Sample records for total roof area

  1. [Influence of green roof application on water quantity and quality in urban region].

    PubMed

    Wang, Shu-Min; Li, Xing-Yang; Zhang, Jun-Hua; Yu, Hui; Hao, You-Zhi; Yang, Wan-Yi

    2014-07-01

    Green roof is widely used in advanced stormwater management as a major measure now. Taking Huxi catchment in Chongqing University as the study area, the relationships between green roof installation with runoff volume and water quality in urban region were investigated. The results showed that roof greening in the urban region contributed to reducing the runoff volume and pollution load. In addition, the spatial distribution and area of green roof also had effects on the runoff water quality. With the conditions that the roof area was 25% of the total watershed area, rainfall duration was 15 min and rainfall intensity was 14.8 mm x h(-1), the peak runoff and total runoff volume were reduced by 5.3% and 31%, the pollution loads of total suspended solid (TSS), total phosphorus (TP) and total nitrogen (TN) decreased by 40.0%, 31.6% and 29.8%, their peak concentrations decreased by 21.0%, 16.0% and -12.2%, and the EMCs (event mean concentrations) were cut down by 13.1%, 0.9% and -1.7%, respectively, when all impervious roofs were greened in the research area. With the increase of roof greening rate, the reduction rates of TSS and TP concentrations increased, while the reduction rate of TN concentration decreased on the whole. Much more improvement could be obtained with the use of green roofs near the outlet of the watershed.

  2. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality,more » PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)« less

  3. Monitoring of the Green Roofs Installation in Brno-City District, Czech Republic

    NASA Astrophysics Data System (ADS)

    Rebrova, Tatiana; Beckovsky, David; Selnik, Petr

    2017-12-01

    In spite of the rapidly growing interest to the green roofs, there is insufficient information about their local quantities and areas in Czech Republic as well as in Central Europe. There is a lack of technical information that leads to the further development, application and environmental contribution of green roofs under local climatic conditions. The purpose of the research is to follow the tendency of how the process of green roofs’ popularization is performed in the Czech Republic and to determine basic parameters of the installed green roofs. These parameters include total quantity, area and the most common roof vegetation type (extensive or intensive); how many green roofs were installed over the last years and as a result, how the proportion of the green roofs to the conventional ones is changing. For initial evaluation Brno-City District was chosen as the next stage of university environmental project EnviHUT following the genesis of green roofs under local weather conditions.

  4. Mapping the Green Infrastructure potential - and it's water-energy impacts on New York City roof Tops

    NASA Astrophysics Data System (ADS)

    Engström, Rebecka; Destouni, Georgia; Howells, Mark

    2017-04-01

    Green Roofs have the potential to provide multiple services in cities. Besides acting as carbon sinks, providing noise reduction and decreasing air pollution - without requiring any additional "land-use" in a city (only roof-use), green roofs have a quantifiable potential to reduce direct and indirect energy and water use. They enhance the insulating capacity of a conventional residential roof and thereby decrease both cooling demands in summer and heating demands in winter. The former is further mitigated by the cooling effect of evapotranspiration from the roofs In New York City green roofs are additionally a valuable component of reducing "combined sewer overflows", as these roofs can retain storm water. This can improve water quality in the city's rivers as well as decrease the total volume of water treated in the city's wastewater treatment plants, thereby indirectly reduce energy demands. The impacts of green roofs on NYC's water-energy nexus has been initially studied (Engström et. al, forthcoming). The present study expands that work to more comprehensively investigate the potential of this type of nature-based solution in a dense city. By employing Geographical Information Systems analysis, the roof top area of New York City is analysed and roof space suitable for green roofs of varying types (ranging from extensive to intensive) are mapped and quantified. The total green roof area is then connected with estimates of potential water-energy benefits (and costs) of each type of green roof. The results indicate where green roofs can be beneficially installed throughout the city, and quantifies the related impacts on both water and energy use. These outputs can provide policy makers with valuable support when facing investment decisions in green infrastructure, in a city where there is great interest for these types of nature-based solutions.

  5. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California Building Energy Efficiency Standard (Title-24, Part 6) includes the use of high-albedo surfaces on low-sloped roofs on non-residential buildings. Analyzing a subset of large presumably commercial buildings, we find high albedo roofs represent 0.5% and 10% of total roofs and roof surface area, respectively. The potential for high albedo roofs to reduce urban temperatures was investigated for a California city (Bakersfield) with warm summers using a state-of-the-art meteorological model (Weather Research and Forecasting, WRF). Base case and cool roof scenarios were simulated with the only difference being that the surface albedo was increased under the cool roof scenario. Roof albedos derived from the aerial imagery were used as an input to the climate model in the base case scenario. Simulation results indicate that seasonal average afternoon (1500 h) temperatures could be reduced by up to 0.2 °C across Bakersfield during both the summer and winter. While temperature changes are similar during winter and summer, only summer shows statistically significant temperature changes downwind (southeast) from Bakersfield. This indicates that reduced summertime temperatures may be felt over a distance that is 2 or 3 times the length scale of the region with high albedo roofs.

  6. Roof selection for rainwater harvesting: quantity and quality assessments in Spain.

    PubMed

    Farreny, Ramon; Morales-Pinzón, Tito; Guisasola, Albert; Tayà, Carlota; Rieradevall, Joan; Gabarrell, Xavier

    2011-05-01

    Roofs are the first candidates for rainwater harvesting in urban areas. This research integrates quantitative and qualitative data of rooftop stormwater runoff in an urban Mediterranean-weather environment. The objective of this paper is to provide criteria for the roof selection in order to maximise the availability and quality of rainwater. Four roofs have been selected and monitored over a period of 2 years (2008-2010): three sloping roofs - clay tiles, metal sheet and polycarbonate plastic - and one flat gravel roof. The authors offer a model for the estimation of the runoff volume and the initial abstraction of each roof, and assess the physicochemical contamination of roof runoff. Great differences in the runoff coefficient (RC) are observed, depending mostly on the slope and the roughness of the roof. Thus, sloping smooth roofs (RC>0.90) may harvest up to about 50% more rainwater than flat rough roofs (RC=0.62). Physicochemical runoff quality appears to be generally better than the average quality found in the literature review (conductivity: 85.0 ± 10.0 μS/cm, total suspended solids: 5.98 ± 0.95 mg/L, total organic carbon: 11.6 ± 1.7 mg/L, pH: 7.59 ± 0.07 upH). However, statistically significant differences are found between sloping and flat rough roofs for some parameters (conductivity, total organic carbon, total carbonates system and ammonium), with the former presenting better quality in all parameters (except for ammonium). The results have an important significance for local governments and urban planners in the (re)design of buildings and cities from the perspective of sustainable rainwater management. The inclusion of criteria related to the roof's slope and roughness in city planning may be useful to promote rainwater as an alternative water supply while preventing flooding and water scarcity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Green roof stormwater retention: effects of roof surface, slope, and media depth.

    PubMed

    VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan

    2005-01-01

    Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

  8. Characterizing the fabric of the urban environment: A case study of Salt Lake City, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Rose, L. Shea

    2001-02-28

    Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective implementation programs. In this report, we discuss the result of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Salt Lake City covered a total of about 34 km2 (13 mi2). At 0.50-m resolution, there were approximately 1.4 x 108 pixels of data. Four majormore » land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the areas studied, vegetation covers about 46 percent of the area (ranging 44-51 percent), roofs cover about 21 percent (ranging 15-24 percent), and paved surfaces about 26 percent (ranging 21-28 percent). For the most part, trees shade streets, parking lots, grass, and sidewalks. In most non-residential areas, paved surfaces cover 46-66 percent of the area. In residential areas, on average, paved surfaces cover about 32 percent of the area. Land-use/land-cover (LU/LC) data from the United States Geological Survey were used to extrapolate these results from neighborhood scales to metropolitan Salt Lake City. In an area of roughly 560 km2, defining most of metropolitan Salt Lake City, over 60 percent is residential. The total roof area is about 110 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 170 km2. The total vegetated area covers about 230 km2.« less

  9. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs

    NASA Astrophysics Data System (ADS)

    Washburn, Brian E.; Swearingin, Ryan M.; Pullins, Craig K.; Rice, Matthew E.

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  10. Characterizing the fabric of the urban environment: A case studyof Metropolitan Chicago, Illinois and Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Rose, Leanna Shea

    2001-10-30

    Urban fabric data are needed in order to estimate the impactof light-colored surfaces (roofs and pavements) and urban vegetation(trees, grass, shrubs) on the meteorology and air quality of a city, andto design effective implementation programs. In this report, we discussthe result of a semi-automatic Monte-Carlo statistical approach used todevelop data on surface-type distribution and city-fabric makeup(percentage of various surface-types) using aerial colororthophotography. The digital aerial photographs for metropolitan Chicagocovered a total of about 36 km2 (14 mi2). At 0.3m resolution, there wereapproximately 3.9 x 108 pixels of data. Four major land-use types wereexamined: commercial, industrial, residential, andtransportation/communication. On average, formore » the areas studied, atground level vegetation covers about 29 percent of the area (ranging 4 80percent); roofs cover about 25 percent (ranging 8 41 percent), and pavedsurfaces about 33 percent (ranging 12 59 percent). For the most part,trees shade streets, parking lots, grass, and side-walks. In commercialareas, paved surfaces cover 50 60 percent of the area. In residentialareas, on average, paved surfaces cover about 27percent of the area.Land-use/land-cover (LULC) data from the United States Geological Surveywas used to extrapolate these results from neighborhood scales tometropolitan Chicago. In an area of roughly 2500 km2, defining most ofmetropolitan Chicago, over 53 percent is residential. The total roof areais about 680 km2, and the total paved surfaces (roads, parking areas,sidewalks) are about 880 km2. The total vegetated area is about 680km2.« less

  11. Modeling of an industrial environment: external dose calculations based on Monte Carlo simulations of photon transport.

    PubMed

    Kis, Zoltán; Eged, Katalin; Voigt, Gabriele; Meckbach, Reinhard; Müller, Heinz

    2004-02-01

    External gamma exposures from radionuclides deposited on surfaces usually result in the major contribution to the total dose to the public living in urban-industrial environments. The aim of the paper is to give an example for a calculation of the collective and averted collective dose due to the contamination and decontamination of deposition surfaces in a complex environment based on the results of Monte Carlo simulations. The shielding effects of the structures in complex and realistic industrial environments (where productive and/or commercial activity is carried out) were computed by the use of Monte Carlo method. Several types of deposition areas (walls, roofs, windows, streets, lawn) were considered. Moreover, this paper gives a summary about the time dependence of the source strengths relative to a reference surface and a short overview about the mechanical and chemical intervention techniques which can be applied in this area. An exposure scenario was designed based on a survey of average German and Hungarian supermarkets. In the first part of the paper the air kermas per photon per unit area due to each specific deposition area contaminated by 137Cs were determined at several arbitrary locations in the whole environment relative to a reference value of 8.39 x 10(-4) pGy per gamma m(-2). The calculations provide the possibility to assess the whole contribution of a specific deposition area to the collective dose, separately. According to the current results, the roof and the paved area contribute the most part (approximately 92%) to the total dose in the first year taking into account the relative contamination of the deposition areas. When integrating over 10 or 50 y, these two surfaces remain the most important contributors as well but the ratio will increasingly be shifted in favor of the roof. The decontamination of the roof and the paved area results in about 80-90% of the total averted collective dose in each calculated time period (1, 10, 50 y).

  12. Stormwater quality from extensive green roofs in a subtropical region

    NASA Astrophysics Data System (ADS)

    Onis Pessoa, Jonas; Allasia, Daniel; Tassi, Rutineia; Vaz Viega, Juliana; Fensterseifer, Paula

    2016-04-01

    Green roofs have increasingly become an integral part of urban environments, mainly due to their aesthetic benefits, thermal comfort and efficiency in controlling excess runoff. However, the effects of this emerging technology in the qualitative characteristics of rainwater is still poorly understood. In this study was evaluated the effect of two different extensive green roofs (EGRs) and a traditional roof built with corrugated fiber cement sheets (control roof) in the quality of rainwater, in a subtropical climate area in the city of Santa Maria, in southern Brazil. The principal variant between the two EGRs were the type of plant species, time since construction, soil depth and the substrate characteristics. During the monitoring period of the experiment, between the months of April and December of 2015 fourteen rainfall events were selected for qualitative analysis of water from the three roofs and directly from rainfall. It was analyzed physical (turbidity, apparent color, true color, electrical conductivity, total solids, dissolved solids, suspended solids and temperature), chemical (pH, phosphate, total nitrogen, nitrate, nitrite, chloride, sulfate, BOD, iron and total hardness), heavy metals (copper, zinc, lead and chromium) and microbiological parameters (total coliforms and E. coli). It was also characterized the substrates used in both extensive green roofs. The results showed that the quality of the water drained from EGR s was directly influenced by their substrates (in turn containing significant levels of nutrients, organic matter and some metals). The passage of rainwater through green roofs and control roof resulted in the elevation of pH, allowing the conversion of the slightly acidic rainfall into basic water. Similarly, on both types of roofs occurred an increase of the values of most of the physical, chemical and microbiological parameters compared to rainwater. This same trend was observed for heavy metals, although with a much smaller degree. Thus, under the assessed conditions and time, the green roofs, in general, have not provided an improvement of water quality as indicated by some authors. However, it was found that some of the measured parameters showed a gradual improvement during the monitoring period. This suggests that the age of green roofs can affect efficiency in the qualitative control of water. In this regard, long-term research can contribute to a better understanding quality of stormwater runoff from green roofs, especially in regions such as Brazil, where the implementation of green roofs is incipient and in a phase of adaptation to the different environmental conditions of the country.

  13. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs.

    PubMed

    Washburn, Brian E; Swearingin, Ryan M; Pullins, Craig K; Rice, Matthew E

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  14. Experimental evaluation of thermal and energy performance of temperate green roofs: a case study in Beijing

    NASA Astrophysics Data System (ADS)

    Sun, T.; Institute of Hydrology; Water Resources

    2011-12-01

    An experimental evaluation of thermal and energy performance of temperate green roofs was carried out by thermal and meteorological observation and energy budget modeling using a setup of green roof in Beijing urban area. From both the yearly and daily temperature trends, the green roof could effectively damp down the undulation of roof surface temperature comparing with the conventional one. As an insulating screen, the green roof abated the amplitude of temperature by 9.0 in winter and 9.1 °C in summer, respectively. Under different cloud conditions, the green roof in summer time resulted in decreases in sensible heat and heat flux by 125.3W m-2 and 32.0 W m-2, respectively, on daily average comparing with the conventional one. Based on the energy budget analyses, under an assumptive scenario of 50% roof-greening in Beijing, a total of 34.1 PJ of sensible heat and 8.7 PJ of heat flux would be decreased for a summer period of 90 days. This study demonstrated that green roof, serving as an insulating screen to building top in comparison with the conventional roof, proved thermal improving effect in building scale and high energy saving potential for urban development.

  15. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but duringmore » the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).« less

  16. 5. Roof Truss Above Service Area, Roof Truss Above Ward, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Roof Truss Above Service Area, Roof Truss Above Ward, Roof Framing Axonometric - National Home for Disabled Volunteer Soldiers - Battle Mountain Sanitarium, Ward 4, 500 North Fifth Street, Hot Springs, Fall River County, SD

  17. The contribution of urbanization to recent extreme heat events and white roof mitigation strategy in the Beijing-Tianjin-Hebei metropolitan area

    NASA Astrophysics Data System (ADS)

    Wang, Mingna

    2015-04-01

    The UHI effect can aggravate summertime heat waves and strongly influence human comfort and health, leading to greater mortality in metropolitan areas. Many geo-engineering technological strategies have been proposed to mitigate climate warming, and for the UHI, increasing the albedo of artificial urban surfaces (rooftops or pavements) has been considered a lucrative and effective way to cool cities. The objective of this work is to quantify the contribution of urbanization to recent extreme heat events of the early 21st century in the Beijing-Tianjin-Hebei metropolitan area, using the mesoscale WRF model coupled with a single urban canopy model and actual urban land cover datasets. This work also investigates a simulation of the regional effects of white roof technology by increasing the albedo of urban areas in the urban canopy model to mitigate the urban heat island, especially in extreme heat waves. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60°C. This change is most obvious at night with an increase up to 0.95°C, for which the total contribution of anthropogenic heat is 34%. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs. White roofs reflect a large fraction of incoming sunlight in the daytime, which reduced the net radiation so that the roof surface keep at a lower temperature than regular solar-absorptive roofs. Urban net radiation decreases by approximately 200 W m-2 at local noon because of high solar reflectance of white roofs, which cools the daytime urban temperature afer sunrise, with the largest decrease of almost -0.80°C at local noon. Moreover, the nighttime temperature also shows slightly cooler, approximately 0.2°C, because there is still considerable heat which is stored in the daytime released from urban surfaces at night. The results also suggest that increasing the albedo of urban roofs can reduce the urban mean temperature by approximately 0.51°C during summer extreme heat events. In urban areas, white roofs can counter 80% of the heat wave results from urban sprawl during the last 20 years. These results suggest that increasing the albedo of roofs in the Beijing-Tianjin-Hebei metropolitan area is an effective way of countering some hazards of heat waves. Using a regional climate model, we proposed that white roofs may be an effective strategy to complement urban heat wave mitigation efforts as a way of further slowing the rate of global temperature increase in response to continued greenhouse gas emissions.

  18. Toward an operational tool to simulate green roof hydrological impact at the basin scale: a new version of the distributed rainfall-runoff model Multi-Hydro.

    PubMed

    Versini, Pierre-Antoine; Gires, Auguste; Tchinguirinskaia, Ioulia; Schertzer, Daniel

    2016-10-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale: decrease and slow-down of the peak discharge, and decrease of runoff volume. The present work aims to study their possible impact at the catchment scale, more compatible with stormwater management issues. For this purpose, a specific module dedicated to simulating the hydrological behaviour of a green roof has been developed in the distributed rainfall-runoff model (Multi-Hydro). It has been applied on a French urban catchment where most of the building roofs are flat and assumed to accept the implementation of a green roof. Catchment responses to several rainfall events covering a wide range of meteorological situations have been simulated. The simulation results show green roofs can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and initial saturation of the substrate. Additional tests have been made to assess the susceptibility of this response regarding both spatial distributions of green roofs and precipitation. It appears that the total area of greened roofs is more important than their locations. On the other hand, peak discharge reduction seems to be clearly dependent on spatial distribution of precipitation.

  19. Life-cycle cost-benefit analysis of extensive vegetated roof systems.

    PubMed

    Carter, Timothy; Keeler, Andrew

    2008-05-01

    The built environment has been a significant cause of environmental degradation in the previously undeveloped landscape. As public and private interest in restoring the environmental integrity of urban areas continues to increase, new construction practices are being developed that explicitly value beneficial environmental characteristics. The use of vegetation on a rooftop--commonly called a green roof--as an alternative to traditional roofing materials is an increasingly utilized example of such practices. The vegetation and growing media perform a number of functions that improve environmental performance, including: absorption of rainfall, reduction of roof temperatures, improvement in ambient air quality, and provision of urban habitat. A better accounting of the green roof's total costs and benefits to society and to the private sector will aid in the design of policy instruments and educational materials that affect individual decisions about green roof construction. This study uses data collected from an experimental green roof plot to develop a benefit cost analysis (BCA) for the life cycle of extensive (thin layer) green roof systems in an urban watershed. The results from this analysis are compared with a traditional roofing scenario. The net present value (NPV) of this type of green roof currently ranges from 10% to 14% more expensive than its conventional counterpart. A reduction of 20% in green roof construction cost would make the social NPV of the practice less than traditional roof NPV. Considering the positive social benefits and relatively novel nature of the practice, incentives encouraging the use of this practice in highly urbanized watersheds are strongly recommended.

  20. Characterizing the fabric of the urban environment: A case study of Greater Houston, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Leanna Shea; Akbari, Hashem; Taha, Haider

    2003-01-15

    In this report, the materials and various surface types that comprise a city are referred to as the ''urban fabric.'' Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective urban environmental implementation programs. We discuss the results of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Houston covered a total of about 52more » km2 (20 mi2). At 0.30-m resolution, there were approximately 5.8 x 108 pixels of data. Four major land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the regions studied, vegetation covers about 39 percent of the area, roofs cover about 21 percent, and paved surfaces cover about 29 percent. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the vegetation canopies, paved surfaces cover about 32 percent of the study area. GLOBEIS model data from University of Texas and land-use/land-cover (LULC) information from the United States Geological Survey (USGS) were used to extrapolate these results from neighborhood scales to Greater Houston. It was found that in an area of roughly 3,430 km2, defining most of Greater Houston, over 56 percent is residential. The total roof area is about 740 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 1000 km2. Vegetation covers about 1,320 km2.« less

  1. Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area.

    PubMed

    Zhao, Jian-wei; Shan, Bao-qing; Yin, Cheng-qing

    2007-01-01

    The pollutant loads of surface runoff in an urban tourist area have been investigated for two years in the Wuhan City Zoo, China. Eight sampling sites, including two woodlands, three animal yards, two roofs and one road, were selected for sampling and study. The results indicate that pollutants ranked in a predictable order of decreasing load (e.g. animal yard > roof > woodland > road), with animal yards acting as the key pollution source in the zoo. Pollutants were transported mainly by particulate form in runoff. Particulate nitrogen and particulate phosphorous accounted on average for 61%, 78% of total pollutant, respectively, over 13 monitored rainfall events. These results indicate the treatment practices should be implemented to improve particulate nutrient removal. Analysis of the M(V) curve indicate that no first flush effect existed in the surface runoff from pervious areas (e.g. woodland, animal ground yard), whereas a first flush effect was evident in runoff from impervious surfaces (e.g. animal cement yard, roof, road).

  2. Rooftop Solar Photovoltaic Technical Potential in the United States. A Detailed Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    2016-01-01

    How much energy could be generated if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models--one for small buildings and one for medium and large buildings--and populate them with geographicmore » variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.« less

  3. Rooftop Solar Photovoltaic Technical Potential in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    2016-01-01

    How much energy could we generate if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models -- one for small buildings and one for medium and large buildings -- andmore » populate them with geographic variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.« less

  4. Digging the New York City Skyline: Soil Fungal Communities in Green Roofs and City Parks

    PubMed Central

    McGuire, Krista L.; Payne, Sara G.; Palmer, Matthew I.; Gillikin, Caitlyn M.; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M.; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A.; Massmann, Audrey L.; Orazi, Giulia; Essene, Adam; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs. PMID:23469260

  5. Digging the New York City Skyline: soil fungal communities in green roofs and city parks.

    PubMed

    McGuire, Krista L; Payne, Sara G; Palmer, Matthew I; Gillikin, Caitlyn M; Keefe, Dominique; Kim, Su Jin; Gedallovich, Seren M; Discenza, Julia; Rangamannar, Ramya; Koshner, Jennifer A; Massmann, Audrey L; Orazi, Giulia; Essene, Adam; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.

  6. Urban particulate pollution reduction by four species of green roof vegetation in a UK city

    NASA Astrophysics Data System (ADS)

    Speak, A. F.; Rothwell, J. J.; Lindley, S. J.; Smith, C. L.

    2012-12-01

    Urban particulate pollution in the UK remains at levels which have the potential to cause negative impacts on human health. There is a need, therefore, for mitigation strategies within cities, especially with regards to vehicular sources. The use of vegetation as a passive filter of urban air has been previously investigated, however green roof vegetation has not been specifically considered. The present study aims to quantify the effectiveness of four green roof species - creeping bentgrass (Agrostis stolonifera), red fescue (Festuca rubra), ribwort plantain (Plantago lanceolata) and sedum (Sedum album) - at capturing particulate matter smaller than 10 μm (PM10). Plants were grown in a location away from major road sources of PM10 and transplanted onto two roofs in Manchester city centre. One roof is adjacent to a major traffic source and one roof is characterised more by urban background inputs. Significant differences in metal containing PM10 capture were found between sites and between species. Site differences were explained by proximity to major sources. Species differences arise from differences in macro and micro morphology of the above surface biomass. The study finds that the grasses, A. stolonifera and F. rubra, are more effective than P. lanceolata and S. album at PM10 capture. Quantification of the annual PM10 removal potential was calculated under a maximum sedum green roof installation scenario for an area of the city centre, which totals 325 ha. Remediation of 2.3% (±0.1%) of 9.18 tonnes PM10 inputs for this area could be achieved under this scenario.

  7. Urban particulate pollution reduction by four species of green roof vegetation in a UK city

    NASA Astrophysics Data System (ADS)

    Speak, A.; Rothwell, J.; Lindley, S.; Smith, C.

    2012-12-01

    Urban particulate pollution in the UK remains at levels which have the potential to cause negative impacts on human health. There is a need, therefore, for mitigation strategies within cities, especially with regards to vehicular sources. The use of vegetation as a passive filter of urban air has been previously investigated, however green roof vegetation has not been specifically considered. The present study aims to quantify the effectiveness of four green roof species - creeping bentgrass (Agrostis stolonifera), red fescue (Festuca rubra), ribwort plantain (Plantago lanceolata) and sedum (Sedum album) - at capturing particulate matter smaller than 10μm (PM10). Plants were grown in a location away from major road sources of PM10 and transplanted onto two roofs in Manchester city centre. One roof is adjacent to a major traffic source and one roof is characterised more by urban background inputs. Significant differences in metal containing PM10 capture were found between sites and between species. Site differences were explained by proximity to major sources. Species differences arise from differences in macro and micro morphology of the above surface biomass. The study finds that the grasses, A. stolonifera and F. rubra, are more effective than P. lanceolata and S. album at PM10 capture. Quantification of the annual PM10 removal potential was calculated under a maximum sedum green roof installation scenario for an area of the city centre, which totals 325 ha. Remediation of 2.3% (±0.1%) of 9.18 tonnes PM10 inputs for this area could be achieved under this scenario.

  8. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except themore » vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).« less

  9. Building America Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate, Boilingbrook, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a 'control' vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except themore » vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a 'diffusion vent' detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).« less

  10. Skylight energy balance analysis procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietz, P.S.; Murdoch, J.B.; Pokoski, J.L.

    1981-10-01

    This paper provides a systematic method for calculating the total, net differential energy balance observed when sections of the roof of a building are replaced with skylights. Among the topics discussed are the effect of solar gains, dome and curb conduction heat transfers, equivalent roof area heat transfers, infiltration heat transfers, artificial lighting energy requirements, and illumination savings from skylights. The paper also provides much of the supplementary information needed to complete these energy calculations. This information appears in the form of appendices, tables, and graphs. 9 refs.

  11. [Nitrogen and phosphorus composition in urban runoff from the new development area in Beijing].

    PubMed

    Li, Li-Qing; Lü, Shu-Cong; Zhu, Ren-Xiao; Liu, Ze-Quan; Shan, Bao-Qing

    2012-11-01

    Stormwater runoff samples were collected from two impervious roof and road of the new development area in Beijing, during three rainfall events in an attempt to characterize the urban runoff and determine nitrogen and phosphorus composition. The outcomes are expected to offer the practical guidance in sources control of urban runoff pollution. The results indicated that the stormwater runoff from the studied area presented a strong first flush for all monitored events and constituents. Eighty percent of the total pollutant loads were transported by the first 10 mm flow volume for roof runoff, whereas 80% of the total pollutant loads were discharged by the first 15 mm flow volume for road runoff. Average EMCs of TSS, COD, TN, NH4(+) -N, NO3(-) -N and TP for roof runoff were 50.2 mg x L(-1), 81.7 mg x L(-1), 6.07 mg x L(-1), 2.94 mg x L(-1), 1.05 mg x L(-1), and 0.11 mg x L(-1), respectively. Average EMCs of TSS, COD, TN, NH4(+) -N, NO3(-)-N and TP for road runoff were 539.0 mg x L(-1), 276.4 mg x L(-1), 7.00 mg x L(-1), 1.71 mg x L(-1), 1.51 mg x L(-1), and 0.61 mg x L(-1), respectively. Moreover, for the roof runoff, the particle-bound fraction was 20.8% for COD, 12.3% for TN, and 49.7% for TP. For road runoff, the particle-bound fraction was 68.6% for COD, 20.0% for TN, and 73.6% for TP. Nitrogen in roof runoff was predominantly dissolved (87.7%), with ammonia (57.6%) and nitrate (22.5%). Nitrogen in road runoff was also predominantly dissolved (80.0%), with ammonia (42.1%) and nitrate (35.0%). These findings can assist the development of effective source control strategies to immobilize dissolved and particulate-bound nitrogen/phosphorus in urban stormwater.

  12. Technology Solutions Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Ueno and J. Lstiburek

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a "control" vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only hadmore » slight issues, such as rusted fasteners and sheathing grain raise.« less

  13. 49 CFR 571.216 - Standard No. 216; Roof crush resistance; Applicable unless a vehicle is certified to § 571.216a.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the initial point of contact, or on the center of the initial contact area, with the roof; and (2... center of the initial contact area, is on the longitudinal centerline of the lower surface of the test..., with respect to a roof which includes an area that protrudes above the surrounding exterior roof...

  14. Effectiveness of foam-based and traditional green roofs in reducing nitrogen, phosphorus, organic carbon and suspended solids in urban installations

    NASA Astrophysics Data System (ADS)

    MacAvoy, S. E.; Mucha, S.; Williamson, G.

    2017-12-01

    While green roofs have well understood benefits for retaining runoff, there is less of a consensus regarding the potential for retaining and absorbing nutrients or suspended solids from roof runoff that would otherwise travel to waterways. Additionally, there are numerous designs, materials and maintenance plans associated with "green" roofs/surfaces that may greatly impact not only their hydrological benefit but also their pollution mitigation potential. Here we examine the NO3, NH4, total organic carbon (TOC), total phosphorus (TP) and total suspended solids (TSS) retention potential from planted and unplanted foam roofs and traditional soil roofs. Direct precipitation, untreated runoff and throughflow from the different roof types were collected for 3 to 11 rain events over a year (depending on roof). Unplanted and traditional roofs reduced TSS by 80% or better relative to runoff. Traditional roofs showed 50% lower TP than runoff or other roof types. TOC was higher than direct precipitation for all treatments, although there were no differences among the treatments themselves. Taken as averages over the 11 events, NO3 and NH4 concentrations were highly variable for runoff and treatments and significant differences were not detected. Preliminary analysis suggests there were no differences between performance of traditional versus foam-based roofs, although a greater sample size is required to be definitive.

  15. Potential Application of Shallow Bed Wetland Roof systems for green urban cities

    NASA Astrophysics Data System (ADS)

    Bui, X. T.

    2016-12-01

    This study aims to investigate the growth, nutrient uptake, domestic wastewater treatment, green (leaf) area and heat reduction of four shallow subsurface flow wetland roof (WR) systems with four different new local plants. Selected species included Cyperus Javanicus Hot (WR1), Eleusine Indica (L.) Gaertn (WR2), Struchium Sparganophorum (L.) Kuntze (WR3) and Kyllinga Brevifolia Rottb (WR4). These systems were operated during 61 days at hydraulic loading rates of 353 - 403 m3/ha.day. The biomass growth of 4.9-73.7g fresh weight/day, and 0.8-11.4 g dry weight/day were observed. The nutrient accumulation according to dry biomass achieved 0.25-2.14% of total nitrogen (TN) and 0.13-1.07% of total phosphorus (TP). The average COD, TN and TP removal was 61-79%; 54-81% and 62-83%, which corresponding to 27-33 kg COD/ha.day, 10-14 kg TN/ha.day and 0.4-0.5 kg TP/ha.day, respectively. The WR4 system achieved the highest COD and TN removal among the WRs. The TP removal efficiency showed an insignificant difference for the systems. Consequently, the treated water quality complied with the Vietnam standard limits (QCVN 14:2008, level B). The green area of the four plants varied between 63-92 m2 green leaf/m2 WR. The WR4 was the highest green area. Moreover, the results also showed the temperature under the flat roof was 1-3°C lower than that of the ambient air. In summary, wetland roof is a promising technology, which not only owns the effective domestic wastewater treatment capacity, but also contributes to green urban with several above benefits.

  16. Hydrological performance of extensive green roofs in New York City: observations and multi-year modeling of three full-scale systems

    NASA Astrophysics Data System (ADS)

    Carson, T. B.; Marasco, D. E.; Culligan, P. J.; McGillis, W. R.

    2013-06-01

    Green roofs can be an attractive strategy for adding perviousness in dense urban environments where rooftops are a high fraction of the impervious land area. As a result, green roofs are being increasingly implemented as part of urban stormwater management plans in cities around the world. In this study, three full-scale green roofs in New York City (NYC) were monitored, representing the three extensive green roof types most commonly constructed: (1) a vegetated mat system installed on a Columbia University residential building, referred to as W118; (2) a built-in-place system installed on the United States Postal Service (USPS) Morgan general mail facility; and (3) a modular tray system installed on the ConEdison (ConEd) Learning Center. Continuous rainfall and runoff data were collected from each green roof between June 2011 and June 2012, resulting in 243 storm events suitable for analysis ranging from 0.25 to 180 mm in depth. Over the monitoring period the W118, USPS, and ConEd roofs retained 36%, 47%, and 61% of the total rainfall respectively. Rainfall attenuation of individual storm events ranged from 3 to 100% for W118, 9 to 100% for USPS, and 20 to 100% for ConEd, where, generally, as total rainfall increased the per cent of rainfall attenuation decreased. Seasonal retention behavior also displayed event size dependence. For events of 10-40 mm rainfall depth, median retention was highest in the summer and lowest in the winter, whereas median retention for events of 0-10 mm and 40 +mm rainfall depth did not conform to this expectation. Given the significant influence of event size on attenuation, the total per cent retention during a given monitoring period might not be indicative of annual rooftop retention if the distribution of observed event sizes varies from characteristic annual rainfall. To account for this, the 12 months of monitoring data were used to develop a characteristic runoff equation (CRE), relating runoff depth and event size, for each green roof. When applied to Central Park, NYC precipitation records from 1971 to 2010, the CRE models estimated total rainfall retention over the 40 year period to be 45%, 53%, and 58% for the W118, USPS, and ConEd green roofs respectively. Differences between the observed and modeled rainfall retention for W118 and USPS were primarily due to an abnormally high frequency of large events, 50 mm of rainfall or more, during the monitoring period compared to historic precipitation patterns. The multi-year retention rates are a more reliable estimate of annual rainfall capture and highlight the importance of long-term evaluations when reporting green roof performance.

  17. The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality.

    PubMed

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua

    2017-08-15

    This study investigates the ability of dual-substrate-layer extensive green roofs to retain rainwater and reduce pollutant leaching. The substrates in dual-substrate-layer green roofs consist of an upper organic nutrition layer for plant growth and a lower inorganic adsorption layer for water retention and pollutant reduction. One traditional single-substrate-layer extensive green roof was built for comparison with dual-substrate-layer green roofs. During the experimental period, dual-substrate-layer green roofs supported better natural vegetation growth, with coverage exceeding 90%, while the coverage in single-substrate-layer green roof was over 80%. Based on the average retention value of the total rainfall for four types of simulated rains (the total rainfall depth (mm) was 43.2, 54.6, 76.2 and 86.4, respectively), the dual-substrate-layer green roofs, which used the mixture of activated charcoal with perlite and vermiculite as the adsorption substrate, possessed better rainfall retention performance (65.9% and 55.4%) than the single-substrate-layer green roof (52.5%). All of the dual-substrate-layer green roofs appeared to be sinks for organics, heavy metals and all forms of nitrogen in all cases, while acted as sources of phosphorus contaminants in the case of heavy rains. In consideration of the factors of water retention, pollution reduction and service life of the green roof, a mixture of activated charcoal and/or pumice with perlite and vermiculite is recommended as the adsorption substrate. The green roofs were able to mitigate mild acid rain, raising the pH from approximately 5.6 in rainfall to 6.5-7.6 in green roof runoff. No signs of a first flush effect for phosphate, total phosphorus, ammonia nitrogen, nitrate nitrogen, total nitrogen, organics, zinc, lead, chromium, manganese, copper, pH or turbidity were found in the green roof runoff. Cost analysis further proved the practicability of dual-substrate-layer green roofs in retaining rainwater, and their long-term rainwater runoff quantity and quality performance in urban environments merit further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hurricane Katrina Wind Investigation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjarlais, A. O.

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after majormore » wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof damage to be minimal. One team speculated that damage to all roofs in the area they examined was less than 10% when improper installation and deterioration were eliminated as causes. Roofs designed to code and installed according to manufacturers recommendations performed very well.« less

  19. Rainwater utilization and storm pollution control based on urban runoff characterization.

    PubMed

    Zhang, Mulan; Chen, Hao; Wang, Jizhen; Pan, Gang

    2010-01-01

    The characteristics of urban runoffs and their impact on rainwater utilization and storm pollution control were investigated in three different functional areas of Zhengzhou City, China. The results showed that in the same rain event the pollutant loads (chemical oxygen demand (COD) and total suspended solids (TSS)) in the sampling areas were in the order of industrial area > commercial area > residential area, and within the same area the COD and TSS concentrations of road runoffs were higher than those of roof runoffs. The first flush effects in roof and road runoffs were observed, hence the initial rainwater should be treated separately to reduce rainwater utilization cost and control storm pollution. The initial roof rainfall of 2 mm in residential area, 5 mm in commercial area and 10 mm in industrial area, and the initial road rainfall of 4 mm in residential area and all the road rainfall in commercial and industrial areas should be collected and treated accordingly before direct discharge or utilization. Based on the strong correlation between COD and TSS (R2, 0.87-0.95) and the low biodegradation capacity (biochemical oxygen demand BOD5/COD < 0.3), a sedimentation process and an effective filtration system composed of soil and slag were designed to treat the initial rainwater, which could remove over 90% of the pollutant loads. The above results may help to develop better rainwater utilization and pollution control strategies for cities with water shortages.

  20. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs.

    PubMed

    Vijayaraghavan, K; Joshi, Umid Man

    2014-11-01

    The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Retention performance of green roofs in three different climate regions

    NASA Astrophysics Data System (ADS)

    Sims, Andrew W.; Robinson, Clare E.; Smart, Charles C.; Voogt, James A.; Hay, Geoffrey J.; Lundholm, Jeremey T.; Powers, Brandon; O'Carroll, Denis M.

    2016-11-01

    Green roofs are becoming increasingly popular for moderating stormwater runoff in urban areas. This study investigated the impact different climates have on the retention performance of identical green roofs installed in London Ontario (humid continental), Calgary Alberta (semi-arid, continental), and Halifax Nova Scotia (humid, maritime). Drier climates were found to have greater percent cumulative stormwater retention with Calgary (67%) having significantly better percent retention than both London (48%) and Halifax (34%). However, over the same study period the green roof in London retained the greatest depth of stormwater (598 mm), followed by the green roof in Halifax (471 mm) and then Calgary (411 mm). The impact of climate was largest for medium sized storms where the antecedent moisture condition (AMC) at the beginning of a rainfall event governs retention performance. Importantly AMC was a very good predictor of stormwater retention, with similar retention at all three sites for a given AMC, emphasizing that AMC is a relevant indicator of retention performance in any climate. For large rainfall events (i.e., >45 mm) green roof average retention ranged between 16% and 29% in all cities. Overall, drier climates have superior retention due to lower AMC in the media. However, moderate and wet climates still provide substantial total volume reduction benefits.

  2. Establishing green roof infrastructure through environmental policy instruments.

    PubMed

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated roofing industry and experienced installers for future green roof construction.

  3. Establishing Green Roof Infrastructure Through Environmental Policy Instruments

    NASA Astrophysics Data System (ADS)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated roofing industry and experienced installers for future green roof construction.

  4. Modelling Mean Albedo of Individual Roofs in Complex Urban Areas Using Satellite Images and Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Kalantar, B.; Mansor, S.; Khuzaimah, Z.; Sameen, M. Ibrahim; Pradhan, B.

    2017-09-01

    Knowledge of surface albedo at individual roof scale is important for mitigating urban heat islands and understanding urban climate change. This study presents a method for quantifying surface albedo of individual roofs in a complex urban area using the integration of Landsat 8 and airborne LiDAR data. First, individual roofs were extracted from airborne LiDAR data and orthophotos using optimized segmentation and supervised object based image analysis (OBIA). Support vector machine (SVM) was used as a classifier in OBIA process for extracting individual roofs. The user-defined parameters required in SVM classifier were selected using v-fold cross validation method. After that, surface albedo was calculated for each individual roof from Landsat images. Finally, thematic maps of mean surface albedo of individual roofs were generated in GIS and the results were discussed. Results showed that the study area is covered by 35% of buildings varying in roofing material types and conditions. The calculated surface albedo of buildings ranged from 0.16 to 0.65 in the study area. More importantly, the results indicated that the types and conditions of roofing materials significantly effect on the mean value of surface albedo. Mean albedo of new concrete, old concrete, new steel, and old steel were found to be equal to 0.38, 0.26, 0.51, and 0.44 respectively. Replacing old roofing materials with new ones should highly prioritized.

  5. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    NASA Astrophysics Data System (ADS)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  6. GREEN ROOFS — A GROWING TREND

    EPA Science Inventory

    One of the most interesting stormwater control systems under evaluation by EPA are “green roofs”. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  7. Practical issues for using solar-reflective materials to mitigate urban heat islands

    NASA Astrophysics Data System (ADS)

    Bretz, Sarah; Akbari, Hashem; Rosenfeld, Arthur

    Solar-reflective or high-albedo, alternatives to traditionally absorptive urban surfaces such as rooftops and roadways can reduce cooling energy use and improve urban air quality at almost no cost. This paper presents information to support programs that mitigate urban heat islands with solar-reflective surfaces: estimates of the achievable increase in albedo for a variety of surfaces, issues related to the selection of materials and costs and benefits of using them. As an example, we present data for Sacramento, California. In Sacramento, we estimate that 20% of the 96 square mile area is dark roofing and 10% is dark pavement. Based on the change in albedo that is achievable for these surfaces, the overall albedo of Sacramento could be increased by 18%, a change that would produce significant energy savings and increase comfort within the city. Roofing market data indicate which roofing materials should be targeted for incentive programs. In 1995, asphalt shingle was used for over 65% of residential roofing area in the U.S. and 6% of commercial. Built-up roofing was used for about 5% of residential roofing and about 30% of commercial roofing. Single-ply membranes covered about 9% of the residential roofing area and over 30% of the commercial area. White, solar-reflective alternatives are presently available for these roofing materials but a low- first-cost, solar-reflective alternative to asphalt shingles is needed to capture the sloped-roof market. Since incoming solar radiation has a large non-visible component, solar-reflective materials can also be produced in a variety of colors.

  8. Guidelines for Inspecting Your Roof Systems.

    ERIC Educational Resources Information Center

    Watkins, Daniel L.

    2003-01-01

    Provides guidelines for inspecting the roof of a facility. Suggests that periodic roof inspections should be performed on a quarterly or semi-annual basis and after severe storms. Proactively identifying potential problem areas is the best defense against roof leaks. (SLD)

  9. Department of the Air Force FY 1994 Budget Estimates, Military Construction and Family Housing. Volume 1. Justification Data Submitted to Congress April 1993

    DTIC Science & Technology

    1993-01-01

    concrete floor, masonry walls, roof joists, and roof system. Facility includes dining area, kitchen, serving area, dishwashing area, bakery , regular and...brick exterior, and standing seam metal roof. Facility includes dining area, serving line, kitchen, dishwashing area, bakery , refrigerated and non...desperately needed. Adequate child care is much more difficult to obtain in Europe than in the States since there are no franchised child care centers on the

  10. [Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].

    PubMed

    Dong, Wen; Li, Huai-En; Li, Jia-Ke

    2013-02-01

    In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.

  11. 112. ARAI Hot cell (ARA626) Building roof plan and details ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. ARA-I Hot cell (ARA-626) Building roof plan and details of roof ventilating equipment and parapet. Norman Engineering Company: 961-area/SF-626-A-2. Date: January 1959. Ineel index code no. 068-0626-00-613-102722. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  12. Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ban-Weiss, G. A.; Zhang, K.; Liu, J.

    2016-12-01

    Solar reflective "cool roofs" absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11±0.10 K) and the United States (-0.14±0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.

  13. Water quality function of an extensive vegetated roof.

    PubMed

    Todorov, Dimitar; Driscoll, Charles T; Todorova, Svetoslava; Montesdeoca, Mario

    2018-06-01

    In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A micro-computed tomographic study of band-shaped root canal isthmuses, having their floor in the apical third of mesial roots of mandibular first molars.

    PubMed

    Keleş, A; Keskin, C

    2018-02-01

    To conduct a quantitative and qualitative analysis of the band-shaped isthmus area, the floor of which was in the apical third in the mesial roots of mandibular first molars using micro-computed tomography (micro-CT). Micro-CT images of 269 mesial roots of mandibular first molars were evaluated, and 40 specimens with a band-shaped isthmus, with a floor in the apical third, were selected. The major diameter, minor diameter, roundness, area and perimeter values for the most coronal and apical slices where the isthmus was visible were measured. The distances between these slices were measured as the isthmus length, and the total volume, structure model index and surface area of the isthmus were measured. The distances between the isthmus floor and two apical foramina and the number of root canal orifices were calculated. The dimensions of the isthmus roof and the floor were compared, and the data were analysed using descriptive statistics and Student's t-tests with a significance threshold set at 5%. A total of 15% of the specimens had band-shaped isthmuses with a floor in the apical third. The isthmus roof exhibited significantly greater major and minor diameter values compared to the isthmus floor (P < 0.05). No significant difference was detected between the isthmus roof and the floor with regard to roundness (P > 0.05). Three- and two-dimensional analyses of the mesial roots of mandibular molars revealed that band-shaped isthmuses had complex shapes. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Green Roofs: A Part of Green Infrastructure Strategy for Urban Areas

    EPA Science Inventory

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provides insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA rep...

  16. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat heterogeneity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.

  18. 75 FR 12988 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... roofing manufacturing area source category (74 FR 63236). Following signature of this final rule, EPA...). Following signature of the final asphalt processing and asphalt roofing manufacturing area source standards...

