risk for MS when comparing with the GG genotypes, and the OR values were 1.23 (95% CI 0.90-1.67) and 2.23 (95% CI 0.83-6.44), respectively. Leptin receptor genes rs1137100 and rs1137101 are not associated with pathogenesis of MS in older Han adults, but it may relate with hypertension or lipid abnormality.
Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.
Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A
2001-07-01
In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control of growth hormone (GH) secretion by the arcuate nucleus. Copyright 2001 S. Karger AG, Basel
Association of p60c-src with endosomal membranes in mammalian fibroblasts
1992-01-01
We have examined the subcellular localization of p60c-src in mammalian fibroblasts. Analysis of indirect immunofluorescence by three- dimensional optical sectioning microscopy revealed a granular cytoplasmic staining that co-localized with the microtubule organizing center. Immunofluorescence experiments with antibodies against a number of membrane markers demonstrated a striking co-localization between p60c-src and the cation-dependent mannose-6-phosphate receptor (CI- MPR), a marker that identifies endosomes. Both p60c-src and the CI-MPR were found to cluster at the spindle poles throughout mitosis. In addition, treatment of interphase and mitotic cells with brefeldin A resulted in a clustering of p60c-src and CI-MPR at a peri-centriolar position. Biochemical fractionation of cellular membranes showed that a major proportion of p60c-src co-enriched with endocytic membranes. Treatment of membranes containing HRP to alter their apparent density also altered the density of p60c-src-containing membranes. Similar density shift experiments with total cellular membranes revealed that the majority of membrane-associated p60c-src in the cell is associated with endosomes, while very little is associated with plasma membranes. These results support a role for p60c-src in the regulation of endosomal membranes and protein trafficking. PMID:1378446
Hashimoto, Takashi; Baba, Satoko; Ikeda, Hiroko; Oda, Yasunori; Hashimoto, Kenji; Shimizu, Isao
2018-07-05
Long-term treatment with antipsychotic drugs in patients with schizophrenia can lead to dopamine supersensitivity psychosis. It is reported that repeated administration of haloperidol caused dopamine supersensitivity in rats. Blonanserin is an atypical antipsychotic drug with high affinity for dopamine D 2 , D 3 and serotonin 2A receptors. In this study, we investigated whether chronic administration of blonanserin leads to dopamine supersensitivity. Following oral treatment with blonanserin (0.78 mg/kg) or haloperidol (1.1 mg/kg) twice daily for 28 days, the dopamine D 2 agonist quinpirole-induced hyperlocomotion test and a dopamine D 2 receptor binding assay were conducted. We found that haloperidol significantly enhanced both quinpirole-induced hyperlocomotion and striatal dopamine D 2 receptor density in rats. On the other hand, repeated administration of blonanserin had no effect on either locomotor activity or striatal dopamine D 2 receptor density. Further, our results show that mRNA levels of dopamine D 2 and D 3 receptors in several brain regions were unaffected by repeated administration of both agents. In addition, we examined the effect of the dopamine D 3 receptor antagonist PG-01037 on development of dopamine supersensitivity induced by chronic haloperidol treatment and showed that PG-01037 prevents the development of supersensitivity to quinpirole in chronic haloperidol-treated rats. Given the higher affinity of blonanserin at dopamine D 3 receptors than haloperidol, antagonism of blonanserin at dopamine D 3 receptors may play a role in lack of dopamine supersensitivity after chronic administration. The present findings suggest long-term treatment with antipsychotic dose of blonanserin may be unlikely to lead to dopamine supersensitivity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Lessard, Andrée; Coleman, Christal G; Pickel, Virginia M
2010-06-01
Chronic intermittent hypoxia (CIH) is a frequent concomitant of sleep apnea, which can increase sympathetic nerve activity through mechanisms involving chemoreceptor inputs to the commissural nucleus of the solitary tract (cNTS). These chemosensory inputs co-store glutamate and substance P (SP), an endogenous ligand for neurokinin-1 (NK(1)) receptors. Acute hypoxia results in internalization of NK(1) receptors, suggesting that CIH also may affect the subcellular distribution of NK(1) receptors in subpopulations of cNTS neurons, some of which may express tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (TH). To test this hypothesis, we examined dual immunolabeling for the NK(1) receptor and TH in the cNTS of male mice subjected to 10days or 35days of CIH or intermittent air. Electron microscopy revealed that NK(1) receptors and TH were almost exclusively localized within separate somatodendritic profiles in cNTS of control mice. In dendrites, immunogold particles identifying NK(1) receptors were prevalent in the cytoplasm and on the plasmalemmal surface. Compared with controls, CIH produced a significant region-specific decrease in the cytoplasmic (10 and 35days, P<0.05, unpaired Student t-test) and extrasynaptic plasmalemmal (35days, P<0.01, unpaired Student t-test) density of NK(1) immunogold particles exclusively in small (<0.1microm) dendrites without TH immunoreactivity. These results suggest that CIH produces a duration-dependent reduction in the availability of NK(1) receptors preferentially in small dendrites of non-catecholaminergic neurons in the cNTS. The implications of our findings are discussed with respect to their potential involvement in the slowly developing hypertension seen in sleep apnea patients. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Lessard, Andrée; Coleman, Christal G.; Pickel, Virginia M.
2010-01-01
Chronic intermittent hypoxia (CIH) is a frequent concomitant of sleep apnea, which can increase sympathetic nerve activity through mechanisms involving chemoreceptor inputs to the commissural nucleus of the solitary tract (cNTS). These chemosensory inputs co-store glutamate and substance P (SP), an endogenous ligand for neurokinin-1 (NK1) receptors. Acute hypoxia results in internalization of NK1 receptors, suggesting that CIH also may affect the subcellular distribution of NK1 receptors in subpopulations of cNTS neurons, some of which may express tyrosine hydroxylase, the rate-limiting enzyme for catecholamine synthesis (TH). To test this hypothesis, we examined dual immunolabeling for the NK1 receptor and TH in the cNTS of male mice subjected to 10 days or 35 days of CIH or intermittent air. Electron microscopy revealed that NK1 receptors and TH were almost exclusively localized within separate somatodendritic profiles in cNTS of control mice. In dendrites, immunogold particles identifying NK1 receptors were prevalent in the cytoplasm and on the plasmalemmal surface. Compared with controls, CIH produced a significant region-specific decrease in the cytoplasmic (10 and 35 days, P< 0.05, unpaired Student t-test) and extrasynaptic plasmalemmal (35 days, P< 0.01, unpaired Student t-test) density of NK1 immunogold particles exclusively in small (<0.1 µm) dendrites without TH immunoreactivity. These results suggest that CIH produces a duration-dependent reduction in the availability of NK1 receptors preferentially in small dendrites of non-catecholaminergic neurons in the cNTS. The implications of our findings are discussed with respect to their potential involvement in the slowly developing hypertension seen in sleep apnea patients. PMID:20206166
Resveratrol, Wine, and Atherosclerosis
Prasad, Kailash
2012-01-01
This review emphasizes the effects of resveratrol on factors involved in the mechanism of atherosclerosis and risk factors for atherosclerosis. The effects of wine and resveratrol on atherosclerosis are also discussed. Resveratrol is a potent antioxidant and an anti-inflammatory agent. It reduces the expression of cell adhesion molecules, monocyte colony stimulating factors, matrix metalloproteinases, and growth factors; and inhibits platelet aggregation and vascular smooth muscle cell proliferation. It reduces the serum levels of total cholesterol, triglycerides (TG), and raises high-density lipoprotein cholesterol, inhibits expression of C-reactive protein and lowers the levels of advanced glycation end products and its receptor in the vascular tissue. It lowers the risk factors for plaque rupture. Epidemiological data show that moderate consumption of alcohol has an inverse association with carotid atherosclerosis while high consumption has a positive association with carotid atherosclerosis. Wine reduces the extent of atherosclerosis in animal model. The antiatherosclerotic effect of wine is mainly due to it resveratrol content. Resveratrol reduces the extent of atherosclerosis in animal model of atherosclerosis (apolipoprotein [Apo] E-deficient and Apo E−/−/low-density lipoprotein receptor-deficient mice and macrophage). In rabbit model of atherosclerosis, both reduction and acceleration of atherosclerosis have been reported with resveratrol. There are no data for regression and slowing of progression of atherosclerosis. Robust clinical trials for suppression of atherosclerosis are lacking. In conclusion, resveratrol has potential but experimental studies in depth and robust clinical trials are lacking for this agent to be of any value in the primary and secondary prevention of coronary and peripheral artery disease. PMID:23450206
Dong, Shan-Shan; Liu, Xiao-Gang; Chen, Yuan; Guo, Yan; Wang, Liang; Zhao, Jian; Xiong, Dong-Hai; Xu, Xiang-Hong; Recker, Robert R.
2010-01-01
Femoral neck compression strength index (fCSI), a novel phenotypic parameter that integrates bone density, bone size, and body size, has significant potential to improve hip fracture risk assessment. The genetic factors underlying variations in fCSI, however, remain largely unknown. Given the important roles of the receptor activator of the nuclear factor-κB ligand/receptor activator of the nuclear factor-κB/osteoprotegerin (RANKL/RANK/OPG) pathway in the regulation of bone remodeling, we tested the associations between RANKL/RANK/OPG polymorphisms and variations in fCSI as well as its components (femoral neck bone mineral density [fBMD], femoral neck width [FNW], and weight). This was accomplished with a sample comprising 1873 subjects from 405 Caucasian nuclear families. Of the 37 total SNPs studied in these three genes, 3 SNPs, namely, rs12585014, rs7988338, and rs2148073, of RANKL were significantly associated with fCSI (P = 0.0007, 0.0007, and 0.0005, respectively) after conservative Bonferroni correction. Moreover, the three SNPs were approximately in complete linkage disequilibrium. Haplotype-based association tests corroborated the single-SNP results since haplotype 1 of block 1 of the RANKL gene achieved an even more significant association with fCSI (P = 0.0003) than any of the individual SNPs. However, we did not detect any significant associations of these genes with fBMD, FNW, or weight. In summary, our findings suggest that the RANKL gene may play an important role in variation in fCSI, independent of fBMD and non-fBMD components. PMID:19458885
Ichikawa, Shoji; Koller, Daniel L.; Peacock, Munro; Johnson, Michelle L.; Lai, Dongbing; Hui, Siu L.; Johnston, C. Conrad; Foroud, Tatiana M.; Econs, Michael J.
2007-01-01
Context A major determinant of osteoporotic fractures is peak bone mineral density (BMD), which is a highly heritable trait. Recently, we identified significant linkage for hip BMD in premenopausal sister pairs at chromosome 14q (LOD score = 3.5), where the estrogen receptor β gene (ESR2) is located. Objective The objective of the study was to determine whether ESR2 polymorphisms are associated with normal BMD variation. Design This was a population‐based genetic association study, using 11 single nucleotide polymorphisms (SNPs) distributed across the ESR2 gene. Setting The study was conducted at an academic research laboratory and medical center. Patients and Other Participants A total of 411 healthy men (aged 18–61 yr) and 1291 healthy premenopausal women (aged 20–50 yr) living in Indiana participated in the study. Intervention(s) There were no interventions. Main Outcome Measure(s) The main outcome measures were SNP genotype distributions and their association with BMD at the femoral neck and lumbar spine. Results Significant association of spine BMD was found with three SNPs in men and one SNP in women (P ≤ 0.05). The conditional linkage analysis using the ESR2 haplotypes showed that the ESR2 gene accounts for, at most, 18% of the original linkage. Conclusions ESR2 polymorphisms are significantly associated with bone mass in both men and women. However, the ESR2 gene is not entirely responsible for our original linkage, and an additional gene(s) in chromosome 14q contributes to the determination of BMD. PMID:16118344
Dong, Shan-Shan; Liu, Xiao-Gang; Chen, Yuan; Guo, Yan; Wang, Liang; Zhao, Jian; Xiong, Dong-Hai; Xu, Xiang-Hong; Recker, Robert R; Deng, Hong-Wen
2009-08-01
Femoral neck compression strength index (fCSI), a novel phenotypic parameter that integrates bone density, bone size, and body size, has significant potential to improve hip fracture risk assessment. The genetic factors underlying variations in fCSI, however, remain largely unknown. Given the important roles of the receptor activator of the nuclear factor-kappaB ligand/receptor activator of the nuclear factor-kappaB/osteoprotegerin (RANKL/RANK/OPG) pathway in the regulation of bone remodeling, we tested the associations between RANKL/RANK/OPG polymorphisms and variations in fCSI as well as its components (femoral neck bone mineral density [fBMD], femoral neck width [FNW], and weight). This was accomplished with a sample comprising 1873 subjects from 405 Caucasian nuclear families. Of the 37 total SNPs studied in these three genes, 3 SNPs, namely, rs12585014, rs7988338, and rs2148073, of RANKL were significantly associated with fCSI (P = 0.0007, 0.0007, and 0.0005, respectively) after conservative Bonferroni correction. Moreover, the three SNPs were approximately in complete linkage disequilibrium. Haplotype-based association tests corroborated the single-SNP results since haplotype 1 of block 1 of the RANKL gene achieved an even more significant association with fCSI (P = 0.0003) than any of the individual SNPs. However, we did not detect any significant associations of these genes with fBMD, FNW, or weight. In summary, our findings suggest that the RANKL gene may play an important role in variation in fCSI, independent of fBMD and non-fBMD components.
You, Hai Fei; Zhao, Jing Zhi; Zhai, Yu Jia; Yin, Lei; Pang, Chao; Luo, Xin Ping; Zhang, Ming; Wang, Jin Jin; Li, Lin Lin; Wang, Yan; Wang, Qian; Wang, Bing Yuan; Ren, Yong Cheng; Hu, Dong Sheng
2015-07-01
To investigate the association between low-density lipoprotein receptor-related protein 5 (LRP5) variants (rs12363572 and rs4930588) and type 2 diabetes mellitus (T2DM) in Han Chinese. A total of 1842 T2DM cases (507 newly diagnosed cases and 1335 previously diagnosed cases) and 7777 controls were included in this case-control study. PCR-RFLP was conducted to detect the genotype of the two single nucleotide polymorphisms (SNPs). Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated to describe the strength of the association by logistic regression. In the study subjects, neither rs12363572 nor rs4930588 was significantly associated with T2DM, even after adjusting for relevant covariates. When stratified by body mass index (BMI), the two SNPs were also not associated with T2DM. Among the 3 common haplotypes, only haplotype TT was associated with reduced risk of T2DM (OR 0.820, 95% CI 0.732-0.919). In addition, rs12363572 was associated with BMI (P<0.001) and rs4930588 was associated with triglyceride levels (P=0.043) in 507 newly diagnosed T2DM cases but not in healthy controls. No LRP5 variant was found to be associated with T2DM in Han Chinese, but haplotype TT was found to be associated with T2DM. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Dietary oxidized linoleic acid lowers triglycerides via APOA5/APOClll dependent mechanisms
Garelnabi, Mahdi; Selvarajan, Krithika; Litvinov, Dmitry; Santanam, Nalini; Parthasarathy, Sampath
2008-01-01
Previously we have shown that intestinal cells efficiently take up oxidized fatty acids (OxFAs) and that atherosclerosis is increased when animals are fed a high cholesterol diet in the presence of oxidized linoleic acid. Interestingly, we found that in the absence of dietary cholesterol, the oxidized fatty acid fed low-density lipoprotein (LDL) receptor negative mice appeared to have lower plasma triglyceride (TG) levels as compared to animals fed oleic acid. In the present study, we fed C57BL6 mice a normal mice diet supplemented with oleic acid or oxidized linoleic acid (at 18 mg/animal/day) for 2 weeks. After the mice were sacrificed, we measured the plasma lipids and collected livers for the isolation of RNA. The results showed that while there were no significant changes in the levels of total cholesterol and high-density lipoprotein cholesterol (HDLc), there was a significant decrease (41.14%) in the levels of plasma TG in the mice that were fed oxidized fatty acids. The decreases in plasma TG levels were accompanied by significant increases (P < 0.001) in the expressions of APOA5 and acetyl-CoA oxidase genes as well as a significant (P < 0.04) decrease in APOClll gene expression. Oxidized lipids have been suggested to be ligands for peroxisome proliferator-activated receptor (PPARα). However, there were no increases in the mRNA or protein levels of PPARα in the oxidized linoleic acid fed animals. These results suggest that oxidized fatty acids may act through an APOA5/APOClll mechanism that contributes to lowering of TG levels other than PPARα induction. PMID:18243209
Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring.
Kesby, James P; O'Loan, Jonathan C; Alexander, Suzanne; Deng, Chao; Huang, Xu-Feng; McGrath, John J; Eyles, Darryl W; Burne, Thomas H J
2012-04-01
Developmental vitamin D (DVD) deficiency is a candidate risk factor for developing schizophrenia in humans. In rodents DVD deficiency induces subtle changes in the way the brain develops. This early developmental insult leads to select behavioural changes in the adult, such as an enhanced response to amphetamine-induced locomotion in female DVD-deficient rats but not in male DVD-deficient rats and an enhanced locomotor response to the N-methyl-D: -aspartate (NMDA) receptor antagonist, MK-801, in male DVD-deficient rats. However, the response to MK-801-induced locomotion in female DVD-deficient rats is unknown. Therefore, the aim of the current study was to further examine this behavioural finding in male and female rats and assess NMDA receptor density. DVD-deficient Sprague Dawley rats were assessed for locomotion, ataxia, acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR to multiple doses of MK-801. The NMDA receptor density in relevant brain regions was assessed in a drug-naive cohort. DVD deficiency increased locomotion in response to MK-801 in both sexes. DVD-deficient rats also showed an enhanced ASR compared with control rats, but PPI was normal. Moreover, DVD deficiency decreased NMDA receptor density in the caudate putamen of both sexes. These results suggest that a transient prenatal vitamin D deficiency has a long-lasting effect on NMDA-mediated signalling in the rodent brain and may be a plausible candidate risk factor for schizophrenia and other neuropsychiatric disorders.
Nammi, Srinivas; Kim, Moon S; Gavande, Navnath S; Li, George Q; Roufogalis, Basil D
2010-05-01
Zingiber officinale has been used to control lipid disorders and reported to possess remarkable cholesterol-lowering activity in experimental hyperlipidaemia. In the present study, the effect of a characterized and standardized extract of Zingiber officinale on the hepatic lipid levels as well as on the hepatic mRNA and protein expression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was investigated in a high-fat diet-fed rat model. Rats were treated with an ethanol extract of Zingiber officinale (400 mg/kg) extract along with a high-fat diet for 6 weeks. The extract of Zingiber officinale significantly decreased hepatic triglyceride and tended to decrease hepatic cholesterol levels when administered over 6 weeks to the rats fed a high-fat diet. We found that in parallel, the extract up-regulated both LDL receptor mRNA and protein level and down-regulated HMG-CoA reductase protein expression in the liver of these rats. The metabolic control of body lipid homeostasis is in part due to enhanced cholesterol biosynthesis and reduced expression of LDL receptor sites following long-term consumption of high-fat diets. The present results show restoration of transcriptional and post-transcriptional changes in low-density lipoprotein and HMG CoA reductase by Zingiber officinale administration with a high-fat diet and provide a rational explanation for the effect of ginger in the treatment of hyperlipidaemia.
Hazarika, Ankita; Kalita, Himadri; Kalita, Mohan Chandra; Devi, Rajlakshmi
2017-06-01
The "lipid hypothesis" determined that saturated fatty acid (SFA) raises low-density lipoprotein cholesterol, thereby increasing the risk for metabolic syndrome (MetS). The aim of this study was to investigate the effect of subchronic withdrawal from a high-carbohydrate, high-saturated fat (HCHF) diet during MetS with reference to changes in deleterious SFA (C12:0, lauric acid; C14:0, myristic acid; C16:0, palmitic acid; C18:0, stearic acid) distribution in liver, white adipose tissue (WAT), and feces. MetS induced by prolonged feeding of an HCHF diet in Wistar albino rat is used as a model of human MetS. The MetS-induced rats were withdrawn from the HCHF diet and changed to a basal diet for final 4 wk of the total experimental duration of 16 wk. SFA distribution in target tissues and hepatic low-density lipoprotein receptor (LDLr) expression were analyzed. Analyses of changes in SFA concentration of target tissues indicate that C16:0 and C18:0 reduced in WAT and liver after withdrawal of the HCHF diet. There was a significant (P < 0.001) decrease in fecal C12:0 with HCHF feeding, which significantly (P < 0.01) increased after withdrawal of this diet. Also, an improvement in expression of hepatic LDLr was observed after withdrawal of HCHF diet. The prolonged consumption of an HCHF diet leads to increased SFA accumulation in liver and WAT, decreased SFA excretion, and reduced hepatic LDLr expression during MetS, which is prominently reversed after subchronic withdrawal of the HCHF diet. This can contribute to better understanding of the metabolic fate of dietary SFA during MetS and may apply to the potential reversal of complications by the simple approach of nutritional modification. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sillanpaa, Jussi; Chang Jenghwa; Mageras, Gikas
2006-09-15
We report on the capabilities of a low-dose megavoltage cone-beam computed tomography (MV CBCT) system. The high-efficiency image receptor consists of a photodiode array coupled to a scintillator composed of individual CsI crystals. The CBCT system uses the 6 MV beam from a linear accelerator. A synchronization circuit allows us to limit the exposure to one beam pulse [0.028 monitor units (MU)] per projection image. 150-500 images (4.2-13.9 MU total) are collected during a one-minute scan and reconstructed using a filtered backprojection algorithm. Anthropomorphic and contrast phantoms are imaged and the contrast-to-noise ratio of the reconstruction is studied as amore » function of the number of projections and the error in the projection angles. The detector dose response is linear (R{sup 2} value 0.9989). A 2% electron density difference is discernible using 460 projection images and a total exposure of 13 MU (corresponding to a maximum absorbed dose of about 12 cGy in a patient). We present first patient images acquired with this system. Tumors in lung are clearly visible and skeletal anatomy is observed in sufficient detail to allow reproducible registration with the planning kV CT images. The MV CBCT system is shown to be capable of obtaining good quality three-dimensional reconstructions at relatively low dose and to be clinically usable for improving the accuracy of radiotherapy patient positioning.« less
Mutual enhancement of central neurotoxicity induced by ketamine followed by methamphetamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, J.-J.; Chen, H.-I.; Jen, C.J.
2008-03-01
We hereby report that repeated administration of ketamine (350 mg/kg in total) and methamphetamine (30 mg/kg in total) causes specific glutamatergic and dopaminergic neuron deficits, respectively, in adult mouse brain. Acute ketamine did not affect basal body temperature or the later methamphetamine-induced hyperthermia. However, pretreatment with repeated doses of ketamine aggravated methamphetamine-induced dopaminergic terminal loss as evidenced by a drastic decrease in the levels of dopamine, 3,4-dihydroxyphenylacetic acid, and dopamine transporter density as well as poor gait balance performance. In contrast, methamphetamine-induced serotonergic depletion was not altered by ketamine pretreatment. Likewise, the subsequent treatment with methamphetamine exacerbated the ketamine-induced glutamatergicmore » damage as indicated by reduced levels of the vesicular glutamate transporter in hippocampus and striatum and poor memory performance in the Morris water maze. Finally, since activation of the D1 and AMPA/kainate receptors has been known to be involved in the release of glutamate and dopamine, we examined the effects of co-administration of SCH23390, a D1 antagonist, and CNQX, an AMPA/kainate antagonist. Intraventricular CNQX infusion abolished ketamine's potentiation of methamphetamine-induced dopamine neurotoxicity, while systemic SCH23390 mitigated methamphetamine's potentiation of ketamine-induced glutamatergic toxicity. We conclude that repeated doses of ketamine potentiate methamphetamine-induced dopamine neurotoxicity via AMPA/kainate activation and that conjunctive use of methamphetamine aggravates ketamine-induced glutamatergic neurotoxicity possibly via D1 receptor activation.« less
Kuc, Rhoda E; Carlebur, Myrna; Maguire, Janet J; Yang, Peiran; Long, Lu; Toshner, Mark; Morrell, Nicholas W; Davenport, Anthony P
2014-11-24
In pulmonary arterial hypertension (PAH), increases in endothelin-1 (ET-1) contribute to elevated pulmonary vascular resistance which ultimately causes death by right ventricular (RV) heart failure. ET antagonists are effective in treating PAH but lack efficacy in treating left ventricular (LV) heart failure, where ETA receptors are significantly increased. The aim was to quantify the density of ETA and ETB receptors in cardiopulmonary tissue from PAH patients and the monocrotaline (MCT) rat, which recapitulates some of the pathophysiological features, including increased RV pressure. Radioligand binding assays were used to quantify affinity, density and ratio of ET receptors. In RV from human PAH hearts, there was a significant increase in the ratio of ETA to ETB receptors compared with normal hearts. In the RV of the MCT rat, the ratio also changed but was reversed. In both human and rat, there was no change in LV. In human PAH lungs, ETA receptors were significantly increased in the medial layer of small pulmonary arteries with no change detectable in MCT rat vessels. Current treatments for PAH focus mainly on pulmonary vasodilatation. The increase in ETA receptors in arteries provides a mechanism for the beneficial vasodilator actions of ET antagonists. The increase in the ratio of ETA in RV also implicates changes to ET signalling although it is unclear if ET antagonism is beneficial but the results emphasise the unexploited potential for therapies that target the RV, to improve survival in patients with PAH. Copyright © 2014. Published by Elsevier Inc.
CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL
Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart
2016-01-01
The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal sorting of LDLR and for its function. We find that patients with X-linked intellectual disability caused by mutations in CCDC22 are hypercholesterolaemic, and that COMMD1-deficient dogs and liver-specific Commd1 knockout mice have elevated plasma LDL cholesterol levels. Furthermore, Commd1 depletion results in mislocalization of LDLR, accompanied by decreased LDL uptake. Increased total plasma cholesterol levels are also seen in hepatic COMMD9-deficient mice. Inactivation of the CCC-associated WASH complex causes LDLR mislocalization, increased lysosomal degradation of LDLR and impaired LDL uptake. Furthermore, a mutation in the WASH component KIAA0196 (strumpellin) is associated with hypercholesterolaemia in humans. Altogether, this study provides valuable insights into the mechanisms regulating cholesterol homeostasis and LDLR trafficking. PMID:26965651
Maskarinec, Gertraud; Dartois, Laureen; Delaloge, Suzette; Hopper, John; Clavel-Chapelon, Françoise; Baglietto, Laura
2017-08-01
Mammographic density is a known heritable risk factor for breast cancer, but reports how tumor characteristics and family history may modify this association are inconsistent. Dense and total breast areas were assessed using Cumulus™ from pre-diagnostic mammograms for 820 invasive breast cancer cases and 820 matched controls nested within the French E3N cohort study. To allow comparisons across models, percent mammographic density (PMD) was standardized to the distribution of the controls. Odds ratios (OR) and 95% confidence intervals (CI) of breast cancer risk for mammographic density were estimated by conditional logistic regression while adjusting for age and body mass index. Heterogeneity according to tumor characteristic and family history was assessed using stratified analyses. Overall, the OR per 1 SD for PMD was 1.50 (95% CI, 1.33-1.69). No evidence for significant heterogeneity by tumor size, lymph node status, grade, and hormone receptor status (estrogen, progesterone, and HER2) was detected. However, the association of PMD was stronger for women reporting a family history of breast cancer (OR 1SD =2.25; 95% CI, 1.67-3.04) than in women reporting none (OR 1SD =1.41; 95% CI, 1.24-1.60; p heterogeneity =0.002). Similarly, effect modification by FHBC was observed using categories of PMD (p heterogeneity =0.02) with respective ORs of 15.16 (95% CI, 4.23-54.28) vs. 3.14 (95% CI, 1.89-5.22) for ≥50% vs. <10% PMD. The stronger association between mammographic density and breast cancer risk with a family history supports the hypothesis of shared genetic factors responsible for familial aggregation of breast cancer and the heritable component of mammographic density. Copyright © 2017 Elsevier Ltd. All rights reserved.
