NASA Astrophysics Data System (ADS)
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; Yin, Yunhe; Kumar, Jitendra; Ma, Chun; Xu, Xiaofeng
2017-09-01
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. We compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less
Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; ...
2017-09-09
Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less
Aulen, Maurice; Shipley, Bill; Bradley, Robert
2012-01-01
Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237
First Assessment of Carbon Stock in the Belowground Biomass of Brazilian Mangroves.
Santos, Daniel M C; Estrada, Gustavo C D; Fernandez, Viviane; Estevam, Marciel R M; Souza, Brunna T DE; Soares, Mário L G
2017-01-01
Studies on belowground roots biomass have increasingly reported the importance of the contribution of this compartment in carbon stock maintenance in mangrove forests. To date, there are no estimates of this contribution in Brazilian mangrove forests, although the country has the second largest area of mangroves worldwide. For this study, trenches dug in fringing forests in Guaratiba State Biological Reserve (Rio de Janeiro, Brazil) were used to evaluate the contribution of the different classes of roots and the vertical stratification of carbon stock. The total carbon stock average in belowground roots biomass in these forests was 104.41 ± 20.73 tC.ha-1. From that, an average of 84.13 ± 21.34 tC.ha-1 corresponded to the carbon stock only in fine roots, which have diameters smaller than 5 mm and are responsible for over 80% of the total belowground biomass. Most of the belowground carbon stock is concentrated in the first 40 cm below the surface (about 70%). The root:shoot ratio in this study is 1.14. These estimates demonstrate that the belowground roots biomass significantly contributes, more than 50%, to the carbon stock in mangrove forests. And the mangrove root biomass can be greater than that of other Brazilian ecosystems.
USDA-ARS?s Scientific Manuscript database
Information is scanty about root and soil C and N under bioenergy perennial grasses with various N fertilization rates in semiarid regions. We evaluated the effect of perennial grasses and N rates on root biomass C and N and soil total C (STC) and total N (STN) stocks at the 0-120 cm depth from 2011...
Complexation of lead by Bermuda grass root exudates in aqueous media.
Thomas, Catherine; Butler, Afrachanna; Larson, Steven; Medina, Victor; Begonia, Maria
2014-01-01
Exudates produced from Bermuda grass roots were collected in deionized water from sterilized Bermuda grass sod at 3-day intervals over a period of 15 days. Exudates were analyzed for total organic carbon, and characterized via Fourier Transform Infrared Spectroscopy. Exudate samples were adjusted to pH values of 4.5, 6.5, and 7.5, amended with lead and quantified for soluble and complexed lead via Inductively Coupled Plasma--Optical Emission Spectrometry. Data obtained from total organic carbon measurements indicated compositional changes in Bermuda grass root exudates as organic carbon concentrations increased over time. Analysis of the infrared spectroscopy data indicated that carboxylic acids and amine functional groups were present in root exudates. Also, the ability of root-exuded compounds to solubilize lead in aqueous media was demonstrated as exudate samples dissolved an average of 60% more lead than deionized water. At pH values 4.5 and 7.5, lead complexation by Bermuda grass root exudates increased with decreasing molecular weight size fractions, while an opposite trend was observed at pH 6.5. Results from this study demonstrated the ability of Bermuda grass root exudates to complex lead in aqueous media.
Kant, Pratap C B; Bhadraray, Subhendu; Purakayastha, T J; Jain, Vanita; Pal, Madan; Datta, S C
2007-05-01
Study on active and labile carbon-pools can serve as a clue for soil organic carbon dynamics on exposure to elevated level of CO2. Therefore, an experimental study was conducted in a Typic Haplustept in sub-tropical semi-arid India with wheat grown in open top chambers at ambient (370 micromol mol-1) and elevated (600 micromol mol-1) concentrations of atmospheric CO2. Elevated atmospheric CO2 caused increase in yield and carbon uptake by all plant parts, and their preferential partitioning to root. Increases in fresh root weight, volume and length have also been observed. Relative contribution of medium-sized root to total root length increased at the expense of very fine roots at elevated CO2 level. All active carbon-fractions gained due to elevated atmospheric CO2 concentration, and the order followed their relative labilities. All the C-pools have recorded a significant increase over initial status, and are expected to impart short-to-medium-term effect on soil carbon sequestration.
Jing, Da-Wei; Liu, Fang-Chun; Wang, Ming-You; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao; Dong, Yu-Feng
2017-01-01
This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. 'Neva') trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil.
Jing, Da-Wei; Liu, Fang-Chun; Wang, Ming-You; Ma, Hai-Lin; Du, Zhen-Yu; Ma, Bing-Yao; Dong, Yu-Feng
2017-01-01
This study aimed to determine the effects of root pruning on the physicochemical characteristics and microbial activities of poplar rhizosphere soil. The root systems of 5-year-old poplar (Populus×euramericana cv. ‘Neva’) trees were manually pruned at 6, 8, or 10 times diameter at breast height (DBH) from the trunk (severe, moderate, and light, respectively) along both inter-row sides. Moderate root pruning significantly increased the concentrations of amino acids, organic acids, and total sugars in the root exudates and decreased the pH of rhizosphere soil. This treatment also increased the contents of available nitrogen, phosphorus, potassium, and total organic carbon as well as high-, medium-, and low-activity organic carbon in rhizosphere soil. Moreover, moderate pruning increased the contents of microbial biomass carbon and nitrogen, and enhanced basal respiration, in addition to decreasing the metabolic quotients in rhizosphere soil by 8.9%, 5.0%, and 11.4% compared with control, light, and severe root pruning treatments, respectively. Moderate pruning increased the growth rates of DBH, tree height, and volume to the highest levels. Furthermore, these indices were not significantly different between the light root pruning and control groups, but varied significantly between severe and moderate root-pruning treatments. Thus, root pruning, depending on the distance from the trunk, significantly influences the physicochemical properties and microbial activities in poplar rhizosphere soil. PMID:29117215
Christian P. Giardina; Michael G. Ryan
2002-01-01
Trees allocate a large portion of gross primary production belowground for the production and maintenance of roots and mycorrhizae. The difficulty of directly measuring total belowground carbon allocation (TBCA) has limited our understanding of belowground carbon (C) cycling and the factors that control this important flux. We measured TBCA over 4 years using a...
Yu, Peng; Li, Xuexian; Yuan, Lixing; Li, Chunjian
2014-01-01
Approximately 35-55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate-rich and nitrate-poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g(-1)) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate-rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate-rich and nitrate-poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply. © 2013 Scandinavian Plant Physiology Society.
Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter.
Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen
2017-01-01
Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial "DOK." We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0-0.25, 0.25-0.5, 0.5-0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations of the climate change mitigation potential of soils.
2017-01-01
The potential benefits of planting trees have generated significant interest with respect to sequestering carbon and restoring other forest based ecosystem services. Reliable estimates of carbon stocks are pivotal for understanding the global carbon balance and for promoting initiatives to mitigate CO2 emissions through forest management. There are numerous studies employing allometric regression models that convert inventory into aboveground biomass (AGB) and carbon (C). Yet the majority of allometric regression models do not consider the root system nor do these equations provide detail on the architecture and shape of different species. The root system is a vital piece toward understanding the hidden form and function roots play in carbon accumulation, nutrient and plant water uptake, and groundwater infiltration. Work that estimates C in forests as well as models that are used to better understand the hydrologic function of trees need better characterization of tree roots. We harvested 40 trees of six different species, including their roots down to 2 mm in diameter and created species-specific and multi-species models to calculate aboveground (AGB), coarse root belowground biomass (BGB), and total biomass (TB). We also explore the relationship between crown structure and root structure. We found that BGB contributes ~27.6% of a tree’s TB, lateral roots extend over 1.25 times the distance of crown extent, root allocation patterns varied among species, and that AGB is a strong predictor of TB. These findings highlight the potential importance of including the root system in C estimates and lend important insights into the function roots play in water cycling. PMID:29023553
Bhattacharyya, P; Roy, K S; Neogi, S; Manna, M C; Adhya, T K; Rao, K S; Nayak, A K
2013-10-01
Changes in the soil labile carbon fractions and soil biochemical properties to elevated carbon dioxide (CO2) and temperature reflect the changes in the functional capacity of soil ecosystems. The belowground root system and root-derived carbon products are the key factors for the rhizospheric carbon dynamics under elevated CO2 condition. However, the relationship between interactive effects of elevated CO2 and temperature on belowground soil carbon accrual is not very clear. To address this issue, a field experiment was laid out to study the changes of carbon allocation in tropical rice soil (Aeric Endoaquept) under elevated CO2 and elevated CO2 + elevated temperature conditions in open top chambers (OTCs). There were significant increase of root biomass by 39 and 44 % under elevated CO2 and elevated CO2 + temperature compared to ambient condition, respectively. A significant increase (55 %) of total organic carbon in the root exudates under elevated CO2 + temperature was noticed. Carbon dioxide enrichment associated with elevated temperature significantly increased soil labile carbon, microbial biomass carbon, and activities of carbon-transforming enzyme like β-glucosidase. Highly significant correlations were noticed among the different soil enzymes and soil labile carbon fractions.
Potential Carbon Negative Commercial Aviation through Land Management
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
2008-01-01
Brazilian terra preta soil and char-enhanced soil agricultural systems have demonstrated both enhanced plant biomass and crop yield and functions as a carbon sink. Similar carbon sinking has been demonstrated for both glycophyte and halophyte plants and plant roots. Within the assumption of 3.7 t-C/ha/yr soils and plant root carbon sinking, it is possible to provide carbon neutral U.S. commercial aviation using about 8.5% of U.S. arable lands. The total airline CO2 release would be offset by carbon credits for properly managed soils and plant rooting, becoming carbon neutral for carbon sequestered synjet processing. If these lands were also used to produce biomass fuel crops such as soybeans at an increased yield of 60 bu/acre (225gal/ha), they would provide over 3.15 10(exp 9) gallons biodiesel fuel. If all this fuel were refined into biojet it would provide a 16% biojet-84% synjet blend. This allows the U.S. aviation industry to become carbon negative (carbon negative commercial aviation through carbon credits). Arid land recovery could yield even greater benefits.
Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter
Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen
2017-01-01
Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial “DOK.” We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0–0.25, 0.25–0.5, 0.5–0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations of the climate change mitigation potential of soils. PMID:28298919
Rentz, Jeremy A; Alvarez, Pedro J J; Schnoor, Jerald L
2004-06-01
The phenanthrene-degrading activity (PDA) of Pseudomonas putida ATCC 17484 was repressed after incubation with plant root extracts of oat (Avena sativa), osage orange (Maclura pomifera), hybrid willow (Salix alba x matsudana), kou (Cordia subcordata) and milo (Thespesia populnea) and plant root exudates of oat (Avena sativa) and hybrid poplar (Populus deltoides x nigra DN34). Total organic carbon content of root extracts ranged from 103 to 395 mg l(-1). Characterization of root extracts identified acetate (not detectable to 8.0 mg l(-1)), amino acids (1.7-17.3 mg l(-1)) and glucose (1.6-14.0 mg l(-1)), indicating a complex mixture of substrates. Repression was also observed after exposure to potential root-derived substrates, including organic acids, glucose (carbohydrate) and glutamate (amino acid). Carbon source regulation (e.g. catabolite repression) was apparently responsible for the observed repression of P. putida PDA by root extracts. However, we showed that P. putida grows on root extracts and exudates as sole carbon and energy sources. Enhanced growth on root products may compensate for partial repression, because larger microbial populations are conducive to faster degradation rates. This would explain the commonly reported increase in phenanthrene removal in the rhizosphere.
Pandey, Renu; Meena, Surendra Kumar; Krishnapriya, Vengavasi; Ahmad, Altaf; Kishora, Naval
2014-06-01
Genetic variability in carboxylate exudation capacity along with improved root traits was a key mechanism for P-efficient green gram genotype to cope with P-stress but it did not increase grain yield. This study evaluates genotypic variability in green gram for total root carbon exudation under low phosphorus (P) using (14)C and its relationship with root exuded carboxylates, growth and yield potential in contrasting genotypes. Forty-four genotypes grown hydroponically with low (2 μM) and sufficient (100 μM) P concentrations were exposed to (14)CO2 to screen for total root carbon exudation. Contrasting genotypes were employed to study carboxylate exudation and their performance in soil at two P levels. Based on relative (14)C exudation and biomass, genotypes were categorized. Carboxylic acids were measured in exudates and root apices of contrasting genotypes belonging to efficient and inefficient categories. Oxalic and citric acids were released into the medium under low-P. PDM-139 (efficient) was highly efficient in carboxylate exudation as compared to ML-818 (inefficient). In low soil P, the reduction in biomass was higher in ML-818 as compared to PDM-139. Total leaf area and photosynthetic rate averaged for genotypes increased by 71 and 41 %, respectively, with P fertilization. Significantly, higher root surface area and volume were observed in PDM-139 under low soil P. Though the grain yield was higher in ML-818, the total plant biomass was significantly higher in PDM-139 indicating improved P uptake and its efficient translation into biomass. The higher carboxylate exudation capacity and improved root traits in the later genotype might be the possible adaptive mechanisms to cope with P-stress. However, it is not necessary that higher root exudation would result in higher grain yield.
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.
Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek
2014-09-23
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots
Reich, Peter B.; Luo, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek
2014-01-01
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics. PMID:25225412
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots
Reich, Peter B.; Lou, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek
2014-01-01
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.
Modeling in-situ pine root decomposition using data from a 60-year chronosequence
Kim H. Ludovici; Stanley J. Zarnoch; Daniel D. Richter
2002-01-01
Because the root system of a mature pine tree typically accounts for 20-30% of the total tree biomass, decomposition of large lateral roots and taproots following forest harvest and re-establishment potentially impact nutrient supply and carbon sequestration in pine systems over several decades. If the relationship between stump diameter and decomposition of...
Using Mass Spectroscopy to Examine Wetland Carbon Flow from Plants to Methane
NASA Astrophysics Data System (ADS)
Waldo, N.; Tfaily, M. M.; Moran, J.; Hu, D.; Cliff, J. B.; Gough, H. L.; Chistoserdova, L.; Beck, D.; Neumann, R. B.
2017-12-01
In the anoxic soil of wetlands, microbes produce methane (CH4), a greenhouse gas. Prior studies have documented an increase in CH4 emissions as plant productivity increases, likely due to plants releasing more labile organic carbon from roots. But in the field, it is difficult to separate changes in plant productivity and root carbon exudation from other seasonal changes that can affect methane emissions, e.g. temperature. Clarifying the role that root exudation plays in fueling methane production is important because increasing atmospheric temperatures and CO2 levels are projected to increase plant productivity and exudation. To advance understanding of climate-methane feedbacks, this study tracked the flow of carbon from plants into the wetland rhizosphere as plant productivity increased in controlled laboratory conditions. We grew Carex aquatilis, a wetland sedge, in peat-filled rootboxes. Both early and late during the plant growth cycle, we exposed plants to headspace 13CO2, which the plants fixed. Some of this labeled carbon was exuded by the roots and used by rhizosphere microbes. We tracked the isotope ratio of emitted CH4 to establish the time required for plant-released carbon to fuel methanogenesis, and to determine the relative contribution of plant-derived carbon to total CH4 emission. We destructively harvested root and rhizosphere samples from various locations that we characterized by isotope ratio mass spectrometry (MS) to determine isotopic enrichment and therefore relative abundance of root exudates. We analyzed additional aliquots of rhizosphere soil by Fourier transform ion cyclotron resonance MS to track chemical changes in soil carbon as root exudates were converted into methane. To advance mechanistic understanding of the synergistic and competitive microbial interactions that affect methane dynamics in the wetland rhizosphere, we used fluorescence in-situ hybridization to visualize microbial community composition and spatial associations, and nanoscale secondary ion MS to measure isotopic enrichment of visualized microbes. Collectively, these data will elucidate how root-induced chemical changes in the soil impact microbial generation of CH4.