  19. Asbestos-containing materials and airborne asbestos levels in industrial buildings in Korea.

    PubMed

    Choi, Sangjun; Suk, Mee-Hee; Paik, Nam Won

    2010-03-01

    Recently in Korea, the treatment of asbestos-containing materials (ACM) in building has emerged as one of the most important environmental health issues. This study was conducted to identify the distribution and characteristics of ACM and airborne asbestos concentrations in industrial buildings in Korea. A total of 1285 presumed asbestos-containing material (PACM) samples were collected from 80 workplaces across the nation, and 40% of the PACMs contained more than 1% of asbestos. Overall, 94% of the surveyed workplaces contained ACM. The distribution of ACM did not show a significant difference by region, employment size, or industry. The total ACM area in the buildings surveyed was 436,710 m2. Ceiling tile ACM accounted for 61% (267,093 m2) of the total ACM area, followed by roof ACM (32%), surfacing ACM (6.1%), and thermal system insulation (TSI). In terms of asbestos type, 98% of total ACM was chrysotile, while crocidolite was not detected. A comparison of building material types showed that the material with the highest priority for regular management is ceiling tile, followed by roof, TSI, and surfacing material. The average airborne concentration of asbestos sampled without disturbing in-place ACM was 0.0028 fibers/cc by PCM, with all measurements below the standard of recommendation for indoor air quality in Korea (0.01 fibers/cc).

  20. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...

  1. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...

  2. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...

  3. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...

  4. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs.

    PubMed

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-05-01

    Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized by specific trait assemblages. The study also provides details on the environmental conditions that influence arthropod diversity and gives new perspectives on how the design of green roofs can be improved to increase their ecological value. Furthermore, the study highlights the importance of integrating green roofs in planning policies which aim to enhance urban habitat connectivity. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  5. Experimental Investigation of Thermal Performance in a Vehicle Cabin Test Setup With Pcm in the Roof

    NASA Astrophysics Data System (ADS)

    Purusothaman, M.; kota, Saichand; Cornilius, C. Sam; Siva, R.

    2017-05-01

    Heat flow from the roof with radiation through glass windows obviously high level that contributes to the total heat gained of a vehicle cabin. The cabin temperature of closed stationary vehicles in direct sunlight can quickly rise to a very level that may damage property and harm children or pets left in the vehicle. The problem that is faced by many car users today is very hot interior after certain minutes or hours of parking in open or un-shaded parking area. The heat accumulated inside the vehicle with undesired temperature rise would cause the parts of the car’s interior to degrade. Even the passengers are affected with the thermal condition inside the vehicle itself. The passenger has to wait for a certain time before getting into the car to cool down the interior condition either by lowering down the window or switching on the air conditioner at high speed that really affect the fuel consumption. A new roofing structure to improve its total thermal resistance is developed. Its uses phase change material properties to trap the heat from solar radiation and then release it back to the outer atmosphere by external convection when the vehicle is in use or during the nocturnal cycle. Phase change material, which has become an attractive means to store. Thermal energy, which has a wide range of applications, has been used. Phase change material has a high heat of fusion which is able to store and release large amount of energy. This PCM has been insulated in the roof of the vehicle to arrest the heat entering into the vehicle cabin. Experimental and numerical analyses have been conducted to compare the thermal performance of the new roofing structure and the normal roofing. By this experiment, the cooling process of the cabin could be much lower. The experimental investigation revealed that, on a hot day, the interior temperature of the vehicles cabin was approximately 22ºCe higher than the ambient temperature. The results show that the new roofing structure could effectively reduce the inlet of heat from the roof into the cabin. As a result, the interior temperature of the cabin could be much lower.

  6. 5. ROOF DETAIL, LOOKING EAST TOWARD SECOND FLOOR WAREHOUSE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ROOF DETAIL, LOOKING EAST TOWARD SECOND FLOOR WAREHOUSE FROM ROOF OF ASSEMBLY AREA. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  7. [Capacity of extensive green roof to retain rainwater runoff in hot and humid region.

    PubMed

    Liu, Ming Xin; Dai, Se Ping; Zhou, Tian Yang; Ruan, Lin; Zhang, Qiao Song

    2017-02-01

    The water logging has become the environmental problem of major cities with the sharp increase of impermeable urban pavement as the contributing cause. Abroad, the green roof has been widely used as a practical measure to intercept rainwater, yet the capacity of green roof to retain rainwater varies with climate conditions. As the hot and humid climate zone features high temperature, humidity and precipitation, it is meaningful to study the capacity of green roof to retain rainwater under such climatic condition. In this research, 3 plat forms were set up in Guangzhou in rainy and hot summer to test the capability of simple green roof to retain rainwater runoff, and the efficiency of green roof to retain rainwater under local climate conditions was worked out based on the meteorological observation and data measurement during the 13-month test period. The results showed that the simple green roof with a substrate thickness of 30, 50 and 70 mm could retain 27.2%, 30.9% and 32.1% of precipitation and reduce the average peak value by 18.9%, 26.2% and 27.7%, respectively. Given an urban built-up area of 1035.01 km 2 in Guangzhou and a roof area percentage of approximately 37.3% and assuming the green roofs with 30 mm-thick substrate were applied within the area, the light, medium and heavy rain could be delayed at 72.8%, 22.6% and 17.4%, respectively. Accordingly, the rainwater retained could reach up to 14317×10 4 m 3 . It suggested the great potential of the simple green roof in retaining rainwater. The research could serve as reference for the hot and humid climate zone to alleviate water logging and visualize sponge city construction.

  8. Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia.

    PubMed

    Huston, R; Chan, Y C; Chapman, H; Gardner, T; Shaw, G

    2012-03-15

    Due to prolonged droughts in recent years, the use of rainwater tanks in urban areas has increased in Australia. In order to apportion sources of contribution to heavy metal and ionic contaminants in rainwater tanks in Brisbane, a subtropical urban area in Australia, monthly tank water samples (24 sites, 31 tanks) and concurrent bulk deposition samples (18 sites) were collected during mainly April 2007-March 2008. The samples were analysed for acid-soluble metals, soluble anions, total inorganic carbon and total organic carbon, and characteristics such as total solid and pH. The Positive Matrix Factorisation model, EPA PMF 3.0, was used to apportion sources of contribution to the contaminants. Four source factors were identified for the bulk deposition samples, including 'crustal matter/sea salt', 'car exhausts/road side dust', 'industrial dust' and 'aged sea salt/secondary aerosols'. For the tank water samples, apart from these atmospheric deposition related factors which contributed in total to 65% of the total contaminant concentration on average, another six rainwater collection system related factors were identified, including 'plumbing', 'building material', 'galvanizing', 'roofing', 'steel' and 'lead flashing/paint' (contributing in total to 35% of the total concentration on average). The Australian Drinking Water Guideline for lead was exceeded in 15% of the tank water samples. The collection system related factors, in particular the 'lead flashing/paint' factor, contributed to 79% of the lead in the tank water samples on average. The concentration of lead in tank water was found to vary with various environmental and collection system factors, in particular the presence of lead flashing on the roof. The results also indicated the important role of sludge dynamics inside the tank on the quality of tank water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Simulation and Evaluation of Low Impact Development of Urban Residential District Based on SWMM and GIS

    NASA Astrophysics Data System (ADS)

    Huang, Tielan; Wang, Yunpeng; Zhang, Jinlan

    2017-07-01

    In this study, simulation and evaluation of low impact development in resident district was carried out based on Storm Water Management Model (SWMM) and GIS method. In the evaluation model, we added 3 kinds of low impact development facilities, namely permeable pavement, rainwater garden, and green roof. These facilities are used alone or in combination. The model was run under five different rainfall reappearing periods. The simulation results using low impact development facilities were compared with simulation results under the current situation and undeveloped state. The results show that the total amount of runoff was greatly reduced by using various types of low impact development facilities in the urban residential district. The maximum reduction rate was using permeable pavement, reached 29.9%, followed was using rainwater garden, and the worst was using green roof. The lowest cost of reduction of the total amount of runoff was using permeable pavement, the followed was using rainwater garden, and the highest was using green roof. The combination scheme of various low impact development facilities has the highest efficiency of reducing total amount of runoff, and the lowest cost, which considering of the actual situation of the study area. The study indicated that application of low impact development facilities can reduce surface runoff effectively, which should be a useful way for prevention of urban waterlogging.

  10. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations.

    PubMed

    Carpenter, Corey M G; Todorov, Dimitar; Driscoll, Charles T; Montesdeoca, Mario

    2016-11-01

    Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011-2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 30 CFR 75.202 - Protection from falls of roof, face and ribs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection from falls of roof, face and ribs... Protection from falls of roof, face and ribs. (a) The roof, face and ribs of areas where persons work or travel shall be supported or otherwise controlled to protect persons from hazards related to falls of the...

  12. 30 CFR 75.202 - Protection from falls of roof, face and ribs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection from falls of roof, face and ribs... Protection from falls of roof, face and ribs. (a) The roof, face and ribs of areas where persons work or travel shall be supported or otherwise controlled to protect persons from hazards related to falls of the...

  13. 30 CFR 75.202 - Protection from falls of roof, face and ribs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection from falls of roof, face and ribs... Protection from falls of roof, face and ribs. (a) The roof, face and ribs of areas where persons work or travel shall be supported or otherwise controlled to protect persons from hazards related to falls of the...

  14. 30 CFR 75.202 - Protection from falls of roof, face and ribs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protection from falls of roof, face and ribs... Protection from falls of roof, face and ribs. (a) The roof, face and ribs of areas where persons work or travel shall be supported or otherwise controlled to protect persons from hazards related to falls of the...

  15. 30 CFR 75.202 - Protection from falls of roof, face and ribs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection from falls of roof, face and ribs... Protection from falls of roof, face and ribs. (a) The roof, face and ribs of areas where persons work or travel shall be supported or otherwise controlled to protect persons from hazards related to falls of the...

  16. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider

    Cool roofs, cool pavements, and urban vegetation reduce energy use in buildings, lower local air pollutant concentrations, and decrease greenhouse gas emissions from urban areas. This report summarizes the results of a detailed monitoring project in India and related simulations of meteorology and air quality in three developing countries. The field results quantified direct energy savings from installation of cool roofs on individual commercial buildings. The measured annual energy savings potential from roof-whitening of previously black roofs ranged from 20-22 kWh/m2 of roof area, corresponding to an air-conditioning energy use reduction of 14-26% in commercial buildings. The study estimated thatmore » typical annual savings of 13-14 kWh/m2 of roof area could be achieved by applying white coating to uncoated concrete roofs on commercial buildings in the Metropolitan Hyderabad region, corresponding to cooling energy savings of 10-19%. With the assumption of an annual increase of 100,000 square meters of new roof construction for the next 10 years in the Metropolitan Hyderabad region, the annual cooling energy savings due to whitening concrete roof would be 13-14 GWh of electricity in year ten alone, with cumulative 10-year cooling energy savings of 73-79 GWh for the region. The estimated savings for the entire country would be at least 10 times the savings in Hyderabad, i.e., more than 730-790 GWh. We estimated that annual direct CO2 reduction associated with reduced energy use would be 11-12 kg CO2/m2 of flat concrete roof area whitened, and the cumulative 10-year CO2 reduction would be approximately 0.60-0.65 million tons in India. With the price of electricity estimated at seven Rupees per kWh, the annual electricity savings on air-conditioning would be approximately 93-101 Rupees per m2 of roof. This would translate into annual national savings of approximately one billion Rupees in year ten, and cumulative 10-year savings of over five billion Rupees for cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.« less

  17. Towards Providing Solutions to the Air Quality Crisis in the Mexico City Metropolitan Area: Carbon Sequestration by Succulent Species in Green Roofs

    PubMed Central

    Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo

    2017-01-01

    INTRODUCTION: In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. METHODS: Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants’ carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. RESULTS: The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. DISCUSSION: The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and other “megacities” with marked seasonal drought. PMID:28480127

  18. Towards Providing Solutions to the Air Quality Crisis in the Mexico City Metropolitan Area: Carbon Sequestration by Succulent Species in Green Roofs.

    PubMed

    Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo

    2017-03-31

    In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants' carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and other "megacities" with marked seasonal drought.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng

    Solar reflective “cool roofs” absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofsmore » in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (0.11±0.10 K) and the United States (0.14±0.12 K); India and Europe show statistically insignificant changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (0.0021 ±0.026 K). This counters past research suggesting that cool roofs can reduce, or even increase global mean temperatures. Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.« less

  20. Impact of aerial infrared roof moisture scans on the U.S. Army's ROOFER program

    NASA Astrophysics Data System (ADS)

    Knehans, Al; Ledford, Jim

    1993-04-01

    The ROOFER program is being used by the U.S. Army to inspect and evaluate its built-up and single-ply membrane roofs. The results of the inspection effort are used to develop an overall roof condition index. The condition of the roof insulation can greatly alter the final condition index. By using an aerial infrared (IR) roof moisture scan, all the insulated roofs at most Army installations can be effectively surveyed in a very short time. The aerial scans have detected numerous areas of wet roof insulation, which has had a profound impact on the results of the ROOFER program. The scans have also provided management personnel with more accurate analysis as to the actual condition of the installation's insulated roofs.

  1. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-20

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Snow loads on roofs in areas of heavy snowfall

    Treesearch

    Robert D. Doty; Glenn H. Deitschman

    1966-01-01

    This study tested the feasibility of estimating snow loads on roofs from measurements of depth and water content of snow on nearby ground. The water content, and therefore the weight, of snow on the ground proved comparable to that of snow on roofs.

  3. Characterization and first flush analysis in road and roof runoff in Shenyang, China.

    PubMed

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Gong, Jiping; Sun, Fengyun; Xu, Yanyan

    2014-01-01

    As urbanization increases, urban runoff is an increasingly important component of total urban non-point source pollution. In this study, the properties of urban runoff were examined in Shenyang, in northeastern China. Runoff samples from a tiled roof, a concrete roof and a main road were analyzed for key pollutants (total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), Pb, Cd, Cr, Cu, Ni, and Zn). The event mean concentration, site mean concentration, M(V) curves (dimensionless cumulative curve of pollutant load with runoff volume), and mass first flush ratio (MFF30) were used to analyze the characteristics of pollutant discharge and first flush (FF) effect. For all events, the pollutant concentration peaks occurred in the first half-hour after the runoff appeared and preceded the flow peaks. TN is the main pollutant in roof runoff. TSS, TN, TP, Pb, and Cr are the main pollutants in road runoff in Shenyang. There was a significant correlation between TSS and other pollutants except TN in runoff, which illustrated that TSS was an important carrier of organic matter and heavy metals. TN had strong positive correlations with total rainfall (Pearson's r = 0.927), average rainfall (Pearson's r = 0.995), and maximum rainfall intensity (Pearson's r = 0.991). TP had a strong correlation with rainfall intensity (Pearson's r = 0.940). A significant positive correlation between COD and rainfall duration (Pearson's r = 0.902, significance level = 0.05) was found. The order of FF intensity in different surfaces was concrete roof > tile roof > road. Rainfall duration and the length of the antecedent dry period were positively correlated with the FF. TN tended to exhibit strong flush for some events. Heavy metals showed a substantially stronger FF than other pollutant.

  4. 40 CFR 761.123 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., floors, roofs, roadways and sidewalks in the industrial area, utility poles, unmanned machinery, concrete... areas above 6 feet in height, roofs, asphalt roadways, concrete roadways, wooden utility poles, unmanned..., metals, glass, aluminum siding, and enameled or laminated surfaces. Low-concentration PCBs means PCBs...

  5. 40 CFR 761.123 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., floors, roofs, roadways and sidewalks in the industrial area, utility poles, unmanned machinery, concrete... areas above 6 feet in height, roofs, asphalt roadways, concrete roadways, wooden utility poles, unmanned..., metals, glass, aluminum siding, and enameled or laminated surfaces. Low-concentration PCBs means PCBs...

  6. 40 CFR 761.123 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., floors, roofs, roadways and sidewalks in the industrial area, utility poles, unmanned machinery, concrete... areas above 6 feet in height, roofs, asphalt roadways, concrete roadways, wooden utility poles, unmanned..., metals, glass, aluminum siding, and enameled or laminated surfaces. Low-concentration PCBs means PCBs...

  7. Eco-Environmental Factors in Green Roof Application in Indian Cities

    NASA Astrophysics Data System (ADS)

    Mukherjee, M.

    2014-09-01

    Green-roof is the cost-effective environmental mitigation strategy for urban areas [1]. Its application is limited in India primarily due to inadequate understanding about its cost-benefit analysis and technicalities of its maintenance. Increasing awareness about green roof can alter conservative attitude towards its application. So, this work presents a quantified study on green-roof types, cost and environmental benefits while considering different geo-urban climate scenarios for cities of Kolkata, Mumbai, Chennai and New Delhi. Cost estimation for extensive and intensive green-roof with reference to commonly used roof in urban India is also worked out. Attributes considered for environmental discussion are energy savings related to thermal heat gain through roof, roof-top storm-water drainage and sound attenuation. The comparative study confirms that further focused study on individual cities would identify city-specific objectives for green-roof application; strategies like awareness, capacity building programmes, incentives, demonstration projects etc. can be worked out accordingly for wider application of green-roof in Indian cities.

  8. Saint Joseph's University Institute for Environmental Stewardship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, Micahel P.; Springer, Clint J.

    Task A: Examination of the physiological, morphological, and reproductive responses of Panicum virgatum (switchgrass) cultivars identified as potential biofuel producing cultivars as well as naturally-occurring varieties of switchgrass to projected changes in climate for the central portion of the United States. This project was a multi-year project set in a field site located at the Konza Prairie Biological Station near Manhattan, KS USA. The major objective of the study was to understand the physiological and growth responses of the important biofuel grass species, Panicum virgatum (switch grass) to simulated changes in precipitation expected for the Central Plains region of themore » United States. Population level adaptation to broad-scale regional climates or within-population variation in genome size of this genetically and phenotypically diverse C4 grass species may influence the responses to future precipitation variability associated with climate change. Therefore, we investigated switchgrass responses to water variability between natural populations collected across latitudinal gradient and populations. P. virgatum plants from natural populations originating from Kansas, Oklahoma, and Texas received frequent, small precipitation events (“ambient’) or infrequent, large precipitation events (‘altered”) to simulate contrasting rainfall variability expected from this region. We measured leaf-level physiology, aboveground biomass varied significantly by population origin but did not differ by genome size. Our results suggest that trait variation in P. virgatum is primarily attributed to population-level adaptation across latitudinal gradient, not genome size, and that neither population-level adaptation nor genome size may be important predictors of P. virgatum responses to future climatic conditions. Based solely on the data presented here, the most important consideration when deciding what varieties of switchgrass to cultivate for biofuel feedstocks under future climate scenarios is local adaptation and not necessarily genome size as has been hypothesized in the literature. Task B: Installation of an extensive green roof system on the Science Center at Saint Joseph's University for research, research-training and educational outreach activities. An experimental green roof system was designed and installed by an outside contractor (Roofmeadows) on the roof of the Science Center at Saint Joseph's University. The roof system includes four test plots, each with a different drainage system, instrumentation to monitor storm water retention, roof deck temperature, heat flux into and out of the building, rain fall, wind speed and direction, relative humidity and heat emission from the roof system. The vegetative roof was planted with 26 species of plants, distributed throughout the roof area, to assess species/variety growth and coverage characteristics, both in terms of the different drain layer systems, and in terms of the different exposures along the north to south axis of the building. Analysis of the drain layer performance, in terms of storm water retention, shows that the aggregate (stone) drainage layer system performed the best, with the moisture management mat system second, and the geotextile drain layer and reservoir sheet layer systems coming in last. This information is of value in the planning and design of vegetative roof systems since the different types of drainage layer systems have different installation costs and different weights. The different drainage layer systems also seem to be having an impact on plant growth and spread with the test plot with the reservoir sheet layer actually having the poorest plant coverage and plant spread of all areas of the roof studied. Plant growth performance analysis is ongoing, but significant differences have been observed in the third growing season ('13) along the north to south axis, with most species doing better towards the northern end of the roof (in terms of percent ground coverage and plant spread and reproduction). Interestingly, plant growth in all four of the test plots was reduced relative to the lower areas of the roof (the lower area was ca. 2 inches lower than the test plots, due to the space needed for sensors under the plots. The lower roof area uses an aggregate drain layer comparable to that in the third test plot), even when accounting for the north to south differences. The reasons for these differences are not clear and studies are underway to examine the impact of wind scour, drainage rates, temperature, and other factors. This information will be of value to planners of extensive vegetative roof systems in the Philadelphia (and broader) region, since plant growth and roof system overall performance is influenced by local climate, making broad generalizations of performance difficult. Task C: Education and community outreach efforts by the IES involving conferences at SJU, presentations by faculty and students off campus, and educational signage. The Institute for Environmental Stewardship hosted three storm water management workshops on the SJU campus in Philadelphia, in collaboration with the Lower Merion Conservancy, a not-for-profit organization located in Montgomery County, PA. These workshops were free and open to the public. The three workshops (held each year in March) drew more than 200 participants total. The presenters included local and state government agencies, not for profit organizations involved in storm water and open space preservation, designers, engineers, planners and others. Feedback was uniformly positive and we plan to continue the workshops for the foreseeable future. Educational signage has been installed at four locations on campus to explain campus infrastructure related to storm water (rain gardens, vegetative roof and green facades), as well as detailed signage installed on the Science Center roof for the vegetative roof system. More than 100 people (from in and outside of SJU) have thus far participated in tours of the roof system. A digital signage system has been installed in the adjacent library and this system provides information about the vegetative roof project and other efforts. A web camera system for the roof has also been installed and the video will be simulcast to the digital signage and with web site (www.sju.edu/ies) in the near future.« less

  9. A Review of Methods for the Manufacture of Residential Roofing Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Levinson, Ronnen; Berdahl, Paul

    2003-06-01

    Shingles, tiles, and metal products comprise over 80% (by roof area) of the California roofing market (54-58% fiberglass shingle, 8-10% concrete tile, 8-10% clay tile, 7% metal, 3% wood shake, and 3% slate). In climates with significant demand for cooling energy, increasing roof solar reflectance reduces energy consumption in mechanically cooled buildings, and improves occupant comfort in non-conditioned buildings. This report examines methods for manufacturing fiberglass shingles, concrete tiles, clay tiles, and metal roofing. The report also discusses innovative methods for increasing the solar reflectance of these roofing materials. We have focused on these four roofing products because they aremore » typically colored with pigmented coatings or additives. A better understanding of the current practices for manufacturing colored roofing materials would allow us to develop cool colored materials creatively and more effectively.« less

  10. Analysis of the Mobilization of Debris Flows

    DTIC Science & Technology

    1974-10-01

    31 17 . Debris-flow source area at Roofing Granule Quarry, San Bernardino County, California 39 18. Debris-flow source area at Roofing Granule...down a channel about 12 to 16 cm wide with a 35 degree slope. Water, oozing out of the landslide mass into 17 wmmaaaamam’j ■ma the debris channel...marble used as roofing granules (Fig. 17 ) 2 1/2 km north of the town of Wrightwood, about 65 km north- * east of Los Angeles, California (Fig. 1

  11. 77 FR 20700 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... safety standards related to ventilation, methane, roof control, combustible materials, rock dust, other... standards related to ventilation, methane, roof control, combustible materials, rock dust, other safeguards... and unsafe conditions, such as methane accumulations, water accumulations, and adverse roof conditions...

  12. 23. INTERIOR OF TAN 629 HANGAR, TAKEN FROM LOW ROOF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INTERIOR OF TAN 629 HANGAR, TAKEN FROM LOW ROOF, FACING NORTHEAST. SHOWS GROUND LEVEL USE OF FLOOR SPACE FOR TEMPORARY STORAGE OF CRATES. MOISTURE ON SURFACE IS FROM LEAKY HANGAR ROOF. - Idaho National Engineering Laboratory, Test Area North, Hangar No. 629, Scoville, Butte County, ID

  13. PROCESS WATER BUILDING, TRA605. FLOOR AND ROOF PLANS FOR SECOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLOOR AND ROOF PLANS FOR SECOND FLOOR. DETAILS OF CONCRETE ROOF SLABS. FLASH EVAPORATOR SUPPORTS AND PIPE OPENINGS TO TANKS BELOW. NOTE SPECIFIES THAT EQUIPMENT IS TO BE INSTALLED BEFORE ERECTION OF ROOF AND WALLS. BLAW-KNOX 3150-805-4, 1/1951. INL INDEX NO. 531-0605-62-098-100660, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Design and development of green roof substrate to improve runoff water quality: plant growth experiments and adsorption.

    PubMed

    Vijayaraghavan, K; Raja, Franklin D

    2014-10-15

    Many studies worldwide have investigated the potential benefits achievable by transforming brown roofs of buildings to green roofs. However, little literature examined the runoff quality/sorption ability of green roofs. As the green roof substrate is the main component to alter the quality of runoff, this investigation raises the possibility of using a mixture of low-cost inorganic materials to develop a green roof substrate. The tested materials include exfoliated vermiculite, expanded perlite, crushed brick and sand along with organic component (coco-peat). Detailed physical and chemical analyses revealed that each of these materials possesses different characteristics and hence a mix of these materials was desirable to develop an optimal green roof substrate. Using factorial design, 18 different substrate mixes were prepared and detailed examination indicated that mix-12 exhibited desirable characteristics of green roof substrate with low bulk density (431 kg/m(3)), high water holding capacity (39.4%), air filled porosity (19.5%), and hydraulic conductivity (4570 mm/h). The substrate mix also provided maximum support to Portulaca grandiflora (380% total biomass increment) over one month of growth. To explore the leaching characteristics and sorption capacity of developed green roof substrate, a down-flow packed column arrangement was employed. High conductivity and total dissolved solids along with light metal ions (Na, K, Ca and Mg) were observed in the leachates during initial stages of column operation; however the concentration of ions ceased during the final stages of operation (600 min). Experiments with metal-spiked deionized water revealed that green roof substrate possess high sorption capacity towards various heavy metal ions (Al, Fe, Cr, Cu, Ni, Pb, Zn and Cd). Thus the developed growth substrate possesses desirable characteristics for green roofs along with high sorption capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. 146. ARAIII Control building (ARA607) Roof plan and details. Aerojetgeneral ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. ARA-III Control building (ARA-607) Roof plan and details. Aerojet-general 880-area/GCRE-607-A-3. Date: February 1958. Ineel index code no. 063-0607-00-013-102548. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  16. Micrometeorological observations of carbon, water vapor and heat exchanges on the California Academy of Sciences' living roof using eddy covariance

    NASA Astrophysics Data System (ADS)

    Lavender, S.; Oliphant, A. J.; Thorp, R.

    2014-12-01

    Living roofs have very different surface energy, water and carbon budgets than conventional roofs. Since roofs cover approximately one third of the planimetric surface area of cities, they are a significant driver of the urban boundary layer. Living roofs have been thought to be beneficial for reducing the urban heat island through increased latent heat exchange, uptake of atmospheric carbon dioxide and storage in soil and plant matter, building energy conservation through soil heat storage and latent heat fluxes and reduction in runoff. Here we present evidence of some of these through ongoing observations of surface energy, water and carbon budget estimates for the extensive living roof of the California Academy of Sciences building in Golden Gate Park, San Francisco, California. Micrometeorological measurements including the eddy covariance approach are used to estimate CO2, water vapor and both ground and atmospheric heat fluxes. The California Academy's roof encompasses an area of 18,000 m2. Vegetation surveys were conducted in the spring; beach strawberry (Fragaria chiloensis) and California bentgrass (Agrostis) were found to dominate the project footprint out of the 26 species observed. Eddy covariance measurements are made about one meter above the 10-20 cm tall vegetation on the downwind side of the building. Approximately 50% of data are rejected due to less than 80% of the flux source area being contained in the roof or due to low friction velocity. Nevertheless, we are able to develop robust diurnal ensemble fluxes, and will present data from a nine month period. During summer, the roof acted as a carbon sink of approximately 1.5 gC m-2 d-1. Turbulent heat fluxes were dominated by sensible heat flux with a mean Bowen ratio of approximately 1.5 and daily evapotranspiration rates of about 1.8 mm d-1. The role of seasonality and meteorology on surface microclimate characteristics will also be discussed.

  17. Building rooftop classification using random forests for large-scale PV deployment

    NASA Astrophysics Data System (ADS)

    Assouline, Dan; Mohajeri, Nahid; Scartezzini, Jean-Louis

    2017-10-01

    Large scale solar Photovoltaic (PV) deployment on existing building rooftops has proven to be one of the most efficient and viable sources of renewable energy in urban areas. As it usually requires a potential analysis over the area of interest, a crucial step is to estimate the geometric characteristics of the building rooftops. In this paper, we introduce a multi-layer machine learning methodology to classify 6 roof types, 9 aspect (azimuth) classes and 5 slope (tilt) classes for all building rooftops in Switzerland, using GIS processing. We train Random Forests (RF), an ensemble learning algorithm, to build the classifiers. We use (2 × 2) [m2 ] LiDAR data (considering buildings and vegetation) to extract several rooftop features, and a generalised footprint polygon data to localize buildings. The roof classifier is trained and tested with 1252 labeled roofs from three different urban areas, namely Baden, Luzern, and Winterthur. The results for roof type classification show an average accuracy of 67%. The aspect and slope classifiers are trained and tested with 11449 labeled roofs in the Zurich periphery area. The results for aspect and slope classification show different accuracies depending on the classes: while some classes are well identified, other under-represented classes remain challenging to detect.

  18. Surface roughness effects on the solar reflectance of cool asphalt shingles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Berdahl, Paul; Akbari, Hashem

    2008-02-17

    We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with smallmore » corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.« less

  19. 77 FR 65397 - Federal Property Suitable as Facilities To Assist the Homeless

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    .../fungus; severe water damage; deteriorating roof; secured area; contact Interior for info. on... Carolina Tract 29666 209 Water Plant Rd. Ocracoke NC 27960 Landholding Agency: Interior Property Number... roof; secured area; contact Interior for info. on accessibility/removal Tract 29665 199 Water Plant Rd...

  20. Marine origin of pyritic sulfur in the Lower Bakerstown coal bed, Castleman coal field, Maryland (U.S.A.)

    USGS Publications Warehouse

    Lyons, P.C.; Whelan, J.F.; Dulong, F.T.

    1989-01-01

    The amount, kind, distribution, and genesis of pyrite in the Lower Bakerstown coal bed in a 150 ?? 15 m area of the Bettinger mine, Castleman coal field, Maryland, were studied by various analytical techniques. The mined coal, which had a nonmarine roof rock, contained 1.4-2.8 wt.% total sulfur, generally much lower than the high-sulfur coal (> 3.0 wt.% total S) to the north, which is associated with marine roof rocks. Small-scale systematic and nonsystematic variations in total sulfur and pyrite distribution were found in the mined area. In the column sample, most of the pyrite was found in the upper 9 cm of the 69-cm-thick mined coal and occurred mainly as a pyrite lens containing cell fillings in seed-fern tissue (coal ball). As-bearing pyrite was detected by laser microprobe techniques in the cell walls of this tissue but not elsewhere in the column sample. This may indicate that the As was derived from decomposition of organic matter in the cell walls. The sulfur isotopic composition and distribution of pyrite in the coal are consistent with introduction of marine sulfate shortly after peat deposition, followed by bacterial reduction and pyrite precipitation. Epigenetic cleat pyrite in the coal is isotopically heavy, implying that later aqueous sulfate was 34S-enriched. ?? 1989.

  1. Software for roof defects recognition on aerial photographs

    NASA Astrophysics Data System (ADS)

    Yudin, D.; Naumov, A.; Dolzhenko, A.; Patrakova, E.

    2018-05-01

    The article presents information on software for roof defects recognition on aerial photographs, made with air drones. An areal image segmentation mechanism is described. It allows detecting roof defects – unsmoothness that causes water stagnation after rain. It is shown that HSV-transformation approach allows quick detection of stagnation areas, their size and perimeters, but is sensitive to shadows and changes of the roofing-types. Deep Fully Convolutional Network software solution eliminates this drawback. The tested data set consists of the roofing photos with defects and binary masks for them. FCN approach gave acceptable results of image segmentation in Dice metric average value. This software can be used in inspection automation of roof conditions in the production sector and housing and utilities infrastructure.

  2. Modelling of green roofs' hydrologic performance using EPA's SWMM.

    PubMed

    Burszta-Adamiak, E; Mrowiec, M

    2013-01-01

    Green roofs significantly affect the increase in water retention and thus the management of rain water in urban areas. In Poland, as in many other European countries, excess rainwater resulting from snowmelt and heavy rainfall contributes to the development of local flooding in urban areas. Opportunities to reduce surface runoff and reduce flood risks are among the reasons why green roofs are more likely to be used also in this country. However, there are relatively few data on their in situ performance. In this study the storm water performance was simulated for the green roofs experimental plots using the Storm Water Management Model (SWMM) with Low Impact Development (LID) Controls module (version 5.0.022). The model consists of many parameters for a particular layer of green roofs but simulation results were unsatisfactory considering the hydrologic response of the green roofs. For the majority of the tested rain events, the Nash coefficient had negative values. It indicates a weak fit between observed and measured flow-rates. Therefore complexity of the LID module does not affect the increase of its accuracy. Further research at a technical scale is needed to determine the role of the green roof slope, vegetation cover and drying process during the inter-event periods.

  3. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE PAGES

    Vahmani, P.; Sun, F.; Hall, A.; ...

    2016-12-15

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  4. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.

    2016-12-01

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using ‘cool photovoltaics’.

  5. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahmani, P.; Sun, F.; Hall, A.

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  6. PBF Control Building (PER619) floor plan and elevations. Room numbers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619) floor plan and elevations. Room numbers and functions. Roof plans for "high" roof and rest of roof. Ebasco Services 1205-PER/PER 619-A-1. Date: July 1965. INEEL index no. 760-0619-00-205-123022 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. Roof top extensions for multifamily houses in Slovakia

    NASA Astrophysics Data System (ADS)

    Szekeres, K.

    2010-12-01

    In the countries of the European Union with the exception of Malta, approximately 100.1 million multifamily dwelling units are situated. These dwellings count for an average of 47.5% of the total housing stock in European Union countries. At present in Slovakia and also other countries of Central and Eastern Europe, there are vast housing areas which were built after World War II. Slovakia's multifamily housing stock was privatized during the 1990s. Considering that the economy of Slovakia is not capable of replacing the existing housing fund, which is located in the multifamily houses that were built after World War II, it is necessary to place an increased emphasis on the renovation of this housing fund. The expenditures for the refurbishment of multifamily housing stock in recent decades, when compared with the demand, have been at a very low level. The main problems involving the current multifamily housing stock in Slovakia are: the need for modernization, the low level of energy efficiency, and the insufficient level of building maintenance. One of the options for creating sufficient sources for the renovation of apartment buildings is to utilize the roofs of apartment buildings as construction areas for building additional floors (over - roofing). The means acquired from the sale of the new floors after deducting the costs can be used for renovation. It is a matter of a one-time possibility, which is limited by many factors that depend on the localization and constructive technical solutions for apartment buildings. This article is an outcome of the SuReFit "Sustainable Roof Extension Retrofit for High-Rise Social Housing in Europe" international research project.

  8. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  9. Roof Moisture Surveys: Current State Of The Technology

    NASA Astrophysics Data System (ADS)

    Tobiasson, Wayne

    1983-03-01

    Moisture is the big enemy of compact roofing systems. Non-destructive nuclear, capacitance and infrared methods can all find wet insulation in such roofs but a few core samples are needed for verification. Nuclear and capacitance surveys generate quantitative results at grid points but examine only a small portion of the roof. Quantitative results are not usually provided by infrared scanners but they can rapidly examine every square inch of the roof. Being able to find wet areas when they are small is an important advantage. Prices vary with the scope of the investigation. For a particular scope, the three techniques are often cost-competitive. The limitations of each technique are related to the people involved as well as the equipment. When the right people are involved, non-destructive surveys are a very effective method for improving the long-term performance and reducing the life-cycle costs of roofing systems. Plans for the maintenance, repair or replacement of a roof should include a roof moisture survey.

  10. Urban planning and agriculture. Methodology for assessing rooftop greenhouse potential of non-residential areas using airborne sensors.

    PubMed

    Nadal, Ana; Alamús, Ramón; Pipia, Luca; Ruiz, Antonio; Corbera, Jordi; Cuerva, Eva; Rieradevall, Joan; Josa, Alejandro

    2017-12-01

    The integration of rooftop greenhouses (RTGs) in urban buildings is a practice that is becoming increasingly important in the world for their contribution to food security and sustainable development. However, the supply of tools and procedures to facilitate their implementation at the city scale is limited and laborious. This work aims to develop a specific and automated methodology for identifying the feasibility of implementation of rooftop greenhouses in non-residential urban areas, using airborne sensors. The use of Light Detection and Ranging (LIDAR) and Long Wave Infrared (LWIR) data and the Leica ALS50-II and TASI-600 sensors allow for the identification of some building roof parameters (area, slope, materials, and solar radiation) to determine the potential for constructing a RTG. This development represents an improvement in time and accuracy with respect to previous methodology, where all the relevant information must be acquired manually. The methodology has been applied and validated in a case study corresponding to a non-residential urban area in the industrial municipality of Rubí, Barcelona (Spain). Based on this practical application, an area of 36,312m 2 out of a total area of 1,243,540m 2 of roofs with ideal characteristics for the construction of RTGs was identified. This area can produce approximately 600tons of tomatoes per year, which represents the average yearly consumption for about 50% of Rubí total population. The use of this methodology also facilitates the decision making process in urban agriculture, allowing a quick identification of optimal surfaces for the future implementation of urban agriculture in housing. It also opens new avenues for the use of airborne technology in environmental topics in cities. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 117. ARAI Shop and maintenance (ARA627) building roof and floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. ARA-I Shop and maintenance (ARA-627) building roof and floor plan. Includes room finish and equipment schedule. Norman Engineering Company 961-area/SF-627-A-1. Date: January 1959. Ineel index code no. 068-0627-00-613-102759. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  12. Cold Fusion.

    ERIC Educational Resources Information Center

    Dutton, Eileen; Salazar, Chris

    1998-01-01

    Discusses ways of preparing school-building roofs for the winter season by paying attention to common problem areas. Also highlights the use of white elastomeric roof coatings, their benefits, and considerations when applying them. (GR)

  13. Study of application of ERTS-A imagery to fracture-related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.; Leshendok, T.

    1973-01-01

    The author has identified the following significant results. The Kings Station Mine in Gibson County, Indiana has experienced considerable roof fall problems. Detailed fracture mapping of the mine area was done with ERTS-1 and aircraft imagery, and a prediction map of roof problem areas was produced in advance of a visit. The visit to the mine and discussions with the operator indicated that of four zones mapped as potential problem areas, three coincided with areas of excessive roof fall. This positive correlation of 75% lends confidence to the validity of the technique being applied in the investigation. The mine officials expressed an interest in the project and are anxious to see the final product maps which are forthcoming.

  14. Reducing Heat Gains and Cooling Loads Through Roof Structure Configurations of A House in Medan

    NASA Astrophysics Data System (ADS)

    Handayani Lubis, Irma; Donny Koerniawan, Mochamad

    2018-05-01

    Heat gains and heat losses through building surfaces are the main factors that determine the building’s cooling and heating loads. Roof as a building surface that has the most exposed area to the sun, contribute most of heat gains in the building. Therefore, the amount of solar heat gains on the roofs need to be minimized by roof structure configurations. This research aims to discover the optimization of roof structure configurations (coating material, structure material, inclination, overhang, and insulation) as one of passive design strategies that reduce heat gains and cooling loads of a house in Medan. The result showed that case four, white-painted metal roof combined with 45° roof pitched, 1.5m overhang, and addition of insulation, indicates the minimum heat gains production and the less cooling loads during clear sky day but not in the overcast sky condition. In conclusion, heat gains and cooling loads of a house in Medan could be diminished during clear sky day by the addition of roof coating with high reflectance low solar absorbtance, the slope roof, the extension of wider veranda, and the addition of insulation in the roof structure.

  15. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by the winter-time penalty, and the net benefit from adopting white roof technology in Portland is small. That said, there are other potential benefits of white roofing such as impact on urban heat islands and roof life that must also be considered.

  16. 52. PHOTOCOPY OF DRAWING AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. PHOTOCOPY OF DRAWING AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, SACKING SHED-FLOTATION UNIT - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  17. 51. PHOTOCOPY OF DRAWING, AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. PHOTOCOPY OF DRAWING, AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, SACKING SHED-FLOTATION UNIT - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  18. Effectiveness of Different Urban Heat Island Mitigation Methods and Their Regional Impacts

    NASA Astrophysics Data System (ADS)

    Zhang, N.

    2017-12-01

    Cool roofs and green roofs are two popular methods to mitigate urban heat island and improve urban climate. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River Delta, China is investigated using the WRF (Weather Research and Forecasting) model coupled with a physically based urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing roof albedo to 0.7 caused a similar near-surface air temperature decrease as 75% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using the regional effect index. The regional effect could be found in both near-surface air temperature and surface specific/relative humidity when the percentage of roofs covered with high albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.

  19. Minimal watering regime impacts on desert adapted green roof plant performance

    NASA Astrophysics Data System (ADS)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and soil moisture readings on each green roof to analyze the spatial and temporal covariance of water and temperature. We link these patterns in soil moisture to measures of plant performance with weekly hyperspectral images (NDVI - Normalized Difference Vegetation Index) of each green roof. The data will allow us to determine the minimal amount of water use required for successful green roofs and healthy green roof plants. Preliminary data from a five week pilot study in the 2011 summer monsoon has shown a variation in NDVI by species. H. parviflora displayed the highest NDVI values, while D. pentachaeta and C. eriophylla shared similar, lower NDVI values. In general, the comparison of soil moisture and NDVI values expressed a very weak positive relationship but stronger species specific responses. D. pentachaeta demonstrated the strongest response to soil water and H. parviflora displayed the weakest response.

  20. Plant functional traits predict green roof ecosystem services.

    PubMed

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  1. Development of a Green Roof Environmental Monitoring and Meteorological Network in New York City

    PubMed Central

    Gaffin, Stuart R.; Khanbilvardi, Reza; Rosenzweig, Cynthia

    2009-01-01

    Green roofs (with plant cover) are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations. PMID:22574037

  2. Development of a green roof environmental monitoring and meteorological network in new york city.

    PubMed

    Gaffin, Stuart R; Khanbilvardi, Reza; Rosenzweig, Cynthia

    2009-01-01

    Green roofs (with plant cover) are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations.

  3. Analysis of urban land use in the megacity of Dhaka, Bangladesh: Roof-top detection in the context of assessing solar photovoltaic potential

    NASA Astrophysics Data System (ADS)

    Jaegermeyr, J.; Kabir, H.; Endlicher, W.

    2009-12-01

    The megacity of Dhaka, Bangladesh is considered to be one of the world’s fastest growing urban centers. With nearly 14 million people Dhaka currently faces tremendous power crisis. The available power supply of Dhaka Megacity is currently 1000-1200 MW against the maximum demand of nearly 2000 MW. The objective of this study is to classify land cover of Dhaka to locate roof-top areas which are adequate for solar photovoltaic applications. Usually this task is performed with additional building-heights data. With lack of that, we present an object-based classification approach which is based on high resolution Quickbird data only. Extensive formal buildings in Dhaka mostly have flat roof-tops made from concrete which are well suited for PV applications. The classification is focused to detect these ‘Bright Roof-Tops’ to assess a lower limit for potential PV areas. With that conservative approach bright roof-top areas of 10.554 km2 out of the city’s 134.282 km2 could be found. The overall classification accuracy is 0.918, the producer’s accuracy of ‘Bright Roof-Tops’ is 0.833. Preliminary result of the PhD work of Humayun Kabir indicates that the application of only 75 Wp stand-alone solar modules on these available bright roof-tops can generate nearly 1,000 MW of electricity. The application of solar modules with high capacity (i.e., >200 Wp) preferably through grid-connected PV systems can substantially meet-up the city’s power demand, although several techno-economic and socio-political factors are certainly involved.

  4. Association Between Local Bipolar Voltage and Conduction Gap Along the Left Atrial Linear Ablation Lesion in Patients With Atrial Fibrillation.

    PubMed

    Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Kanda, Takashi; Sunaga, Akihiro; Tsujimura, Takuya; Matsuda, Yasuhiro; Mano, Toshiaki

    2017-08-01

    A bipolar voltage reflects a thick musculature where formation of a transmural lesion may be hard to achieve. The purpose of this study was to explore the association between local bipolar voltage and conduction gap in patients with persistent atrial fibrillation (AF) who underwent atrial roof or septal linear ablation. This prospective observational study included 42 and 36 consecutive patients with persistent AF who underwent roof or septal linear ablations, respectively. After pulmonary vein isolation, left atrial linear ablations were performed, and conduction gap sites were identified and ablated after first-touch radiofrequency application. Conduction gap(s) after the first-touch roof and septal linear ablation were observed in 13 (32%) and 19 patients (53%), respectively. Roof and septal area voltages were higher in patients with conduction gap(s) than in those without (roof, 1.23 ± 0.77 vs 0.73 ± 0.42 mV, p = 0.010; septal, 0.96 ± 0.43 vs 0.54 ± 0.18 mV, p = 0.001). Trisected regional analyses revealed that the voltage was higher at the region with a conduction gap than at the region without. Complete conduction block across the roof and septal lines was not achieved in 3 (7%) and 6 patients (17%), respectively. Patients in whom a linear conduction block could not be achieved demonstrated higher ablation area voltage than those with a successful conduction block (roof, 1.91 ± 0.74 vs 0.81 ± 0.51 mV, p = 0.001; septal, 1.15 ± 0.56 vs 0.69 ± 0.31 mV, p = 0.006). In conclusion, a high regional bipolar voltage predicts failure to achieve conduction block after left atrial roof or septal linear ablation. In addition, the conduction gap was located at the preserved voltage area. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. 12. INTERIOR VIEW OF ROOF FRAMING IN ATTIC, LOOKING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR VIEW OF ROOF FRAMING IN ATTIC, LOOKING SOUTH. - Dugway Proving Ground, German-Japanese Village, German Village, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  6. Estimation of Solar Radiation on Building Roofs in Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.; Remondino, F.; Stevanato, G.; De Filippi, R.; Furlanello, C.