1985-01-01
Hepatocytes of estradiol-treated rats, which express many low density lipoprotein receptors, rapidly accumulate intravenously injected low density lipoprotein in multivesicular bodies (MVBs). We have isolated MVBs and Golgi apparatus fractions from livers of estradiol-treated rats. MVB fractions were composed mainly of large vesicles, approximately 0.55 micron diam, filled with remnantlike very low density lipoproteins, known to be taken up into hepatocytes by receptor- mediated endocytosis. MVBs also contained numerous small vesicles, 0.05- 0.07 micron in diameter, and had two types of appendages: one fingerlike and electron dense and the other saclike and electron lucent. MVBs contained little galactosyltransferase or arylsulfatase activity, and content lipoproteins were largely intact. Very low density lipoproteins from Golgi fractions, which are derived to a large extent from secretory vesicles, were larger than those of MVB fractions and contained newly synthesized triglycerides. Membranes of MVBs contained much more cholesterol and less protein than did Golgi membranes. We conclude that two distinct lipoprotein-filled organelles are located in the bile canalicular pole of hepatocytes. MVBs, a major prelysosomal organelle of low density in the endocytic pathway, contain remnants of triglyceride-rich lipoproteins, whereas secretory vesicles of the Golgi apparatus contain nascent very low density lipoproteins. PMID:3988801
Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iglesias, E.R.; Contreras L., E.; Garcia G., A.
1987-01-20
For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributionsmore » of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.« less
In Vitro Binding of [³H]PSB-0413 to P2Y₁₂ Receptors.
Dupuis, Arnaud; Heim, Véronique; Ohlmann, Philippe; Gachet, Christian
2015-12-08
The P2Y₁₂/ADP receptor plays a central role in platelet activation. Characterization of this receptor is mandatory for studying disorders associated with a P2Y₁₂ receptor defect and for evaluating P2Y₁₂ receptor agonists and antagonists. In the absence of suitable anti-P2Y₁₂ antibodies, radioligand binding assays are the only way to conduct such studies. While various radioligands were employed in the past for this purpose, none were found to be suitable for routine use. Described in this unit are protocols for quantitatively and qualitatively assessing P2Y₁₂ receptors with [³H]PSB-0413, a selective antagonist for this site. The saturation and competition assays described herein make possible the determination of P2Y₁₂ receptor density on cells, as well as the potencies and affinities of test agents at this site. Copyright © 2015 John Wiley & Sons, Inc.
Cid, Mariana Paula; Toledo, Carolina Maribel; Salvatierra, Nancy Alicia
2013-02-01
One-day-old chicks were individually assessed on their latency to peck pebbles, and categorized as low latency (LL) or high latency (HL) according to fear. Interactions between acute stress and systemic insulin and epinephrine on GABA(A) receptor density in the forebrain were studied. At 10 days of life, LL and HL chicks were intraperitoneally injected with insulin, epinephrine or saline, and immediately after stressed by partial water immersion for 15 min and killed by decapitation. Forebrains were dissected and the GABA(A) receptor density was measured ex vivo by the (3)[H]-flunitrazepam binding assay in synaptosomes. In non-stressed chicks, insulin (non-hypoglycemic dose) at 2.50 IU/kg of body weight incremented the Bmax by 40.53% in the HL chicks compared to saline group whereas no significant differences were observed between individuals in the LL subpopulation. Additionally, insulin increased the Bmax (23.48%) in the HL group with respect to the LL ones, indicating that the insulin responses were different according to the anxiety of each category. Epinephrine administration (0.25 and 0.50mg/kg) incremented the Bmax in non-stressed chicks, in the LL group by about 37% and 33%, respectively, compared to ones injected with saline. In the stressed chicks, 0.25mg/kg bw epinephrine increased the Bmax significantly in the HL group by about 24% compared to saline, suggesting that the effect of epinephrine was only observed in the HL group under acute stress conditions. Similarly, the same epinephrine doses co-administered with insulin increased the receptor density in both subpopulations and also showed that the highest dose of epinephrine did not further increase the maximum density of GABA(A)R in HL chicks. These results suggest that systemic epinephrine, perhaps by evoking central norepinephrine release, modulated the increase in the forebrain GABA(A) receptor recruitment induced by both insulin and stress in different ways depending on the subpopulation fearfulness. Copyright © 2013 Elsevier Inc. All rights reserved.
Loria, Analia S; Osborn, Jeffrey L
2017-07-01
Adult rats exposed to maternal separation (MatSep) are normotensive but display lower glomerular filtration rate and increased renal neuroadrenergic drive. The aim of this study was to determine the renal α-adrenergic receptor density and the renal vascular responsiveness to adrenergic stimulation in male rats exposed to MatSep. In addition, baroreflex sensitivity was assessed to determine a component of neural control of the vasculature. Using tissue collected from 4-mo-old MatSep and control rats, α 1 -adrenergic receptors (α 1 -ARs) were measured in renal cortex and isolated renal vasculature using receptor binding assay, and the α-AR subtype gene expression was determined by RT-PCR. Renal cortical α 1 -AR density was similar between MatSep and control tissues (B max = 44 ± 1 vs. 42 ± 2 fmol/mg protein, respectively); however, MatSep reduced α 1 -AR density in renal vasculature (B max = 47 ± 4 vs. 62 ± 4 fmol/mg protein, P < 0.05, respectively). In a separate group of rats, the pressor, bradycardic, and renal vascular constrictor responses to acute norepinephrine injection (NE, 0.03-0.25 μg/μl) were determined under anesthesia. Attenuated NE-induced renal vasoconstriction was observed in rats exposed to MatSep compared with control ( P < 0.05). A third group of rats was infused at steady state with the α 1 agonist phenylephrine (10 μg/min iv) and vasodilator sodium nitroprusside (5 μg/min iv). The difference between the change in heart rate/mean arterial pressure slopes was indicative of reduced baroreflex sensitivity in MatSep vs. control rats (-0.45 ± 0.04 vs. -0.95 ± 0.07 beats·min -1 ·mmHg -1 , P < 0.05). These data support the notion that reduced α-adrenergic receptor expression and function in the renal vasculature could develop secondary to MatSep-induced overactivation of the renal neuroadrenergic tone. Copyright © 2017 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Mills, Paul J.; Perez, Christy J.; Adler, Karen A.; Ziegler, Michael G.; Meck, J. V. (Principal Investigator)
2002-01-01
Twenty-two astronauts who flew aboard 10 different US Space Shuttle flights were studied 10 days before launch, on landing day, and 2-4 days post-landing. After landing, plasma levels of norepinephrine (p<0.01) were elevated. Lymphocyte beta(2)-adrenergic receptors were desensitized 2-4 days post-landing (p<0.02). The density of CD62L on lymphocytes was unchanged but the densities of CD11a (p<0.01) and CD54 (p<0.001) were down-regulated. CD11a density was also down-regulated on monocytes (p<0.01). Neutrophils showed an up-regulation of CD11a (p<0.01) and a down-regulation of CD54 (p<0.01). CD11a density on neutrophils remained up-regulated (p<0.01) and CD54 density remained down-regulated (p<0.01) at 2-4 days post-landing. Circulating levels of soluble ICAM-1 (CD54) and soluble E-selectin (CD62E) were decreased after landing (p's<0.05). The data suggest that spaceflight leads to an environment that would support reduced leukocyte-endothelial adhesion. Sympathetic activation may contribute to this phenomenon.
Designing of a fluoride selective receptor through molecular orbital engineering
NASA Astrophysics Data System (ADS)
Mishra, Rakesh K.; Kumar, Virendra; Diwan, Uzra; Upadhyay, K. K.; Roy Chowdhury, P. K.
2012-11-01
The stepwise substitution of appropriate groups over the 3-[(2,4-dinitro-phenyl)-hydrazono]-butyric acid ethyl ester (R3) lead receptor R1 which showed selectivity towards fluoride in DMSO. The UV-vis and 1H NMR titration studies revealed the details of the binding between receptor R1 and fluoride. The receptor R1 also recognized fluoride in a toothpaste solution to as low as 50 ppm. The theoretical simulations of recognition event at Density Functional Theory (DFT) level using B3LYP/6-31G** basis set and polarizable continuum model (PCM) approach lead a semi-quantitative match with the experimental results.
Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning.
Wasser, Catherine R; Masiulis, Irene; Durakoglugil, Murat S; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E; Herz, Joachim
2014-11-25
Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. Copyright © 2014, American Association for the Advancement of Science.
Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning
Wasser, Catherine R.; Masiulis, Irene; Durakoglugil, Murat S.; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E.; Herz, Joachim
2015-01-01
Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. PMID:25429077
Sefcik, Lauren S.; Petrie Aronin, Caren E.; Awojoodu, Anthony O.; Shin, Soo J.; Mac Gabhann, Feilim; MacDonald, Timothy L.; Wamhoff, Brian R.; Lynch, Kevin R.; Peirce, Shayn M.
2011-01-01
Proper spatial and temporal regulation of microvascular remodeling is critical to the formation of functional vascular networks, spanning the various arterial, venous, capillary, and collateral vessel systems. Recently, our group has demonstrated that sustained release of sphingosine 1-phosphate (S1P) from biodegradable polymers promotes microvascular network growth and arteriolar expansion. In this study, we employed S1P receptor-specific compounds to activate and antagonize different combinations of S1P receptors to elucidate those receptors most critical for promotion of pharmacologically induced microvascular network growth. We show that S1P1 and S1P3 receptors act synergistically to enhance functional network formation via increased functional length density, arteriolar diameter expansion, and increased vascular branching in the dorsal skinfold window chamber model. FTY720, a potent activator of S1P1 and S1P3, promoted a 107% and 153% increase in length density 3 and 7 days after implantation, respectively. It also increased arteriolar diameters by 60% and 85% 3 and 7 days after implantation. FTY720-stimulated branching in venules significantly more than unloaded poly(D, L-lactic-co-glycolic acid). When implanted on the mouse spinotrapezius muscle, FTY720 stimulated an arteriogenic response characterized by increased tortuosity and collateralization of branching microvascular networks. Our results demonstrate the effectiveness of S1P1 and S1P3 receptor-selective agonists (such as FTY720) in promoting microvascular growth for tissue engineering applications. PMID:20874260
Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant.
Mumford, A D; Nisar, S; Darnige, L; Jones, M L; Bachelot-Loza, C; Gandrille, S; Zinzindohoue, F; Fischer, A-M; Mundell, S J; Gaussem, P
2013-03-01
Genetic variations that affect the structure of the thromboxane A2 receptor (TP receptor) provide insights into the function of this key platelet and vascular receptor, but are very rare in unselected populations. To determine the functional consequences of the TP receptor Trp29Cys (W29C) substitution. We performed a detailed phenotypic analysis of an index case (P1) with reduced platelet aggregation and secretion responses to TP receptor pathway activators, and a heterozygous TP receptor W29C substitution. An analysis of the variant W29C TP receptor expressed in heterologous cells was performed. Total TP receptor expression in platelets from P1 was similar to that of controls, but there was reduced maximum binding and reduced affinity of binding to the TP receptor antagonist [(3) H]SQ29548. HEK293 cells transfected with W29C TP receptor cDNA showed similar total TP receptor expression to wild-type (WT) controls. However, the TP receptor agonist U46619 was less potent at inducing rises in cytosolic free Ca(2+) in HEK293 cells expressing the W29C TP receptor than in WT controls, indicating reduced receptor function. Immunofluorescence microscopy and cell surface ELISA showed intracellular retention and reduced cell surface expression of the W29C TP receptor in HEK293 cells. Consistent with the platelet phenotype, both maximum binding and the affinity of binding of [(3) H]SQ29548 to the W29C TP receptor were reduced compared to WT controls. These findings extend the phenotypic description of the very rare disorder TP receptor deficiency, and show that the W29C substitution reduces TP receptor function by reducing surface receptor expression and by disrupting ligand binding. © 2012 International Society on Thrombosis and Haemostasis.
Ghirlanda, G; Lear, J D; Lombardi, A; DeGrado, W F
1998-08-14
A series of synthetic receptors capable of binding to the calmodulin-binding domain of calcineurin (CN393-414) was designed, synthesized and characterized. The design was accomplished by docking CN393-414 against a two-helix receptor, using an idealized three-stranded coiled coil as a starting geometry. The sequence of the receptor was chosen using a side-chain re-packing program, which employed a genetic algorithm to select potential binders from a total of 7.5x10(6) possible sequences. A total of 25 receptors were prepared, representing 13 sequences predicted by the algorithm as well as 12 related sequences that were not predicted. The receptors were characterized by CD spectroscopy, analytical ultracentrifugation, and binding assays. The receptors predicted by the algorithm bound CN393-414 with apparent dissociation constants ranging from 0.2 microM to >50 microM. Many of the receptors that were not predicted by the algorithm also bound to CN393-414. Methods to circumvent this problem and to improve the automated design of functional proteins are discussed. Copyright 1998 Academic Press
Olson, Eric J; Pearce, Gregory L; Jones, Nigel P; Sprecher, Dennis L
2012-09-01
Peroxisome proliferator-activated receptor-δ-induced upregulation in skeletal muscle fatty acid oxidation would predict the modulation of lipid/lipoproteins. GW501516 (2.5, 5.0, or 10.0 mg) or placebo was given for 12 weeks to patients (n=268) with high-density lipoprotein (HDL) cholesterol <1.16 mmol/L. Fasting lipids/apolipoproteins (apos), insulin, glucose, and free fatty acid were measured; changes from baseline were calculated and assessed. A second smaller exploratory study (n=37) in a similar population was conducted using a sequence of 5 and 10 mg dosing for the assessment of lipoprotein particle concentration. GW501516 demonstrated HDL cholesterol increases up to 16.9% (10 mg) and apoA-I increases up to 6.6%. Reductions were observed in low-density lipoprotein (LDL) cholesterol (-7.3%), triglycerides (-16.9%), apoB (-14.9%), and free fatty acids (-19.4%). The exploratory study showed significant reductions in the concentration of very LDL (-19%), intermediate-density lipoprotein (-52%), and LDL (-14%, predominantly a reduction in small particles), whereas the number of HDL particles increased (+10%; predominantly medium and large HDL). GW501516 produced significant changes in HDL cholesterol, LDL cholesterol, apoA1, and apoB. Fewer very LDL and larger LDL support a transition toward less atherogenic lipoprotein profiles. These data are consistent with peroxisome proliferator-activated receptor-δ being a potentially important target for providing cardiovascular protection in metabolic syndrome-like patients.
Naudon, Laurent; El Yacoubi, Malika; Vaugeois, Jean-Marie; Leroux-Nicollet, Isabelle; Costentin, Jean
2002-05-17
Two lines of mice were bred for their opposite helpless behavior in the tail suspension test, i.e., helpless (HL) mice and non helpless (NHL) mice. The 5-HT(1A) receptor labeling was quantified by means of autoradiography with (3)H-8-OH-DPAT on brain sections from mice of these two lines. We observed a significantly higher level of (3)H-8-OH-DPAT binding sites density in HL mice comparatively to NHL mice, in the medial prefrontal, cingulate, motor and sensorial cortices, in several regions of the limbic system, such as CA3 field of hippocampus, dentate gyrus, medial and baso-medial amygdala, and in dorsal and median raphe nuclei. A chronic 21-day treatment with the antidepressant fluoxetine (10 mg/kg, i.p. daily) attenuated significantly the spontaneous helplessness in HL mice but did not alter the behavior of NHL mice. In the brain of HL mice chronically injected with fluoxetine, the elevated (3)H-8-OH-DPAT binding sites density was no longer observed after treatment in several regions, among which the raphe nuclei. Conversely, the antidepressant treatment did not modify the (3)H-8-OH-DPAT binding sites density in NHL mice. The variation of 5-HT(1A) receptors binding density in the HL mice in response to a chronic fluoxetine treatment parallels the attenuation of the spontaneous helplessness observed in the tail suspension test, and may underlie this behavior.
Hirvonen, J; Goodwin, R S; Li, C-T; Terry, G E; Zoghbi, S S; Morse, C; Pike, V W; Volkow, N D; Huestis, M A; Innis, R B
2012-06-01
Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB(1) (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB(1) receptors in human subjects who chronically smoke cannabis. Downregulation correlated with years of cannabis smoking and was selective to cortical brain regions. After ∼4 weeks of continuously monitored abstinence from cannabis on a secure research unit, CB(1) receptor density returned to normal levels. This is the first direct demonstration of cortical cannabinoid CB(1) receptor downregulation as a neuroadaptation that may promote cannabis dependence in human brain.
NASA Astrophysics Data System (ADS)
Muthu, S.; Uma Maheswari, J.; Sundius, Tom
2013-05-01
Famotidine (3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N'-sulfamoylpropanimidamide) is a histamine H2-receptor antagonist that inhibits stomach acid production, and it is commonly used in the treatment of peptic ulcer disease (PUD) and gastroesophageal reflux disease (GERD/GORD). Quantum chemical calculations of the equilibrium geometry of famotidine in the ground state were carried out using density functional theory (DFT/B3LYP) with the 6-311G(d,p) basis set. In addition, harmonic vibrational frequencies, infrared intensities and Raman activities were calculated at the same level of theory. A detailed interpretation of the infrared and Raman spectrum of the drug is also reported. Theoretical simulations of the FT-IR, and FT-Raman spectra of the title compound have been calculated. Good correlations between the experimental 1H and 13C NMR chemical shifts and calculated GIAO shielding tensors were found. The results of the energy and oscillator strength calculations by time-dependent density functional theory (TD-DFT) supplement the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The dipole moment, linear polarizability and first order hyperpolarizability values were also computed. The linear polarizability and first order hyperpolarizabilities of the studied molecule indicate that the compound is a good candidate for nonlinear optical materials.
Lambrinoudaki, I; Kaparos, G; Armeni, E; Alexandrou, A; Damaskos, C; Logothetis, E; Creatsa, M; Antoniou, A; Kouskouni, E; Triantafyllou, N
2011-01-01
utilization of antiepileptic drugs (AEDs) has long been associated with bone deleterious effects. Furthermore, the BsmI restriction fragment polymorphism of the vitamin D receptor (VDR) has been associated with reduced bone mineral density (BMD), mostly in postmenopausal women. This study evaluates the association between bone metabolism of patients with epilepsy and the BsmI VDR's polymorphism in chronic users of AEDs. this study evaluated 73 long-term users of antiepileptic drug monotherapy, in a cross-sectional design. Fasting blood samples were obtained to estimate the circulating serum levels of calcium, magnesium, phosphorus, parathormone, 25 hydroxyvitamin D as well as the VDR's genotype. Bone mineral density at the lumbar spine was measured with Dual Energy X-Ray Absorptiometry. bone mineral density was significantly associated with the genotype of VDR (mean BMD: Bb genotype 1.056 ± 0.126 g/cm(2) ; BB genotype 1.059 ± 0.113 g/cm(2) ; bb genotype 1.179 ± 0.120 g/cm(2) ; P < 0.05). Additionally, the presence of at least one B allele was significantly associated with lower bone mineral density (B allele present: BMD = 1.057 ± 0.12 g/cm(2) , B allele absent: BMD = 1.179 ± 0.119 g/cm(2) ; P < 0.01). Patients with at least one B allele had lower serum levels of 25 hydroxyvitamin D when compared with bb patients (22.61 ng/ml vs. 33.27 ng/ml, P < 0.05), whilst they tended to have higher levels of parathyroid hormone. vitamin D receptor polymorphism is associated with lower bone mass in patients with epilepsy. This effect might be mediated through the vitamin D-parathormone pathway.
Chen, Wei; Wang, Li-Li; Liu, Hong-Ying; Long, Long; Li, Song
2008-09-01
We evaluated the effects of GW501516, a specific peroxisome proliferator-activated receptor beta/delta (PPARdelta) agonist in metabolic syndrome mice, obtained by perinatal injection of monosodium L-glutamate, to investigate the efficacy of GW501516 against metabolic syndrome and the effectiveness of PPARdelta activation as therapeutic target for metabolic syndrome. After 14 days treatment, GW501516 effectively improved the glucose intolerance, normalized the fasted blood glucose, and increased the serum high-density lipoprotein cholesterol (HDL-C) level. Postprandial blood glucose, serum insulin, leptin, free fatty acid (FFA) levels, and total cholesterol/HDL-C ratio were also significantly decreased. Moreover, semiquantitative reverse transcription-polymerase chain reaction results indicated that the above phenotypes might be due to (i) enhancement of fatty acid oxidation in muscle, adipose tissue and the liver; (ii) improvement of insulin-stimulated glucose transportation in skeletal muscle and adipose tissue; and (iii) reduced local glucocorticoid synthesis. Therefore, GW501516 could significantly ameliorate dyslipidaemia and insulin resistance in monosodium L-glutamate mice and activation of PPARdelta could be envisioned as a useful strategy against human metabolic syndrome and related diseases.
Motawi, Tarek M.K.; El-Rehany, Mahmoud A.; Rizk, Sherine M.; Ramzy, Maggie M.; el-Roby, Doaa M.
2015-01-01
Estrogen might play an important role in type 2 diabetes mellitus pathogenesis. A number of polymorphisms have been reported in the estrogen receptor alpha gene including the XbaI and PvuII restriction enzyme polymorphisms. The aim of this study was to determine if ESRα gene polymorphisms are associated with type 2 diabetes mellitus and correlated with lipid profile. Ninety diabetic Egyptian patients were compared with forty healthy controls. ESRα genotyping of PvuII and XbaI was performed using restriction fragment length polymorphism analysis. Our study showed that there is more significant difference in the frequency of C and G polymorphic allele between patients and control groups in PvuII and XbaI respectively. Also carriers of minor C and G alleles of PvuII and XbaI gene polymorphisms were associated with increased fasting blood glucose and disturbance in lipid profile as there is an increase in total cholesterol, triglycerides and Low density lipoprotein. So findings of present study suggest the possibility that PvuII and XbaI polymorphisms in ERα are related to T2DM and with increased serum lipids among Egyptian population. PMID:26401488
Cardiovascular protection of deep-seawater drinking water in high-fat/cholesterol fed hamsters.
Hsu, Chin-Lin; Chang, Yuan-Yen; Chiu, Chih-Hsien; Yang, Kuo-Tai; Wang, Yu; Fu, Shih-Guei; Chen, Yi-Chen
2011-08-01
Cardiovascular protection of deep-seawater (DSW) drinking water was assessed using high-fat/cholesterol-fed hamsters in this study. All hamsters were fed a high-fat/cholesterol diet (12% fat/0.2% cholesterol), and drinking solutions were normal distiled water (NDW, hardness: 2.48ppm), DSW300 (hardness: 324.5ppm), DSW900 (hardness: 858.5ppm), and DSW1500 (hardness: 1569.0ppm), respectively. After a 6-week feeding period, body weight, heart rates, and blood pressures of hamsters were not influenced by DSW drinking waters. Serum total cholesterol (TC), triacylglycerol (TAG), atherogenic index, and malondialdehyde (MDA) levels were decreased (p<0.05) in the DSW-drinking-water groups, as compared to those in the NDW group. Additionally, increased (p<0.05) serum Trolox equivalent antioxidant capacity (TEAC), and faecal TC, TAG, and bile acid outputs were measured in the DSW-drinking-water groups. Hepatic low-density-lipoprotein receptor (LDL receptor) and cholesterol-7α-hydroxylase (CYP7A1) gene expressions were upregulated (p<0.05) by DSW drinking waters. These results demonstrate that DSW drinking water benefits the attenuation of high-fat/cholesterol-diet-induced cardiovascular disorders in hamsters. Copyright © 2011 Elsevier Ltd. All rights reserved.
High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling.
Fernandes, Herman B; Catches, Justin S; Petralia, Ronald S; Copits, Bryan A; Xu, Jian; Russell, Theron A; Swanson, Geoffrey T; Contractor, Anis
2009-09-24
Kainate receptors signal through both ionotropic and metabotropic pathways. The high-affinity subunits, GluK4 and GluK5, are unique among the five receptor subunits, as they do not form homomeric receptors but modify the properties of heteromeric assemblies. Disruption of the Grik4 gene locus resulted in a significant reduction in synaptic kainate receptor currents. Moreover, ablation of GluK4 and GluK5 caused complete loss of synaptic ionotropic kainate receptor function. The principal subunits were distributed away from postsynaptic densities and presynaptic active zones. There was also a profound alteration in the activation properties of the remaining kainate receptors. Despite this, kainate receptor-mediated inhibition of the slow afterhyperpolarization current (I(sAHP)), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown obligatory role for the high-affinity subunits for ionotropic kainate receptor function and further demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels.
Muscarinic receptors in gastric mucosa are increased in peptic ulcer disease.
Pfeiffer, A; Krömer, W; Friemann, J; Ruge, M; Herawi, M; Schätzl, M; Schwegler, U; May, B; Schatz, H
1995-01-01
Muscarinic receptors stimulate the secretion of acid pepsinogen and mucous in gastric mucosa. Whether muscarinic receptors are involved in the pathogenesis of benign gastric disease is unknown. Receptor changes in these conditions were therefore sought. An autoradiographic technique was developed to determine quantitatively muscarinic receptors in microtome sections of biopsy specimens obtained during gastroscopy. Muscarinic receptor density was mean (SEM) 18.4 (1.2) fmol/mg protein in the corpus and 8.9 (0.7) fmol/mg protein in the antrum (n = 53). Neither chronic nor active gastritis was associated with receptor changes in the antrum but chronic gastritis was associated with a receptor loss in the corpus. Patients with acute or recent duodenal or antral ulcers (n = 23) had significantly higher levels of muscarinic receptors in the corpus than controls (n = 25) (22.2 (1.5) v 16.9 (1.7) fmol/mg protein respectively (p < 0.025). These results suggest that muscarinic M3 receptor is overexpressed in duodenal ulcer disease and may play a part in its pathogenesis. Images Figure 2 PMID:7615265
Dong, Chao; Zhang, Ji-Chun; Yao, Wei; Ren, Qian; Ma, Min; Yang, Chun; Chaki, Shigeyuki; Hashimoto, Kenji
2017-03-01
Similar to the N-methyl-D-aspartate receptor antagonist ketamine, the metabotropic glutamate 2/3 receptor antagonist, MGS0039, shows antidepressant effects. However, there are no reports comparing these 2 compounds in the social defeat stress model of depression. We examined the effects of MGS0039 (1 mg/kg) and ketamine (10 mg/kg) on depression-like behavior in susceptible mice after repeated social defeat stress. Protein levels of brain-derived neurotrophic factor, TrkB, phospho-TrkB, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (GluA1), postsynaptic density protein 95, and dendritic spine density in selected brain regions were measured. In the tail suspension and forced swimming tests, both MGS0039 and ketamine significantly attenuated the increased immobility time observed in susceptible mice, compared with vehicle-treated animals, 1 or 2 days after a single dose of drug. In the sucrose preference test, both compounds significantly improved the reduced preference typically seen in susceptible mice at 3 to 7 days after a single dose of drug. Western-blot analyses showed that similar to ketamine, MGS0039 significantly attenuated the reduced brain-derived neurotrophic factor, phospho-TrkB/TrkB ratio, GluA1 and postsynaptic density protein 95 seen in the prefrontal cortex, dentate gyrus, and CA3 of the hippocampus from susceptible mice, 8 days after a single dose. Again, in a similar manner to ketamine, MGS0039 significantly attenuated the reduction of spine density in the prelimbic regions of the medial prefrontal cortex, dentate gyrus, and CA3 of the hippocampus, but not infralimbic regions of the medial prefrontal cortex and CA1, in susceptible mice 8 days after a single dose. In contrast, neither drug elicited an effect on altered brain-derived neurotrophic factor-TrkB signaling, GluA1, and postsynaptic density protein 95 levels and did not increase spine density observed in the nucleus accumbens of susceptible mice. Similar to ketamine, MGS0039 shows rapid and sustained antidepressant effects in the social defeat stress model. Long-lasting synaptogenesis in the prelimbic regions of medial prefrontal cortex, dentate gyrus, and CA3 might be implicated in this sustained antidepressant effect. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Dong, Chao; Zhang, Ji-chun; Yao, Wei; Ren, Qian; Ma, Min; Yang, Chun; Chaki, Shigeyuki
2017-01-01
Abstract Background: Similar to the N-methyl-D-aspartate receptor antagonist ketamine, the metabotropic glutamate 2/3 receptor antagonist, MGS0039, shows antidepressant effects. However, there are no reports comparing these 2 compounds in the social defeat stress model of depression. Methods: We examined the effects of MGS0039 (1 mg/kg) and ketamine (10 mg/kg) on depression-like behavior in susceptible mice after repeated social defeat stress. Protein levels of brain-derived neurotrophic factor, TrkB, phospho-TrkB, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (GluA1), postsynaptic density protein 95, and dendritic spine density in selected brain regions were measured. Results: In the tail suspension and forced swimming tests, both MGS0039 and ketamine significantly attenuated the increased immobility time observed in susceptible mice, compared with vehicle-treated animals, 1 or 2 days after a single dose of drug. In the sucrose preference test, both compounds significantly improved the reduced preference typically seen in susceptible mice at 3 to 7 days after a single dose of drug. Western-blot analyses showed that similar to ketamine, MGS0039 significantly attenuated the reduced brain-derived neurotrophic factor, phospho-TrkB/TrkB ratio, GluA1 and postsynaptic density protein 95 seen in the prefrontal cortex, dentate gyrus, and CA3 of the hippocampus from susceptible mice, 8 days after a single dose. Again, in a similar manner to ketamine, MGS0039 significantly attenuated the reduction of spine density in the prelimbic regions of the medial prefrontal cortex, dentate gyrus, and CA3 of the hippocampus, but not infralimbic regions of the medial prefrontal cortex and CA1, in susceptible mice 8 days after a single dose. In contrast, neither drug elicited an effect on altered brain-derived neurotrophic factor-TrkB signaling, GluA1, and postsynaptic density protein 95 levels and did not increase spine density observed in the nucleus accumbens of susceptible mice. Conclusions: Similar to ketamine, MGS0039 shows rapid and sustained antidepressant effects in the social defeat stress model. Long-lasting synaptogenesis in the prelimbic regions of medial prefrontal cortex, dentate gyrus, and CA3 might be implicated in this sustained antidepressant effect. PMID:27765808
Xu, Jian; Marshall, John J; Fernandes, Herman B; Nomura, Toshihiro; Copits, Bryan A; Procissi, Daniele; Mori, Susumu; Wang, Lei; Zhu, Yongling; Swanson, Geoffrey T; Contractor, Anis
2017-02-21
Kainate receptors are members of the glutamate receptor family that regulate synaptic function in the brain. They modulate synaptic transmission and the excitability of neurons; however, their contributions to neural circuits that underlie behavior are unclear. To understand the net impact of kainate receptor signaling, we generated knockout mice in which all five kainate receptor subunits were ablated (5ko). These mice displayed compulsive and perseverative behaviors, including over-grooming, as well as motor problems, indicative of alterations in striatal circuits. There were deficits in corticostriatal input to spiny projection neurons (SPNs) in the dorsal striatum and correlated reductions in spine density. The behavioral alterations were not present in mice only lacking the primary receptor subunit expressed in adult striatum (GluK2 KO), suggesting that signaling through multiple receptor types is required for proper striatal function. This demonstrates that alterations in striatal function dominate the behavioral phenotype in mice without kainate receptors. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Akama, Keith T.; Thompson, Louisa I.; Milner, Teresa A.; McEwen, Bruce S.