NASA Astrophysics Data System (ADS)
Wegener, Frederik; Beyschlag, Wolfram; Werner, Christiane
2014-05-01
Carbon allocation strategies differ clearly between functional plant groups (e.g. grasses, shrubs and trees) and to a lesser extent between different species of the same functional group. However, little is known about the plasticity of carbon allocation within the same species. To investigate the variability of carbon (C) allocation, we induced different allocation pattern in the Mediterranean shrub Halimium halimifolium by changing growing conditions (light and nutrition) and followed the plant development for 15 months. We analyzed morphological and physiological traits, and changes in C allocation and δ13C values in seven tissue classes: 1st generation leaves, 2nd generation leaves, emerging leaves, lateral shoots, stem, main roots and fine roots. We used a soil/canopy chamber system that enables independent measurements of above and belowground δ13CO2-exchange, enabling total estimates of carbon gain during photosynthesis and the carbon loss during respiration on a whole plant level. Moreover, we followed the fate of recently assimilated carbon in all plant tissues by 13CO2 pulse labeling for 13 days. A reduction of light (Low L treatment) increased allocation to stems by 84% and the specific leaf area (SLA) by 29%, compared to control. Reduced nutrient availability (Low N treatment) enhanced carbon allocation into fine roots by 57%. We found high intraspecific variability in turnover times of C pools. The Low N treatment enhanced transport of recently assimilated C from leaves to roots in quantity (22% compared to 7% in control plants) and velocity (13C peak in main roots after 5h compared to 18h in control). The treatments differed also in fractions of 13C recovered within leaves: 48%, 28% and 41% of 13C from labeling were found after 13 days in leaves of control, Low N, and Low L, respectively. Through the combination of natural carbon isotope analysis, 13CO2 labeling and whole-plant chamber measurements we obtained information about long and short-term C allocation to different tissues and respiration. The results give valuable new information to understand the total plant C balance and to characterize its intraspecific variability due to environmental factors.
BOREAS TE-19 Ecosystem Carbon Balance Model
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Frolking, Steve
2000-01-01
The BOREAS TE-19 team developed a model called the Spruce and Moss Model (SPAM) designed to simulate the daily carbon balance of a black spruce/moss boreal forest ecosystem. It is driven by daily weather conditions, and consists of four components: (1) soil climate, (2) tree photosynthesis and respiration, (3) moss photosynthesis and respiration, and (4) litter decomposition and associated heterotrophic respiration. The model simulates tree gross and net photosynthesis, wood respiration, live root respiration, moss gross and net photosynthesis, and heterotrophic respiration (decomposition of root litter, young needle and moss litter, and humus). These values can be combined to generate predictions of total site net ecosystem exchange of carbon (NEE), total soil dark respiration (live roots + heterotrophs + live moss), spruce and moss net productivity, and net carbon accumulation in the soil. To date, simulations have been of the BOREAS NSA-OBS and SSA-OBS tower sites, from 1968-95 (except 1990-93). The files include source code and sample input and output files in ASCII format. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).
Thirsty tree roots exude more carbon.
Preece, Catherine; Farré-Armengol, Gerard; Llusià, Joan; Peñuelas, Josep
2018-05-01
Root exudation is an important input of carbon into soils and affects plant and soil communities, but little is known about the effect of climatic factors such as drought on exudation, and its ability to recover. We studied the impact of increasing drought on root exudation and its subsequent recovery in the Mediterranean tree species Quercus ilex L. in a greenhouse study by measuring the amount of total organic carbon in exudates. The amount of exudation per unit root area increased with drought duration and was 21% higher under the most extreme drought scenario compared with the non-droughted control. The amount of root exudation did not differ between the treatments following 6 weeks of re-watering, indicating a strong capacity for recovery in this species. We concluded that drought could affect the amount of root exudation, which could in turn have a large impact on microbial activity in the rhizosphere, and alter these microbial communities, at least in the short term. This tree species may be able to return to normal levels of root exudation after a drought event, but long-term exudate-mediated impacts on Mediterranean forest soils may be an unforeseen effect of drought.
Zeleznik, P; Hrenko, M; Then, C; Koch, N; Grebenc, T; Levanic, T; Kraigher, H
2007-03-01
Tropospheric ozone (O(3)) triggers physiological changes in leaves that affect carbon source strength leading to decreased carbon allocation below-ground, thus affecting roots and root symbionts. The effects of O(3) depend on the maturity-related physiological state of the plant, therefore adult and young forest trees might react differently. To test the applicability of young beech plants for studying the effects of O(3) on forest trees and forest stands, beech seedlings were planted in containers and exposed for two years in the Kranzberg forest FACOS experiment (Free-Air Canopy O(3) Exposure System, http://www.casiroz.de ) to enhanced ozone concentration regime (ambient [control] and double ambient concentration, not exceeding 150 ppb) under different light conditions (sun and shade). After two growing seasons the biomass of the above- and below-ground parts, beech roots (using WinRhizo programme), anatomical and molecular (ITS-RFLP and sequencing) identification of ectomycorrhizal types and nutrient concentrations were assessed. The mycorrhization of beech seedlings was very low ( CA. 5 % in shade, 10 % in sun-grown plants), no trends were observed in mycorrhization (%) due to ozone treatment. The number of Cenococcum geophilum type of ectomycorrhiza, as an indicator of stress in the forest stands, was not significantly different under different ozone treatments. It was predominantly occurring in sun-exposed plants, while its majority share was replaced by Genea hispidula in shade-grown plants. Different light regimes significantly influenced all parameters except shoot/root ratio and number of ectomycorrhizal types. In the ozone fumigated plants the number of types, number of root tips per length of 1 to 2 mm root diameter, root length density per volume of soil and concentration of Mg were significantly lower than in control plants. Trends to a decrease were found in root, shoot, leaf, and total dry weights, total number of root tips, number of vital mycorrhizal root tips, fine root (mass) density, root tip density per surface, root area index, concentration of Zn, and Ca/Al ratio. Due to the general reduction in root growth indices and nutrient cycling in ozone-fumigated plants, alterations in soil carbon pools could be predicted.
Seegers, Christel L C; Tepper, Pieter G; Setroikromo, Rita; Quax, Wim J
2018-05-01
Deoxypodophyllotoxin is present in the roots of Anthriscus sylvestris . This compound is cytotoxic on its own, but it can also be converted into podophyllotoxin, which is in high demand as a precursor for the important anticancer drugs etoposide and teniposide. In this study, deoxypodophyllotoxin is extracted from A. sylvestris roots by supercritical carbon dioxide extraction. The process is simple and scalable. The supercritical carbon dioxide method extracts 75 - 80% of the total deoxypodophyllotoxin content, which is comparable to a single extraction by traditional Soxhlet. However, less polar components are extracted. The activity of the supercritical carbon dioxide extract containing deoxypodophyllotoxin was assessed by demonstrating that the extract arrests A549 and HeLa cells in the G 2 /M phase of the cell cycle. We conclude that biologically active deoxypodophyllotoxin can be extracted from A. sylvestris by supercritical carbon dioxide extraction. The method is solvent free and more sustainable compared to traditional methods. Georg Thieme Verlag KG Stuttgart · New York.
Differential priming of soil carbon driven by soil depth and root impacts on carbon availability
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Graaff, Marie-Anne; Jastrow, Julie D.; Gillette, Shay
2013-11-15
Enhanced root-exudate inputs can stimulate decomposition of soil carbon (C) by priming soil microbial activity, but the mechanisms controlling the magnitude and direction of the priming effect remain poorly understood. With this study we evaluated how differences in soil C availability affect the impact of simulated root exudate inputs on priming. We conducted a 60-day laboratory incubation with soils collected (60 cm depth) from under six switchgrass (Panicum virgatum) cultivars. Differences in specific root length (SRL) among cultivars were expected to result in small differences in soil C inputs and thereby create small differences in the availability of recent labilemore » soil C; whereas soil depth was expected to create large overall differences in soil C availability. Soil cores from under each cultivar (roots removed) were divided into depth increments of 0–10, 20–30, and 40–60 cm and incubated with addition of either: (1) water or (2) 13C-labeled synthetic root exudates (0.7 mg C/g soil). We measured CO2 respiration throughout the experiment. The natural difference in 13C signature between C3 soils and C4 plants was used to quantify cultivar-induced differences in soil C availability. Amendment with 13C-labeled synthetic root-exudate enabled evaluation of SOC priming. Our experiment produced three main results: (1) switchgrass cultivars differentially influenced soil C availability across the soil profile; (2) small differences in soil C availability derived from recent root C inputs did not affect the impact of exudate-C additions on priming; but (3) priming was greater in soils from shallow depths (relatively high total soil C and high ratio of labile-to-stable C) compared to soils from deep depths (relatively low total soil C and low ratio of labile-to-stable C). These findings suggest that the magnitude of the priming effect is affected, in part, by the ratio of root exudate C inputs to total soil C and that the impact of changes in exudate inputs on the priming of SOC is regulated differently in surface soil compared to subsoil.« less
Postma, Johannes Auke; Dathe, Annette; Lynch, Jonathan Paul
2014-01-01
Observed phenotypic variation in the lateral root branching density (LRBD) in maize (Zea mays) is large (1–41 cm−1 major axis [i.e. brace, crown, seminal, and primary roots]), suggesting that LRBD has varying utility and tradeoffs in specific environments. Using the functional-structural plant model SimRoot, we simulated the three-dimensional development of maize root architectures with varying LRBD and quantified nitrate and phosphorus uptake, root competition, and whole-plant carbon balances in soils varying in the availability of these nutrients. Sparsely spaced (less than 7 branches cm−1), long laterals were optimal for nitrate acquisition, while densely spaced (more than 9 branches cm−1), short laterals were optimal for phosphorus acquisition. The nitrate results are mostly explained by the strong competition between lateral roots for nitrate, which causes increasing LRBD to decrease the uptake per unit root length, while the carbon budgets of the plant do not permit greater total root length (i.e. individual roots in the high-LRBD plants stay shorter). Competition and carbon limitations for growth play less of a role for phosphorus uptake, and consequently increasing LRBD results in greater root length and uptake. We conclude that the optimal LRBD depends on the relative availability of nitrate (a mobile soil resource) and phosphorus (an immobile soil resource) and is greater in environments with greater carbon fixation. The median LRBD reported in several field screens was 6 branches cm−1, suggesting that most genotypes have an LRBD that balances the acquisition of both nutrients. LRBD merits additional investigation as a potential breeding target for greater nutrient acquisition. PMID:24850860
Plant mycorrhizal traits and carbon fates from plot to globe
NASA Astrophysics Data System (ADS)
Soudzilovskaia, N.; Cornelissen, H. H. C.
2016-12-01
Evidence is accumulating that plant traits related to mycorrhizal symbiosis, i.e. mycorrhizal type and the degree of plant root colonization by mycorrhizal fungi have important consequences for carbon pools and allocation in plants and soil. How plant and soil carbon pools vary among vegetation dominated by plants of different mycorrhizal types is a new and exciting research challenge. Absence of global databases on abundance of mycorrhizal fungi in soil and plant roots retards research aimed to understand involvement of mycorrhizas into soil carbon transformation processes. Using own data and published studies we have assembled currently world-largest database of plant species-per-site degrees root colonization by two most common types of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (EM). The database features records for plant root colonization degrees by AM and EM (above 8000 records in total). Using this database, we demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. I will discuss how combining plot-level field data, literature data and mycorrhizal infection trait data may help us to quantify the carbon consequences of relative dominance by arbuscular versus ectomycorrhizal symbiosis in vegetation from plot to global scale. To exemplify this method, I will present an assessment of the impacts of EM shrub encroachment on carbon stocks in sub-arctic tundra, and show how the plant trait data (root, leaf, stem and mycorrhizal colonization traits) could predict (1) impacts of AM and EM vegetation on soil carbon budget and (2) changes in soil carbon budget due to increase of EM plants in an AM-dominated ecosystem and visa versa. This approach may help to predict how global change-mediated vegetation shifts, via mycorrhizal carbon pools and dynamics, may affect terrestric and (thereby) atmospheric carbon.
NASA Astrophysics Data System (ADS)
Suseela, V.; Tharayil, N.; Pendall, E.
2014-12-01
A majority of carbon in soil is derived from plant roots, yet roots remain remarkably less explored. Root tissues are abundant in heteropolymers such as suberin, lignin and tannins which are energetically demanding to depolymerize, thus facilitating the accrual of carbon in soil. Most biopolymers are operationally/functionally defined and their function is regulated by the identity of monomers and the linkages connecting these monomers. The structural chemistry of these biopolymers could vary with the environmental conditions experienced during their formative stage thus altering the potential for soil carbon sequestration. We examined the biopolymer composition in the roots of a C3 (Hesperostipa comata) and a C4 (Bouteloua gracilis) grass species exposed to a factorial combination of warming and elevated CO2 at the Prairie Heating and CO2 Enrichment (PHACE) experiment, Wyoming, USA. The grass roots were subjected to a sequential solvent extraction and base hydrolysis to delineate various operational fractions within the polydisperse matrix. The extracted fractions were analyzed using various chromatography mass spectrometry platforms. Warming and elevated CO2 increased the total suberin content and the amount of ω-hydroxy acids in C4 grass species while in C3 species there was a trend of increasing concentration of α,ω-dioic acids in roots exposed to elevated CO2 compared to ambient CO2 treatment. Our results highlight the effect of warming and elevated CO2 on the chemical composition of heteropolymers in roots that may potentially alter root function and rate of decomposition leading to changes in soil carbon in a future warmer world.
Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei
Genet, Marie; Li, Mingcai; Luo, Tianxiang; Fourcaud, Thierry; Clément-Vidal, Anne; Stokes, Alexia
2011-01-01
Background and Aims The mobile carbon supply to different compartments of a tree is affected by climate, but its impact on cell-wall chemistry and mechanics remains unknown. To understand better the variability in root growth and biomechanics in mountain forests subjected to substrate mass movement, we investigated root chemical and mechanical properties of mature Abies georgei var. smithii (Smith fir) growing at different elevations on the Tibet–Qinghai Plateau. Methods Thin and fine roots (0·1–4·0 mm in diameter) were sampled at three different elevations (3480, 3900 and 4330 m, the last corresponding to the treeline). Tensile resistance of roots of different diameter classes was measured along with holocellulose and non-structural carbon (NSC) content. Key Results The mean force necessary to break roots in tension decreased significantly with increasing altitude and was attributed to a decrease in holocellulose content. Holocellulose was significantly lower in roots at the treeline (29·5 ± 1·3 %) compared with those at 3480 m (39·1 ± 1·0 %). Roots also differed significantly in NSC, with 35·6 ± 4·1 mg g−1 dry mass of mean total soluble sugars in roots at 3480 m and 18·8 ± 2·1 mg g−1 dry mass in roots at the treeline. Conclusions Root mechanical resistance, holocellulose and NSC content all decreased with increasing altitude. Holocellulose is made up principally of cellulose, the biosynthesis of which depends largely on NSC supply. Plants synthesize cellulose when conditions are optimal and NSC is not limiting. Thus, cellulose synthesis in the thin and fine roots measured in our study is probably not a priority in mature trees growing at very high altitudes, where climatic factors will be limiting for growth. Root NSC stocks at the treeline may be depleted through over-demand for carbon supply due to increased fine root production or winter root growth. PMID:21186240
Suseela, Vidya; Tharayil, Nishanth; Pendall, Elise; ...