    2011-04-01

    The aim of this study is estimating solar radiation on building roofs in complex mountain landscape areas. A multi-scale solar radiation estimation methodology is proposed that combines 3D data ranging from regional scale to the architectural one. Both the terrain and the nearby building shadowing effects are considered. The approach is modular and several alternative roof models, obtained by surveying and modelling techniques at varying level of detail, can be embedded in a DTM, e.g. that of an Alpine valley surrounded by mountains. The solar radiation maps obtained from raster models at different resolutions are compared and evaluated in order to obtain information regarding the benefits and disadvantages tied to each roof modelling approach. The solar radiation estimation is performed within the open-source GRASS GIS environment using r.sun and its ancillary modules.

  7. Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Mijic, Ana; Maksimovic, Cedo

    2014-05-01

    As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a layered soil profile covered with vegetation which can be used to simulate the physical behaviour of different green roof systems in response to rainfall under various climatic conditions. Because it is a physically based model, this model could be generalised to other atmosphere-plant-soil systems. The validity of this mass and energy balance approach will be demonstrated by comparing its outcomes with observations from a green roof experimental site in London, UK.

  8. ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. Impact of small-scale storage systems on the photovoltaic penetration potential at the municipal scale

    NASA Astrophysics Data System (ADS)

    Ramirez Camargo, Luis; Dorner, Wolfgang

    2016-04-01

    The yearly cumulated technical energy generation potential of grid-connected roof-top photovoltaic power plants is significantly larger than the demand of domestic buildings in sparsely populated municipalities in central Europe. However, an energy balance with cumulated annual values does not deliver the right picture about the actual potential for photovoltaics since these run on a highly variable energy source as solar radiation. The mismatch between the periods of generation and demand creates hard limitations for the deployment of the theoretical energy generation potential of roof-top photovoltaics. The actual penetration of roof-top photovoltaic is restricted by the energy quality requirements of the grid and/or the available storage capacity for the electricity production beyond the coverage of own demands. In this study we evaluate in how far small-scale storage systems can contribute to increment the grid-connected roof-top photovoltaic penetration in domestic buildings at a municipal scale. To accomplish this, we calculate, in a first step, the total technical roof-top photovoltaic energy generation potential of a municipality in a high spatiotemporal resolution using a procedure that relies on geographic information systems. Posteriorly, we constrain the set of potential photovoltaic plants to the ones that would be necessary to cover the total yearly demand of the municipality. We assume that photovoltaic plants with the highest yearly yield are the ones that should be installed. For this sub-set of photovoltaic plants we consider five scenarios: 1) no storage 2) one 7 kWh battery is installed in every building with a roof-top photovoltaic plant 3) one 10 kWh battery is installed in every building with a roof-top photovoltaic plant 4) one 7 kWh battery is installed in every domestic building in the municipality 5) one 10 kWh battery is installed in every domestic building in the municipality. Afterwards we evaluate the energy balance of the municipality using a series of indicators. These indicators include: a) the total photovoltaic installed capacity, b) the total storage installed capacity, c) the output variability, d) the total unfulfilled demand, e) total excess energy, f) total properly supplied energy, g) the loss of power supply probability, h) the amount of hours of supply higher than the highest demand in a year, i) the number of hours, when supply is 1.5. times higher than the highest demand in a year, and j) the additional storage energy capacity and power required to store all excess energy generated by the photovoltaic installations. The comparison of the proposed indicators serves to quantify the contribution that household-sized small-scale storage systems would make to the energy balance of the studied municipality. Increased installed energy storage capacity allows a higher roof-top photovoltaic share and improves energy utilization, variability and reliability indicators. The proposed methodology serves also to determine the amount of storage capacity with the highest positive impact on the local energy balance.

  10. The influence of extensive vegetated roofs on runoff water quality.

    PubMed

    Berndtsson, Justyna Czemiel; Emilsson, Tobias; Bengtsson, Lars

    2006-02-15

    The influence of extensive sedum-moss vegetated roofs on runoff water quality was studied for four full scale installations located in southern Sweden. The aim of the study was to ascertain whether the vegetated roof behaves as a sink or a source of pollutants and whether the age of a vegetated roof influences runoff quality. The runoff quality from vegetated roofs was also compared with the runoff quality from non-vegetated roofs located in study areas. The following metals and nutrients were investigated: Cd, Cr, Cu, Fe, K, Mn, Pb, Zn, NO3-N, NH4-N, Tot-N, PO4-P, and Tot-P. The results show that, with the exception of nitrogen, vegetated roofs behave as source of contaminants. While in lower concentrations than normally found in urban runoff, some metals appear in concentrations that would correspond to moderately polluted natural water. Nitrate nitrogen is retained by the vegetation or soil or both. Apart from the oldest, the studied vegetated roofs contribute phosphate phosphorus to the runoff. The maintenance of the vegetation systems on the roofs has to be carefully designed in order to avoid storm-water contamination; for instance, the use of easily dissolvable fertilizers should be avoided.

  11. Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2009-01-01

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the response of the total outgoing (outgoing shortwave+longwave) radiation to urban albedo changes. Globally, the total outgoing radiation increased by 0.5 W/square m and temperature decreased by -0.008 K for an average 0.003 increase in albedo. For the U.S. the total outgoing total radiation increased by 2.3 W/square meter, and temperature decreased by approximately 0.03 K for an average 0.01 increase in albedo. These values are for the boreal summer (Tune-July-August). Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be approximately 57 Gt CO2 . A more meaningful evaluation of the impacts of urban albedo increases on climate and the expected CO2 offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  12. Spatial and temporal effects of drought on soil CO2 efflux in a cacao agroforestry system in Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.

    2010-04-01

    Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration) from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced), or increasingly wet conditions (as evidenced in control plots). The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly (responsive) to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all (non-responsive) (n=7). A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3-4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.

  13. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve

    2002-12-15

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical Californiamore » nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).« less

  14. Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater.

    PubMed

    Evans, C A; Coombes, P J; Dunstan, R H

    2006-01-01

    The microbiological and chemical quality of tank-stored rainwater is impacted directly by roof catchment and subsequent run-off contamination, via direct depositions by birds and small mammals, decay of accumulated organic debris, and atmospheric deposition of airborne micro-organisms and chemical pollutants. Previous literature reports on roof water quality have given little consideration to the relative significance of airborne micro-organisms. This study involved analyses of direct roof run-off at an urban housing development in Newcastle, on the east coast of Australia. A total of 77 samples were collected during 11 separate rainfall events, and microbial counts and mean concentrations of several ionic contaminants were matched to climatic data corresponding to each of the monitored events. Conditions both antecedent to, and those prevailing during each event, were examined to investigate the influence of certain meteorological parameters on the bacterial composition of the roof water and indirectly assess the relative contribution of airborne micro-organisms to the total bacterial load. Results indicated that airborne micro-organisms represented a significant contribution to the bacterial load of roof water at this site, and that the overall contaminant load was influenced by wind velocities, while the profile (composition) of the load varied with wind direction. The implications of these findings to the issues of tank water quality and health risk analysis, appropriate usage and system design are discussed.

  15. Construction of Experimental Roofing.

    DTIC Science & Technology

    1981-11-01

    buildings at Fort Benning, GA; Fort Knox, KY; and Fort Lewis, WA. Sheets of EPDM synthetic rubber were installed on buildings at Forts Benning and Lewis...Contract and Unit Costs 14 5 Polyurethane Foam Roofing -- Initial Physical Properties 28 6 EPDM Sheet Rubber Roofing -- Initial Physical Properties 30 7...the new system. The system selected for Area A was an EPDM synthetic rubber manufactured by Carlisle Tire and Rubber Company. The contract specified

  16. Dengue and Chikungunya Vector Control Pocket Guide

    DTIC Science & Technology

    2014-05-01

    mosquito eggs, larvae, or pupae. Examples of such items are tarps, discarded bottles, flower pot saucers, and rain gauges. In areas where there...coconut husks, (4) tires, (5) barrels, (6) water storage tanks, (7) bromeliads and axils of banana trees, (8) obstructed roof gutters, (9) plant pot...regularly Store under roof Fill with sand Throw Away/ Recycle Buckets X X X Flower Pot Saucers X X Roof Gutters X Discarded

  17. 16. VIEW TO NORTHEAST OF SECONDFLOOR ASSEMBLY AREA FROM NEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW TO NORTHEAST OF SECOND-FLOOR ASSEMBLY AREA FROM NEAR SOUTHWEST WEST. NOTE DIFFERENCE IN ROOF STRUCTURE BETWEEN SAWTOOTH SKYLIGHTS OVER MOST OF THE SECOND FLOOR (RIGHT) AND THE PORTION OF THE ROOF RUNNING ALONG THE WEST EDGE OF THE BUILDING (LEFT). - Rosie the Riveter National Historical Park, Ford Assembly Plant, 1400 Harbour Way South, Richmond, Contra Costa County, CA

  18. The impact of extensive green roofs on the improvement of thermal performance for urban areas in Mediterranean climate with reference to the city of Jijel in Algeria

    NASA Astrophysics Data System (ADS)

    Lehtihet, M. C.; Bouchair, A.

    2018-05-01

    Buildings with dark surfaces, concrete and pavement, needed for the expansion of cities, absorb huge amounts of heat, increasing the mean radiant temperatures of urban areas and offer significant potential for urban heat island (UHI) effect. The purpose of this work is to investigate the impact of green roofs on the improvement of urban heat performance in Mediterranean climate. A field investigation is carried out using two large-scale modules built in the city of Jijel in the north of Algeria. The first is a bare reinforced concrete slab whereas the second is covered with ivy plants. The experimental site, the air and surface temperature parameters and the various measurement points at the level of the modules are chosen. Measurements are performed using thermo-hygrometer, surface sensors and data acquisition apparatus. The results show that green roofs can be a potential mean of improving the thermal performance of the surrounding microclimate and energy performance of buildings in an urban area. The green roof could be an encouraging strategy against urban heat island effect not only for Mediterranean cities but also for other areas.

  19. 13. INTERIOR VIEW OF ROOF FRAMING AND DORMER OPENING IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR VIEW OF ROOF FRAMING AND DORMER OPENING IN ATTIC, LOOKING EAST. - Dugway Proving Ground, German-Japanese Village, German Village, South of Stark Road, in WWII Incendiary Test Area, Dugway, Tooele County, UT

  20. INTERIOR; DETAIL OF ROOF FRAMING STRUCTURE, LOOKING SOUTHWEST. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR; DETAIL OF ROOF FRAMING STRUCTURE, LOOKING SOUTHWEST. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Helix House No. 2, Base of Radio Antenna Structure No. 427, Makaha, Honolulu County, HI

  1. 19. INTERIOR OF TAN 629 HANGAR, TAKEN ON LOW ROOF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF TAN 629 HANGAR, TAKEN ON LOW ROOF ON WEST SIDE, FACING EAST. DETAIL OF HANGAR DOOR LEAVES. - Idaho National Engineering Laboratory, Test Area North, Hangar No. 629, Scoville, Butte County, ID

  2. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area.

    PubMed

    Protano, G; Riccobono, F

    2002-01-01

    Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials. The geochemical history of the REEs released into Noni stream from wastes in the FCM area is strictly determined by the pH, which controls the REE speciation and in-stream processes. The formation of Al-rich and mainly Fe-rich flocs effectively scavenges the REEs, which are readily and drastically removed from the solution when the pH approaches neutrality. Leaching experiments performed on flocs and waste materials demonstrate that Fe-oxides/oxyhydroxides play a key role in the release of lanthanide elements into stream waters. The origin of the "roof-shaped" REE distribution pattern as well as the peculiar geochemical behavior of some lanthanide elements in the aqueous system are discussed.

  3. A two-stage storage routing model for green roof runoff detention.

    PubMed

    Vesuviano, Gianni; Sonnenwald, Fred; Stovin, Virginia

    2014-01-01

    Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric flow rate of runoff. Modern green roof designs are multi-layered, their main components being vegetation, substrate and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine the modelling of the separate layers into a single process; these models have limited predictive capability for roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a granular substrate over a hard plastic 'egg box'-style drainage layer and fibrous protection mat is presented. The substrate and drainage layer/protection mat are modelled separately by previously verified sub-models. Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled runoff is compared to the monitored runoff for each storm event. The modelled runoff profiles are accurate (mean Rt(2) = 0.971), but further characterization of the substrate component is required for the model to be generically applicable to other roof configurations with different substrate.

  4. Reliability Analysis of a Green Roof Under Different Storm Scenarios

    NASA Astrophysics Data System (ADS)

    William, R. K.; Stillwell, A. S.

    2015-12-01

    Urban environments continue to face the challenges of localized flooding and decreased water quality brought on by the increasing amount of impervious area in the built environment. Green infrastructure provides an alternative to conventional storm sewer design by using natural processes to filter and store stormwater at its source. However, there are currently few consistent standards available in North America to ensure that installed green infrastructure is performing as expected. This analysis offers a method for characterizing green roof failure using a visual aid commonly used in earthquake engineering: fragility curves. We adapted the concept of the fragility curve based on the efficiency in runoff reduction provided by a green roof compared to a conventional roof under different storm scenarios. We then used the 2D distributed surface water-groundwater coupled model MIKE SHE to model the impact that a real green roof might have on runoff in different storm events. We then employed a multiple regression analysis to generate an algebraic demand model that was input into the Matlab-based reliability analysis model FERUM, which was then used to calculate the probability of failure. The use of reliability analysis as a part of green infrastructure design code can provide insights into green roof weaknesses and areas for improvement. It also supports the design of code that is more resilient than current standards and is easily testable for failure. Finally, the understanding of reliability of a single green roof module under different scenarios can support holistic testing of system reliability.

  5. Modeling Košice Green Roofs Maps

    NASA Astrophysics Data System (ADS)

    Poorova, Zuzana; Vranayova, Zuzana

    2017-06-01

    The need to house population in urban areas is expected to rise to 66% in 2050, according to United Nations. The replacement of natural permeable green areas with concrete constructions and hard surfaces will be noticed. The densification of existing built-up areas is responsible for the decreasing vegetation, which results in the lack of evapotranspiration cooling the air. Such decreasing vegetation causes urban heat islands. Since roofs and pavements have a very low albedo, they absorb a lot of sunlight. Several studies have shown that natural and permeable surfaces, as in the case of green roofs, can play crucial role in mitigating this negative climate phenomenon and providing higher efficiency for the building, leading to savings. Such as water saving, what is the main idea of this research.

  6. Primary Intraosseous Hemangioma of the Orbital Roof: A Pitfall of Surgery.

    PubMed

    Wu, Chih-Ying; Huang, Hsiang-Ming; Chen, Der-Cherng; Cho, Der-Yang; Wei, Sung-Tai

    2016-09-01

    A primary intraosseous hemangioma (IOH) of the orbital bone is extremely rare. The preferred method of treatment for IOH is total surgical excision with reconstruction. Herein, the authors describe a patient with an orbital roof IOH and the unexpected complications of ptosis and deteriorated exophthalmos. These findings showed that the total surgical excision and subsequent reconstruction provided adequate decompression and prevented further ocular complications from the orbital wall defect.

  7. 8. NORTH PART OF ROOF, WITH PERISCOPES ALSO SHOWING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. NORTH PART OF ROOF, WITH PERISCOPES ALSO SHOWING WEST SIDE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  8. Interior, building 1205, view to west showing roof truss system, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, building 1205, view to west showing roof truss system, 90 mm lens plus electronic flash fill lighting. - Travis Air Force Base, Readiness Maintenance Hangar, W Street, Air Defense Command Readiness Area, Fairfield, Solano County, CA

  9. Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopacki, S.; Akbari, H.; Gartland, L.

    The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand andmore » annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.« less

  10. Characterization of urban runoff pollution between dissolved and particulate phases.

    PubMed

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  11. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    PubMed

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower Rbal with increasing roof height and a reduction in rate of decrease with increasing level of indirect radiation. Roof height as an Rbal attenuator declined with increasing indirect radiation level. The latter factor might be reduced by lowering roof surface radiation absorption and through roof heat transfer, as well as by use of shade structure elements to reduce indirect radiation in the shaded area. Radiant heat from the cow body surface may be reduced by lower cow density. Radiant heat attenuation may thus further elevate animal productivity in warm climates, with no associated operation costs. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Mobilization and distribution of lead originating from roof dust and wet deposition in a roof runoff system.

    PubMed

    Yu, Jianghua; Yu, Haixia; Huang, Xiaogu

    2015-12-01

    In this research, the mobilization and distribution of lead originating in roof dust and wet deposition were investigated within a roof dust-rooftop-runoff system. The results indicated that lead from roof dust and wet deposition showed different transport dynamics in runoff system and that this process was significantly influenced by the rainfall intensity. Lead present in the roof dust could be easily washed off into the runoff, and nearly 60 % of the total lead content was present in particulate form. Most of the lead from the roof dust was transported during the late period of rainfall; however, the lead concentration was higher for several minutes at the rainfall beginning. Even though some of the lead from wet deposition, simulated with a standard isotope substance, was adsorbed onto adhered roof dust and/or retained on rooftop in runoff system, most of it (50-82 %) remained as dissolved lead in the runoff for rainfall events of varying intensity. Regarding the distribution of lead in the runoff system, the results indicated that it could be carried in the runoff in dissolved and particulate form, be adsorbed to adhered roof dust, or remain on the rooftop because of adsorption to the roof material. Lead from the different sources showed different distribution patterns that were also related to the rainfall intensity. Higher rainfall intensity resulted in a higher proportion of lead in the runoff and a lower proportion of lead remaining on the rooftop.

  13. Interior detail, view to northnortheast showing support system for roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail, view to north-northeast showing support system for roof truss (typical), 90 mm lens plus electronic flash lighting. - Travis Air Force Base, Readiness Maintenance Hangar, W Street, Air Defense Command Readiness Area, Fairfield, Solano County, CA

  14. Paleozoic and Mesozoic deformations in the central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, Warren J.; Kistler, Ronald Wayne

    1980-01-01

    Analysis of structural and stratigraphic data indicates that several periods of regional deformation, consisting of combined folding, faulting, cataclasis, and regional metamorphism, occurred throughout the central Sierra Nevada during Paleozoic and Mesozoic time. The oldest regional deformation occurred alono northward trends during the Devonian and Mississippian periods in most roof pendants containing lower Paleozoic metasedimentary rocks at the center and along the crest of the range. This deformation is expressed in some roof pendants by an angular unconformity separating older thrice-deformed from younger twice-deformed Paleozoic metasedimentary rocks. The first Mesozoic deformation, which consisted of uplift and erosion and was accompanied by the onset of Andean-type volcanism during the Permian and Triassic, is expressed by an angular unconformity in several roof pendants from the Saddlebag Lake to the Mount Morrison areas. This unconformity is defined by Permian and Triassic andesitic to rhyolitic metavolcanic rocks unconformably overlying more intensely deformed Pennsylvanian, Permian(?), and older metasedimentary rocks. A later regional deformation occurred during the Triassic along N. 20?_30? W. trends in Permian and Triassic metavolcanic rocks of the Saddlebag Lake and Mount Dana roof pendants, in upper Paleozoic rocks of the Pine Creek roof pendant, and in the Calaveras Formation of the western metamorphic belt; the roof pendants are crosscut by Upper Triassic granitic rocks of the Lee Vining intrusive epoch. A still later period of Early and Middle Jurassic regional deformation occurred along N. 30?-60? E. trends in upper Paleozoic rocks of the Calaveras Formation of the western metamorphic belt. A further period of deformation was the Late Jurassic Nevadan orogeny, which occurred along N. 20?_40? W. trends in Upper Jurassic rocks of the western metamorphic belt that are crosscut by Upper Jurassic granitic rocks of the Yosemite intrusive epoch. Structures of similar age occur in intensely deformed oceanic-lithospheric and syntectonic plutonic rocks of the lower Kings River area, in Jurassic metavolcanic rocks of the Ritter Range roof pendant, and in Triassic metasedimentary rocks of the Mineral King roof pendant. The final Mesozoic deformation occurred along N. 50?-80? W. trends in both high-country roof pendants and the lower Kings River area; structures of this generation are crosscut by relatively undeformed Upper Cretaceous granitic rocks of the Cathedral Range intrusive epoch.

  15. Green roof and storm water management policies: monitoring experiments on the ENPC Blue Green Wave

    NASA Astrophysics Data System (ADS)

    Versini, Pierre-Antoine; Gires, Auguste; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2015-04-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building/parcel scale. Nevertheless, there is no specific policy promoting their implementation neither in Europe nor in France. Moreover they are not taken into account (and usually considered as an impervious area) in the sizing of a retention basin for instance. An interesting example is located in the heart of the Paris-East Cluster for Science and Technology (Champs-sur-Marne, France). Since 2013 a large (1 ha) wavy-form vegetated roof (called bleu green wave) is implemented. Green roof area and impervious areas are connected to a large retention basin, which has been oversized. The blue green wave represents a pioneering site where an initially amenity (decorative) design project has been transformed into a research oriented one. Several measurement campaigns have been conducted to investigate and better understand the hydrological behaviour of such a structure. Rainfall, humidity, wind velocity, water content and temperature have been particularly studied. The data collected are used for several purposes: (i) characterize the spatio-temporal variability of the green roof response, (ii) calibrate and validate a specific model simulating its hydrological behavior. Based on monitoring and modeling results, green roof performances will be quantified. It will be possible to estimate how they can reduce stormwater runoff and how these performances can vary in space and in time depending on green roof configuration, rainfall event characteristics and antecedent conditions. These quantified impacts will be related to regulation rules established by stormwater managers in order to connect the parcel to the sewer network. In the particular case of the building of a retention basin, the integration of green roof in the sizing of the basin will be studied. This work is funded by the European Blue Green Dream project (http://bgd.org.uk/, funded by Climate-KIC) which aims to promote a change of paradigm for efficient planning and management of new urban developments and retrofitting of existing ones to maximize ecosystem services and increase resilience to climate change.

  16. Predicting Maps of Green Growth in Košice

    NASA Astrophysics Data System (ADS)

    Poorova, Zuzana; Vranayova, Zuzana

    2017-10-01

    The paper deals with the changing of the traditional roofs in the city of Košice into green roofs. Possible areas of city housing estates, after taking into account the conditions of each of them (types of buildings, statics of buildings), are listed in the paper. The research is picturing the prediction maps of Košice city from 2017 to 2042 in 5-years interval. The paper is a segment of a dissertation work focusing on changing traditional roofs into green roofs with the aim to retain water, calculate the amount of retained water and show possibilities how to use this water.

  17. Enhanced Thermal Performance of Mosques in Qatar

    NASA Astrophysics Data System (ADS)

    Touma, A. Al; Ouahrani, D.

    2017-12-01

    Qatar has an abundance of mosques that significantly contribute to the increasing energy consumption in the country. Little attention has been given to providing mitigation methods that limit the energy demands of mosques without violating the worshippers’ thermal comfort. Most of these researches dealt with enhancing the mosque envelope through the addition of insulation layers. Since most mosque walls in Qatar are mostly already insulated, this study proposes the installation of shading on the mosque roof that is anticipated to yield similar energy savings in comparison with insulated roofs. An actual mosque in Qatar, which is a combination of six different spaces consisting of men and women’s prayer rooms, ablutions and toilets, was simulated and yielded a total annual energy demand of 619.55 kWh/m2. The mosque, whose walls are already insulated, yielded 9.1% energy savings when an insulation layer was added to its roof whereas it produced 6.2% energy savings when a shading layer was added above this roof. As the reconstruction of the roof envelope is practically unrealistic in existing mosques, the addition of shading to the roof was found to produce comparable energy savings. Lastly, it was found that new mosques with thin-roof insulation and shading tend to be more energy-efficient than those with thick-roof insulation.

  18. Large Dew water collectors in a village of S-Morocco (Idouasskssou)

    NASA Astrophysics Data System (ADS)

    Lekouch, I.; Clus, O.; Durand, M.; Lanfourmi, M.; Muselli, M.; Milimouk, I.; Beysens, D.

    2010-07-01

    With precipitations close to 227 mm/year in average, the coastal region of south Morocco presents a chronically shortage of drinkable and fresh water. Since 1994, in the Mirleft area (150 km south of Agadir), inhabitants are facing a critically drought event. In the year 2007, only 49 mm of rain was recorded. However, measurements in Mirleft in the same year, showed that the dew yield was on order of 40 % of rain fall. In order to show to the local population the interest of recovering dew water in addition to rain water, a small nearby village (Idouasskssou, 8 km SE of Mirleft) was equipped with three pilot condensers of 136 m2 total surface area. In order to ensure a good integration of the project by the village inhabitants, a local organization (Association IMRJANE) collaborated to the project. A concrete tank at ground level with a flat horizontal surface, easily accessible for inhabitants and also a model for traditional Morocco terrace roofings, has been equipped with two lines of condensers (40.6 m²). All roofing materials were from local shops. Only the special radiative and hydrophilic coating was coming from non local resources (see www.opur.fr). The top of a second tank (aside the first one) was renovated and covered with a 21.2 m² two slopes steel roof, insulated and painted with the special dew coating as above. These roofs represent a condensation surface comparable to that of a very little house. A third condenser, with 73.8 m² surface area, was implemented directly on the ground, ensuring minimal work and very cheap implementation costs. Dew was collected and measured in one of the concrete tanks. The water production during 6 months, from 15-12-2008 to 31-07-2009 (137 dew events, 47 % of days) was more than 3800 L (more than 0.2 mm/dew day). It is important to note that, while the devices are specifically designed to condense dew water, they also harvest rain and fog as well, thus providing to the population a valuable water resource.

  19. Dermal exposure and urinary 1-hydroxypyrene among asphalt roofing workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClean, M.D.; Rinehart, R.D.; Sapkota, A.

    2007-07-01

    The primary objective of this study was to identify significant determinants of dermal exposure to polycyclic aromatic compounds (PACs) among asphalt roofing workers and use urinary 1-hydroxyprene (1-OHP) measurements to evaluate the effect of dermal exposure on total absorbed dose. The study population included 26 asphalt roofing workers who performed three primary tasks: tearing off old roofs, putting down new roofs, and operating the kettle at ground level. During multiple consecutive work shifts, dermal patch samples were collected from the underside of each worker's wrists and were analyzed for PACs, pyrene, and benzo(a)pyrene (BAP). During the same work week, urinemore » samples were collected at pre-shift, post-shift, and bedtime each day and were analyzed for 1-OHP (205 urine samples). Linear mixed effects models were used to evaluate the dermal measurements for the purpose of identifying important determinants of exposure, and to evaluate urinary 1-OHP measurements for the purpose of identifying important determinants of total absorbed dose. Dermal exposures to PAC, pyrene, and BAP were found to vary significantly by roofing task and by the presence of an old coal tar pitch roof. For each of the three analytes, the adjusted mean dermal exposures associated with tear-off were approximately four times higher than exposures associated with operating the kettle. Exposure to coal tar pitch was associated with a 6-fold increase in PAC exposure, an 8-fold increase in pyrene exposure and a 35-fold increase in BAP exposure. The presence of coal tar pitch was the primary determinant of dermal exposure, particularly for exposure to BAP. However, the task-based differences that were observed while controlling for pitch suggest that exposure to asphalt also contributes to dermal exposures.« less

  20. Can green roofs reduce urban heat stress in vulnerable urban communities: A coupled atmospheric and social modeling approach

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Woodruff, S.; Budhathoki, M.; Hamlet, A. F.; Fernando, H. J. S.; Chen, F.

    2017-12-01

    Urban areas provide organized, engineered, sociological and economical infrastructure designed to provide a high quality of life, but the implementation and management of urban infrastructure has been a continued challenge. Increasing urbanization, warming climate, as well as anthropogenic heat emissions that accompany urban development generates "stress". This rapidly increasing `urban stress' affects the sustainability of cities, making populations more vulnerable to extreme hazards, such as heat. Cities are beginning to extensively use green roofs as a potential urban heat mitigation strategy. This study explores the potential of green roofs to reduce summertime temperatures in the most vulnerable neighborhoods of the Chicago metropolitan area by combining social vulnerability indices (a function of exposure, sensitivity and adaptive capacity), and temperatures from mesoscale model. Numerical simulations using urbanized version the Advanced Research Weather Research and Forecasting (WRF) model were performed to measure rooftop temperatures, a representative variable for exposure in this study. The WRF simulations were dynamically coupled with a green roof algorithm as a part of urban parameterization within WRF. Specifically, the study examines roof surface temperature with changing green roof fractions and how would they help reduce exposure to heat stress for vulnerable urban communities. This study shows an example of applied research that can directly benefit urban communities and be used by urban planners to evaluate mitigation strategies.

  1. Household scale of greenhouse design in Merauke

    NASA Astrophysics Data System (ADS)

    Alahudin, Muchlis; Widarnati, Indah; Luh Sri Suryaningsih, Ni

    2018-05-01

    Merauke is one of the areas that still use conventional methods in agriculture, The agricultural business does not run the maximum during the year because agricultural products quite difficult to obtain in the market. In the rainy season, the intensity of rain is very high, the water condition is abundant and hard to be channeled due to topography/soil contour conditions average, otherwise in the dry season the water is quite difficult to obtain. The purpose of this research is to compare the thermal conditions between greenhouse with auvplastic and plastic bottle roof.This research is experimental, measurement of thermal conditions in Greenhouse using measuring weather station.Greenhouse design with Quonset type with area of 24 m2The result of this research are greenhouse with paranet + UV plastic roof has an average temperature of 28.7 °C, 70.4% humidity and 0.5 m/s wind speed, while the greenhouse with paranet + plastic bottle roof has an average temperature of 26, 2 °C, humidity 66.4% and wind speed 0.9 m/s. Conclusion is Greenhouse with paranet + plastic bottle roof more thermally comfortable than greenhouse with paranet + UV plastic roof.

  2. 8. WEST FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, FORMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. WEST FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, FORMER DRAINAGE AREA IN THE DISTANCE, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  3. INTERIOR, ROOF, A view looking southwest through Room 205 at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR, ROOF, A view looking southwest through Room 205 at the doorway that leads to Room 206P, a shower and clean area in the penthouse - Department of Energy, Mound Facility, B Building, One Mound Road, Miamisburg, Montgomery County, OH

  4. PYRAMID ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Armstrong, Augustus K.; Scott, Douglas F.

    1984-01-01

    A geologic and mineral survey was conducted in the Pyramid Roadless Area, California. The area contains mineral showings, but no mineral-resource potential was identified during our studies. Three granodiorite samples on the west side of the roadless area contained weakly anomalous concentrations of uranium. Two samples of roof-pendant rocks, one metasedimentary rock and one metavolcanic rock, contain low concentrations of copper, and of copper and molybdenum, respectively. Although none was identified, the geologic terrane is permissive for mineral occurrences and large-scale, detailed geologic mapping of the areas of metasedimentary and metavolcanic roof pendants in the Pyramid Roadless Area could define a mineral-resource potential for tungsten and precious metals.

  5. A field study to evaluate the impact of different factors on the nutrient pollutant concentrations in green roof runoff.

    PubMed

    Wang, Xiaochen; Zhao, Xinhua; Peng, Chenrui; Zhang, Xinbo; Wang, Jianghai

    2013-01-01

    The objectives of this study are to investigate the impact of different factors on the nutrient pollutant concentrations in green roof runoff and to provide reference data for the engineering design of dual substrate layer green roofs. The data were collected from eight different trays under three kinds of artificial rains. The results showed that except for total phosphorus, dual substrate layer green roofs behaved as a sink for most of the nutrient pollutants (significant at p < 0.05), and the first-flush effect did not occur during the 27 simulated rain events. The results also revealed that the concentration of these nutrient pollutants in the runoff strongly depended on the features of the nutrient substrates used in the green roof and the depth of the adsorption substrates. Compared with the influence of the substrates, the influence of the plant density and drainage systems was small.

  6. Winnebago Tribe Solar Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieman, Autumn

    2016-02-26

    The strategy of the Solar Project was to reduce fuel use within two years by a roof mounted photovoltaic system. The police/fire building is completely powered by electricity. The renewable energy system we have selected has a power capacity of 23kW and the ability to export 44.3 MWh. We anticipate 32.55% kWh energy savings, an excess of the required 30% reduction, in the building’s total fuel use based on the most current 12 months of data (2012). The solar electric system is a grid-tie, ballast mounted on a flat roof over the police/fire station. The solar electric system includes 280more » Watt modules for a nominal total of 22.80 kW. Approximately 84 modules are ballast mounted to the flat roof facing south.« less

  7. Feasibility of determining flat roof heat losses using aerial thermography

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1979-01-01

    The utility of aerial thermography for determining rooftop heat losses was investigated experimentally using several completely instrumented test roofs with known thermal resistances. Actual rooftop heat losses were obtained both from in-situ instrumentation and aerial thermography obtained from overflights at an altitude of 305 m. In general, the remotely determined roof surface temperatures agreed very well with those obtained from ground measurements. The roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from 1/R delta T using ground measurements. However, this agreement may be fortuitous since the convective component of the heat loss is sensitive to small changes in roof temperature and to the average heat transfer coefficient used, whereas the radiative component is less sensitive. This, at this time, it is felt that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. The sensitivity of the heat loss determination to environmental conditions was also evaluated. The analysis showed that the most reliable quantitative heat loss determinations can probably be obtained from aerial thermography taken under conditions of total cloud cover with low wind speeds and at low ambient temperatures.

  8. Two-dimensional modeling of water and heat fluxes in green roof substrates

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Sandoval, V. P.

    2016-12-01

    Due to public concern towards sustainable development, greenhouse gas emissions and energy efficiency, green roofs have become popular in the last years. Green roofs integrate vegetation into infrastructures to reach additional benefits that minimize negative impacts of the urbanization. A properly designed green roof can reduce environmental pollution, noise levels, energetic requirements or surface runoff. The correct performance of green roofs depends on site-specific conditions and on each component of the roof. The substrate and the vegetation layers strongly influence water and heat fluxes on a green roof. The substrate is an artificial media that has an improved performance compared to natural soils as it provides critical resources for vegetation survival: water, nutrients, and a growing media. Hence, it is important to study the effects of substrate properties on green roof performance. The objective of this work is to investigate how the thermal and hydraulic properties affect the behavior of a green roof through numerical modeling. The substrates that were investigated are composed by: crushed bricks and organic soil (S1); peat with perlite (S2); crushed bricks (S3); mineral soil with tree leaves (S4); and a mixture of topsoil and mineral soil (S5). The numerical model utilizes summer-arid meteorological information to evaluate the performance of each substrate. Results show that the area below the water retention curve helps to define the substrate that retains more water. In addition, the non-linearity of the water retention curve can increment the water needed to irrigate the roof. The heat propagation through the roof depends strongly on the hydraulic behavior, meaning that a combination of a substrate with low thermal conductivity and more porosity can reduce the heat fluxes across the roof. Therefore, it can minimize the energy consumed of an air-conditioner system.

  9. Attenuation of copper in runoff from copper roofing materials by two stormwater control measures.

    PubMed

    LaBarre, William J; Ownby, David R; Lev, Steven M; Rader, Kevin J; Casey, Ryan E

    2016-01-01

    Concerns have been raised over diffuse and non-point sources of metals including releases from copper (Cu) roofs during storm events. A picnic shelter with a partitioned Cu roof was constructed with two types of stormwater control measures (SCMs), bioretention planter boxes and biofiltration swales, to evaluate the ability of the SCMs to attenuate Cu in stormwater runoff from the roof. Cu was measured as it entered the SCMs from the roof as influent as well as after it left the SCMs as effluent. Samples from twenty-six storms were collected with flow-weighted composite sampling. Samples from seven storms were collected with discrete sampling. Total Cu in composite samples of the influent waters ranged from 306 to 2863 μg L(-1) and had a median concentration of 1087 μg L(-1). Total Cu in the effluent from the planter boxes ranged from 28 to 141 μg L(-1), with a median of 66 μg L(-1). Total Cu in effluent from the swales ranged from 7 to 51 μg L(-1) with a median of 28 μg L(-1). Attenuation in the planter boxes ranged from 85 to 99% with a median of 94% by concentration and in the swales ranged from 93 to 99% with a median of 99%. As the roof aged, discrete storm events showed a pronounced first-flush effect of Cu in SCM influent but this was less pronounced in the planter outlets. Stormwater retention time in the media varied with antecedent conditions, stormwater intensity and volume with median values from 6.6 to 73.5 min. Based on local conditions, a previously-published Cu weathering model gave a predicted Cu runoff rate of 2.02 g m(-2) yr(-1). The measured rate based on stormwater sampling was 2.16 g m(-2) yr(-1). Overall, both SCMs were highly successful at retaining and preventing offsite transport of Cu from Cu roof runoff. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A parametric study of the thermal performance of green roofs in different climates through energy modeling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sananda

    In recent years, there has been great interest in the potential of green roofs as an alternative roofing option to reduce the energy consumed by individual buildings as well as mitigate large scale urban environmental problems such as the heat island effect. There is a widespread recognition and a growing literature of measured data that suggest green roofs can reduce building energy consumption. This thesis investigates the potential of green roofs in reducing the building energy loads and focuses on how the different parameters of a green roof assembly affect the thermal performance of a building. A green roof assembly is modeled in Design Builder- a 3D graphical design modeling and energy use simulation program (interface) that uses the EnergyPlus simulation engine, and the simulated data set thus obtained is compared to field experiment data to validate the roof assembly model on the basis of how accurately it simulates the behavior of a green roof. Then the software is used to evaluate the thermal performance of several green roof assemblies under three different climate types, looking at the whole building energy consumption. For the purpose of this parametric simulation study, a prototypical single story small office building is considered and one parameter of the green roof is altered for each simulation run in order to understand its effect on building's energy loads. These parameters include different insulation thicknesses, leaf area indices (LAI) and growing medium or soil depth, each of which are tested under the three different climate types. The energy use intensities (EUIs), the peak and annual heating and cooling loads resulting from the use of these green roof assemblies are compared with each other and to a cool roof base case to determine the energy load reductions, if any. The heat flux through the roof is also evaluated and compared. The simulation results are then organized and finally presented as a decision support tool that would facilitate the adoption and appropriate utilization of green roof technologies and make it possible to account for green roof benefits in energy codes and related energy efficiency standards and rating systems such as LEED.

  11. Identifying city PV roof resource based on Gabor filter

    NASA Astrophysics Data System (ADS)

    Ruhang, Xu; Zhilin, Liu; Yong, Huang; Xiaoyu, Zhang

    2017-06-01

    To identify a city’s PV roof resources, the area and ownership distribution of residential buildings in an urban district should be assessed. To achieve this assessment, remote sensing data analysing is a promising approach. Urban building roof area estimation is a major topic for remote sensing image information extraction. There are normally three ways to solve this problem. The first way is pixel-based analysis, which is based on mathematical morphology or statistical methods; the second way is object-based analysis, which is able to combine semantic information and expert knowledge; the third way is signal-processing view method. This paper presented a Gabor filter based method. This result shows that the method is fast and with proper accuracy.

  12. 77 FR 57156 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... used to prevent the fall of roof, face, and rib. Advancements in technology of roof and rock bolts and... information technology, e.g., permitting electronic submission of responses. Agency: DOL-MSHA. Title of... Control Number: 1219-0121. Affected Public: Private Sector--businesses or other for profits. Total...

  13. 2. EXTERIOR VIEW OF DOWNSTREAM SIDE OF COTTAGE 191 TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW OF DOWNSTREAM SIDE OF COTTAGE 191 TAKEN FROM ROOF OF GARAGE 393. CAMERA FACING SOUTHEAST. COTTAGE 181 AND CHILDREN'S PLAY AREA VISIBLE ON EITHER SIDE OF ROOF. GRAPE ARBOR IN FOREGROUND. - Swan Falls Village, Cottage 191, Snake River, Kuna, Ada County, ID

  14. SAFETY AND SECURITY BUILDING, TRA614. ELEVATIONS. SECTIONS. TWO ROOF LEVELS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SAFETY AND SECURITY BUILDING, TRA-614. ELEVATIONS. SECTIONS. TWO ROOF LEVELS. BLAW-KNOX 3150-814-2, 3/1950. INL INDEX NO. 531-0614-00-098-100703, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. 2. Barn 41. North side. 'Butterfly' roof line is similar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Barn 41. North side. 'Butterfly' roof line is similar to those of barns in middle barn area (Barns 1A through 8B). Part of 'panorama' with photo WA-201-13-1. - Longacres, Barn 41, 1621 Southwest Sixteenth Street, Renton, King County, WA

  16. LOFT. Containment and service building (TAN650). Roof plan and details. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Containment and service building (TAN-650). Roof plan and details. Kaiser engineers 6413-11-STEP/LOFT-650-A-8. Date: October 1964. INEEL index code no. 036-650-00-486-122220 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. Solar energy retrofit for Clarksville Middle School, Clarksville, Indiana

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar energy retrofit heating system installed to provide heating for two gymnasiums at the Clarksville Middle School located in Clarksville, Indiana is described in detail. The system type is hot water using existing chilled water piping and chilled water coils in an air handler system. Flat plate, single-glazed selectively coated solar collectors were installed on the roof of each gymnasium. Total collector area covers 6,520 square feet. The liquid is stored in a 10,000 gallon steel tank installed below grade.

  18. An investigation of roof runoff during rain events at the Royal Military College of Canada and potential discharge to Lake Ontario.

    PubMed

    Kelly, David G; Weir, Ron D; White, Steven D

    2011-01-01

    The Royal Military College of Canada, located on the north eastern shore of Lake Ontario, possesses an abundance of copper roofs and lacks surface water treatment prior to discharge into Lake Ontario. Rainwater, roof runoff and soil samples were collected and analyzed for copper and other parameters. Copper was consistently detected in runoff samples with average concentrations of 3200 +/- 2100 microg/L. Multivariable linear regression analysis for a dependant copper runoff concentration yielded an adjusted R2 value of 0.611, based on an independent variable model using minimum temperature, maximum temperature, total precipitation, and wind speed. Lake water samples taken in the vicinity of storm water outfalls draining areas with copper roofs ranged from 2.0 to 40 microg/L copper. Such data exceed the 2.0 microg/L Canadian Water Quality Guidelines for the Protection of Aquatic Life as outlined by the Canadian Council of Ministers of the Environment (CCME). Analysis of raw, filtered and digested forms suggested that the majority of copper present in runoff and lake water samples was in a dissolved form. The majority of soils taken in this study displayed copper concentrations below the 63 microg/g CCME residential/parkland land use limits. These findings suggested that ion exchange processes between runoff water and soil do not occur to a sufficient extent to elevate copper levels in soil. It may therefore be concluded that the eventual fate of copper, which is not discharged via storm water outfalls, is lost to the water table and Lake Ontario through the sub-soil.

  19. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    PubMed Central

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  20. An Improved Snake Model for Refinement of Lidar-Derived Building Roof Contours Using Aerial Images

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-06-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  1. Final Report. Solar Assist for Administration Building and Community Gym/Pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Synder, Randy; Bresette, Joseph

    2015-06-23

    Tonto Apache Tribe applied to the Department of Energy’s “Tribal Energy Program” for the “Community Scale Clean Energy Projects” in Indian Country in 2013 to implement a solar project to reduce energy use in two tribal buildings. Total estimated project cost was $804,140, with the Department and Tribe each providing 50% of the project costs. Photovoltaic systems totaling 75 kW on the Administration Building and 192 kW on the Gymnasium were installed. We used roof tops and installed canopies in adjacent parking areas for mounting the systems. The installed systems were designed to offset 65% of the facilities electric load.

  2. Greenhouse gas emissions from septic systems in New York State

    NASA Astrophysics Data System (ADS)

    Truhlar, A. M.; Rahm, B. G.; Brooks, R. A.; Nadeau, S. A.; Walter, M. T.

    2015-12-01

    Onsite septic systems are a practical way to treat wastewater in rural or less-densely populated areas. Septic systems utilize microbial processes to eliminate organic wastes and nutrients such as nitrogen; these processes can contribute to air pollution through the release of greenhouse gases (GHGs). At each of nine septic systems, we measured fluxes of CH4, CO2, and N2O from the soil over the leach field and sand filter, and from the roof outlet vent. These are the most likely locations for gas emissions during normal operation of the septic system. The majority of all septic system gas emissions were released from the roof vent. However, our comparisons of the gas fluxes from these locations suggest that biological processes in the soil, especially the soil over the leach field, can influence the type and quantity of gas that is released from the system. The total vent, sand filter, and leach field GHG emissions were 0.12, 0.045, and 0.046 tonne CO2e capita-1 year-1, respectively. In total, this represents about 1.5% of the annual carbon footprint of an individual living in the US.