2013-01-01
The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity. PMID:23300088
Akama, Keith T; Thompson, Louisa I; Milner, Teresa A; McEwen, Bruce S
2013-03-01
The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity.
Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Goldberg, Jeremy; Anderson, George M.; Zwaigenbaum, Lonnie; Hall, Geoffrey B. C.; Nahmias, Claude; Thompson, Ann; Szatmari, Peter
2009-01-01
Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [[superscript 18]F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [[superscript 18]F]setoperone intensity in regions of…
Adeno-associated virus-2 and its primary cellular receptor-Cryo-EM structure of a heparin complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donnell, Jason; Taylor, Kenneth A.; Chapman, Michael S.
2009-03-15
Adeno-associated virus serotype 2 (AAV-2) is a leading candidate vector for gene therapy. Cell entry starts with attachment to a primary receptor, Heparan Sulfate Proteoglycan (HSPG) before binding to a co-receptor. Here, cryo-electron microscopy provides direct visualization of the virus-HSPG interactions. Single particle analysis was performed on AAV-2 complexed with a 17 kDa heparin fragment at 8.3 A resolution. Heparin density covers the shoulder of spikes surrounding viral 3-fold symmetry axes. Previously implicated, positively charged residues R{sub 448/585}, R{sub 451/588} and R{sub 350/487} from another subunit cluster at the center of the heparin footprint. The footprint is much more extensivemore » than apparent through mutagenesis, including R{sub 347/484}, K{sub 395/532} and K{sub 390/527} that are more conserved, but whose roles have been controversial. It also includes much of a region proposed as a co-receptor site, because prior studies had not revealed heparin interactions. Heparin density bridges over the viral 3-fold axes, indicating multi-valent attachment to symmetry-related binding sites.« less
Effects of hypergravic fields on serotonergic neuromodulation in the rat hippocampus.
Horrigan, D J; Fuller, C A; Horowitz, J M
1997-10-01
The effects of 7 day exposure to 2G fields on serotonergic modulation at two synapses on a hippocampal pathway were examined by recording dentate gyrus and CA1 pyramidal cell layer electrical activity. Serotonin decreased the amplitude of the population spike (synchronous action potentials in hundreds of neurons) in both the dentate gyrus and CA1 regions of rats exposed to 2G fields for 7 days. The inhibition, averaging 26 +/- 4% (mean +/- SEM) in the dentate gyrus and 80 +/- 5% in the CA1 region, was not significantly different from inhibitory responses observed in 1G controls. The 5-HT1A agonist 8-OH-DPAT mimicked this inhibition in the dentate and CA1 regions of 1G rats. 8-OH-DPAT responses were not affected by exposure to 2G fields. We conclude that the hippocampus contains surplus 5-HT receptors so that decreases in receptor density reported in receptor binding studies do not result in a decrease in modulatory capability. A model to account for the physiological pathway that relates gravitational field strength to 5-HT receptor density without changing the effectiveness of 5-HT neuromodulation is discussed.
Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila.
Wang, Liming; Anderson, David J
2010-01-14
Aggression is regulated by pheromones in many animal species. However, in no system have aggression pheromones, their cognate receptors and corresponding sensory neurons been identified. Here we show that 11-cis-vaccenyl acetate (cVA), a male-specific volatile pheromone, robustly promotes male-male aggression in the vinegar fly Drosophila melanogaster. The aggression-promoting effect of synthetic cVA requires olfactory sensory neurons (OSNs) expressing the receptor Or67d, as well as the receptor itself. Activation of Or67d-expressing OSNs, either by genetic manipulation of their excitability or by exposure to male pheromones in the absence of other classes of OSNs, is sufficient to promote aggression. High densities of male flies can promote aggression by the release of volatile cVA. In turn, cVA-promoted aggression can promote male fly dispersal from a food resource, in a manner dependent on Or67d-expressing OSNs. These data indicate that cVA may mediate negative-feedback control of male population density, through its effect on aggression. Identification of a pheromone-OSN pair controlling aggression in a genetic organism opens the way to unravelling the neurobiology of this evolutionarily conserved behaviour.
Xu, Minfu; Chandler, L. Judson; Woodward, John J.
2008-01-01
Previous studies have shown that the N-methyl-D-aspartate (NMDA) receptor is an important target for the actions of ethanol in the brain. NMDA receptors are glutamate-activated ion channels that are highly expressed in neurons. They are activated during periods of significant glutamatergic synaptic activity and are an important source of the signaling molecule calcium in the post-synaptic spine. Alterations in the function of NMDA receptors by drugs or disease are associated with deficits in motor, sensory and cognitive processes of the brain. Acutely, ethanol inhibits ion flow through NMDA receptors while sustained exposure to ethanol can induce compensatory changes in the density and localization of the receptor. Defining factors that govern the acute ethanol sensitivity of NMDA receptors is an important step in how an individual responds to ethanol. In the present study, we investigated the effect of calcium-calmodulin dependent protein kinase II (CaMKII) on the ethanol sensitivity of recombinant NMDA receptors. CaMKII is a major constituent of the post-synaptic density and is critically involved in various forms of learning and memory. NMDA receptor subunits were transiently expressed in human embryonic kidney 293 cells (HEK 293) along with CaMKII-α or CaMKII-β tagged with the green fluorescent protein (GFP). Whole cell currents were elicited by brief exposures to glutamate and were measured using patchclamp electrophysiology. Neither CaMKII-α or CaMKII-β had any significant effect on the ethanol inhibition of NR1/2A or NR1/2B receptors. Ethanol inhibition was also unaltered by deletion of CaMKII binding domains in NR1 or NR2 subunits or by phospho-site mutants that mimic or occlude CaMKII phosphorylation. Chronic treatment of cortical neurons with ethanol had no significant effect on the expression of CaMKII-α or CaMKII-β. The results of this study suggest that CaMKII is not involved in regulating the acute ethanol sensitivity of NMDA receptors. PMID:18562151
Douglas, Stephen A; Naselsky, Diane; Ao, Zhaohui; Disa, Jyoti; Herold, Christopher L; Lynch, Frank; Aiyar, Nambi V
2004-01-01
In an effort to identify endogenous, native mammalian urotensin-II (U-II) receptors (UT), a diverse range of human, primate and rodent cell lines (49 in total) were screened for the presence of detectable [125I]hU-II binding sites. UT mRNA (Northern blot, PCR) and protein (immunocytochemistry) were evident in human skeletal muscle tissue and cells. [125I]hU-II bound to a homogenous population of high-affinity, saturable (Kd 67.0±11.8 pM, Bmax 9687±843 sites cell−1) receptors in the skeletal muscle (rhabdomyosarcoma) cell line SJRH30. Radiolabel was characteristically slow to dissociate (⩽15% dissociation 90 min). A lower density of high-affinity U-II binding sites was also evident in the rhabdomyosarcoma cell line TE671 (1667±165 sites cell−1, Kd 74±8 pM). Consistent with the profile recorded in human recombinant UT-HEK293 cells, [125I]hU-II binding to SJRH30 cells was selectively displaced by both mammalian and fish U-II isopeptides (Kis 0.5±0.1–1.2±0.3 nM) and related analogues (hU-II[4-11]>[Cys5,10]Acm hU-II; Kis 0.4±0.1 and 864±193 nM, respectively). U-II receptor activation was functionally coupled to phospholipase C-mediated [Ca2+]i mobilization (EC50 6.9±2.2 nM) in SJRH30 cells. The present study is the first to identify the presence of ‘endogenous' U-II receptors in SJRH30 and TE671 cells. SJRH30 cells, in particular, might prove to be of utility for (a) investigating the pharmacological properties of hU-II and related small molecule antagonists at native human UT and (b) delineating the role of this neuropeptide in the (patho)physiological regulation of mammalian neuromuscular function. PMID:15210573
Lau, Patrick; Fitzsimmons, Rebecca L; Raichur, Suryaprakash; Wang, Shu-Ching M; Lechtken, Adriane; Muscat, George E O
2008-06-27
Homozygous staggerer mice (sg/sg) display decreased and dysfunctional retinoic acid receptor-related orphan receptor alpha (RORalpha) expression. We observed decreases in serum (and liver) triglycerides and total and high density lipoprotein serum cholesterol in sg/sg mice. Moreover, the sg/sg mice were characterized by reduced adiposity (associated with decreased fat pad mass and adipocyte size). Candidate-based expression profiling demonstrated that the dyslipidemia in sg/sg mice is associated with decreased hepatic expression of SREBP-1c, and the reverse cholesterol transporters, ABCA1 and ABCG1. This is consistent with the reduced serum lipids. The molecular mechanism did not involve aberrant expression of LXR and/or ChREBP. However, ChIP and transfection analyses revealed that RORalpha is recruited to and regulates the activity of the SREBP-1c promoter. Furthermore, the lean phenotype in sg/sg mice is also characterized by significantly increased expression of PGC-1alpha, PGC-1beta, and lipin1 mRNA in liver and white and brown adipose tissue from sg/sg mice. In addition, we observed a significant 4-fold increase in beta(2)-adrenergic receptor mRNA in brown adipose tissue. Finally, dysfunctional RORalpha expression protects against diet-induced obesity. Following a 10-week high fat diet, wild-type but not sg/sg mice exhibited a approximately 20% weight gain, increased hepatic triglycerides, and notable white and brown adipose tissue accumulation. In summary, these changes in gene expression (that modulate lipid homeostasis) in metabolic tissues are involved in decreased adiposity and resistance to diet-induced obesity in the sg/sg mice, despite hyperphagia. In conclusion, we suggest this orphan nuclear receptor is a key modulator of fat accumulation and that selective ROR modulators may have utility in the treatment of obesity.
Wolf, Dhana; Klasen, Martin; Eisner, Patrick; Zepf, Florian D; Zvyagintsev, Mikhail; Palomero-Gallagher, Nicola; Weber, René; Eisert, Albrecht; Mathiak, Klaus
2018-06-08
Disruptions in the cortico-limbic emotion regulation networks have been linked to depression, anxiety, impulsivity, and aggression. Altered transmission of the central nervous serotonin (5-HT) contributes to dysfunctions in the cognitive control of emotions. To date, studies relating to pharmaco-fMRI challenging of the 5-HT system have focused on emotion processing for facial expressions. We investigated effects of a single-dose selective 5-HT reuptake inhibitor (escitalopram) on emotion regulation during virtual violence. For this purpose, 38 male participants played a violent video game during fMRI scanning. The SSRI reduced neural responses to violent actions in right-hemispheric inferior frontal gyrus and medial prefrontal cortex encompassing the anterior cingulate cortex (ACC), but not to non-violent actions. Within the ACC, the drug effect differentiated areas with high inhibitory 5-HT1A receptor density (subgenual s25) from those with a lower density (pregenual p32, p24). This finding links functional responses during virtual violent actions with 5-HT neurotransmission in emotion regulation networks, underpinning the ecological validity of the 5-HT model in aggressive behavior. Available 5-HT receptor density data suggest that this SSRI effect is only observable when inhibitory and excitatory 5-HT receptors are balanced. The observed early functional changes may impact patient groups receiving SSRI treatment.
Statistical properties of kinetic and total energy densities in reverberant spaces.
Jacobsen, Finn; Molares, Alfonso Rodríguez
2010-04-01
Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high modal overlap, and this analysis has never been published. Moreover, until fairly recently, measurement of the total sound energy density required an elaborate experimental arrangement based on finite-difference approximations using at least four amplitude and phase matched pressure microphones. With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically, experimentally, and numerically.
Liang, Junshi; Chen, Pengyu; Dong, Bojun; Huang, Zihan; Zhao, Kongyin; Yan, Li-Tang
2016-05-09
Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.
Kang, Yuan-Lin; Yochem, John; Bell, Leslie; Sorensen, Erika B.; Chen, Lihsia; Conner, Sean D.
2013-01-01
Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR. PMID:23242996
Zhang, Xianzhong; Zhou, Panwang; Liu, Jiaojiao; Huang, Yan; Lin, Yan; Chen, Yanling; Gu, Ting; Yang, Wenjiang; Wang, Xuebin
2007-03-01
The goal of this study is to develop a novel 5-HT(1A) receptor imaging agent. 4-[(2-methoxyphenyl)piperazin-1-yl]-dithioformate (MPPDTF) was labeled with (99m)Tc-tricarbonyl core via dithioformate moiety in high yield (>96% by HPLC). (99m)Tc(CO)(3)-MPPDTF is a neutral and lipophilic complex, which was confirmed by paper electrophoresis and octanol/water partition coefficient (P=27.0+/-1.4, n=3), respectively. In vivo biodistribution indicated that this complex had moderate brain uptake (0.53+/-0.10% ID/g at 5 min and 0.42+/-0.02% ID/g at 120 min) and good retention (about 80% of the activity was retained in the brain at 120 min post-injection). Regional brain distribution study showed that hippocampus, where the 5-HT(1A) receptor density is high, had the highest uptake (0.60+/-0.02% ID/g at 5 min p.i.) and the cerebellum, where the 5-HT(1A) receptor density is low, had the lowest uptake (0.10+/-0.02% ID/g at 5 min p.i.). After blocking with 8-OH-DPAT, the hippocampus uptake was decreased obviously while the cerebellum uptake was increased slightly. This result indicates that (99m)Tc(CO)(3)-MPPDTF complex has specific binding to 5-HT(1A) receptor.
Jönsson, Erik G; Cichon, Sven; Gustavsson, J Petter; Grünhage, Frank; Forslund, Kaj; Mattila-Evenden, Marja; Rylander, Gunnar; Asberg, Marie; Farde, Lars; Propping, Peter; Nöthen, Markus M
2003-04-01
Personality traits have shown considerable heritable components. Striatal dopamine D(2) receptor density, as determined by positron-emission tomography, has been associated with detached personality, as assessed by the Karolinska Scales of Personality. A putative functional promoter polymorphism in the dopamine D(2) receptor gene (DRD2), -141C ins/del, has been associated with dopamine D(2) receptor density. In this study healthy subjects (n = 235) who filled in at least one of several personality questionnaires (Karolinska Scales of Personality, Swedish Universities Scales of Personality, Health-relevant Five-factor Personality Inventory, and Temperament and Character Inventory) were analyzed with regard to the DRD2 -141C ins/del variant. There was an association (p =.001) between the DRD2 -141C ins/del variant and Karolinska Scales of Personality Detachment scale, indicating higher scores in subjects with the -141C del variant. There were also associations between the DRD2 -141C ins/del variant and a number of Karolinska Scales of Personality and Swedish Universities Scales of Personality Neuroticism-related scales, but of these only Swedish Universities Scales of Personality Lack of Assertiveness scale (p =.001) survived correction for multiple testing. These results add further support for the involvement of dopamine D(2) receptor in certain personality traits. The results should be treated with caution until replicated.
Role of Insulin in the Regulation of Proprotein Convertase Subtilisin/Kexin Type 9.
Miao, Ji; Manthena, Praveen V; Haas, Mary E; Ling, Alisha V; Shin, Dong-Ju; Graham, Mark J; Crooke, Rosanne M; Liu, Jingwen; Biddinger, Sudha B
2015-07-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds the low-density lipoprotein receptor and targets it for degradation, has emerged as an important regulator of serum cholesterol levels and cardiovascular disease risk. Although much work is currently focused on developing therapies for inhibiting PCSK9, the endogenous regulation of PCSK9, particularly by insulin, remains unclear. The objective of these studies was to determine the effects of insulin on PCSK9 in vitro and in vivo. Using rat hepatoma cells and primary rat hepatocytes, we found that insulin increased PCSK9 expression and increased low-density lipoprotein receptor degradation in a PCSK9-dependent manner. In parallel, hepatic Pcsk9 mRNA and plasma PCSK9 protein levels were reduced by 55% to 75% in mice with liver-specific knockout of the insulin receptor; 75% to 88% in mice made insulin-deficient with streptozotocin; and 65% in ob/ob mice treated with antisense oligonucleotides against the insulin receptor. However, antisense oligonucleotide-mediated knockdown of insulin receptor in lean, wild-type mice had little effect. In addition, we found that fasting was able to reduce PCSK9 expression by 80% even in mice that lack hepatic insulin signaling. Taken together, these data indicate that although insulin induces PCSK9 expression, it is not the sole or even dominant regulator of PCSK9 under all conditions. © 2015 American Heart Association, Inc.
Van Beeren, H C; Jong, W M C; Kaptein, E; Visser, T J; Bakker, O; Wiersinga, W M
2003-02-01
Dronedarone (Dron), without iodine, was developed as an alternative to the iodine-containing antiarrhythmic drug amiodarone (AM). AM acts, via its major metabolite desethylamiodarone, in vitro and in vivo as a thyroid hormone receptor alpha(1) (TRalpha(1)) and TRbeta(1) antagonist. Here we investigate whether Dron and/or its metabolite debutyldronedarone inhibit T(3) binding to TRalpha(1) and TRbeta(1) in vitro and whether dronedarone behaves similarly to amiodarone in vivo. In vitro, Dron had a inhibitory effect of 14% on the binding of T(3) to TRalpha(1), but not on TRbeta(1). Desethylamiodarone inhibited T(3) binding to TRalpha(1) and TRbeta(1) equally. Debutyldronedarone inhibited T(3) binding to TRalpha(1) by 77%, but to TRbeta(1) by only 25%. In vivo, AM increased plasma TSH and rT(3), and decreased T(3). Dron decreased T(4) and T(3), rT(3) did not change, and TSH fell slightly. Plasma total cholesterol was increased by AM, but remained unchanged in Dron-treated animals. TRbeta(1)-dependent liver low density lipoprotein receptor protein and type 1 deiodinase activities decreased in AM-treated, but not in Dron-treated, animals. TRalpha(1)-mediated lengthening of the QTc interval was present in both AM- and Dron-treated animals. The in vitro and in vivo findings suggest that dronedarone via its metabolite debutyldronedarone acts as a TRalpha(1)-selective inhibitor.
Regulation of hepatic 7 alpha-hydroxylase expression by dietary psyllium in the hamster.
Horton, J D; Cuthbert, J A; Spady, D K
1994-01-01
Soluble fiber consistently lowers plasma total and low density lipoprotein (LDL)-cholesterol concentrations in humans and various animal models including the hamster; however, the mechanism of this effect remains incompletely defined. We performed studies to determine the activity of dietary psyllium on hepatic 7 alpha-hydroxylase, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase and LDL receptor expression in the hamster. In animals fed a cholesterol-free semisynthetic diet containing 7.5% cellulose (avicel) as a fiber source, substitution of psyllium for avicel increased hepatic 7 alpha-hydroxylase activity and mRNA levels by 3-4-fold. Comparable effects on 7 alpha-hydroxylase expression were observed with 1% cholestyramine. Psyllium also increased hepatic 7 alpha-hydroxylase activity and mRNA in animals fed a diet enriched with cholesterol and triglyceride. Activation of 7 alpha-hydroxylase was associated with an increase in hepatic cholesterol synthesis that was apparently not fully compensatory since the cholesterol content of the liver declined. Although dietary psyllium did not increase hepatic LDL receptor expression in animals fed the cholesterol-free, very-low-fat diet, it did increase (or at least restore) receptor expression that had been downregulated by dietary cholesterol and triglyceride. Thus, 7.5% dietary psyllium produced effects on hepatic 7 alpha-hydroxylase and LDL metabolism that were similar to those of 1% cholestyramine. Induction of hepatic 7 alpha-hydroxylase activity by dietary psyllium may account, in large part, for the hypocholesterolemic effect of this soluble fiber. Images PMID:8182140
Rojas, Valentina; Jiménez, Héctor; Palma-Millanao, Rubén; González-González, Angélica; Machuca, Juan; Godoy, Ricardo; Ceballos, Ricardo; Mutis, Ana; Venthur, Herbert
2018-04-30
The grapevine moth, Lobesia botrana, is considered a harmful pest for vineyards in Chile as well as in North America and Europe. Currently, monitoring and control methods of L. botrana are based on its main sex pheromone component, being effective for low population densities. In order to improve control methods, antennal olfactory proteins in moths, such as odorant-binding proteins (OBPs) and odorant receptors (ORs) have been studied as promising targets for the discovery of new potent semiochemicals, which have not been reported for L. botrana. Therefore, the objective of this study was to identify the repertoire of proteins related to chemoreception in L. botrana by antennal transcriptome and analyze the relative expression of OBPs and CSPs in male and female antennae. Through next-generation sequencing of the antennal transcriptome by Ilumina HiSeq2500 we identified a total of 118 chemoreceptors, from which 61, 42 and 15 transcripts are related to ORs, ionotropic receptors (IRs) and gustatory receptors (GRs), respectively. Furthermore, RNA-Seq data revealed 35 transcripts for OBPs and 18 for chemosensory proteins (CSPs). Analysis by qRT-PCR showed 20 OBPs significantly expressed in female antennae, while 5 were more expressed in males. Similarly, most of the CSPs were significantly expressed in female than male antennae. All the olfactory-related sequences were compared with homologs and their phylogenetic relationships elucidated. Finally, our findings in relation to the improvement of L. botrana management are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice.
Jones, Shannon M; Mann, Adrien; Conrad, Kelsey; Saum, Keith; Hall, David E; McKinney, Lisa M; Robbins, Nathan; Thompson, Joel; Peairs, Abigail D; Camerer, Eric; Rayner, Katey J; Tranter, Michael; Mackman, Nigel; Owens, A Phillip
2018-06-01
PAR2 (protease-activated receptor 2)-dependent signaling results in augmented inflammation and has been implicated in the pathogenesis of several autoimmune conditions. The objective of this study was to determine the effect of PAR2 deficiency on the development of atherosclerosis. PAR2 mRNA and protein expression is increased in human carotid artery and mouse aortic arch atheroma versus control carotid and aortic arch arteries, respectively. To determine the effect of PAR2 deficiency on atherosclerosis, male and female low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice (8-12 weeks old) that were Par2 +/+ or Par2 -/- were fed a fat- and cholesterol-enriched diet for 12 or 24 weeks. PAR2 deficiency attenuated atherosclerosis in the aortic sinus and aortic root after 12 and 24 weeks. PAR2 deficiency did not alter total plasma cholesterol concentrations or lipoprotein distributions. Bone marrow transplantation showed that PAR2 on nonhematopoietic cells contributed to atherosclerosis. PAR2 deficiency significantly attenuated levels of the chemokines Ccl2 and Cxcl1 in the circulation and macrophage content in atherosclerotic lesions. Mechanistic studies using isolated primary vascular smooth muscle cells showed that PAR2 deficiency is associated with reduced Ccl2 and Cxcl1 mRNA expression and protein release into the supernatant resulting in less monocyte migration. Our results indicate that PAR2 deficiency is associated with attenuation of atherosclerosis and may reduce lesion progression by blunting Ccl2 - and Cxcl1 -induced monocyte infiltration. © 2018 American Heart Association, Inc.
Kim, Eunju; Lim, Soo-Min; Kim, Min-Soo; Yoo, Sang-Ho; Kim, Yuri
2017-09-21
Phyllodulcin is a natural sweetener found in Hydrangea macrophylla var. thunbergii . This study investigated whether phyllodulcin could improve metabolic abnormalities in high-fat diet (HFD)-induced obese mice. Animals were fed a 60% HFD for 6 weeks to induce obesity, followed by 7 weeks of supplementation with phyllodulcin (20 or 40 mg/kg body weight (b.w.)/day). Stevioside (40 mg/kg b.w./day) was used as a positive control. Phyllodulcin supplementation reduced subcutaneous fat mass, levels of plasma lipids, triglycerides, total cholesterol, and low-density lipoprotein cholesterol and improved the levels of leptin, adiponectin, and fasting blood glucose. In subcutaneous fat tissues, supplementation with stevioside or phyllodulcin significantly decreased mRNA expression of lipogenesis-related genes, including CCAAT/enhancer-binding protein α ( C/EBPα ), peroxisome proliferator activated receptor γ ( PPARγ ), and sterol regulatory element-binding protein-1C ( SREBP-1c ) compared to the high-fat group. Phyllodulcin supplementation significantly increased the expression of fat browning-related genes, including PR domain containing 16 ( Prdm16 ), uncoupling protein 1 ( UCP1 ), and peroxisome proliferator-activated receptor γ coactivator 1-α ( PGC-1α ), compared to the high-fat group. Hypothalamic brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) signaling was upregulated by phyllodulcin supplementation. In conclusion, phyllodulcin is a potential sweetener that could be used to combat obesity by regulating levels of leptin, fat browning-related genes, and hypothalamic BDNF-TrkB signaling.
Rubio, María E; Matsui, Ko; Fukazawa, Yugo; Kamasawa, Naomi; Harada, Harumi; Itakura, Makoto; Molnár, Elek; Abe, Manabu; Sakimura, Kenji; Shigemoto, Ryuichi
2017-11-01
The neurotransmitter receptor subtype, number, density, and distribution relative to the location of transmitter release sites are key determinants of signal transmission. AMPA-type ionotropic glutamate receptors (AMPARs) containing GluA3 and GluA4 subunits are prominently expressed in subsets of neurons capable of firing action potentials at high frequencies, such as auditory relay neurons. The auditory nerve (AN) forms glutamatergic synapses on two types of relay neurons, bushy cells (BCs) and fusiform cells (FCs) of the cochlear nucleus. AN-BC and AN-FC synapses have distinct kinetics; thus, we investigated whether the number, density, and localization of GluA3 and GluA4 subunits in these synapses are differentially organized using quantitative freeze-fracture replica immunogold labeling. We identify a positive correlation between the number of AMPARs and the size of AN-BC and AN-FC synapses. Both types of AN synapses have similar numbers of AMPARs; however, the AN-BC have a higher density of AMPARs than AN-FC synapses, because the AN-BC synapses are smaller. A higher number and density of GluA3 subunits are observed at AN-BC synapses, whereas a higher number and density of GluA4 subunits are observed at AN-FC synapses. The intrasynaptic distribution of immunogold labeling revealed that AMPAR subunits, particularly GluA3, are concentrated at the center of the AN-BC synapses. The central distribution of AMPARs is absent in GluA3-knockout mice, and gold particles are evenly distributed along the postsynaptic density. GluA4 gold labeling was homogenously distributed along both synapse types. Thus, GluA3 and GluA4 subunits are distributed at AN synapses in a target-cell-dependent manner.