2017-09-01
A majority of soil carbon (C) is either directly or indirectly derived from fine roots, yet roots remain the least understood component of the terrestrial carbon cycle. The decomposability of fine roots and their potential to contribute to soil C is partly regulated by their tissue chemical composition. Roots rely heavily on heteropolymers such as suberins, lignins and tannins to adapt to various environmental pressures and to maximize their resource uptake functions. Since the chemical construction of roots is partly shaped by their immediate biotic/abiotic soil environments, global changes that perturb soil resource availability and plant growth could potentially altermore » root chemistry, and hence the decomposability of roots. However, the effect of global change on the quantity and composition of root heteropolymers are seldom investigated. We examined the effects of elevated CO 2 and warming on the quantity and composition of suberin in roots of Bouteloua gracilis (C4) and Hesperostipa comata (C3) grass species at the Prairie Heating and CO 2 Enrichment (PHACE) experiment at Wyoming, USA. Roots of B. gracilis exposed to elevated CO 2 and warming had higher abundances of suberin and lignin than those exposed to ambient climate treatments. In addition to changes in their abundance, roots exposed to warming and elevated CO 2 had higher ω-hydroxy acids compared to plants grown under ambient conditions. The suberin content and composition in roots of H. comata was less responsive to climate treatments. In H. comata, α,ω-dioic acids increased with the main effect of elevated CO 2, whereas the total quantity of suberin exhibited an increasing trend with the main effect of warming and elevated CO 2. The increase in suberin content and altered composition could lower root decomposition rates with implications for root-derived soil carbon under global change. Our study also suggests that the climate change induced alterations in species composition will further mediate potential suberin contributions to soil carbon pools.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suseela, Vidya; Tharayil, Nishanth; Pendall, Elise
A majority of soil carbon (C) is either directly or indirectly derived from fine roots, yet roots remain the least understood component of the terrestrial carbon cycle. The decomposability of fine roots and their potential to contribute to soil C is partly regulated by their tissue chemical composition. Roots rely heavily on heteropolymers such as suberins, lignins and tannins to adapt to various environmental pressures and to maximize their resource uptake functions. Since the chemical construction of roots is partly shaped by their immediate biotic/abiotic soil environments, global changes that perturb soil resource availability and plant growth could potentially altermore » root chemistry, and hence the decomposability of roots. However, the effect of global change on the quantity and composition of root heteropolymers are seldom investigated. We examined the effects of elevated CO 2 and warming on the quantity and composition of suberin in roots of Bouteloua gracilis (C4) and Hesperostipa comata (C3) grass species at the Prairie Heating and CO 2 Enrichment (PHACE) experiment at Wyoming, USA. Roots of B. gracilis exposed to elevated CO 2 and warming had higher abundances of suberin and lignin than those exposed to ambient climate treatments. In addition to changes in their abundance, roots exposed to warming and elevated CO 2 had higher ω-hydroxy acids compared to plants grown under ambient conditions. The suberin content and composition in roots of H. comata was less responsive to climate treatments. In H. comata, α,ω-dioic acids increased with the main effect of elevated CO 2, whereas the total quantity of suberin exhibited an increasing trend with the main effect of warming and elevated CO 2. The increase in suberin content and altered composition could lower root decomposition rates with implications for root-derived soil carbon under global change. Our study also suggests that the climate change induced alterations in species composition will further mediate potential suberin contributions to soil carbon pools.« less
Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing
2015-01-01
Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography–mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0–15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6–9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7–9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon concentration both for bulk soil and rhizosphere. However, the turnover and preservation of the root suberin biomolecules with soil property and field conditions deserve further field studies. PMID:25961557
Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing
2015-01-01
Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography-mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0-15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6-9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7-9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon concentration both for bulk soil and rhizosphere. However, the turnover and preservation of the root suberin biomolecules with soil property and field conditions deserve further field studies.
Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin
2015-01-01
Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer. PMID:26047358
Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin
2015-01-01
Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.
NASA Astrophysics Data System (ADS)
Nousratpour, A.
2011-12-01
The annual CO2 emission from soils corresponds to a large portion of the global carbon cycle and equals 10 percent of the total atmospheric carbon pool. The total forest soil CO2 loss equals the sum of contribution from autotrophic and heterotrophic organisms. The autotrophic respiration is derived from recent photosynthates from the forest canopy and exudates via the roots. The heterotrophic respiration is less directly dependent on root presence and recently assimilated photosynthates, which points to the possibility of separate mechanisms governing the CO2 emissions. The variation of the CO2 flux from these some-what overlapping sources in the soil i.e. rhizospheric and non-rhizosperically is still not fully understood. Soil temperature and water availability in particular have often been used to explain the variation of soil CO2 efflux by using regression methods. In this experiment around 1000 hours of soil CO2-emission rates from a drained spruce forest was collected from 6 plots, among which 3 were previously root excluded. The emission rates were collected during 5 campaigns throughout the growing season along with continuous above ground and below ground temperature and water properties such as precipitation and VPD (vapor pressure deficit). The resulting matrix was analyzed using multivariate statistical model PLSr (Partial Least Squares regression). This operation reduces the dimensionality of large datasets with probable multicollinearity and helps clarify the dependence of a response factor on x- variables. In addition a time series analysis is applied to the dataset to address the time lag between below ground temperature and water properties to the above ground weather conditions such as VPD and air temperature. Mean carbon emission from the control plots (428 mg Carbon m-2 hr-1) was significantly larger than that from the root excluded plots (136 mg Carbon m-2 hr-1). During the growing season more than 2/3 of the total CO2 release was estimated to be root contribution. The results show that the activity in the rhizosphere increased with rising soil temperature, VPD and ground water depletion until a certain point. When the level of ground water depth was deeper than about 0.5 m the dependence was reversed. This effect was either the opposite or lacking in the root excluded plots, which reflects the involvement of the tree roots and the separate factors controlling the different sources of CO2.
Nadeem, Faisal; Ahmad, Zeeshan; Wang, Ruifeng; Han, Jienan; Shen, Qi; Chang, Feiran; Diao, Xianmin; Zhang, Fusuo; Li, Xuexian
2018-01-01
Foxtail millet (FM) [ Setaria italica (L.) Beauv.] is a grain and forage crop well adapted to nutrient-poor soils. To date little is known how FM adapts to low nitrogen (LN) at the morphological, physiological, and molecular levels. Using the FM variety Yugu1, we found that LN led to lower chlorophyll contents and N concentrations, and higher root/shoot and C/N ratios and N utilization efficiencies under hydroponic culture. Importantly, enhanced biomass accumulation in the root under LN was in contrast to a smaller root system, as indicated by significant decreases in total root length; crown root number and length; and lateral root number, length, and density. Enhanced carbon allocation toward the root was rather for significant increases in average diameter of the LN root, potentially favorable for wider xylem vessels or other anatomical alterations facilitating nutrient transport. Lower levels of IAA and CKs were consistent with a smaller root system and higher levels of GA may promote root thickening under LN. Further, up-regulation of SiNRT1.1, SiNRT2.1, and SiNAR2.1 expression and nitrate influx in the root and that of SiNRT1.11 and SiNRT1.12 expression in the shoot probably favored nitrate uptake and remobilization as a whole. Lastly, more soluble proteins accumulated in the N-deficient root likely as a result of increases of N utilization efficiencies. Such "excessive" protein-N was possibly available for shoot delivery. Thus, FM may preferentially transport carbon toward the root facilitating root thickening/nutrient transport and allocate N toward the shoot maximizing photosynthesis/carbon fixation as a primary adaptive strategy to N limitation.
Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo
2015-11-01
One-year-old potted sweet cheery trees were treated with 4 g · kg(-1) exogenous glucose or starch and with non-addition of exogenous carbon as the control for up to 60 days. Soil of root zone was sampled to analyze soil microbial biomass carbon, activities of invertase and amylase and microbial community functional diversity during the 60-day treatment, and roots were sampled for analysis of root respiratory rate, respiratory pathways and root viability after treatment for 30 days. Results showed that the invertase activity and the microbial biomass carbon initially increased and decreased subsequently, with the maxima which were 14.0% and 13.1% higher in the glucose treatment than in the control treatment appeared after 15 and 7 days of treatments, respectively. Soil organic matter content increased first then decreased and finally moderately increased again. Amylase activity was 7.5-fold higher in the starch treatment than in the control treatment after 15-day treatment. Soil microbial biomass carbon was higher in the starch treatment than in the control treatment except after 7-day treatment. Soil organic matter content initially increased and then decreased, but it was still 19.8% higher than in the control after 60-day treatment. BIOLOG results showed that the maximum average well color development (AWCD) value and microbial activity appeared after 15-day treatment in the following order: starch>glucose>control. After 30-day treatment, glucose treatment resulted in a significant increase in the soil microbial utilization of carbohydrates, carboxylic acid, amino acids, phenolic acids and amines, and starch treatment significantly increased the soil microbial utilization of carbohydrates, carboxylic acid, polymers and phenolic acids. After 30-day treatment, the total root respiratory rate and root viability were 21.4%, 19.4% and 65.5%, 37.0% higher in glucose treatment than in the control and starch treatments, respectively. These results indicated exogenous glucose and starch affected soil carbon metabolism and enhanced soil microbial activity, the root respiratory rate and root viability.
Piñeiro, Juan; Ochoa-Hueso, Raúl; Delgado-Baquerizo, Manuel; Dobrick, Silvan; Reich, Peter B; Pendall, Elise; Power, Sally A
2017-11-10
Plant roots play a crucial role in regulating key ecosystem processes such as carbon (C) sequestration and nutrient solubilisation. Elevated (e)CO 2 is expected to alter the biomass of fine, coarse and total roots to meet increased demand for other resources such as water and nitrogen (N), however, the magnitude and direction of observed changes vary considerably between ecosystems. Here, we assessed how climate and soil properties mediate root responses to eCO 2 by comparing 24 field-based CO 2 experiments across the globe including a wide range of ecosystem types. We calculated response ratios (i.e. effect size) and used structural equation modelling (SEM) to achieve a system-level understanding of how aridity, mean annual temperature and total soil nitrogen simultaneously drive the response of total, coarse and fine root biomass to eCO 2 . Models indicated that increasing aridity limits the positive response of fine and total root biomass to eCO 2 , and that fine (but not coarse or total) root responses to eCO 2 are positively related to soil total N. Our results provide evidence that consideration of factors such as aridity and soil N status is crucial for predicting plant and ecosystem-scale responses to future changes in atmospheric CO 2 concentrations, and thus feedbacks to climate change.
NASA Astrophysics Data System (ADS)
Mackay, D. S.; Savoy, P.; Pleban, J. R.; Tai, X.; Ewers, B. E.
2015-12-01
Plants adapt or acclimate to changing environments in part by allocating biomass to roots and leaves to strike a balance between water and nutrient uptake requirements on the one hand and growth and hydraulic safety on the other hand. In a recent study examining experimental drought with the TREES model, which couples plant ecophysiology with rhizosphere-and-xylem hydraulics, we hypothesized that the asynchronous nature of soil water availability and xylem repair supported root-to-leaf area (RLA) proportionality that favored long-term survival over short-term carbon gain or water use. To investigate this as a possible general principal of plant adjustment to changing environmental conditions, TREES was modified to allocate carbon to fine and coarse roots organized in ten orders differing in biomass allocated per unit absorbing root area, root lifespan, and total absorbing root area in each of several soil-root zones with depth. The expanded model allowed for adjustment of absorbing root area and rhizosphere volume based on available carbohydrate production and nitrogen (N) availability, resulting in dynamic expansion and contraction of the supply-side of the rhizosphere-plant hydraulics and N uptake capacity in response to changing environmental conditions and plant-environment asynchrony. The study was conducted partly in a controlled experimental setting with six genotypes of a widely grown crop species, Brassica rapa. The implications for forests were investigated in controlled experiments and at Fluxnet sites representing temperate mixed forests, semi-arid evergreen needle-leaf, and Mediterranean biomes. The results showed that the effects of N deficiency on total plant growth was modulated by a relative increase in fine root biomass representing a larger absorbing root volume per unit biomass invested. We found that the total absorbing root area per unit leaf area was consistently lower than that needed to maximize short-term water uptake and carbohydrate gain. Moreover, the acclimated RLA fell within a small range for both crops and trees despite changing environmental conditions, demonstrating an adaptation that was consistent with empiricism on fine roots and thus pointing to a fundamental connection between ecological and hydrological processes.
[Responses of forest soil carbon pool and carbon cycle to the changes of carbon input].
Wang, Qing-kui
2011-04-01
Litters and plant roots are the main sources of forest soil organic carbon (C). This paper summarized the effects of the changes in C input on the forest soil C pool and C cycle, and analyzed the effects of these changes on the total soil C, microbial biomass C, dissoluble organic C, and soil respiration. Different forests in different regions had inconsistent responses to C input change, and the effects of litter removal or addition and of root exclusion or not differed with tree species and regions. Current researches mainly focused on soil respiration and C pool fractions, and scarce were about the effects of C input change on the changes of soil carbon structure and stability as well as the response mechanisms of soil organisms especially soil fauna, which should be strengthened in the future.
von Rein, I; Kayler, Z E; Premke, K; Gessler, A
2016-11-01
With the projected increase in drought duration and intensity in future, small water bodies, and especially the terrestrial-aquatic interfaces, will be subjected to longer dry periods with desiccation of the sediment. Drought effects on the plant-sediment microorganism carbon continuum may disrupt the tight linkage between plants and microbes which governs sediment carbon and nutrient cycling, thus having a potential negative impact on carbon sequestration of small freshwater ecosystems. However, research on drought effects on the plant-sediment carbon transfer in aquatic ecosystems is scarce. We therefore exposed two emergent aquatic macrophytes, Phragmites australis and Typha latifolia, to a month-long summer drought in a mesocosm experiment. We followed the fate of carbon from leaves to sediment microbial communities with 13 CO 2 pulse labelling and microbial phospholipid-derived fatty acid (PLFA) analysis. We found that drought reduced the total amount of carbon allocated to stem tissues but did not delay the transport. We also observed an increase in accumulation of 13 C-labelled sugars in roots and found a reduced incorporation of 13 C into the PLFAs of sediment microorganisms. Drought induced a switch in plant carbon allocation priorities, where stems received less new assimilates leading to reduced starch reserves whilst roots were prioritised with new assimilates, suggesting their use for osmoregulation. There were indications that the reduced carbon transfer from roots to microorganisms was due to the reduction of microbial activity via direct drought effects rather than to a decrease in root exudation or exudate availability. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Carbon and nitrogen distribution in oak-hickory forests distributed along a productivity gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reber, R.T.; Kaczmarek, D.J.; Pope, P.E.
1993-12-31
Biomass, carbon and nitrogen pools were determined for oak-hickory forests of varying productivity. Little information of this type is available for the central hardwood region. Six oak-hickory dominated forests were chosen to represent a range in potential site productivity as influenced by soil type, amount of recyclable nutrients and available water. Biomass, carbon and nitrogen storage were determined for the following components: above ground standing biomass, fine root biomass, forest floor organic layers and litterfall. As site sequestered at each site was dependent more on the amount of living biomass at each site Litterfall, to some extent, increased with increasingmore » site productivity. As potential site productivity decreased, total fine root biomass increased. The data suggest that as site quality decreased fine root production and turnover may become as important in nutrient cycling as annual litterfall.« less
Effect of land use change on the carbon cycle in Amazon soils
NASA Technical Reports Server (NTRS)
Trumbore, Susan E.; Davidson, Eric A.
1994-01-01
The overall goal of this study was to provide a quantitative understanding of the cycling of carbon in the soils associated with deep-rooting Amazon forests. In particular, we wished to apply the understanding gained by answering two questions: (1) what changes will accompany the major land use change in this region, the conversion of forest to pasture? and (2) what is the role of carbon stored deeper than one meter in depth in these soils? To construct carbon budgets for pasture and forest soils we combined the following: measurements of carbon stocks in above-ground vegetation, root biomass, detritus, and soil organic matter; rates of carbon inputs to soil and detrital layers using litterfall collection and sequential coring to estimate fine root turnover; C-14 analyses of fractionated SOM and soil CO2 to estimate residence times; C-13 analyses to estimate C inputs to pasture soils from C-4 grasses; soil pCO2, volumetric water content, and radon gradients to estimate CO2 production as a function of soil depth; soil respiration to estimate total C outputs; and a model of soil C dynamics that defines SOM fractions cycling on annual, decadal, and millennial time scales.
E.S. Kane; J.G. Vogel
2009-01-01
To understand how carbon (C) pools in boreal ecosystems may change with warming, we measured above- and belowground C pools and C increment along a soil temperature gradient across 16 mature upland black spruce (Picea mariana Mill. [Bâ¢S.P]) forests in interior Alaska. Total spruce C stocks (stand and root C) increased from 1.3 to 8.5 kg C m
Brun, François; Richard-Molard, Céline; Pagès, Loïc; Chelle, Michaël; Ney, Bertrand
2010-05-01
Root system architecture adapts to low nitrogen (N) nutrition. Some adaptations may be mediated by modifications of carbon (C) fluxes. The objective of this study was to test the hypothesis that changes in root system architecture under different N regimes may be accounted for by using simple hypotheses of C allocation within the root system of Arabidopsis thaliana. With that purpose, a model during vegetative growth was developed that predicted the main traits of root system architecture (total root length, lateral root number, and specific root length). Different experimental data sets crossing three C levels and two N homogenous nutrition levels were generated. Parameters were estimated from an experiment carried out under medium C and high N conditions. They were then checked under other CxN conditions. It was found that the model was able to simulate correctly C effects on root architecture in both high and low N nutrition conditions, with the same parameter values. It was concluded that C flux modifications explained the major part of root system adaptation to N supply, even if they were not sufficient to simulate some changes, such as specific root length.
Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui
2012-01-17
Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for <10% of THg) correlated with root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species.
Root bacterial endophytes alter plant phenotype, but not physiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.
Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less
Root bacterial endophytes alter plant phenotype, but not physiology
Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.; ...
2016-11-01
Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less
[Soil basal respiration and enzyme activities in the root-layer soil of tea bushes in a red soil].
Yu, Shen; He, Zhenli; Zhang, Rongguang; Chen, Guochao; Huang, Changyong
2003-02-01
Soil basal respiration potential, metabolic quotient (qCO2), and activities of urease, invertase and acid phosphomonoesterase were investigated in the root-layer of 10-, 40-, and 90-yr-old tea bushes grown on the same type of red soil. The soil daily basal respiration potential ranged from 36.23 to 58.52 mg.kg-1.d-1, and the potentials in the root-layer of 40- or 90-yr-old were greater than that of 10-yr old tea bushes. The daily qCO2, ranging from 0.30 to 0.68, was in the reverse trend. The activities of test three enzymes changed differently with tea bushes' age. Urease activity in the root-layer of all age tea bushes ranged from 41.48 to 47.72 mg.kg-1.h-1 and slightly decreased with tea bushes' age. Invertase activity was 189.29-363.40 mg.kg-1.h-1 and decreased with tea bushes' age, but its activity in the root-layer of 10-year old tea bushes was significantly greater than that in the root-layer soil of 40- or 90-year old tea bushes. Acid phosphomonoesterase activity (444.22-828.32 mg.kg-1.h-1) increased significantly with tea bushes' age. Soil basal respiration potential, qCO2 and activities of 3 soil enzymes were closely related to soil pH, soil organic carbon, total nitrogen and C/N ratio, total soluble phenol, and microbial biomass carbon, respectively.
NASA Astrophysics Data System (ADS)
Mendez-Millan, Mercedes; Dignac, Marie-France; Rumpel, Cornelia; Rasse, Daniel P.; Derenne, Sylvie
2010-05-01
The turnover of soil organic matter (SOM) is generally studied in the topsoil horizons, where the highest concentrations of organic carbon (OC) are found. Subsoils, although containing lower amounts of organic carbon compared to topsoils, greatly contribute to the total carbon stocks within a soil profile. An increase in SOM aliphaticity was observed during SOM degradation, and also down the soil profile, suggesting that the stable pool of SOM is enriched in aliphatic structures. These alkyl-C structures might mainly derive from cutins and suberins, two biomacromolecules, which contain biomarkers specific for shoot and root plant biomass. The aim of this study was to use cutin and suberin structural units to follow the incorporation of plant biomass originating from roots and shoots throughout an agricultural soil profile. We measured the 13C natural abundance of root and shoot biomarkers in samples taken from 15 to 105 cm depth in a C3/C4 chronosequence. After 9 years of maize (C4) cropping, the distribution of root biomarkers (diacids) significantly changed and their concentration increased compared to the wheat (CC3) soil. The largest increase was observed at 60-75 cm where diacids reached up to 134 ?g/gOC compared to 23 ?g/gOC in the wheat soil. Higher inputs from maize root biomass are also suggested by an average 13C enrichment of the root markers in the maize compared to the wheat soil.
[Soil respiration and carbon balance in wheat field under conservation tillage].
Zhang, Sai; Wang, Long-Chang; Huang, Zhao-Cun; Jia, Hui-Juan; Ran, Chun-Yan
2014-06-01
In order to study the characteristics of carbon sources and sinks in the winter wheat farmland ecosystem in southwest hilly region of China, the LI6400-09 respiratory chamber was adopted in the experiment conducted in the experimental field in Southwest University in Chongqing. The soil respiration and plant growth dynamics were analyzed during the growth period of wheat in the triple intercropping system of wheat-maize-soybean. Four treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage + straw mulching), and RS (ridge tillage + straw mulching) were designed. Root biomass regression (RR) and root exclusion (RE) were used to compare the contribution of root respiration to total soil respiration. The results showed that the average soil respiration rate was 1.71 micromol x (m2 x s)(-1) with a variation of 0.62-2.91 micromol x (m2 x s)(-1). Significant differences in soil respiration rate were detected among different treatments. The average soil respiration rate of T, R, TS and RS were 1.29, 1.59, 1.99 and 1.96 micromol x (m2 x s)(-1), respectively. R treatment did not increase the soil respiration rate significantly until the jointing stage. Straw mulching treatment significantly increased soil respiration, with a steadily high rate during the whole growth period. During the 169 days of growth, the total soil respiration was 2 266.82, 2799.52, 3 483.73 and 3 443.89 kg x hm(-2) while the cumulative aboveground biomasses were 51 800.84, 59 563.20, 66 015.37 and 7 1331.63 kg x hm(-2). Compared with the control, the yield of R, TS and RS increased by 14.99%, 27.44% and 37.70%, respectively. The contribution of root respiration to total soil respiration was 47.05% by RBR, while it was 53.97% by RE. In the early growth period, the carbon source was weak. The capacity of carbon sink started to increase at the jointing stage and reached the maximum during the filling stage. The carbon budget of wheat field was 5 924.512, 6743.807, 8350.741, 8 876.115 kg x hm(-2), respectively. The results indicated that ridge tillage and straw mulching conservation tillage significantly improved the carbon sink in the wheat farmland ecosystem.
Push-out bond strengths of two fiber post types bonded with different dentin bonding agents.
Topcu, Fulya Toksoy; Erdemir, Ugur; Sahinkesen, Gunes; Mumcu, Emre; Yildiz, Esra; Uslan, Ibrahim
2010-05-01
The aim of this study was to evaluate the regional push-out bond strengths for two fiber-reinforced post types using three different dentin bonding agents. Sixty single-rooted extracted human first premolar teeth were sectioned below the cemento-enamel junction, and the roots were endodontically treated. Following standardized post space preparations, the roots were divided into two fiber-post groups (Glassix and Carbopost), and further divided into three subgroups of 10 specimens each for the bonding systems self-etching dentin bonding agents (Clearfil SE Bond and Optibond all-in-one), and total-etching dentin bonding agent (XP Bond). A dual-cure resin luting cement (Maxcem) was then placed in the post spaces and posts were then seated into the root canals polymerized through the cervical portion. The roots were then cut into 3-mm thick sections. Push-out tests were performed at a crosshead speed of 0.5 mm/min. The data were analyzed with multivariate ANOVA (alpha = 0.05). The morphology of interface between different dentin bonding agents from the cervical sections were analyzed with SEM. Glass fiber-reinforced posts demonstrated significantly higher push-out bond strengths than carbon fiber-reinforced posts (p < 0.001). Bond strength values decreased significantly from the cervical to the apical root canal regions (p < 0.001). Self-etching dentin adhesive Clearfil SE Bond and total-etching dentin adhesive XP Bond demonstrated similar bond strengths values and this was significantly higher compared with the Optibond all-in-one in cervical root canal region. In conclusion, in all root segments, the glass fiber-reinforced posts provided significantly increased post retention than the carbon fiber-reinforced posts, regardless of the adhesive used. (c) 2010 Wiley Periodicals, Inc.
Moore, Jessica A. M.; Jiang, Jiang; Patterson, Courtney M.; ...
2015-10-20
Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are presentmore » in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added 13C-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of 13C-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while mycorrhizal fungal presence had a greater influence on particulate than mineral-associated organic carbon pools.Synthesis. Our results suggest that the activity of enzymes involved in organic matter decomposition was contingent upon root-mycorrhizal-microbial interactions. Using our experimental data in a decomposition simulation model, we show that root-mycorrhizal-microbial interactions may have longer-term legacy effects on soil carbon sequestration. Lastly, our study suggests that roots stimulate microbial activity in the short term, but contribute to soil carbon storage over longer periods of time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Jessica A. M.; Jiang, Jiang; Patterson, Courtney M.
Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are presentmore » in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added 13C-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of 13C-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while mycorrhizal fungal presence had a greater influence on particulate than mineral-associated organic carbon pools.Synthesis. Our results suggest that the activity of enzymes involved in organic matter decomposition was contingent upon root-mycorrhizal-microbial interactions. Using our experimental data in a decomposition simulation model, we show that root-mycorrhizal-microbial interactions may have longer-term legacy effects on soil carbon sequestration. Lastly, our study suggests that roots stimulate microbial activity in the short term, but contribute to soil carbon storage over longer periods of time.« less
Hancock, Jessica E; Loya, Wendy M; Giardina, Christian P; Li, Laigeng; Chiang, Vincent L; Pregitzer, Kurt S
2007-01-01
We conducted a glasshouse mesocosm study that combined (13)C isotope techniques with wild-type and transgenic aspen (Populus tremuloides) in order to examine how altered lignin biosynthesis affects plant production and soil carbon formation. Our transgenic aspen lines expressed low stem lignin concentration but normal cellulose concentration, low lignin stem concentration with high cellulose concentration or an increased stem syringyl to guaiacyl lignin ratio. Large differences in stem lignin concentration observed across lines were not observed in leaves or fine roots. Nonetheless, low lignin lines accumulated 15-17% less root C and 33-43% less new soil C than the control line. Compared with the control line, transformed aspen expressing high syringyl lignin accumulated 30% less total plant C - a result of greatly reduced total leaf area - and 70% less new soil C. These findings suggest that altered stem lignin biosynthesis in Populus may have little effect on the chemistry of fine roots or leaves, but can still have large effects on plant growth, biomass partitioning and soil C formation.
NASA Astrophysics Data System (ADS)
Fu, X.; Dai, X.; Wang, H.
2015-12-01
Knowledge of the fine root dynamics of different life forms in forest ecosystems is critical to understanding how the overall belowground carbon cycling is affected by climate change. However, our current knowledge regarding how endogenous or exogenous factors regulate the root dynamics of understory vegetation is limited. We selected a suite of study sites representing different habitats with gradients of soil moisture and solar radiation (shading or no shading). We assessed the fine root production phenology, the total fine root production, and the turnover among six understory shrub species in a subtropical climate, and examined the responses of the fine root dynamics to gradients in the soil moisture and solar radiation. The shrubs included three evergreen species, Loropetalum chinense, Vaccinium bracteatum, and Adinandra millettii, and three deciduous species, Serissa serissoides, Rubus corchorifolius, and Lespedeza davidii. We observed that variations in the annual fine root production and turnover among species were significant in the deciduous group but not in the evergreen group. Notably, V. bracteatum and S. serissoides presented the greatest responses in terms of root phenology to gradients in the soil moisture and shading: high-moisture habitat led to a decrease and shade led to an increase in fine root production during spring. Species with smaller fine roots of the 1st+2nd-order diameter presented more sensitive responses in terms of fine root phenology to a soil moisture gradient. Species with a higher fine root nitrogen-to -carbon ratio exhibited more sensitive responses in terms of fine root annual production to shading. Soil moisture and shading did not change the annual fine root production as much as the turnover rate. The fine root dynamics of some understory shrubs varied significantly with soil moisture and solar radiation status and may be different from tree species. Our results emphasize the need to study the understory fine root dynamics in the achievement of a complete understanding of the overall belowground carbon cycling in a forest ecosystem, particularly ecosystems in which the understory fine root highly contributes to the belowground biomass.
Brauner, Katrin; Birami, Benjamin; Brauner, Horst A; Heyer, Arnd G
2018-06-01
Whole-plant carbon balance comprises diurnal fluctuations of photosynthetic carbon gain and respiratory losses, as well as partitioning of assimilates between phototrophic and heterotrophic organs. Because it is difficult to access, the root system is frequently neglected in growth models, or its metabolism is rated based on generalizations from other organs. Here, whole-plant cuvettes were used for investigating total-plant carbon exchange with the environment over full diurnal cycles. Dynamics of primary metabolism and diurnally resolved phloem exudation profiles, as proxy of assimilate transport, were combined to obtain a full picture of resource allocation. This uncovered a strong impact of periodicity of inter-organ transport on the efficiency of carbon gain. While a sinusoidal fluctuation of the transport rate, with minor diel deflections, minimized respiratory losses in Arabidopsis wild-type plants, triangular or rectangular patterns of transport, found in mutants defective in either starch or sucrose metabolism, increased root respiration at the end or beginning of the day, respectively. Power spectral density and cross-correlation analysis revealed that only the rate of starch synthesis was strictly correlated to the rate of net photosynthesis in wild-type, while in a sucrose-phosphate synthase mutant (spsa1), this applied also to carboxylate synthesis, serving as an alternative carbon pool. In the starchless mutant of plastidial phospho-gluco mutase (pgm), none of these rates, but concentrations of sucrose and glucose in the root, followed the pattern of photosynthesis, indicating direct transduction of shoot sugar levels to the root. The results demonstrate that starch metabolism alone is insufficient to buffer diurnal fluctuations of carbon exchange. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
The Dietary Approaches to Stop Hypertension Diet and New and Recurrent Root Caries Events in Men.
Kaye, Elizabeth K; Heaton, Brenda; Sohn, Woosung; Rich, Sharron E; Spiro, Avron; Garcia, Raul I
2015-09-01
To examine the effect of overall dietary quality on number of teeth with new or recurrent root caries events during follow-up (root caries increment). Prospective study with dental examinations approximately every 3 years over 20 years. Veterans Affairs Dental Longitudinal Study in greater Boston, Massachusetts, area. Men aged 47 to 90 (N = 533). A single calibrated examiner assessed root caries and restorations, calculus, probing pocket depth, and attachment loss on each tooth at each examination. The adjusted root caries increment (root-ADJCI) was computed from new and recurrent root caries events on teeth with recession of 2 mm or more. Dietary information was obtained from food frequency questionnaires. An adherence score was computed by comparing consumption frequency of 10 food groups (fruits, vegetables, total dairy, low-fat dairy, meat, total grains, high-fiber grains, legumes, fats, sweets) from the Dietary Approaches to Stop Hypertension (DASH) diet guidelines. Mean root-ADJCIs were compared according to DASH adherence score quartile using generalized linear negative binomial regression models, controlling for age, number of teeth at risk of root caries, time at risk of root caries, calculus, presence of removable denture, history of dental prophylaxis, body mass index, and smoking status. Men with DASH adherence scores in the highest quartile had a 30% lower mean root-ADJCI (1.86 teeth) than those in the lowest quartile (2.68 teeth) (P = .03). Root-ADJCI was lower with greater adherence to recommendations for vegetables and total grains and greater with greater sugar-sweetened carbonated beverage consumption. Root caries incidence rate did not vary significantly between quartiles. A higher-quality diet may reduce root caries risk in older men. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.
Running, Steven W.; Gower, Stith T.
1991-01-01
A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.
Sumiyoshi, Yudai; Crow, Susan E.; Litton, Creighton M.; ...