  3. Inclusion of cool roofs in nonresidential Title 24 prescriptiverequirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve

    2003-07-01

    Roofs that have high solar reflectance (high ability toreflect sunlight) and high thermal emittance (high ability to radiateheat) tend to stay cool in the sun. The same is true of low-emittanceroofs with exceptionally high solar reflectance. Substituting a cool rooffor a non-cool roof tends to decrease cooling electricity use, coolingpower demand, and cooling-equipment capacity requirements, while slightlyincreasing heating energy consumption. Cool roofs can also lower citywideambient air temperature in summer, slowing ozone formation and increasinghuman comfort.DOE-2.1E building energy simulations indicate that use of acool roofing material on a prototypical California nonresidential (NR)building with a low-sloped roof yields average annual coolingmore » energysavings of approximately 3.2 kW h/m2 (300 kW h/1000 ft2), average annualnatural gas deficits of 5.6 MJ/m2 (4.9 therm/1000 ft2), average annualsource energy savings of 30 MJ/m2 (2.6 MBTU/1000 ft2), and average peakpower demand savings of 2.1 W/m2 (0.19 kW/1000 ft2). The 15-year netpresent value (NPV) of energy savings averages $4.90/m2 ($450/1000 ft2)with time-dependent valuation (TDV), and $4.00/m2 ($370/1000 ft2) withoutTDV. When cost savings from downsizing cooling equipment are included,the average total savings (15-year NPV+equipment savings) rises to$5.90/m2 ($550/1000 ft2) with TDV, and to $5.00/m2 ($470/1000 ft2)without TDV.Total savings range from 1.90 to 8.30 $/m2 (0.18 0.77 $/ft2)with TDV, and from 1.70 to 7.10 $/m2 (0.16 0.66 $/ft2) without TDV,across California's 16 climate zones. The typical cost premium for a coolroof is 0.00 2.20 $/m2 (0.00 0.20 $/ft2). Cool roofs with premiums up to$2.20/m2 ($0.20/ft2) are expected to be cost effective in climate zones 216; those with premiums not exceeding $1.90/m2 ($0.18/ft2) are expectedto be also cost effective in climate zone 1. Hence, this study recommendsthat the year-2005 California building energy efficiency code (Title 24,Part 6 of the California Code of Regulations) for NR buildings withlow-sloped roofs include a cool-roof prescriptive requirement in allCalifornia climate zones. Buildings with roofs that do not meetprescriptive requirements may comply with the code via an"overall-envelope" approach (non-metal roofs only), or via a performanceapproach (all roof types).« less

  4. Assessing the Performance of Large Scale Green Roofs and Their Impact on the Urban Microclimate

    NASA Astrophysics Data System (ADS)

    Smalls-Mantey, L.; Foti, R.; Montalto, F. A.

    2015-12-01

    In ultra-urban environments green roofs offer a feasible solution to add green infrastructure (GI) in neighborhoods where space is limited. Green roofs offer the typical advantages of urban GI such as stormwater reduction and management while providing direct benefits to the buildings on which they are installed through thermal protection and mitigation of temperature fluctuations. At 6.8 acres, the Jacob K. Javits Convention Center (JJCC) in New York City, hosts the second largest green roof in the United States. Since its installation in August 2013, the Sustainable Water Resource (SWRE) Laboratory at Drexel University has monitored the climate on and around the green roof by means of four weather stations situated on various roof and ground locations. Using two years of fine scale climatic data collected at the JJCC, this study explores the energy balance of a large scale green roof system. Temperature, radiation, evapotranspiration and wind profiles pre- and post- installation of the JJCC green roof were analyzed and compared across monitored locations, with the goal of identifying the impact of the green roof on the building and urban micro-climate. Our findings indicate that the presence of the green roof, not only altered the climatic conditions above the JJCC, but also had a measurable impact on the climatic profile of the areas immediately surrounding it. Furthermore, as a result of the mitigation of roof temperature fluctuations and of the cooling provided during warmer months, an improvement of the building thermal efficiency was contextually observed. Such findings support the installation of GI as an effective practice in urban settings and important in the discussion of key issues including energy conservation measures, carbon emission reductions and the mitigation of urban heat islands.

  5. 9. DETAIL, ROOF VENT HOUSING. NOTE THE TUNNEL TO TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL, ROOF VENT HOUSING. NOTE THE TUNNEL TO TEST STAND 1-3 AT FAR LEFT, AND ITS MACHINE SHOP AT LEFT CENTER. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  6. ETR ELECTRICAL BUILDING, TRA648. ELEVATIONS AND DETAILS. ROOF PLAN. DOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR ELECTRICAL BUILDING, TRA-648. ELEVATIONS AND DETAILS. ROOF PLAN. DOOR SCHEDULE. KAISER ETR-5528-MTR-648-A-3, 1/1956. INL INDEX NO. 532-0648-00-486-101403, REV. 5. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Rainwater collection and management from roofs at the Edison Environmental Center

    EPA Science Inventory

    In the past, the EPA’s Edison Environmental Center, a 200 acre federal run facility, directed all rainwater from roofed areas to the existing stormwater conveyance system. Over the last several years, modifications have been made to the practice of discharging stormwater to the e...

  8. Influence of roofing shingles on asphalt concrete mixture properties. Final report

    DOT National Transportation Integrated Search

    1993-06-01

    It is estimated that the production of new roofing shingles generates approximately 1,000,000 tons of waste annually in the U.S., and about 36,000 tons of this waste is in the Twin Cities Metro Area of Minnesota. With another 8.5 million tons of wast...

  9. Stormwater runoff mitigation and nutrient leaching from a green roof designed to attract native pollinating insects

    NASA Astrophysics Data System (ADS)

    Fogarty, S.; Grogan, D. S.; Hale, S. R.

    2013-12-01

    A green roof is typically installed for one of two reasons: to mitigate the 'urban heat island' effect, reducing ambient temperatures and creating energy savings, or to reduce both the quantity and intensity of stormwater runoff, which is a major cause of river erosion and eutrophication. The study of green roofs in the United States has focused on commercial systems that use a proprietary expanded shale or clay substrate, along with succulent desert plants (mainly Sedum species). The green roof has the potential not only to provide thermal insulation and reduce storm runoff, but also to reclaim some of the natural habitat that has been lost to the built environment. Of special importance is the loss of habitat for pollinating insects, particularly native bees, which have been in decline for at least two decades. These pollinators are essential for crop production and for the reproduction of at least 65% of wild plants globally. Our study involves the installation of a small (4ft by 4ft), self-designed green roof system built with readily available components from a hardware store. The garden will be filled with a soilless potting mix, combined with 15% compost, and planted with grasses and wildflowers native to the Seacoast, New Hampshire region. Some of the plant species are used by bees for nesting materials, while others provide food in the form of nectar, pollen, and seeds for bees, butterflies, hummingbirds, and granivorous birds. We monitor precipitation on the roof and runoff from the garden on a per storm basis, and test grab samples of runoff for dissolved organic nitrogen and phosphorous. Runoff and nutrient concentration results are compared to a non-vegetated roof surface, and a proprietary Green Grid green roof system. This project is designed to address three main questions of interest: 1) Can these native plant species, which potentially provide greater ecosystem services than Sedum spp. in the form of food and habitat, survive in the conditions on a rooftop? 2) How does this design compare with the performance of the extant Green Grid green roof system on the roof in regard to storm water runoff mitigation and nutrient leaching? and 3) Using GIS, can this information be scaled to a larger region (i.e. UNH campus, the NH Seacoast, NH cities, etc.) to determine areas of particular interest for pollinator conservation? Runoff mitigation, as a percentage of precipitation, is expected to be greater than that on the roof with proprietary substrate, though nutrient leaching may be greater as well due to the higher organic matter content. Paired with GIS data on NH ecoregions, these results will help to identify areas in the state that would benefit from the construction of pollinator habitat corridors, including urban areas that may not have been previously considered.

  10. Multi-scale monitoring of a remarkable green roof: the Green Wave of Champs-sur-Marne

    NASA Astrophysics Data System (ADS)

    Stanic, Filip; Versini, Pierre-Antoine; Schertzer, Daniel; Delage, Pierre; Tchiguirinskaia, Ioulia; Cui, Yu-Jun; Baudoin, Genevieve

    2017-04-01

    The installation of green infrastructures on existing or new roofs has become very popular in recent years (more than 2 km2 of green roofs is implemented each year in France) for many reasons. Among all of the green roofs' advantages, those related to storm water management are often pushed forward, since it has been pointed out that urban runoff peak can be significantly reduced and delayed thanks to the green roofs' retention and detention capabilities. Microclimate can also be affected by decreasing the temperature in the surrounding green area. However, dynamic physical processes involved in green roofs are highly non linear and variable. In order to accurately assess their performances, detailed monitoring experiments are required, both in situ and in the lab, so as to better understand the thermo-hydric behaviour of green roofs and to capture the related spatio-temporal variability at different scales. Based on these considerations, the 1 ha area wavy-form green roof of a section of the Bienvenüe building, called the Green Wave, is currently being monitored in Champs-sur-Marne (France), in front of Ecole des Ponts ParisTech. Initiated in the "Blue Green Dream" European project, detailed measurements systems have been implemented for studying all components of the water balance. Among others, a wireless network of water content and temperature sensors has been especially installed for characterizing spatial and temporal variability of infiltration, retention and evapotranspiration processes. In parallel, some laboratory tests have been conducted to better characterize the hydro-mechanical properties of the substrate. Moreover, at the Green Wave scale, some discharge measurements are carried out in the storm-water pipes that are collecting drained water, to determine runoff flow. This talk will present the current monitoring campaigns and analyze the data collected in the Universal Multifractal framework. This work represents the initial stage for developing a model capable to simulate reliable hydrological responses of different kinds of green roofs. Such a tool could be used to quantify hydrological impacts and interfere with the stormwater policies at the lot scale.

  11. The design of a mechanical referencing system for the rear drum of the Longwall Shearer Coal Miner

    NASA Technical Reports Server (NTRS)

    Jones, E. W.; Yang, T. C. H.

    1981-01-01

    The design of two systems which reference the position of a longwall shearer coal miner to the mine roof of the present cut and of the last cut are presented. This system is part of an automation system that will guide the rear cutting drum in such a manner that the total depth of cut remains constant even though the front drum may be following an undulating roof profile. The rear drum referencing mechanism continually monitors the distance from the mine roof to the floor for the present cut. This system provides a signal to control a constant depth of cut. The last cut follower mechanism continually monitors the distance from the mine roof of the prior cut to the cutting drum. This latter system provides a signal to minimize the step height in the roof between cuts. The dynamic response of this hydraulic-pneumatic and mechanical system is analyzed to determine accumulator size and precharge pressure.

  12. Residential roof condition assessment system using deep learning

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Kerekes, John P.; Xu, Zhuoyi; Wang, Yandong

    2018-01-01

    The emergence of high resolution (HR) and ultra high resolution (UHR) airborne remote sensing imagery is enabling humans to move beyond traditional land cover analysis applications to the detailed characterization of surface objects. A residential roof condition assessment method using techniques from deep learning is presented. The proposed method operates on individual roofs and divides the task into two stages: (1) roof segmentation, followed by (2) condition classification of the segmented roof regions. As the first step in this process, a self-tuning method is proposed to segment the images into small homogeneous areas. The segmentation is initialized with simple linear iterative clustering followed by deep learned feature extraction and region merging, with the optimal result selected by an unsupervised index, Q. After the segmentation, a pretrained residual network is fine-tuned on the augmented roof segments using a proposed k-pixel extension technique for classification. The effectiveness of the proposed algorithm was demonstrated on both HR and UHR imagery collected by EagleView over different study sites. The proposed algorithm has yielded promising results and has outperformed traditional machine learning methods using hand-crafted features.

  13. Understanding green roof spatial dynamics: results from a scale based hydrologic study and introduction of a low-cost method for wide-range monitoring

    NASA Astrophysics Data System (ADS)

    Hakimdavar, Raha; Culligan, Patricia J.; Guido, Aida

    2014-05-01

    Green roofs have the potential, if implemented on a wide scale and with proper foresight, to become an important supplement to traditional urban water management infrastructure, while also helping to change the face of cities from concrete draped, highly modified environments, to hybrid places where nature is more closely integrated into designs rather than pushed out of them. The ability of these systems to act as a decentralized rainwater handling network has been the topic of many recent studies. While these studies have attempted to quantify the hydrologic performance of green roofs, it's clear that they are dynamic systems whose responses are difficult to generalize. What also seems to be lacking from many studies is a discussion on the effects of green roof scale, spatial planning and configuration. This research aims to understand how rainfall characteristics and green roof scale impact its hydrologic performance. Three extensive green roof systems in New York City, with the same engineered components, age and regional climatic conditions, but different drainage areas, are analyzed. We find that rainfall volume and event duration are two of the parameters that most affect green roof performance, while rainfall intensity and antecedent dry weather period are less significant. We also find that green roof scale does in fact affect hydrologic performance, but mainly in reducing runoff peaks, with rainfall retention and lag time being much less affected by drainage area. We also introduce a low-cost monitoring method, termed the Soil Water Apportioning (SWA) method, which uses a water balance approach to analytically link precipitation to substrate moisture, and enable inference of green runoff and evapotranspiration from information on substrate moisture changes over time. Twelve months of in situ rainfall and soil moisture observations from three different green roof systems - extensive vegetated mat, semi-intensive vegetated mat, and semi-intensive tray - are used to test the reliability of the proposed approach using two different low-cost soil moisture probes. The estimates of runoff are compared with observed runoff data for durations ranging between 6 months to 1 year. Preliminary results indicate that this can be an effective low-cost and low-maintenance alternative to the custom made weir and lysimeter systems frequently used to quantify runoff during green roof studies. By significantly reducing the cost and labor associated with typical monitoring efforts, the SWA method makes large scale studies of green roof hydrologic performance more feasible.

  14. Use of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: Methodology, validation, and analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Xu, Hao; Li, Shuyi; Chen, Yanming; Zhang, Fangli; Li, Manchun

    2018-04-01

    As the rate of urbanization continues to accelerate, the utilization of solar energy in buildings plays an increasingly important role in sustainable urban development. For this purpose, we propose a LiDAR-based joint approach for calculating the solar irradiance incident on roofs and façades of buildings at city scale, which includes a methodology for calculating solar irradiance, the validation of the proposed method, and analysis of its application. The calculation of surface irradiance on buildings may then inform photovoltaic power generation simulations, architectural design, and urban energy planning. Application analyses of the proposed method in the experiment area found that: (1) Global and direct irradiations vary significantly by hour, day, month and season, both following the same trends; however, diffuse irradiance essentially remains unchanged over time. (2) Roof irradiation, but not façade irradiation, displays distinct time-dependent patterns. (3) Global and direct irradiations on roofs are highly correlated with roof aspect and slope, with high global and direct irradiations observed on roofs of aspect 100-250° and slopes of 0-60°, whereas diffuse irradiation on roofs is only affected by roof slope. (4) The façade of a building receives higher levels of global and direct irradiations if facing southeast, south, and southwest; however, diffuse irradiation remains constant regardless of façade orientation.

  15. Integration of LIDAR Data Into a Municipal GIS to Study Solar Radiation

    NASA Astrophysics Data System (ADS)

    Africani, P.; Bitelli, G.; Lambertini, A.; Minghetti, A.; Paselli, E.

    2013-04-01

    Identifying the right roofs to install solar panels inside a urban area is crucial for both private citizens and the whole local population. The aim is not easy because a lot of consideration must be made: insolation, orientation of the surface, size of the surface, shading due to topography, shading due to taller buildings next the surface, shading due to taller vegetation and other possible problems typical of urban areas like the presence of chimneys. Accuracy of data related to the analyzed surfaces is indeed fundamental, and also the detail of geometric models used to represent buildings and their roofs. The complexity that these roofs can reach is elevated. This work uses LiDAR data to obtain, with a semi-automatic technique, the full geometry of each roof part complementing the pre-existing building data in the municipal cartography. With this data is possible to evaluate the placement of solar panels on roofs of a whole city analyzing the solar potential of each building in detail. Other traditional techniques, like photogrammetry, need strong manual editing effort in order to identify slopes and insert vector on surfaces at the right height. Regarding LiDAR data, in order to perform accurate modelling, it is necessary to obtain an high density point cloud. The method proposed can also be used as a fast and linear workflow process for an area where LiDAR data are available and a municipal cartography already exist: LiDAR data can be furthermore successfully used to cross-check errors in pre-existent digital cartography that can remain otherwise hidden.

  16. SAFETY AND SECURITY BUILDING, TRA614. FLOOR, ROOF, AND FOUNDATION PLANS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SAFETY AND SECURITY BUILDING, TRA-614. FLOOR, ROOF, AND FOUNDATION PLANS. ROOM FUNCTIONS. DOOR AND ROOM FINISH SCHEDULE. BLAW-KNOX 3150-814-1, 3/1950. INL INDEX NO. 531-0614-00-098-100702, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. IET. Control and equipment building (TAN620). Blast roof details. Ralph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Control and equipment building (TAN-620). Blast roof details. Ralph M. Parsons 902-4-ANP-620-A-323. Date: February 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-620-00-693-106908 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. 40 CFR 63.1043 - Standards-Separator floating roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary seal shall be mounted above the primary seal and cover the annular space between the floating roof... visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the... membrane fabric cover that covers at least 90 percent of the area of the opening or a flexible fabric...

  19. 40 CFR 63.1043 - Standards-Separator floating roof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary seal shall be mounted above the primary seal and cover the annular space between the floating roof... visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the... membrane fabric cover that covers at least 90 percent of the area of the opening or a flexible fabric...

  20. Interior, building 1205, view to southeast showing roof truss system, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, building 1205, view to southeast showing roof truss system, sliding main doors, and roll up door at center to allow clearance for aircraft tail assembly, 90 mm lens plus electronic flash fill lighting. - Travis Air Force Base, Readiness Maintenance Hangar, W Street, Air Defense Command Readiness Area, Fairfield, Solano County, CA

  1. Advanced Energy Efficient Roof System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implementmore » more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target markets. Southern markets, from Florida to Texas account for 50 percent of the total new construction angled-roof volume. California contributes an additional 13 percent share of market volume. These states account for 28 to 30 million squares (2.8 to 3 billion square feet) of new construction angled roof opportunity. The major risk to implementation is the uncertainty of incorporating new design and construction elements into the construction process. By coordinating efforts to enhance the drivers for adoption and minimize the barriers, the panelized roof system stands to capitalize on a growing market demand for energy efficient building alternatives and create a compelling case for market adoption.« less

  2. Thermal Performance of Vegetative Roofing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjarlais, Andre Omer; Zaltash, Abdolreza; Atchley, Jerald Allen

    2010-01-01

    Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space.more » The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40% in the mixed climate of East Tennessee. It should be noted that these values are climate dependent. Vegetative roofs also reduced the temperature (heat exposure) and temperature fluctuations (thermal stress) experienced by the membrane. In the cooling season of East Tennessee, the average peak temperature of the 4-inch and tray systems was found to be approximately 94 F cooler than the control black roofing system. The average temperature fluctuations at the membrane for the 4-inch and tray systems were found to be approximately 10 F compared to 125 F for black and 64 F for white systems. As expected, the 8-inch vegetative roof had the lowest fluctuations at approximately 2 F. Future work will include modeling of the energy performance of vegetative roof panels in the test climate of East Tennessee. The validated model then will be used to predict energy use in roofs with different insulation levels and in climates different from the test climate.« less

  3. Water conservation benefits of urban heat mitigation.

    PubMed

    Vahmani, Pouya; Jones, Andrew D

    2017-10-20

    Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we use a suite of satellite-supported regional climate simulations in California to show that broad implementation of cool roofs, a heat mitigation strategy, not only results in significant cooling, but can also meaningfully decrease outdoor water consumption by reducing evaporative and irrigation water demands. Irrigation water consumption across the major metropolitan areas is reduced by up to 9% and irrigation water savings per capita range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings are found to be the highest in Los Angeles county, reaching about 83 million gallons per day. Cool roofs are a valuable solution for addressing the adaptation and mitigation challenges faced by multiple sectors in California.

  4. A green roof experimental site in the Mediterranean climate: the storm water quality issue.

    PubMed

    Gnecco, Ilaria; Palla, Anna; Lanza, Luca G; La Barbera, Paolo

    2013-01-01

    Since 2007, the University of Genoa has been carrying out a monitoring programme to investigate the hydrologic response of green roofs in the Mediterranean climate by installing a green roof experimental site. In order to assess the influence of green roofs on the storm water runoff quality, water chemistry data have been included in the monitoring programme since 2010, providing rainfall and outflow data. For atmospheric source, the bulk deposition is collected to evaluate the role of the overall atmospheric deposition in storm water runoff quality. For subsurface outflow, a maximum of 24 composite samples are taken on an event basis, thus aiming at a full characterization of the outflow hydrograph. Water chemistry data reveal that the pollutant loads associated with green roof outflow is low; in particular, solids and metal concentrations are lower than values generally observed in storm water runoff from traditional rooftops. The concentration values of chemical oxygen demand, total dissolved solids, Fe, Ca and K measured in the subsurface outflow are significantly higher than those observed in the bulk deposition (p < 0.05). With respect to the atmospheric deposition, the green roof behaviour as a sink/source of pollutants is investigated based on both concentration and mass.

  5. Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.

    2016-12-01

    The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.

  6. "Crosstalk" technique: A comparison between two generations of cryoballoon catheter.

    PubMed

    Yang, Jian-du; Sun, Qi; Guo, Xiao-Gang; Zhou, Gong-Bu; Liu, Xu; Luo, Bin; Wei, Hui-Qiang; Liang, Jackson J; Ma, Jian

    2018-03-30

    The "Crosstalk" technique: if pulmonary vein isolation (PVI) of the superior one is not achieved due to a gap in the inferior part, it could be done during inferior vein cryoablation. This maneuver minimizes the total energy delivery time and number of lesions. We aimed to correlate the likelihood of crosstalk phenomenon with certain anatomic characteristics. A total of 676 patients undergoing a first ablation procedure for paroxysmal or persistent atrial fibrillation (470 first-generation cryoballoon [CB] and 206 second-generation CB) between June 2014 and December 2016 were included. "Crosstalk" phenomenon occurred in 32 patients (18 first-generation CB, 14 second-generation CB). Compared to 54 control patients without crosstalk, the angle between left superior pulmonary vein (LSPV) and left atrial (LA) roof-plane, left pulmonary common ostia were significant parameters associated with crosstalk (odds ratio [OR] = 1.20, ±95% confidence interval [CI]: 1.11-1.31, P < 0.001; OR = 5.67, ±95% CI: 1.08-28.69, P = 0.04). As for angle between LSPV and LA roof-plane, the cut-off value was 28.68° with a sensitivity of 72.22%, a specificity of 81.25%, and an area under the receiver operating characteristic curve of 0.87 to predict the possibility of crosstalk technique application to get isolated in LSPV. Among the crosstalk group, there was no statistical difference between first-generation CB and second-generation CB in pulmonary anatomic characteristics. Crosstalk technique can be effective in patients with AF undergoing CB ablation using with both first and second-generation CBs. Anatomic characteristics predictive of crosstalk include a left common ostia and smaller angle between the LSPV and LA roof-plane. © 2018 Wiley Periodicals, Inc.

  7. Solar cell shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)

    1977-01-01

    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.

  8. Energy performance and savings potentials with skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arasteh, D.; Johnson, R.; Selkowitz, S.

    1984-12-01

    This study systematically explores the energy effects of skylight systems in a prototypical office building module and examines the savings from daylighting. For specific climates, roof/skylight characteristics are identified that minimize total energy or peak electrical demand. Simplified techniques for energy performance calculation are also presented based on a multiple regression analysis of our data base so that one may easily evaluate daylighting's effects on total and component energy loads and electrical peaks. This provides additional insights into the influence of skylight parameters on energy consumption and electrical peaks. We use the DOE-2.1B energy analysis program with newly incorporated daylightingmore » algorithms to determine hourly, monthly, and annual impacts of daylighting strategies on electrical lighting consumption, cooling, heating, fan power, peak electrical demands, and total energy use. A data base of more than 2000 parametric simulations for 14 US climates has been generated. Parameters varied include skylight-to-roof ratio, shading coefficient, visible transmittance, skylight well light loss, electric lighting power density, roof heat transfer coefficient, and electric lighting control type. 14 references, 13 figures, 4 tables.« less

  9. Urban reconciliation ecology: the potential of living roofs and walls.

    PubMed

    Francis, Robert A; Lorimer, Jamie

    2011-06-01

    Reconciling human and non-human use of urban regions to support biological conservation represents a major challenge for the 21st century. The concept of reconciliation ecology, by which the anthropogenic environment may be modified to encourage non-human use and biodiversity preservation without compromising societal utilization, potentially represents an appropriate paradigm for urban conservation given the generally poor opportunities that exist for reserve establishment and ecological restoration in urban areas. Two habitat improvement techniques with great potential for reconciliation ecology in urban areas are the installation of living roofs and walls, which have been shown to support a range of taxa at local scales. This paper evaluates the reconciliation potential of living roofs and walls, in particular highlighting both ecological and societal limitations that need to be overcome for application at the landscape scale. We further consider that successful utilization of living roofs and walls for urban reconciliation ecology will rely heavily on the participation of urban citizens, and that a 'citizen science' model is needed to facilitate public participation and support and to create an evidence base to determine their effectiveness. Living roofs and walls are just one aspect of urban reconciliation ecology, but are particularly important 'bottom-up' techniques for improving urban biodiversity that can be performed directly by the citizenry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Interactions between Cool Roofs and Urban Irrigation: Do Cooling Strategies Reduce Water Consumption in the San Francisco Bay Area?

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Jones, A. D.

    2016-12-01

    California has experienced progressive drought since 2012, with 2012-2014 constituting a nearly 10,000-year drought event, resulting in a suite of policies with the goal of reducing water consumption. At the same time, climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. In this study, for the first time, we assess the overarching benefits of cooling strategies on urban water consumption. We employ a satellite-supported regional climate-modeling framework over the San Francisco Bay Area to assess the effects of cool roofs on urban irrigation, a topic of increasing importance as it accounts for a significant fraction of urban water use particularly in arid and semi-arid regions. We use a suit of climatological simulations at high (1.5 km) spatial resolution, based on a Weather Research and Forecasting (WRF)-Urban Canopy Model (UCM) modeling framework, reinforced with remotely sensed observations of Green Vegetation Fraction (GVF), leaf area index (LAI), and albedo. Our analysis shows that widespread incorporation of cool roofs would result in a mean daytime cooling of about 0.7° C, which in turn results in roughly 4% reduction in irrigation water, largely due to decreases in surface evapotranspiration rates. We further investigate the critical interactions between cool roofs, wind, and sea-breeze patterns as well as fog formation, a dominant weather pattern in San Francisco Bay area.

  11. Hydrological performance of dual-substrate-layer green roofs using porous inert substrates with high sorption capacities.

    PubMed

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua; Peng, Chenrui

    2017-06-01

    Given that the common medium in existing green roofs is a single layer composed of organic and inorganic substrates, seven pilot-scale dual-substrate-layer extensive green roofs (G1-G7), which include nutrition and adsorption substrate layers, were constructed in this study. The effectiveness of porous inert substrates (activated charcoal, zeolite, pumice, lava, vermiculite and expanded perlite) used as the adsorption substrate for stormwater retention was investigated. A single-substrate-layer green roof (G8) was built for comparison with G1-G7. Despite the larger total rainfall depth (mm) of six types of simulated rains (43.2, 54.6, 76.2, 87.0, 85.2 and 86.4, respectively), the total percent retention of G1-G7 varied between 14% and 82% with an average of 43%, exhibiting better runoff-retaining capacity than G8 based on the maximum potential rainfall storage depth per unit height of adsorption substrate. Regression analysis showed that there was a logarithmic relationship between cumulative rainfall depth with non-zero runoff and stormwater retention for G1-G4 and a linear relationship for G5-G8. To enhance the water retention capacity and extend the service life of dual-substrate-layer extensive green roofs, the mixture of activated charcoal and/or pumice with expanded perlite and/or vermiculite is more suitable as the adsorption substrate than the mixture containing lava and/or zeolite.

  12. 40 CFR 1037.520 - Modeling CO2 emissions to show compliance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling..., expressed in m2 and rounded to two decimal places. Where we allow you to group multiple configurations... bin based on the drag area bin of an equivalent high-roof tractor. If the high-roof tractor is in Bin...

  13. 40 CFR 1037.520 - Modeling CO2 emissions to show compliance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling... to two decimal places. Where we allow you to group multiple configurations together, measure the drag... the drag area bin of an equivalent high-roof tractor. If the high-roof tractor is in Bin I or Bin II...

  14. 40 CFR 1037.520 - Modeling CO2 emissions to show compliance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling... to two decimal places. Where we allow you to group multiple configurations together, measure the drag... the drag area bin of an equivalent high-roof tractor. If the high-roof tractor is in Bin I or Bin II...

  15. 44. ARAIII Fuel oil tank ARA710. Camera facing west. Perimeter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. ARA-III Fuel oil tank ARA-710. Camera facing west. Perimeter fence at left side of view. Gable-roofed building beyond tank on right is ARA-622. Gable-roofed building beyond tank on left is ARA-610. Ineel photo no. 3-16. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  16. 4. VIEW OF SECURITY GATE LOOKING SOUTHWEST FROM ROOF OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF SECURITY GATE LOOKING SOUTHWEST FROM ROOF OF BUILDING 8970 (CREW READINESS BUILDING) SHOWING BUILDING 8965 (SECURITY POLICE ENTRY CONTROL BUILDING) IN RIGHT MIDDLE GROUND AND BUILDING 8966 (ELECTRIC POWER STATION BUILDING) IN RIGHT FOREGROUND. - Loring Air Force Base, Alert Area, Southeastern portion of base, east of southern end of runway, Limestone, Aroostook County, ME

  17. Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data

    NASA Astrophysics Data System (ADS)

    Gulbe, Linda; Caune, Vairis; Korats, Gundars

    2017-12-01

    The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.

  18. Estimation of the amount of asbestos-cement roofing in Poland.

    PubMed

    Wilk, Ewa; Krówczyńska, Małgorzata; Pabjanek, Piotr; Mędrzycki, Piotr

    2017-05-01

    The unique set of physical and chemical properties has led to many industrial applications of asbestos worldwide; one of them was roof covering. Asbestos is harmful to human health, and therefore its use was legally forbidden. Since in Poland there is no adequate data on the amount of asbestos-cement roofing, the objective of this study was to estimate its quantity on the basis of physical inventory taking with the use of aerial imagery, and the application of selected statistical features. Data pre-processing and analysis was executed in R Statistical Environment v. 3.1.0. Best random forest models were computed; model explaining 72.9% of the variance was subsequently used to prepare the prediction map of the amount of asbestos-cement roofing in Poland. Variables defining the number of farms, number and age of buildings, and regional differences were crucial for the analysis. The total amount of asbestos roofing in Poland was estimated at 738,068,000 m 2 (8.2m t). It is crucial for the landfill development programme, financial resources distribution, and application of monitoring policies.

  19. Dual Durameter Blow Molded Rocker Cover Design With Unique Isolation Strategy

    DOEpatents

    Freese, V, Charles Edwin

    2000-07-11

    The rocker arm cover on a diesel engine can be formed of a rigid molded plastic material to minimize the transmission of noise into the atmosphere. Sonic vibration of the cover can be reduced by reducing the cover material stiffness. The reduced stiffness of the cover material allows the roof area of the cover to be momentarily displaced away from the cylinder head in the presence of an acoustic wave, so that the roof area is not able to develop the restoring force that is necessary for vibrational motion.

  20. Green roof impact on the hydrological cycle components

    NASA Astrophysics Data System (ADS)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2013-04-01

    In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a building by installing green roofs and, thus, providing a conversion of rooftops in pervious areas; the objective is modeling hydrological fluxes (interception, evapotranspiration, soil water fluxes in the surface and hypodermic components) in relation to climate forcing, basic technology components and geometric characteristics of green roof systems (thickness of the stratigraphy, soil layers and materials, vegetation typology and density). The sensitivity analysis of hydrological processes at different hydrological, climatic and geometric parameters has allowed to draw some general guidelines useful in the design and construction of this type of drainage systems.

  1. Quantitative exposure matrix for asphalt fume, total particulate matter, and respirable crystalline silica among roofing and asphalt manufacturing workers.

    PubMed

    Fayerweather, William E; Trumbore, David C; Johnson, Kathleen A; Niebo, Ronald W; Maxim, L Daniel

    2011-09-01

    This paper summarizes available data on worker exposures to asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica (quartz) [hereinafter RCS] over a 30-year period in Owens Corning's asphalt production and roofing manufacturing plants. For the period 1977 through 2006, the air-monitoring database contains more than 1,400 personal samples for asphalt fume (soluble fraction), 2,400 personal samples for total particulate, and 1,300 personal samples for RCS. Unique process-job categories were identified for the asphalt production and roofing shingle manufacturing plants. Quantitative exposures were tabulated by agent, process-job, and calendar period to form an exposure matrix for use in subsequent epidemiologic studies of the respiratory health of these workers. Analysis of time trends in exposure data shows substantial and statistically significant exposure reductions for asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica at Owens Corning plants. Cumulative distribution plots for the most recent sampling period (2001-2006) show that 95% of the asphalt fume (soluble fraction) measurements were less than 0.25 mg/m3; 95% of the total particulate measurements were less than 2.2 mg/m3; and 95% of the RCS measurements were less than 0.05 mg/m3. Several recommendations are offered to improve the design of future monitoring efforts.

  2. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation, fenestration, etc. and their thermal insulation energy performance value will not be included this study. Five different UAB campus buildings with the same reinforced concrete structure (RC Structure), each having a different roofing material were selected, surveyed, analyzed, and evaluated in this study. Two primary factors are considered in this evaluation: the energy consumption and utility bills. The data has been provided by the UAB Facilities Management Department and has been monitored from 2007 to 2013 using analysis of variance (ANOVA) and t-test methods. The energy utilities examined in this study involved electricity, domestic water, and natural gas. They were measured separately in four different seasons over a seven-year time period. The building roofing materials consisted of a green roof, a white (reflective) roof, a river rock roof, a concrete paver roof, and a traditional black roof. Results of the tested roofs from this study indicate that the white roof is the most energy efficient roofing material.

  3. Rainwater runoff retention on an aged intensive green roof.

    PubMed

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2013-09-01

    Urban areas are characterised by large proportions of impervious surfaces which increases rainwater runoff and the potential for surface water flooding. Increased precipitation is predicted under current climate change projections, which will put further pressure on urban populations and infrastructure. Roof greening can be used within flood mitigation schemes to restore the urban hydrological balance of cities. Intensive green roofs, with their deeper substrates and higher plant biomass, are able to retain greater quantities of runoff, and there is a need for more studies on this less common type of green roof which also investigate the effect of factors such as age and vegetation composition. Runoff quantities from an aged intensive green roof in Manchester, UK, were analysed for 69 rainfall events, and compared to those on an adjacent paved roof. Average retention was 65.7% on the green roof and 33.6% on the bare roof. A comprehensive soil classification revealed the substrate, a mineral soil, to be in good general condition and also high in organic matter content which can increase the water holding capacity of soils. Large variation in the retention data made the use of predictive regression models unfeasible. This variation arose from complex interactions between Antecedant Dry Weather Period (ADWP), season, monthly weather trends, and rainfall duration, quantity and peak intensity. However, significantly lower retention was seen for high rainfall events, and in autumn, which had above average rainfall. The study period only covers one unusually wet year, so a longer study may uncover relationships to factors which can be applied to intensive roofs elsewhere. Annual rainfall retention for Manchester city centre could be increased by 2.3% by a 10% increase in intensive green roof construction. The results of this study will be of particular interest to practitioners implementing greenspace adaptation in temperate and cool maritime climates. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Lee, S. M.; Katzenstein, A. S.; Carreras-Sospedra, M.; Zhang, X.; Farina, S.; Vahmani, P.; Fine, P.; Epstein, S. A.

    2017-12-01

    The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB) in Southern California. Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to predict potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. Meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  5. Relationship of roof falls in underground coal mines to fractures mapped on ERTS-1 imagery. [Indiana and Illinois

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J.; Russell, O. R.; Amato, R. V.; Leshendok, T. V.

    1974-01-01

    ERTS imagery is of unique value for mapping of certain fractures that are not identifiable on aircraft imagery. Because color infrared and ERTS imagery complement each other both sources of data were used to map fractures in western Indiana and eastern Illinois. In the Kings Station Mine, Gibson County, Indiana, most roof falls reported had occurred in areas where mapped fractures were closely spaced and intersecting. Using this information as a basis for extrapolation, roof fall hazard maps were prepared for other mine sites. Various coal resources programs related to energy and environment also were conducted.

  6. Pollutant concentrations and pollution loads in stormwater runoff from different land uses in Chongqing.

    PubMed

    Wang, Shumin; He, Qiang; Ai, Hainan; Wang, Zhentao; Zhang, Qianqian

    2013-03-01

    To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing, six typical land use types were selected and studied from August 2009 to September 2011. Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff, and the concentrations of the same pollutant also vary greatly in different rainfall events. In addition, it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR), commercial areas (CA), concrete roofs (CR), tile roofs (TRoof), and campus catchment areas (CCA); and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-II standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002). The EMCs of Fe, Pb and Cd are also much higher than the class-III standard values. The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS, COD and TP is UTR. The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR, while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA. The results of this study provide a reference for better management of non-point source pollution in urban regions.

  7. a Line-Based 3d Roof Model Reconstruction Algorithm: Tin-Merging and Reshaping (tmr)

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.

    2012-07-01

    Three-dimensional building model is one of the major components of a cyber-city and is vital for the realization of 3D GIS applications. In the last decade, the airborne laser scanning (ALS) data is widely used for 3D building model reconstruction and object extraction. Instead, based on 3D roof structural lines, this paper presents a novel algorithm for automatic roof models reconstruction. A line-based roof model reconstruction algorithm, called TIN-Merging and Reshaping (TMR), is proposed. The roof structural line, such as edges, eaves and ridges, can be measured manually from aerial stereo-pair, derived by feature line matching or inferred from ALS data. The originality of the TMR algorithm for 3D roof modelling is to perform geometric analysis and topology reconstruction among those unstructured lines and then reshapes the roof-type using elevation information from the 3D structural lines. For topology reconstruction, a line constrained Delaunay Triangulation algorithm is adopted where the input structural lines act as constraint and their vertex act as input points. Thus, the constructed TINs will not across the structural lines. Later at the stage of Merging, the shared edge between two TINs will be check if the original structural line exists. If not, those two TINs will be merged into a polygon. Iterative checking and merging of any two neighboured TINs/Polygons will result in roof polygons on the horizontal plane. Finally, at the Reshaping stage any two structural lines with fixed height will be used to adjust a planar function for the whole roof polygon. In case ALS data exist, the Reshaping stage can be simplified by adjusting the point cloud within the roof polygon. The proposed scheme reduces the complexity of 3D roof modelling and makes the modelling process easier. Five test datasets provided by ISPRS WG III/4 located at downtown Toronto, Canada and Vaihingen, Germany are used for experiment. The test sites cover high rise buildings and residential area with diverse roof type. For performance evaluation, the adopted roof structural lines are manually measured from the provided stereo-pair. Experimental results indicate a nearly 100% success rate for topology reconstruction was achieved provided that the 3D structural lines can be enclosed as polygons. On the other hand, the success rate at the Reshaping stage is dependent on the complexity of the rooftop structure. Thus, a visual inspection and semi-automatic adjustment of roof-type is suggested and implemented to complete the roof modelling. The results demonstrate that the proposed scheme is robust and reliable with a high degree of completeness, correctness, and quality, even when a group of connected buildings with multiple layers and mixed roof types is processed.

  8. A wedge strategy for mitigation of urban warming in future climate scenarios

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Lee, Xuhui; Schultz, Natalie M.

    2017-07-01

    Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs). Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases - cold islands caused by cool roofs at midday, with an average oasis effect of -3.4 K in the summer for the period 2071-2100, which offsets approximately 80 % of the greenhouse gas (GHG) warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.

  9. Green roofs: potential at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, Elena M

    2009-01-01

    Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due tomore » the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat strokes, heat exhaustion, and pollution that can agitate the respiratory system. The most significant savings associated with green roofs is in the reduction of cooling demands due to the green roof's thermal mass and their insulating properties. Unlike a conventional roof system, a green roof does not absorb solar radiation and transfer that heat into the interior of a building. Instead the vegetation acts as a shade barrier and stabilizes the roof temperature so that interior temperatures remain comfortable for the occupants. Consequently there is less of a demand for air conditioning, and thus less money spent on energy. At LANL the potential of green roof systems has already been realized with the construction of the accessible green roof on the Otowi building. To further explore the possibilities and prospective benefits of green roofs though, the initial capital costs must be invested. Three buildings, TA-03-1698, TA-03-0502, and TA-53-0031 have all been identified as sound candidates for a green roof retrofit project. It is recommended that LANL proceed with further analysis of these projects and implementation of the green roofs. Furthermore, it is recommended that an urban forestry program be initiated to provide supplemental support to the environmental goals of green roofs. The obstacles barring green roof construction are most often budgetary and structural concerns. Given proper resources, however, the engineers and design professionals at LANL would surely succeed in the proper implementation of green roof systems so as to optimize their ecological and monetary benefits for the entire organization.« less

  10. ETR, TRA642. NORTHSOUTH SECTION, LOOKING WEST. STEELFRAME ROOF, CRANE RAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. NORTH-SOUTH SECTION, LOOKING WEST. STEEL-FRAME ROOF, CRANE RAIL, AND CRANES. COOLANT PIPE TUNNEL LEADING TO REACTOR FROM EAST. (THIS WAS A PRELIMINARY CONCEPT DRAWING.) KAISER ETR-5528-MTR-642-A-4, 11/1955. INL INDEX NO. 532-0642-00-486-100912, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  12. A comparative study of the grain-size distribution of surface dust and stormwater runoff quality on typical urban roads and roofs in Beijing, China.

    PubMed

    Shen, Zhenyao; Liu, Jin; Aini, Guzhanuer; Gong, Yongwei

    2016-02-01

    The deposition of pollutants on impervious surfaces is a serious problem associated with rapid urbanization, which results in non-point-source pollution. Characterizing the build-up and wash-off processes of pollutants in urban catchments is essential for urban planners. In this paper, the spatial variation and particle-size distributions of five heavy metals and two nutrients in surface dust were analyzed, and the runoff water first-flush effect (FF30) and event-mean concentrations (EMCs) of 10 common constituents were characterized. The relationships between runoff variables and stormwater characteristics were examined from three typical urban impervious surfaces in Beijing, China. Dust on road surfaces with smaller grain sizes had higher pollutant concentrations, whereas concentrations of Mn, Zn, Fe, and TP in roof surface dust increased with grain size. Particles with grain sizes of 38-74 and 125-300 μm contributed most to the total pollutant load in roads, while particles with the smallest grain sizes (<38 μm) contributed most on roofs (23.46-41.71 %). Event-mean concentrations (EMCs) and FF30 values for most runoff pollutants tended to be higher on roofs than on roads. The maximum intensity (I max) and the antecedent dry days (ADD) were critical parameters for EMCs in roads, while ADD was the only dominant parameter for EMCs on our studied roof. The rainfall intensity (RI) and maximum intensity (I max) were found to be the parameters with the strongest correlation to the first-flush effect on both roads and roofs. Significant correlations of total suspended solids (TSS) concentration in runoff with grain-size fractions of surface dust indicated that coarser particles (74-300 μm) are most likely to contribute to the solid-phase pollutants, and finer particles (<38 μm) are likely the main source of dissolved pollutants.

  13. Rainwater harvesting and green area retention potential detection using commercial unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kamnik, Rok; Grajfoner, Blanka; Butyrin, Andrey; Nekrep Perc, Matjaz

    2017-10-01

    The objective of this work is to use simple photogrammetry to evaluate rainwater harvesting and green area retention potential in Maribor, Slovenia city centre. Several sources of remote sensing data have been described and a field test with semi-professional drone was performed by means of computer evaluation of rainwater harvesting and green area retention potential. Some of the most important design parameters for rainwater harvesting systems as roof area and slope and available green areas were identified and evaluated. The results have shown that even semi-professional low budget drones can be successfully used for mapping areas of interest. The results of six-minute flight over twelve hectares of Maribor city centre were comparable with professional results of plane remote sensing. Image segmentation from orthomosaic together with elevation model has been used to detect roofs and green areas.

  14. Scaling of economic benefits from Green Roof implementation in Washington, DC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, H.; Clark, C. E.; Zhou, J.

    2010-06-01

    Green roof technology is recognized for mitigating stormwater runoff and energy consumption. Methods to overcome the cost gap between green roofs and conventional roofs were recently quantified by incorporating air quality benefits. This study investigates the impact of scaling on these benefits at the city-wide scale using Washington, DC as a test bed because of the proposed targets in the 20-20-20 vision (20 million ft{sup 2} by 2020) articulated by Casey Trees, a nonprofit organization. Building-specific stormwater benefits were analyzed assuming two proposed policy scenarios for stormwater fees ranging from 35 to 50% reduction for green roof implementation. Heat fluxmore » calculations were used to estimate building-specific energy savings for commercial buildings. To assess benefits at the city scale, stormwater infrastructure savings were based on operational savings and size reduction due to reduced stormwater volume generation. Scaled energy infrastructure benefits were calculated using two size reductions methods for air conditioners. Avoided carbon dioxide, nitrogen oxide (NOx), and sulfur dioxide emissions were based on reductions in electricity and natural gas consumption. Lastly, experimental and fugacity-based estimates were used to quantify the NOx uptake by green roofs, which was translated to health benefits using U.S. Environmental Protection Agency models. The results of the net present value (NPV) analysis showed that stormwater infrastructure benefits totaled $1.04 million (M), while fee-based stormwater benefits were $0.22-0.32 M/y. Energy savings were $0.87 M/y, while air conditioner resizing benefits were estimated at $0.02 to $0.04 M/y and avoided emissions benefits (based on current emission trading values) were $0.09 M-0.41 M/y. Over the lifetime of the green roof (40 years), the NPV is about 30-40% less than that of conventional roofs (not including green roof maintenance costs). These considerable benefits, in concert with current and emerging policy frameworks, may facilitate future adoption of this technology.« less

  15. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    PubMed

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.

  16. Plant species richness enhances nitrogen retention in green roof plots.

    PubMed

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters downstream of green roofs. © 2016 by the Ecological Society of America.