Afroz, Sonia; Shen, Hui; Smith, Sheryl S.
2017-01-01
Synaptic pruning underlies the transition from an immature to an adult CNS through refinements of neuronal circuits. Our recent study indicates that pubertal synaptic pruning is triggered by the inhibition generated by extrasynaptic α4βδ GABAA receptors (GABARs) which are increased for 10 d on dendritic spines of CA1 pyramidal cells at the onset of puberty (PND 35–44) in the female mouse, suggesting α4βδ GABARs as a novel target for the regulation of adolescent synaptic pruning. In the present study we used a pharmacological approach to further examine the role of these receptors in altering spine density during puberty of female mice and the impact of these changes on spatial learning, assessed in adulthood. Two drugs were chronically administered during the pubertal period (PND 35–44): the GABA agonist gaboxadol (GBX, 0.1 mg/kg, i.p.), to enhance current gated by α4βδ GABARs and the neurosteroid/stress steroid THP (3α-OH-5β-pregnan-20-one, 10 mg/kg, i.p.) to decrease expression of α4βδ. Spine density was determined on PND 56 with Golgi staining. Spatial learning and relearning were assessed using the multiple object relocation task (MPORT) and an active place avoidance task (APA) on PND 56. Pubertal GBX decreased spine density post-pubertally by 70% (P<0.05), while decreasing α4βδ expression with THP increased spine density by two-fold (P<0.05), in both cases, with greatest effects on the mushroom spines. Adult relearning ability was compromised in both hippocampus-dependent tasks after pubertal administration of either drug. These findings suggest that an optimal spine density produced by α4βδ GABARs is necessary for optimal cognition in adults. PMID:28189613
Identification and quantification of human kidney atrial natriuretic peptide receptors.
Kahana, L; Yechiely, H; Mecz, Y; Lurie, A
1995-04-01
The present study determined 125I-label atrial natriuretic peptide (ANP) binding sites in human kidney glomerular and papillary membranes. The membranes were prepared from non-malignant renal tissue obtained at nephrectomy of patients with renal carcinoma. To evaluate the proportion of ANP receptor classes ANP-R1 (ANPR-A, -B) versus ANP-R2 (ANPR-C), competitive binding studies were performed using [125I]-ANP in the presence of increasing concentrations of ANP or an internally ring-deleted analog, des(Gln116, Ser117, Gly118, Leu119, Gly120)ANP(102-121), called C-ANP, which binds selectively to ANPR-C receptors. Analysis of the competitive binding curve with ANP in glomerular membranes suggested the presence of one group of high-affinity receptors with dissociation constant Kd = 26 +/- 12 pmol/l and density Bmax = 101 +/- 47 nmol/kg protein. A decrease of 10-30% in Bmax with no change in Kd was obtained in the presence of excess (10(-6) mol/l) C-ANP, suggesting the existence of a small amount of a second class of receptors, the ANPR-C class. The densities of ANPR-A, -B versus ANPR-C receptors in human glomeruli, calculated from competitive inhibition experiments, were 75 +/- 42 and 22 +/- 16 nmol/kg protein (N = 8). Autoradiography of the sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions showed two bands: a highly labeled 130kD band and a weakly labeled 66 kD band, both displaced by ANP. Only the 66-kD band was displaced by the C-ANP analog. Human papilla membrane, as shown by competition binding studies and SDS gel electrophoresis, presented only one class of receptors with Kd = 40 +/- 23 pmol/l (mean +/- SD, N = 3) and Bmax = 17 +/- 6.3 nmol/kg protein.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, T.M.; Dawson, V.L.; Gage, F.H.
1991-03-01
Interruption of the ascending dopamine neurons of the nigrostriatal pathway, by 6-hydroxydopamine (6-OHDA) lesion in rats, produced a significant loss of the dopamine transport complexes labeled with the phencyclidine derivative (3H)BTCP. This loss of dopamine innervation in the striatum was present at least 12 to 14 months after lesioning and was functionally manifested by ipsilateral rotation of the animals in response to amphetamine. In these same animals, in comparison to controls, there was a significant increase in the number (Bmax) of (3H)SCH 23390-labeled D-1 receptors in the striatum (36.7%) and the substantia nigra (35.1%) and a 54.4% increase in themore » number (Bmax) of (3H)sulpiride-labeled striatal D-2 receptors without an apparent change in affinity (Kd). Ten to twelve months after the transplantation of homologous fetal substantia nigra into the denervated striatum, there was a significant decrease in amphetamine-induced turning behavior. In these animals, there was an ingrowth of dopamine nerve terminals in the striatum as demonstrated by a return of (3H)BTCP binding. Accompanying this reinnervation was the normalization of D-1 and D-2 receptors to control values in the striatum as well as the return of D-1 receptors to prelesion densities in the substantia nigra. In a subgroup of transplanted rats, amphetamine continued to induce ipsilateral turning. In these animals both D-1 and D-2 receptors remained supersensitive. These results support the hypothesis that the functional recovery of transplanted animals is due, in part, to reinnervation of the striatum. In addition, long-term alterations in receptor density may be related to the behavioral deficits that are associated with the 6-OHDA-lesioned rat.« less
Fang, Xi; Fang, Li; Liu, Ao; Wang, Xiaohong; Zhao, Beilei; Wang, Nanping
2015-08-01
Increased level of very low-density lipoprotein (VLDL) is a key feature of the metabolic syndrome and is associated with cardiovascular diseases. PPAR-δ agonists play a protective role in lipid metabolism and vascular function. In this study, we aimed to investigate the role of PPAR-δ in the uptake of VLDL in endothelial cells and its underlying mechanism(s). Uptake of VLDL in HUVECs was assessed by Dil-fluorescent labelling of VLDL. Levels of VLDL receptor mRNA and microRNA (miR-100) were detected by quantitative PCR. The target genes of miR-100 were predicted using bioinformatics analysis. 3'-Untranslated region (3'-UTR) luciferase reporter and Argonaute 1 pull-down assays were used to validate the target of miR-100. PPAR-δ agonist GW501516 decreased uptake of VLDL and expression of VLDL receptor at mRNA and protein levels. GW501516 inhibited the luciferase reporter activity of the 3'-UTR of VLDL receptor. VLDL receptor was a direct target of miR-100. miR-100 was significantly increased by GW501516 in HUVECs. Transfection of a miR-100 mimic decreased the mRNA and protein levels of VLDL receptor and uptake of VLDL. Furthermore, a miR-100 inhibitor abolished the inhibitory effect of PPAR-δ on VLDL receptor expression and VLDL uptake. In endothelial cells, activation of PPAR-δ decreased VLDL receptor expression and VLDL uptake via the induction of miR-100. These results provided a novel mechanism for the vascular protective effect of PPAR-δ agonists. © 2015 The British Pharmacological Society.
Reagan, L P; Ye, X H; Mir, R; DePalo, L R; Fluharty, S J
1990-12-01
In vitro differentiation of murine neuroblastoma N1E-115 cells induced by low serum (0.5%) and dimethyl sulfoxide (1.5%) increased the uptake of 45Ca2+ as well as basal and forskolin-stimulated adenylate cyclase activity. Associated with these biochemical indices of differentiation was an increase in the density of binding sites for the angiotensin II (Ang II) receptor agonist 125I-[Sar1]-Ang II and the antagonist 125I-[Sar1,Ile8]-Ang II (125I-SARILE). This up-regulation was apparent within 24 hr and was maximal at 72 hr. Other manipulations that independently increased intracellular cAMP or Ca2+ levels produced a qualitatively similar up-regulation of Ang II receptors. In vitro differentiation did not diminish the specificity of these receptors for Ang-II related peptides. Sarcosine-substituted Ang II receptor antagonists such as [Sar1,Gly8]-Ang II, [Sar1,Thr8]-Ang II, or SARILE itself competed for 125I-SARILE in a monophasic fashion, whereas the competition displayed by the agonists Ang II, angiotensin III, and Crinia-Ang II for 125I-SARILE-labeled sites was biphasic, consisting of distinct high and low affinity components. Moreover, in vitro differentiation predominantly increased the density of high affinity sites for angiotensin III and Crinia-Ang II, but the lower affinity site for Ang II, and in all three cases the majority of this increased binding was insensitive to guanine nucleotides. Collectively, these results demonstrate that the expression of Ang II receptors on neuron-like cells is regulated by the biochemical events accompanying differentiation and suggest that the biphasic nature of the binding of some angiotensin agonists may be indicative of multiple receptor subtypes.
Chen, Xiaobing; Levy, Jonathan M.; Hou, Austin; Winters, Christine; Azzam, Rita; Sousa, Alioscka A.; Leapman, Richard D.; Nicoll, Roger A.; Reese, Thomas S.
2015-01-01
The postsynaptic density (PSD)-95 family of membrane-associated guanylate kinases (MAGUKs) are major scaffolding proteins at the PSD in glutamatergic excitatory synapses, where they maintain and modulate synaptic strength. How MAGUKs underlie synaptic strength at the molecular level is still not well understood. Here, we explore the structural and functional roles of MAGUKs at hippocampal excitatory synapses by simultaneous knocking down PSD-95, PSD-93, and synapse-associated protein (SAP)102 and combining electrophysiology and transmission electron microscopic (TEM) tomography imaging to analyze the resulting changes. Acute MAGUK knockdown greatly reduces synaptic transmission mediated by α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) and N-methyl-d-aspartate receptors (NMDARs). This knockdown leads to a significant rise in the number of silent synapses, diminishes the size of PSDs without changes in pre- or postsynaptic membrane, and depletes the number of membrane-associated PSD-95–like vertical filaments and transmembrane structures, identified as AMPARs and NMDARs by EM tomography. The differential distribution of these receptor-like structures and dependence of their abundance on PSD size matches that of AMPARs and NMDARs in the hippocampal synapses. The loss of these structures following MAGUK knockdown tracks the reduction in postsynaptic AMPAR and NMDAR transmission, confirming the structural identities of these two types of receptors. These results demonstrate that MAGUKs are required for anchoring both types of glutamate receptors at the PSD and are consistent with a structural model where MAGUKs, corresponding to membrane-associated vertical filaments, are the essential structural proteins that anchor and organize both types of glutamate receptors and govern the overall molecular organization of the PSD. PMID:26604311
Chen, Xiaobing; Levy, Jonathan M; Hou, Austin; Winters, Christine; Azzam, Rita; Sousa, Alioscka A; Leapman, Richard D; Nicoll, Roger A; Reese, Thomas S
2015-12-15
The postsynaptic density (PSD)-95 family of membrane-associated guanylate kinases (MAGUKs) are major scaffolding proteins at the PSD in glutamatergic excitatory synapses, where they maintain and modulate synaptic strength. How MAGUKs underlie synaptic strength at the molecular level is still not well understood. Here, we explore the structural and functional roles of MAGUKs at hippocampal excitatory synapses by simultaneous knocking down PSD-95, PSD-93, and synapse-associated protein (SAP)102 and combining electrophysiology and transmission electron microscopic (TEM) tomography imaging to analyze the resulting changes. Acute MAGUK knockdown greatly reduces synaptic transmission mediated by α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) and N-methyl-d-aspartate receptors (NMDARs). This knockdown leads to a significant rise in the number of silent synapses, diminishes the size of PSDs without changes in pre- or postsynaptic membrane, and depletes the number of membrane-associated PSD-95-like vertical filaments and transmembrane structures, identified as AMPARs and NMDARs by EM tomography. The differential distribution of these receptor-like structures and dependence of their abundance on PSD size matches that of AMPARs and NMDARs in the hippocampal synapses. The loss of these structures following MAGUK knockdown tracks the reduction in postsynaptic AMPAR and NMDAR transmission, confirming the structural identities of these two types of receptors. These results demonstrate that MAGUKs are required for anchoring both types of glutamate receptors at the PSD and are consistent with a structural model where MAGUKs, corresponding to membrane-associated vertical filaments, are the essential structural proteins that anchor and organize both types of glutamate receptors and govern the overall molecular organization of the PSD.
Acute Mechanisms Underlying Antibody Effects in Anti–N-Methyl-D-Aspartate Receptor Encephalitis
Moscato, Emilia H; Peng, Xiaoyu; Jain, Ankit; Parsons, Thomas D; Dalmau, Josep; Balice-Gordon, Rita J
2014-01-01
Objective A severe but treatable form of immune-mediated encephalitis is associated with antibodies in serum and cerebrospinal fluid (CSF) against the GluN1 subunit of the N-methyl-D-aspartate receptor (NMDAR). Prolonged exposure of hippocampal neurons to antibodies from patients with anti-NMDAR encephalitis caused a reversible decrease in the synaptic localization and function of NMDARs. However, acute effects of the antibodies, fate of the internalized receptors, type of neurons affected, and whether neurons develop compensatory homeostatic mechanisms were unknown and are the focus of this study. Methods Dissociated hippocampal neuron cultures and rodent brain sections were used for immunocytochemical, physiological, and molecular studies. Results Patient antibodies bind to NMDARs throughout the rodent brain, and decrease NMDAR cluster density in both excitatory and inhibitory hippocampal neurons. They rapidly increase the internalization rate of surface NMDAR clusters, independent of receptor activity. This internalization likely accounts for the observed decrease in NMDAR-mediated currents, as no evidence of direct blockade was detected. Once internalized, antibody-bound NMDARs traffic through both recycling endosomes and lysosomes, similar to pharmacologically induced NMDAR endocytosis. The antibodies are responsible for receptor internalization, as their depletion from CSF abrogates these effects in hippocampal neurons. We find that although anti-NMDAR antibodies do not induce compensatory changes in glutamate receptor gene expression, they cause a decrease in inhibitory synapse density onto excitatory hippocampal neurons. Interpretation Our data support an antibody-mediated mechanism of disease pathogenesis driven by immunoglobulin-induced receptor internalization. Antibody-mediated downregulation of surface NMDARs engages homeostatic synaptic plasticity mechanisms, which may inadvertently contribute to disease progression. Ann Neurol 2014;76:108–119 PMID:24916964
Transcriptional regulation of human Paraoxonase 1 by nuclear receptors.
Ponce-Ruiz, N; Murillo-González, F E; Rojas-García, A E; Mackness, Mike; Bernal-Hernández, Y Y; Barrón-Vivanco, B S; González-Arias, C A; Medina-Díaz, I M
2017-04-25
Paraoxonase 1 (PON1) is a calcium-dependent lactonase synthesized primarily in the liver and secreted into the plasma, where it is associates with high density lipoproteins (HDL). PON1 acts as antioxidant preventing low-density lipoprotein (LDL) oxidation, a process considered critical in the initiation and progression of atherosclerosis. Additionally, PON1 hydrolyzes and detoxifies some toxic metabolites of organophosphorus compounds (OPs). Thus, PON1 activity and expression levels are important for determining susceptibility to OPs intoxication and risk of developing diseases related to inflammation and oxidative stress. Increasing evidence has demonstrated the modulation of PON1 expression by many factors is due to interaction with nuclear receptors (NRs). Here, we briefly review the studies in this area and discuss the role of nuclear receptors in the regulation of PON1 expression, as well as how understanding these mechanisms may allow us to manipulate PON1 levels to improve drug efficacy and treat disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Defesche, J C; Lansberg, P J; Reymer, P W; Lamping, R J; Kastelein, J J
1993-02-01
Familial hypercholesterolaemia (FH) is the most common genetic metabolic disorder, affecting about 1 in 500 persons in the general population. With novel techniques, it is possible to identify the molecular defects underlying FH in the gene coding for the low-density lipoprotein (LDL) receptor, thereby confirming the diagnosis of FH. In this study we present a large family with a specific mutation in exon 9 of the LDL-receptor gene (an Afrikaner mutation) and we demonstrate that by a large-scale case-finding study in this family, carriers of such a mutation can be detected. Of 63 family members, 13 were shown to be at risk for cardiovascular disease as judged by their lipoprotein profile or the presence of the Afrikaner mutation. Two persons were detected, affected with a dyslipidaemia other than FH. Medical management was initiated in order to reduce the high cardiovascular risk associated with this disorder.
Elliott, J; Blanchard, S G; Wu, W; Miller, J; Strader, C D; Hartig, P; Moore, H P; Racs, J; Raftery, M A
1980-01-01
A rapid methof for preparation of membrane fractions highly enriched in nicotinic acetylcholine receptor from Torpedo californica electroplax is described. The major step in this purification involves sucrose-density-gradient centrifugation in a reorienting rotor. Further purification of these membranes can be achieved by selective extraction of proteins by use of alkaline pH or by treatment with solutions of lithium di-idosalicylate. The alkali-treated membranes retain functional characteristics of the untreated membranes and in addition contain essentially only the four polypeptides (mol.wts. 40000, 50000, 60000 and 65000) characteristic of the receptor purified by affinity chromatography. Dissolution of the purified membranes or of the alkali-treated purified membranes in sodium cholate solution followed by sucrose-density-gradient centrifugation in the same detergent solution yields solubilized receptor preparations comparable with the most highly purified protein obtained by affinity-chromatographic procedures. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. Fig. 7. PLATE 1 PMID:7387629
Sciolino, Natale R.; Bortolato, Marco; Eisenstein, Sarah A.; Fu, Jin; Oveisi, Fariba; Hohmann, Andrea G.; Piomelli, Daniele
2010-01-01
Social deprivation in early life disrupts emotionality and attentional processes in humans. Rearing rats in isolation reproduces some of these abnormalities, which are attenuated by daily handling. However, the neurochemical mechanisms underlying these responses remain poorly understood. We hypothesized that post-weaning social isolation alters the endocannabinoid system, a neuromodulatory system that controls emotional responding. We characterized behavioral consequences of social isolation and evaluated whether handling would reverse social isolation-induced alterations in behavioral reactivity to context and the endocannabinoid system. At weaning, pups were single or group housed and concomitantly handled or not handled daily until adulthood. Rats were tested in emotionality- and attentional-sensitive behavioral assays (open field, elevated plus maze, startle and prepulse inhibition). Cannabinoid receptor densities and endocannabinoid levels were quantified in a separate group of rats. Social isolation negatively altered behavioral responding. Socially-isolated rats that were handled showed less deficits in the open field, elevated plus maze, and prepulse inhibition tests. Social isolation produced site-specific alterations (supraoptic nucleus, ventrolateral thalamus, rostral striatum) in cannabinoid receptor densities compared to group rearing. Handling altered the endocannabinoid system in neural circuitry controlling emotional expression. Handling altered endocannabinoid content (prefrontal and piriform cortices, nucleus accumbens) and cannabinoid receptor densities (lateral globus pallidus, cingulate and piriform cortices, hippocampus) in a region-specific manner. Some effects of social isolation on the endocannabinoid system were moderated by handling. Isolates were unresponsive to handling-induced increases in cannabinoid receptor densities (caudal striatum, anterior thalamus), but were sensitive to handling-induced increases in endocannabinoid content (piriform cortex), compared to group-reared rats. Our findings suggest alterations in the endocannabinoid system may contribute to the abnormal isolate phenotype. Handling modifies the endocannabinoid system and behavioral reactivity to context, but surmounts only some effects of social isolation. These data implicate a pivotal role for the endocannabinoid system in stress adaptation and emotionality-related disturbances. PMID:20394803
Cal, Roi; García-Arguinzonis, Maisa; Revuelta-López, Elena; Castellano, José; Padró, Teresa; Badimon, Lina; Llorente-Cortés, Vicenta
2013-02-01
Low density lipoprotein retention and aggregation in the arterial intima are key processes in atherogenesis. Aggregated LDL (agLDL) is taken up through low-density lipoprotein receptor-related protein 1 (LRP1) by human vascular smooth muscle cells (VSMC). AgLDL increases LRP1 expression, at least in part, by downregulation of sterol regulatory element-binding proteins. It is unknown whether agLDL has some effect on the ubiquitin-proteasome system, and therefore on the LRP1 receptor turnover. The objective of this study was to analyze the effect of agLDL on the degradation of LRP1 by the ubiquitin-proteasome system in human VSMC. Human VSMC were isolated from the media of human coronary arteries. Ubiquitinylated LRP1 protein levels were significantly reduced in human VSMC exposed to agLDL (100 μg/mL) for 20 hours (agLDL: 3.70±0.44 a.u. versus control: 9.68±0.55 a.u). Studies performed with cycloheximide showed that agLDL prolongs the LRP1 protein half life. Pulse-chase analysis showed that LRP1 turnover rate is reduced in agLDL-exposed VSMC. Two-dimensional electrophoresis shows an alteration in the proteomic profile of a RING type E3 ubiquitin ligase, CHFR. Real-time PCR and Western blot analysis showed that agLDL (100 μg/mL) decreased the transcriptional and protein expression of CHFR. CHFR silencing increased VSMC, but not macrophage, LRP1 expression. However, CHFR silencing did not exert any effect on the classical low-density lipoprotein receptor protein levels. Furthermore, immunoprecipitation experiments demonstrated that the physical interaction between CHFR and LRP1 decreased in the presence of agLDL. Our results demonstrate that agLDL prolongs the half life of LRP1 by preventing the receptor ubiquitinylation, at least in part, through CHFR targeting. This mechanism seems to be specific for LRP1 and VSMC.
Serum osteoprotegerin levels and mammographic density among high-risk women.
Moran, Olivia; Zaman, Tasnim; Eisen, Andrea; Demsky, Rochelle; Blackmore, Kristina; Knight, Julia A; Elser, Christine; Ginsburg, Ophira; Zbuk, Kevin; Yaffe, Martin; Narod, Steven A; Salmena, Leonardo; Kotsopoulos, Joanne
2018-06-01
Mammographic density is a risk factor for breast cancer but the mechanism behind this association is unclear. The receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) pathway has been implicated in the development of breast cancer. Given the role of RANK signaling in mammary epithelial cell proliferation, we hypothesized this pathway may also be associated with mammographic density. Osteoprotegerin (OPG), a decoy receptor for RANKL, is known to inhibit RANK signaling. Thus, it is of interest to evaluate whether OPG levels modify breast cancer risk through mammographic density. We quantified serum OPG levels in 57 premenopausal and 43 postmenopausal women using an enzyme-linked immunosorbent assay (ELISA). Cumulus was used to measure percent density, dense area, and non-dense area for each mammographic image. Subjects were classified into high versus low OPG levels based on the median serum OPG level in the entire cohort (115.1 pg/mL). Multivariate models were used to assess the relationship between serum OPG levels and the measures of mammographic density. Serum OPG levels were not associated with mammographic density among premenopausal women (P ≥ 0.42). Among postmenopausal women, those with low serum OPG levels had higher mean percent mammographic density (20.9% vs. 13.7%; P = 0.04) and mean dense area (23.4 cm 2 vs. 15.2 cm 2 ; P = 0.02) compared to those with high serum OPG levels after covariate adjustment. These findings suggest that low OPG levels may be associated with high mammographic density, particularly in postmenopausal women. Targeting RANK signaling may represent a plausible, non-surgical prevention option for high-risk women with high mammographic density, especially those with low circulating OPG levels.
Synaptic proteins and receptors defects in autism spectrum disorders
Chen, Jianling; Yu, Shunying; Fu, Yingmei; Li, Xiaohong
2014-01-01
Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms contribute to the occurrence of autism spectrum disorders (ASDs). The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95, SH3, and multiple ankyrin repeat domains 3 (SHANK3), synapsin, gephyrin, cadherin, and protocadherin, thousand-and-one-amino acid 2 kinase, and contactin, have been shown to play important roles in the development and function of synapses. In addition, synaptic receptors, such as gamma-aminobutyric acid receptors and glutamate receptors, have also been associated with ASDs. This review will primarily focus on the defects of synaptic proteins and receptors associated with ASDs and their roles in the pathogenesis of ASDs via synaptic pathways. PMID:25309321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross-Isseroff, R.; Dillon, K.A.; Fieldust, S.J.
In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measuredmore » by autoradiography.« less
Tachykinin receptors in the circular muscle of the guinea-pig ileum.
Maggi, C A; Patacchini, R; Giachetti, A; Meli, A
1990-12-01
1. We have studied the mechanical response of circular strips of the guinea-pig ileum to tachykinins and characterized the receptors involved by means of receptor-selective agonists. 2. The strips responded to both substance P (SP) and neurokinin A (NKA), as well as to [Pro9]-SP sulphone (selective NK1-receptor agonist), [beta Ala8]-NKA(4-10) (selective NK2-receptor agonist) and [MePhe7]-neurokinin B (selective NK3-receptor agonist). The ED50s of the various peptides (calculated as the concentration of agonist which produced 50% of the response to 10 microM carbachol) were similar, in the range of 40-200 nM, i.e. no clearcut rank order of potency was evident. 3. The response to a submaximal (10 nM) concentration of SP or NKA was unaffected in the presence of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 4. The response to the NK1-agonist was totally atropine-resistant, but was reduced (about 30% inhibition) by tetrodotoxin. The response to the NK3-receptor agonist was halved by atropine and abolished by tetrodotoxin. The response to the NK2-agonist was unaffected by either atropine or tetrodotoxin. 5. The response to the selective NK2-agonist was unchanged after desensitization of NK1- or NK3-receptors. 6. The response to the NK2-selective agonist was strongly inhibited by [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10) (MEN 10,207) a selective NK2-receptor antagonist which did not modify the response to the NK1-selective agonist. 7. Our findings indicate that all the three known types of tachykinin receptors mediate the contractile response of the circular muscle of the guinea-pig ileum to peptides of this family. The response to activation of NK3-receptors is totally neurogenic and partially mediated by endogenous acetylcholine, the response to activation of NK1-receptors is partly neurogenic and largely myogenic and the response to activation of NK2-receptors is totally myogenic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsurugizawa, Tomokazu; Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, Graduate School of Arts and Sciences, University of Tokyo at Komaba, 3-8-1 Meguro, Tokyo 153; Mukai, Hideo
2005-12-02
Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1 nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2 h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but notmore » by MK-801 (NMDA receptor antagonist). ER{alpha} agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ER{beta} agonist DPN did not affect the density of thorns. Note that a 1 nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ER{alpha} was performed using purified RC-19 antibody. The localization of ER{alpha} (67 kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ER{alpha} and MAP kinase.« less
Mitchell, Tracy; Chao, Ginger; Sitkoff, Doree; Lo, Fred; Monshizadegan, Hossain; Meyers, Daniel; Low, Simon; Russo, Katie; DiBella, Rose; Denhez, Fabienne; Gao, Mian; Myers, Joseph; Duke, Gerald; Witmer, Mark; Miao, Bowman; Ho, Siew P; Khan, Javed; Parker, Rex A
2014-08-01
Proprotein convertase subtilisin kexin-9 (PCSK9) is an important pharmacological target for decreasing low-density lipoprotein (LDL) in cardiovascular disease, although seemingly inaccessible to small molecule approaches. Compared with therapeutic IgG antibodies currently in development, targeting circulating PCSK9 with smaller molecular scaffolds could offer different profiles and reduced dose burdens. This inspired genesis of PCSK9-binding Adnectins, a protein family derived from human fibronectin-10th-type III-domain and engineered for high-affinity target binding. BMS-962476, an ∼11-kDa polypeptide conjugated to polyethylene glycol to enhance pharmacokinetics, binds with subnanomolar affinity to human. The X-ray cocrystal structure of PCSK9 with a progenitor Adnectin shows ∼910 Å(2) of PCSK9 surface covered next to the LDL receptor binding site, largely by residues of a single loop of the Adnectin. In hypercholesterolemic, overexpressing human PCSK9 transgenic mice, BMS-962476 rapidly lowered cholesterol and free PCSK9 levels. In genomic transgenic mice, BMS-962476 potently reduced free human PCSK9 (ED50 ∼0.01 mg/kg) followed by ∼2-fold increases in total PCSK9 before return to baseline. Treatment of cynomolgus monkeys with BMS-962476 rapidly suppressed free PCSK9 >99% and LDL-cholesterol ∼55% with subsequent 6-fold increase in total PCSK9, suggesting reduced clearance of circulating complex. Liver sterol response genes were consequently downregulated, following which LDL and total PCSK9 returned to baseline. These studies highlight the rapid dynamics of PCSK9 control over LDL and liver cholesterol metabolism and characterize BMS-962476 as a potent and efficacious PCSK9 inhibitor. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Ka, Minhan; Kook, Yeon-Hee; Liao, Ke; Buch, Shilpa; Kim, Woo-Yang
2016-01-01
Cocaine is a highly addictive narcotic associated with dendritic spine plasticity in the striatum. However, it remains elusive whether cocaine modifies spines in a cell type-specific or region-specific manner or whether it alters different types of synapses in the brain. In addition, there is a paucity of data on the regulatory mechanism(s) involved in cocaine-induced modification of spine density. In the current study, we report that cocaine exposure differentially alters spine density, spine morphology, and the types of synapses in hippocampal and cortical neurons. Cocaine exposure in the hippocampus resulted in increased spine density, but had no significant effect on cortical neurons. Although cocaine exposure altered spine morphology in both cell types, the patterns of spine morphology were distinct for each cell type. Furthermore, we observed that cocaine selectively affects the density of excitatory synapses. Intriguingly, in hippocampal neurons cocaine-mediated effects on spine density and morphology involved sigma-1 receptor (Sig-1 R) and its downstream TrkB signaling, which were not the case in cortical neurons. Furthermore, pharmacological inhibition of Sig-1 R prevented cocaine-induced TrkB activation in hippocampal neurons. Our findings reveal a novel mechanism by which cocaine induces selective changes in spine morphology, spine density, and synapse formation, and could provide insights into the cellular basis for the cognitive impairment observed in cocaine addicts. PMID:27735948
Morley, B J; Garner, L L
1990-06-11
Sodium-dependent, high-affinity choline uptake (HACU) and the density of alpha-bungarotoxin (BuTX) receptor-binding sites were measured in the hippocampus following the intraventricular infusion of ethylcholine aziridinium ion (AF64A), a neurotoxin that competes with choline at high-affinity choline transport sites and may result in the degeneration of cholinergic axons. Eight days after the infusion of AF64A into the lateral ventricles (2.5 nmol/side), HACU was depleted by 60% in the hippocampus of experimental animals in comparison with controls, but the density of BuTX-binding sites was not altered. The administration of 15 mg/ml of choline chloride in the drinking water increased the density of BuTX-binding sites, as previously reported by this laboratory. The administration of AF64A did not prevent the effect of exogenous choline on the density of binding sites, nor did choline treatment alter the effect of AF64A on HACU. These data indicate that the density of BuTX-binding sites in the hippocampus is not altered following a substantial decrease in HACU and presumed degeneration of cholinergic axons. Since the effect of exogenous choline was not prevented by AF64A treatment, the data are interpreted to support the hypothesis that the increase in the density of BuTX-binding sites following dietary choline supplementation is attributable to a direct effect of choline on receptor sites.