2016-07-08
Perennial grasses can sequester soil organic carbon (SOC) in sustainably managed biofuel systems, directly mitigating atmospheric CO 2 concentrations while simultaneously generating biomass for renewable energy. Our objective was to quantify SOC accumulation and identify the primary drivers of belowground C dynamics in a zero-tillage production system of tropical perennial C4 grasses grown for biofuel feedstock in Hawaii. Specifically, the quantity, quality, and fate of soil C inputs were determined for eight grass accessions – four varieties each of napier grass and guinea grass. Carbon fluxes (soil CO 2 efflux, aboveground net primary productivity, litterfall, total belowground carbon flux, rootmore » decay constant), C pools (SOC pool and root biomass), and C quality (root chemistry, C and nitrogen concentrations, and ratios) were measured through three harvest cycles following conversion of a fallow field to cultivated perennial grasses. A wide range of SOC accumulation occurred, with both significant species and accession effects. Aboveground biomass yield was greater, and root lignin concentration was lower for napier grass than guinea grass. Structural equation modeling revealed that root lignin concentration was the most important driver of SOC pool: varieties with low root lignin concentration, which was significantly related to rapid root decomposition, accumulated the greatest amount of SOC. Roots with low lignin concentration decomposed rapidly, but the residue and associated microbial biomass/by-products accumulated as SOC. In general, napier grass was better suited for promoting soil C sequestration in this system. Further, high-yielding varieties with low root lignin concentration provided the greatest climate change mitigation potential in a ratoon system. By understanding the factors affecting SOC accumulation and the net greenhouse gas trade-offs within a biofuel production system will aid in crop selection to meet multiple goals toward environmental and economic sustainability.« less
Fine root dynamics in moso bamboo and Japanese cedar forest by scanner method in central Taiwan
NASA Astrophysics Data System (ADS)
Chen, Zhi-Wei; Lin, Po-Hsuan; Kume, Tomonori
2017-04-01
Phyllostachys pubescens is one of the most important economic plant in the world. Phyllostachys pubescens originates from China and it had been introduced to neighbor countries about three hundred ago due to its economic value. But substantial bamboo forests were abandoned due to declines in demand. These unmanaged bamboo forests have been expanding to adjacent original forests in northern Taiwan. This vegetation alternation may not only decrease the local biodiversity but also affect the carbon cycle. Fine roots are responsible for water and nutrients acquisition and forming the most active part of the whole root system. The characteristics of fine roots are non-woody, small diameter and short lifespan. When roots keep producing new roots and replacing old roots, carbon and nutrients was transported into soil. Consequently, fine root production is one of the important component to understand the below-ground carbon cycle. However, there is few studies about fine root production in moso bamboo forests. We still lack effective method to obtain quantitative and objective data in Taiwan. It severely limits us to understand the below-ground carbon dynamics there. Minirhizotrons method has been used to investigate fine root dynamics by inserting transparent tubes into soil and by comparing changes in root length in images taken by micro-camera. But this method has some shortcomings; i.e. Most of image analysis are conducted manually and time-consuming. And it is difficult to estimate the stand level fine root production from small observation view. A new method "scanner method", which collect A4-size image (bigger than minirhizotrons) can overcome some parts of the shortcoming of minirhizotrons. The transparent acrylic box with A4-box view is inserted into soil and the interface between soil and box is scanned by commercial scanner. We can monitor the total projected root area, growth and decomposition separately by series of images. The primary objective of this study is to characterize the temporal and spatial variation of fine root dynamics in moso bamboo forests in central Taiwan by using scanner method with 6 acrylic boxes. Other the other hand, this study compared the result with those of adjacent Japanese cedar forests with 8 acrylic boxes. Consequently, we found the fine root production rate and decomposition rate of the bamboo forest are higher than cedar forest. Also, the timing of first observation of new roots was earlier in bamboo forest than cedar forest. This study also examined differences of temporal patterns among measurement locations based on long-term data after box installation.
Kobe, Richard K; Iyer, Meera; Walters, Michael B
2010-01-01
Under optimal partitioning theory (OPT), plants preferentially allocate biomass to acquire the resource that most limits growth. Within this framework, higher root mass under low nutrients is often assumed to reflect an allocation response to build more absorptive surface. However, higher root mass also could result from increased storage of total nonstructural carbohydrates (TNC) without an increase in non-storage mass or root surface area. To test the relative contributions of TNC and non-storage mass as components of root mass responses to resources, we grew seedlings of seven northern hardwood tree species (black, red, and white oak, sugar and red maple, American beech, and black cherry) in a factorial light x nitrogen (N) greenhouse experiment. Because root mass is a coarse metric of absorptive surface, we also examined treatment effects on fine-root surface area (FRSA). Consistent with OPT, total root mass as a proportion of whole-plant mass generally was greater in low vs. high N. However, changes in root mass were influenced by TNC mass in all seven species and were especially strong in the three oak species. In contrast, non-storage mass contributed to increased total root mass under low N in three of the seven species. Root morphology also responded, with higher fine-root surface area (normalized to root mass) under low vs. high N in four species. Although biomass partitioning responses to resources were consistent with OPT, our results challenge the implicit assumption that increases in root mass under low nutrient levels primarily reflect allocation shifts to build more root surface area. Rather, root responses to low N included increases in: TNC, non-storage mass and fine-root surface area, with increases in TNC being the largest and most consistent of these responses. The greatest TNC accumulation occurred when C was abundant relative to N. Total nonstructural carbohydrates storage could provide seedlings a carbon buffer when respiratory or growth demands are not synchronized with photosynthesis, flexibility in responding to uncertain and fluctuating abiotic and biotic conditions, and increased access to soil resources by providing an energy source for mycorrhizae, decomposers in the rhizosphere, or root uptake of nutrients.
Koptsik, G N; Kadulin, M S; Zakharova, A I
2015-01-01
Soil emission of carbon dioxide, the key component of carbon cycle and the characteristic of soil biological activity, has been studied in background and polluted ecosystems in the Kola subarctic, the large industrial region of Russia. Long-term air pollution by emissions of "Pechenganikel" smelter, the largest source of sulphur dioxide and heavy metals in Northern Europe, has caused the technogenic digression of forest ecosystems. As a result of the digression, the tree layer was destructed, the number of plant species was diminished, the activity of soil biota was weakened, the soils were polluted and exhausted, biogeochemical cycles of elements were disturbed and productivity of ecosystems shrunk. Field investigations revealed the decrease of the in.situ soil respiration in average from 190-230 mg C-CO2/m2 x per h in background pine forests to 130-160, 100, and 20 mg C-CO2/m2.per h at the stages of pine defoliation, sparse pine forest and technogenic barrens of the technogenic succession, respectively. The soil respira- tion in birch forests was more intense than in pine forests and tended to decrease from about 290 mg C-CO2/m2 x per h in background forests to 210-220 and 170-190 mg C-CO2/m2 x per h in defoliating forests and technogenic sparse forests, respectively. Due to high spatial variability of soil respiration in both pine and birch forests significant differences from the background level were found only in technogenic sparse forests and barrens. Soil respiration represents total production of carbon dioxide by plant roots and soil microorganisms. The decrease in share of root respiration in the total soil respiration with the rise of pollution from 38-57% in background forests up to zero in technogenic barrens has been revealed for the first time for this region. This indicates that plants seem to be more sensitive to pollution as compared to relatively resistant microorganisms. Soil respiration and the contribution of roots to the total respiration positively correlated with distance from the smelter and the content of carbon and nitrogen and negatively correlated with the content of available nickel and copper in the soils. Remediation of technogenic barrens promoted intensification of soil biological activity. At the same time, the willow planting along with grass seeding into the new constructed fertile soil layer was much more effective for activation of soil respiration and the contribution of roots to the total respiration than the planting into the limed and fertilized polluted soils (chemo-phytostabilization).
Root hairs increase root exudation and rhizosphere extension
NASA Astrophysics Data System (ADS)
Holz, Maire; Zarebandanadkouki, Mohsen; Kuzyakov, Yakov; Carmintati, Andrea
2017-04-01
Plant roots employ various mechanisms to increase their access to limited soil resources. An example of such strategies is the production of root hairs. Root hairs extend the root surface and therefore increase the access to nutrients. Additionally, carbon release from root hairs might facilitate nutrient uptake by spreading of carbon in the rhizosphere and enhancing microbial activity. The aim of this study was to test: i) how root hairs change the allocation of carbon in the soil-plant system; ii) whether root hairs exude carbon into the soil and iii) how differences in C release between plants with and without root hairs affect rhizosphere extension. We grew barley plants with and without root hairs (wild type: WT, bald root barley: brb) in rhizoboxes filled with a sandy soil. Root elongation was monitored over time. After 4 weeks of growth, plants were labelled with 14CO2. A filter paper was placed on the soil surface before labelling and was removed after 36 h. 14C imaging of the soil surface and of the filter paper was used to quantify the allocation of 14C into the roots and the exudation of 14C, respectively. Plants were sampled destructively one day after labeling to quantify 14C in the plant-soil system. 14CO2 release from soil over time (17 d) was quantified by trapping CO2 in NaOH with an additional subset of plants. WT and brb plants had a similar aboveground biomass and allocated similar amounts of 14C into shoots (170 KBq for WT; 152 KBq for brb) and roots one day after labelling. Biomass of root, rhizosphere soil as well as root elongation were lower for brb compared to the wild type. WT plants transported more C from the shoots to the roots (22.8% for WT; 13.8% for brb) and from the root into the rhizosphere (8.8% for WT 3.5% for brb). Yet lower amounts of 14CO2 were released from soil over time for WT. Radial and longitudinal rhizosphere extension was increased for WT compared to brb (4.7 vs. 2.6 mm; 5.6 vs. 3.1 cm). The total exudation which was estimated based on the grey values of the filter paper images was 1.6 times higher for WT compared to brb. After one month, brb plants performed as good as WT plants, presumably because nutrients and water were not limiting for young plants. Under nutrient limiting conditions higher C release as well as increased longitudinal and radial rhizosphere extension for WT may maintain higher nutrient accessibility compared to root hair free plants.
NASA Astrophysics Data System (ADS)
Tai, X.; Mackay, D. S.
2015-12-01
Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and susceptibility to cavitation. The results showed that co-occurring species' morphological traits could alleviate or aggravate stress imposed by drought and should therefore be considered together with plant physiological traits in predicting plant mortality and ecosystem structural shift under future climate conditions.
Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization
NASA Astrophysics Data System (ADS)
Treseder, K. K.; Turner, K. M.
2005-12-01
Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P < 0.01). Nevertheless, it is not clear why AM hyphae responded differently to nitrogen fertilization in the different sites. Carbon stocks within root-associated AM structures increased significantly with nitrogen fertilization across all sites (P = 0.001), as did root-associated ECM structures (P = 0.021). The amount of carbon sequestered within living mycorrhizal structures (0.013 to 0.21 g m2), however, was modest compared to that of glomalin (91 g m2). We conclude that allocation by AM fungi to hyphal growth influenced the size of glomalin stocks in the soil, and that nitrogen fertilization altered investment in hyphal growth, with potential consequences for soil carbon storage. However, the nitrogen response was inconsistent among boreal forest ecosystems. An understanding of the mechanisms underlying this variation would improve our ability to predict ecosystem feedbacks to global change.
Zou, Ying-Ning; Wu, Qiang-Sheng; Li, Yan; Huang, Yong-Ming
2014-04-01
The effects of inoculation with Glomus mosseae, G. versiforme, and their mixture on plant growth, root system morphology, and sucrose and glucose contents of trifoliate orange (Poncirus trifoliata L.) were studied by pot culture. The results showed that all the inoculated treatments significantly increased the plant height, stem diameter, leaf number, and shoot and root biomass. In addition, the mycorrhizal treatments significantly increased the number of 1st, 2nd, and 3rd lateral roots. Inoculation with arbuscular mycorrhizal fungi significantly increased the root projected area, surface area, volume, and total root length (mainly 0-1 cm root length), but decreased the root average diameter. Meanwhile, G. versiforme showed the best effects. Mycorrhizal inoculation significantly increased the leaf sucrose and root glucose contents, but decreased the leaf glucose and root sucrose contents. Owing to the 'mycorrhizal carbon pool' in roots, inoculation with arbuscular mycorrhizal fungi resulted in high glucose content and low sucrose content of roots, which would facilitate the root growth and development, thereby the establishment of better root system morphology of host plants.
Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G
2014-07-01
The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Effect of different cover crops on C and N cycling in sorghum NT systems.
Frasier, Ileana; Quiroga, Alberto; Noellemeyer, Elke
2016-08-15
In many no-till (NT) systems, residue input is low and fallow periods excessive, for which reasons soil degradation occurs. Cover crops could improve organic matter, biological activity, and soil structure. In order to study changes in soil carbon, nitrogen and microbial biomass a field experiment (2010-2012) was set up with sorghum (Sorghum bicolor Moench.) monoculture and with cover crops. Treatments were control (NT with bare fallow), rye (Secale cereale L.) (R), rye with nitrogen fertilization (R+N), vetch (Vicia villosa Roth.) (V), and rye-vetch mixture (VR) cover crops. A completely randomized block design with 4 replicates was used. Soil was sampled once a year at 0.06 and 0.12m depth for total C, microbial biomass carbon (MBC) and-nitrogen (MBN) determinations. Shoot and root biomass of sorghum and cover crops, litter biomass, and their respective carbon and nitrogen contents were determined. Soil temperatures at 0.06 and 0.12m depth, volumetric water contents and nitrate concentrations were determined at sowing, and harvest of each crop, and during sorghum's vegetative phase. NT led to a small increase in MBC and MBN, despite low litter and root biomass residue. Cover crops increased litter, root biomass, total C, MBC, and MBN. Relationships between MBC, MBN, and root-C and -N adjusted to logistic models (R(2)=0.61 and 0.43 for C and N respectively). Litter cover improved soil moisture to 45-50% water filled pore space and soil temperatures not exceeding 25°C during the warmest month. Microbial biomass stabilized at 20.1gCm(-2) and 1.9gNm(-2) in the upper 0.06m. Soil litter disappearance was a good indicator of mineral N availability. These findings support the view that cover crops, specifically legumes in NT systems can increase soil ecosystem services related to water and carbon storage, habitat for biodiversity, and nutrient availability. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Huilin; Dong, Lihu; Li, Fengri; Zhang, Lianjun
2015-01-01
A total of 89 trees of Korean pine (Pinus koraiensis) were destructively sampled from the plantations in Heilongjiang Province, P.R. China. The sample trees were measured and calculated for the biomass and carbon stocks of tree components (i.e., stem, branch, foliage and root). Both compatible biomass and carbon stock models were developed with the total biomass and total carbon stocks as the constraints, respectively. Four methods were used to evaluate the carbon stocks of tree components. The first method predicted carbon stocks directly by the compatible carbon stocks models (Method 1). The other three methods indirectly predicted the carbon stocks in two steps: (1) estimating the biomass by the compatible biomass models, and (2) multiplying the estimated biomass by three different carbon conversion factors (i.e., carbon conversion factor 0.5 (Method 2), average carbon concentration of the sample trees (Method 3), and average carbon concentration of each tree component (Method 4)). The prediction errors of estimating the carbon stocks were compared and tested for the differences between the four methods. The results showed that the compatible biomass and carbon models with tree diameter (D) as the sole independent variable performed well so that Method 1 was the best method for predicting the carbon stocks of tree components and total. There were significant differences among the four methods for the carbon stock of stem. Method 2 produced the largest error, especially for stem and total. Methods 3 and Method 4 were slightly worse than Method 1, but the differences were not statistically significant. In practice, the indirect method using the mean carbon concentration of individual trees was sufficient to obtain accurate carbon stocks estimation if carbon stocks models are not available. PMID:26659257
NASA Astrophysics Data System (ADS)
Dijkstra, F. A.; Cheng, W.
2006-12-01
There is increasing evidence that living plant roots can significantly alter soil microbial activity and soil organic carbon (SOC) decomposition. Most research on rhizosphere effects on SOC has been done in short-term experiments using annual plants. Here we test if rhizosphere processes of two woody perennial plant species, Fremont cottonwood (Populus fremontii) and Ponderosa pine (Pinus ponderosa), affect SOC decomposition in three different soil types in a 395-day greenhouse experiment. We continuously labeled plants with depleted 13C, which allowed us to separate plant-derived CO2-C from original soil-derived CO2-C in soil respiration measurements. Results show that after 100 days of planting both cottonwood (by 79%) and pine (by 108%) significantly increased soil carbon decomposition compared to soils without plants ("primed C"). We observed no differences in primed C among the three soil types, despite their differences in total and labile carbon and available nitrogen content. Instead, primed C was positively related to foliar biomass. Our results indicate that rhizosphere effects on SOC decomposition play an important role in the carbon cycle of forested ecosystems.