  17. Scaling of economic benefits from green roof implementation in Washington, DC.

    PubMed

    Niu, Hao; Clark, Corrie; Zhou, Jiti; Adriaens, Peter

    2010-06-01

    Green roof technology is recognized for mitigating stormwater runoff and energy consumption. Methods to overcome the cost gap between green roofs and conventional roofs were recently quantified by incorporating air quality benefits. This study investigates the impact of scaling on these benefits at the city-wide scale using Washington, DC as a test bed because of the proposed targets in the 20-20-20 vision (20 million ft(2) by 2020) articulated by Casey Trees, a nonprofit organization. Building-specific stormwater benefits were analyzed assuming two proposed policy scenarios for stormwater fees ranging from 35 to 50% reduction for green roof implementation. Heat flux calculations were used to estimate building-specific energy savings for commercial buildings. To assess benefits at the city scale, stormwater infrastructure savings were based on operational savings and size reduction due to reduced stormwater volume generation. Scaled energy infrastructure benefits were calculated using two size reductions methods for air conditioners. Avoided carbon dioxide, nitrogen oxide (NO(x)), and sulfur dioxide emissions were based on reductions in electricity and natural gas consumption. Lastly, experimental and fugacity-based estimates were used to quantify the NO(x) uptake by green roofs, which was translated to health benefits using U.S. Environmental Protection Agency models. The results of the net present value (NPV) analysis showed that stormwater infrastructure benefits totaled $1.04 million (M), while fee-based stormwater benefits were $0.22-0.32 M/y. Energy savings were $0.87 M/y, while air conditioner resizing benefits were estimated at $0.02 to $0.04 M/y and avoided emissions benefits (based on current emission trading values) were $0.09 M-0.41 M/y. Over the lifetime of the green roof (40 years), the NPV is about 30-40% less than that of conventional roofs (not including green roof maintenance costs). These considerable benefits, in concert with current and emerging policy frameworks, may facilitate future adoption of this technology.

  18. A Model of Equilibrium Conditions of Roof Rock Mass Giving Consideration to the Yielding Capacity of Powered Supports

    NASA Astrophysics Data System (ADS)

    Jaszczuk, Marek; Pawlikowski, Arkadiusz

    2017-12-01

    The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support units giving consideration to the load of the caving shield, a model of support unit was used that allows for unequivocal determination of the yielding capacity of the support with consideration given to the height of the unit in use and the change in the inclination of the canopy resulting from the displacement of the roof of the longwall. The yielding capacity of the support unit and its point of application on the canopy was determined using the method of units which allows for the internal forces to be manifested. The weight of the rock mass depends on the geological and mining conditions, for which the shape and dimensions of the rock mass affecting the support unit are determined. The resultant force of the pressure of gob on the gob shield was calculated by assuming that the load may be understood as a pressure of ground on a wall. This required the specification of the volume of the fallen rocks that affect the unit of powered roof supports (Fig. 2). To determine the support of the roof rock mass by the coal seam, experience of the Australian mining industry was used. Experiments regarding the strength properties of coal have exhibited that vertical deformation, at which the highest seam reaction occurs while supporting the roof rock mass, amounts to 0.5% of the longwall's height. The measure of the width of the contact area between the rock mass and the seam is the width of the additional uncovering of the face roof due to spalling of seam topcorners da (Fig. 2). With the above parameters and the value of the modulus of elasticity of coal in mind, the value of the seam's reaction may be estimated using the dependence (2). The vertical component of the goafs' reaction may be determined based on the strength characteristics of the fallen roof, the contact area of the rock mass with the fallen roof and the mean strain of the fallen roof at the area of contact. In the work by Pawlikowski (2014), a research procedure was proposed which encompasses model tests and exploitation tests of the loads exerted on the support units, aimed at the determination of the vertical component of the goaf reaction (Fig. 5). Based on duty cycles of powered roof support units, a mean value of the indicator of contact stiffness between the roof rock mass and the rocks constituting the caving is determined, assuming the linear dependence between the horizontal reaction and the heading convergence. The parameter allows for the determination of the horizontal component of the goafs' reaction in the external loading model of support units and allows for the determination of the required yielding capacity of supports, required to ensure the equilibrium of the roof rock mass. The experimentally verified model of the external loading of the units was used to conduct simulations of interactions between the KOPEX-095/17-POz support unit and the rock mass in a face characterized by the height of 1.6 m. Based on the data obtained in experiment, the variability of the yielding capacity of the support units was analyzed. A yielding capacity inclination angle of the units was determined for the registered curves (Figs. 6 and 7). At the same time, the presentation of the lines corresponding to the required yielding capacity of units and characterizing the deformability of the support units, allows for the prediction of the yielding capacity of the powered supports and the convergence of the heading in the conditions of a given face (Fig. 9).

  19. Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.

    PubMed

    Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea

    2014-08-15

    Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Assessment of addition of biochar to filtering mixtures for potential water pollutant removal.

    PubMed

    Piscitelli, Lea; Rivier, Pierre-Adrien; Mondelli, Donato; Miano, Teodoro; Joner, Erik J

    2018-01-01

    Green roofs are used increasingly to alleviate peaks of water discharge into the sewage systems in urban areas. Surface runoff from roofs contain pollutants from dry and wet deposition, and green roofs offer a possibility to reduce the amounts of pollutants in the water discharged from roofs by degradation and filtering. These pollutants would otherwise enter wastewater treatments plants and ultimately end up in sewage sludge that is spread on agricultural soils. The most common substrates used in green roofs have limited capacity for filtration and sorption. Also, more sustainable alternatives are sought, due to the high carbon footprint of these materials. Biochar is a carbon-rich material produced by pyrolysis of biomass, and several types of biochar have been described as good sorbents and filter materials. Biochar is also a light and carbon negative material, which may fulfill other desired criteria for new green roof substrates. We here report on an experiment where two types of biochar, produced from olive husks at 450 °C or from forest waste at 850 ° C were mixed with volcanic rock or peat, and tested for retention capacity of phenanthrene and six heavy metals in a column experiment with unsaturated gravimetric water flow lasting for 3 weeks. The results suggest that biochar as a component in green roof substrates perform better than traditional materials, concerning retention of the tested pollutants, and that different types of biochar have different properties in this respect.

  1. Evaluation of the deflected mode of the monolithic span pieces and preassembled slabs combined action

    NASA Astrophysics Data System (ADS)

    Roshchina, Svetlana; Ezzi, Hisham; Shishov, Ivan; Lukin, Mikhail; Sergeev, Michael

    2017-10-01

    In single-story industrial buildings, the cost of roof covering comprises 40-55% of the total cost of the buildings. Therefore, research, development and application of new structural forms of reinforced concrete rafter structures, that allow to reduce material consumption and reduce the sub-assembly weight of structures, are the main tasks in the field of improving the existing generic solutions. The article suggests a method for estimating the relieving effect in the rafter structure as the result of combined deformation of the roof slabs with the end arrises. Calculated and experimental method for determining the stress and strain state of the rafter structure upper belt and the roof slabs with regard to their rigid connection has been proposed. A model of a highly effective roof structure providing a significant reduction in the construction height of the roofing and the cubic content of the building at the same time allowing to include the end arrises and a part of the slabs shelves with the help of the monolithic concrete has been proposed. The proposed prefabricated monolithic concrete rafter structure and its rigid connection with ribbed slabs allows to reduce the consumption of the prestressed slabs reinforcement by 50%.

  2. Benzalkonium runoff from roofs treated with biocide products - In situ pilot-scale study.

    PubMed

    Gromaire, M C; Van de Voorde, A; Lorgeoux, C; Chebbo, G

    2015-09-15

    Roof maintenance practices often involve the application of biocide products to fight against moss, lichens and algae. The main component of these products is benzalkonium chloride, a mixture of alkyl benzyl dimethyl ammonium chlorides with mainly C12 and C14 alkyl chain lengths, which is toxic for the aquatic environment. This paper describes, on the basis of an in-situ pilot scale study, the evolution of roof runoff contamination over a one year period following the biocide treatment of roof frames. Results show a major contamination of roof runoff immediately after treatment (from 5 to 30 mg/L), followed by an exponential decrease. 175-375 mm of cumulated rainfall is needed before the runoff concentrations become less than EC50 values for fish (280 μg/l). The residual concentration in the runoff water remains above 4 μg/L even after 640 mm of rainfall. The level of benzalkonium ions leaching depends on the roofing material, with lower concentrations and total mass leached from ceramic tiles than from concrete tiles, and on the state of the tile (new or worn out). Mass balance calculations indicate that a large part of the mass of benzalkonium compounds applied to the tiles is lost, probably due to biodegradation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Habitat template approach for green roofs using a native rocky sea coast plant community in Japan.

    PubMed

    Nagase, Ayako; Tashiro-Ishii, Yurika

    2018-01-15

    The present study examined whether it is possible to simulate a local herbaceous coastal plant community on a roof, by studying the natural habitats of rocky sea coast plants and their propagation and performance on a green roof. After studying the natural habitat of coastal areas in Izu peninsula, a germination and cutting transplant study was carried out using herbaceous plants from the Jogasaki sea coast. Many plant species did not germinate at all and the use of cuttings was a better method than direct seeding. The green roof was installed in the spring of 2012 in Chiba city. Thirteen plant species from the Jogasaki sea coast, which were successfully propagated, were planted in three kinds of substrate (15 cm depth): pumice, roof tile and commercial green roof substrate. The water drainage was restricted and a reservoir with 5 cm depth of water underlaid the substrate to simulate a similar growing environment to the sea coast. Volcanic rocks were placed as mulch to create a landscape similar to that on the Jogasaki sea coast. Plant coverage on the green roof was measured every month from June 2012 to October 2014. All plants were harvested and their dry shoot weight was measured in December 2014. The type of substrate did not cause significant differences in plant survival and dry shoot weight. Sea coast plant species were divided into four categories: vigorous growth; seasonal change; disappearing after a few years; limited growth. Understanding the ecology of natural habitats was important to simulating a local landscape using native plant communities on the green roof. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California.

    PubMed

    Epstein, Scott A; Lee, Sang-Mi; Katzenstein, Aaron S; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C; Vahmani, Pouya; Fine, Philip M; Ban-Weiss, George

    2017-08-22

    The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM 2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California's Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM 2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  5. Thermal and water regime of green roof segments filled with Technosol

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Šácha, Jan; Dohnal, Michal; Skala, Vojtěch

    2016-04-01

    Artificial soil systems and structures comprise appreciable part of the urban areas and are considered to be perspective for number of reasons. One of the most important lies in contribution of green roofs and facades to the heat island effect mitigation, air quality improvement, storm water reduction, etc. The aim of the presented study is to evaluate thermal and water regime of the anthropogenic soil systems during the first months of the construction life cycle. Green roof test segments filled with two different anthropogenic soils were built to investigate the benefits of such systems in the temperate climate. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the soil substrates provided basis for detailed analysis of thermal and hydrological regime. Water balance of green roof segments was calculated for available vegetation seasons and individual rainfall events. On the basis of an analysis of individual rainfall events rainfall-runoff dependency was found for green roof segments. The difference between measured actual evapotranspiration and calculated potential evapotranspiration was discussed on period with contrasting conditions in terms of the moisture stress. Thermal characteristics of soil substrates resulted in highly contrasting diurnal variation of soils temperatures. Green roof systems under study were able to reduce heat load of the roof construction when comparing with a concrete roof construction. Similarly, received rainfall was significantly reduced. The extent of the rainfall reduction mainly depends on soil, vegetation status and experienced weather patterns. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  6. Skylight energy performance and design optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arasteh, D.; Johnson, R.; Selkowitz, S.

    1984-02-01

    Proper skylight utilization can significantly lower energy requirements and peak electrical loads for space conditioning and lighting in commercial buildings. In this study we systematically explore the energy effects of skylight systems in a prototypical office building and examine the savings from daylighting. The DOE-2.1B energy analysis computer program with its newly incorporated daylighting algorithms was used to generate more than 2000 parametric simulations for seven US climates. The parameters varied include skylight-to-roof ratio, shading coefficient, visible transmittance, skylight well light loss, electric lighting power density, roof heat transfer coefficient, and type of electric lighting control. For specific climates wemore » identify roof/skylight characteristics that minimize total energy or peak electrical load requirements.« less

  7. Terrestrial Photovoltaic System Analysis.

    DTIC Science & Technology

    1980-07-01

    the photovoltaic arrays was detertttined to be the roof on the building adjacent to the plating facilit.. Sult ficitut roof area is available to...indicated here: Component 50 kW System 300 kW System Solar Array $10/W $"’/W Inverter $38/W $I/W (dlitereut supplier) The life-cycle cost analysis...27 15. Various solar energy concem t rating systems .......... 3 I. Varionts photovoltaic concentrators developed under PRDA- 15

  8. Issues and Strategies for Improving Constructibility.

    DTIC Science & Technology

    1988-09-01

    materials. First, the roof design called for the use of an asphalt coated roof felt layer below an EPDM membrane. The asphalt coated felt is not needed when a...being prepared by people trained in subjects foreign to construction. As designers, we were in fact contractually and professionally isolated from...specially constructed for sound isolation . The architect* correctly specified special sound seals around the doors between the rooms in this area, but

  9. Retrofitted green roofs and walls and improvements in thermal comfort

    NASA Astrophysics Data System (ADS)

    Feitosa, Renato Castiglia; Wilkinson, Sara

    2017-06-01

    Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.

  10. Dish-based CPV-T for rooftop generation

    NASA Astrophysics Data System (ADS)

    Davila-Peralta, Christian; Hyatt, Justin; Alfred, Dan; Struble, Morgan; Sodari, Frank; Angel, Roger

    2017-09-01

    Hybrid CPV-T with combined electrical and thermal output is well suited to solar generation from fixed limited areas, such as on the roof of an industrial or commercial facility with need for heat. This application will become especially attractive once overall electrical conversion efficiency of 40% is reached, as is projected for REhnu CPV systems using multijunction cells of 50% efficiency, anticipated in a few years. We outline here a configuration of dish- based CPV trackers optimized for close packing on a flat roof in a triangular grid, with a mirror area-to-ground area ratio of 50%. When the geometry of shadowing averaged over a year is taken into account, 80% of all the sunlight that would strike the rooftop is directed into the receivers. Such an array on a given area of flat roof will generate more electrical energy than would be possible with conventional PV panels, even if covering the entire rooftop, because of silicon's relative inefficiency. For example, in Tucson, the annual average global flux of 5.7 kWh/m2/day on a horizontal surface covered with 22% silicon modules will yield 1.25 kWh/m2/day. We show that a CPV system collecting 80% of all the direct sunlight of 7.0 kWh/m2 and converting it with 40% efficiency will yield 2.24 kWh/m2/day of rooftop area, nearly twice as much4. Thermal power will double again the total energy yield. A dual axis CPV-T tracker designed specifically very close spacing has been built to carry a single dish mirror of the standard type used in REhnu's M-8 generator, described by Stalcup et al in these proceedings1,2. Sunlight is collected and focused by a single square paraboloidal mirror, 1.65 × 1.65 m with focal length of 1.5 m. For closest possible packing without mechanical interference, and for broad distribution of load on a rooftop, the mirror and receiver are mounted to a C-ring structure, configured such that the elevation and azimuth axes intersect at a virtual pivot, at the center of the sphere that just clears the receiver and the corners of the mirror. Initial tests of closed loop tracking show an accuracy of 0.03° rms under calm conditions, and 0.04° rms in 6 m/sec wind.

  11. The contribution of particles washed from rooftops to contaminant loading to urban streams.

    PubMed

    Van Metre, P C; Mahler, B J

    2003-09-01

    Rooftops are both a source of and a pathway for contaminated runoff in urban environments. To investigate the importance of particle-associated contamination in rooftop runoff, particles washed from asphalt shingle and galvanized metal roofs at sites 12 and 102 m from a major expressway were analyzed for major and trace elements and PAHs. Concentrations and yields from rooftops were compared among locations and roofing material types and to loads monitored during runoff events in the receiving urban stream to evaluate rooftop sources and their potential contribution to stream loading. Concentrations of zinc, lead, pyrene, and chrysene on a mass per mass basis in a majority of rooftop samples exceeded established sediment quality guidelines for probable toxicity of bed sediments to benthic biota. Fallout near the expressway was greater than farther away, as indicated by larger yields of all contaminants investigated, although some concentrations were lower. Metal roofing was a source of cadmium and zinc and asphalt shingles a source of lead. The contribution of rooftop washoff to watershed loading was estimated to range from 6 percent for chromium and arsenic to 55 percent for zinc. Estimated contributions from roofing material to total watershed load were greatest for zinc and lead, contributing about 20 and 18 percent, respectively. The contribution from atmospheric deposition of particles onto rooftops to total watershed loads in stormwater was estimated to be greatest for mercury, contributing about 46 percent.

  12. Sustainability of rainwater catchment systems for small island communities

    NASA Astrophysics Data System (ADS)

    Bailey, Ryan T.; Beikmann, Alise; Kottermair, Maria; Taboroši, Danko; Jenson, John W.

    2018-02-01

    Communities living on atolls and similar low-lying islands in the tropical Pacific rely on rainwater and shallow groundwater to meet domestic water needs. Rainwater, generally captured and stored using rooftop rainwater catchment systems, is the preferred water source due to higher quality and convenience of access. This study assesses the performance of rainwater catchment systems (RWCS) on Ifalik Atoll, located in Yap State, Federated States of Micronesia in the western Pacific. A field survey was conducted in August 2015 to evaluate RWCS features (guttered roof area, storage tank size, gutter leakage conditions), determine numbers of users, and estimate daily water use via household surveys. All 152 RWCS were surveyed. Water balance modeling was applied to the RWCS to estimate end-of-day stored rainwater volumes for each day of the 1997-1999 time period, during which an El Niño-induced drought occurred. Results indicate that the community is resilient to drought, although the majority of RWCS were depleted of rainwater and hence community sharing was required. Scenario testing indicates that increasing guttered roof area is the optimal strategy for enhancing system reliability. For example, the volume of water maintained at the peak of a drought can be tripled if the available roof areas for the RWCS are guttered. Design curves, which provide a set of roof area - tank volume combinations that achieve specified levels of reliability, were created and can be used to plan new RWCS. Besides offering insights into community-wide water storage and usage patterns and resiliency for Ifalik Atoll, this study presents methods that can be applied to other atoll island communities throughout the Indo-Pacific region.

  13. The application of photovoltaic roof shingles to residential and commercial buildings

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.; Sanchez, L. E.

    1978-01-01

    The recent development of a shingle-type solar-cell module makes it possible to incorporate easily photovoltaic power generation into the sloping roofs of residential or commercial buildings. These modules, which use a closely packed array of nineteen 53-mm-diameter circular solar cells, are capable of producing 101 watts/sq m of module area under standard operating conditions. This module performance is achievable by the use of solar cells with an average efficiency of 13.3 percent at 1 kW/sq m air-mass-1.5 insolation and at a cell temperature of 28 C. When these modules are mounted on a sloping south-facing roof which is insulated on the rear surface, the annual energy generated at the maximum power operating point will vary from 255.6 to 137.3 kWh/sq m of module area depending on the site location, with Albuquerque, NM, and Seattle, WA, representing the highest and lowest values of the thirteen sites considered.

  14. Positive effects of vegetation: urban heat island and green roofs.

    PubMed

    Susca, T; Gaffin, S R; Dell'osso, G R

    2011-01-01

    This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2 °C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO(2) equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Survey of the Pagoda Timber Roof in Derneburg Castle

    NASA Astrophysics Data System (ADS)

    Perria, E.; Sieder, M.; Hoyer, S.; Krafczyk, C.

    2017-05-01

    The work analyses the historical roof of Derneburg Castle, in the municipality of Holle, Hildesheim's district, Lower Saxony, Germany. The roof is assembled according to Laves Balken's system (Laves beam's system), developed by the architect Georg Ludwig Friedrich Laves (1788-1864). The system has the peculiarity to consist of beams that are split along the half of the cross section, and maintained diverged by wooden wedges, distributed along the length of the beam. The system increases the height of the beam, and elevates the bending capacity of it (Weber, 1964). The work has been developed in the frame of an interdisciplinary project in the fields of architecture, engineering and photogrammetry. Main aim of the project is the developing of a structural model to understand the load-carrying capacity of Laves Balken's system from the laser-scanning model. For this reason, extensive surveys and photo documentation were collected on three areas of the roof construction, characterized by three peculiar usage of Laves Balken's system. The work presents the survey of the pagoda-roof that covers the tower of the castle, and problems that can be encountered during the survey of very complex timber constructions.

  16. On-site infiltration of a copper roof runoff: role of clinoptilolite as an artificial barrier material.

    PubMed

    Athanasiadis, Konstantinos; Helmreich, Brigitte; Horn, Harald

    2007-08-01

    On-site infiltration may be considered as a promising way of managing rainwater runoffs in urban areas, provided the hydrological and ecological conditions allow infiltration, and provided there is adequate treatment of the contaminants to avoid a risk of soil and groundwater pollution. The aim of this study was to evaluate the feasibility of the application of a new technical infiltration system equipped with clinoptilolite as an artificial barrier material for the treatment of the copper roof runoff of the Academy of Fine Arts in Munich, Germany. During the 2-yr sampling period, 30 rain events were examined. The cover material of the roof and the drainage system was responsible for the high copper concentrations in the roof runoff. The rain height and the rain intensity were of great significance regarding the establishment of the copper runoff rate. The technical infiltration system applied was able to reduce the copper from the roof runoff by a factor up to 96%. The mean measured copper concentration in percolation water was lower than the critical value of 50 microg/l set by the German Federal Soil Protection Act and Ordinance, indicating no risk for soil and groundwater contamination.

  17. 11. Interior view, second floor, tin shop area looking southwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view, second floor, tin shop area looking southwest, showing laminated plank arched roof trusses. - Larrabee & Hingston Company, Main Shop Building, 19 Howley Street, Peabody, Essex County, MA

  18. 40. ARAIII Prototype assembly and evaluation building ARA630. East end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. ARA-III Prototype assembly and evaluation building ARA-630. East end and south side of building. Camera facing west. Roof railing is part of demolition preparations. Building beyond ARA-622 is ARA-621. In left of view is reactor building. ARA-607 is low-roofed portion, while high-bay portion is ARA-608. Ineel photo no. 3-27. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  19. Methodology for Identifying and Quantifying Metal Pollutant Sources in Storm Water Runoff

    DTIC Science & Technology

    2015-02-01

    sanitary sewer are not viable options. In addition, visual inspections of the drainage areas have been insufficient in identifying and quantifying the...diverting the runoff into the sanitary sewer system, but the cost could exceed millions of dollars. Instead of capturing and treating all stormwater...Unknown Appears only if Building Siding is “metal” Roof Material roof_mat_d Built Up, Metal Panel, Asphalt, Fabric, Clay , Slate, Wood, Other

  20. A&M. TAN607 second floor plan for hot shop. Roof of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-607 second floor plan for hot shop. Roof of pool. Viewing window locations. Special equipment room. This drawing was re-drawn to show conditions in 1994. Ralph M. Parsons 902-3-ANP-607-A 101. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-060-00-693-106753 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. Ammana Market Renovation Majjasim, Iraq. Sustainment Assessment

    DTIC Science & Technology

    2009-07-30

    compaction, and placement of 65 meter (m) x 45m x 15 centimeter (cm) concrete pads construction of four steel market stall roofs construction of a 1,771...framing and roofing construction of six benches construction of a security wall, including:  reinforced concrete posts and cross beams with...performed only an expedited assessment of the areas available; a complete review of all work completed was not possible. Concrete Pad The SOW required

  2. Estimating rooftop solar technical potential across the US using a combination of GIS-based methods, lidar data, and statistical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m 2 ofmore » suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft 2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.« less

  3. Estimating rooftop solar technical potential across the US using a combination of GIS-based methods, lidar data, and statistical modeling

    DOE PAGES

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; ...

    2018-01-05

    We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m 2 ofmore » suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft 2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.« less

  4. Estimating rooftop solar technical potential across the US using a combination of GIS-based methods, lidar data, and statistical modeling

    NASA Astrophysics Data System (ADS)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; Phillips, Caleb; Elmore, Ryan

    2018-02-01

    We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m2 of suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.

  5. Successfully Demonstrating an Integrated Roofing and BIPV Solution for an Historic Building Renovation at the United States Air Force Academy

    DTIC Science & Technology

    2011-05-01

    Solution for an Historic Building Renovation at the United States Air Force Academy • Abstract Number: 12623 Vandenberg Hall • Thin Film Solar Array • Direct...Phase 1 • Total installed production capacity: 212.320 KW DC • Panels type and quantity: • Unisolar Thin Film Amorphous Silicon Panels • 1210 – Power...Successfully Demonstrating an Integrated Roofing and BIPV Solution for an Historic Building Renovation at the United States Air Force Academy

  6. CHAPTER 17: STORMWATER

    EPA Science Inventory

    The process of urbanization causes significant changes to the hydrologic regime of catchments through increased impervious areas (roads, roofs, etc) and alterations to the natural drainage network. Some examples of urbanization processes include: increasing surface area of road ...

  7. Structural design of Kaohsiung Stadium, Taiwan

    USGS Publications Warehouse

    Watanabe, Hideyuki; Tanno, Yoshiro; Nakai, Masayoshi; Ohshima, Takashi; Suguichi, Akihiro; Lee, William H.; Wang, Jensen

    2013-01-01

    This paper presents an outline description of the structural design of the main stadium for the World Games held in Kaohsiung City, Taiwan, in 2009. Three new design concepts, unseen in previous stadiums, were proposed and realized: “an open stadium”, “an urban park”, and “a spiral continuous form”. Based on the open stadium concept, simple cantilever trusses in the roof structure were arranged in a delicate rhythm, and a so-called oscillating hoop of steel tubes was wound around the top and bottom surfaces of a group of cantilever trusses to form a continuous spiral form. Also, at the same time by clearly grouping the structural elements of the roof structure, the dramatic effect of the urban park was highlighted by unifying the landscape and the spectator seating area to form the stadium facade. This paper specifically reports on the overview of the building, concepts of structural design, structural analysis of the roof, roof design, foundation design, and an outline of the construction.

  8. Quantifying evapotranspiration from urban green roofs: a comparison of chamber measurements with commonly used predictive methods.

    PubMed

    Marasco, Daniel E; Hunter, Betsy N; Culligan, Patricia J; Gaffin, Stuart R; McGillis, Wade R

    2014-09-02

    Quantifying green roof evapotranspiration (ET) in urban climates is important for assessing environmental benefits, including stormwater runoff attenuation and urban heat island mitigation. In this study, a dynamic chamber method was developed to quantify ET on two extensive green roofs located in New York City, NY. Hourly chamber measurements taken from July 2009 to December 2009 and April 2012 to October 2013 illustrate both diurnal and seasonal variations in ET. Observed monthly total ET depth ranged from 0.22 cm in winter to 15.36 cm in summer. Chamber results were compared to two predictive methods for estimating ET; namely the Penman-based ASCE Standardized Reference Evapotranspiration (ASCE RET) equation, and an energy balance model, both parametrized using on-site environmental conditions. Dynamic chamber ET results were similar to ASCE RET estimates; however, the ASCE RET equation overestimated bottommost ET values during the winter months, and underestimated peak ET values during the summer months. The energy balance method was shown to underestimate ET compared the ASCE RET equation. The work highlights the utility of the chamber method for quantifying green roof evapotranspiration and indicates green roof ET might be better estimated by Penman-based evapotranspiration equations than energy balance methods.

  9. 75. VIEW OF SECOND WEAPONS STORAGE AREA IGLOO FIELD FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. VIEW OF SECOND WEAPONS STORAGE AREA IGLOO FIELD FROM ROOF OF BUILDING 328 LOOKING NORTHWEST SHOWING BUILDING 327-318. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  10. 72. OVERALL VIEW OF WEAPONS STORAGE AREA IGLOO FIELDS. TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. OVERALL VIEW OF WEAPONS STORAGE AREA IGLOO FIELDS. TAKEN FROM ROOF OF BUILDING 232 (MINE SHOP) LOOKING NORTH. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  11. Characteristic roofing slates from Spain: Mormeau and Los Molinos

    NASA Astrophysics Data System (ADS)

    Cardenes Van den Eynde, Victor; Cnudde, Veerle; Cnudde, Jean Pierre

    2014-05-01

    Characteristic roofing slates from Spain: Mormeau and Los Molinos Cardenes1, V., Cnudde1, V., Cnudde1, J.P. 1 Department of Geology and Soil Science, Ghent University, Krijgslaan 281, S8, 9000 Ghent, Belgium. The world's major roofing slate outcrops are found in the NW of Spain, in the Ordovician terrains of the domain of the Truchas Syncline. In this remote area, slate was quarried since ancient times for the use of the inhabitants of the region. Half of a century ago, an industrialization process took place in this area, which began to produce high quality roofing slate for many buildings from Japan to the USA, and especially in Europe. Since then, Spanish slate roofing has been widely used for new buildings and also for restoration of historical buildings. This work revises the occurrence and characteristics of the two most representative grey slate varieties from the Truchas Syncline, Mormeau, a fine-grained slate, and Los Molinos, also a grey slate with a slightly coarser grain. Both slates have a very similar aspect, but Mormeau slate have some iron sulphides on its composition that sometimes forms oxidation spots. Mormeau beds are found at the Middle-Upper Ordovician age Casaio Formation, while Los Molinos beds are located at the Rozadais Formation, of age Upper Ordovician, defined as formation just for the Truchas Syncline domain. Both slates have a high degree of homogeneity on their constructive characteristics, with a typical composition of quartz, mica and chlorites, and a metamorphic degree corresponding to the green schists facies. This work revises the history and characteristics of both slates, that can be considered as lithotypes that can be used as a reference during the prospection of new slate outcrops worldwide. The presented varieties of slate are proposed for their inclusion as Global Heritage Stones.

  12. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.

  13. PBF Cooling Tower. View from highbay roof of Reactor Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. View from high-bay roof of Reactor Building (PER-620). Camera faces northwest. East louvered face has been installed. Inlet pipes protrude from fan deck. Two redwood vents under construction at top. Note piping, control, and power lines at sub-grade level in trench leading to Reactor Building. Photographer: Kirsh. Date: June 6, 1969. INEEL negative no. 69-3466 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. [A review of green roof performance towards management of roof runoff].

    PubMed

    Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi

    2015-08-01

    Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff.

  15. Estimation of regional building-related C&D debris generation and composition: case study for Florida, US.

    PubMed

    Cochran, Kimberly; Townsend, Timothy; Reinhart, Debra; Heck, Howell

    2007-01-01

    Methodology for the accounting, generation, and composition of building-related construction and demolition (C&D) at a regional level was explored. Six specific categories of debris were examined: residential construction, nonresidential construction, residential demolition, nonresidential demolition, residential renovation, and nonresidential renovation. Debris produced from each activity was calculated as the product of the total area of activity and waste generated per unit area of activity. Similarly, composition was estimated as the product of the total area of activity and the amount of each waste component generated per unit area. The area of activity was calculated using statistical data, and individual site studies were used to assess the average amount of waste generated per unit area. The application of the methodology was illustrated using Florida, US approximately 3,750,000 metric tons of building-related C&D debris were estimated as generated in Florida in 2000. Of that amount, concrete represented 56%, wood 13%, drywall 11%, miscellaneous debris 8%, asphalt roofing materials 7%, metal 3%, cardboard 1%, and plastic 1%. This model differs from others because it accommodates regional construction styles and available data. The resulting generation amount per capita is less than the US estimate - attributable to the high construction, low demolition activity seen in Florida.

  16. PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Miller, William A; Childs, Phillip W

    2011-01-01

    Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7.more » The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.« less

  17. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California

    NASA Astrophysics Data System (ADS)

    Epstein, Scott A.; Lee, Sang-Mi; Katzenstein, Aaron S.; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C.; Vahmani, Pouya; Fine, Philip M.; Ban-Weiss, George

    2017-08-01

    The installation of roofing materials with increased solar reflectance (i.e., “cool roofs”) can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California’s Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  18. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California

    PubMed Central

    Lee, Sang-Mi; Katzenstein, Aaron S.; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C.; Vahmani, Pouya; Fine, Philip M.

    2017-01-01

    The installation of roofing materials with increased solar reflectance (i.e., “cool roofs”) can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California’s Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies. PMID:28784778

  19. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  20. Leaf and life history traits predict plant growth in a green roof ecosystem.

    PubMed

    Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler

    2014-01-01

    Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less aggressive species.

  1. Analysis of materials used for Greenhouse roof covering - structure using CFD

    NASA Astrophysics Data System (ADS)

    Subin, M. C.; Savio Lourence, Jason; Karthikeyan, Ram; Periasamy, C.

    2018-04-01

    Greenhouse is widely used to create a suitable environment for the growth of plant. During summer, high temperatures cause harm to the plant. This work calculates characteristics required to optimize the above-mentioned parameters using different roof structure covering materials for the greenhouse. Moreover, this work also presents a simulation of the cooling and heating system. In addition, a computer model based on Ansys Fluent has been using to predict the temperature profiles inside the greenhouse. Greenhouse roof structure shading may have a time-dependent effect the production, water and nutrient uptake in plants. An experiment was conducted in the emirate of Dubai in United Arab Emirates to discover the impact of different materials in order to have an optimal plant growth zone and yield production. These structures were poly ethylene and poly carbonate sheets of 2 different configurations. Results showed that poly carbonate sheets configuration of optimal thickness has given a high result in terms of yield production. Therefore, there is a need for appropriate material selection of greenhouse roof structure in this area of UAE. Major parameters and properties need to be considered while selecting a greenhouse roof structure are the resistance to solar radiation, weathering, thermal as well as mechanical properties and good abrasion resistance. In the present study, an experiment has been conducted to find out the material suitability of the greenhouse roof structure in terms of developing proper ambient conditions especially to minimize the energy lose by reducing the HVAC and lighting expenses. The configuration verified using the CFD, so it has been concluded that polycarbonate can be safely used in the greenhouse than other roof structure material having white or green colour.

  2. Water quality and quantity investigation of green roofs in a dry climate.

    PubMed

    Beecham, S; Razzaghmanesh, M

    2015-03-01

    Low-energy pollutant removal strategies are now being sought for water sensitive urban design. This paper describes investigations into the water quality and quantity of sixteen, low-maintenance and unfertilized intensive and extensive green roof beds. The factors of Slope (1° and 25°), Depth (100 mm and 300 mm), Growing media (type A, type B and type C) and Species (P1, P2 and P3) were randomized according to a split-split plot design. This consisted of twelve vegetated green roof beds and four non-vegetated beds as controls. Stormwater runoff was collected from drainage points that were installed in each area. Samples of run-off were collected for five rainfall events and analysed for water retention capacity and the water quality parameters of NO₂, NO₃, NH₄, PO₄, pH, EC, TDS, Turbidity, Na, Ca, Mg and K. The results indicated significant differences in terms of stormwater water quality and quantity between the outflows of vegetated and non-vegetated systems. The water retention was between 51% and 96% and this range was attributed to the green roof configurations in the experiment. Comparing the quality of rainfall as inflow, and the quality of runoff from the systems showed that green roofs generally acted as a source of pollutants in this study. In the vegetated beds, the intensive green roofs performed better than the extensive beds with regard to outflow quality while in the non-vegetated beds, the extensive beds performed better than intensive systems. This highlights the importance of vegetation in improving water retention capacity as well as the role of vegetation in enhancing pollutant removal in green roof systems. In addition growing media with less organic matter had better water quality performance. Comparison of these results with national and international standards for water reuse confirmed that the green roof outflow was suitable for non-potable uses such as landscape irrigation and toilet flushing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Surface energy balance of an extensive green roof as quantified by full year eddy-covariance measurements.

    PubMed

    Heusinger, Jannik; Weber, Stephan

    2017-01-15

    Green roofs are discussed as a promising type of green infrastructure to lower heat stress in cities. In order to enhance evaporative cooling, green roofs should ideally have similar Bowen ratio (β=sensible heat flux/latent heat flux) characteristics such as rural sites, especially during summer periods with high air temperatures. We use the eddy-covariance (EC) method to quantify the energy balance of an 8600m 2 extensive, non-irrigated green roof at the Berlin Brandenburg Airport, Germany over a full annual cycle. To understand the influence of water availability on green roof-atmosphere energy exchange, we studied dry and wet periods and looked into functional relationships between leaf area, volumetric water content (VWC) of the substrate, shortwave radiation and β. The surface energy balance was dominated by turbulent heat fluxes in comparison to conductive substrate heat fluxes. The Bowen ratio was slightly below unity on average but highly variable due to ambient meteorology and substrate water availability, i.e. β increased to 2 in the summer season. During dry periods mean daytime β was 3, which is comparable to typical values of urban instead of rural sites. In contrast, mean daytime β was 0.3 during wet periods. Following a summer wet period the green roof maximum daily evapotranspiration (ET) was 3.3mm, which is a threefold increase with respect to the mean summer ET. A multiple regression model indicated that the substrate VWC at the present site has to be >0.11m 3 m -3 during summer high insolation periods (>500Wm -2 ) in order to maintain favourable green roof energy partitioning, i.e. mid-day β<1. The microclimate benefit of urban green roofs can be significantly optimised by using sustainable irrigation approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. 12. Interior view of main cabin showing stairs to loft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view of main cabin showing stairs to loft area, note construction of balcony and roof - Dean E. Call Property, Big Springs Summer Home Area, Lot 5, Block D, Island Park, Fremont County, ID

  5. Retention performance of green roofs in representative climates worldwide

    NASA Astrophysics Data System (ADS)

    Viola, F.; Hellies, M.; Deidda, R.

    2017-10-01

    The ongoing process of global urbanization contributes to an increase in stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be innovative stormwater management measures to partially restore natural states, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends not only on their depth, but also on the climate, which drives the stochastic soil moisture dynamic. In this context, a simple tool for assessing performance of green roofs worldwide in terms of retained water is still missing and highly desirable for practical assessments. The aim of this work is to explore retention performance of green roofs as a function of their depth and in different climate regimes. Two soil depths are investigated, one representing the intensive configuration and another representing the extensive one. The role of the climate in driving water retention has been represented by rainfall and potential evapotranspiration dynamics. A simple conceptual weather generator has been implemented and used for stochastic simulation of daily rainfall and potential evapotranspiration. Stochastic forcing is used as an input of a simple conceptual hydrological model for estimating long-term water partitioning between rainfall, runoff and actual evapotranspiration. Coupling the stochastic weather generator with the conceptual hydrological model, we assessed the amount of rainfall diverted into evapotranspiration for different combinations of annual rainfall and potential evapotranspiration in five representative climatic regimes. Results quantified the capabilities of green roofs in retaining rainfall and consequently in reducing discharges into sewer systems at an annual time scale. The role of substrate depth has been recognized to be crucial in determining green roofs retention performance, which in general increase from extensive to intensive settings. Looking at the role of climatic conditions, namely annual rainfall, potential evapotranspiration and their seasonality cycles, we found that they drive green roofs retention performance, which are the maxima when rainfall and temperature are in phase. Finally, we provide design charts for a first approximation of possible hydrological benefits deriving from the implementation of intensive or extensive green roofs in different world areas. As an example, 25 big cities have been indicated as benchmark case studies.

  6. Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec.

    PubMed

    Gourdji, Shannon

    2018-05-28

    In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O 3 ) as well as nitrogen dioxide (NO 2 ) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus 'Nana', Pinus mugho var. pumilio, Pinus mugho 'Slowmound' and Pinus pumila 'Dwarf Blue' are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum 'Shaina' and 'Mikawa-Yatsubusa' are options to reduce O 3 levels. Magnolias are tolerant to NO 2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia 'Genie' is a good option to remove NO 2 in urban settings and to indirectly reduce O 3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM 10 of which 35.10 kg is PM 2.5 . The removal rates are 4.00 g/m 2 and 1.52 g/m 2 for PM 10 and PM 2.5 , respectively. This paper provides insight to addressing air pollution through urban rooftop greening. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Building energy analysis of Electrical Engineering Building from DesignBuilder tool: calibration and simulations

    NASA Astrophysics Data System (ADS)

    Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.

    2016-07-01

    This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.

  8. Tropical stormwater floods: a sustainable solution

    NASA Astrophysics Data System (ADS)

    Molinie, Jack; Bade, Francois; Nagau, Jimmy; Nuiro, Paul

    2017-04-01

    Stormwater management is one of the most difficult problem of urban and suburban area. The urban runoff volume related to rain intensity and surfaces properties can lead to flood. Thereby, urban flooding creates considerable infrastructure problem, economics and human damages. In tropical countries, burgeoning human population coupled with unplanned urbanization altered the natural drainage. Consequently, classical intense rain around 100 cm/h produces frequent street flooding. In our case, we study the management of intense tropical rain, by using a network of individual rain storage tanks. The study area is economical and industrial zone installed in a coastal plain , with seventy per cent of impermeable surface (roads, parking lots, building roof, …) and thirty per cent of wetland (mangrove, …). Our solution is to delay the routes and parking lots runoff to the roof one. We propose sustainable individual water storage and a real time dynamical management, which permit to control the roof water arrival in the stormwater culvert. During the remaining time, the stored rainwater can be used for domestic activities instead of the use of drinking water.

  9. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP). Attachments: Volume 4 of 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.

  10. A&M. Hot liquid waste treatment building (TAN616). Contextual view, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot liquid waste treatment building (TAN-616). Contextual view, facing south. Wall of hot shop (TAN-607) with high bay at left of view. Lower-roofed building at left edge of view is TAN- 633, hot cell annex. Complex at center of view is TAN-616. Tall metal building with gable roof is TAN-615. Photographer: Ron Paarmann. Date: September 22, 1997. INEEL negative no. HD-20-2-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. ASPHALT FOR OFF-STREET PAVING AND PLAY AREAS, 3RD EDITION.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    THIS PAMPHLET DISCUSSES THE ALTERNATIVE METHODS, APPLICATIONS, AND TECHNICAL CONSIDERATIONS FOR OFF-STREET PAVING AND PLAY AREAS. OFF-STREET PAVING INCLUDES--(1) ASPHALT-PAVED PARKING AREAS, (2) ROOF DECK PARKING AREAS, (3) ASPHALT-PAVED DRIVEWAYS, (4) ASPHALT-PAVED SERVICE STATION LOTS, AND (5) SIDEWALKS. THE DISCUSSION OF PLAY AREAS…

  12. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintained to keep roofs and outside areas free of dry product. Only packaging materials that are used within a day's operation may be kept in the packaging area. These materials shall be kept on metal racks or...

  13. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintained to keep roofs and outside areas free of dry product. Only packaging materials that are used within a day's operation may be kept in the packaging area. These materials shall be kept on metal racks or...

  14. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintained to keep roofs and outside areas free of dry product. Only packaging materials that are used within a day's operation may be kept in the packaging area. These materials shall be kept on metal racks or...

  15. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintained to keep roofs and outside areas free of dry product. Only packaging materials that are used within a day's operation may be kept in the packaging area. These materials shall be kept on metal racks or...

  16. Airborne pollen of Carya, Celtis, Cupressus, Fraxinus and Pinus in the metropolitan area of Monterrey Nuevo Leon, Mexico.

    PubMed

    Rocha-Estrada, Alejandra; Alvarado-Vázquez, Marco Antonio; Torres-Cepeda, Teresa Elizabeth; Foroughbakhch-Pournavab, Rahim; Hernández-Piñero, Jorge Luis

    2008-01-01

    The concentration of pollen grains in the atmosphere over the metropolitan area of Monterrey, Nuevo Leon, Mexico, was analyzed throughout a year from March 2003-February 2004, focused on the genus Carya, Celtis, Cupressus, Fraxinus and Pinus owing to their interest as etiological pollinosis agents in diverse regions of the world. A 7-day Hirst type volumetric spore and pollen trap was located on a building roof of the city at 15 m from ground level for continuous sampling. The total quantity of pollen recorded for the study period was 21,083 grains/m(3), corresponding to 49.75 % of the taxa of interest. February and March were the months with higher pollen amounts in the air with 7,525 and 2,781 grains/m(3), respectively, and amounted to 49 % of total year through pollen. Fraxinus was the genus which contributed to the largest amount of pollen with 28 % of total grains (5,935 grains/m(3)) followed by Cupressus with 13 % (2,742 grains/ m(3)). Celtis, Pinus and Carya contributed with 5.3 % , 2.7 % , and 0.6 % of total pollen, respectively. These results indicate that Fraxinus and Cupressus are present in the area in sufficient quantity to indicate likely involvement in the origin of allergic disorders in the human population.

  17. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate.

    PubMed

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2016-04-15

    Sediment and heavy metals in stormwater runoff are key pollutants of urban waterways, and their presence in stormwater is driven by climatic factors such as rainfall intensity. This study describes the total suspended solids (TSS) and heavy metal concentrations found in runoff from four different urban surfaces within a residential/institutional catchment, in a climate where rainfall is typically of low intensity (<5.1mm·h(-1)). The results were compared to untreated runoff quality from a compilation of international studies. The road runoff had the highest TSS concentrations, while copper and galvanized roof runoff had the highest copper and zinc concentrations, respectively. Pollutant concentrations were found to be significantly different between surfaces; quantification and prediction of pollutant contributions from urban surfaces should thus take account of the different surface materials, instead of being aggregated into more generalized categories such as land use. The TSS and heavy metal concentrations were found to be at the low to medium end of ranges observed internationally, except for total copper and zinc concentrations generated by dissolution of copper and galvanized roofing material respectively; these concentrations were at least as high as those reported internationally. TSS wash-off from the roofs was seen to be a source-limited process, where all available TSS is washed off during the rain event despite the low intensity rainfall, whereas both road TSS and heavy metals wash-off from roof and road surfaces appeared to all be transport-limited and therefore some carryover of pollutants occurs between rain events. A first flush effect was seen from most surfaces for TSS, but not for heavy metals. This study demonstrates that in low intensity rainfall climates, quantification of untreated runoff quality from key individual surface types in a catchment are needed to enable development of targeted and appropriately sized stormwater treatment systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Distribution of 137Cs on components in urban area four years after the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Yoshimura, K; Saito, K; Fujiwara, K

    2017-11-01

    Distribution of 137 Cs on components in urban areas such as roofs and roads is crucial for evaluating the behavior of radiocesium and ambient dose rates in the area. This study evaluated relative 137 Cs inventories, which are defined as the relative values of 137 Cs inventory on each component to that on a nearby permeable plane field, for 11 buildings in the evacuation zone about four years after the Fukushima Dai-ichi Nuclear Power Plant accident. The average relative inventory of paved ground accounted for 0.18 of that on permeable plane fields. Other components showed small average values of less than 0.1, indicating rapid removal of radiocesium from urban areas even without decontamination. The differences in the relative inventories on roads and roofs with those in the case of Europe suggest that human activity and component materials largely affect the reduction of radiocesium in urban area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Assessing cost-effectiveness of specific LID practice designs in response to large storm events

    NASA Astrophysics Data System (ADS)

    Chui, Ting Fong May; Liu, Xin; Zhan, Wenting

    2016-02-01

    Low impact development (LID) practices have become more important in urban stormwater management worldwide. However, most research on design optimization focuses on relatively large scale, and there is very limited information or guideline regarding individual LID practice designs (i.e., optimal depth, width and length). The objective of this study is to identify the optimal design by assessing the hydrological performance and the cost-effectiveness of different designs of LID practices at a household or business scale, and to analyze the sensitivity of the hydrological performance and the cost of the optimal design to different model and design parameters. First, EPA SWMM, automatically controlled by MATLAB, is used to obtain the peak runoff of different designs of three specific LID practices (i.e., green roof, bioretention and porous pavement) under different design storms (i.e., 2 yr and 50 yr design storms of Hong Kong, China and Seattle, U.S.). Then, life cycle cost is estimated for the different designs, and the optimal design, defined as the design with the lowest cost and at least 20% peak runoff reduction, is identified. Finally, sensitivity of the optimal design to the different design parameters is examined. The optimal design of green roof tends to be larger in area but thinner, while the optimal designs of bioretention and porous pavement tend to be smaller in area. To handle larger storms, however, it is more effective to increase the green roof depth, and to increase the area of the bioretention and porous pavement. Porous pavement is the most cost-effective for peak flow reduction, followed by bioretention and then green roof. The cost-effectiveness, measured as the peak runoff reduction/thousand Dollars of LID practices in Hong Kong (e.g., 0.02 L/103 US s, 0.15 L/103 US s and 0.93 L/103 US s for green roof, bioretention and porous pavement for 2 yr storm) is lower than that in Seattle (e.g., 0.03 L/103 US s, 0.29 L/103 US s and 1.58 L/103 US s for green roof, bioretention and porous pavement for 2 yr storm). The optimal designs are influenced by the model and design parameters (i.e., initial saturation, hydraulic conductivity and berm height). However, it overall does not affect the main trends and key insights derived, and the results are therefore generic and relevant to the household/business-scale optimal design of LID practices worldwide.