Jaiswal, A K; Nebert, D W; Eisen, H W
1985-08-01
The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.
Kamato, Danielle; Bhaskarala, Venkata Vijayanand; Mantri, Nitin; Oh, Tae Gyu; Ling, Dora; Janke, Reearna; Zheng, Wenhua; Little, Peter J; Osman, Narin
2017-01-01
G protein coupled receptor (GPCR) signalling covers three major mechanisms. GPCR agonist engagement allows for the G proteins to bind to the receptor leading to a classical downstream signalling cascade. The second mechanism is via the utilization of the β-arrestin signalling molecule and thirdly via transactivation dependent signalling. GPCRs can transactivate protein tyrosine kinase receptors (PTKR) to activate respective downstream signalling intermediates. In the past decade GPCR transactivation dependent signalling was expanded to show transactivation of serine/threonine kinase receptors (S/TKR). Kinase receptor transactivation enormously broadens the GPCR signalling paradigm. This work utilizes next generation RNA-sequencing to study the contribution of transactivation dependent signalling to total protease activated receptor (PAR)-1 signalling. Transactivation, assessed as gene expression, accounted for 50 percent of the total genes regulated by thrombin acting through PAR-1 in human coronary artery smooth muscle cells. GPCR transactivation of PTKRs is approximately equally important as the transactivation of the S/TKR with 209 and 177 genes regulated respectively, via either signalling pathway. This work shows that genome wide studies can provide powerful insights into GPCR mediated signalling pathways.
Arrieta, Oscar; Villarreal-Garza, Cynthia; Vizcaíno, Gloria; Pineda, Benjamín; Hernández-Pedro, Norma; Guevara-Salazar, Patricia; Wegman-Ostrosky, Talia; Villanueva-Rodríguez, Geraldine; Gamboa-Domínguez, Armando
2015-07-01
Angiotensin II (ANGII) has been associated with vascular proliferation in tumor and non-tumor models through its receptors AT1 and AT2. Our objective was to determine AT1 and AT2 receptor expression in operable breast cancer and its association with tumor grade, vascular density, and cellular proliferation. Seventy-seven surgically malignant breast tumors with no distant metastasis were included, and 7 benign lesions were used as controls. AT1 and AT2 receptor expression was determined by RT-PCR and immunohistochemistry (IHC) in 68 out of the 77 malignant lesions and in the 7 benign lesions. AT1 and AT2 receptor expression was detected in 35.3 and 25 % of cases, in both RT-PCR and IHC. Tumors that express AT1 showed an increase in T3 stage (92.3 vs. 7.7 % p < 0.001), mitotic index (4 ± 1 vs 2 ± 1, p = 0.05), vascular density (15 ± 3 vs 8 ± 5, p = 0.05), and cellular proliferation (85 ± 18 vs 55 ± 10, p = 0.01) versus AT1-negative lesions. Non-differences between clinical-pathologic variables and AT2 expression were found. AT1 receptor expression was associated to enhance angiogenesis and cellular proliferation rate, but no relationship with AT2 was found. ANGII and its peptides might play a role in the development and pathophysiology of breast cancer, and this could be valuable in the in the development of targeted therapies.
1985-01-01
The endocytic compartments of the asialoglycoprotein (ASGP) pathway in rat hepatocytes were studied using a combined morphological and biochemical approach in the isolated perfused liver. Use of electron microscopic tracers and a temperature-shift protocol to synchronize ligand entry confirmed the route of ASGP internalization observed in our previous in vivo studies (1) and established conditions under which we could label the contents of successive compartments in the pathway for subcellular fractionation studies. Three endosomal compartments were demonstrated in which ASGPs appear after they enter the cell via coated pits and vesicles but before they reach their site of degradation in lysosomes. These three compartments could be distinguished by their location within the hepatocyte, by their morphological appearance in situ, and by their density in sucrose gradients. The distributions of ASGP receptors, both accessible and latent (revealed by detergent permeabilization), were also examined and compared with that of ligand during subcellular fractionation. Most accessible ASGP receptors co-distributed with conventional plasma membrane markers. However, hepatocytes contain a substantial intracellular pool of latent ASGP binding sites that exceeds the number of cell surface receptors and whose presence is not dependent on ASGP exposure. The distribution of these latent ASGP receptors on sucrose gradients (detected either immunologically or by binding assays) was coincident with that of ligand sequestered within the early endosome compartments. In addition, both early endosomes and the membrane vesicles containing latent ASGP receptors had high cholesterol content, because both shifted markedly in density upon exposure to digitonin. PMID:2866191
Evolving targets for lipid-modifying therapy
Do, Rose Q; Nicholls, Stephen J; Schwartz, Gregory G
2014-01-01
The pathogenesis and progression of atherosclerosis are integrally connected to the concentration and function of lipoproteins in various classes. This review examines existing and emerging approaches to modify low-density lipoprotein and lipoprotein (a), triglyceride-rich lipoproteins, and high-density lipoproteins, emphasizing approaches that have progressed to clinical evaluation. Targeting of nuclear receptors and phospholipases is also discussed. PMID:25172365
Larval crowding accelerates C. elegans development and reduces lifespan.
Ludewig, Andreas H; Gimond, Clotilde; Judkins, Joshua C; Thornton, Staci; Pulido, Dania C; Micikas, Robert J; Döring, Frank; Antebi, Adam; Braendle, Christian; Schroeder, Frank C
2017-04-01
Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid β-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity.
Larval crowding accelerates C. elegans development and reduces lifespan
Ludewig, Andreas H.; Gimond, Clotilde; Judkins, Joshua C.; Thornton, Staci; Pulido, Dania C.; Micikas, Robert J.; Döring, Frank; Antebi, Adam; Braendle, Christian; Schroeder, Frank C.
2017-01-01
Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid β-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity. PMID:28394895
PhotoGate microscopy: tracking single molecules in a cytoplasm (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yildiz, Ahmet
2016-02-01
Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signaling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density in the cellular environment. We developed a photobleaching gate assay, which controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. Using this method, we tracked single particles at surface densities two orders of magnitude higher than the single-molecule detection limit. We observed ligand-induced dimerization of epidermal growth factor receptors (EGFR) on a live cell membrane. In addition, we tracked individual intraflagellar transport (IFT) trains along the length of a cilium and observed their remodeling at the ciliary tip.
Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertz, L.M.; Catt, K.J.
1991-10-01
The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNAmore » in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.« less
Crystal Structure of the Frizzled-Like Cysteine-Rich Domain of the Receptor Tyrosine Kinase MuSK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiegler, A.; Burden, S; Hubbard, S
Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 {angstrom} resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteinsmore » but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.« less
NASA Astrophysics Data System (ADS)
Srikala, P.; Tarafder, Kartick; Trivedi, Darshak R.
2017-01-01
A new organic receptor has been designed and synthesized by the combination of aromatic dialdehyde with nitro-substituted aminophenol resulting in a Schiff base compound. The receptor exhibited a colorimetric response for F- and AcO- ion with a distinct color change from pale yellow to red and pink respectively in dry DMSO solvent and yellow to pale greenish yellow in DMSO:H2O (9:1, v/v). UV-Vis titration studies displayed a significant shift in absorption maxima in comparison with the free receptor. The shift could be attributed to the hydrogen bonding interactions between the active anions and the hydroxyl functionality aided by the electron withdrawing nitro substituent on the receptor. 1H NMR titration and density functionality studies have been performed to understand the nature of interaction of receptor and anions. The lower detection limit of 1.12 ppm was obtained in organic media for F- ion confirming the real time application of the receptor.
Characterization, solubilization and partial purification of serotonin 5-HT1C receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagaloff, K.A.
1986-01-01
/sup 125/I-Lysergic acid diethylamide (/sup 125/I-LSD) binds with high affinity to a unique serotonergic site on rat choroid plexus. These sites were localized to choroid plexus epithelial cells using a novel high resolution autoradiographic technique. In membrane preparations, the serotonergic site density was 3100 fmol/mg protein, which is 10 fold higher than the density of any other serotonergic site in brain homogenates. The pharmacology of this site, termed the 5-HT1c site, does not match that of 5-Ht1a, 5-HT1b or 5HT2 serotonergic sites. 5-Ht1c sites were solubilized from pig choroid plexus using the zwitterionic detergent, CHAPS. High affinity labelling of themore » solubilized site was obtained using the serotonergic radioligand, N1-methyl-2-(/sup 125/I)lysergic acid diethylamide (/sup 125/I-MIL). Choroid plexus tumors obtained from transgenic mice were examined for the presence of serotonin 5-HT1c receptors. /sup 125/I-LSD binding to choroid plexus tumors displays a pharmacological profile that matches the properties of 5-HT1c receptors in normal choroid plexus. The tumor exhibits the highest site density of serotonin receptors (6600 fmol/mg protein) found in any tissue. /sup 125/I-LSD autoradiography of brain sections from transgenic mice shows high levels of specific labelling over the tumor. The affinities of various indolealkyl, phenlakyl and beta-carboline derivatives for the serotonin 5-HT1c receptor were measured in pig choroid plexus using /sup 125/I-MIL. Serotonin precursors and metabolites were all very weak inhibitors of specific /sup 125/I-MIL binding. Structure-affinity relationships were determined for a number of indolealkylamine analogues. Only serotonin is present in cerebrospinal fluid at concentrations near its 5-HT1c inhibition constant, suggesting that serotonin is the natural 5-HT1c agonist.« less
Santamaria, Marco Henry; Aletti, Federico; Li, Joyce B; Tan, Aaron; Chang, Monica; Leon, Jessica; Schmid-Schönbein, Geert W; Kistler, Erik B
2017-08-01
Irreversible hemorrhagic shock is characterized by hyporesponsiveness to vasopressor and fluid therapy. Little is known, however, about the mechanisms that contribute to this phenomenon. Previous studies have shown that decreased intestinal perfusion in hemorrhagic shock leads to proteolytically mediated increases in gut permeability, with subsequent egress of vasoactive substances systemically. Maintenance of blood pressure is achieved in part by α1 receptor modulation, which may be affected by vasoactive factors; we thus hypothesized that decreases in hemodynamic stability and vasopressor response in shock can be prevented by enteral protease inhibition. Rats were exposed to experimental hemorrhagic shock (35 mm Hg mean arterial blood pressure for 2 hours, followed by reperfusion for 2 hours) and challenged with phenylephrine (2 μg/kg) at discrete intervals to measure vasopressor responsiveness. A second group of animals received enteral injections with the protease inhibitor tranexamic acid (TXA) (127 mM) along the small intestine and cecum 1 hour after induction of hemorrhagic shock. Blood pressure response (duration and amplitude) to phenylephrine after reperfusion was significantly attenuated in animals subjected to hemorrhagic shock compared with baseline and control nonshocked animals and was restored to near baseline by enteral TXA. Arteries from shocked animals also displayed decreased α1 receptor density with restoration to baseline after enteral TXA treatment. In vitro, rat shock plasma decreased α1 receptor density in smooth muscle cells, which was also abrogated by enteral TXA treatment. Results from this study demonstrate that experimental hemorrhagic shock leads to decreased response to the α1-selective agonist phenylephrine and decreased α1 receptor density via circulating shock factors. These changes are mitigated by enteral TXA with correspondingly improved hemodynamics. Proteolytic inhibition in the lumen of the small intestine improves hemodynamics in hemorrhagic shock, possibly by restoring α1 adrenergic functionality necessary to maintain systemic blood pressure and perfusion.
Reduced Microvascular Density in Omental Biopsies of Children with Chronic Kidney Disease
Grabe, Niels; Lahrmann, Bernd; Nasser, Hamoud; Freise, Christian; Schneider, Axel; Lingnau, Anja; Degenhardt, Petra; Ranchin, Bruno; Sallay, Peter; Cerkauskiene, Rimante; Malina, Michal; Ariceta, Gema; Schmitt, Claus Peter; Querfeld, Uwe
2016-01-01
Background Endothelial dysfunction is an early manifestation of cardiovascular disease (CVD) and consistently observed in patients with chronic kidney disease (CKD). We hypothesized that CKD is associated with systemic damage to the microcirculation, preceding macrovascular pathology. To assess the degree of “uremic microangiopathy”, we have measured microvascular density in biopsies of the omentum of children with CKD. Patients and Methods Omental tissue was collected from 32 healthy children (0–18 years) undergoing elective abdominal surgery and from 23 age-matched cases with stage 5 CKD at the time of catheter insertion for initiation of peritoneal dialysis. Biopsies were analyzed by independent observers using either a manual or an automated imaging system for the assessment of microvascular density. Quantitative immunohistochemistry was performed for markers of autophagy and apoptosis, and for the abundance of the angiogenesis-regulating proteins VEGF-A, VEGF-R2, Angpt1 and Angpt2. Results Microvascular density was significantly reduced in uremic children compared to healthy controls, both by manual imaging with a digital microscope (median surface area 0.61% vs. 0.95%, p<0.0021 and by automated quantification (total microvascular surface area 0.89% vs. 1.17% p = 0.01). Density measured by manual imaging was significantly associated with age, height, weight and body surface area in CKD patients and healthy controls. In multivariate analysis, age and serum creatinine level were the only independent, significant predictors of microvascular density (r2 = 0.73). There was no immunohistochemical evidence for apoptosis or autophagy. Quantitative staining showed similar expression levels of the angiogenesis regulators VEGF-A, VEGF-receptor 2 and Angpt1 (p = 0.11), but Angpt2 was significantly lower in CKD children (p = 0.01). Conclusions Microvascular density is profoundly reduced in omental biopsies of children with stage 5 CKD and associated with diminished Angpt2 signaling. Microvascular rarefaction could be an early systemic manifestation of CKD-induced cardiovascular disease. PMID:27846250
Pan, Yongming; Xu, Jianqin; Chen, Cheng; Chen, Fangming; Jin, Ping; Zhu, Keyan; Hu, Chenyue W; You, Mengmeng; Chen, Minli; Hu, Fuliang
2018-01-01
Alzheimer's disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD.
Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui
2015-11-01
The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.
Proteomic analysis of PSD-93 knockout mice following the induction of ischemic cerebral injury.
Rong, Rong; Yang, Hui; Rong, Liangqun; Wei, Xiue; Li, Qingjie; Liu, Xiaomei; Gao, Hong; Xu, Yun; Zhang, Qingxiu
2016-03-01
Postsynaptic density protein-93 (PSD-93) is enriched in the postsynaptic density and is involved in N-methyl-d-aspartate receptor (NMDAR) triggered neurotoxicity through PSD-93/NMDAR/nNOS signaling pathway. In the present study, we found that PSD-93 deficiency reduced infarcted volume and neurological deficits induced by transient middle cerebral artery occlusion (tMCAO) in the mice. To identify novel targets of PSD-93 related neurotoxicity, we applied isobaric tags for relative and absolute quantitative (iTRAQ) labeling and combined this labeling with on-line two-dimensional LC/MS/MS technology to elucidate the changes in protein expression in PSD-93 knockout mice following tMCAO. The proteomic data set consisted of 1892 proteins. Compared to control group, differences in expression levels in ischemic group >1.5-fold and <0.66-fold were considered as differential expression. A total of 104 unique proteins with differential abundance levels were identified, among which 17 proteins were selected for further validation. Gene ontology analysis using UniProt database revealed that these differentially expressed proteins are involved in diverse function such as synaptic transmission, neuronal neurotransmitter and ion transport, modification of organelle membrane components. Moreover, network analysis revealed that the interacting proteins were involved in the transport of synaptic vesicles, the integrity of synaptic membranes and the activation of the ionotropic glutamate receptors NMDAR1 and NMDAR2B. Finally, RT-PCR and Western blot analysis showed that SynGAP, syntaxin-1A, protein kinase C β, and voltage-dependent L-type calcium channels were inhibited by ischemia-reperfusion. Identification of these proteins provides valuable clues to elucidate the mechanisms underlying the actions of PSD-93 in ischemia-reperfusion induced neurotoxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Assessment of the Siksika chronic disease nephropathy-prevention clinic
Ward, David R.R.; Novak, Ellen; Scott-Douglas, Nairne; Brar, Sony; White, Melvin; Hemmelgarn, Brenda R.
2013-01-01
Objective To determine if a community-based multifactorial intervention clinic led by a nurse practitioner would improve management of First Nations people at risk of developing chronic kidney disease. Design Qualitative descriptive study. Setting A nephropathy-prevention clinic in Siksika Nation, Alta. Participants First Nations people with diabetes, hypertension, or dyslipidemia who were referred to the clinic. Main outcome measures Changes in blood pressure (BP), hemoglobin A1c, and low-density lipoprotein levels, as well as in use of antiplatelet therapy, angiotensin-converting enzyme inhibitor or angiotensin receptor blocker medications, and statin therapy. Results Members of the Siksika Nation were treated according to clinical practice guidelines. A total of 78 patients had at least 2 visits to the clinic and were included in this analysis (61.5% were women; mean age 56 years). Among those initially above target, a significant reduction was achieved in mean hemoglobin A1c (0.96%; P < .01), systolic BP (15.84 mm Hg; P < .05), diastolic BP (7.16 mm Hg; P < .001), and low-density lipoprotein (0.62 mmol/L; P < .01) levels. There was a significant increase in the proportion of patients with clinical indications who were treated with acetylsalicylic acid (42.4%; P < .01), angiotensin-converting enzyme inhibitor or angiotensin receptor blocker medications (35.9%; P < .01), or statin therapy (35.9%; P < .01). Conclusion A community-based, nurse practitioner–led clinic can improve many clinically relevant factors in patients at risk of developing chronic kidney disease. Studies have shown that achieving treatment targets is associated with a reduced risk of early death and cardiovascular events; the effect in the First Nations population on these hard clinical end points remains to be determined. PMID:23341675
Sun, Jingyu; Huang, Tao; Qi, Zhengtang; You, Songhui; Dong, Jingmei; Zhang, Chen; Qin, Lili; Zhou, Yunhe; Ding, Shuzhe
2017-09-01
The mechanism for different susceptibilities to obesity after short-term high-fat diet (HFD) feeding is largely unknown. Given the close association between obesity occurrence and mitochondrial dysfunction, the early events in skeletal muscle mitochondrial adaptations between HFD-induced obesity (DIO) and HFD-induced obesity resistant (DIO-R) lean phenotype under excess nutritional environment were explored.ICR/JCL male mice were randomly divided into 2 groups, as follows: low-fat diet (LFD) and HFD groups. After 6 weeks on HFD, HFD-fed mice were classified as DIO or DIO-R according to their body weight gain. Serum parameters, oxidative stress biomarkers, the activation of AMPK/ACC axis, and the expression profiles of mitochondrial biogenesis were measured by using corresponding methods among the LFD control, DIO, and DIO-R groups. Serum glucose, total cholesterol, low-density lipoprotein, and high-density lipoprotein levels were significantly increased in DIO and DIO-R mice compared with LFD controls. However, DIO-R mice had significantly higher MDA levels and exhibited a significantly higher level of AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inactivation than DIO mice. Furthermore, the transcript and protein levels of transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) and estrogen-related receptor-α (ERRα) in DIO-R mice were significantly up-regulated compared with the DIO mice. Although the body weight gain differed, the DIO and DIO-R mice had similar metabolic disturbance of glucose and lipids after short-term HFD consumption. The diverse alterations on fatty acid oxidation and mitochondrial biogenesis pathway induced by AMPK activation might be involved in different susceptibilities to obesity when consuming HFD. © Georg Thieme Verlag KG Stuttgart · New York.
Liu, Chao; Guo, Qianqian; Lu, Mengchen; Li, Yunman
2015-08-15
Prevention or amelioration the prevalence of atherosclerosis has been an effective strategy in the management of cardiovascular diseases. The aim of the study was to scrutinize the effect of Clematichinenoside (AR) on dyslipidemia-induced atherosclerosis and explore its capability on expression of Peroxisome proliferator-activated receptor-α (PPAR-alpha), apolipoprotein A-I (APOA1) and A-II (APOA2), and suppression of apolipoprotein C-III (APOC3) genes and proteins. In the present study, we investigated atherosclerosis effect of AR using a combination of high-fat diet and balloon injury model in rabbits. The levels of biochemical indicators were evaluated in plasma, liver and HepG2 cells using immunoassay technology. In order to expose the underlying mechanism, we evaluated the regulation of PPAR-alpha, APOA1, APOA2 and APOC3 expressions by AR, and we further evaluated the interactions between them after transfection with shRNA (shPPAR-alpha) and, the action of PPAR-alpha in HepG2 cells. We could find that AR markedly promoted the PPAR-alpha transfer from cytoplasm to nucleus which resulted in the alteration of APOA1, APOA2 and APOC3 expressions in HepG2 cells. Moreover, AR significantly reduced total cholesterol, triglycerides and low-density lipoprotein cholesterol (LDL-C) levels, and elevated high-density lipoprotein cholesterol (HDL-C) level, which play an important role in dyslipidemia-induced atherosclerosis. In conclusion, AR ameliorated atherosclerosis via the regulation of hepatic lipid metabolism, and AR also contributed to the activation of PPAR-alpha, APOA1, APOA2 and APOC3. Therefore, AR could be a potential therapeutic agent in the treatment of atherosclerosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Hu, Suwen; Deng, Lei; Wang, Huamao; Zhuang, Yingping; Chu, Ju; Zhang, Siliang; Li, Zhonghai; Guo, Meijin
2011-05-01
The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 10(5) cells/mL. Then, the basic metabolic characteristics of CHO-C12 cells were studied in stirred bioreactor batch cultures. The results showed that the limiting concentrations of glucose and glutamine were 6 and 1 mM, respectively. The culture process consumed significant amounts of aspartate, glutamate, asparagine, serine, isoleucine, leucine, and lysine. Aspartate, glutamate, asparagine, and serine were particularly exhausted in the early growth stage, thus limiting cell growth and antibody synthesis. Based on these findings, fed-batch and perfusion processes in the bioreactor were successfully developed with a balanced amino acid feed strategy. Fed-batch and especially perfusion culture effectively maintained high cell viability to prolong the culture process. Furthermore, perfusion cultures maximized the efficiency of nutrient utilization; the mean yield coefficient of antibody to consumed glucose was 44.72 mg/g and the mean yield coefficient of glutamine to antibody was 721.40 mg/g. Finally, in small-scale bioreactor culture, the highest total amount of C12 antibody (1,854 mg) was realized in perfusion cultures. Therefore, perfusion culture appears to be the optimal process for small-scale production of C12 antibody by rCHO-C12 cells.
Guo, Yitian; Luo, Hanwen; Wu, Yimeng; Magdalou, Jacques; Chen, Liaobin; Wang, Hui
2018-05-22
Epidemiological surveys suggest that adult hypercholesterolemia has an intrauterine origin and exhibits gender differences. Our previous study demonstrated that adult rats with intrauterine growth retardation (IUGR) offspring rats induced by prenatal caffeine exposure (PCE) had a higher serum total cholesterol (TCH) level. In this study, we aimed to analyze the influencing factors, underlying mechanism and interactions affecting hypercholesterolemia in adult offspring with caffeine exposure during pregnancy. Pregnant rats were administered caffeine (120 mg/kg d) from gestational day 11 until delivery. Offspring rats fed a normal diet or a high-fat diet (HFD) were euthanized at postnatal week 24, and blood and liver samples were collected. The results showed that PCE could increase the serum levels of TCH and low-density lipoprotein-cholesterol (LDL-C), and the hepatic expression of HMG CoA reductase (HMGCR) and apolipoprotein B (ApoB), but decreased the high-density lipoprotein-cholesterol (HDL-C) level and the hepatic expression of scavenger receptor B1 (SR-B1) and LDL receptor (LDLR). Furthermore, PCE, HFD and gender interact with each other to influence the serum cholesterol phenotype and expression of hepatic cholesterol metabolic genes. These results suggest that the hypercholesterolemia in adult offspring rats induced by PCE mainly resulted from enhanced synthesis and the weakened reverse transport of cholesterol in the liver, furthermore HFD could aggravate this effect, which is caused by hepatic cholesterol metabolic disorders. Moreover, cholesterol metabolism in female rats was more sensitive to neuroendocrine changes and HFD than that in males. This study confirmed the influencing factors (such as a HFD and female gender) of hypercholesterolemia in IUGR offspring providing theoretical and experimental bases for the effective prevention of fetal-originated hypercholesterolemia. Copyright © 2018 Elsevier Inc. All rights reserved.
Segoviano-Mendoza, Marcela; Cárdenas-de la Cruz, Manuel; Salas-Pacheco, José; Vázquez-Alaniz, Fernando; La Llave-León, Osmel; Castellanos-Juárez, Francisco; Méndez-Hernández, Jazmín; Barraza-Salas, Marcelo; Miranda-Morales, Ernesto; Arias-Carrión, Oscar; Méndez-Hernández, Edna
2018-01-15
Cholesterol has been associated as a risk factor for cardiovascular disease. Recently, however, there is growing evidence about crucial requirement of neuron membrane cholesterol in the organization and function of the 5-HT 1A serotonin receptor. For this, low cholesterol level has been reported to be associated with depression and suicidality. However there have been inconsistent reports about this finding and the exact relationship between these factors remains controversial. Therefore, we investigated the link between serum cholesterol and its fractions with depression disorder and suicide attempt in 467 adult subjects in Mexican mestizo population. Plasma levels of total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-c) and low density lipoprotein cholesterol (LDL-c) were determined in 261 MDD patients meeting the DSM-5 criteria for major depressive disorder (MDD), 59 of whom had undergone an episode of suicide attempt, and 206 healthy controls. A significant decrease in total cholesterol, LDL-cholesterol, VLDL-cholesterol and triglyceride serum levels was observed in the groups of MDD patients and suicide attempt compared to those without suicidal behavior (p < 0.05). After adjusting for covariates, lower cholesterol levels were significantly associated with MDD (OR 4.229 CI 95% 2.555 - 7.000, p<.001) and suicide attempt (OR 5.540 CI 95% 2.825 - 10.866, p<.001) CONCLUSIONS: These results support the hypothesis that lower levels of cholesterol are associated with mood disorders like MDD and suicidal behavior. More mechanistic studies are needed to further explain this association.
Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.
Kimura, Kenji; Ohtubo, Yoshitaka; Tateno, Katsumi; Takeuchi, Keita; Kumazawa, Takashi; Yoshii, Kiyonori
2014-01-01
Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with cell-type markers, an IP3 receptor (IP3 R3) for type II cells and a SNARE protein (SNAP-25) for type III cells. Cells not immunoreactive to these antibodies were examined as non-IRCs. Here, we show that type II cells and type III cells fire action potentials using different ionic mechanisms, and that non-IRCs also fire action potentials with either of the ionic mechanisms. The width of action potentials was significantly narrower and their afterhyperpolarization was deeper in type III cells than in type II cells. Na(+) current density was similar in type II cells and type III cells, but it was significantly smaller in non-IRCs than in the others. Although outwardly rectifying current density was similar between type II cells and type III cells, tetraethylammonium (TEA) preferentially suppressed the density in type III cells and the majority of non-IRCs. Our mathematical model revealed that the shape of action potentials depended on the ratio of TEA-sensitive current density and TEA-insensitive current one. The action potentials of type II cells and type III cells under physiological conditions are discussed. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Unc-51 controls active zone density and protein composition by downregulating ERK signaling.
Wairkar, Yogesh P; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; Diantonio, Aaron
2009-01-14
Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability.
Senadheera, Sevvandi; Bertrand, Paul P; Grayson, T Hilton; Leader, Leo; Murphy, Timothy V; Sandow, Shaun L
2013-01-01
In pregnancy, the vasculature of the uterus undergoes rapid remodelling to increase blood flow and maintain perfusion to the fetus. The present study determines the distribution and density of caveolae, transient receptor potential vanilloid type 4 channels (TRPV4) and myoendothelial gap junctions, and the relative contribution of related endothelium-dependent vasodilator components in uterine radial arteries of control virgin non-pregnant and 20-day late-pregnant rats. The hypothesis examined is that specific components of endothelium-dependent vasodilator mechanisms are altered in pregnancy-related uterine radial artery remodelling. Conventional and serial section electron microscopy were used to determine the morphological characteristics of uterine radial arteries from control and pregnant rats. TRPV4 distribution and expression was examined using conventional confocal immunohistochemistry, and the contribution of endothelial TRPV4, nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-type activity determined using pressure myography with pharmacological intervention. Data show outward hypertrophic remodelling occurs in uterine radial arteries in pregnancy. Further, caveolae density in radial artery endothelium and smooth muscle from pregnant rats was significantly increased by ∼94% and ∼31%, respectively, compared with control, whereas caveolae density did not differ in endothelium compared with smooth muscle from control. Caveolae density was significantly higher by ∼59% on the abluminal compared with the luminal surface of the endothelium in uterine radial artery of pregnant rats but did not differ at those surfaces in control. TRPV4 was present in endothelium and smooth muscle, but not associated with internal elastic lamina hole sites in radial arteries. TRPV4 fluorescence intensity was significantly increased in the endothelium and smooth muscle of radial artery of pregnant compared with control rats by ∼2.6- and 5.5-fold, respectively. The TRPV4 signal was significantly higher in the endothelium compared with the smooth muscle in radial artery of both control and pregnant rats, by ∼5.7- and 2.7-fold, respectively. Myoendothelial gap junction density was significantly decreased by ∼37% in radial artery from pregnant compared with control rats. Pressure myography with pharmacological intervention showed that NO contributes ∼80% and ∼30%, and the EDH-type component ∼20% and ∼70% of the total endothelium-dependent vasodilator response in radial arteries of control and pregnant rats, respectively. TRPV4 plays a functional role in radial arteries, with a greater contribution in those from pregnant rats. The correlative association of increased TRPV4 and caveolae density and role of EDH-type activity in uterine radial artery of pregnant rats is suggestive of their causal relationship. The decreased myoendothelial gap junction density and lack of TRPV4 density at such sites is consistent with their having an integral, albeit complex, interactive role in uterine vascular signalling and remodelling in pregnancy. PMID:24128141
Pilarczyk, Götz; Nesnidal, Ines; Gunkel, Manuel; Bach, Margund; Bestvater, Felix; Hausmann, Michael
2017-01-01
In cancer, vulnerable breast epithelium malignance tendency correlates with number and activation of ErbB receptor tyrosine kinases. In the presented work, we observe ErbB receptors activated by irradiation-induced DNA injury or neuregulin-1β application, or alternatively, attenuated by a therapeutic antibody using high resolution fluorescence localization microscopy. The gap junction turnover coinciding with ErbB receptor activation and co-transport is simultaneously recorded. DNA injury caused by 4 Gray of 6 MeV photon γ-irradiation or alternatively neuregulin-1β application mobilized ErbB receptors in a nucleograde fashion—a process attenuated by trastuzumab antibody application. This was accompanied by increased receptor density, indicating packing into transport units. Factors mobilizing ErbB receptors also mobilized plasma membrane resident gap junction channels. The time course of ErbB receptor activation and gap junction mobilization recapitulates the time course of non-homologous end-joining DNA repair. We explain our findings under terms of DNA injury-induced membrane receptor tyrosine kinase activation and retrograde trafficking. In addition, we interpret the phenomenon of retrograde co-trafficking of gap junction connexons stimulated by ErbB receptor activation. PMID:28208769
Effect of a Gonadotrophin-Releasing Hormone Analogue on Lung Function in Lymphangioleiomyomatosis
Harari, Sergio; Cassandro, Roberto; Chiodini, Jacopo; Taveira-DaSilva, Angelo M.; Moss, Joel
2010-01-01
Background Lymphangioleiomyomatosis (LAM), a multisystem disease occurring primarily in women, is characterized by cystic lung destruction, and kidney and lymphatic tumors, caused by the proliferation of abnormal-appearing cells (ie, LAM cells) with a smooth muscle cell phenotype that express melanoma antigens and are capable of metastasizing. Estrogen receptors are present in LAM cells, and this finding, along with reports of disease progression during pregnancy or following exogenous estrogen administration, suggest the involvement of estrogens in the pathogenesis of LAM. Consequently, antiestrogen therapies have been employed in treatment. The goal of this prospective study was to evaluate the efficacy of triptorelin, a gonadotrophin-releasing hormone analogue, in 11 premenopausal women with LAM. Methods Patients were evaluated at baseline and every 3 to 6 months thereafter, for a total of 36 months. Hormonal assays, pulmonary function tests, 6-min walk tests, high-resolution CT scans of the chest, and bone mineral density studies were performed. Results Gonadal suppression was achieved in all patients. Overall, a significant decline in lung function was observed; two patients underwent lung transplantation 1 year after study enrollment, and another patient was lost to follow-up. Treatment with triptorelin was associated with a decline in bone mineral density. Conclusions Triptorelin appears not to prevent a decline in lung function in patients with LAM. Its use, however, may be associated with the loss of bone mineral density. PMID:18071009
Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men?
Leung, J.; Zhang, Y. F.; Bauer, D.; Ensrud, K. E.; Barrett-Connor, E.; Leung, P. C.
2013-01-01
Summary In a prospective cohort study of 5,995 older American men (MrOS), users of angiotensin-converting enzyme (ACE) inhibitors had a small but significant increase in bone loss at the hip over 4 years after adjustment for confounders. Use of angiotensin II AT1 receptor blockers (ARB) was not significantly associated with bone loss. Introduction Experimental evidence suggests that angiotensin II promotes bone loss by its effects on osteoblasts. It is therefore plausible that ACE inhibitor and ARB may reduce rates of bone loss. The objective of this study is to examine the independent effects of ACE inhibitor and ARB on bone loss in older men. Methods Out of 5,995 American men (87.2%) aged ≥65 years, 5,229 were followed up for an average of 4.6 years in a prospective six-center cohort study—The Osteoporotic Fractures in Men Study (MrOS). Bone mineral densities (BMD) at total hip, femoral neck, and trochanter were measured by Hologic densitometer (QDR 4500) at baseline and year 4. Results Out of 3,494 eligible subjects with complete data, 1,166 and 433 subjects reported use of ACE inhibitors and ARBs, respectively. When compared with nonusers, continuous use of ACE inhibitors was associated with a small (0.004 g/cm2) but significant increase in the average rate of BMD loss at total hip and trochanter over 4 years after adjustment for confounders. Use of ARB was not significantly associated with bone loss. Conclusion Use of ACE inhibitors but not ARB may marginally increase bone loss in older men. PMID:22080379
Dong, Junfeng; Song, Yueqin; Li, Wenliang; Shi, Jie; Wang, Zhenying
2016-01-01
Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads. PMID:26812239
NASA Technical Reports Server (NTRS)
Meyers, D. G.; Farmer, J. M.
1982-01-01
Gravity receptors of Dephnia magna were discovered on the basal segment of the swimming antennae and were shown to respond to upward water currents that pass the animal as it sinks between swimming strokes. Sensitivity of the gravity perceiving mechanism was tested by subjecting daphnids to a series of five decreasingly dense aqueous solutions (neutral density to water) in darkness (to avoid visual cues). Three-dimensional, video analysis of body position (pitch, yaw and roll) and swimming path (hop and sink, vertical and horizontal patterns) revealed a gradual threshold that occurred near a density difference between the animal and its environment of less than 0.25%. Because daphnids do not sink but continue to slide after stroking in the increased density solutions, gravity perception appears to occur during a vertical swing of the longitudinal body axis to the vertical plane, about their center of gravity, and, thereby, implies a multidirectional sensitivity for the antennal-socket setae.
Goulding, A T; Farrell, A P
2016-05-01
A new, image-based, tritiated ligand technique for measuring cardiac β2 -adrenoceptor (β2 -AR) binding characteristics was developed and validated with adult rainbow trout Oncorhynchus mykiss hearts so that the tissue limitation of traditional receptor binding techniques could be overcome and measurements could be made in hearts nearly 14-times smaller than previously used. The myocardial cell-surface (functional) β2 -AR density of O. nerka smolts sampled at the headwaters of the Chilko River was 54·2 fmol mg protein(-1) and about half of that previously found in return migrating adults of the same population, but still more than twice that of adult hatchery O. mykiss (21·1 fmol mg protein(-1) ). This technique now opens the possibility of investigating cardiac receptor density in a much wider range of fish species and life stages. © 2016 The Fisheries Society of the British Isles.
1990-04-11
triglycerides , insulin, glucagon, cholesterol (total, high density lipoprotein ( HDL ), low density lipoprotein (LDL)I, cortisol, thyroid hormone...thyroid function, triglycerides , total cholesterol , high density lipoprotein cholesterol ( HDL ), low density lipoprotein cholesterol (LDL), ketone... density lipoprotein ( HDL ) fraction of cholesterol was
Kessels, M M; Qualmann, B; Thole, H H; Sierralta, W D
1998-01-01
Ultrastructural localization studies of estradiol receptor in hormone-deprived and hormone-stimulated MCF7 cells were done using F(ab') fragments of three different antibodies (#402, 13H2, HT277) covalently linked to nanogold. These ultra-small, non-charged immunoreagents, combined with a size-enlargement by silver enhancement, localized estradiol receptor in both nuclear and cytoplasmic areas of non-stimulated target cells; stimulation with the steroid induced a predominantly nuclear labelling. In the cytoplasm of resting cells, tagging was often observed at or in the proximity of stress fibers. In the nucleus a large proportion of receptor was found inside the nucleolus, specially with the reagent derived from antibody 13H2. We postulate that different accessibilities of receptor epitopes account for the different labelling densities observed at cytoskeletal elements and the nucleoli.
Tayade, Rajratna P; Sekar, Nagaiyan
2017-05-01
A novel thiazole based carbaldehyde bearing benzimidazole fluorophore as the receptor unit for F - anion was prepared by multi steps synthesis. Density functional theory was used to understand the structural and electronic properties the receptor. The anion sensing activities of receptor 4 were studied for various anions in acetonitrile solvent. The receptor showed fluorescence enhancement in the presence of fluoride anion due to intramolecular charge transfer (ICT) mechanism. No significant changes were observed upon addition of less basic anions such as OAc - , Cl - , Br - , I - , HSO 4 - . After the interaction of fluoride anion with the receptor 4 leads to an 88 nm red shift in emission maxima. [TBA]OH and 1 H NMR titration experiments indicated that deprotonation of N-H in the benzimidazole due to interaction with fluoride anions.
NASA Astrophysics Data System (ADS)
McCoy, Michael J.; Habermann, Timothy J.; Hanke, Craig J.; Adar, Fran; Campbell, William B.; Nithipatikom, Kasem
1999-04-01
We developed a confocal Raman microspectroscopic technique to study ligand-receptor bindings in single cells using Raman-labeled ligands and surface-enhanced Raman scattering (SERS). The adrenal zona glomerulosa (ZG) cells were used as a model in this study. ZG cells have a high density of angiotensin II (AII) receptors on the cellular membrane. There are two identified subtypes of AII receptors,namely AT1 and AT2 receptors. AII is a peptidic hormone, which upon binding to its receptors, stimulates the release of aldosterone from ZG cells. The cellular localization of these receptors subtypes was detected in single ZG cells by using immunocomplexation of receptors with specific antibodies and confocal Raman microspectroscopy. In the binding study, we used biotin-labeled AII to bind to its receptors in ZG cells. Then, avidin and Raman-labeled AII. The binding was measure directly on the single ZG cells. The results showed that the binding was displaced with unlabeled AII and specific AII antagonists. This is a rapid and sensitive technique for detection of cellular ligand bindings as well as antagonists screening in drug discovery.
Horton, J D; Cuthbert, J A; Spady, D K
1993-01-01
The concentration of LDL in plasma is strongly influenced by the amount and the type of lipid in the diet. Recent studies in the hamster have shown that dietary fatty acids differentially affect circulating LDL levels primarily by altering receptor-dependent LDL uptake in the liver. To investigate the mechanistic basis of this effect, rates of receptor-dependent LDL transport in the liver were correlated with LDL receptor protein and mRNA levels in hamsters fed safflower oil or coconut oil and varying amounts of cholesterol. Hepatic LDL receptor activity was significantly lower in animals fed coconut oil than in animals fed safflower oil at all levels of cholesterol intake (26, 53, and 61% lower at cholesterol intakes of 0, 0.06, and 0.12%, respectively). These fatty acid-induced changes in hepatic LDL receptor activity were accompanied by parallel changes in hepatic LDL receptor protein and mRNA levels, suggesting that dietary fatty acids regulate the LDL receptor pathway largely at the mRNA level. Images PMID:8349814
Li, Haoxian; Zhang, Yanghui; Wei, Xianda; Peng, Ying; Yang, Pu; Tan, Hu; Chen, Chen; Pan, Qian; Liang, Desheng; Wu, Lingqian
2015-09-15
Familial hypercholesterolemia (FH MIM# 143890) is one of the most common autosomal inherited diseases. FH is characterized by elevated plasma levels of total cholesterol and low-density lipoprotein-cholesterol. Mutation in the LDLR gene, which encodes the LDL receptor protein, is responsible for most of the morbidity of FH. The incidence of heterozygous FH is about 1/500, whereas the incidence of homozygous FH is only 1/1,000,000 in Caucasian population. In this study, we report a homozygous LDLR mutation (c.298G>A) in a familial hypercholesterolemia patient, who exhibited intracranial cholesterol deposition, which is a rare addition to the common FH phenotypes. The proband's consanguineous parents have the same heterozygous mutation with elevated concentrations of LDL-C but no xanthoma. Copyright © 2015 Elsevier B.V. All rights reserved.
McGowan, S E; Doro, M M; Jackson, S
Lipid-laden interstitial fibroblasts (LIFs) are abundant during alveolar septal formation in rats and accumulate droplets of neutral lipids. The mechanisms controlling lipid acquisition by LIFs are incompletely understood and accumulation varies during postnatal development, because lipid droplets are usually a transient phenotype. We hypothesized that plasma lipoproteins may be an important source of lipids and that the cells may alter their acquisition of lipoproteins by changing the expression of lipoprotein receptors and apolipoprotein E. We quantified the accumulation low-density lipoproteins (LDLs) and very-low-density lipoproteins (VLDLs) by LIFs and the expression of LDL and VLDL receptors mRNA and protein at various perinatal ages and found no significant age-related differences. Apolipoprotein E mRNA was maximal at postnatal day 15, whereas immunoreactive apolipoprotein E protein was maximal at gestational day 21, suggesting complex regulation. Our findings indicate that the age-related difference in the lipid droplet contents of LIFs is not primarily related to differences in LDL or VLDL receptor expression. They suggest that changes in the quantities of plasma lipoproteins, which are presented to LIFs in the lung at various perinatal ages, are more likely to be responsible for age-related alterations in lipid droplet size and abundance.
Sui, Xuxia; Liu, Yanmin; Li, Qi; Liu, Gefei; Song, Xuhong; Su, Zhongjing; Chang, Xiaolan; Zhou, Yingbi; Liang, Bin; Huang, Dongyang
2014-01-01
EP3, one of four prostaglandin E2 (PGE2) receptors, is significantly lower in atherosclerotic plaques than in normal arteries and is localized predominantly in macrophages of the plaque shoulder region. However, mechanisms behind this EP3 expression pattern are still unknown. We investigated the underlying mechanism of EP3 expression in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages with oxidized low-density lipoprotein (oxLDL) treatment. We found that oxLDL decreased EP3 expression, in a dose-dependent manner, at both the mRNA and protein levels. Moreover, oxLDL inhibited nuclear factor-κB (NF-κB)-dependent transcription of the EP3 gene by the activation of peroxisome proliferator-activated receptor-γ (PPAR-γ). Finally, chromatin immunoprecipitation revealed decreased binding of NF-κB to the EP3 promoter with oxLDL and PPAR-γ agonist treatment. Our results show that oxLDL suppresses EP3 expression by activation of PPAR-γ and subsequent inhibition of NF-κB in macrophages. These results suggest that down-regulation of EP3 expression by oxLDL is associated with impairment of EP3-mediated anti-inflammatory effects, and that EP3 receptor activity may exert a beneficial effect on atherosclerosis. PMID:25333975
LOX-1, OxLDL, and Atherosclerosis
Catapano, Alberico Luigi
2013-01-01
Oxidized low-density lipoprotein (OxLDL) contributes to the atherosclerotic plaque formation and progression by several mechanisms, including the induction of endothelial cell activation and dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation. Vascular wall cells express on their surface several scavenger receptors that mediate the cellular effects of OxLDL. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the main OxLDL receptor of endothelial cells, and it is expressed also in macrophages and smooth muscle cells. LOX-1 is almost undetectable under physiological conditions, but it is upregulated following the exposure to several proinflammatory and proatherogenic stimuli and can be detected in animal and human atherosclerotic lesions. The key contribution of LOX-1 to the atherogenic process has been confirmed in animal models; LOX-1 knockout mice exhibit reduced intima thickness and inflammation and increased expression of protective factors; on the contrary, LOX-1 overexpressing mice present an accelerated atherosclerotic lesion formation which is associated with increased inflammation. In humans, LOX-1 gene polymorphisms were associated with increased susceptibility to myocardial infarction. Inhibition of the LOX-1 receptor with chemicals or antisense nucleotides is currently being investigated and represents an emerging approach for controlling OxLDL-LOX-1 mediated proatherogenic effects. PMID:23935243
Ren, Yuanyuan; Wen, Haishen; Li, Yun; Li, Jifang; He, Feng; Ni, Meng
2017-12-01
To investigate the correlation between lipid deposition variation and stocking density in Amur sturgeon (Acipenser schrenckii) and the possible physiological mechanism, fish were conducted in different stocking densities (LSD 5.5 kg/m 3 , MSD 8.0 kg/m 3 , and HSD 11.0 kg/m 3 ) for 70 days and then the growth index, lipid content, lipase activities, and the mRNA expressions of lipid-related genes were examined. Results showed that fish subjected to higher stocking density presented lower final body weights (FBW), specific growth ratio (SGR), and gonad adipose tissue index (GAI) (P < 0.05). Lower lipid content was observed in the liver, gonad adipose tissue and muscle in sturgeons held in HSD group (P < 0.05). The serum concentrations of triglyceride (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) decreased significantly with increasing stocking density, while no significant change was observed for low-density lipoprotein cholesterol (LDL-C). Furthermore, the cDNAs encoding lipoprotein lipase (LPL) and hepatic lipase (HL) were isolated in Amur sturgeon, respectively. The full-length LPL cDNA was composed of 1757 bp with an open reading frame of 501 amino acids, while the complete nucleotide sequences of HL covered 1747 bp encoding 499 amino acids. In the liver, the activities and mRNA levels of LPL were markedly lower in HSD group, which were consistent with the variation tendency of HL. Fish reared in HSD group also presented lower levels of activities and mRNA expression of LPL in the muscle and gonad. Moreover, the expressions of peroxisome proliferator-activated receptor α (PPARα) in both the liver and skeletal muscle were significantly upregulated in HSD group. Overall, the results indicated that high stocking density negatively affects growth performance and lipid deposition of Amur sturgeon to a certain extent. The downregulation of LPL and HL and the upregulation of PPARα may be responsible for the lower lipid distribution of Amur sturgeon in higher stocking density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, W.F.; O'Gorman, S.; Roe, A.W.
1990-03-01
The autoradiographic analysis of neurotransmitter receptor distribution is a powerful technique that provides extensive information on the localization of neurotransmitter systems. Computer methodologies are described for the analysis of autoradiographic material which include quench correction, 3-dimensional display, and quantification based on anatomical boundaries determined from the tissue sections. These methodologies are applied to the problem of the distribution of glycine receptors measured by 3H-strychnine binding in the mouse CNS. The most distinctive feature of this distribution is its marked caudorostral gradient. The highest densities of binding sites within this gradient were seen in somatic motor and sensory areas; high densitiesmore » of binding were seen in branchial efferent and special sensory areas. Moderate levels were seen in nuclei related to visceral function. Densities within the reticular formation paralleled the overall gradient with high to moderate levels of binding. The colliculi had low and the diencephalon had very low levels of binding. No binding was seen in the cerebellum or the telencephalon with the exception of the amygdala, which had very low levels of specific binding. This distribution of glycine receptors correlates well with the known functional distribution of glycine synaptic function. These data are illustrated in 3 dimensions and discussed in terms of the significance of the analysis techniques on this type of data as well as the functional significance of the distribution of glycine receptors.« less
Soderstrom, Ken; Tian, Qiyu
2008-01-01
CB1 cannabinoid receptors are distinctly expressed at high density within several regions of zebra finch telencephalon including those known to be involved in song learning (lMAN and Area X) and production (HVC and RA). Because: (1) exposure to cannabinoid agonists during developmental periods of auditory and sensory-motor song learning alters song patterns produced later in adulthood and; (2) densities of song region expression of CB1 waxes-and-wanes during song learning, it is becoming clear that CB1 receptor-mediated signaling is important to normal processes of vocal development. To better understand mechanisms involved in cannabinoid modulation of vocal behavior we have investigated the dose-response relationship between systemic cannabinoid exposure and changes in neuronal activity (as indicated by expression of the transcription factor, c-Fos) within telencephalic brain regions with established involvement in song learning and/or control. In adults we have found that low doses (0.1 mg/kg) of the cannabinoid agonist WIN-55212-2 decrease neuronal activity (as indicated by densities of c-fos-expressing nuclei) within vocal motor regions of caudal telencephalon (HVC and RA) while higher doses (3 mg/kg) stimulate activity. Both effects were reversed by pretreatment with the CB1-selective antagonist rimonabant. Interestingly, no effects of cannabinoid treatment were observed within the rostral song regions lMAN and Area X, despite distinct and dense CB1 receptor expression within these areas. Overall, our results demonstrate that, depending on dosage, CB1 agonism can both inhibit and stimulate neuronal activity within brain regions controlling adult vocal motor output, implicating involvement of multiple CB1-sensitive neuronal circuits. PMID:18509622
Hodges, Travis E; Baumbach, Jennet L; Marcolin, Marina L; Bredewold, Remco; Veenema, Alexa H; McCormick, Cheryl M
2017-09-17
Social experiences in adolescence are essential for displaying context-appropriate social behaviors in adulthood. We previously found that adult male rats that underwent social instability stress (SS) in adolescence had reduced social interactions with unfamiliar peers compared with non-stressed controls (CTL). Here we determined whether SS altered social recognition and social reward and brain oxytocin and vasopressin receptor density in adolescence. We confirmed that SS rats spent less time interacting with unfamiliar peers than did CTL rats (p=0.006). Furthermore, CTL rats showed a preference for novel over familiar conspecifics in a social recognition test whereas SS rats did not, which may reflect reduced recognition, impaired memory, or reduced preference for novelty in SS rats. The reward value of social interactions was not affected by SS based on conditioned place preference tests and based on the greater time SS rats spent investigating stimulus rats than did CTL rats when the stimulus rat was behind wire mesh (p=0.03). Finally, oxytocin receptor binding density was higher in the dorsal lateral septum and nucleus accumbens shell in SS rats compared with CTL rats (p=0.02, p=0.01, respectively). No effect of SS was found for vasopressin 1a receptor binding density in any of the brain regions analyzed. We discuss the extent to which the differences in social behavior exhibited after social instability in adolescence involve changes in social salience and social competency, and the possibility that changes in oxytocin signaling in the brain underlie the differences in social behavior. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Selvais, Charlotte; D'Auria, Ludovic; Tyteca, Donatienne; Perrot, Gwenn; Lemoine, Pascale; Troeberg, Linda; Dedieu, Stéphane; Noël, Agnès; Nagase, Hideaki; Henriet, Patrick; Courtoy, Pierre J.; Marbaix, Etienne; Emonard, Hervé
2011-01-01
Low-density lipoprotein receptor-related protein-1 (LRP-1) is a plasma membrane scavenger and signaling receptor, composed of a large ligand-binding subunit (515-kDa α-chain) linked to a shorter transmembrane subunit (85-kDa β-chain). LRP-1 cell-surface level and function are controlled by proteolytic shedding of its ectodomain. Here, we identified ectodomain sheddases in human HT1080 cells and demonstrated regulation of the cleavage by cholesterol by comparing the classical fibroblastoid type with a spontaneous epithelioid variant, enriched ∼2-fold in cholesterol. Two membrane-associated metalloproteinases were involved in LRP-1 shedding: a disintegrin and metalloproteinase-12 (ADAM-12) and membrane-type 1 matrix metalloproteinase (MT1-MMP). Although both variants expressed similar levels of LRP-1, ADAM-12, MT1-MMP, and specific tissue inhibitor of metalloproteinases-2 (TIMP-2), LRP-1 shedding from epithelioid cells was ∼4-fold lower than from fibroblastoid cells. Release of the ectodomain was triggered by cholesterol depletion in epithelioid cells and impaired by cholesterol overload in fibroblastoid cells. Modulation of LRP-1 shedding on clearance was reflected by accumulation of gelatinases (MMP-2 and MMP-9) in the medium. We conclude that cholesterol exerts an important control on LRP-1 levels and function at the plasma membrane by modulating shedding of its ectodomain, and therefore represents a novel regulator of extracellular proteolytic activities.—Selvais, C., D'Auria, L., Tyteca, D., Perrot, G, Lemoine, P., Troeberg, L., Dedieu, S., Noël, A., Nagase, H., Henriet, P., Courtoy, P. J., Marbaix, E., Emonard, H. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. PMID:21518850
Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce
Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less
Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation
Mortimer, Monika; Petersen, Elijah; Buchholz, Bruce; ...
2016-10-12
Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here in this paper, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstratemore » separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. Lastly, the optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation.« less
Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation
Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Holden, Patricia A.
2016-01-01
Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstrate separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. The optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation. PMID:27917301
Dubé, Joseph B; Wang, Jian; Cao, Henian; McIntyre, Adam D; Johansen, Christopher T; Hopkins, Scarlett E; Stringer, Randa; Hosseinzadeh, Siyavash; Kennedy, Brooke A; Ban, Matthew R; Young, T Kue; Connelly, Philip W; Dewailly, Eric; Bjerregaard, Peter; Boyer, Bert B; Hegele, Robert A
2015-02-01
Inuit are considered to be vulnerable to cardiovascular disease because their lifestyles are becoming more Westernized. During sequence analysis of Inuit individuals at extremes of lipid traits, we identified 2 nonsynonymous variants in low-density lipoprotein receptor (LDLR), namely p.G116S and p.R730W. Genotyping these variants in 3324 Inuit from Alaska, Canada, and Greenland showed they were common, with allele frequencies 10% to 15%. Only p.G116S was associated with dyslipidemia: the increase in LDL cholesterol was 0.54 mmol/L (20.9 mg/dL) per allele (P=5.6×10(-49)), which was >3× larger than the largest effect sizes seen with other common variants in other populations. Carriers of p.G116S had a 3.02-fold increased risk of hypercholesterolemia (95% confidence interval, 2.34-3.90; P=1.7×10(-17)), but did not have classical familial hypercholesterolemia. In vitro, p.G116S showed 60% reduced ligand-binding activity compared with wild-type receptor. In contrast, p.R730W was associated with neither LDL cholesterol level nor altered in vitro activity. LDLR p.G116S is thus unique: a common dysfunctional variant in Inuit whose large effect on LDL cholesterol may have public health implications. © 2014 American Heart Association, Inc.