County-level Estimates for Carbon Distribution in U.S. Croplands, 1990-2005
West, Tristram O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2008-01-01
Net Primary Productivity (NPP) for croplands can be estimated using a statistical method that includes factors for dry weight, harvest indices, and root:shoot ratios multiplied by yield data from the National Agricultural Statistics Service (NASS). This method has been documented and published by Prince et al. (2001), Hicke and Lobell (2004), and Hicke et al. (2004). We expanded this method by including factors for more crops and by using an estimated carbon content of 0.45 for agricultural crops to estimate (a) total net carbon uptake, (b) carbon in aboveground biomass, (c) carbon in belowground biomass, (d) carbon harvested and transported off site, and (e) the amount of carbon remaining on the surface following harvest. These five variables are included with their respective Federal Information Processing Standards (FIPS) codes for all counties in the contiguous U.S. from 1990-2005. A mean harvest efficiency of 0.95 was assumed across all crops. Total cropland NPP for the U.S. ranges from 378-527 Tg C yr-1 within years 1990-2005, and total carbon harvested and removed ranges from 161-228 Tg C yr-1 within years 1990-2005.
[Effects of tree species fine root decomposition on soil active organic carbon].
Liu, Yan; Wang, Si-Long; Wang, Xiao-Wei; Yu, Xiao-Jun; Yang, Yue-Jun
2007-03-01
With incubation test, this paper studied the effects of fine root decomposition of Alnus cremastogyne, Cunninghamia lanceolata and Michelia macclurei on the content of soil active organic carbon at 9 degrees C , 14 degrees C , 24 degrees C and 28 degrees C. The results showed that the decomposition rate of fine root differed significantly with test tree species, which was decreased in the order of M. macclurei > A. cremastogyne > C. lanceolata. The decomposition rate was increased with increasing temperature, but declined with prolonged incubation time. Fine root source, incubation temperature, and incubation time all affected the contents of soil microbial biomass carbon and water-soluble organic carbon. The decomposition of fine root increased soil microbial biomass carbon and water-soluble organic carbon significantly, and the effect decreased in the order of M. macclurei > A. cremastogyne > C. lanceolata. Higher contents of soil microbial biomass carbon and water-soluble organic carbon were observed at medium temperature and middle incubation stage. Fine root decomposition had less effect on the content of soil readily oxidized organic carbon.
[Variations of soil labile organic carbon along an altitude gradient in Wuyi Mountain].
Xu, Xia; Chen, Yue-Qin; Wang, Jia-She; Fang, Yan-Hong; Quan, Wei; Ruan, Hong-Hua; Xu, Zi-Kun
2008-03-01
By using sequential fumigation-incubation method, this paper determined the soil labile organic carbon (LOC) content under evergreen broadleaf forest, coniferous forest, sub-alpine dwarf forest, and alpine meadow along an altitude gradient in Wuyi Mountain National Nature Reserve in Fujian Province of China, with its relations to soil microbial biomass carbon (MBC), total organic carbon (TOC), total nitrogen (TN), and fine root biomass (FRB) analyzed. The results showed that soil LOC occupied 3.40%-7.46% of soil TOC, and soil MBC occupied 26.87%-80.38% of the LOC. The LOC under different forest stands increased significantly with altitude, and decreased with soil depth. Soil LOC had very significant correlations with soil MBC, TOC, TN and FRB, and its content was obviously higher at higher altitudes than at lower altitudes.
Carbon allocation to root and shoot systems of woody plants
Mark D. Coleman; J.G. Isebrands
1994-01-01
Carbon allocation to roots is of widespread and increasing interest due to a growing appreciation of the importance of root processes to whole-plant physiology and plant productivity. Carbon (C) allocation commonly refers to the distribution of C among plant organs (e.g., leaves, stems, roots); however, the term also applies to functional categories within organs such...
NASA Astrophysics Data System (ADS)
Kastovska, Eva; Edwards, Keith; Santruckova, Hana
2017-04-01
Carbon allocation pattern represents the plant strategy for growth and nutrient capture. Plants exhibit high plasticity in their allocation pattern and belowground C partitioning in response to changes in the availability of nutrients limiting their production, namely nitrogen (N). Any shift in the belowground C fluxes and partitioning between root production, exudation and other rhizodeposits could affect the soil microbial activity and soil organic matter turnover. We studied the influence of N availability on plant allocation patterns with emphasis on belowground C fluxes of two wetland graminoids, the competitive Glyceria maxima and the conservative Carex acuta. Plants were grown in pots under two levels of N availability. We combined pulse-labeling of plants with 13CO2 to track recent assimilates with estimation of the root death rate calculated from the difference between gross and net root growth rates for assessing the rhizodeposition flux to soil, and the contribution of root exudates and lysates from root turnover. We found that higher N supply enhanced root biomass and, subsequently, the total rhizodeposition. Both species shifted partitioning of belowground C towards higher mass-specific root production and turnover, with lower investments into root exudation. Therefore, the rhizodeposition flux was enriched in root-derived lysates over soluble exudates. Root exudates accounted for 50-70% of the rhizodeposition flux in conditions of low N availability, while it was only 20-40% under high N availability. The N fertilization induced changes in belowground C fluxes were species-specific, with more pronounced changes in the conservative Carex than the competitive Glyceria. In summary, soil N loading enhanced total C rhizodeposition and, simultaneously, the proportion of predominantly more complex root lysates over soluble root exudates, with potential implications for soil organic matter dynamics. Our results further stress the importance of species-specific responses to N loading in predicting total rhizodeposition flux and changes in its quality.
Partitioning Ecosystem Respiration Using Stable Carbon Isotopes in a Mixed C3 Annual Grassland
NASA Astrophysics Data System (ADS)
Tu, K. P.
2001-12-01
The stable carbon isotope ratio (δ 13C) of respired CO2 has been used to partition soil respiration into root and microbial components by exploiting the different δ 13C signals from C3 plants growing in a previously C4 dominated system (Rouchette, Angers and Flanagan 1999). We extend this approach and present data that attempts to partition ecosystem respiration using δ 13C analyses of all of the ecosystem compartments in a mixed C3 annual grassland that has not experienced recent C4 inputs. From December 2000 to February 2001 we measured δ 13C-CO2 respired from leaves, roots and sieved soil collected from a winter-active grassland near Ione, California. Two-source mixing models were used to calculate the contribution of each source to total system respiration by comparing their isotope signals to those from whole ecosystem respiration and soil surface efflux. Isotope ratios were measured on 10mL air samples in septum-capped vials using a Finnigan MAT Delta PlusXL IRMS/Gas Bench II interfaced to an autosampler (after Tu et al. 2001). The vials were filled with sample air in the field using a double-holed needle connected in a closed loop to a LI-6200 IRGA and a bottle containing the isolated samples (leaf, root, sieved soil, etc.). Leaves were clipped at ground level and roots and soil were separated by sieving soil cores. Sample δ 13CO2 signatures were determined by plotting the change in δ 13C against the inverse of CO2 concentration. On average, CO2 respired from sieved soil (-27.4o/oo+/-1.4) was slightly more depleted than that from leaves (-27.2o/oo+/-0.5), but much more depleted than the whole ecosystem (-24.9o/oo+/-0.6), the soil surface efflux (-23.8o/oo+/-0.9), and plant roots (-20.5o/oo+/-0.8). Based on these isotope values, leaf respiration comprised 33% of ecosystem respiration with 36% from roots and 31% from soil microbial respiration. Thus, over two-thirds of ecosystem respiration was autotrophic (plant-based) in origin with roughly one-third being heterotrophic. Belowground respiration, comprised of both autotrophic (root) and heterotrophic (microbial) components, accounted for nearly two-thirds of total ecosystem respiration. Root and microbial respiration each contributed to nearly half of total belowground respiration (53% and 47%, respectively). Similarly, plant respiration was divided nearly equally between that from roots (52%) and leaves (48%). Partitioning using natural abundance stable carbon isotope ratios was made possible because of the relatively large differences in δ 13C values among the various sources in this entirely C3 system. To our knowledge, such large isotopic differences in respired CO2 among different plant tissues and belowground components have not been documented before. Further research is needed to determine how such differences may arise and to establish if similar differences exist in other ecosystems or at different times of the growing season. Our results also imply that interpretation of above-canopy Keeling plot intercepts may be complicated by both multiple (and isotopically distinct) sources and by isotopic fractionation that occurs either during the respiration process itself or during the transfer of carbon compounds prior to respiration.
A paradox resolved: Sulfide acquisition by roots of seep tubeworms sustains net chemoautotrophy
Freytag, John K.; Girguis, Peter R.; Bergquist, Derk C.; Andras, Jason P.; Childress, James J.; Fisher, Charles R.
2001-01-01
Vestimentiferan tubeworms, symbiotic with sulfur-oxidizing chemoautotrophic bacteria, dominate many cold-seep sites in the Gulf of Mexico. The most abundant vestimentiferan species at these sites, Lamellibrachia cf. luymesi, grows quite slowly to lengths exceeding 2 meters and lives in excess of 170–250 years. L. cf. luymesi can grow a posterior extension of its tube and tissue, termed a “root,” down into sulfidic sediments below its point of original attachment. This extension can be longer than the anterior portion of the animal. Here we show, using methods optimized for detection of hydrogen sulfide down to 0.1 μM in seawater, that hydrogen sulfide was never detected around the plumes of large cold-seep vestimentiferans and rarely detectable only around the bases of mature aggregations. Respiration experiments, which exposed the root portions of L. cf. luymesi to sulfide concentrations between 51–561 μM, demonstrate that L. cf. luymesi use their roots as a respiratory surface to acquire sulfide at an average rate of 4.1 μmol⋅g−1⋅h−1. Net dissolved inorganic carbon uptake across the plume of the tubeworms was shown to occur in response to exposure of the posterior (root) portion of the worms to sulfide, demonstrating that sulfide acquisition by roots of the seep vestimentiferan L. cf. luymesi can be sufficient to fuel net autotrophic total dissolved inorganic carbon uptake. PMID:11687647
Hu, Ling; Xie, Yan; Fan, Shoujin; Wang, Zongshuai; Wang, Fahong; Zhang, Bin; Li, Haosheng; Song, Jie; Kong, Lingan
2018-07-01
Water deficit is one of the major factors limiting crop productivity worldwide. Plant roots play a key role in uptaking water, perceiving and transducing of water deficit signals to shoot. Although the mechanisms of drought-tolerance have been reported recently, the transcriptional regulatory network of wheat root response to water stress has not been fully understood. In this study, drought-tolerant cultivar JM-262 and susceptible cultivar LM-2 are planted to characterize the root transcriptional changes and physiological responses to water deficit. A total of 8197 drought tolerance-associated differentially expressed genes (DEGs) are identified, these genes are mainly mapped to carbon metabolism, flavonoid biosynthesis, and phytohormone signal transduction. The number and expression level of DEGs involved in antioxidative and antiosmotic stresses are more enhanced in JM-262 under water stress. Furthermore, we find the DEGs related to root development are much more induced in JM-262 in phytohormone signal transduction and carbon metabolism pathway. In conclusion, JM-262 may alleviate the damage of drought by producing more osmoprotectants, ROS scavengers, biomass and energy. Interestingly, hormone signaling and cross-talk probably play an important role in promoting JM-262 greater root systems to take up more water, higher capabilities to induce more drought-related DEGs and higher resisitance to oxidative stresse. Copyright © 2018 Elsevier B.V. All rights reserved.
Subsurface soil carbon losses offset surface carbon accumulation in abandoned agricultural fields
NASA Astrophysics Data System (ADS)
Yang, Y.; Knops, J. M. H.
2017-12-01
Soil carbon is widely understood to accumulate after agricultural abandonment. However, most of the studies have been focused on shallow depths (10 to 30 cm), and there is a lack of deeper soil carbon data. It was reported that in temperate grasslands, 58% of the soil organic carbon in the first meter was stored between 20 and 100 cm, and organic matter in deeper soil might also be susceptible to agricultural disturbance. We used repeated sampling in 2001 and 2014 to directly measure rates of soil carbon change in both surface and subsurface soil in 21 abandoned agricultural fields at Cedar Creek Ecosystem Science Reserve, MN. Congruent with many other studies, we found carbon accumulated 384.2 C g/m2 in surface soil (0 - 20 cm) over the 13 years. However, we also found carbon pool declined 688.1 C g/m2 in the subsurface soil (40-100 cm), which resulted in a net total loss of soil carbon. We investigated the ecosystem carbon pools and fluxes to explore the mechanisms of the observed soil carbon changes. We found root carbon was not significantly correlated with soil carbon in any of the depth. In situ soil incubation showed nitrogen mineralization rates in subsurface soil are lower than that of surface soil. However, the estimated nitrogen and carbon output through decomposition is higher than inputs from roots, therefore leading to carbon loss in subsurface soil. These results suggest that the decomposition of soil organic matter by microorganisms in subsurface soil is significant, and should be incorporated in ecosystem carbon budget models.
Biogeomorphic and pedogenic impact of trees in three soil regions
NASA Astrophysics Data System (ADS)
Pawlik, Łukasz; Šamonil, Pavel
2017-04-01
Vegetation is an important factor of soil formation which together with topography, geology, climate and time modulates chemical and physical soil characteristics. Tree/soils/regolith interaction was recognized in recently uprooted trees and relict treethrow mounds and pits. In our present study we focus on effects of individual standing trees in pedogenesis and biogeomorphic processes. Constant pressure of tree root systems, changing hydric and temperature regime, together with rhizospheric microbes and root mycorrhizal associations may cause multiscale alterations to regolith and soils. We hypothesize different soil chemical properties under old tree stumps compared to unaffected control pedon resulted from affected pedogenetical pathways at the analyzed microsites. The present project highlights changes in soil properties under tree stumps in three different soil regions: Haplic Cambisols (Turbacz Reserve, Gorce Mts., Poland, hereafter HC), Entic Podzols (Zofin Reserve, Novohradske Mts., the Czech Republic, hereafter EP), Albic Podzols (Upper Peninsula, Michigan, USA, hereafter AP). These three regions represent different degrees of soil weathering and leaching. Pedons under fir, beech and hemlock stumps, as well as unaffected control pedons were sampled and laboratory analyzed for several chemical properties; active and exchangeable soil reaction, oxidized carbon, total nitrogen, and various forms of Fe, Al, Mn and Si. At the same time we studied age of the sampled tree stumps, as well as age of their death using radiocarbon technique and dendrochronology. While no effects of the soil-trees interactions can be visible on hillslope surface, we found important evidence of biomechanical activities of tree roots (e.g. root channels) and biochemical changes which add to the discussion about biogeomorphic and pedogenic significance of trees and tree roots as drivers of biomechanical weathering and soil processes in the decadal and centennial time scales. Preliminary results from the first site at Turbacz (fir tree stump) indicate some significant differences with higher amount of Cox, clay and C-THS (carbon content in total humus substances), pHH2O and Fe in the control soil profile as compared to stump soil profiles. Content of various chemical indicators were more homogenous between soil profiles at the second microsite (beech). There were significant differences between soil regions for the following chemical properties: N (nitrogen) (AP vs. EP), Cox (oxidized carbon) (AP vs. EP), C-HA (carbon content in humic acids) (AP vs. HC), C-FA (carbon content in fulvic acids) (AP vs. EP), Fed (crystalline forms of iron) (AP and EP vs. HC).
John E. Major; Kurt H. Johnsen; Debby C. Barsi; Moira Campbell
2012-01-01
Total belowground biomass, soil C, and N mass were measured in plots of 32-year-old black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and a wet site. Stump root biomass was greater on the wet than on the dry site;...
NASA Astrophysics Data System (ADS)
Zhao, L.; Wu, W.; Xu, X.; Xu, Y.