  20. Design of a photovoltaic system for a southeast all-electric residence

    NASA Astrophysics Data System (ADS)

    Mehalick, E. M.; Tully, G. F.; Johnson, J.; Truncellito, N.; Schaeffer, R.; Parker, J.

    1982-01-01

    A photovoltaic system was developed and integrated into a single-story residence suitable for the Southeast region of the country. The design addresses an integral mounted array which displaces conventional roof sheathing, roofing felt and shingles. The array has a rated power output of 5.6 kW and covers 86 sq.m. of roof area. A 6 kW utility-tied inverter is used in the power conversion subsystem, representative of a lower cost version, currently available hardware. The system provides feedback of excess energy to the utility, which is the most promising approach for grid-connected systems in the mid-1980's. The complete system and house design are described, including all the pertinent installation and construction drawings. Specific performance results are presented for the Miami, Florida, and Charleston, SC, regions.

  1. A&M. TAN607. Section views of hot shop. Section E shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-607. Section views of hot shop. Section E shows equipment areas along rear wall. Section F shows storage pool cut along east/west line. Roof trusses, shelves along sides of pool, drain, roof trusses, shelves along sides of pool, drain, and sump. Section G cuts along north/south to show centerline of turntables, manipulator arms, O-man bridge, crane bridge. Referent drawing is ID-33-E-158 above. Ralph M. Parsons 902-3-ANP-607-A 107. Date: December 1952, but as-built in 1982. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-00-693-106759 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. Drinking water quality and public health in Southwestern Saudi Arabia: The need for a national monitoring program.

    PubMed

    Alqahtani, Jobran M; Asaad, Ahmed M; Ahmed, Essam M; Qureshi, Mohamed A

    2015-01-01

    The aim was to investigate the bacteriological quality of drinking water, and explore the factors involved in the knowledge of the public about the quality of drinking water in Najran region, Saudi Arabia. A cross-sectional descriptive study. A total of 160 water samples were collected. Total coliforms, fecal coliform, and fecal streptococci were counted using Most Probable Number method. The bacterial genes lacZ and uidA specific to total coliforms and Escherichia coli, respectively, were detected using multiplex polymerase chain reaction. An interview was conducted with 1200 residents using a questionnaire. Total coliforms were detected in 8 (20%) of 40 samples from wells, 13 (32.5%) of 40 samples from tankers, and 55 (68.8%) of 80 samples from roof tanks. Twenty (25%) and 8 (10%) samples from roof tanks were positive for E. coli and Streptococcus faecalis, respectively. Of the 1200 residents participating in the study, 10%, 45.5%, and 44.5% claimed that they depended on municipal water, bottled water, and well water, respectively. The majority (95.5%) reported the use of roof water tanks as a source of water supply in their homes. Most people (80%) believed that drinking water transmitted diseases. However, only 25% of them participated in educational programs on the effect of polluted water on health. Our results could help health authorities consider a proper regular monitoring program and a sustainable continuous assessment of the quality of well water. In addition, this study highlights the importance of the awareness and educational programs for residents on the effect of polluted water on public health.

  3. Multi-scale modeling of urban air pollution: development of a Street-in-Grid model

    NASA Astrophysics Data System (ADS)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2016-04-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemical-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport at spatial scales greater than 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is based on the general formulation of the SIRANE model and consists of two main components: a street-canyon component and a street-intersection component. The street-canyon component calculates the mass transfer velocity at the top of the street canyon (roof top) and the mean wind velocity within the street canyon. The estimation of the mass transfer velocity depends on the intensity of the standard deviation of the vertical velocity at roof top. The effect of various formulations of this mass transfer velocity on the pollutant transport at roof-top level is examined. The street-intersection component calculates the mass transfer from a given street to other streets across the intersection. These mass transfer rates among the streets are calculated using the mean wind velocity calculated for each street and are balanced so that the total incoming flow rate is equal to the total outgoing flow rate from the intersection including the flow between the intersection and the overlying atmosphere at roof top. In the default option, the Leighton photostationary cycle among ozone (O3) and nitrogen oxides (NO and NO2) is used to represent the chemical reactions within the street network. However, the influence of volatile organic compounds (VOC) on the pollutant concentrations increases when the nitrogen oxides (NOx) concentrations are low. To account for the possible VOC influence on street-canyon chemistry, the CB05 chemical kinetic mechanism, which includes 35 VOC model species, is implemented in this street-network model. A sensitivity study is conducted to assess the uncertainties associated with the use of the Leighton cycle chemistry. The street-network model is coupled to the CTM Polair3D of the Polyphemus air quality modeling platform to constitute a Street-in-Grid (SinG) model. The street-network model is used to simulate the concentrations of the chemical species in the lowest layer in the urban area and the simulation for the upper layers is then performed by Polair3D. Interactions between the street-network model and the host CTM occur at roof-top and depend on the vertical mass transfer described above. The SinG model is used to simulate the concentrations of gas-phase pollutants (O3 and NOx) in a Paris suburb. The emission data for each street that are needed for the street-network model were obtained from a dynamic traffic model. Topographic data, such as street length/width and building height, were obtained from a geographic database (BD TOPO). Simulated concentrations are compared to concentrations measured at two monitoring stations that were located on each side of a large avenue.

  4. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment: (a...

  5. An environmental cost-benefit analysis of alternative green roofing strategies

    NASA Astrophysics Data System (ADS)

    Richardson, M.; William, R. K.; Goodwell, A. E.; Le, P. V.; Kumar, P.; Stillwell, A. S.

    2016-12-01

    Green roofs and cool roofs are alternative roofing strategies that mitigate urban heat island effects and improve building energy performance. Green roofs consist of soil and vegetation layers that provide runoff reduction, thermal insulation, and potential natural habitat, but can require regular maintenance. Cool roofs involve a reflective layer that reflects more sunlight than traditional roofing materials, but require additional insulation during winter months. This study evaluates several roofing strategies in terms of energy performance, urban heat island mitigation, water consumption, and economic cost. We use MLCan, a multi-layer canopy model, to simulate irrigated and non-irrigated green roof cases with shallow and deep soil depths during the spring and early summer of 2012, a drought period in central Illinois. Due to the dry conditions studied, periodic irrigation is implemented in the model to evaluate its effect on evapotranspiration. We simulate traditional and cool roof scenarios by altering surface albedo and omitting vegetation and soil layers. We find that both green roofs and cool roofs significantly reduce surface temperature compared to the traditional roof simulation. Cool roof temperatures always remain below air temperature and, similar to traditional roofs, require low maintenance. Green roofs remain close to air temperature and also provide thermal insulation, runoff reduction, and carbon uptake, but might require irrigation during dry periods. Due to the longer lifetime of a green roof compared to cool and traditional roofs, we find that green roofs realize the highest long term cost savings under simulated conditions. However, using longer-life traditional roof materials (which have a higher upfront cost) can help decrease this price differential, making cool roofs the most affordable option due to the higher maintenance costs associated with green roofs

  6. Airtightness Results of Roof-Only Air Sealing Strategies on 1-1/2 Story Homes in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojczyk, C.; Murry, T.; Mosiman, G.

    In this second study on solutions to ice dams in 1-1/2 story homes, five test homes located in both cold and very cold climates were analyzed for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. The reason for choosing this house type was they are very common in our area and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole housemore » (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR Building America industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled us to compare air tightness data from over 220 homes using similar air seal methods.« less

  7. Hazard assessment of the stability of a cavern roof along the coastline

    NASA Astrophysics Data System (ADS)

    Reina, A.; Lollino, P.

    2009-04-01

    This work concerns the hazard assessment about the stability of a large shallow depth cavern, located along the coastline rocky sector of Polignano town (Apulia, Southern Italy) under an intensely urbanised area. This cavern, which lies at the sea level, has been created by a prolonged process of sea erosion within a rock mass formed of a lower stratified limestone mass and an upper Gravina Calcarenite mass. The thickness of the cavern roof, which has a dome shape, is less than 10 metres in the centre. Important buildings, as hotels and private houses, are located just above the top of the roof. Erosion processes have been observed to be still active along the whole cavern due to climate factors and, in particular, to sea salt weathering and sea spray effects. In 2007 a large calcarenite block, 3 m large, fell down from the cavern roof and consequently a field investigation campaign was carried out for a rational stabilization plan in order to understand the current stability conditions of the roof and the potential failure mechanism. Therefore, a thorough geo-structural survey has firstly been carried out, together with laboratory and in-situ testing for measuring the physical and mechanical properties of the calcarenite rock and of the corresponding joints. A monitoring system has also been planned and installed in order to measure the erosional rate and the block displacements in the cavern.

  8. DART Support for Hurricane Matthew

    NASA Image and Video Library

    2016-10-26

    Following Hurricane Matthew, repairs have been made to the roof of the Operations Support Building (OSB) II in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs continue on various structures and facilities across the spaceport, part of the ongoing recovery from the storm, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.

  9. ETR CRITICAL FACILITY, TRA654. CONTEXTUAL VIEW. CAMERA ON ROOF OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR CRITICAL FACILITY, TRA-654. CONTEXTUAL VIEW. CAMERA ON ROOF OF MTR BUILDING AND FACING SOUTH. ETR AND ITS COOLANT BUILDING AT UPPER PART OF VIEW. ETR COOLING TOWER NEAR TOP EDGE OF VIEW. EXCAVATION AT CENTER IS FOR ETR CF. CENTER OF WHICH WILL CONTAIN POOL FOR REACTOR. NOTE CHOPPER TUBE PROCEEDING FROM MTR IN LOWER LEFT OF VIEW, DIAGONAL TOWARD LEFT. INL NEGATIVE NO. 56-4227. Jack L. Anderson, Photographer, 12/18/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Attic or Roof? An Evaluation of Two Advanced Weatherization Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, Ken

    2012-06-01

    This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

  11. KSC-04pd1774

    NASA Image and Video Library

    2004-09-10

    KENNEDY SPACE CENTER, FLA. - Members of a hurricane assessment team from Johnson Space Center and Marshall Space Flight Center observe the damage to the roof of the Thermal Protection System (TPS) Facility at KSC after Hurricane Frances hit the east coast of Central Florida and Kennedy Space Center. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof. Equipment and materials that survived the storm have been relocated to the RLV hangar near the KSC Shuttle Landing Facility.

  12. Effects of low-impact-development (LID) practices on streamflow, runoff quantity, and runoff quality in the Ipswich River Basin, Massachusetts-A Summary of field and modeling studies

    USGS Publications Warehouse

    Zimmerman, Marc J.; Waldron, Marcus C.; Barbaro, Jeffrey R.; Sorenson, Jason R.

    2010-01-01

    Low-impact-development (LID) approaches are intended to create, retain, or restore natural hydrologic and water-quality conditions that may be affected by human alterations. Wide-scale implementation of LID techniques may offer the possibility of improving conditions in river basins, such as the Ipswich River Basin in Massachusetts, that have run dry during the summer because of groundwater withdrawals and drought. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of LID enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of * replacing an impervious parking-lot surface with a porous surface on groundwater quality, * installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and * installing a 3,000-ft2 (square-foot) green roof on the quantity and quality of rainfall-generated roof runoff. In addition to these small-scale installations, the U.S. Geological Survey's Ipswich River Basin model was used to simulate the basin-wide effects on streamflow of several changes: broad-scale implementation of LID techniques, reduced water-supply withdrawals, and water-conservation measures. Water-supply and conservation scenarios for application in model simulations were developed with the assistance of two technical advisory committees that included representatives of State agencies responsible for water resources, the U.S. Environmental Protection Agency, the U.S. Geological Survey, water suppliers, and non-governmental organizations. From June 2005 to June 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, Massachusetts, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers designed to enhance rainfall infiltration into the groundwater and to minimize runoff to Silver Lake. Concentrations of phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons in groundwater were monitored. Enhancing infiltration of precipitation did not result in discernible increases in concentrations of these potential groundwater contaminants. Concentrations of dissolved oxygen increased slightly in groundwater profiles following the removal of the impervious asphalt parking-lot surface. In Wilmington, Massachusetts, in a 3-acre neighborhood, stormwater runoff volume and quality were monitored to determine the ability of selected LID enhancements (rain gardens and porous paving stones) to reduce flows and loads of the selected constituents to Silver Lake. Water-quality samples were analyzed for nutrients, metals, total petroleum hydrocarbons, and total-coliform and E. coli bacteria. A decrease in runoff quantity was observed for storms of 0.25 inch or less of precipitation. Water-quality-monitoring results were inconclusive; there were no statistically significant differences in concentrations or loads when the pre- and post-installation-period samples were compared. In a third field study, the characteristics of runoff from a vegetated 'green' roof and a conventional, rubber-membrane roof were compared. The two primary factors affecting the green roof's water-storage capacity were the amount of precipitation and antecedent dry period. Although concentrations of many of the chemicals in roof runoff were higher from the green roof than from the conventional roof, the ability of the green roof to retain w

  13. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery.

    PubMed

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-07-19

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics.

  14. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery

    PubMed Central

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-01-01

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics. PMID:27447631

  15. Duplex development and abandonment during evolution of the Lewis thrust system, southern Glacier National Park, Montana

    NASA Astrophysics Data System (ADS)

    Yin, An; Kelty, Thomas K.; Davis, Gregory A.

    1989-09-01

    Geologic mapping in southern Glacier National Park, Montana, reveals the presence of two duplexes sharing the same floor thrust fault, the Lewis thrust. The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.

  16. Leaf and Life History Traits Predict Plant Growth in a Green Roof Ecosystem

    PubMed Central

    Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler

    2014-01-01

    Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime’s C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less aggressive species. PMID:24978031

  17. Bioretention storm water control measures decrease the toxicity of copper roof runoff.

    PubMed

    LaBarre, William J; Ownby, David R; Rader, Kevin J; Lev, Steven M; Casey, Ryan E

    2017-06-01

    The present study evaluated the ability of 2 different bioretention storm water control measures (SCMs), planter boxes and swales, to decrease the toxicity of sheet copper (Cu) roofing runoff to Daphnia magna. The present study quantified changes in storm water chemistry as it passed through the bioretention systems and utilized the biotic ligand model (BLM) to assess whether the observed D. magna toxicity could be predicted by variations found in water chemistry. Laboratory toxicity tests were performed using select storm samples with D. magna cultured under low ionic strength conditions that were appropriate for the low ionic strength of the storm water samples being tested. The SCMs decreased toxicity of Cu roof runoff in both the BLM results and the storm water bioassays. Water exiting the SCMs was substantially higher than influent runoff in pH, ions, alkalinity, and dissolved organic carbon and substantially lower in total and dissolved Cu. Daphnids experienced complete mortality in untreated runoff from the Cu roof (the SCM influent); however, for planter and swale effluents, survival averaged 86% and 95%, respectively. The present study demonstrated that conventional bioretention practices, including planter boxes and swales, are capable of decreasing the risk of adverse effects from sheet Cu roof runoff to receiving systems, even before considering dilution of effluents in those receiving systems and associated further reductions in copper bioavailability. Environ Toxicol Chem 2017;36:1680-1688. © 2016 SETAC. © 2016 SETAC.

  18. Particle size distribution variance in untreated urban runoff and its implication on treatment selection.

    PubMed

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2015-11-15

    Understanding the particle size distribution (PSD) of sediment in urban runoff assists in the selection of appropriate treatment systems for sediment removal as systems vary in their ability to remove sediment across different particle size fractions. Variation in PSD in runoff from individual urban surfaces both during and across multiple rain events is not well understood and it may lead to performance uncertainty in treatment systems. Runoff PSDs in international literature were compiled to provide a comparative summary of PSDs from different urban surfaces. To further assess both intra-event and inter-event PSD variation, untreated runoff was collected from road, concrete roof, copper roof, and galvanized roof surfaces within an urban catchment exposed to the same rainfall conditions and analysed for PSD and total suspended solids (TSS). Road runoff had the highest TSS concentrations, while copper roofs had high initial TSS that reduced to very low levels under steady state conditions. Despite variation in TSS concentrations, the median particle diameter of the TSS was comparable across the surfaces. Intra-event variation was generally not significant, but substantial inter-event variation was observed, particularly for coarser road and concrete roof surfaces. PSD variation for each surface contributed to a wide range in predicted treatment performance and suggests that short-retention treatment devices carry a high performance risk of not being able to achieve adequate TSS removal across all rain events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Roof Plans: Section "CC", Roof Plan; Roof Framing Plans: Section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof Plans: Section "C-C", Roof Plan; Roof Framing Plans: Section "C-C", Section "D-D"; Roof Framing Sections: Cross Section "G-G", Cross Section "H-H" - Fort Washington, Fort Washington Light, Northeast side of Potomac River at Fort Washington Park, Fort Washington, Prince George's County, MD

  20. Prolong Your Roof's Performance: Roof Asset Management.

    ERIC Educational Resources Information Center

    Teitsma, Jerry

    2001-01-01

    Discusses the roof asset management process for maintaining a roof system's integrity and value in a cost-effective manner. Included is a breakdown of roofing surface characteristics for multiply and single ply roofing systems. (GR)

  1. Green roof systems: a study of public attitudes and preferences in southern Spain.

    PubMed

    Fernandez-Cañero, Rafael; Emilsson, Tobias; Fernandez-Barba, Carolina; Herrera Machuca, Miguel Ángel

    2013-10-15

    This study investigates people's preconceptions of green roofs and their visual preference for different green roof design alternatives in relation to behavioral, social and demographical variables. The investigation was performed as a visual preference study using digital images created to represent eight different alternatives: gravel roof, extensive green roof with Sedums not in flower, extensive green roof with sedums in bloom, semi-intensive green roof with sedums and ornamental grasses, semi-intensive green roof with shrubs, intensive green roof planted with a lawn, intensive green roof with succulent and trees and intensive green roof with shrubs and trees. Using a Likert-type scale, 450 respondents were asked to indicate their preference for each digital image. Results indicated that respondents' sociodemographic characteristics and childhood environmental background influenced their preferences toward different green roof types. Results also showed that green roofs with a more careful design, greater variety of vegetation structure, and more variety of colors were preferred over alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Amending greenroof soil with biochar to affect runoff water quantity and quality.

    PubMed

    Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Johnson Space Center's Solar and Wind-Based Renewable Energy System

    NASA Technical Reports Server (NTRS)

    Vasquez, A.; Ewert, M.; Rowlands, J.; Post, K.

    2009-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas has a Sustainability Partnership team that seeks ways for earth-based sustainability practices to also benefit space exploration research. A renewable energy gathering system was installed in 2007 at the JSC Child Care Center (CCC) which also offers a potential test bed for space exploration power generation and remote monitoring and control concepts. The system comprises: 1) several different types of photovoltaic panels (29 kW), 2) two wind-turbines (3.6 kW total), and 3) one roof-mounted solar thermal water heater and tank. A tie to the JSC local electrical grid was provided to accommodate excess power. The total first year electrical energy production was 53 megawatt-hours. A web-based real-time metering system collects and reports system performance and weather data. Improvements in areas of the CCC that were detected during subsequent energy analyses and some concepts for future efforts are also presented.

  4. Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.

    PubMed

    Winters, Nancy; Granuke, Kyle; McCall, Melissa

    2015-09-01

    To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.

  5. Pollutant Removal, Dispersion and Entrainment over Two-Dimensional Idealized Street Canyons: an LES Approach

    NASA Astrophysics Data System (ADS)

    Wong, C.; Liu, C.

    2010-12-01

    Unlike pollutant transport over flat terrain, the mechanism and plume dispersion over urban areas is not well known. This study is therefore conceived to examine how urban morphology modifies the pollutant transport over urban areas. The computational domain and boundary condition used in this study is shown in Figure 1. The LES shows that inside the street canyon, the ground-level pollutants are carried to roof-level by the re-circulating flow, which are then removed from the street canyon to the UBL. Right above the roof level, narrow high-speed air masses in the streamwise flows and intensive downdrafts have been found in the shear layer. Different from the flows over a smooth surface, the maximum turbulence intensities descend that are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses rapidly over the buildings exhibiting a Gaussian-plume form in the UBL. The mean component of vertical pollutant flux shows that the mean wind contributes to pollutant removal and entrainment simultaneously. Whereas, the fluctuating component demystifies that pollutant removal is mainly governed by atmospheric turbulence. Over the roof level, atmospheric flows slow down rapidly in the wake behind leeward building, suggesting the momentum entrainment into the street canyons. The decelerating streamwise flows in turn lead to upward flows carrying pollutants away from the street canyons, illustrating the basic pollutant removal mechanism in the skimming flow regime. Figure 1: Computational domain and boundary conditions Figure 2: Ensemble average vertical pollutant flux along the roof level. (a). Mean component; (b). turbulent component.

  6. Creating Ideal Facilities.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2002-01-01

    Reviews ways that schools can provide effective indoor learning environments by paying attention to the following areas: daylighting, acoustics, space allocation, technology implementation, ergonomics, maintenance, indoor air quality, safety, restrooms, and roofing. (GR)

  7. Brownfields Tabor Commons Green Jobs Training Program

    EPA Pesticide Factsheets

    This training curriculum is designed to inform entry level tradeswomen about the green job opportunities in areas such as deconstruction, weatherization, eco or solar roofing, stormwater systems and more.

  8. Footwear effects on walking balance at elevation.

    PubMed

    Simeonov, Peter; Hsiao, Hongwei; Powers, John; Ammons, Douglas; Amendola, Alfred; Kau, Tsui-Ying; Cantis, Douglas

    2008-12-01

    The study evaluated the effects of shoe style on workers' instability during walking at elevation. Twenty-four construction workers performed walking tasks on roof planks in a surround-screen virtual reality system, which simulated a residential roof environment. Three common athletic and three work shoe styles were tested on wide, narrow and tilted planks on a simulated roof and on an unrestricted surface at simulated ground. Dependent variables included lateral angular velocities of the trunk and the rear foot, as well as the workers' rated perceptions of instability. The results demonstrated that shoe style significantly affected workers walking instability at elevated work environments. The results highlighted two major shoe-design pathways for improving walking balance at elevation: enhancing rear foot motion control; and improving ankle proprioception. This study also outlined some of the challenges in optimal shoe selection and specific shoe-design needs for improved walking stability during roof work. The study adds to the knowledge in the area of balance control, by emphasising the role of footwear as a critical human-support surface interface during work on narrow surfaces at height. The results can be used for footwear selection and improvements to reduce risk of falls from elevation.

  9. Storm water runoff measurements of copper from a naturally patinated roof and from a parking space. Aspects on environmental fate and chemical speciation.

    PubMed

    Odnevall Wallinder, I; Hedberg, Y; Dromberg, P

    2009-12-01

    Release of copper from a naturally aged copper roof on a shopping centre building in a suburban site of Stockholm has been measured during different rain events after its interaction with the internal drainage system and storm drains made of cast iron and concrete. Concentrations of copper removed by means of urban storm water from a nearby parking space have been determined for comparison. Predictions and measurements of the chemical speciation of released copper are discussed compared to the total concentration, and to threshold values for freshwater and drinking water. The results clearly illustrate that the major part of the released copper from the roof is readily retained already during transport through the internal drainage system of the building, a pathway that also changes the chemical speciation of released copper and its bioavailable fraction. Most copper, not retained by cast iron and concrete surfaces, was strongly complexed to organic matter. The median concentration of free cupric ions and weak copper complexes was less than, or within the range of reported no effect concentrations, NOECs, of copper in surface waters. The parking space contributed with significantly higher and time-dependent concentrations of total copper compared to measured concentrations of copper from the roof after the interaction with the drainage system. Most copper in the surface runoff water was strongly complexed with organic matter, hence reducing the bioavailable fraction significantly to concentrations within the NOEC range. Dilution with other sources of urban storm water will reduce the released concentration of copper even further. The results illustrate that already the internal drainage system and the storm drains made of cast iron and concrete act as efficient sinks for released copper which means that any installation of additional infiltration devices is redundant.

  10. School Designed To Use 80 Percent Less Energy

    ERIC Educational Resources Information Center

    American School and University, 1975

    1975-01-01

    The new Terraset Elementary School in Reston, Virginia, uses earth as a cover for the roof area and for about 80 percent of the wall area. A heat recovery system will be used with solar collectors playing a primary role in heating and cooling. (Author/MLF)

  11. Impact of height and shape of building roof on air quality in urban street canyons

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed F.

    2011-09-01

    A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.

  12. Roofing Source File.

    ERIC Educational Resources Information Center

    American School & University, 1994

    1994-01-01

    Presents a resource guide for identifying, selecting, and specifying educational roofing systems. Explores the various types of roofing systems considered for most schools and describes how to select a roofing contractor and consultant. A roofing retrofit check list and roofing specification chart are provided. (GR)

  13. Effect of age and rainfall pH on contaminant yields from metal roofs.

    PubMed

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D; Cave, Simon; Derksen, Mark

    2014-01-01

    Metal roofs are recognized for conveying significant metal loads to urban streams through stormwater runoff. Metal concentrations in urban runoff depend on roof types and prevailing weather conditions but the combined effects of roof age and rainfall pH on metal mobilization are not well understood. To investigate these effects on roof runoff, water quality was analysed from galvanized iron and copper roofs following rainfall events and also from simulating runoff using a rainfall simulator on specially constructed roof modules. Zinc and copper yields under different pH regimes were investigated for two roof materials and two different ages. Metal mobilization from older roofs was greater than new roofs with 55-year-old galvanized roof surfaces yielding more Zn, on average increasing by 45% and 30% under a rainfall pH of 4 and 8, respectively. Predominantly dissolved (85-95%) Zn and Cu concentrations in runoff exponentially increased as the rainfall pH decreased. Results also confirmed that copper guttering and downpipes associated with galvanized steel roof systems can substantially increase copper levels in roof runoff. Understanding the dynamics of roof surfaces as a function of weathering and rainfall pH regimes can help developers with making better choices about roof types and materials for stormwater improvement.

  14. Spectrophotometric Method for the Determination of Atmospheric Cr Pollution as a Factor to Accelerated Corrosion.

    PubMed

    Homa, Dereje; Haile, Ermias; Washe, Alemayehu P

    2017-01-01

    The effect of Cr(VI) pollution on the corrosion rate of corrugated iron roof samples collected from tanning industry areas was investigated through simulated laboratory exposure and spectrophotometric detection of Cr(III) deposit as a product of the reaction. The total level of Cr detected in the samples ranged from 113.892 ± 0.17 ppm to 53.05 ± 0.243 ppm and showed increasing trend as sampling sites get closer to the tannery and in the direction of tannery effluent stream. The laboratory exposure of a newly manufactured material to a simulated condition showed a relatively faster corrosion rate in the presence of Cr(VI) with concomitant deposition of Cr(III) under pH control. A significant ( P = 0.05) increase in the corrosion rate was also recorded when exposing scratched or stress cracked samples. A coupled redox process where Cr(VI) is reduced to a stable, immobile, and insoluble Cr(III) accompanying corrosion of the iron is proposed as a possible mechanism leading to the elevated deposition of the latter on the materials. In conclusion, the increased deposits of Cr detected in the corrugated iron roof samples collected from tanning industry zones suggested possible atmospheric Cr pollution as a factor to the accelerated corrosion of the materials.

  15. Quality assessment of roof-harvested rainwater in the West Bank, Palestinian Authority.

    PubMed

    Daoud, A K; Swaileh, K M; Hussein, R M; Matani, M

    2011-09-01

    Rain harvesting is becoming more common in the Palestinian Territories as a result of drinking water scarcity. Although it might pose serious human health risk, this water is being consumed without treatment in many areas of the West Bank. The present study evaluates the physicochemical and microbial quality of harvested rainwater that is used as potable water in the West Bank. Samples from roof-harvested rainwater storage tanks (n = 42) were collected in summer (SS) 2006/winter (WS) 2007. Physicochemical parameters measured were: temperature, pH, electrical conductivity, salinity, total dissolved solids, turbidity, nitrate, copper and lead. With few exceptions, all these parameters were within WHO guideline values. All samples (100%) were found to contain coliforms and to be heavily contaminated with heterotrophic bacteria. About 67% of all samples were contaminated with fecal coliforms. Specific PCR technique confirmed the presence of five pathogenic microorganisms that can be ordered according to their prevalence as: Citrobacter (83%) > Acinetobacter (78%) > Aeromonas (52%) > Pseudomonas and Campylobacter (7%). Prevalence of microorganisms in SS was higher than in WS. Although the physicochemical quality of most harvested rainwater samples was in accordance with WHO guidelines for drinking water, stored rainwater was significantly contaminated with bacteria resulting in significant human health risk from infectious diseases.

  16. Spectrophotometric Method for the Determination of Atmospheric Cr Pollution as a Factor to Accelerated Corrosion

    PubMed Central

    Homa, Dereje; Haile, Ermias

    2017-01-01

    The effect of Cr(VI) pollution on the corrosion rate of corrugated iron roof samples collected from tanning industry areas was investigated through simulated laboratory exposure and spectrophotometric detection of Cr(III) deposit as a product of the reaction. The total level of Cr detected in the samples ranged from 113.892 ± 0.17 ppm to 53.05 ± 0.243 ppm and showed increasing trend as sampling sites get closer to the tannery and in the direction of tannery effluent stream. The laboratory exposure of a newly manufactured material to a simulated condition showed a relatively faster corrosion rate in the presence of Cr(VI) with concomitant deposition of Cr(III) under pH control. A significant (P = 0.05) increase in the corrosion rate was also recorded when exposing scratched or stress cracked samples. A coupled redox process where Cr(VI) is reduced to a stable, immobile, and insoluble Cr(III) accompanying corrosion of the iron is proposed as a possible mechanism leading to the elevated deposition of the latter on the materials. In conclusion, the increased deposits of Cr detected in the corrugated iron roof samples collected from tanning industry zones suggested possible atmospheric Cr pollution as a factor to the accelerated corrosion of the materials. PMID:28469950

  17. Drinking water quality and public health in Southwestern Saudi Arabia: The need for a national monitoring program

    PubMed Central

    Alqahtani, Jobran M.; Asaad, Ahmed M.; Ahmed, Essam M.; Qureshi, Mohamed A.

    2015-01-01

    Aim of the Study: The aim was to investigate the bacteriological quality of drinking water, and explore the factors involved in the knowledge of the public about the quality of drinking water in Najran region, Saudi Arabia. Study Design: A cross-sectional descriptive study. Materials and Methods: A total of 160 water samples were collected. Total coliforms, fecal coliform, and fecal streptococci were counted using Most Probable Number method. The bacterial genes lacZ and uidA specific to total coliforms and Escherichia coli, respectively, were detected using multiplex polymerase chain reaction. An interview was conducted with 1200 residents using a questionnaire. Results: Total coliforms were detected in 8 (20%) of 40 samples from wells, 13 (32.5%) of 40 samples from tankers, and 55 (68.8%) of 80 samples from roof tanks. Twenty (25%) and 8 (10%) samples from roof tanks were positive for E. coli and Streptococcus faecalis, respectively. Of the 1200 residents participating in the study, 10%, 45.5%, and 44.5% claimed that they depended on municipal water, bottled water, and well water, respectively. The majority (95.5%) reported the use of roof water tanks as a source of water supply in their homes. Most people (80%) believed that drinking water transmitted diseases. However, only 25% of them participated in educational programs on the effect of polluted water on health. Conclusions: Our results could help health authorities consider a proper regular monitoring program and a sustainable continuous assessment of the quality of well water. In addition, this study highlights the importance of the awareness and educational programs for residents on the effect of polluted water on public health. PMID:25657607

  18. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  19. A research of selected textural features for detection of asbestos-cement roofing sheets using orthoimages

    NASA Astrophysics Data System (ADS)

    Książek, Judyta

    2015-10-01

    At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.

  20. Understanding Roofing Systems.

    ERIC Educational Resources Information Center

    Michelsen, Ted

    2001-01-01

    Reviews the various types of multi- and single-ply roofing commonly used today in educational facilities. Roofing types described involve built-up systems, modified bitumen systems; ethylene propylene diene terpolymer roofs; and roofs of thermoplastic, metal, and foam. A description of the Roofing Industry Educational Institute is included. (GR)

  1. 40 CFR 63.542 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... introduced and that uses electrical energy to heat the reverberatory furnace slag to such a temperature... removal of ground, pavement, concrete, or asphalt. Materials storage and handling area means any area of a.... Reverberatory furnace means a refractory-lined furnace that uses one or more flames to heat the walls and roof...

  2. 40 CFR 63.542 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... introduced and that uses electrical energy to heat the reverberatory furnace slag to such a temperature... removal of ground, pavement, concrete, or asphalt. Materials storage and handling area means any area of a.... Reverberatory furnace means a refractory-lined furnace that uses one or more flames to heat the walls and roof...

  3. 40 CFR 63.542 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... introduced and that uses electrical energy to heat the reverberatory furnace slag to such a temperature... removal of ground, pavement, concrete, or asphalt. Materials storage and handling area means any area of a.... Reverberatory furnace means a refractory-lined furnace that uses one or more flames to heat the walls and roof...

  4. East side elevation of Building 455, note the area of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East side elevation of Building 455, note the area of raised monitor roof that corresponds to the former motion picture and lecture hall (present gymnasium), view facing west - U.S. Marine Corps Base Hawaii, Kaneohe Bay, Gunnery School, Bingham Way between Minteer Street & Lawrence Road, Kaneohe, Honolulu County, HI

  5. Roofing as a source of nonpoint water pollution.

    PubMed

    Chang, Mingteh; McBroom, Matthew W; Scott Beasley, R

    2004-12-01

    Sixteen wooden structures with two roofs each were installed to study runoff quality for four commonly used roofing materials (wood shingle, composition shingle, painted aluminum, and galvanized iron) at Nacogdoches, Texas. Each roof, either facing NW or SE, was 1.22 m wide x 3.66 m long with a 25.8% roof slope. Thus, there were 32 alternatively arranged roofs, consisting of four roof types x two aspects x four replicates, in the study. Runoff from the roofs was collected through galvanized gutters, downspouts, and splitters. The roof runoff was compared to rainwater collected by a wet/dry acid rain collector for the concentrations of eight water quality variables, i.e. Cu(2+), Mn(2+), Pb(2+), Zn(2+), Mg(2+), Al(3+), EC and pH. Based on 31 storms collected between October 1997 and December 1998, the results showed: (1) concentrations of pH, Cu, and Zn in rainwater already exceed the EPA freshwater quality standards even without pollutant inputs from roofs, (2) Zn and Cu, the two most serious pollutants in roof runoff, exceeded the EPA national freshwater water quality standards in virtually 100% and more than 60% of the samples, respectively, (3) pH, EC, and Zn were the only three variables significantly affected by roofing materials, (4) differences in Zn concentrations were significant among all roof types and between all roof runoff and rainwater samples, (5) although there were no differences in Cu concentrations among all roof types and between roof runoff and rainwater, all means and medians of runoff and rainwater exceeded the national water quality standards, (6) water quality from wood shingles was the worst among the roof types studied, and (7) although SE is the most frequent and NW the least frequent direction for incoming storms, only EC, Mg, Mn, and Zn in wood shingle runoff from the SE were significantly higher than those from the NW; the two aspects affected no other elements in runoff from the other three roof types. Also, Zn concentrations from new wood-shingle roofs were significantly higher than those from aged roofs of a previous study. The study demonstrated that roofs could be a serious source of nonpoint water pollution. Since Zn is the most serious water pollutant and wood shingle is the worst of the four roof types, using less compounds and materials associated with Zn along with good care and maintenance of roofs are critical in reducing Zn pollution in roof runoff.

  6. Investigation on the Influence of Abutment Pressure on the Stability of Rock Bolt Reinforced Roof Strata Through Physical and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Kang, Hongpu; Li, Jianzhong; Yang, Jinghe; Gao, Fuqiang

    2017-02-01

    In underground coal mining, high abutment loads caused by the extraction of coal can be a major contributor to many rock mechanic issues. In this paper, a large-scale physical modeling of a 2.6 × 2.0 × 1.0 m entry roof has been conducted to investigate the fundamentals of the fracture mechanics of entry roof strata subjected to high abutment loads. Two different types of roof, massive roof and laminated roof, are considered. Rock bolt system has been taken into consideration. A distinct element analyses based on the physical modeling conditions have been performed, and the results are compared with the physical results. The physical and numerical models suggest that under the condition of high abutment loads, the massive roof and the laminated roof fail in a similar pattern which is characterized as vertical tensile fracturing in the middle of the roof and inclined shear fracturing initiated at the roof and rib intersections and propagated deeper into the roof. Both the massive roof and the laminated roof collapse in a shear sliding mode shortly after shear fractures are observed from the roof surface. It is found that shear sliding is a combination of tensile cracking of intact rock and sliding on bedding planes and cross joints. Shear sliding occurs when the abutment load is much less than the compressive strength of roof.

  7. A&M. TAN607 sections. Section A shows variable roof lines, variable ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-607 sections. Section A shows variable roof lines, variable thickness of hot shop shield walls, relationship of subterranean pool to grade. Section B shows relative heights of hot shop floor and its control gallery, position of bridge cranes and manipulator rails. Locomotive service pit. Referent drawing is ID-33-E-158 Above. Ralph M. Parsons 902-3-ANP-607-A 105. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-00-693-106757 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. WORKERS FABRICATE ROOF SLABS FOR MTR BUILDING AT THE CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKERS FABRICATE ROOF SLABS FOR MTR BUILDING AT THE CONSTRUCTION SITE. FORMS WERE MADE OF STEEL. AFTER AN INCH OF CONCRETE HAD BEEN POURED IN THE FORM, A MAT OF REINFORCING STEEL WAS PLACED ON IT. THE REMAINDER OF THE FORM WAS FILLED, AND THE CONCRETE WAS VIBRATED, STRUCK, AND TROWELED. GROOVES AT CORNER WILL HAVE 1/4 INCH RODS WELDED INTO THE EYE OF THE STEEL MAT FOR GROUNDING. INL NEGATIVE NO. 578. Unknown Photographer, 9/1/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. Green roof valuation: a probabilistic economic analysis of environmental benefits.

    PubMed

    Clark, Corrie; Adriaens, Peter; Talbot, F Brian

    2008-03-15

    Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology.

  10. Study of Falling Roof Vibrations in a Production Face at Roof Support Resistance in the Form of Concentrated Force

    NASA Astrophysics Data System (ADS)

    Buyalich, G. D.; Buyalich, K. G.; Umrikhina, V. Yu

    2016-08-01

    One of the main reasons of roof support failures in production faces is mismatch of their parameters and parameters of dynamic impact on the metal structure from the falling roof during its secondary convergences. To assess the parameters of vibrational interaction of roof support with the roof, it was suggested to use computational models of forces application and a partial differential equation of fourth order describing this process, its numerical solution allowed to assess frequency, amplitude and speed of roof strata movement depending on physical and mechanical properties of the roof strata as well as on load bearing and geometry parameters of the roof support. To simplify solving of the differential equation, roof support response was taken as the concentrated force.

  11. Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William A

    Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-battenmore » construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.« less

  12. Acoustic emission of rock mass under the constant-rate fluid injection

    NASA Astrophysics Data System (ADS)

    Shadrin Klishin, AV, VI

    2018-03-01

    The authors study acoustic emission in coal bed and difficult-to-cave roof under injection of fluid by pumps at a constant rate. The functional connection between the roof hydrofracture length and the total number of AE pulses is validated, it is also found that the coal bed hydroloosening time, injection rate and time behavior of acoustic emission activity depend on the fluid injection volume required until the fluid breakout in a roadway through growing fractures. In the formulas offered for the practical application, integral parameters that characterize permeability and porosity of rock mass and process parameters of the technology are found during test injection.

  13. KSC-04pd1773

    NASA Image and Video Library

    2004-09-10

    KENNEDY SPACE CENTER, FLA. - Members of a hurricane assessment team from Johnson Space Center and Marshall Space Flight Center observe the damage to the roof of the Thermal Protection System (TPS) Facility at KSC after Hurricane Frances hit the east coast of Central Florida and Kennedy Space Center. Near the center is astronaut Scott Altmann, a member of the team. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof. Equipment and materials that survived the storm have been relocated to the RLV hangar near the KSC Shuttle Landing Facility.

  14. Solar heated office complex--Greenwood, South Carolina

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report contains thorough docuumentation of project meeting 85 percent of building heat requirements. System uses roof mounted recirculating water solar panels and underground hot water energy storage. Aluminum film reflectors increase total solar flux captured by panels.

  15. Potential benefits of plant diversity on vegetated roofs: a literature review.

    PubMed

    Cook-Patton, Susan C; Bauerle, Taryn L

    2012-09-15

    Although vegetated green roofs can be difficult to establish and maintain, they are an increasingly popular method for mitigating the negative environmental impacts of urbanization. Most green roof development has focused on maximizing green roof performance by planting one or a few drought-tolerant species. We present an alternative approach, which recognizes green roofs as dynamic ecosystems and employs a diversity of species. We draw links between the ecological and green roof literature to generate testable predictions about how increasing plant diversity could improve short- and long-term green roof functioning. Although we found few papers that experimentally manipulated diversity on green roofs, those that did revealed ecological dynamics similar to those in more natural systems. However, there are many unresolved issues. To improve overall green roof performance, we should (1) elucidate the links among plant diversity, structural complexity, and green roof performance, (2) describe feedback mechanisms between plant and animal diversity on green roofs, (3) identify species with complementary traits, and (4) determine whether diverse green roof communities are more resilient to disturbance and environmental change than less diverse green roofs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. 40 CFR 63.11565 - What general provisions sections apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11565 What general...

  17. 40 CFR 63.11565 - What general provisions sections apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11565 What general...

  18. 40 CFR 63.11565 - What general provisions sections apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11565 What general...

  19. 40 CFR 63.11565 - What general provisions sections apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11565 What general...

  20. 40 CFR 63.11565 - What general provisions sections apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11565 What general...

  1. 6. VIEW OF INTERIOR OF GREENHOUSE SHOWING PLANTING BEDS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF INTERIOR OF GREENHOUSE SHOWING PLANTING BEDS AND TILTING WINDOW WALLS AND ROOF FACING SOUTHEAST. - Hawthorne Naval Ammunition Depot, Greenhouse, Personnel & Industrial Area, Hawthorne, Mineral County, NV

  2. 5. VIEW OF INTERIOR OF GREENHOUSE SHOWING PLANTING BEDS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF INTERIOR OF GREENHOUSE SHOWING PLANTING BEDS AND TILTING WINDOW WALLS AND ROOF FACING NORTHWEST. - Hawthorne Naval Ammunition Depot, Greenhouse, Personnel & Industrial Area, Hawthorne, Mineral County, NV

  3. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... External floating roof converted into an internal floating roof. The owner or operator who elects to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION...