Graham, Hannah K.; Nagy, Nandor; Belkind-Gerson, Jaime; Mattheolabakis, George; Amiji, Mansoor M.; Goldstein, Allan M.
2016-01-01
Cell therapy offers an innovative approach for treating enteric neuropathies. Postnatal gut-derived enteric neural stem/progenitor cells (ENSCs) represent a potential autologous source, but have a limited capacity for proliferation and neuronal differentiation. Since serotonin (5-HT) promotes enteric neuronal growth during embryonic development, we hypothesized that serotonin receptor agonism would augment growth of neurons from transplanted ENSCs. Postnatal ENSCs were isolated from 2-4 week-old mouse colon and cultured with 5-HT4 receptor agonist (RS67506)-loaded liposomal nanoparticles. ENSCs were co-cultured with mouse colon explants in the presence of RS67506-loaded (n=3) or empty nanoparticles (n=3). ENSCs were also transplanted into mouse rectum in vivo with RS67506-loaded (n=8) or blank nanoparticles (n=4) confined in a thermosensitive hydrogel, Pluronic F-127. Neuronal density and proliferation were analyzed immunohistochemically. Cultured ENSCs gave rise to significantly more neurons in the presence of RS67506-loaded nanoparticles. Similarly, colon explants had significantly increased neuronal density when RS67506-loaded nanoparticles were present. Finally, following in vivo cell delivery, co-transplantation of ENSCs with 5-HT4 receptor agonist-loaded nanoparticles led to significantly increased neuronal density and proliferation. We conclude that optimization of postnatal ENSCs can support their use in cell-based therapies for neurointestinal diseases. PMID:26922325
Oxytocin receptor density is associated with male mating tactics and social monogamy
Ophir, Alexander G.; Gessel, Ana; Zheng, Da-Jiang; Phelps, Steven M.
2012-01-01
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. PMID:22285648
Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat.
Yang, Zhan-Wei; Ouyang, Ke-Hui; Zhao, Jing; Chen, Hui; Xiong, Lei; Wang, Wen-Jun
2016-10-01
Polysaccharide is one of the important active ingredients of Cyclocarya paliurus (Batal.) Iljinskaja leaves. The aims of this work were to analyze the structure of the polysaccharide of Cyclocarya paliurus (Batal.) Iljinskaja leaves (CPP), and to investigate the antihyperlipidemic effect of CPP on high-fat emulsion (HFE)-induced hyperlipidaemic rats. CPP, comprised of two polysaccharides with average molecular weight (Mw) of 1.35×10(5)Da and 9.34×10(3)Da, was consisted of rhamnose, arabinose, xylose, mannose, glucose and galactose in the molar ratio of 1.00:2.23:0.64:0.49:0.63:4.16. Oral administration of CPP could significantly decrease levels of serum total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), increase high density lipoprotein (HDL-C) in hyperlipidemic rats. CPP exerts therapeutic effects on hyperlipidaemic rats, by up-regulating expressions of adipose triglyceride lipase (ATGL) and peroxisome proliferator-activated receptor alpha (PPARα), via down-regulating fatty acid synthase (FAS) and hydroxy methylglutaryl coenzyme A reductase (HMG-CoA). This study demonstrates that CPP may be beneficial for the treatment of hyperlipidemia. Copyright © 2016 Elsevier B.V. All rights reserved.
Siegel, Jessica A.; Park, Byung S.; Raber, Jacob
2013-01-01
Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. PMID:21824143
Sun, Qian Hui; Wu, Xia; Wang, Mei Zhen; Zhang, Liu Hua; Yao, Xiao Lan; Qi, Jin Qiu; Hao, Jian Feng
2018-03-01
We analyzed understory species diversity, soil physicochemical traits and their relationships in the 25-year-old non-commercial Pinus massoniana plantations with five different stand densities, i.e., 1057, 1136, 1231, 1383 and 1515 trees·hm -2 , in Wenfeng Mountain, Xinjin District, Sichuan Province, China. The results showed that a total of 110 species were found, belonging to 57 families and 98 genera. With the increase of tree density, the understory species showed a succession pattern from positive to moderate to shady. Different densities had significant effects on the contents of total potassium and organic matter in the soils. With the increase ofdensity, the contents of organic matter and total potassium in understory vegetation first increased and then decreased. The trends of the relationship between both diversity and soil physiochemical characteristics and tree density were similar. Both of them increased with the increase of density, with the maximum value presented at the density of 1136 trees·hm -2 . The concentrations of total phosphorus, available potassium, total potassium and total nitrogen was closely related to plant diversity index. The results suggested that the density at 1136 trees·hm -2 would be more beneficial to improve the stability of species diversity and soil fertility of P. massoniana non-commercial plantations in Wenfeng Mountain.
Gene Transfer and Molecular Cloning of the Human NGF Receptor
NASA Astrophysics Data System (ADS)
Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita
1986-04-01
Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.
Knight, B L; Patel, D D; Soutar, A K
1983-01-01
Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the metabolic events that follow. PMID:6305342
Shrestha, Saurav; Hirvonen, Jussi; Hines, Christina S; Henter, Ioline D; Svenningsson, Per; Pike, Victor W; Innis, Robert B
2012-02-15
The serotonin-1A (5-HT(1A)) receptor is of particular interest in human positron emission tomography (PET) studies of major depressive disorder (MDD). Of the eight studies investigating this issue in the brains of patients with MDD, four reported decreased 5-HT(1A) receptor density, two reported no change, and two reported increased 5-HT(1A) receptor density. While clinical heterogeneity may have contributed to these differing results, methodological factors by themselves could also explain the discrepancies. This review highlights several of these factors, including the use of the cerebellum as a reference region and the imprecision of measuring the concentration of parent radioligand in arterial plasma, the method otherwise considered to be the 'gold standard'. Other potential confounds also exist that could restrict or unexpectedly affect the interpretation of results. For example, the radioligand may be a substrate for an efflux transporter - like P-gp - at the blood-brain barrier; furthermore, the binding of the radioligand to the receptor in various stages of cellular trafficking is unknown. Efflux transport and cellular trafficking may also be differentially expressed in patients compared to healthy subjects. We believe that, taken together, the existing disparate findings do not reliably answer the question of whether 5-HT(1A) receptors are altered in MDD or in subgroups of patients with MDD. In addition, useful meta-analysis is precluded because only one of the imaging centers acquired all the data necessary to address these methodological concerns. We recommend that in the future, individual centers acquire more thorough data capable of addressing methodological concerns, and that multiple centers collaborate to meaningfully pool their data for meta-analysis. Published by Elsevier Inc.
Abe, Tetsuya; Matsumura, Shinji; Katano, Tayo; Mabuchi, Tamaki; Takagi, Kunio; Xu, Li; Yamamoto, Akitsugu; Hattori, Kotaro; Yagi, Takeshi; Watanabe, Masahiko; Nakazawa, Takanobu; Yamamoto, Tadashi; Mishina, Masayoshi; Nakai, Yoshihide; Ito, Seiji
2005-09-01
Despite abundant evidence implicating the importance of N-methyl-D-aspartate (NMDA) receptors in the spinal cord for pain transmission, the signal transduction coupled to NMDA receptor activation is largely unknown for the neuropathic pain state that lasts over periods of weeks. To address this, we prepared mice with neuropathic pain by transection of spinal nerve L5. Wild-type, NR2A-deficient, and NR2D-deficient mice developed neuropathic pain; in addition, phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 was observed in the superficial dorsal horn of the spinal cord 1 week after nerve injury. Neuropathic pain and NR2B phosphorylation at Tyr1472 were attenuated by the NR2B-selective antagonist CP-101,606 and disappeared in mice lacking Fyn kinase, a Src-family tyrosine kinase. Concomitant with the NR2B phosphorylation, an increase in neuronal nitric oxide synthase activity was visualized in the superficial dorsal horn of neuropathic pain mice by NADPH diaphorase histochemistry. Electron microscopy showed that the phosphorylated NR2B was localized at the postsynaptic density in the spinal cord of mice with neuropathic pain. Indomethacin, an inhibitor of prostaglandin (PG) synthesis, and PGE receptor subtype EP1-selective antagonist reduced the NR2B phosphorylation in these mice. Conversely, EP1-selective agonist stimulated Fyn kinase-dependent nitric oxide formation in the spinal cord. The present study demonstrates that Tyr1472 phosphorylation of NR2B subunits by Fyn kinase may have dual roles in the retention of NMDA receptors in the postsynaptic density and in activation of nitric oxide synthase, and suggests that PGE2 is involved in the maintenance of neuropathic pain via the EP1 subtype.
Hiura, Lisa C; Ophir, Alexander G
2018-05-31
Early life social experiences are critical to behavioral and cognitive development, and can have a tremendous influence on developing social phenotypes. Most work has focused on outcomes of experiences at a single stage of development (e.g., perinatal, or post-weaning). Few studies have assessed the impact of social experience at multiple developmental stages and across sex. Oxytocin and vasopressin are profoundly important for modulating social behavior and these nonapeptide systems are highly sensitive to developmental social experience, particularly in brain areas important for social behavior. We investigated whether oxytocin receptor (OTR) and vasopressin receptor (V1aR) distributions of prairie voles (Microtus ochrogaster) change as a function of parental composition within the natal nest or social composition after weaning. We raised pups either in the presence or absence of their fathers. At weaning, offspring were housed either individually or with a same-sex sibling. We also examined whether changes in receptor distributions are sexually dimorphic because the impact of the developmental environment on the nonapeptide system could be sex-dependent. We found that differences in nonapeptide receptor expression were region-, sex-, and rearing condition-specific, indicating a high level of complexity in the ways that early life experiences shape the social brain. We found many more differences in V1aR density compared to OTR density, indicating that nonapeptide receptors demonstrate differential levels of neural plasticity and sensitivity to environmental and biological variables. Our data highlight that critical factors including biological sex and multiple experiences across the developmental continuum interact in complex ways to shape the social brain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Shrestha, Saurav; Hirvonen, Jussi; Hines, Christina S.; Henter, Ioline; Svenningsson, Per; Pike, Victor W.; Innis, Robert B.
2011-01-01
The serotonin-1A (5-HT1A) receptor is of particular interest in human positron emission tomography (PET) studies of major depressive disorder (MDD). Of the eight studies investigating this issue in the brains of patients with MDD, four reported decreased 5-HT1A receptor density, two reported no change, and two reported increased 5-HT1A receptor density. While clinical heterogeneity may have contributed to these differing results, methodological factors by themselves could also explain the discrepancies. This review highlights several of these factors, including the use of the cerebellum as a reference region and the imprecision of measuring the concentration of parent radioligand in arterial plasma, the method otherwise considered to be the `gold standard'. Other potential confounds also exist that could restrict or unexpectedly affect the interpretation of results. For example, the radioligand may be a substrate for an efflux transporter—like P-gp—at the blood-brain barrier; furthermore, the binding of the radioligand to the receptor in various stages of cellular trafficking is unknown. Efflux transport and cellular trafficking may also be differentially expressed in patients compared to healthy subjects. We believe that, taken together, the existing disparate findings do not reliably answer the question of whether 5-HT1A receptors are altered in MDD or in subgroups of patients with MDD. In addition, useful meta-analysis is precluded because only one of the imaging centers acquired all the data necessary to address these methodological concerns. We recommend that in the future, individual centers acquire more thorough data capable of addressing methodological concerns, and that multiple centers collaborate to meaningfully pool their data for meta-analysis. PMID:22155042
Hamel, David; Sanchez, Melanie; Duhamel, François; Roy, Olivier; Honoré, Jean-Claude; Noueihed, Baraa; Zhou, Tianwei; Nadeau-Vallée, Mathieu; Hou, Xin; Lavoie, Jean-Claude; Mitchell, Grant; Mamer, Orval A; Chemtob, Sylvain
2014-02-01
Prompt post-hypoxia-ischemia (HI) revascularization has been suggested to improve outcome in adults and newborn subjects. Other than hypoxia-inducible factor, sensors of metabolic demand remain largely unknown. During HI, anaerobic respiration is arrested resulting in accumulation of carbohydrate metabolic intermediates. As such succinate readily increases, exerting its biological effects via a specific receptor, G-protein-coupled receptor (GPR) 91. We postulate that succinate/GPR91 enhances post-HI vascularization and reduces infarct size in a model of newborn HI brain injury. The Rice-Vannucci model of neonatal HI was used. Succinate was measured by mass spectrometry, and microvascular density was evaluated by quantification of lectin-stained cryosection. Gene expression was evaluated by real-time polymerase chain reaction. Succinate levels rapidly increased in the penumbral region of brain infarcts. GPR91 was foremost localized not only in neurons but also in astrocytes. Microvascular density increased at 96 hours after injury in wild-type animals; it was diminished in GPR91-null mice leading to an increased infarct size. Stimulation with succinate led to an increase in growth factors implicated in angiogenesis only in wild-type mice. To explain the mode of action of succinate/GPR91, we investigated the role of prostaglandin E2-prostaglandin E receptor 4, previously proposed in neural angiogenesis. Succinate-induced vascular endothelial growth factor expression was abrogated by a cyclooxygenase inhibitor and a selective prostaglandin E receptor 4 antagonist. This antagonist also abolished succinate-induced neovascularization. We uncover a dominant metabolic sensor responsible for post-HI neurovascular adaptation, notably succinate/GPR91, acting via prostaglandin E2-prostaglandin E receptor 4 to govern expression of major angiogenic factors. We propose that pharmacological intervention targeting GPR91 could improve post-HI brain recovery.
Tempelman, L A; Hammer, D A
1994-01-01
The physiological function of many cells is dependent on their ability to adhere via receptors to ligand-coated surfaces under fluid flow. We have developed a model experimental system to measure cell adhesion as a function of cell and surface chemistry and fluid flow. Using a parallel-plate flow chamber, we measured the binding of rat basophilic leukemia cells preincubated with anti-dinitrophenol IgE antibody to polyacrylamide gels covalently derivatized with 2,4-dinitrophenol. The rat basophilic leukemia cells' binding behavior is binary: cells are either adherent or continue to travel at their hydrodynamic velocity, and the transition between these two states is abrupt. The spatial location of adherent cells shows cells can adhere many cell diameters down the length of the gel, suggesting that adhesion is a probabilistic process. The majority of experiments were performed in the excess ligand limit in which adhesion depends strongly on the number of receptors but weakly on ligand density. Only 5-fold changes in IgE surface density or in shear rate were necessary to change adhesion from complete to indistinguishable from negative control. Adhesion showed a hyperbolic dependence on shear rate. By performing experiments with two IgE-antigen configurations in which the kinetic rates of receptor-ligand binding are different, we demonstrate that the forward rate of reaction of the receptor-ligand pair is more important than its thermodynamic affinity in the regulation of binding under hydrodynamic flow. In fact, adhesion increases with increasing receptor-ligand reaction rate or decreasing shear rate, and scales with a single dimensionless parameter which compares the relative rates of reaction to fluid shear. Images FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 8 FIGURE 10 PMID:8038394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Gen; Mukai, Hideo; Hojo, Yasushi
2006-12-15
Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Here, we demonstrated the rapid effect of 17{beta}-estradiol on the density and morphology of spines in the stratum oriens (s.o., basal side) and in the stratum lacunosum-moleculare (s.l.m., apical side) by imaging Lucifer Yellow-injected CA1 neurons in adult male rat hippocampal slices, because spines in s.o. and s.l.m. have been poorly understood as compared with spines in the stratum radiatum. The application of 1 nM estradiol-induced a rapid increase in the density of spines of pyramidal neurons within 2 h. This increase by estradiol was blocked by Erkmore » MAP kinase inhibitor and estrogen receptor inhibitor in both regions. Effect of blockade by agonists of AMPA receptors and NMDA receptors was different between s.o. and s.l.m. In both regions, ER{alpha} agonist PPT induced the same enhancing effect of spinogenesis as that induced by estradiol.« less
Boca-dependent maturation of β-propeller/EGF modules in low-density lipoprotein receptor proteins
Culi, Joaquim; Springer, Timothy A; Mann, Richard S
2004-01-01
The extracellular portions of cell surface receptor proteins are often comprised of independently folding protein domains. As they are translated into the endoplasmic reticulum (ER), some of these domains require protein chaperones to assist in their folding. Members of the low-density lipoprotein receptor (LDLR) family require the chaperone called Boca in Drosophila or its ortholog, Mesoderm development, in the mouse. All LDLRs have at least one six-bladed β-propeller domain, which is immediately followed by an epidermal growth factor (EGF) repeat. We show here that Boca is specifically required for the maturation of these β-propeller/EGF modules through the secretory pathway, but is not required for other LDLR domains. Protein interaction data suggest that as LDLRs are translated into the ER, Boca binds to the β-propeller. Subsequently, once the EGF repeat is translated, the β-propeller/EGF module achieves a more mature state that has lower affinity for Boca. We also show that Boca-dependent β-propeller/EGF modules are found not only throughout the LDLR family but also in the precursor to the mammalian EGF ligand. PMID:15014448
Genetic Alterations Affecting Cholesterol Metabolism and Human Fertility1
DeAngelis, Anthony M.; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle
2014-01-01
ABSTRACT Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. PMID:25122065
Moghadasian, Mohammed H; Zhao, Ruozhi; Ghazawwi, Nora; Le, Khuong; Apea-Bah, Franklin B; Beta, Trust; Shen, Garry X
2017-10-18
The present study examined the effects of wild rice on monocyte adhesion, inflammatory and fibrinolytic mediators in low-density lipoprotein receptor-knockout (LDLr-KO) mice. Male LDLr-KO mice received a cholesterol (0.06%, w/w)-supplemented diet with or without white or wild rice (60%, w/w) for 20 weeks. White rice significantly increased monocyte adhesion and abundances of monocyte chemoattractant protein-1, tissue necrosis factor-α, intracellular cell adhesion molecule-1, plasminogen activator inhibitor-1, urokinase plasminogen activator (uPA), and uPA receptor in aortae and hearts of LDLr-KO mice compared to the control diet. Wild rice inhibited monocyte adhesion to the aorta, atherosclerosis, and abundances of the inflammatory and fibrinolytic regulators in the cardiovascular tissue of LDLr-KO mice compared to white rice. White or wild rice did not significantly alter the levels of cholesterol, triglycerides, or antioxidant enzymes in plasma. The anti-atherosclerotic effect of wild rice may result from its inhibition on monocyte adhesion and inflammatory modulators in LDLr-KO mice.
Katsube, Akira; Hayashi, Hisamitsu; Kusuhara, Hiroyuki
2016-12-01
ATP-binding cassette transporter A1 (ABCA1) exerts an atheroprotective action through the biogenesis of high-density lipoprotein in hepatocytes and prevents the formation of foam cells from macrophages. Controlling ABCA1 is a rational approach to improving atherosclerotic cardiovascular disease. Although much is known about the regulatory mechanism of ABCA1 synthesis, the molecular mechanism underpinning its degradation remains to be clearly described. ABCA1 possesses potential sites of phosphorylation by serine/threonine-protein kinase Pim-1 (Pim-1). Pim-1 depletion decreased the expression of cell surface-resident ABCA1 (csABCA1) and apolipoprotein A-I-mediated [ 3 H]cholesterol efflux in the human hepatoma cell line HepG2, but not in peritoneal macrophages from mice. In vitro kinase assay, immunoprecipitation, and immunocytochemistry suggested phosphorylation of csABCA1 by the long form of Pim-1 (Pim-1L). Cell surface biotinylation indicated that Pim-1L inhibited lysosomal degradation of csABCA1 involving the liver X receptor β, which interacts with csABCA1 and thereby protects it from ubiquitination and subsequent lysosomal degradation. Cell surface coimmunoprecipitation with COS-1 cells expressing extracellularly hemagglutinin-tagged ABCA1 showed that Pim-1L-mediated phosphorylation of csABCA1 facilitated the interaction between csABCA1 and liver X receptor β and thereby stabilized the csABCA1-Pim-1L complex. Mice deficient in Pim-1 kinase activity showed lower expression of ABCA1 in liver plasma membranes and lower plasma high-density lipoprotein levels than control mice. Pim-1L protects hepatic csABCA1 from lysosomal degradation by facilitating the physical interaction between csABCA1 and liver X receptor β and subsequent stabilization of the csABCA1-Pim-1L complex and thereby regulates the circulating level of high-density lipoprotein. Our findings may aid the development of high-density lipoprotein-targeted therapy. © 2016 American Heart Association, Inc.
[DNA microarray reveals changes in gene expression of endothelial cells under shear stress].
Cheng, Min; Zhang, Wensheng; Chen, Huaiqing; Wu, Wenchao; Huang, Hua
2004-04-01
cDNA microarray technology is used as a powerful tool for rapid, comprehensive, and quantitative analysis of gene profiles of cultured human umbilical vein endothelial cells(HUVECs) in the normal static group and the shear stressed (4.20 dyne/cm2, 2 h) group. The total RNA from normal static cultured HUVECs was labeled by Cy3-dCTP, and total RNA of HUVECs from the paired shear stressed experiment was labeled by Cy5-dCTP. The expression ratios reported are the average from the two separate experiments. After bioinformatics analysis, we identified a total of 108 genes (approximately 0.026%) revealing differential expression. Of these 53 genes expressions were up-regulated, the most enhanced ones being human homolog of yeast IPP isomerase, human low density lipoprotein receptor gene, Squalene epoxidase gene, 7-dehydrocholesterol reductase, and 55 were down-regulated, the most decreased ones being heat shock 70 kD protein 1, TCB gene encoding cytosolic thyroid hormone-binding protein in HUVECs exposed to low shear stress. These results indicate that the cDNA microarray technique is effective in screening the differentially expressed genes in endothelial cells induced by various experimental conditions and the data may serve as stimuli to further researches.
Mignini, Fiorenzo; Tomassoni, Daniele; Traini, Enea; Vitali, Mario; Scuri, Stefania; Baldoni, Emilia; Grappasonni, Iolanda; Cocchioni, Mario
2009-12-01
The aim of this work was to assess the effects of hexavalent chromium [Cr(VI)] on shoe, leather, and hide industry workers, based on the assumption that Cr(VI) can behave as an environmental immunological "stressor." The immunological patterns of 84 male subjects were studied in relation to Cr(VI) hematic and urinary levels. Cr(VI) was measured through atomic absorption. Lymphocyte subsets, mitogen-mediated lymphocyte-proliferation, cytokine levels, and natural killer (NK) cytotoxic activity were also assayed. The urinary levels of the total amount of Cr(VI) were significantly higher in a subgroup of exposed subjects (group B) than in the control or in the lower exposed (group A). In group B, Cr(VI) caused a decrease in the density of glucocorticoid receptors (GR) on peripheral blood mononuclear cells (PBMC) and a increase of IL-6. Cr(VI) did not modify NK-mediated cytotoxicity, the plasmatic levels of inflammatory cytokines and related soluble receptors, and prostaglandin levels, while it tended to increase lymphocyte sensitivity to mitogens and the production of immunomodulant cytokines (IFN-gamma, IL-4, and IL-2). The experimental addition of Cr(VI) to the in vitro lymphocyte culture determined a significant inhibition of phagocytosis percentage, index, and killing percentage. These effects were neutralized by exogenous IFN-gamma. Cr(VI) could represent an environmental immunological stressor whose effects can be evaluated through laboratory surveys. The lymphocyte mitogen-induced proliferation, GR receptor on PBMC, and IL-6 plasma levels may represent a discriminating element between Cr(VI)-induced stress and other kinds of stress.
NASA Technical Reports Server (NTRS)
Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.
1992-01-01
Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.
Acute inactivation of PSD-95 destabilizes AMPA receptors at hippocampal synapses.
Yudowski, Guillermo A; Olsen, Olav; Adesnik, Hillel; Marek, Kurt W; Bredt, David S
2013-01-01
Postsynatptic density protein (PSD-95) is a 95 kDa scaffolding protein that assembles signaling complexes at synapses. Over-expression of PSD-95 in primary hippocampal neurons selectively increases synaptic localization of AMPA receptors; however, mice lacking PSD-95 display grossly normal glutamatergic transmission in hippocampus. To further study the scaffolding role of PSD-95 at excitatory synapses, we generated a recombinant PSD-95-4c containing a tetracysteine motif, which specifically binds a fluorescein derivative and allows for acute and permanent inactivation of PSD-95. Interestingly, acute inactivation of PSD-95 in rat hippocampal cultures rapidly reduced surface AMPA receptor immunostaining, but did not affected NMDA or transferrin receptor localization. Acute photoinactivation of PSD-95 in dissociated neurons causes ∼80% decrease in GluR2 surface staining observed by live-cell microscopy within 15 minutes of PSD-95-4c ablation. These results confirm that PSD-95 stabilizes AMPA receptors at postsynaptic sites and provides insight into the dynamic interplay between PSD-95 and AMPA receptors in live neurons.
Sustained neurotensin exposure promotes cell surface recruitment of NTS2 receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perron, Amelie; Sharif, Nadder; Gendron, Louis
2006-05-12
In this study, we investigated whether persistent agonist stimulation of NTS2 receptors gives rise to down-regulation, in light of reports that their activation induced long-lasting effects. To address this issue, we incubated COS-7 cells expressing the rat NTS2 with neurotensin (NT) for up to 24 h and measured resultant cell surface [{sup 125}I]-NT binding. We found that NTS2-expressing cells retained the same surface receptor density despite efficient internalization mechanisms. This preservation was neither due to NTS2 neosynthesis nor recycling since it was not blocked by cycloheximide or monensin. However, it appeared to involve translocation of spare receptors from internal stores,more » as NT induced NTS2 migration from trans-Golgi network to endosome-like structures. This stimulation-induced regulation of cell surface NTS2 receptors was even more striking in rat spinal cord neurons. Taken together, these results suggest that sustained NTS2 activation promotes recruitment of intracellular receptors to the cell surface, thereby preventing functional desensitization.« less
2013-05-20
density residential and agricultural. Laramie County owns most of the land between the two segments of the subject property, with the exception of a home...receptors located nearest to the Proposed Action site include residential areas and Swan Ranch and Cheyenne Logistics Hub. Additional local...generate noise; sources would include periodic emergency vehicle use and helicopter flight operations. Nearby sensitive receptors (e.g., residential
Mizejewski, G J
2015-01-01
Recent studies have demonstrated that the carboxyterminal third domain of alpha-fetoprotein (AFP-CD) binds with various ligands and receptors. Reports within the last decade have established that AFP-CD contains a large fragment of amino acids that interact with several different receptor types. Using computer software specifically designed to identify protein-to-protein interaction at amino acid sequence docking sites, the computer searches identified several types of scavenger-associated receptors and their amino acid sequence locations on the AFP-CD polypeptide chain. The scavenger receptors (SRs) identified were CD36, CD163, Stabilin, SSC5D, SRB1 and SREC; the SR-associated receptors included the mannose, low-density lipoprotein receptors, the asialoglycoprotein receptor, and the receptor for advanced glycation endproducts (RAGE). Interestingly, some SR interaction sites were localized on the AFP-derived Growth Inhibitory Peptide (GIP) segment at amino acids #480-500. Following the detection studies, a structural subdomain analysis of both the receptor and the AFP-CD revealed the presence of epidermal growth factor (EGF) repeats, extracellular matrix-like protein regions, amino acid-rich motifs and dimerization subdomains. For the first time, it was reported that EGF-like sequence repeats were identified on each of the three domains of AFP. Thereafter, the localization of receptors on specific cell types were reviewed and their functions were discussed.
Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela
2018-05-15
Sexual experience modifies brain functioning and copulatory efficiency. Sexual activity, ejaculation in particular, is a rewarding behavior associated with the release of endogenous opioids, which modulate the activity of the mesolimbic dopaminergic system (MLS). In sexually exhausted rats, repeated ejaculation produces μ (MOR) and δ opioid receptor (DOR) internalization in ventral tegmental area (VTA) neurons, as well as long-lasting behavioral changes suggestive of brain plasticity processes. We hypothesized that in sexually naïve rats the endogenous opioids released during sexual experience acquisition, might contribute to brain plasticity processes involved in the generation of the behavioral changes induced by sexual experience. To this aim, using double immunohistochemistry and confocal microscopy, we compared in vivo MOR, DOR and β-arrestin2 densities and activation in the VTA of sexually naïve males, sexually experienced rats not executing sexual activity prior to sacrifice and sexually experienced animals that ejaculated once before sacrifice. Results showed that sexual experience acquisition improved male's copulatory ability and induced persistent changes in the density, cellular distribution and activation of MOR and β-arrestin2 in VTA neurons. DOR density was not modified, but its cellular location changed after sexual experience, revealing that these two opioid receptors were differentially activated during sexual experience acquisition. It is concluded that the endogenous opioids released during sexual activity produce adjustments in VTA neurons of sexually naïve male rats that might contribute to the behavioral plasticity expressed as an improvement in male copulatory parameters, promoted by the acquisition of sexual experience. Copyright © 2018 Elsevier Inc. All rights reserved.
Oh, Sowon; Prasad, Vikas; Lee, Dong Soo; Baum, R. P.
2011-01-01
The heterogeneous nature of the neuroendocrine tumors (NET) makes it challenging to find one uniformly applicable management protocol which is especially true for diagnosis. The discovery of the overexpression of somatostatin receptors (SMS-R) on neuroendocrine tumor cells lead to the generalized and rapid acceptance of radiolabeled somatostatin receptor analogs for staging and restaging of NET as well as for Peptide Receptor Radionuclide Therapy (PRRNT) using Y-90 and Lu-177 DOTATATE/DOTATOC. In this present work we tried to look in to the effect of PRRNT on the glucose metabolism assessed by F-18 FDG PET/CT and SMS-R density assessed by Ga-68 DOTANOC PET/CT. We observed a complex relationship between the somatostatin receptor expression and glucose metabolism with only 56% (77/138) of the lesions showing match, while the others show mismatch between the receptor status and metabolism. The match between receptor expression and glucose metabolism increases with the grade of NET. In grade 3 NET, there is a concurrence between the changes in glucose metabolism and somatostatin receptor expression. PRRNT was found to be more effective in lesions with higher receptor expression. PMID:22121482
2011-01-01
Background Several common genetic polymorphisms in the low density lipoprotein receptor (LDL-R) gene have associated with modifications of serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels, but the results are not consistent in different populations. Bai Ku Yao is a special subgroup of the Yao minority in China. The present study was undertaken to detect the association of LDL-R gene Ava Ⅱ polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Methods A total of 1024 subjects of Bai Ku Yao and 792 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples. Genotyping of the LDL-R gene Ava Ⅱ polymorphism was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of serum TC, high density lipoprotein cholesterol (HDL-C), LDL-C, apolipoprotein (Apo) A1 and the ratio of ApoA1 to ApoB were lower in Bai Ku Yao than in Han (P < 0.01 for all). The frequency of A- and A+ alleles was 65.5% and 34.5% in Bai Ku Yao, and 80.7% and 19.3% in Han (P < 0.001); respectively. The frequency of A-A-, A-A+ and A+A+ genotypes was 42.6%, 45.9% and 11.5% in Bai Ku Yao, and 64.9%, 31.6% and 3.5% in Han (P < 0.001); respectively. There was also significant difference in the genotypic frequencies between males and females in Bai Ku Yao (P <0.05), and in the genotypic and allelic frequencies between normal LDL-C (≤ 3.20 mmol/L) and high LDL-C (>3.20 mmol/L) subgroups in Bai Ku Yao (P < 0.05 for each) and between males and females in Han (P < 0.05 for each). The levels of LDL-C in males and TC and HDL-C in females were different among the three genotypes (P < 0.05 for all) in Bai Ku Yao, whereas the levels of HDL-C in males and HDL-C and ApoA1 in females were different among the three genotypes (P < 0.05-0.001) in Han. The subjects with A+A+ genotype had higher serum LDL-C, TC, HDL-C or ApoA1 levels than the subjects with A-A+ and A-A- genotypes. Spearman rank correlation analysis revealed that the levels of LDL-C in Bai Ku Yao and HDL-C in Han were correlated with genotypes (P < 0.05 and P < 0.01; respectively). Conclusions The association of LDL-R gene Ava Ⅱ polymorphism and serum lipid levels is different between the Bai Ku Yao and Han populations. The discrepancy might partly result from different LDL-R gene Ava Ⅱ polymorphism or LDL-R gene-enviromental interactions. PMID:21345210
Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials
NASA Astrophysics Data System (ADS)
Ruegsegger, Mark Andrew
A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was calculated to be 0.86 ligands/nm2 for PVAm(Pep)(100%), as determined by total internal reflection fluorescence (TIRF) spectroscopy. Similar cell growth was observed on the 100% peptide surfactant as for the fibronectin control, and no cell growth was seen on the 0% peptide. Increasing cell viability was observed for the surfaces with increasing peptide density. These results indicate much promise for surfactant polymers in surface modification and the capability to mimic the passive and active properties of the cell glycocalyx.
Andrade-Oliva, María-de-Los-Angeles; Aztatzi-Aguilar, Octavio-Gamaliel; García-Sierra, Francisco; De Vizcaya-Ruiz, Andrea; Arias-Montaño, José-Antonio
2018-06-01
Male Sprague-Dawley rats (8-9 weeks-old) were exposed for three days (acute exposure) or eight weeks (subchronic exposure) to purified air or concentrated ambient fine particles, PM 2.5 (≤2.5 μm; 15 to 18-fold of ambient air; 370-445 μg/m 3 ). In membranes from rat prefrontal cortex (PFC) or striatum, the density and function of dopamine D 2 -like receptors (D 2 Rs) were assessed by [ 3 H]-spiperone binding and dopamine-stimulated [ 35 S]-GTPγS binding, respectively. Glial activation was evaluated by immunoperoxidase labeling of the glial fibrillary acidic protein (GFAP). In the PFC, no significant changes in D 2 R density or signaling were observed after the acute and subchronic exposure to PM 2.5 . In the striatum, acute exposure to PM 2.5 decreased D 2 R density, with no effect on signaling efficacy, whereas subchronic exposure did not affect D 2 R density but reduced signaling efficacy. Both acute and subchronic exposure to PM 2.5 induced reactive gliosis in the striatum but not in the PFC. These results indicate that exposure to PM 2.5 induces astrocyte activation and alters striatal dopaminergic transmission. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, Sang Yeub; Kim, Min Kyung; Shin, Chol; Shim, Jae Jeong; Kim, Han Kyeom; Kang, Kyung Ho; Yoo, Se Hwa; In, Kwang Ho
2003-01-01
Unlike classic asthma, cough-variant asthma does not show any evidence of airway obstruction. The main symptom is a dry cough with little known pathophysiology. Hypersensitivity of the cough receptors in cough-variant asthma and an increase in the sensory nerve density of the airway epithelium in persistent dry cough patients have been reported. Therefore, it is possible that there is a higher sensory nerve density in cough-variant asthma patients than in classic asthma patients. This study was undertaken to compare the substance P (SP)-immunoreactive nerve density in mucosal biopsies of cough-variant asthma patients, classic asthma patients, and in control subjects. Bronchoscopic biopsies were performed in 6 cough-variant asthma patients, 14 classic asthma patients, and 5 normal controls. The tissues obtained were stained immunohistochemically. The SP-immunoreactive nerve density was measured in the bronchial epithelium using a light microscope at 400 x magnification. SP- immunoreactive nerve density for the cough-variant asthma group was significantly higher than that of the classic asthma group (p = 0.001), and of the normal control group (p = 0.006). It is possible that a sensory nerve abnormality within the airway may be related to hypersensitivity of the cough receptor, and that this may be one of the pathophysiologies of cough-variant asthma. Copyright 2003 S. Karger AG, Basel
Choi, Won Hee; Gwon, So Young; Ahn, Jiyun; Jung, Chang Hwa; Ha, Tae Youl
2013-07-01
Rice has many health-beneficial components for ameliorating obesity, diabetes, and dyslipidemia. However, the effect of cooked rice as a useful carbohydrate source has not been investigated yet; so we hypothesized that cooked rice may have hypolipidemic effects. In the present study, we investigated the effect of cooked rice on hyperlipidemia and on the expression of hepatic genes involved in lipid metabolism. Golden Syrian hamsters were divided into 2 groups and fed a high-fat (15%, wt/wt)/cholesterol (0.5%, wt/wt) diet supplemented with either corn starch (HFD, 54.5% wt/wt) or cooked rice (HFD-CR, 54.5% wt/wt) as the main carbohydrate source for 8 weeks. In the HFD-CR group, the triglyceride and total cholesterol levels in the serum and liver were decreased, and the total lipid, total cholesterol, and bile acid levels in the feces were increased, compared with the HFD group. In the cooked-rice group, the messenger RNA and protein levels of 3-hydroxy-3-methylglutaryl CoA reductase were significantly downregulated; and the messenger RNA and protein levels of the low-density lipoprotein receptor and cholesterol-7α-hydroxylase were upregulated. Furthermore, the expressions of lipogenic genes such as sterol response element binding protein-1, fatty acid synthase, acetyl CoA carboxylase, and stearoyl CoA desaturase-1 were downregulated, whereas the β-oxidation related genes (carnitine palmitoyl transferase-1, acyl CoA oxidase, and peroxisome proliferator-activated receptor α) were upregulated, in the cooked-rice group. Our results suggest that the hypolipidemic effect of cooked rice is partially mediated by the regulation of hepatic genes involved in lipid metabolism, which results in the suppression of cholesterol and fatty acid synthesis and the enhancement of cholesterol excretion and fatty acid β-oxidation. Copyright © 2013 Elsevier Inc. All rights reserved.
Metabotropic glutamate receptors are required for the induction of long-term potentiation
NASA Technical Reports Server (NTRS)
Zheng, F.; Gallagher, J. P.
1992-01-01
Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.
Leuba, Genevieve; Vernay, Andre; Kraftsik, Rudolf; Tardif, Eric; Riederer, Beat Michel; Savioz, Armand
2014-01-01
In Alzheimer's disease (AD), synaptic alterations play a major role and are often correlated with cognitive changes. In order to better understand synaptic modifications, we compared alterations in NMDA receptors and postsynaptic protein PSD-95 expression in the entorhinal cortex (EC) and frontal cortex (FC; area 9) of AD and control brains. We combined immunohistochemical and image analysis methods to quantify on consecutive sections the distribution of PSD-95 and NMDA receptors GluN1, GluN2A and GluN2B in EC and FC from 25 AD and control cases. The density of stained receptors was analyzed using multivariate statistical methods to assess the effect of neurodegeneration. In both regions, the number of neuronal profiles immunostained for GluN1 receptors subunit and PSD-95 protein was significantly increased in AD compared to controls (3-6 fold), while the number of neuronal profiles stained for GluN2A and GluN2B receptors subunits was on the contrary decreased (3-4 fold). The increase in marked neuronal profiles was more prominent in a cortical band corresponding to layers 3 to 5 with large pyramidal cells. Neurons positive for GluN1 or PSD-95 staining were often found in the same localization on consecutive sections and they were also reactive for the anti-tau antibody AD2, indicating a neurodegenerative process. Differences in the density of immunoreactive puncta representing neuropile were not statistically significant. Altogether these data indicate that GluN1 and PSD-95 accumulate in the neuronal perikarya, but this is not the case for GluN2A and GluN2B, while the neuropile compartment is less subject to modifications. Thus, important variations in the pattern of distribution of the NMDA receptors subunits and PSD-95 represent a marker in AD and by impairing the neuronal network, contribute to functional deterioration.
Mascia, Fabrizio; Klotz, Lisa; Lerch, Judith; Ahmed, Mostafa H; Zhang, Yan; Enz, Ralf
2017-05-01
The excitability of the central nervous system depends largely on the surface density of neurotransmitter receptors. The endocannabinoid receptor 1 (CB 1 R) and the metabotropic glutamate receptor mGlu 8 R are expressed pre-synaptically where they reduce glutamate release into the synaptic cleft. Recently, the CB 1 R interacting protein cannabinoid receptor interacting protein 1a (CRIP1a) was identified and characterized to regulate CB 1 R activity in neurons. However, underlying molecular mechanisms are largely unknown. Here, we identified a common mechanism used by CRIP1a to regulate the cell surface density of two different types of G-protein coupled receptors, CB 1 R and mGlu 8a R. Five amino acids within the CB 1 R C-terminus were required and sufficient to reduce constitutive CB 1 R endocytosis by about 72% in the presence of CRIP1a. Interestingly, a similar sequence is present in mGlu 8a R and consistently, endocytosis of mGlu 8a R depended on CRIP1a, as well. Docking analysis and molecular dynamics simulations identified a conserved serine in CB 1 R (S468) and mGlu 8a R (S894) that forms a hydrogen bond with the peptide backbone of CRIP1a at position R82. In contrast to mGlu 8a R, the closely related mGlu 8b R splice-variant carries a lysine (K894) at this position, and indeed, mGlu 8b R endocytosis was not affected by CRIP1a. Chimeric constructs between CB 1 R, mGlu 8a R, and mGlu 8b R underline the role of the identified five CRIP1a sensitive amino acids. In summary, we suggest that CRIP1a negatively regulates endocytosis of two different G-protein coupled receptor types, CB 1 R and mGlu 8a R. © 2017 International Society for Neurochemistry.
Rodriguez-Cuenca, S; Monjo, M; Proenza, A M; Roca, P
2005-01-01
Sex hormones play an important role in adipose tissue metabolism by activating specific receptors that alter several steps of the lipolytic and lipogenic signal cascade in depot- and sex-dependent manners. However, studies focusing on steroid receptor status in adipose tissue are scarce. In the present study, we analyzed steroid content [testosterone (T), 17beta-estradiol (17beta-E2), and progesterone (P4)] and steroid receptor mRNA levels in different rat adipose tissue depots. As expected, T levels were higher in males than in females (P = 0.031), whereas the reverse trend was observed for P4 (P < 0.001). It is noteworthy that 17beta-E2 adipose tissue levels were higher in inguinal than in the rest of adipose tissues for both sexes, where no sex differences in 17beta-E2 tissue levels were noted (P = 0.010 for retroperitoneal, P = 0.005 for gonadal, P = 0.018 for mesenteric). Regarding steroid receptor levels, androgen (AR) and estrogen receptor (ER)alpha and ERbeta densities were more clearly dependent on adipose depot location than on sex, with visceral depots showing overall higher mRNA densities than their subcutaneous counterparts. Besides, expression of ERalpha predominated over ERbeta expression, and progesterone receptor (PR-B form and PR-A+B form) mRNAs were identically expressed regardless of anatomic depot and sex. In vitro studies in 3T3-L1 cells showed that 17beta-E2 increased ERalpha (P = 0.001) and AR expression (P = 0.001), indicating that estrogen can alter estrogenic and androgenic signaling in adipose tissue. The results highlighted in this study demonstrate important depot-dependent differences in the sensitivity of adipose tissues to sex hormones between visceral and subcutaneous depots that could be related to metabolic situations observed in response to sex hormones.
The influence of hormonal and neuronal factors on rat heart adrenoceptors
Kunos, George; Mucci, Lucia; O'Regan, Seana
1980-01-01
1 The influence of hormonal and neuronal factors on adrenoceptors mediating increased cardiac force and rate of contraction were studied in rat isolated atria. The pharmacological properties of these receptors were deduced from the relative potencies of agonists and from the effects of selective α- and β-adrenoceptor antagonists. The numbers and affinities of α- and β-adrenoceptors were also determined by radioligand binding to ventricular membrane fragments. 2 Hypophysectomy reduced the inotropic potency of isoprenaline and increased the potency of phenylephrine and methoxamine in left atria. The effect of phenylephrine was inhibited by propranolol less effectively and by phentolamine or phenoxybenzamine more effectively in hypophysectomized than in control rats. The difference in block was smaller at low than at high antagonist concentrations. Similar but smaller changes were observed for chronotropic responses of right atria. 3 The decreased β- and increased α-receptor response after hypophysectomy was similar to that observed earlier in thyroidectomized rats (Kunos, 1977). These changes developed slowly after hypophysectomy (>2 weeks), they were both reversed within 2 days of thyroxine treatment (0.2 mg/kg daily), but were not affected by cortisone treatment (50 mg/kg every 12 h for 4 days). 4 Treatment of hypophysectomized rats for 2 days with thyroxine increased the density of [3H]-dihydroalprenolol ([3H]-DHA) binding sites from 27.5 ± 2.7 to 45.5 ± 5.7 fmol/mg protein and decreased the density of [3H]-WB-4101 binding sites from 38.7 ± 3.1 to 18.7 ± 2.5 fmol/mg protein. The affinity of either type of binding site for agonists or antagonist was not significantly altered by thyroxine treatment and the sum total of α1- and β-receptors remained the same. 5 Sympathetic denervation of thyroidectomized rats by 6-hydroxydopamine increased the inotropic potency of isoprenaline and noradrenaline and the blocking effect of propranolol, and decreased the potency of phenylephrine and the blocking effect of phenoxybenzamine to or beyond values observed in euthyroid controls. The density of [3H]-DHA binding sites was higher and that of [3H]-WB-4101 binding sites was lower in the denervated than in the innervated hypothyroid myocardium. Depletion of endogenous noradrenaline stores by reserpine did not significantly alter the adrenoceptor response pattern of the hypothyroid preparations and did not influence the density or affinity of [3H]-DHA and [3H]-WB-4101 binding sites. 6 These results indicate that thyrotropin or steroids do not contribute to the reciprocal changes in the sensitivity of cardiac α1- and β-adrenoceptors in altered thyroid states. These thyroid hormone-dependent changes are probably due to a parallel, reciprocal change in the numbers but not the affinities of α1- and β-adrenoceptors. Reciprocal regulation of cardiac α1- and β-adrenoceptors by thyroid hormones requires intact sympathetic innervation but not the presence of normal stores of the neurotransmitter. PMID:7470752
Muscle-Specific Tyrosine Kinase and Myasthenia Gravis Owing to Other Antibodies.
Rivner, Michael H; Pasnoor, Mamatha; Dimachkie, Mazen M; Barohn, Richard J; Mei, Lin
2018-05-01
Around 20% of patients with myasthenia gravis are acetylcholine receptor antibody negative; muscle-specific tyrosine kinase antibodies (MuSK) were identified as the cause of myasthenia gravis in 30% to 40% of these cases. Anti MuSK myasthenia gravis is associated with specific clinical phenotypes. One is a bulbar form with fewer ocular symptoms. Others show an isolated head drop or symptoms indistinguishable from acetylcholine receptor-positive myasthenia gravis. These patients usually respond well to immunosuppressive therapy, but not as well to cholinesterase inhibitors. Other antibodies associated with myasthenia gravis, including low-density lipoprotein receptor-related protein 4, are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
El-Tayeb, Ali; Griessmeier, Kerstin J; Müller, Christa E
2005-12-15
The selective antagonist radioligand [(3)H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([(3)H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74Ci/mmol. In preliminary saturation binding studies, [(3)H]PSB-0413 showed high affinity for platelet P2Y(12) receptors with a K(D) value of 4.57nM. Human platelets had a high density of P2Y(12) receptors exhibiting a B(max) value of 7.66pmol/mg of protein.
Chen, Li-Han; Chien, Yi-Wen; Liang, Chung-Tiang; Chan, Ching-Hung; Fan, Meng-Han; Huang, Hui-Yu
2017-01-01
Background: A wealth of research has reported on the anti-obesity effects of green tea extract (GTE). Although browning of white adipose tissue (WAT) has been reported to attenuate obesity, no study has disclosed the effects of GTE on browning in Sprague Dawley rats. Objectives: The aims of the study were to investigate the effects of GTE on anti-obesity and browning, and their underlying mechanisms. Methods: Four groups of rats (n=10/group) were used including a normal diet with vehicle treatment, and a high-energy diet (HED) with vehicle or GTE by oral gavage at 77.5 or 155 mg/kg/day for 8 weeks. Body weight, fat accumulation, and serum biochemical parameters were used to evaluate obesity. The gene expressions were analyzed using RT-qPCR and western blotting. Results: GTE modulated HED-induced body weight, fat accumulation, and serum levels of triacylglycerol, total cholesterol, low-density lipoprotein, free fatty acids, aspartate aminotransferase, and alanine aminotransferase. Moreover, GTE enhanced the serum high-density lipoprotein. Most importantly, the biomarkers of beige adipose tissue were up-regulated in WAT in GTE-given groups. GTE induced genes involved in different pathways of browning, and reduced transducin-like enhancer protein-3 in WAT. Conclusion: Our results suggest that GTE may improve obesity through inducing browning in HED-fed rats. Abbreviations : ALT: Alanine transaminase; AST: Aspartate transaminase; BAT: Brown adipose tissue; BMP-7: Bone morphogenetic protein-7; BW: Body weight; CIDEA: Cell death activator; CPT-1: Carnitine palmitoyltransferase-1; EFP: Epididymal fat pad; FFA: Free fatty acid; FGF-21: Fibroblast growth factor-21; GTE: Green tea extract; HDL: High-density lipoprotein; HED: high-energy diet; LDL: Low-density lipoprotein; MFP: Mesenteric fat pad; PGC-1α: Activates PPAR-γ coactivator-1; PPAR-γ: Peroxisome proliferator-activated receptor-γ; PRDM-16: PR domain containing 16; RFP: Renal fat pad; SD: Sprague Dawley; TC: Total cholesterol; TG: Triacylglycerol; TLE-3: Transducin-like enhancer protein-3: UCP-1: Uncoupling protein-1; WAT: White adipose tissue.
The blue lizard spandrel and the island syndrome.
Raia, Pasquale; Guarino, Fabio M; Turano, Mimmo; Polese, Gianluca; Rippa, Daniela; Carotenuto, Francesco; Monti, Daria M; Cardi, Manuela; Fulgione, Domenico
2010-09-20
Many small vertebrates on islands grow larger, mature later, lay smaller clutches/litters, and are less sexually dimorphic and aggressive than their mainland relatives. This set of observations is referred to as the 'Island Syndrome'. The syndrome is linked to high population density on islands. We predicted that when population density is low and/or fluctuating insular vertebrates may evolve correlated trait shifts running opposite to the Island Syndrome, which we collectively refer to as the 'reversed island syndrome' (RIS) hypothesis. On the proximate level, we hypothesized that RIS is caused by increased activity levels in melanocortin receptors. Melanocortins are postranslational products of the proopiomelanocortin gene, which controls pleiotropically pigmentation, aggressiveness, sexual activity, and food intake in vertebrates. We tested the RIS hypothesis performing a number of behavioral, genetic, and ontogenetic tests on a blue colored insular variant of the Italian Wall lizard Podarcis sicula, living on a small island off the Southern Italian coast. The population density of this blue-colored variant was generally low and highly fluctuating from one year to the next.In keeping with our predictions, insular lizards were more aggressive and sexually dimorphic than their mainland relatives. Insular males had wide, peramorphic heads. The growth rate of insular females was slower than growth rates of mainland individuals of both sexes, and of insular males. Consequently, size and shape dimorphism are higher on the Island. As predicted, melanocortin receptors were much more active in individuals of the insular population. Insular lizards have a higher food intake rate than mainland individuals, which is consistent with the increased activity of melanocortin receptors. This may be adaptive in an unpredictable environment such as Licosa Island. Insular lizards of both sexes spent less time basking than their mainland relatives. We suspect this is a by-product (spandrel) of the positive selection for increased activity of melanocortins receptors. We contend that when population density is either low or fluctuating annually as a result of environmental unpredictability, it may be advantageous to individuals to behave more aggressively, to raise their rate of food intake, and allocate more energy into reproduction.
The blue lizard spandrel and the island syndrome
2010-01-01
Background Many small vertebrates on islands grow larger, mature later, lay smaller clutches/litters, and are less sexually dimorphic and aggressive than their mainland relatives. This set of observations is referred to as the 'Island Syndrome'. The syndrome is linked to high population density on islands. We predicted that when population density is low and/or fluctuating insular vertebrates may evolve correlated trait shifts running opposite to the Island Syndrome, which we collectively refer to as the 'reversed island syndrome' (RIS) hypothesis. On the proximate level, we hypothesized that RIS is caused by increased activity levels in melanocortin receptors. Melanocortins are postranslational products of the proopiomelanocortin gene, which controls pleiotropically pigmentation, aggressiveness, sexual activity, and food intake in vertebrates. Results We tested the RIS hypothesis performing a number of behavioral, genetic, and ontogenetic tests on a blue colored insular variant of the Italian Wall lizard Podarcis sicula, living on a small island off the Southern Italian coast. The population density of this blue-colored variant was generally low and highly fluctuating from one year to the next. In keeping with our predictions, insular lizards were more aggressive and sexually dimorphic than their mainland relatives. Insular males had wide, peramorphic heads. The growth rate of insular females was slower than growth rates of mainland individuals of both sexes, and of insular males. Consequently, size and shape dimorphism are higher on the Island. As predicted, melanocortin receptors were much more active in individuals of the insular population. Insular lizards have a higher food intake rate than mainland individuals, which is consistent with the increased activity of melanocortin receptors. This may be adaptive in an unpredictable environment such as Licosa Island. Insular lizards of both sexes spent less time basking than their mainland relatives. We suspect this is a by-product (spandrel) of the positive selection for increased activity of melanocortins receptors. Conclusions We contend that when population density is either low or fluctuating annually as a result of environmental unpredictability, it may be advantageous to individuals to behave more aggressively, to raise their rate of food intake, and allocate more energy into reproduction. PMID:20854657
An Essential Role for Liver ERα in Coupling Hepatic Metabolism to the Reproductive Cycle.
Della Torre, Sara; Mitro, Nico; Fontana, Roberta; Gomaraschi, Monica; Favari, Elda; Recordati, Camilla; Lolli, Federica; Quagliarini, Fabiana; Meda, Clara; Ohlsson, Claes; Crestani, Maurizio; Uhlenhaut, Nina Henriette; Calabresi, Laura; Maggi, Adriana
2016-04-12
Lipoprotein synthesis is controlled by estrogens, but the exact mechanisms underpinning this regulation and the role of the hepatic estrogen receptor α (ERα) in cholesterol physiology are unclear. Utilizing a mouse model involving selective ablation of ERα in the liver, we demonstrate that hepatic ERα couples lipid metabolism to the reproductive cycle. We show that this receptor regulates the synthesis of cholesterol transport proteins, enzymes for lipoprotein remodeling, and receptors for cholesterol uptake. Additionally, ERα is indispensable during proestrus for the generation of high-density lipoproteins efficient in eliciting cholesterol efflux from macrophages. We propose that a specific interaction with liver X receptor α (LXRα) mediates the broad effects of ERα on the hepatic lipid metabolism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Aging is often associated with overweight and obesity. There exists a long-standing debate about whether meal pattern also contributes to the development of obesity. The orexigenic hormone ghrelin regulates appetite and satiety by activating its receptor, growth hormone secretagogue receptor (GHS-R)...
Kapczinski, F; Curran, H V; Przemioslo, R; Williams, R; Fluck, E; Fernandes, C; File, S E
1996-01-01
OBJECTIVES--To determine whether differences in cognitive function between alcoholic and non-alcoholic cirrhotic patients relate to differences in endogenous ligands for the benzodiazepine receptor and/or benzodiazepine binding. METHODS--Seventeen grade-I hepatic encephalopathic patients (nine alcoholic, eight non-alcoholic) were compared with 10 matched controls on plasma concentrations of endogenous ligands for the neuronal benzodiazepine receptor, benzodiazepine binding in platelets, and performance on tests of cognitive function. RESULTS--Both groups of patients were impaired on verbal recall and on reaction time tasks compared with controls; alcoholic patients were also impaired on Reitan's trails test and digit cancellation. Four of the 17 patients had detectable concentrations of endogenous benzodiazepine ligands and they were more impaired than other patients on trails and cancellation tests. The groups did not differ in the density of benzodiazepine platelet receptors, but receptor affinity was higher in alcoholic patients than in controls; furthermore, receptor affinity correlated with the time to complete the cancellation task and with reaction time. CONCLUSION--Alcoholic cirrhotic patients may have enhanced concentrations of ligands for neuronal and peripheral benzodiazepine receptors and these may contribute to cognitive impairments in these patients. PMID:8648337