2014-04-01
We examined bulk soil properties and molecular biomarker distributions in surface soils from Inner Mongolia grasslands in order to understand the responses of soil organic matter to different land-use. The total of sixteen soils were collected from severely degraded grassland by overgrazing (DG), native grassland without apparent anthropogenic disturbance (NG), groundwater-sustaining grassland (GG) and restored grassland from previous potato cropland (RG). Compared to NG, soil organic carbon content was lower by 50% in DG, but higher by six-fold in GG and one-fold in RG. The δ13C values of soil organic carbon were -24.2 ± 0.6‰ in DG, -24.9 ± 0.6‰ in NG, -25.1 ± 0.1‰ in RG and -26.2 ± 0.6‰ in GG, reflecting different degradation degrees of soil organic matter or different water use efficiencies. The soils in DG contained the lowest abundance of aliphatic lipids (n-alkanes, n-alkanols, n-alkanoic acids, ω-hydroxylalkanoic acids and α-hydroxylalkanoic acids) and lignin-phenols, suggesting selective removal of these biochemically recalcitrant biomarkers with grassland degradation by microbial respiration or wind erosion. Compared to NG, the soils in GG and RG increased ω-hydroxylalkanoic acids by 60-70%, a biomarker for suberin from roots, and increased α-hydroxylalkanoic acids by 10-20%, a biomarker for both cutin and suberin. Our results demonstrate that the groundwater supply and cultivation-restoration practices in Inner Mongolia grasslands not only enhance soil organic carbon sequestration, but also change the proportions of shoot vs. root-derived carbon in soils. This finding has important implications for global carbon cycle since root derived aliphatic carbon has a longer residence time than the aboveground tissue-derived carbon in soils.
NASA Astrophysics Data System (ADS)
Zhao, L.; Wu, W.; Xu, X.; Xu, Y.
2014-09-01
We examined bulk soil properties and molecular biomarker distributions in surface soils from Inner Mongolian grasslands in order to understand the responses of soil organic matter to different land use. A total of 16 soils were collected from severely degraded grassland by overgrazing (DG), native grassland without apparent anthropogenic disturbance (NG), groundwater-sustaining grassland (GG) and restored grassland from previous potato cropland (RG). Compared to NG, soil organic carbon content was lower by 50% in DG, but higher by six-fold in GG and one-fold in RG. The δ13C values of soil organic carbon were -24.2 ± 0.6‰ in DG, -24.9 ± 0.6‰ in NG, -25.1 ± 0.1‰ in RG and -26.2 ± 0.6‰ in GG, reflecting different degradation degrees of soil organic matter or different water use efficiencies. The soils in DG contained the lowest abundance of aliphatic lipids (n-alkanes, n-alkanols, n-alkanoic acids, ω-hydroxylalkanoic acids and α-hydroxyalkanoic acids) and lignin-phenols, suggesting selective removal of these biochemically recalcitrant biomarkers with grassland degradation by microbial respiration or wind erosion. Compared to NG, the soils in GG and RG increased ω-hydroxylalkanoic acids by 60-70%, a biomarker for suberin from roots, and increased α-hydroxylalkanoic acids by 10-20%, a biomarker for both cutin and suberin. Our results demonstrate that the groundwater supply and cultivation-restoration practices in Inner Mongolian grasslands not only enhance soil organic carbon sequestration, but also change the proportions of shoot- versus root-derived carbon in soils. This finding has important implications for the global carbon cycle since root-derived aliphatic carbon has a longer residence time than the aboveground tissue-derived carbon in soils.
Dali Guo; Harbin Li; Robert J. Mitchell; Han Wenxuan; Joseph J. Hendricks; Timothy J. Fahey; Ronald L. Hendrick
2008-01-01
Fine roots constitute a large and dynamic component of the carbon cycles of terrestrial ecosystems. The reported fivefold discrepancy in turnover estimates between median longevity (ML) from minirhizotrons and mean residence time (MRT) using carbon isotopes may have global consequences.
Yin, Wei Qin; Jing, Hao Qi; Wang, Ya Bo; Wei, Si Yu; Sun, Yue; Wang, Sheng Sen; Wang, Xuai Zhi
2018-02-01
The elevated concentration of tropospheric ozone (O 3 ) is an important global climate change driver, with adverse impacts on soil ecological environment and crop growth. In this study, a pot experiment was carried out in an open top chamber (OTC), to investigate the effects of elevated ozone concentration on soil enzyme activities (catalase, polyphenol oxidase, dehydrogenase and invertase), organic acids contents (oxalic acid, citric acid and malic acid) at different growth stages (tillering, jointing, heading and ripening stages) of wheat, and combined with the rhizospheric soil physicochemical properties and plant root characteristics to analyze the underlying reasons. The results showed that, elevated ozone concentration increased soil catalase, polyphenol oxidase, dehydrogenase and invertase activities at wheat ripening period to different degrees, with the effects on the activities of catalase and polyphenol oxidase being statistically significant. At the heading stage, activities of dehydrogenase and invertase were significantly increased by up to 76.7%. At the ripening stage, elevated ozone concentration significantly increased the content of citric acid and malic acid and redox potential (Eh) in rhizospheric soil, but reduced soil pH, electrical conductivity, total carbon and nitrogen. For root characteristics, elevated ozone concentrations significantly reduced the wheat root biomass, total root length and root surface area but increased the average root diameter.
The contribution of fine roots to peatland stability under changing environmental conditions
NASA Astrophysics Data System (ADS)
Malhotra, A.; Brice, D. J.; Childs, J.; Phillips, J.; Hanson, P. J.; Iversen, C. M.
2017-12-01
Fine-root production and traits are closely linked with ecosystem nutrient and water fluxes, and may regulate these fluxes in response to environmental change. Plant strategies can shift to favoring below- over aboveground biomass allocation when nutrients or moisture are limited. Fine-roots traits such as root tissue density (RTD) or specific root length (SRL) can also adapt to the environment, for example, by maximizing the area of soil exploited by decreasing RTD and increasing SRL during dry conditions. Fine-root trait plasticity could contribute to the stability of peatland carbon function in response to environmental change. However, the extent and mechanisms of peatland fine-root plasticity are unknown. We investigated fine-root growth and traits and their link to environmental factors and aboveground dynamics at SPRUCE (Spruce and Peatland Responses Under Changing Environments), a warming and elevated CO2 (eCO2) experiment in an ombrotrophic peatland. In the first growing season of whole ecosystem warming, fine-root production increased with warming and drying. Above- versus belowground allocation strategies varied by plant functional type (PFT). In shrubs, contrary to our expectation, aboveground- to fine-root production allocation ratio increased with dryer conditions, perhaps as a response to a concurrent increase in nutrients. Trait response hypotheses were largely supported, with RTD decreasing and SRL increasing with warming; however, response varied among PFTs. Once eCO2 was turned on in the second growing season, preliminary results suggest interactive effects of warming and eCO2 on total fine-root production: production decreased or increased with warming in ambient or elevated CO2 plots, respectively. Both trait and production responses to warming and eCO2 varied by microtopography and depth. Our results highlight plasticity of fine-root traits and biomass allocation strategies; the extent and mechanism of which varies by PFT. We will summarize our results using a trait-based approach as a first step toward modeling fine-root contributions to peatland carbon stability in response to environmental change.
Retzlaff, W. A.; Weinstein, D. A.; Laurence, J. A.; Gollands, B.
1996-01-01
Because of difficulties in directly assessing root responses of mature forest trees exposed to atmospheric pollutants, we have used the model TREGRO to analyze the effects of a 3- and a 10-year exposure to ozone (O(3)) on root dynamics of a simulated 160-year-old sugar maple (Acer saccharum Marsh.) tree. We used existing phenological, allometric, and growth data to parameterize TREGRO to produce a simulated 160-year-old tree. Simulations were based on literature values for sugar maple fine root production and senescence and the photosynthetic responses of sugar maple seedlings exposed to O(3) in open-top chambers. In the simulated 3-year exposure to O(3), 2 x ambient atmospheric O(3) concentrations reduced net carbon (C) gain of the 160-year-old tree. This reduction occurred in the C storage pools (total nonstructural carbohydrate, TNC), with most of the reduction occurring in coarse (woody) roots. Total fine root production and senescence were unaffected by the simulated 3-year exposure to O(3). However, extending the simulated O(3) exposure period to 10 years depleted the TNC pools of the coarse roots and reduced total fine root production. Similar reductions in TNC pools have been observed in forest-grown sugar maple trees exhibiting symptoms of stress. We conclude that modeling can aid in evaluating the belowground response of mature forest trees to atmospheric pollution stress and could indicate the potential for gradual deterioration of tree health under conditions of long-term stress, a situation similar to that underlying the decline of sugar maple trees.
Fahey, Catherine; York, Robert A; Pawlowska, Teresa E
2012-01-01
Interactions with soil microbiota determine the success of restoring plants to their native habitats. The goal of our study was to understand the effects of restoration practices on interactions of giant sequoia Sequoiadendron giganteum with arbuscular mycorrhizal (AM) fungi (Glomeromycota). Natural regeneration of Sequoiadendron is threatened by the absence of severe fires that create forest canopy gaps. Generating artificial canopy gaps offers an alternative tool for giant sequoia restoration. We investigated the effect of regeneration practices, including (i) sapling location within gaps, (ii) gap size and (iii) soil substrate, on AM fungal colonization of giant sequoia sapling roots in a native giant sequoia grove of the Sierra Nevada, California. We found that the extent of AM fungal root colonization was positively correlated with sapling height and light availability, which were related to the location of the sapling within the gap and the gap size. While colonization frequency by arbuscules in saplings on ash substrate was higher relative to saplings in mineral soil, the total AM fungal root colonization was similar between the substrates. A negative correlation between root colonization by Glomeromycota and non-AM fungal species indicated antagonistic interactions between different classes of root-associated fungi. Using DNA genotyping, we identified six AM fungal taxa representing genera Glomus and Ambispora present in Sequoiadendron roots. Overall, we found that AM fungal colonization of giant sequoia roots was associated with availability of plant-assimilated carbon to the fungus rather than with the AM fungal supply of mineral nutrients to the roots. We conclude that restoration practices affecting light availability and carbon assimilation alter feedbacks between sapling growth and activity of AM fungi in the roots.
Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.
1997-01-01
Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater for evergreen forests than for deciduous forests, suggesting that carbon allocation patterns differ between boreal evergreen and deciduous forests. In all stands, NPPFR consistently exceeded annual fine root turnover and the differences were larger for stands in the NSA than for stands in the SSA, whereas the difference between study areas was only significant for black spruce. The imbalance between NPPFR and fine root turnover is sufficient to explain the net accumulation of carbon in boreal forest soils.
Critical evaluation of 13C natural abundance techniques to partition soil-surface CO2 efflux
NASA Astrophysics Data System (ADS)
Snell, H.; Midwood, A. J.; Robinson, D.
2013-12-01
Soil is the largest terrestrial store of carbon and the flux of CO2 from soils to the atmosphere is estimated at around 98 Pg (98 billion tonnes) of carbon per year. The CO2 efflux from the soil surface is derived from plant root and rhizosphere respiration (autotrophically fuelled) and microbial degradation of soil organic matter (heterotrophic respiration). Heterotrophic respiration is a key determinant of an ecosystem's long-term C balance, but one that is difficult to measure in the field. One approach involves partitioning the total soil-surface CO2 efflux between heterotrophic and autotrophic components; this can be done using differences in the natural abundance stable isotope ratios (δ13C) of autotrophic and heterotrophic CO2 as the end-members of a simple mixing model. In most natural, temperate ecosystems, current and historical vegetation cover (and therefore also plant-derived soil organic matter) is produced from C3 photosynthesis so the difference in δ13C between the autotrophic and heterotrophic CO2 sources is small. Successful partitioning therefore requires accurate and precise measurements of the δ13CO2 of the autotrophic and heterotrophic end-members (obtained by measuring the δ13CO2 of soil-free roots and root-free soil) and of total soil CO2 efflux. There is currently little consensus on the optimum measurement protocols. Here we systematically tested some of the most commonly used techniques to identify and minimise methodological errors. Using soil-surface chambers to sample total CO2 efflux and a cavity ring-down spectrometer to measure δ13CO2 in a partitioning study on a Scottish moorland, we found that: using soil-penetrating collars leads to a more depleted chamber measurement of total soil δ13CO2 as a result of severing roots and fungal hyphae or equilibrating with δ13CO2 at depth or both; root incubations provide an accurate estimate of in-situ root respired δ13CO2 provided they are sampled within one hour; the δ13CO2 from root-free soil changes rapidly during incubation and even CO2 sampled very soon after excavation is unlikely to give an accurate estimate of the heterotrophic isotope end-member, to solve this we applied non-linear regressions to the change in δ13CO2 with time to derive the heterotrophic end-member in undisturbed soil.
Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K1[OPEN
Schneider, Hannah M.
2017-01-01
Root cortical senescence (RCS) in Triticeae reduces nutrient uptake, nutrient content, respiration, and radial hydraulic conductance of root tissue. We used the functional-structural model SimRoot to evaluate the functional implications of RCS in barley (Hordeum vulgare) under suboptimal nitrate, phosphorus, and potassium availability. The utility of RCS was evaluated using sensitivity analyses in contrasting nutrient regimes. At flowering (80 d), RCS increased simulated plant growth by up to 52%, 73%, and 41% in nitrate-, phosphorus-, and potassium-limiting conditions, respectively. Plants with RCS had reduced nutrient requirement of root tissue for optimal plant growth, reduced total cumulative cortical respiration, and increased total carbon reserves. Nutrient reallocation during RCS had a greater effect on simulated plant growth than reduced respiration or nutrient uptake. Under low nutrient availability, RCS had greater benefit in plants with fewer tillers. RCS had greater benefit in phenotypes with fewer lateral roots at low nitrate availability, but the opposite was true in low phosphorus or potassium availability. Additionally, RCS was quantified in field-grown barley in different nitrogen regimes. Field and virtual soil coring simulation results demonstrated that living cortical volume per root length (an indicator of RCS) decreased with depth in younger plants, while roots of older plants had very little living cortical volume per root length. RCS may be an adaptive trait for nutrient acquisition by reallocating nutrients from senescing tissue and secondarily by reducing root respiration. These simulated results suggest that RCS merits investigation as a breeding target for enhanced soil resource acquisition and edaphic stress tolerance. PMID:28667049
Zhang, Wenxu; Mao, Peisheng; Li, Yuan; Wang, Mingya; Xia, Fangshan; Wang, Hui
2017-02-07
The distribution of carbon from a branch setting pod in alfalfa was investigated during the seed development of seeds to determine the relative contribution of pod and leaf photoassimilates to the total C balance and to investigate the partitioning of these photoassimilates to other plant organs. A 13 Clabeling procedure was used to label C photoassimilates of pods and leaves in alfalfa, and the Δ 13 C values of a pod, leaves, a section of stem and roots were measured during seed development on day 10, 15, 20 and 25 after labeling of the pod. The results showed that the alfalfa pod had photosynthetic capacity early in the development of seeds, and that pod photosynthesis could provide carbon to alfalfa organs including seeds, pods, leaves, stems and roots, in addition to leaf photosynthesis. Photosynthesis in the pod affected the total C balance of the alfalfa branch with the redistribution of a portion of pod assimilates to other plant organs. The assimilated 13 C of the pod was used for the growth requirements of plant seeds and pods. The requirements for assimilated C came primarily from the young pod in early seed development, with later requirements provided primarily from the leaf.
Integration and Improvement of Geophysical Root Biomass Measurements for Determining Carbon Credits
NASA Astrophysics Data System (ADS)
Boitet, J. I.