  4. Roofing: Workbook and Tests. Common Roofing and Waterproofing Materials and Equipment.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This workbook on materials and equipment is one of a series of nine individual units of instruction for roofing apprenticeship classes in California. The workbook covers eight topics: production of bitumens and asphaltic roofing materials; built-up roofing materials and adhesives; asphaltic products and rigid roofing materials; elastomeric and…

  5. Common Roofing and Waterproofing Materials and Equipment. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This publication on common roofing and waterproofing materials and equipment is one of a series of units of instruction for roofing apprenticeship classes. The workbook portion is divided into eight topics: production of bitumens and asphalt roofing materials, built-up materials and adhesives, asphalt products and rigid roofing materials,…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjarlais, Andre Omer; Kriner, Scott; Miller, William A

    An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool wasmore » then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.« less

  7. Metal and nutrient dynamics on an aged intensive green roof.

    PubMed

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Estimating Volume of Roof Fall in the Face of Longwall Mining by Using Numerical Methods / Estymacja Objętości Zawału Stropu W Rejonie Przodka Ścianowego W Oparciu O Metody Numeryczne

    NASA Astrophysics Data System (ADS)

    Saeedi, Gholamreza; Shahriar, Korosh; Rezai, Bahram

    2013-09-01

    Dilution is one of many challenges confronting professionals in mining and milling, and is perhaps one of the oldest. Longwall mining is one of the mining methods that is often affected by out-of-seam dilution (OSD). In this method, roof falls play a significant role in increasing OSD in the prop-free front of the face area. Thus, estimating the volume of roof fall can be extremely helpful to assess dilution of the run of mine coal without a sampling process. This paper presents the effect of exposed area geometry on potential roof falls using the 2D numerical modelling program FLAC. In this respect, a half-prolate ellipsoid was considered as the low stress level or plasticity zone under yield tension which roof material fall. Since FLAC software does not show roof falls in prop-free front of the face, a series of two-dimensional numerical models are developed using UDEC software. The comparison of the results of two numerical models clearly indicates that volumes of roof fall obtained by means of these methods are in good agreement with each other. Ścienianie warstw jest jednym z najpoważniejszych wyzwań stojących przed inżynierami górnikami i specjalistami z zakresu obróbki - jest to też jeden z najstarszych problemów. Wybieranie ścianowe jest metodą urabiania, w której często mamy do czynienia ze ścienianiem warstwy złoża. W metodzie tej strop odgrywa kluczową rolę w zapewnieniu stabilności w tych rejonach przodka, gdzie nie zastosowano obudów. Dlatego też estymacja objętości zawału stropu może być pomocna przy obliczaniu ścieniania warstwy węgla bez konieczności próbkowania. W artykule tym przeanalizowano wpływ geometrii powierzchni odkrytych na potencjalny zawał stropu przy użyciu metod modelowania numerycznego z wykorzystaniem oprogramowania FLAC. Uzyskano wydłużoną elipsoidę jako model strefy niskich naprężeń lub strefę plastyczności przed zawałem stropu. Ponieważ oprogramowanie FLAC nie pokazuje zawałów stropu w strefie przodka, gdzie nie ma obudów, opracowano serię dwuwymiarowych modeli numerycznych, z wykorzystaniem oprogramowania UDEC. Porównanie wyników uzyskanych przy zastosowaniu obydwu modeli numerycznych wykazało, że objętości materiału stropu po zawale obliczone za pomocą tych dwóch metod wykazują dużą zgodność.

  9. Energy analysis of cool, medium, and dark roofs on residential buildings in the U.S

    NASA Astrophysics Data System (ADS)

    Dunbar, Michael A.

    This study reports an energy analysis of cool, medium, and dark roofs on residential buildings in the U.S. Three analyses were undertaken in this study: energy consumption, economic analysis, and an environmental analysis. The energy consumption reports the electricity and natural gas consumption of the simulations. The economic analysis uses tools such as simple payback period (SPP) and net present value (NPV) to determine the profitability of the cool roof and the medium roof. The variable change for each simulation model was the roof color. The default color was a dark roof and the results were focused on the changes produced by the cool roof and the medium roof. The environmental analysis uses CO2 emissions to assess the environmental impact of the cool roof and the medium roof. The analysis uses the U.S. Department of Energy (DOE) EnergyPlus software to produce simulations of a typical, two-story residential home in the U.S. The building details of the typical, two-story U.S. residential home and the International Energy Conservation Code (IECC) building code standards used are discussed in this study. This study indicates that, when material and labor costs are. assessed, the cool roof and the medium roof do not yield a SPP less than 10 years. Furthermore, the NPV results assess that neither the cool roof nor the medium roof are a profitable investment in any climate zone in the U.S. The environmental analysis demonstrates that both the cool roof and the medium roof have a positive impact in warmer climates by reducing the CO2 emissions as much as 264 kg and 129 kg, respectively.

  10. Urban heat mitigation by roof surface materials during the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Ryu, Youngryel; Jiang, Chongya

    2017-04-01

    Roof surface materials, such as green and white roofs, have attracted attention in their role in urban heat mitigation, and various studies have assessed the cooling performance of roof surface materials during hot and sunny summer seasons. However, summers in the East Asian monsoon climate region are characterized by significant fluctuations in weather events, such as dry periods, heatwaves, and rainy and cloudy days. This study investigated the efficacy of different roof surface materials for heat mitigation, considering the temperatures both at and beneath the surface of the roof covering materials during a summer monsoon in Seoul, Korea. We performed continuous observations of temperature at and beneath the surface of the roof covering materials, and manual observation of albedo and the normalized difference vegetation index (NDVI) for a white roof, two green roofs (grass [Poa pratensis] and sedum [Sedum sarmentosum]), and a reference surface. Overall, the surface temperature of the white roof was significantly lower than that of the grass and sedum roofs (1.1 and 1.3°C), whereas the temperature beneath the surface of the white roof did not differ significantly from that of the grass and sedum roofs during the summer. The degree of cloudiness significantly modified the surface temperature of the white roof compared with that of the grass and sedum roofs, which depended on plant metabolisms. It was difficult for the grass to maintain its cooling ability without adequate watering management. After considering the cooling performance and maintenance efforts for different environmental conditions, we concluded that white roof performed better in urban heat mitigation than grass and sedum during the East Asian summer monsoon. Our findings will be useful in urban heat mitigation in the region.

  11. Mine roof driller-bolter apparatus and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbard, G.A.; Lumbra, R.C.; Morrison, W.D.

    1983-12-13

    An apparatus for bolting the roof of an underground mine is disclosed comprising a mobile frame, a boom extending from the frame and a housing provided at the end of the frame. The housing supports an upwardly extending stinger, a drilling mechanism including a drill centralizer having a central bore therethrough and a passageway in communication with the central bore, a device for delivering a container of roof bolting anchoring media through the passageway and through the drill centralizer and into a drilled hole, a device for indexing a roof bolt into alignment with the drilled hole and a spinnermore » for driving the roof bolt into the drilled hole. The present invention also provides a method for bolting the roof of an underground mine comprising the steps of stinging a housing against the roof of the mine, moving a drill centralizer into communication with the roof and drilling a hole in the roof. Without retracting the drill centralizer from communication with the roof, a container of roof bolt anchoring media is delivered through the centralizer and into the drilled hole. The drill centralizer is thereafter retracted and the housing is moved to align a roof bolt with a drilled hole. Then the roof bolt is driven into the drilled hole and the bolt anchoring media sets around the bolt.« less

  12. Assessing Cost-effectiveness of Green Infrastructures in response to Large Storm Events at Household Scale

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Liu, X.; Zhan, W.

    2015-12-01

    Green infrastructures (GI) are becoming more important for urban stormwater control worldwide. However, relatively few studies focus on researching the specific designs of GI at household scale. This study assesses the hydrological performance and cost-effectiveness of different GI designs, namely green roofs, bioretention systems and porous pavements. It aims to generate generic insights by comparing the optimal designs of each GI in 2-year and 50-year storms of Hong Kong, China and Seattle, US. EPA SWMM is first used to simulate the hydrologic performance, in particular, the peak runoff reduction of thousands of GI designs. Then, life cycle costs of the designs are computed and their effectiveness, in terms of peak runoff reduction percentage per thousand dollars, is compared. The peak runoff reduction increases almost linearly with costs for green roofs. However, for bioretention systems and porous pavements, peak runoff reduction only increases significantly with costs in the mid values. For achieving the same peak runoff reduction percentage, the optimal soil depth of green roofs increases with the design storm, while surface area does not change significantly. On the other hand, for bioretention systems and porous pavements, the optimal surface area increases with the design storm, while thickness does not change significantly. In general, the cost effectiveness of porous pavements is highest, followed by bioretention systems and then green roofs. The cost effectiveness is higher for a smaller storm, and is thus higher for 2-year storm than 50-year storm, and is also higher for Seattle when compared to Hong Kong. This study allows us to better understand the hydrological performance and cost-effectiveness of different GI designs. It facilitates the implementation of optimal choice and design of each specific GI for stormwater mitigation.

  13. Supporting technology of roadside in gob-side entry in 110 longwall mining method

    NASA Astrophysics Data System (ADS)

    He, Manchao; Guo, Pengfei; Chen, Shangyuan; Gao, Yubing; Wang, Yajun

    2017-05-01

    To get better results of shaping roadside in 110 longwall mining method, the roadside support can be reasonably choose and designed through theoretical analysis, engineering test and other methods. The roadway support need to be designed based on the mining height and influence of mining pressure, and it is necessary to consider the "limited deformation" but also "given deformation". Because of the small mining high and short time under mining pressure effect in thin coal seam, roadside support can meet the requirements of block rock from gob using I-steel, but I-steel can't satisfy the deformation of roadway roof and easily lead to I-steel flexural buckling. In that condition we should use the U-steel that can compatible deformation with subsidence of roadway roof and enough torque in overlapping part between tow U-steel should be given when the U-steel is used to support gangue from gob and the U steel assembling two cards can coordinal deformation in dynamic pressure area keeping constant resistance with the deformation of roadway roof and can get a good effect. Through field test, due to the great impact force of the gangue from gob, single props and I-steel and U-steel are easily knocked down when the mining height is more than 4m. For large mining height, gangue blocking hydraulic support is designed and developed which can guarantee the stability and integrity of the roadway roof in the dynamic pressure area and can prevent the impact of gangue from gob. So it has better effect of forming roadway side using gangue from gob. According to above classification, the field experiments were carried out and obtained satisfactory results.

  14. Joint Simultaneous Reconstruction of Regularized Building Superstructures from Low-Density LIDAR Data Using Icp

    NASA Astrophysics Data System (ADS)

    Wichmann, Andreas; Kada, Martin

    2016-06-01

    There are many applications for 3D city models, e.g., in visualizations, analysis, and simulations; each one requiring a certain level of detail to be effective. The overall trend goes towards including various kinds of anthropogenic and natural objects therein with ever increasing geometric and semantic details. A few years back, the featured 3D building models had only coarse roof geometry. But nowadays, they are expected to include detailed roof superstructures like dormers and chimneys. Several methods have been proposed for the automatic reconstruction of 3D building models from airborne based point clouds. However, they are usually unable to reliably recognize and reconstruct small roof superstructures as these objects are often represented by only few point measurements, especially in low-density point clouds. In this paper, we propose a recognition and reconstruction approach that overcomes this problem by identifying and simultaneously reconstructing regularized superstructures of similar shape. For this purpose, candidate areas for superstructures are detected by taking into account virtual sub-surface points that are assumed to lie on the main roof faces below the measured points. The areas with similar superstructures are detected, extracted, grouped together, and registered to one another with the Iterative Closest Point (ICP) algorithm. As an outcome, the joint point density of each detected group is increased, which helps to recognize the shape of the superstructure more reliably and in more detail. Finally, all instances of each group of superstructures are modeled at once and transformed back to their original position. Because superstructures are reconstructed in groups, symmetries, alignments, and regularities can be enforced in a straight-forward way. The validity of the approach is presented on a number of example buildings from the Vaihingen test data set.

  15. Estimation of doses received in a dry-contaminated residential area in the Bryansk region, Russia, since the Chernobyl accident.

    PubMed

    Andersson, K G; Roed, J

    2006-01-01

    In nuclear preparedness, an essential requirement is the ability to adequately predict the likely consequences of a major accident situation. In this context it is very important to evaluate which contributions to dose are important, and which are not likely to have significance. As an example of this type of evaluation, a case study has been conducted to estimate the doses received over the first 17 years after the Chernobyl accident in a dry-contaminated residential area in the Bryansk region in Russia. Methodologies for estimation of doses received through nine different pathways, including contamination of streets, roofs, exterior walls, and landscape, are established, and best estimates are given for each of the dose contributions. Generally, contaminated soil areas were estimated to have given the highest dose contribution, but a number of other contributions to dose, e.g., from contaminated roofs and inhalation of contaminants during the passage of the contaminated plume, were of the same order of magnitude.

  16. Green Roofs for Stormwater Runoff Control - Abstract

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  17. Green Roofs for Stormwater Management

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  18. Green Roofs for Stormwater Runoff Control

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  19. Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon.

    PubMed

    Huang, Yuan-Dong; He, Wen-Rong; Kim, Chang-Nyung

    2015-02-01

    A two-dimensional numerical model for simulating flow and pollutant dispersion in an urban street canyon is firstly developed using the FLUENT code and then validated against the wind tunnel results. After this, the flow field and pollutant dispersion inside an urban street canyon with aspect ratio W/H = 1 are examined numerically considering five different shapes (vaulted, trapezoidal, slanted, upward wedged, and downward wedged roofs) as well as three different roof height to building height ratios (Z H /H = 1/6, 1/3, and 1/2) for the upstream building roof. The results obtained reveal that the shape and height of an upstream roof have significant influences on flow pattern and pollutant distribution in an urban canyon. A large single clockwise vortex is generated in the canyon for the vaulted upstream roof at Z H /H = 1/6, 1/3, and 1/2, the trapezoidal and downward wedged roofs at Z H /H = 1/6 and 1/3, and the slanted and upward wedged roofs at Z H /H = 1/6, while a main clockwise vortex and a secondary counterclockwise vortex are established for the trapezoidal and downward wedged roofs at Z H /H = 1/2 and the slanted and upward wedged roofs at Z H /H = 1/3 and 1/2. In the one-vortex flow regime, the clockwise vortex moves upward and grows in size with increasing upstream roof height for the vaulted, trapezoidal, and downward wedged roofs. In the two-vortex flow regime, the size and rotational velocity of both upper clockwise and lower counterclockwise vortices increase with the upstream roof height for the slanted and upward wedged roofs. At Z H /H = 1/6, the pollution levels in the canyon are close among all the upstream roof shapes studied. At Z H /H = 1/3, the pollution levels in the canyon for the upward wedged roof and slanted roof are much higher than those for the vaulted, trapezoidal, and downward wedged roofs. At Z H /H = 1/2, the lowest pollution level appears in the canyon for the vaulted upstream roof, while the highest pollution level occurs in the canyon for the upward wedged roof.

  20. A blind area of origins of epistaxis: technical or cognitive?

    PubMed

    Wei, Wei; Lai, Yuting; Zang, Chaoping; Luo, Jiqin; Zhu, Bijun; Liu, Quan; Liu, Ying

    2018-04-24

    To investigate common origins and features of anterior epistaxis. Patients (168) with anterior nose bleed were studied from May to October 2013. Endoscopic examination with angled endoscope and then subsequent management (radiofrequency, selective packing,) was performed. Under thorough nasal endoscopy, anterior nasal bleeding origin was ranked in turn as follows: the anterior nasal septum (NS 83.3%), the small area of anterior lateral wall of nasal cavity corresponding to the nasal back (NB 7.1%), the anterior end of the inferior turbinate (IT 5.4%), and the nasal part of the nasal cavity roof (NR 4.2%). Arterial lesion and hypertension led to large instant quantity of bleeding; hypertension and negligible bleeding origin prolonged bleeding duration. Bleeding was successfully controlled with nasal endoscopy and radiofrequency or selective packing. The arterial bleeding small area of anterior lateral wall of nasal cavity corresponding to the nasal back and the nasal part of the nasal cavity roof accounted for more than 10% of anterior epistaxis and a thorough endoscopic examination should include these area with angled endoscope. Then radiofrequency and selective packing will sharply reduce the bleeding duration.

  1. Separating Drought Effects from Roof Artifacts on Ecosystem Processes in a Grassland Drought Experiment

    PubMed Central

    Vogel, Anja; Fester, Thomas; Eisenhauer, Nico; Scherer-Lorenzen, Michael; Schmid, Bernhard; Weisser, Wolfgang W.; Weigelt, Alexandra

    2013-01-01

    1 Given the predictions of increased drought probabilities under various climate change scenarios, there have been numerous experimental field studies simulating drought using transparent roofs in different ecosystems and regions. Such roofs may, however, have unknown side effects, called artifacts, on the measured variables potentially confounding the experimental results. A roofed control allows the quantification of potential artifacts, which is lacking in most experiments. 2 We conducted a drought experiment in experimental grasslands to study artifacts of transparent roofs and the resulting effects of artifacts on ecosystems relative to drought on three response variables (aboveground biomass, litter decomposition and plant metabolite profiles). We established three drought treatments, using (1) transparent roofs to exclude rainfall, (2) an unroofed control treatment receiving natural rainfall and (3) a roofed control, nested in the drought treatment but with rain water reapplied according to ambient conditions. 3 Roofs had a slight impact on air (+0.14°C during night) and soil temperatures (−0.45°C on warm days, +0.25°C on cold nights), while photosynthetically active radiation was decreased significantly (−16%). Aboveground plant community biomass was reduced in the drought treatment (−41%), but there was no significant difference between the roofed and unroofed control, i.e., there were no measurable roof artifact effects. 4 Compared to the unroofed control, litter decomposition was decreased significantly both in the drought treatment (−26%) and in the roofed control treatment (−18%), suggesting artifact effects of the transparent roofs. Moreover, aboveground metabolite profiles in the model plant species Medicago x varia were different from the unroofed control in both the drought and roofed control treatments, and roof artifact effects were of comparable magnitude as drought effects. 5 Our results stress the need for roofed control treatments when using transparent roofs for studying drought effects, because roofs can cause significant side effects. PMID:23936480

  2. Contribution of different sources to the pollution of wet weather flows in combined sewers.

    PubMed

    Gromaire, M C; Garnaud, S; Saad, M; Chebbo, G

    2001-02-01

    Experiments performed on "Marais" catchment, in central Paris, aimed to follow up the quality of wet weather flows from the entry to the exit of a combined sewer network. SS, VSS, COD, BOD5, Cd, Cu, Pb, Zn concentrations were measured for an important number of rain events in roof, yard, street runoff, as well as in dry and wet weather flows at the catchment outlet. Mass entry-exit totals, at the scale of the catchment, were calculated over 31 rain events in order to evaluate the contribution of different types of runoff, of sanitary sewage and of sewer sediments to the total wet weather pollutant loads at the catchment outlet. The erosion of in-sewer pollutant stocks was found to be the main source of particles and of organic matter in wet weather flows, whereas heavy metal loads mainly originated from roof runoff, due to the corrosion of metallic roofs. Particles eroded inside the sewer during rain events were found to be quite different from the particles constituting the main part of sewer sediments: they are organic and biodegradable, with rather important settling velocities and seem to accumulate during dry weather periods. A change of the chemical form of heavy metals was noticed during the transport in the sewer and it is suspected that a fraction of the dissolved metals from the runoff is adsorbed on sewer sediments.

  3. Growing substrates for aromatic plant species in green roofs and water runoff quality: pilot experiments in a Mediterranean climate.

    PubMed

    Monteiro, Cristina M; Calheiros, Cristina S C; Palha, Paulo; Castro, Paula M L

    2017-09-01

    Green roof technology has evolved in recent years as a potential solution to promote vegetation in urban areas. Green roof studies for Mediterranean climates, where extended drought periods in summer contrast with cold and rainy periods in winter, are still scarce. The present research study assesses the use of substrates with different compositions for the growth of six aromatic plant species - Lavandula dentata, Pelargonium odoratissimum, Helichrysum italicum, Satureja montana, Thymus caespititius and T. pseudolanuginosus, during a 2-year period, and the monitoring of water runoff quality. Growing substrates encompassed expanded clay and granulated cork, in combination with organic matter and crushed eggshell. These combinations were adequate for the establishment of all aromatic plants, allowing their propagation in the extensive system located on the 5th storey. The substrate composed of 70% expanded clay and 30% organic matter was the most suitable, and crushed eggshell incorporation improved the initial plant establishment. Water runoff quality parameters - turbidity, pH, conductivity, NH 4 + , NO 3 - , PO 4 3- and chemical oxygen demand - showed that it could be reused for non-potable uses in buildings. The present study shows that selected aromatic plant species could be successfully used in green roofs in a Mediterranean climate.

  4. Determinants of the domiciliary density of Triatoma infestans, vector of Chagas disease.

    PubMed

    Gürtler, R E; Cecere, M C; Rubel, D N; Schweigmann, N J

    1992-01-01

    In two heavily infested rural villages of Santiago del Estero, Argentina, where no indoor-spraying with residual insecticides had ever been carried out by official control services, we studied the influence of roof and wall structure, domestic use of insecticide, family size and the number of domestic dogs, on the domiciliary density of Triatoma infestans (Klug). Bug density was significantly associated with (1) the interaction between insecticide use and type of roof, (2) the structure of indoor walls, (3) the number of dogs sharing sleeping areas of people (room-mate dogs), and (4) the number of people plus room-mate dogs, but not with just the number of people resident in the house. The interaction between insecticide use and a roof made of 'simbol', a locally available grass (Pennisetum sp.), also reflected a younger age structure of domestic bug populations. In infested houses, the density of bugs infected with Trypanosoma cruzi Chagas was significantly correlated with overall bug density. Our data suggest that the application of environmental management measures by the affected people, such as plastering of walls and modification of roofs, coupled with keeping dogs away from bedrooms and application of insecticides, should limit the domestic population density of T. infestans and thus reduce the transmission of T. cruzi to people.

  5. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., including painting and coating of existing roofs; the construction of the sheathing or base of roofs (wood..., and shingles of asbestos, asphalt, wood or other materials) to roofs of buildings or other structures...

  6. Flexible Answers.

    ERIC Educational Resources Information Center

    Seeley, James

    1997-01-01

    Describes how schools are investigating single-ply roofing systems for new and retrofit construction. Discusses some of the considerations in seaming together a single-ply roof, steps in choosing roofing material and a roofing contractor, warranty advice, and the importance of keeping records on roof maintenance. (RJM)

  7. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. What land covers are effective in mitigating a heat island in urban building rooftop?

    NASA Astrophysics Data System (ADS)

    Lee, S.; Ryu, Y.

    2014-12-01

    Since the 20th century, due to the rapid urbanization many urban environment problems have got blossomed and above all heat island has been recognized as an important issue. There are several causes of urban heat island, but land cover change occupies the largest portion of them. Owing to urban expansion, vegetation is changed into asphalt pavements and concrete buildings, which reduces latent heat flux. To mitigate the problems, people enlarge vegetation covers such as planting street trees, making rooftop gardens and constructing parks or install white roofs that feature high albedo on a building. While the white roofs reflect about 70% of solar radiation and absorb less radiation, vegetation has low albedo but cools the air through transpiration and fixes carbon dioxide through photosynthesis. There are some studies concerning which one is more effective to mitigate heat island between the green roof and white roof. This study compares the green roof and white roof and additionally considers carbon fixation that has not been treated in other studies. Furthermore, this study ascertains an efficiency of solar-cell panel that is used for building roof recently. The panel produces electric power but has low albedo which could warm the air. The experiment is conducted at the rooftop in Seoul, Korea and compares green roof (grass), white roof (painted cover), black roof (solar panel) and normal painted roof. Surface temperature and albedo are observed for the four roof types and incoming shortwave, outgoing longwave and carbon flux are measured in green roof solely. In the case of solar panels, the electricity generation is calculated from the incoming radiation. We compute global warming potentials for the four roof types and test which roof type is most effective in reducing global warming potential.

  9. The effect of roofing material on the quality of harvested rainwater.

    PubMed

    Mendez, Carolina B; Klenzendorf, J Brandon; Afshar, Brigit R; Simmons, Mark T; Barrett, Michael E; Kinney, Kerry A; Kirisits, Mary Jo

    2011-02-01

    Due to decreases in the availability and quality of traditional water resources, harvested rainwater is increasingly used for potable and non-potable purposes. In this study, we examined the effect of conventional roofing materials (i.e., asphalt fiberglass shingle, Galvalume(®) metal, and concrete tile) and alternative roofing materials (i.e., cool and green) on the quality of harvested rainwater. Results from pilot-scale and full-scale roofs demonstrated that rainwater harvested from any of these roofing materials would require treatment if the consumer wanted to meet United States Environmental Protection Agency primary and secondary drinking water standards or non-potable water reuse guidelines; at a minimum, first-flush diversion, filtration, and disinfection are recommended. Metal roofs are commonly recommended for rainwater harvesting applications, and this study showed that rainwater harvested from metal roofs tends to have lower concentrations of fecal indicator bacteria as compared to other roofing materials. However, concrete tile and cool roofs produced harvested rainwater quality similar to that from the metal roofs, indicating that these roofing materials also are suitable for rainwater harvesting applications. Although the shingle and green roofs produced water quality comparable in many respects to that from the other roofing materials, their dissolved organic carbon concentrations were very high (approximately one order of magnitude higher than what is typical for a finished drinking water in the United States), which might lead to high concentrations of disinfection byproducts after chlorination. Furthermore the concentrations of some metals (e.g., arsenic) in rainwater harvested from the green roof suggest that the quality of commercial growing media should be carefully examined if the harvested rainwater is being considered for domestic use. Hence, roofing material is an important consideration when designing a rainwater catchment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Health risk among asbestos cement sheet manufacturing workers in Thailand.

    PubMed

    Phanprasit, Wantanee; Sujirarat, Dusit; Chaikittiporn, Chalermchai

    2009-12-01

    To assess asbestos exposure and calculate the relative risks of lung cancer among asbestos cement roof sheet workers and to predict the incidence rate of lung cancer caused by asbestos in Thailand. A cross-sectional study was conducted in four asbestos cement roof factories. Both area and personal air samples were collected and analyzed employing NIOSH method # 7400 and counting rule A for all procesess and activities. The time weight average exposures were calculated for each studied task using average area concentrations of the mill and personal concentrations. Then, cumulative exposures were estimated based on the past nation-wide air sampling concentrations and those from the present study. The relative risk (RR) of lung cancer among asbestos cement sheet workers was calculated and the number of asbestos related lung cancer case was estimated. The roof fitting polishers had the highest exposure to airborne asbestos fiber (0.73 fiber/ml). The highest average area concentration was at the conveyor to the de-bagger areas (0.02 fiber/ml). The estimated cumulative exposure for the workers performed studied-tasks ranged in between 90.13-115.65 fiber-years/ml while the relative risk of lung cancer calculated using US. EPA's model were 5.37-5.96. Based on the obtained RR, lung cancer among AC sheet in Thailand would be 2 case/year. In case that AC sheet will not be prohibited from being manufactured, even though only chrysotile is allowed, the surveillance system should be further developed and more seriously implemented. The better control measures for all processes must be implemented. Furthermore, due to the environmental persistence of asbestos fiber, its life cycle analysis should be conducted in order to control environmental exposure of general population.

  11. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...

  12. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...

  13. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...

  14. A Study of the Energy-Saving Potential of Metal Roofs Incorporating Dynamic Insulation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Miller, William A; Kriner, Scott

    2013-01-01

    This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S. between 2009 and 2013, and describes their potential for reducing the attic-generated space-conditioning loads. These roofs contained different combinations of phase-change material, rigid insulation, low emittance surface, and above-sheathing ventilation with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. Themore » roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a three-year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year three of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic-temperature fluctuations.« less

  15. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2014-05-01

    This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S.A. between 2009 and 2013, and describes their potential for reducing the attic-generated space conditioning loads. These roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control formore » comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a 3 year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year 3 of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic temperature fluctuations.« less

  16. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles and Vapor Diffusion Venting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Lstiburek, J. W.

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).« less

  17. Building America Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles, Orlando, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).« less

  18. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs.

    PubMed

    Agra, Har'el; Solodar, Ariel; Bawab, Omar; Levy, Shay; Kadas, Gyongyver J; Blaustein, Leon; Greenbaum, Noam

    2018-08-15

    Green roofs provide important ecosystem services in urban areas. In Mediterranean and other semi-arid climate regions, most perennial plants on green roofs need to be irrigated during the dry season. However, the use of freshwater in such regions is scarce. Therefore, the possibility of using grey water should be examined. Coal ash, produced primarily from the burning of coal in power plants, constitutes an environmental contaminant that should be disposed. One option is to use ash as a growing substrate for plants. Here, we compare the effects of irrigating with grey- versus tap-water and using ash versus perlite as growing substrates in green roofs. The study was conducted in northern Israel in a Mediterranean climate. The design was full factorial with three factors: water-type (grey or tap-water)×substrate-type (coal ash vs perlite)×plant species (Phyla nodiflora, Convolvulus mauritanicus or no-plant). The development of plants and the quality of drainage water along the season, as well as quality of the used substrates were monitored. Both plant species developed well under all the experimental conditions with no effect of water type or substrate type. Under all treatments, both plant species enhanced electrical conductivity (EC) and chemical oxygen demand (COD) of the drainage water. In the summer, EC and COD reached levels that are unacceptable in water and are intended to be reused for irrigation. We conclude that irrigating with grey water and using coal ash as a growth substrate can both be implemented in green roofs. The drainage from tap water as well as from grey water can be further used for irrigating the roof, but for that, COD and EC levels must be lowered by adding a sufficient amount of tap water before reusing. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Green roofs'retention performances in different climates

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Hellies, Matteo; Deidda, Roberto

    2017-04-01

    The ongoing process of global urbanization contributes to increasing stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be an innovative stormwater management tool to partially restore natural state, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends mainly on both soil properties and climate. The evaluation of the retained water is not trivial since it depends on the stochastic soil moisture dynamics. The aim of this work is to explore performances of green roofs, in terms of water retention, as a function of their depth considering different climate regimes. The role of climate in driving water retention has been mainly represented by rainfall and potential evapotranspiration dynamics, which are simulated by a simple conceptual weather generator at daily time scale. The model is able to describe seasonal (in-phase and counter-phase) and stationary behaviors of climatic forcings. Model parameters have been estimated on more than 20,000 historical time series retrieved worldwide. Exemplifying cases are discussed for five different climate scenarios, changing the amplitude and/or the phase of daily mean rainfall and evapotranspiration forcings. The first scenario represents stationary climates, in two other cases the daily mean rainfall or the potential evapotranspiration evolve sinusoidally. In the latter two cases, we simulated the in-phase or in counter-phase conditions. Stochastic forcings have been then used as an input to a simple conceptual hydrological model which simulate soil moisture dynamics, evapotranspiration fluxes, runoff and leakage from soil pack at daily time scale. For several combinations of annual rainfall and potential evapotranspiration, the analysis allowed assessing green roofs' retaining capabilities, at annual time scale. Provided abacus allows a first approximation of possible hydrological benefits deriving from the implementation of intensive or extensive green roofs in different world areas, i.e. less input to sewer systems.

  20. Preventing a Washout.

    ERIC Educational Resources Information Center

    Poindexter, Dave

    1996-01-01

    Offers ideas for locating a roof leak. Discusses why many leaks originate in the roof's base flashings and the importance of knowing the roof's material makeup. Advocates keeping a roof-leak history and gives advice on performing inspections to check for leaks. Discusses how to find small holes in roofs. (RJM)

  1. Vehicle Assembly Building Fire Mishap Investigation Report. Volume I of V

    NASA Technical Reports Server (NTRS)

    Kight, Ira; Luciano, Steven; Stevens, Michael B.; Farley, W. Max; Collins, Bryce D.; Potterger, William C.; Levesque, Jodi

    2005-01-01

    On January 13, 2005, at approximately 1355, smoke was noticed on the 4th floor of D Tower in the Vehicle Assembly Building (VAB). Subsequently, a 911 call was made, a fire alarm pull station was activated, and the VAB was evacuated. The source of the smoke was determined to be a fire on the Low Bay M/N section roof near the Launch Control Center (LCC) Crossover. Due to the high visibility of the mishap, the KSC Center Director appointed a Mishap Investigation Board. Damage to government property was limited to the roof and a small number of ceiling tiles that were damaged by the fire fighters during the response. At the time of the mishap, there were hazardous commodities in the VAB including Solid Rocket Motors (SRMs) with open grain due to Solid Rocket Booster (SRB) igniter inspections. The Board agrees with the SGS Fire Services' theory that large amounts of smoke concentrated in the VAB D Tower and moved downward into the cable tunnel. The Board determined the proximate cause of this incident to be torching. HRI was installing a torch applied roof membrane which resulted in the ignition of combustible materials under the membrane near a wooden roof expansion joint. The torch applied roofing method is a universally accepted safe industry practice when applied to non-combustible surfaces. The combination of an open flame torch and combustible materiaLs presents an increased level of risk even with skilled applicators. The addition of high winds to this combination results in a risk the Board thinks can not be adequately mitigated. An appropriate risk assessment and analysis must be performed on the proposed roofing method to be used on high visibility facilities which represent unique national assets even when using common industry practices for repair and modification. The Board identified three root causes which contributed to or created the proximate cause and, if eliminated or modified, would have prevented the mishap: 1. Combustible materials in existing roof system 2. Wind speed and direction 3. Inadequate fire watch technique. Two contributing factors were identified which may have contributed to the occurrence but, if eliminated or modified, would not have prevented the occurrence: 1. HRI rushed to dry in and seal the roof on January 13 because heavy rain was predicted for the next day 2. No guidance on torching in windy conditions A total of 17 significant observations were noted during this investigation, which could lead to another mishap, or increase the severity of a mishap, but were not contributing factors in this mishap.

  2. Component characterization and predictive modeling for green roof substrates optimized to adsorb P and improve runoff quality: A review.

    PubMed

    Jennett, Tyson S; Zheng, Youbin

    2018-06-01

    This review is a synthesis of the current knowledge regarding the effects of green roof substrate components and their retentive capacity for nutrients, particularly phosphorus (P). Substrates may behave as either sources or sinks of P depending on the components they are formulated from, and to date, the total P-adsorbing capacity of a substrate has not been quantified as the sum of the contributions of its components. Few direct links have been established among substrate components and their physicochemical characteristics that would affect P-retention. A survey of recent literature presented herein highlights the trends within individual component selection (clays and clay-like material, organics, conventional soil and sands, lightweight inorganics, and industrial wastes and synthetics) for those most common during substrate formulation internationally. Component selection will vary with respect to ease of sourcing component materials, cost of components, nutrient-retention capacity, and environmental sustainability. However, the number of distinct components considered for inclusion in green roof substrates continues to expand, as the desires of growers, material suppliers, researchers and industry stakeholders are incorporated into decision-making. Furthermore, current attempts to characterize the most often used substrate components are also presented whereby runoff quality is correlated to entire substrate performance. With the use of well-described characterization (constant capacitance model) and modeling techniques (the soil assemblage model), it is proposed that substrates optimized for P adsorption may be developed through careful selection of components with prior knowledge of their chemical properties, that may increase retention of P in plant-available forms, thereby reducing green roof fertilizer requirements and P losses in roof runoff. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Thin soil layer of green roof systems studied by X-Ray CT

    NASA Astrophysics Data System (ADS)

    Šácha, Jan; Jelínková, Vladimíra; Dohnal, Michal

    2016-04-01

    The popular non-invasive visualization technique of X-ray computed tomography (CT) has been used for 3D examination of thin soil layer of vegetated roof systems. The two categories of anthropogenic soils, usually used for green roof systems, were scanned during the first months after green roof system construction. First was represented by stripped topsoil with admixed crushed bricks and was well graded in terms of particle size distribution. The other category represented a commercial lightweight technogenic substrate. The undisturbed soil samples of total volume of 62.8 ccm were studied be means of X-ray Computed Tomography using X-ray Inspection System GE Phoenix Nanomex 180T with resulting spatial resolution about 57 μm in all directions. For both soil categories visible macroporosity, connectivity (described by the Euler characteristic), dimensionless connectivity and critical cross section of pore network were determined. Moreover, the temporal structural changes of studied soils were discussed together with heat and water regime of the green roof system. The analysis of CT images of anthropogenic soils was problematic due to the different X-ray attenuation of individual constituents. The correct determination of the threshold image intensity differentiating the soil constituents from the air phase had substantial importance for soil pore network analyses. However, X-ray CT derived macroporosity profiles reveal significant temporal changes notably in the soil comprised the stripped topsoil with admixed crushed bricks. The results implies that the technogenic substrate is structurally more stable over time compared to the stripped topsoil. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  4. 25. Detail, roof at junction of main roof and tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Detail, roof at junction of main roof and tower skirt roof; note condition of slates, subroof, missing gutter, lead pipe gutter outlet; view to northwest from lift-bed truck, 135mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  5. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... proximity to a roof, including carpentry and metal work, alterations, additions, maintenance and repair... or metal), including roof trusses or joists; gutter and downspout work; the installation and... work performed in connection with the installation of roofs, including related metal work such as...

  6. 24. Roof detail from liftbed truck, showing pan roof above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Roof detail from lift-bed truck, showing pan roof above breezeway, with sawn redwood trim, tube-type drains; note missing rain gutter at roof edge, deteriorated condition of slates; view to south, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  7. Experimental research on coalbed gas drainage effect and economy of long directional borehole in roof

    NASA Astrophysics Data System (ADS)

    Yang, Huiming; Hu, Liangping

    2017-05-01

    In order to study the coalbed gas drainage effect and economy of long directional roof borehole, 2 boreholes were laid out in Xinji No. 2 mine to analyze its gas drainage and investment costs comparing with high position roof borehole and high position roof roadway. The result indicates that the long directional roof borehole save investment by 44.8% and shorten the construction period by 30%, comparing with high position roof roadway for controlling gas in the working face. Investment slightly less and shorten the construction period by 47.5%, comparing with the roof high position borehole. Therefore, the method of the long directional roof borehole to drain coalbed gas in working face is the most cost-effective.

  8. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    DOE PAGES

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; ...

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore » inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less

  9. Nutrient leaching from extensive green roofs with different substrate compositions: a laboratory study.

    PubMed

    Zhang, Wei; Zhong, Xing; Che, Wu

    2018-02-01

    To investigate nutrient leaching from extensive green roofs, green roof platforms were established to investigate the effluent quantity and quality during artificial rainfall. When the influent volume reached three times the empty bed volume, for which the cumulative rainfall was around 300 mm, the effluent TP and COD concentrations of green roof platforms filled with peat soil did not tend to stabilize. For a long-term operation, the substrate depths had little significant influence on TN, TP and COD concentrations of the green roof effluents. A normalized cumulative emission process method was proposed to discuss the difference in various pollutant leaching processes. Obvious differences in the leaching process of different contaminants for green roof platforms filled with various substrates were observed. For the green roof filled with modified substrates, the nitrogen and phosphorus pollutant leaching rates were relatively high in the initial stage of green roof operation and the phosphorus leaching rate was higher than that of nitrogen. The green roof is a sink for TN, but not for TP and COD in this study. The outcomes are critical for the selection of green roof substrates and also contribute to green roof maintenance.

  10. Evaluation on Thermal Behavior of a Green Roof Retrofit System Installed on Experimental Building in Composite Climate of Roorkee, India

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Deoliya, Rajesh; Chani, P. S.

    2015-12-01

    Green roofs not only provide cooling by shading, but also by transpiration of water through the stomata. However, the evidence for green roofs providing significant air cooling remains limited. No literature investigates the thermal performance of prefab brick panel roofing technology with green roof. Hence, the aim of this research is to investigate the thermal behavior of an experimental room, built at CSIR-Central Building Research Institute (CBRI) campus, Roorkee, India using such roofing technology during May 2013. The study also explores the feasibility of green roof with grass carpets that require minimum irrigation, to assess the expected indoor thermal comfort improvements by doing real-time experimental studies. The results show that the proposed green roof system is suitable for reducing the energy demand for space cooling during hot summer, without worsening the winter energy performance. The cost of proposed retrofit system is about Rs. 1075 per m2. Therefore, green roofs can be used efficiently in retrofitting existing buildings in India to improve the micro-climate on building roofs and roof insulation, where the additional load carrying capacity of buildings is about 100-130 kg/m2.

  11. Combating the Urban Heat Island Effect: Results from a Long-Term Monitoring Study on Urban Green, White, and Black Roofs in New York City

    NASA Astrophysics Data System (ADS)

    Gaffin, S. R.; Kong, A. Y.; Hartung, E.; Hsu, B.; Roditi, A.; Rosenzweig, C.

    2011-12-01

    Urban heat island mitigation strategies include increasing urban vegetation and increasing the albedo of impervious surfaces. Vegetated "green" roofs can provide benefits to stormwater management, water quality, energy cost efficiency, and biodiversity in cities, but the body of research on green roofs in the US is not large and cities in the US have been slow to adopt green roofs. On the other hand, "high-albedo" white roofs have been applied more widely through projects such as New York City Cool Roofs. There are several major issues (e.g., albedo decline, product differences, and long-term temperature controls) about green and white roof performance versus typical black roofs with respect to urban heat island mitigation that have yet to be fully addressed. Here, we present data from an on-going, long-term study in New York City in which pilot, urban albedo enhancement and vegetation effects have been monitored at the building-scale since 2007. Although the urban heat island effect can be detected throughout the year, our objective for this paper was to compare green roof vegetation with those of the high-albedo roofs for their ability to reduce the electricity demand for cooling in the summer. Using energy balance methodology across our sites (three), we found that green and white roof membrane temperature peaks are on average 60°F (33°C) and 30° F (17°C), respectively, cooler than black roof temperature peaks, and that these alternative surfaces significantly reduce thermal stress to roof membranes. Interestingly, we found that industrial white membranes [thermoplastic polyolefin (TPO) and ethylene propylene diene monomer (EPDM)] stay cleaner longer, thereby, maintaining the high-albedo benefits longer than the painted roofs, which tend to lose their albedo properties rapidly. Results thus far suggest that more long-term research comparing the albedo and cooling benefits of green and white roofs to black roofs is necessary to understand temporal changes to roof performance.

  12. Prevention of residential roof fires by use of a class "A" fire rated roof system.

    PubMed

    Edlich, Richard F; Winters, Kathryne L; Long, William B; Britt, L D

    2004-01-01

    Because residential roof fires remain a life-threatening danger to residential homeowners in the United States, we describe in detail a national fire prevention program for reducing residential roof fires by use of an Underwriters Laboratories Inc. (UL) and National Fire Protection Association Class A fire rated roof system. This Class A system should comply with the test requirements for fire resistance of roof coverings, as outlined in UL 790 or in ASTM International (ASTM) E-108. Both the Asphalt Roofing Manufacturer's Association (ARMA) and the National Roofing Contractors Association (NRCA) have set up guidelines for selecting a new roof for the homeowner. Class A, fiber-glass-based asphalt roofing shingles represent an overwhelming share of the United States residential roofing market, and, as such, the Class A rated roofing system remains an excellent alternative to wood shingles and shakes. Fortunately, the Class A fire rating is available for certain wood shingle products that incorporate a factory-applied, fire resistant treatment. However, in this circumstance, wood products labeled as Class B shakes or shingles must be installed over spaced or solid sheathing that have been covered either with one layer of 1/4 in. (6.4 mm) thick noncombustible roof board, or with one layer of minimum 72-lb. fiber-glass-based mineral surfaced cap sheet, or with another specialty roofing sheet to obtain the Class A fire rating. Clay, tile, slate, and metal have been assigned Class A fire ratings in the codes (but often without testing). These alternative roofing materials are often considerably more expensive. Proper application, ventilation, and insulation of roofing systems are required to prevent heat and moisture buildup in the attic, which can damage the roofing system, making it more susceptible to water leakage as well as ignition in the event of a fire. The NRCA has devised excellent recommendations for the homeowner to prequalify the contractor. In addition, a warranty for any new roofing material is important for the homeowner to ensure that the roofing can be repaired by the contractor or manufacturer during the specified warranty period, in case of contractor error or a manufacturing defect. In addition, the homeowner should ensure that the warranty is transferable to any future owner of the home to allow the buyer to have the same warranty benefits as the original owner. The State of California has mandated strict roofing requirements to prevent residential fires. In the absence of this legislation in other states, the homeowner must follow the guidelines outlined in this collective review to ensure that a roofing system with Class A fire protection is installed. Other fire safety precautions that should also be considered mandatory are to include smoke alarms, escape plans, and retrofit fire sprinklers.

  13. 4. VIEW SOUTHWEST COMPONENTS TEST LAB TEST BAY DETAIL SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTHWEST COMPONENTS TEST LAB TEST BAY DETAIL SHOWING EMERGENCY SHOWER, AND EYEWASH, AND OBSERVATION WINDOW. STORAGE TANKS ON ROOF. - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  14. Potentiality of rainwater harvesting for an urban community in Bangladesh

    NASA Astrophysics Data System (ADS)

    Akter, Aysha; Ahmed, Shoukat

    2015-09-01

    Due to cost effectiveness, rainwater harvesting (RWH) systems are practicing already in some rural parts of Bangladesh but very few in urban areas. This paper aimed to evaluate the potentiality of RWH systems in the South Agrabad in Chittagong city with an average annual precipitation of 3000 mm, experiencing both water scarcity and urban flooding in the same year. The adopted approach was Analytic Hierarchy Process (AHP) based multicriteria decision analysis technique, and the evaluation criteria were roof area, slope, drainage density and runoff coefficient. Geospatial Hydrologic Modeling Extension supported hydrologic model viz. HEC-HMS used to simulate the precipitation-runoff process, the model outcomes showed RWH potentiality which could minimize stagnant storm water up to 26% through supplementing city water supply annually up to 20 liter/person/day. Then, assigning suitable weightage to the evaluation criteria with their associated features in ArcGIS 9.3, the study area was reasonably divided into three potential zones i.e. good, moderate and poor covering 19%, 64% and 17% of the total area respectively. Thus, this is envisaged AHP using HEC-HMS could provide important guidance to the decision supporting system not only for urban areas but also for the wide sub-basin/basin context.

  15. Characteristics of Latrines in Central Tanzania and Their Relation to Fly Catches

    PubMed Central

    Irish, Seth; Aiemjoy, Kristen; Torondel, Belen; Abdelahi, Faraji; Ensink, Jeroen H. J.

    2013-01-01

    The disposal of human excreta in latrines is an important step in reducing the transmission of diarrhoeal diseases. However, in latrines, flies can access the latrine contents and serve as a mechanical transmitter of diarrhoeal pathogens. Furthermore, the latrine contents can be used as a breeding site for flies, which may further contribute to disease transmission. Latrines do not all produce flies, and there are some which produce only a few, while others can produce thousands. In order to understand the role of the latrine in determining this productivity, a pilot study was conducted, in which fifty latrines were observed in and around Ifakara, Tanzania. The characteristics of the latrine superstructure, use of the latrine, and chemical characteristics of pit latrine contents were compared to the numbers of flies collected in an exit trap placed over the drop hole in the latrine. Absence of a roof was found to have a significant positive association (t=3.17, p=0.003) with the total number of flies collected, and temporary superstructures, particularly as opposed to brick superstructures (z=4.26, p<0.001), and increased total solids in pit latrines (z=2.57, p=0.01) were significantly associated with increased numbers of blowflies leaving the latrine. The number of larvae per gram was significantly associated with the village from which samples were taken, with the largest difference between two villages outside Ifakara (z=2.12, p=0.03). The effect of latrine superstructure (roof, walls) on fly production may indicate that improvements in latrine construction could result in decreases in fly populations in areas where they transmit diarrhoeal pathogens. PMID:23874475

  16. 129. ARAII Administrative and technical support building (ARA606) sections showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    129. ARA-II Administrative and technical support building (ARA-606) sections showing roof and wall details and longitudinal section. C.A. Sundberg and Associates 866-area/ALPR-606-A-5. Date: May 1958. Ineel index code no. 070-0606-00-822-102828. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  17. 121. ARAI Guard house (ARA628). Drawing shows north, south, east, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. ARA-I Guard house (ARA-628). Drawing shows north, south, east, and west elevations, floor plan, counter details, and roof plan. Norman Engineering Corporation 961-area/SF-628-A-1. Date: January 1959. Ineel index code no. 063-0628-00-613-102772. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  18. 49. TILE PACKING AREA AND APPRENTICE WORKSPACE, SECOND FLOOR, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. TILE PACKING AREA AND APPRENTICE WORKSPACE, SECOND FLOOR, SOUTH END OF EAST WING. THE SKYLIGHT, ADDED IN 1976. COVERS A ROOF OPENING LEFT FOR THE CHIMNEY OF A POSSIBLE THIRD BISCUIT KILN. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  19. Optimal implementation of green infrastructure practices to reduce adverse impacts of urban areas on hydrology and water quality

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Collingsworth, P.; Pijanowski, B. C.; Engel, B.

    2016-12-01

    Nutrient loading from Maumee River watershed is a significant reason for the harmful algal blooms (HABs) problem in Lake Erie. Although studies have explored strategies to reduce nutrient loading from agricultural areas in the Maumee River watershed, the nutrient loading in urban areas also needs to be reduced. Green infrastructure practices are popular approaches for stormwater management and useful for improving hydrology and water quality. In this study, the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model was used to determine how different strategies for implementing green infrastructure practices can be optimized to reduce impacts on hydrology and water quality in an urban watershed in the upper Maumee River system. Community inputs, such as the types of green infrastructure practices of greatest interest and environmental concerns for the community, were also considered during the study. Based on community input, the following environmental concerns were considered: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx); green infrastructure practices of interest included rain barrel, cistern, green roof, permeable patio, porous pavement, grassed swale, bioretention system, grass strip, wetland channel, detention basin, retention pond, and wetland basin. Spatial optimization of green infrastructure practice implementation was conducted to maximize environmental benefits while minimizing the cost of implementation. The green infrastructure practice optimization results can be used by the community to solve hydrology and water quality problems.

  20. Indoor climate and moisture durability performances of houses with unvented attic roof constructions in a mixed-humid climate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallin, Simon B.; Boudreaux, Philip R.; Jackson, Roderick K.

    2014-10-01

    A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that inmore » more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of roof assemblies against moisture. The key variables investigated were the leakage area from the attic to the outside, leakage area from the attic to the interior, leakage area from the interior to the outside, supply duct leakage in the attic, and interior moisture generation. These investigations are described in this report.« less

  1. Roofer: An Engineered Management System (EMS) for Bituminous Built-Up Roofs

    DTIC Science & Technology

    1989-12-01

    individual roof projects. Figure 1 shows an example of a filing sequence for a typical recordkceping system. The file should contain a Building Folder ...for each building and a Roof Section Foldcr for each roof section on the building. Building Folder The Building Folder should contain a completed...should also be kept in the building folder , or if they are kept elsewhere, their location should be stated in the folder . Roof Section Folder A Roof

  2. The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William A

    2006-01-01

    Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metalmore » roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.« less

  3. Specifying, Installing and Maintaining Built-Up and Modified Bitumen Roofing Systems.

    ERIC Educational Resources Information Center

    Hobson, Joseph W.

    2000-01-01

    Examines built-up, modified bitumen, and hybrid combinations of the two roofing systems and offers advise on how to assure high- quality performance and durability when using them. Included is a glossary of commercial roofing terms and asphalt roofing resources to aid in making decisions on roofing and systems product selection. (GR)

  4. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  5. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  6. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  7. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  8. 49 CFR 571.118 - Standard No. 118; Power-operated window, partition, and roof panel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-operated window, partition, and roof panel systems. S1. Purpose and scope. This standard specifies requirements for power operated window, partition, and roof panel systems to minimize the likelihood of death... Figure 2. Power operated roof panel systems mean moveable panels in the vehicle roof which close by...

  9. Hyperspectral Monitoring of Green Roof Vegetation Health State in Sub-Mediterranean Climate: Preliminary Results.

    PubMed

    Piro, Patrizia; Porti, Michele; Veltri, Simone; Lupo, Emanuela; Moroni, Monica

    2017-03-23

    In urban and industrial environments, the constant increase of impermeable surfaces has produced drastic changes in the natural hydrological cycle. Decreasing green areas not only produce negative effects from a hydrological-hydraulic perspective, but also from an energy point of view, modifying the urban microclimate and generating, as shown in the literature, heat islands in our cities. In this context, green infrastructures may represent an environmental compensation action that can be used to re-equilibrate the hydrological and energy balance and reduce the impact of pollutant load on receiving water bodies. To ensure that a green infrastructure will work properly, vegetated areas have to be continuously monitored to verify their health state. This paper presents a ground spectroscopy monitoring survey of a green roof installed at the University of Calabria fulfilled via the acquisition and analysis of hyperspectral data. This study is part of a larger research project financed by European Structural funds aimed at understanding the influence of green roofs on rainwater management and energy consumption for air conditioning in the Mediterranean area. Reflectance values were acquired with a field-portable spectroradiometer that operates in the range of wavelengths 350-2500 nm. The survey was carried out during the time period November 2014-June 2015 and data were acquired weekly. Climatic, thermo-physical, hydrological and hydraulic quantities were acquired as well and related to spectral data. Broadband and narrowband spectral indices, related to chlorophyll content and to chlorophyll-carotenoid ratio, were computed. The two narrowband indices NDVI 705 and SIPI turned out to be the most representative indices to detect the plant health status.

  10. Effects of local and spatial conditions on the quality of harvested rainwater in the Mekong Delta, Vietnam.

    PubMed

    Wilbers, Gert-Jan; Sebesvari, Zita; Rechenburg, Andrea; Renaud, Fabrice G

    2013-11-01

    The objective of this study was to assess the quality of harvested rainwater in the Mekong Delta (MD), Vietnam for local (roof types, storage system and duration) and spatial (proximity of industry, main roads, coastline) conditions. 78 harvested rainwater samples were collected in the MD and analyzed for pH, turbidity, TDS, COD, nutrients (NH4, NO3, NO2, o-PO4), trace metals and coliforms. The results show that thatch roofs lead to an increase of pollutants like COD (max 23.2 mgl(-1)) and turbidity (max 10.1 mgl(-1)) whereas galvanized roofs lead to an increase of Zn (max 2.2 mgl(-1)). The other local and spatial parameters had no or only minor influence on the quality of household harvested rainwater. However, lead (Pb) (max. 16.9 μgl(-1)) and total coliforms (max. 102 500 CFU100 ml(-1)) were recorded at high concentrations, probably due to a variety of household-specific conditions such as rainwater storage, collection and handling practices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Performance evaluation on cool roofs for green remodeling

    NASA Astrophysics Data System (ADS)

    Yun, Yosun; Cho, Dongwoo; Cho, Kyungjoo

    2018-06-01

    Cool roofs refer that maximize heat emission, and minimize the absorption of solar radiation energy, by applying high solar reflectance paints, or materials to roofs or rooftops. The application of cool roofs to existing buildings does not need to take structural issues into consideration, as rooftop greening, is an alternative that can be applied to existing buildings easily. This study installed a cool roofs on existing buildings, and evaluated the performances, using the results to propose certification standards for green remodeling, considering the cool roof-related standards.

  12. Roof instability characteristics and pre-grouting of the roof caving zone in residual coal mining

    NASA Astrophysics Data System (ADS)

    Zhao, Tong; Liu, Changyou

    2017-12-01

    Abandoned roadways and roof caving zones are commonly found in residual coal, and can destroy the integrity of the coal seam and roof. Resulting from mining-induced stress, continuous collapse and fracture instability in roof caving zones (RCZs) jeopardize the safety and efficiency of residual coal mining. Based on the engineering geology conditions of remining face 3101 in Shenghua Mine, the roof fracture and instability features of the RCZ were analyzed through physical simulation, theoretical analysis, and field measurements. In this case, influenced by the RCZ, the main roof across the RCZ fractured and rotated towards the goaf, greatly increasing the working resistance, and crushing the supports. The sudden instability of the coal pillars weakened its support of the main roof, thus resulting in long-key blocks across the RCZ and hinged roof structures, which significantly decreased the stability of the underlying immediate roof. This study establishes a mechanical model for the interactions between the surrounding rock and the supports in the RCZ, determines the reasonable working resistance, and examines the use of pre-grouting solidification restoration technology (PSRT) to solidify the RCZ and reinforce the coal pillars—thus increasing their bearing capacity. Field measurements revealed no roof flaking, inhomogeneous loading or support crushing, indicating that the PSRT effectively controlled the surrounding rock of the RCZ.

  13. Effects of selected low-impact-development (LID) techniques on water quality and quantity in the Ipswich River Basin, Massachusetts-Field and modeling studies

    USGS Publications Warehouse

    Zimmerman, Marc J.; Barbaro, Jeffrey R.; Sorenson, Jason R.; Waldron, Marcus C.

    2010-01-01

    During the months of August and September, flows in the Ipswich River, Massachusetts, dramatically decrease largely due to groundwater withdrawals needed to meet increased residential and commercial water demands. In the summer, rates of groundwater recharge are lower than during the rest of the year, and water demands are higher. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of low-impact-development (LID) enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of (1) replacing an impervious parking lot surface with a porous surface on groundwater quality, (2) installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and (3) installing a 3,000-square foot (ft2) green roof on the quantity and quality of stormwater runoff. In addition, the effects of broad-scale implementation of LID techniques, reduced water withdrawals, and water-conservation measures on streamflow in large areas of the basin were simulated using the U.S. Geological Survey's Ipswich River Basin model. From June 2005 to 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, MA, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers. Changes in the concentrations of the water-quality constituents, phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons, were monitored. Increased infiltration of precipitation did not result in discernible increases in concentrations of these potential groundwater contaminants. Concentrations of dissolved oxygen increased slightly in groundwater profiles following the removal of the impervious asphalt parking lot surface. In Wilmington, MA, in a 3-acre neighborhood, stormwater runoff volume and quality were monitored to determine the ability of selected LID enhancements (rain gardens and porous paving stones) to reduce flows and loads of the above constituents to Silver Lake. Flow-proportional water-quality samples were analyzed for nutrients, metals, total petroleum hydrocarbons, and total-coliform and Escherichia coli bacteria. In general, when all storms were considered, no substantial decreases were observed in runoff volume as a result of installing LID enhancements. However, the relation between rainfall and runoff did provide some insight into how the LID enhancements affected the effective impervious area for the neighborhood. A decrease in runoff was observed for storms of 0.2 inches (in.) or less of precipitation, which indicated a reduction in effective impervious area from approximately 10 percent to about 4.5 percent for the 3-acre area. Water-quality-monitoring results were inconclusive; there were no statistically significant differences in concentrations or loads when the pre- and post-installation-period samples were compared. Three factors were probably most important in minimizing differences: (1) the small decrease in effective impervious area, (2) the differences in the size of storms sampled for water-quality constituents before and after installation of the infiltration enhancing measures, and (3) small sample sizes. In a third field study, the characteristics of runoff from a vegetated 'green' roof and a conventional, rubber-membrane roof were compared. The amount of precipitation and the length of the antecedent dry period were the two primary factors affecting the gre

  14. 14. VIEW TO SOUTHWEST AT NORTH END OF SECONDFLOOR ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW TO SOUTHWEST AT NORTH END OF SECOND-FLOOR ASSEMBLY AREA. VIEW SHOWS DETAILS OF SAWTOOTH ROOF STRUCTURE. - Rosie the Riveter National Historical Park, Ford Assembly Plant, 1400 Harbour Way South, Richmond, Contra Costa County, CA

  15. Development and investigation of a pollution control pit for treatment of stormwater from metal roofs and traffic areas.

    PubMed

    Dierkes, C; Göbel, P; Lohmann, M; Coldewey, W G

    2006-01-01

    Source control by on-site retention and infiltration of stormwater is a sustainable and proven alternative to classical drainage methods. Unfortunately, sedimentary particles and pollutants from drained surfaces cause clogging and endanger soil and groundwater during long-term operation of infiltration devices. German water authorities recommend the use of infiltration devices, such as swales or swale-trench-systems. Direct infiltration by underground facilities, such as pipes, trenches or sinks, without pretreatment of runoff is generally not permitted. Problems occur with runoff from metal roofs, traffic areas and industrial sites. However, due to site limitations, underground systems are often the only feasible option. To overcome this situation, a pollution control pit was developed with a hydrodynamic separator and a multistage filter made of coated porous concrete. The system treats runoff at source and protects soil, groundwater and receiving waterways. Typically, more than 90% of the pollutants such as sedimentary particles, hydrocarbons and heavy metals can be removed. Filters have been developed to treat even higher polluted stormwater loads from metal roofs and industrial sites. The treatment process is based on sedimentation, filtration, adsorption and chemical precipitation. Sediments are trapped in a special chamber within the pit and can be removed easily. Other pollutants are captured in the concrete filter upstream of the sediment separator chamber. Filters can be easily replaced.

  16. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, T.L.

    1998-05-05

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  17. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    1998-01-01

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  18. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2006-02-28

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  19. Quantitative analysis on the urban flood mitigation effect by the extensive green roof system.

    PubMed

    Lee, J Y; Moon, H J; Kim, T I; Kim, H W; Han, M Y

    2013-10-01

    Extensive green-roof systems are expected to have a synergetic effect in mitigating urban runoff, decreasing temperature and supplying water to a building. Mitigation of runoff through rainwater retention requires the effective design of a green-roof catchment. This study identified how to improve building runoff mitigation through quantitative analysis of an extensive green-roof system. Quantitative analysis of green-roof runoff characteristics indicated that the extensive green roof has a high water-retaining capacity response to rainfall of less than 20 mm/h. As the rainfall intensity increased, the water-retaining capacity decreased. The catchment efficiency of an extensive green roof ranged from 0.44 to 0.52, indicating reduced runoff comparing with efficiency of 0.9 for a concrete roof. Therefore, extensive green roofs are an effective storm water best-management practice and the proposed parameters can be applied to an algorithm for rainwater-harvesting tank design. © 2013 Elsevier Ltd. All rights reserved.

  20. Estimation of incident solar radiation on the roof of the cultural and sports university centre of the Foundation University Los Libertadores

    NASA Astrophysics Data System (ADS)

    Jiménez, S. A.; Carrillo, V. M.; Rátiva, L. C.

    2016-02-01

    This document shows the estimate of the total solar irradiance incident for the set of solar collectors to be located on the roof of cultural and sports university centre (CSUC) of the Foundation University Los Libertadores (FULL) in Bogotá, Colombia, and they will be part of the climate control system of the pool built inside. The calculation was based on experimental data of global solar radiation on the horizontal surface on March, July, October, November and December, through the three most commonly models used to determine the total solar radiation on tilted surfaces: isotropic sky, HDKR and Perez. The results show differences of less than 5% between the values calculated by the three models for December, the month with lower irradiance. For this month, reductions up to 15% and 19% were observed in the estimated irradiance, relative to those obtained on a horizontal surface on a surface under ideal orientation and inclination, respectively.

  1. 34. Roof vent detail from roof of Bwing, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Roof vent detail from roof of B-wing, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  2. Building-integrated photovoltaics: A case study

    NASA Astrophysics Data System (ADS)

    Kiss, G.; Kinkead, J.; Raman, M.

    1995-03-01

    In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it's nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. The roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.

  3. Roof Type Selection Based on Patch-Based Classification Using Deep Learning for High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Partovi, T.; Fraundorfer, F.; Azimi, S.; Marmanis, D.; Reinartz, P.

    2017-05-01

    3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2) for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes) extracted from a Digital Surface Model (DSM), the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN) framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  4. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections.

    PubMed

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-08-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Building America Case Study: Project Overcoat: Airtightness Strategies and Impacts for 1-1/2 Story Homes, Minneapolis, Minnesota (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    In this second study on solutions to ice dams in 1-1/2 story homes, five test homes located in both cold and very cold climates were analyzed for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. The reason for choosing this house type was they are very common in our area and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole housemore » (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR Building America industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled us to compare air tightness data from over 220 homes using similar air seal methods.« less

  6. Raising the Roof.

    ERIC Educational Resources Information Center

    Savage, John

    2000-01-01

    Discusses how the use of metal standing-seam roofs can help conserve energy, and with proper maintenance, be long-lasting. An example is given of one high school's replacement of their leaking roof with a metal standing-seam roof. (GR)

  7. Analysis of the Momentum and Pollutant Transport at the Roof Level of 2D Idealized Street Canyons: a Large-Eddy Simulation Solution

    NASA Astrophysics Data System (ADS)

    Cheng, Wai Chi; Liu, Chun-Ho

    2010-05-01

    To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the momentum and pollutant transports at the roof level of the street canyons. Quadrant analyses of the resolved-scale vertical fluxes of momentum and pollutant along the roof level were performed to compare the contributions of different events/scales to the transport processes. The roof of the street canyon is divided into five segments, namely leeward side, upwind shift, center core, downwind shift and windward side in the streamwise direction. Among the four quadrants considered, the sweeps/ejections, which correspond to the downward/upward motions, dominate the momentum/pollutant transfer. The inward/outward interactions play relatively minor roles. While studying the events in detail, the contribution from the sweeps is mainly large-scale fluctuation compared with that of ejections. Moreover, most of the momentum and pollutant transports take place on the windward side. The strong shear at the roof level initiates instability that in turn promotes the increasing turbulent transport from the leeward side to the windward side. At the same time, the roof-level fluctuations grow linearly in the streamwise direction leading to the vigorous turbulent transport and mixing near the windward facade. Budget analyses of the velocity variance, shear stress, pollutant concentration and pollutant flux were also performed. A sharp peak of TKE production is developed at the roof level. Owing to the strong gradient of streamwise velocity, the streamwise velocity fluctuation is promoted first. The TKE is then transferred from the streamwise to the spanwise and vertical velocity fluctuations via the pressure-rate-of-strain tensor. Analogous to the quadrant analyses, the TKE production grows from a sharp peak (~0.1h width, where h is the building height) on the leeward side to a broad one (~0.5h width) on the windward side. This pattern is partly attributed to the growth of the flow instability and the enhanced turbulent processes along the roof of the street canyon in the streamwise direction. The pollutant removal mechanism is clearly illustrated by the budget analysis of the pollutant concentration. The pollutant is carried by the primary recirculation from the ground level to the roof level of the street canyon. The vertical turbulent pollutant flux dominates the pollutant removal in the region right below the roof level (0.8h

  8. Development and Testing of Shingle-type Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1979-01-01

    The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/sq m of exposed module area at 1 kW/sq m insolation and 61 C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of glass. Polyvinyl butyral is used as the laminating adhesive.

  9. Decontamination in a Russian settlement.

    PubMed

    Fogh, C L; Andersson, K G; Barkovsky, A N; Mishine, A S; Ponamarjov, A V; Ramzaev, V P; Roed, J

    1999-04-01

    Decontamination was carried out in an area with three houses in Novo Bobovichi, Bryansk region, Russia, in the autumn of 1995. It was demonstrated that significant reductions in the dose rate both indoor (DRF = 0.34) and outdoor (DRF = 0.20) can be achieved when a controlled cleaning is undertaken. This paper describes the decontamination work carried out and the results obtained. The roofs of the houses were swept and cleaned by special roof cleaning equipment. The soil around the houses was removed by hand while carefully monitoring the ground for residual contamination. By monitoring the decline in the dose rate during the different stages of the work the dose reducing effect of each action has been measured.

  10. Roof Weakening of Hydraulic Fracturing for Control of Hanging Roof in the Face End of High Gassy Coal Longwall Mining: A Case Study

    NASA Astrophysics Data System (ADS)

    Huang, Bingxiang; Wang, Youzhuang

    2016-09-01

    The occurence of hanging roof commonly arises in the face end of longwall coal mining under hard roof conditions. The sudden break and subsequent caving of a hanging roof could result in the extrusion of gas in the gob to the face, causing gas concentrations to rise sharply and to increase to over a safety-limited value. A series of linear fracturing-holes of 32 mm diameter were drilled into the roof of the entries with an anchor rig. According to the theory that the gob should be fully filled with the fragmentized falling roof rock, the drilling depth is determined as being 3 5 times the mining height if the broken expansion coefficient takes an empirical value. Considering the general extension range of cracks and the supporting form of the entryway, the spacing distance between two drilling holes is determined as being 1 2 times the crack's range of extension. Using a mounting pipe, a high pressure resistant sealing device of a small diameter-size was sent to the designated location for the high-pressure hydraulic fracturing of the roof rock. The hydraulic fracturing created the main hydro-fracturing crack and airfoil branch cracks in the interior of the roof-rock, transforming the roof structure and weakening the strength of the roof to form a weak plane which accelerated roof caving, and eventually induced the full caving in of the roof in time with the help of ground pressure. For holes deeper than 4 m, retreating hydraulic fracturing could ensure the uniformity of crack extension. Tested and applied at several mines in Shengdong Mining District, the highest ruptured water pressure was found to be 55 MPa, and the hanging roof at the face end was reduced in length from 12 m to less than 1 2 m. This technology has eliminated the risk of the extrusion of gas which has accumulated in the gob.

  11. Optimizing the position of insulating materials in flat roofs exposed to sunshine to gain minimum heat into buildings under periodic heat transfer conditions.

    PubMed

    Shaik, Saboor; Talanki, Ashok Babu Puttranga Setty

    2016-05-01

    Building roofs are responsible for the huge heat gain in buildings. In the present work, an analysis of the influence of insulation location inside a flat roof exposed directly to the sun's radiation was performed to reduce heat gain in buildings. The unsteady thermal response parameters of the building roof such as admittance, transmittance, decrement factor, and time lags have been investigated by solving a one-dimensional diffusion equation under convective periodic boundary conditions. Theoretical results of four types of walls were compared with the experimental results available in literature. The results reveal that the roof with insulation placed at the outer side and at the center plane of the roof is the most energy efficient from the lower decrement factor point of view and the roof with insulation placed at the center plane and the inner side of the roof is the best from the highest time lag point of view among the seven studied configurations. The composite roof with expanded polystyrene insulation located at the outer side and at the center plane of the roof is found to be the best roof from the lowest decrement factor (0.130) point of view, and the composite roof with resin-bonded mineral wool insulation located at the center plane and at the inner side of the roof is found to be energy efficient from the highest time lag point (9.33 h) of view among the seven configurations with five different insulation materials studied. The optimum fabric energy storage thicknesses of reinforced cement concrete, expanded polystyrene, foam glass, rock wool, rice husk, resin-bonded mineral wool, and cement plaster were computed. From the results, it is concluded that rock wool has the least optimum fabric energy storage thickness (0.114 m) among the seven studied building roof materials.

  12. Impact of green roofs on stormwater quality in a South Australian urban environment.

    PubMed

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-02-01

    Green roofs are an increasingly important component of water sensitive urban design systems and can potentially improve the quality of urban runoff. However, there is evidence that they can occasionally act as a source rather than a sink for pollutants. In this study, the water quality of the outflow from both intensive and extensive green roof systems were studied in the city of Adelaide, South Australia over a period of nine months. The aim was to examine the effects of different green roof configurations on stormwater quality and to compare this with runoff from aluminium and asphalt roofs as control surfaces. The contaminant concentrations in runoff from both intensive and extensive green roofs generally decreased during the study period. A comparison between the two types of green roof showed that except for some events for EC, TDS and chloride, the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive green roof outflows were higher than in the outflows from the extensive green roofs. These concentrations were compared to local, state, national and international water quality guidelines in order to investigate the potential for outflow runoff from green roofs to be reused for potable and non-potable purposes. The study found that green roof outflow can provide an alternative water source for non-potable purposes such as urban landscape irrigation and toilet flushing. © 2013.

  13. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials, and shingles of asbestos, asphalt, wood or other materials) to roofs of buildings or other structures...

  14. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials, and shingles of asbestos, asphalt, wood or other materials) to roofs of buildings or other structures...

  15. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials, and shingles of asbestos, asphalt, wood or other materials) to roofs of buildings or other structures...

  16. GREENROOF RUNOFF WATER QUALITY

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs was compared. Evapotranspiration from planted green roofs and evaporation unplanted media roofs was also compared, and the influence of ...

  17. KSC-04pd1775

    NASA Image and Video Library

    2004-09-10

    KENNEDY SPACE CENTER, FLA. - Members of a hurricane assessment team from Johnson Space Center and Marshall Space Flight Center observe the damage to the roof of the Thermal Protection System (TPS) Facility at KSC after Hurricane Frances hit the east coast of Central Florida and Kennedy Space Center. At left is astronaut Scott Altmann, a member of the team, and at center is Martin Wilson, manager of the TPS operations. The facility, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof. Equipment and materials that survived the storm have been relocated to the RLV hangar near the KSC Shuttle Landing Facility.

  18. Sub-surface structures and collapse mechanisms of summit pit craters

    NASA Astrophysics Data System (ADS)

    Roche, O.; van Wyk de Vries, B.; Druitt, T. H.

    2001-01-01

    Summit pit craters are found in many types of volcanoes and are generally thought to be the product of collapse into an underpressured reservoir caused by magma withdrawal. We investigate the mechanisms and structures associated with summit pit crater formation by scaled analogue experiments and make comparisons with natural examples. Models use a sand plaster mixture as analogue rock over a cylinder of silicone simulating an underpressured magma reservoir. Experiments are carried out using different roof aspect ratios (roof thickness/roof width) of 0.2-2. They reveal two basic collapse mechanisms, dependant on the roof aspect ratio. One occurs at low aspect ratios (≤1), as illustrated by aspect ratios of 0.2 and 1. Outward dipping reverse faults initiated at the silicone margins propagates through the entire roof thickness and cause subsidence of a coherent block. Collapse along the reverse faults is accommodated by marginal flexure of the block and tension fractures at the surface (aspect ratio of 0.2) or by the creation of inward dipping normal faults delimiting a terrace (aspect ratio of 1). At an aspect ratio of 1, overhanging pit walls are the surface expressions of the reverse faults. Experiments at high aspect ratio (>1.2) reveal a second mechanism. In this case, collapse occurs by stopping, which propagates upwards by a complex pattern of both reverse faults and tension fractures. The initial underground collapse is restricted to a zone above the reservoir and creates a cavity with a stable roof above it. An intermediate mechanism occurs at aspect ratios of 1.1-1.2. In this case, stopping leads to the formation of a cavity with a thin and unstable roof, which collapses suddenly. The newly formed depression then exhibits overhanging walls. Surface morphology and structure of natural examples, such as the summit pit craters at Masaya Volcano, Nicaragua, have many of the features created in the models, indicating that the internal structural geometry of experiments can be applied to real examples. In particular, the surface area and depth of the underpressured reservoir can be roughly estimated. We present a morphological analysis of summit pit craters at volcanoes such as Kilimanjaro (Tanzania), San Cristobal, Telica and Masaya (Nicaragua), and Ubinas (Peru), and indicate a likely type of subsidence and possible position of the former magma reservoir responsible for collapse in each case.

  19. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Lstiburek, J. W.

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design.« less

  20. Building-integrated photovoltaics: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, G.; Kinkead, J.; Raman, M.

    1995-03-01

    In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it`s nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. Themore » roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.« less

  1. 'Passive-roof' duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan

    NASA Astrophysics Data System (ADS)

    Banks, C. J.; Warburton, J.

    Exploration for hydrocarbons over the past few years has greatly improved our understanding of the geometry of frontal mountain belt structures. In this study we introduce and discuss the concept of the 'Passive-roof duplex', using as the main example the Kirthar and Sulaiman Ranges in the Baluchistan Province of Pakistan. Structures similar to those described here have been recognized previously in other mountain belts, and they appear to exist as a common feature in many more frontal regions of mountain belts. Our example of a Passive-roof duplex which we describe from Pakistan is compared briefly with similar structures reported by others. The Passive-roof duplex is here defined as a duplex whose roof thrust has backthrust sense ( Passive-roof thrust) and whose roof sequence (those rocks lying above the roof thrust) remains relatively 'stationary' during foreland directed piggy-back style propagation of horses within the duplex.

  2. The Equivalent Thermal Resistance of Tile Roofs with and without Batten Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William A

    Clay and concrete tile roofs were installed on a fully instrumented attic test facility operating in East Tennessee s climate. Roof, attic and deck temperatures and heat flows were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventionally pigmented and direct-nailed asphalt shingle roof. The data were used to benchmark a computer tool for simulation of roofs and attics and the tool used to develop an approach for computing an equivalent seasonal R-value for sub-tile venting. The approach computed equal heat fluxes through the ceilings of roofs having different combinations ofmore » surface radiation properties and or building constructions. A direct nailed shingle roof served as a control for estimating the equivalent thermal resistance of the air space. Simulations were benchmarked to data in the ASHRAE Fundamentals for the thermal resistance of inclined and closed air spaces.« less

  3. Green Infrastructure and Watershed-Scale Hydrology in Mixed Land Cover System

    EPA Science Inventory

    Urbanization results in replacement of pervious areas (e.g., vegetation, topsoil) with impervious surfaces such as roads, roofs, and parking lots, which cause reductions in interception, evapotranspiration, and infiltration, and increases in surface runoff (overland flow) and pol...

  4. Monitoring the lake area changes of the Qinghai-Tibet Plateau using coarse-resolution time series remote sensing data

    NASA Astrophysics Data System (ADS)

    Ma, M.

    2015-12-01

    The Qinghai-Tibet Plateau (QTP) is the world's highest and largest plateau and is occasionally referred to as "the roof of the world". As the important "water tower", there are 1,091 lakes of more than 1.0 km2 in the QTP areas, which account for 49.4% of the total area of lakes in China. Some studies focus on the lake area changes of the QTP areas, which mainly use the middle-resolution remote sensing data (e.g. Landsat TM). In this study, the coarse-resolution time series remote sensing data, MODIS data at a spatial resolution of 250m, was used to monitor the lake area changes of the QTP areas during the last 15 years. The dataset is the MOD13Q1 and the Normal Difference Vegetation Index (NDVI) is used to identify the lake area when the NDVI is less than 0. The results show the obvious inner-annual changes of most of the lakes. Therefore the annually average and maximum lake areas are calculated based on the time series remote data, which can better quantify the change characteristics than the single scene of image data from the middle-resolution data. The results indicate that there are big spatial variances of the lake area changes in the QTB. The natural driving factors are analyzed for revealing the causes of changes.

  5. [Analysis of the distribution of VOCs concentration field with oil static breathing loss in internal floating roof tank].

    PubMed

    Wu, Hong-Zhang; Huang, Wei-Qiu; Yang, Guang; Zhao, Chen-Lu; Wang, Ying-Xia; Cai, Dao-Fei

    2013-12-01

    Internal floating roof tank has the advantages of external floating roof tank and fixed roof tank and has its own evaporation loss properties. The influences of volatile organic compounds (VOCs) distribution gradient, molecular diffusion, thermal diffusion and forced convection on the evaporation loss of oil were studied in the space of the homemade platform of an internal floating roof tank. The results showed that thermal diffusion with temperature change was the main cause for the static loss in the internal floating roof tank. On this basis, there were some measures for reduction of the evaporation loss and formulas to calculate the evaporation loss of the internal floating roof tank in this research.

  6. Selecting a Roof Membrane.

    ERIC Educational Resources Information Center

    Waldron, Larry W.

    1990-01-01

    Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)

  7. 40 CFR 427.60 - Applicability; description of the asbestos roofing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos roofing subcategory. 427.60 Section 427.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.60 Applicability; description of the asbestos roofing subcategory. The...

  8. 40 CFR 427.60 - Applicability; description of the asbestos roofing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos roofing subcategory. 427.60 Section 427.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.60 Applicability; description of the asbestos roofing...

  9. 40 CFR 427.60 - Applicability; description of the asbestos roofing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos roofing subcategory. 427.60 Section 427.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.60 Applicability; description of the asbestos roofing...

  10. 40 CFR 427.60 - Applicability; description of the asbestos roofing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos roofing subcategory. 427.60 Section 427.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.60 Applicability; description of the asbestos roofing subcategory. The...

  11. 40 CFR 427.60 - Applicability; description of the asbestos roofing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos roofing subcategory. 427.60 Section 427.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Roofing Subcategory § 427.60 Applicability; description of the asbestos roofing...

  12. Up on the Roof: A Systematic Approach to Roof Maintenance.

    ERIC Educational Resources Information Center

    Burd, William

    1979-01-01

    A systematic roof maintenance program is characterized by carefully prepared long- and short-range plans. An essential feature of a systematic approach to roof maintenance is the stress on preventive measures rather than the patching of leaks. (Author)

  13. Summer Roof Maintenance.

    ERIC Educational Resources Information Center

    Liscum, Curtis L.

    1999-01-01

    Presents the items to review in roofing maintenance to prepare for the impact of summer, including checking drainage, roof-field surface and membrane, flashings, sheet metal, and rooftop equipment, such as skylights and penthouses. A list of roofing facts facility managers should know are highlighted. (GR)

  14. Roof System EPDM Shrinkage.

    ERIC Educational Resources Information Center

    Betker, Edward

    1998-01-01

    Looks at Ethylene Propylene Diene Terpolymer rubber roof membranes and the potential problems associated with this material's shrinkage. Discusses how long such a roof should perform and issues affecting repair or replacement. Recommends that a building's function be considered in any roofing decision. (RJM)

  15. 75 FR 28316 - Notice of Buy America Waiver Request by Oregon Department of Transportation for Steel Roof Tiles...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... by Oregon Department of Transportation for Steel Roof Tiles To Be Used in Union Station Roof... (``PRIIA'') (49 U.S.C. 24405(a)) for the purchase of metal roof tiles made of 40/45 KSI 2, 24 Gauge (0.0276... Register. This notice informs the public that ODOT has requested a Buy America waiver for the roofing tiles...

  16. The “shape” and “meaning” of the roof arts in Chinese classical architecture

    NASA Astrophysics Data System (ADS)

    Li, Xianda; liu, Yu

    2017-04-01

    This paper takes the “roof” in Chinese classical architecture as the research object. The breakthrough point of this paper would be the perspective of design aesthetics. Through the rational and perceptual analysis of the roof art, this paper would reveal that the roof shape has the double artistic features: “beauty of shape” and “beauty of idea”. This paper would have a comprehensive analysis for the following aspects: the rational method of roof construction, the emotional feeling of the roof construction and the implied meaning of beauty in the roof construction.

  17. High-Tech Roof Management.

    ERIC Educational Resources Information Center

    Benzie, Tim

    1997-01-01

    Describes the use of a computerized roof management system (CRMS) for school districts to foster multiple roof maintenance efficiency and cost effectiveness. Highlights CRMS software manufacturer choices, as well as the types of nondestructive testing equipment tools that can be used to evaluate roof conditions. (GR)

  18. Heavy Metal.

    ERIC Educational Resources Information Center

    Shoemaker, W. Lee

    1998-01-01

    Discusses the advantages, both functional and economic, of using a standing-seam metal roof in both new roof installations and reroofing projects of educational facilities. Structural versus non-structural standing-seam roofs are described as are the types of insulation that can be added and roof finishes used. (GR)

  19. EPA's Green Roof Research

    EPA Science Inventory

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  20. Roof structural system, similar in design to peaked roofs of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof structural system, similar in design to peaked roofs of rolling mill, yet note abandonment of phoenix columns for compression members. - Phoenix Iron Company, Girder Shop No. 6, North of French Creek, west of Gay Street, Phoenixville, Chester County, PA

  1. 40 CFR 63.11562 - What are my initial compliance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Standards and Compliance Requirements § 63.11562 What are my initial compliance requirements? (a) For asphalt processing operations, you must: (1) Demonstrate initial...

  2. 40 CFR 63.11562 - What are my initial compliance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Standards and Compliance Requirements § 63.11562 What are my initial compliance requirements? (a) For asphalt processing operations, you must: (1) Demonstrate initial...

  3. 40 CFR 63.11562 - What are my initial compliance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Standards and Compliance Requirements § 63.11562 What are my initial compliance requirements? (a) For asphalt processing operations, you must: (1) Demonstrate initial...

  4. 40 CFR 63.11562 - What are my initial compliance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Standards and Compliance Requirements § 63.11562 What are my initial compliance requirements? (a) For asphalt processing operations, you must: (1) Demonstrate initial...

  5. 40 CFR 63.11562 - What are my initial compliance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Standards and Compliance Requirements § 63.11562 What are my initial compliance requirements? (a) For asphalt processing operations, you must: (1) Demonstrate initial...

  6. How To Renovate for Sustainability.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2003-01-01

    Suggests ways to renovate buildings with sustainability in mind, with specific tips in the areas of: (1) lights; energy management; (3) walls and roofs; (4) water; and (5) aesthetics. No one thing will make a building sustainable; it is the aggregate that makes it effective. (SLD)

  7. ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. 2. EXTERIOR VIEW TO THE SOUTH OF THE PIPING ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW TO THE SOUTH OF THE PIPING ON THE ROOF OF AND NEXT TO THE BUILDING. - Nevada Test Site, Test Cell A Facility, Test Cell A Building & Addition, Area 25, Jackass Flats, Road F, Mercury, Nye County, NV

  9. The Collection of Urban Micrometeorites — Not an Urban Myth

    NASA Astrophysics Data System (ADS)

    Larsen, J.; Genge, M. J.

    2016-08-01

    We report the discovery of >500 micrometeorites (150-600 µm in size) collected from roofs in urban areas in Europe. They are shown to consist of S-type cosmic spherules on the basis of their textures, mineralogies and bulk compositions.

  10. Advantages of a Vertical High-Resolution Distributed-Temperature-Sensing System Used to Evaluate the Thermal Behavior of Green Roofs

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Suarez, F. I.; Cousiño, J. A.; Victorero, F.; Bonilla, C. A.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Leiva, E.; Pasten, P.

    2015-12-01

    Technological innovations used for sustainable urban development, green roofs offer a range of benefits, including reduced heat island effect, rooftop runoff, roof surface temperatures, energy consumption, and noise levels inside buildings, as well as increased urban biodiversity. Green roofs feature layered construction, with the most important layers being the vegetation and the substrate layers located above the traditional roof. These layers provide both insulation and warm season cooling by latent heat flux, reducing the thermal load to the building. To understand and improve the processes driving this thermal energy reduction, it is important to observe the thermal dynamics of a green roof at the appropriate spatial and temporal scales. Traditionally, to observe the thermal behavior of green roofs, a series of thermocouples have been installed at discrete depths within the layers of the roof. Here, we present a vertical high-resolution distributed-temperature-sensing (DTS) system installed in different green roof modules of the Laboratory of Vegetated Infrastructure for Buildings (LIVE -its acronym in Spanish) of the Pontifical Catholic University of Chile. This DTS system allows near-continuous measurement of the thermal profile at spatial and temporal resolutions of approximately 1 cm and 30 s, respectively. In this investigation, the temperature observations from the DTS system are compared with the measurements of a series of thermocouples installed in the green roofs. This comparison makes it possible to assess the value of thermal observations at better spatial and temporal resolutions. We show that the errors associated with lower resolution observations (i.e., from the thermocouples) are propagated in the calculations of the heat fluxes through the different layers of the green roof. Our results highlight the value of having a vertical high-resolution DTS system to observe the thermal dynamics in green roofs.

  11. Coronary Sinus Activation and ECG Characteristics of Roof-Dependent Left Atrial Flutter After Pulmonary Vein Isolation.

    PubMed

    Casado Arroyo, Ruben; Laţcu, Decebal Gabriel; Maeda, Shingo; Kubala, Maciej; Santangeli, Pasquale; Garcia, Fermin Carlos; Enache, Bogdan; Eljamili, Mohammed; Hayashi, Tatsuya; Zado, Erica S; Saoudi, Nadir; Marchlinski, Francis E

    2018-06-01

    The electrocardiographic and intracardiac activation features of left atrial roof-dependent macroreentrant flutter have been incompletely characterized. Patients post-pulmonary vein (PV) isolation with roof-dependent atrial flutter based on activation and entrainment mapping were included. ECG and coronary sinus activation were compared with mitral annular (MA) flutter. The roof-dependent left atrial flutter circled the right PVs in 32 of 33 cases. Two forms of roof flutters were identified, posteroanterior, ascendant on posterior wall and descendant on anterior wall (n=24); and anteroposterior, ascendant on the anterior wall and descendent on the posterior wall (n=9). Both forms had positive large amplitude P waves in V 1 through V 2 with decreasing amplitude in V 3 through V 6 . Posteroanterior roof flutters had positive P wave in the inferior and negative P wave in leads I and aVL similar to counterclockwise MA flutter, but coronary sinus activation was simultaneous for roof and proximal to distal for counterclockwise. Anteroposterior roof flutters were similar to clockwise MA flutter with negative P in inferior leads and transition to flat or negative P in V 3 through V 6 . Coronary sinus activation time ≤39 ms identified roof versus MA flutter (sensitivity: 100% and specificity: 97%). Roof-dependent flutter around right PVs is more common than around left PVs. The ECG pattern for roof-dependent flutter around right PVs is similar to MA flutter with frontal plane axis dictated by septal activation. Roof-dependent flutter can be distinguished from MA flutter by more simultaneous rather than sequential coronary sinus activation. © 2018 American Heart Association, Inc.

  12. Green roof seasonal variation: comparison of the hydrologic behavior of a thick and a thin extensive system in New York City

    NASA Astrophysics Data System (ADS)

    Elliott, R. M.; Gibson, R. A.; Carson, T. B.; Marasco, D. E.; Culligan, P. J.; McGillis, W. R.

    2016-07-01

    Green roofs have been utilized for urban stormwater management due to their ability to capture rainwater locally. Studies of the most common type, extensive green roofs, have demonstrated that green roofs can retain significant amounts of stormwater, but have also shown variation in seasonal performance. The purpose of this study is to determine how time of year impacts the hydrologic performance of extensive green roofs considering the covariates of antecedent dry weather period (ADWP), potential evapotranspiration (ET0) and storm event size. To do this, nearly four years of monitoring data from two full-scale extensive green roofs (with differing substrate depths of 100 mm and 31 mm) are analyzed. The annual performance is then modeled using a common empirical relationship between rainfall and green roof runoff, with the addition of Julian day in one approach, ET0 in another, and both ADWP and ET0 in a third approach. Together the monitoring and modeling results confirm that stormwater retention is highest in warmer months, the green roofs retain more rainfall with longer ADWPs, and the seasonal variations in behavior are more pronounced for the roof with the thinner media than the roof with the deeper media. Overall, the ability of seasonal accounting to improve stormwater retention modeling is demonstrated; modification of the empirical model to include ADWP, and ET0 improves the model R 2 from 0.944 to 0.975 for the thinner roof, and from 0.866 to 0.870 for the deeper roof. Furthermore, estimating the runoff with the empirical approach was shown to be more accurate then using a water balance model, with model R 2 of 0.944 and 0.866 compared to 0.975 and 0.866 for the thinner and deeper roof, respectively. This finding is attributed to the difficulty of accurately parameterizing the water balance model.

  13. Establishment and performance of an experimental green roof under extreme climatic conditions.

    PubMed

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating that higher evapotranspiration rates compensated for the higher net radiation at the green roof. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to discharges...

  15. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to discharges...

  16. Evaluation of Green Roof Plants and Materials for Semi-Arid Climates

    EPA Science Inventory

    Abstract While green roof systems have proven to be highly effective in the evaporative cooling of buildings, reduction of roof top temperatures, protection of roof membranes from solar radiation degradation, reducing stormwater runoff, as well as beautification of the urban roo...

  17. Leaky Roof? Tight Budget? No Problem!

    ERIC Educational Resources Information Center

    Szcygiel, Tony L.

    1998-01-01

    Examines the piece-by-piece approach to school re-roofing that can help alleviate both maintenance and budget concerns. Addresses the question of whether an entire new roof is required and discusses funding and why a single-ply roof is a good choice for partial replacement. (GR)

  18. Roofing: Don't Let What's Over Head Kill Your Bottom Line.

    ERIC Educational Resources Information Center

    Shannon, James W., Jr.

    1983-01-01

    A Colorado school district employs a professional consulting firm to give an unbiased opinion on the district's roofing needs. Built-up, single-ply, and modified asphalt roofing systems have all been utilized. Preventive maintenance keeps roofing bills to a minimum. (MLF)

  19. Development of the trickle roof cooling and heating system: Experimental plan

    NASA Astrophysics Data System (ADS)

    Haves, P.; Jankovic, T.; Doderer, E.

    1982-07-01

    A passive system applicable both to retrofit and new construction was developed. This system (the trickle roof system) dissipates heat from a thin film of water flowing over the roof. A small scale trickle roof system dissipator was tested at Trinity University under a range of ambient conditions and operating configurations. The results suggest that trickle roof systems should have comparable performance to roof pond systems. Provided is a review of the trickle roof system concept, several possible configurations, and the benefits the systems can provide. Test module experiments And results are presented in detail. The requirements for full scale testing are discussed and a plan is outlined using the two identical residential scale passive test facility buildings at Trinity University, San Antonio, Texas. Full scale experimental results would be used to validate computer algorithms, provide system optimization, and produce a nationwide performance assessment and design guidelines. This would provide industry with the information necessary to determine the commerical potential of the trickle roof system.

  20. Comparative life cycle assessment of standard and green roofs.

    PubMed

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

Top