2013-12-01
Carbon trading schemes fundamentally rely on accurate subsurface carbon quantification in order for governing bodies to grant carbon credits inclusive of root biomass (What is Carbon Credit. 2013). Root biomass makes up a large chunk of the subsurface carbon and is difficult, labor intensive, and costly to measure. This paper stitches together the latest geophysical root measurement techniques into site-dependent recommendations for technique combinations and modifications that maximize large-scale root biomass measurement accuracy and efficiency. "Accuracy" is maximized when actual root biomass is closest to measured root biomass. "Efficiency" is maximized when time, labor, and cost of measurement is minimized. Several combinations have emerged which satisfy both criteria under different site conditions. Use of ground penetrating radar (GPR) and/or electrical resistivity tomography (ERT) allow for large tracts of land to be surveyed under appropriate conditions. Among other characteristics, GPR does best with detecting coarse roots in dry soil. ERT does best in detecting roots in moist soils, but is especially limited by electrode configuration (Mancuso, S. 2012). Integration of these two technologies into a baseline protocol based on site-specific characteristics, especially soil moisture and plants species heterogeneity, will drastically theoretically increase efficiency and accuracy of root biomass measurements. Modifications of current measurement protocols using these existing techniques will also theoretically lead to drastic improvements in both accuracy and efficiency. These modifications, such as efficient 3D imaging by adding an identical electrode array perpendicular to the first array used in the Pulled Array Continuous Electrical Profiling (PACEP) technique for ERT, should allow for more widespread application of these techniques for understanding root biomass. Where whole-site measurement is not feasible either due to financial, equipment, or physical limitations, measurements from randomly selected plots must be assumed representative of the entire system and scaled up. This scaling introduces error roughly inversely proportional to the number and size of plots measured. References Mancuso, S. (2012). Measuring roots: An updated approach Springer. What is carbon credit. (2013). Retrieved 7/20, 2013, from http://carbontradexchange.com/knowledge/what-is-carbon-credit
Liu, Yanchun; Liu, Shirong; Wan, Shiqiang; Wang, Jingxin; Wang, Hui; Liu, Kuan
2017-01-01
Fine root dynamics play a critical role in regulating carbon (C) cycling in terrestrial ecosystems. Examining responses of fine root biomass and its decomposition to altered precipitation pattern and climate warming is crucial to understand terrestrial C dynamics and its feedback to climate change. Fine root biomass and its decomposition rate were investigated in a warm temperate oak forest through a field manipulation experiment with throughfall reduction and soil warming conducted. Throughfall reduction significantly interacted with soil warming in affecting fine root biomass and its decomposition. Throughfall reduction substantially increased fine root biomass and its decomposition in unheated plots, but negative effects occurred in warmed plots. Soil warming significantly enhanced fine root biomass and its decomposition under ambient precipitation, but the opposite effects exhibited under throughfall reduction. Different responses in fine root biomass among different treatments could be largely attributed to soil total nitrogen (N), while fine root decomposition rate was more depended on microbial biomass C and N. Our observations indicate that decreased precipitation may offset the positive effect of soil warming on fine root biomass and decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.
Roumet, Catherine; Birouste, Marine; Picon-Cochard, Catherine; Ghestem, Murielle; Osman, Normaniza; Vrignon-Brenas, Sylvain; Cao, Kun-Fang; Stokes, Alexia
2016-05-01
Although fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes. The findings of this study support the existence of a RES representing an axis of trait variation in which root respiration was positively correlated to nitrogen concentration and specific root length and negatively correlated to the root dry matter content, lignin : nitrogen ratio and the remaining mass after decomposition. This pattern of traits was highly consistent within graminoids but less consistent within eudicots, as a result of an uncoupling between decomposability and morphology, and of heterogeneity of individual roots of eudicots within the fine-root pool. The positive relationship found between root respiration and decomposability is essential for a better understanding of vegetation-soil feedbacks and for improving terrestrial biosphere models predicting the consequences of plant community changes for carbon cycling. © 2016 CNRS. New Phytologist © 2016 New Phytologist Trust.
Zhang, Y; Xie, J-B; Li, Y
2017-03-01
Tree mortality induced by drought is one of the most complex processes in ecology. Although two mechanisms associated with water and carbon balance are proposed to explain tree mortality, outstanding problems still exist. Here, in order to test how the root system benefits survival and resprouting of Haloxylon ammodendron seedlings, we examined the various water- and carbon-related physiological indicators (shoot water potential, photosynthesis, dark respiration, hydraulic conductance and non-structural carbohydrates [NSC]) of H. ammodendron seedlings, which were grown in drought and control conditions throughout a grow season in greenhouse. The survival time of the seedling root system (died 70 days after drought) doubled the survival time of the shoot (died at 35 days). Difference in survival time between shoot and root resulted from sustained root respiration supported by increased NSC in roots under drought. Furthermore, investment into the root contributed to resprouting following drought. Based on these results, a death criterion is proposed for this species. The time sequence of major events indicated that drought shifted carbon allocation between shoot and root and altered the flux among different sinks (growth, respiration or storage). The interaction of water and carbon processes determined death or survival of droughted H. ammodendron seedlings. These findings revealed that the 'root protection' strategy is critical in determining survival and resprouting of this species, and provided insights into the effects of carbon and water dynamics on tree mortality. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa.
Moore, Sam; Adu-Bredu, Stephen; Duah-Gyamfi, Akwasi; Addo-Danso, Shalom D; Ibrahim, Forzia; Mbou, Armel T; de Grandcourt, Agnès; Valentini, Riccardo; Nicolini, Giacomo; Djagbletey, Gloria; Owusu-Afriyie, Kennedy; Gvozdevaite, Agne; Oliveras, Imma; Ruiz-Jaen, Maria C; Malhi, Yadvinder
2018-02-01
Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics. © 2017 John Wiley & Sons Ltd.
Initial Net CO2 Uptake Responses and Root Growth for a CAM Community Placed in a Closed Environment
NOBEL, PARK S.; BOBICH, EDWARD G.
2002-01-01
To help understand carbon balance between shoots and developing roots, 41 bare‐root crassulacean acid metabolism (CAM) plants native to the Sonoran Desert were studied in a glass‐panelled sealable room at day/night air temperatures of 25/15 °C. Net CO2 uptake by the community of Agave schottii, Carnegia gigantea, Cylindropuntia versicolor, Ferocactus wislizenii and Opuntia engelmannii occurred 3 weeks after watering. At 4 weeks, the net CO2 uptake rate measured for south‐east‐facing younger parts of the shoots averaged 1·94 µmol m–2 s–1 at night, considerably higher than the community‐level nocturnal net CO2 uptake averaged over the total shoot surface, primarily reflecting the influences of surface orientation on radiation interception (predicted net CO2 uptake is twice as high for south‐east‐facing surfaces compared with all compass directions). Estimated growth plus maintenance respiration of the roots averaged 0·10 µmol m–2 s–1 over the 13‐week period, when the community had a net carbon gain from the atmosphere of 4 mol C while the structural C incorporated into the roots was 23 mol. Thus, these five CAM species diverted all net C uptake over the 13‐week period plus some existing shoot C to newly developing roots. Only after sufficient roots develop to support shoot water and nutrient requirements will the plant community have net above‐ground biomass gains. PMID:12466099
Effect of woody and herbaceous plants on chemical weathering of basalt material
NASA Astrophysics Data System (ADS)
Mark, N.; Dontsova, K.; Barron-Gafford, G. A.
2011-12-01
Worldwide, semi-arid landscapes are transitioning from shallow-rooted grasslands to mixed vegetation savannas composed of deeper-rooted shrubs. These contrasting growth forms differentially drive below-ground processes because they occupy different soil horizons, are differentially stressed by periods of drought, and unequally stimulate soil weathering. Our study aims to determine the effect of woody and herbaceous plants on weathering of granular basalt serving as a model for soil. We established pots with velvet mesquite (Prosopis veluntina), sideoats grama (Bouteloua curtipendula), and bare-soil pots within two temperature treatments in University of Arizona Biosphere 2. The Desert biome served as the ambient temperature treatment, while the Savanna biome was maintained 4°C warmer to simulate projected air temperatures if climate change continues unabated. Rhizon water samplers were installed at a depth of one inch from the soil surface to monitor root zone exudates (total dissolved carbon and nitrogen), dissolved inorganic carbon, and lithogenic elements resulting from basalt weathering. Soil leachates were collected through the course of the experiment. The anion content of the leachates was determined using the ICS-5000 Reagent-Free ion chromatography system. Dissolved carbon and nitrogen were analyzed by combustion using the Shimadzu TOC-VCSH with TN module. Metals and metalloids were measured using inductively coupled plasma mass spectrometry. Irrigation of the pots was varied in time to simulate periods of drought and determine the effect of stress on root exudation. Leachates from all treatments displayed higher pH and electrical conductivity than water used for irrigation indicating weathering. On average, leachates from the potted grasses displayed higher pH and electrical conductivity than mesquites. This agreed with higher concentrations of organic carbon, a measure of root exudation, and inorganic carbon, measure of soil respiration. Both organic acids exuded by plants and respired CO2 have been linked to mineral weathering. Increased weathering in grass treatments also resulted in higher concentrations of plant nutrients. No effect of temperature on plant exudation or basalt weathering was observed in the course of the experiment. This work links physiological plant responses to temperature and water stress by two vegetation types with below-ground processes that result in soil evolution.
Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage
Garcillán, Pedro P.
2016-01-01
Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900–34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth–age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico’s arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region. PMID:27035950
Does the increased air humidity affect soil respiration and carbon stocks?
NASA Astrophysics Data System (ADS)
Kukumägi, Mai; Celi, Luisella; Said-Pullicino, Daniel; Kupper, Priit; Sõber, Jaak; Lõhmus, Krista; Kutti, Sander; Ostonen, Ivika
2013-04-01
Climate manipulation experiments at ecosystem-scale enable us to simulate, investigate and predict changes in carbon balance of forest ecosystems. Considering the predicted increase in air humidity and precipitation for northern latitudes, this work aimed at investigating the effect of increased air humidity on soil respiration, distribution of soil organic matter (SOM) among pools having different turnover times, and microbial, fine root and rhizome biomass. The study was carried out in silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in a Free Air Humidity Manipulation (FAHM) experimental facility containing three humidified (H; on average 7% above current ambient levels since 2008) and three control (C) plots. Soil respiration rates were measured monthly during the growing season using a closed dynamic chamber method. Density fractionation was adopted to separate SOM into two light fractions (free and aggregate-occluded particulate organic matter, fPOM and oPOM respectively), and one heavy fraction (mineral-associated organic matter, MOM). The fine root and rhizome biomass and microbial data are presented for silver birch stands only. In 2011, after 4 growing seasons of humidity manipulation soil organic carbon contents were significantly higher in C plots than H plot (13.5 and 12.5 g C kg-1, respectively), while soil respiration tended to be higher in the latter. Microbial biomass and basal respiration were 13 and 14% higher in H plots than in the C plots, respectively. Twice more fine roots of trees were estimated in H plots, while the total fine root and rhizome biomass (tree + understory) was similar in C and H plots. Fine root turnover was higher for both silver birch and understory roots in H plots. Labile SOM light fractions (fPOM and oPOM) were significantly smaller in H plots with respect to C plots (silver birch and hybrid aspen stands together), whereas no differences were observed in the contents of the more stable MOM. These results strongly suggest that, apart from the predicted increase in temperature and atmospheric carbon and nitrogen concentrations, an increase in free air humidity as a result of climate change may significantly influence the complex belowground carbon cycling by affecting biomass production, soil respiration and organic matter turnover.
Soil Carbon Budget During Establishment of Short Rotation Woody Crops
NASA Astrophysics Data System (ADS)
Coleman, M. D.
2003-12-01
Carbon budgets were monitored following forest harvest and during re-establishment of short rotation woody crops. Soil CO2 efflux was monitored using infared gas analyzer methods, fine root production was estimated with minirhizotrons, above ground litter inputs were trapped, coarse root inputs were estimated with developed allometric relationships, and soil carbon pools were measured in loblolly pine and cottonwood plantations. Our carbon budget allows evaluation of errors, as well as quantifying pools and fluxes in developing stands during non-steady-state conditions. Soil CO2 efflux was larger than the combined inputs from aboveground litter fall and root production. Fine-root production increased during stand development; however, mortality was not yet equivalent to production, showing the belowground carbon budget was not yet in equilibrium and root carbon standing crop was accruing. Belowground production was greater in cottonwood than pine, but the level of pine soil CO2 efflux was equal to or greater than that of cottonwood, indicating heterotrophic respiration was higher for pine. Comparison of unaccounted efflux with soil organic carbon changes provides verification of loss or accrual.
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.
2010-12-01
The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.
ForCent model development and testing using the Enriched Background Isotope Study experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parton, W.J.; Hanson, P. J.; Swanston, C.
The ForCent forest ecosystem model was developed by making major revisions to the DayCent model including: (1) adding a humus organic pool, (2) incorporating a detailed root growth model, and (3) including plant phenological growth patterns. Observed plant production and soil respiration data from 1993 to 2000 were used to demonstrate that the ForCent model could accurately simulate ecosystem carbon dynamics for the Oak Ridge National Laboratory deciduous forest. A comparison of ForCent versus observed soil pool {sup 14}C signature ({Delta} {sup 14}C) data from the Enriched Background Isotope Study {sup 14}C experiment (1999-2006) shows that the model correctly simulatesmore » the temporal dynamics of the {sup 14}C label as it moved from the surface litter and roots into the mineral soil organic matter pools. ForCent model validation was performed by comparing the observed Enriched Background Isotope Study experimental data with simulated live and dead root biomass {Delta} {sup 14}C data, and with soil respiration {Delta} {sup 14}C (mineral soil, humus layer, leaf litter layer, and total soil respiration) data. Results show that the model correctly simulates the impact of the Enriched Background Isotope Study {sup 14}C experimental treatments on soil respiration {Delta} {sup 14}C values for the different soil organic matter pools. Model results suggest that a two-pool root growth model correctly represents root carbon dynamics and inputs to the soil. The model fitting process and sensitivity analysis exposed uncertainty in our estimates of the fraction of mineral soil in the slow and passive pools, dissolved organic carbon flux out of the litter layer into the mineral soil, and mixing of the humus layer into the mineral soil layer.« less
ForCent Model Development and Testing using the Enriched Background Isotope Study (EBIS) Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parton, William; Hanson, Paul J; Swanston, Chris
The ForCent forest ecosystem model was developed by making major revisions to the DayCent model including: (1) adding a humus organic pool, (2) incorporating a detailed root growth model, and (3) including plant phenological growth patterns. Observed plant production and soil respiration data from 1993 to 2000 were used to demonstrate that the ForCent model could accurately simulate ecosystem carbon dynamics for the Oak Ridge National Laboratory deciduous forest. A comparison of ForCent versus observed soil pool 14C signature (? 14C) data from the Enriched Background Isotope Study 14C experiment (1999-2006) shows that the model correctly simulates the temporal dynamicsmore » of the 14C label as it moved from the surface litter and roots into the mineral soil organic matter pools. ForCent model validation was performed by comparing the observed Enriched Background Isotope Study experimental data with simulated live and dead root biomass ? 14C data, and with soil respiration ? 14C (mineral soil, humus layer, leaf litter layer, and total soil respiration) data. Results show that the model correctly simulates the impact of the Enriched Background Isotope Study 14C experimental treatments on soil respiration ? 14C values for the different soil organic matter pools. Model results suggest that a two-pool root growth model correctly represents root carbon dynamics and inputs to the soil. The model fitting process and sensitivity analysis exposed uncertainty in our estimates of the fraction of mineral soil in the slow and passive pools, dissolved organic carbon flux out of the litter layer into the mineral soil, and mixing of the humus layer into the mineral soil layer.« less
Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems.
Sloan, Victoria L; Fletcher, Benjamin J; Press, Malcolm C; Williams, Mathew; Phoenix, Gareth K
2013-12-01
Estimates of vegetation carbon pools and their turnover rates are central to understanding and modelling ecosystem responses to climate change and their feedbacks to climate. In the Arctic, a region containing globally important stores of soil carbon, and where the most rapid climate change is expected over the coming century, plant communities have on average sixfold more biomass below ground than above ground, but knowledge of the root carbon pool sizes and turnover rates is limited. Here, we show that across eight plant communities, there is a significant positive relationship between leaf and fine root turnover rates (r(2) = 0.68, P < 0.05), and that the turnover rates of both leaf (r(2) = 0.63, P < 0.05) and fine root (r(2) = 0.55, P < 0.05) pools are strongly correlated with leaf area index (LAI, leaf area per unit ground area). This coupling of root and leaf dynamics supports the theory of a whole-plant economics spectrum. We also show that the size of the fine root carbon pool initially increases linearly with increasing LAI, and then levels off at LAI = 1 m(2) m(-2), suggesting a functional balance between investment in leaves and fine roots at the whole community scale. These ecological relationships not only demonstrate close links between above and below-ground plant carbon dynamics but also allow plant carbon pool sizes and their turnover rates to be predicted from the single readily quantifiable (and remotely sensed) parameter of LAI, including the possibility of estimating root data from satellites. © 2013 John Wiley & Sons Ltd.
Kobresia pygmaea pasture degradation and its response to increasing N deposition
NASA Astrophysics Data System (ADS)
Liu, Shibin; Schleuss, Per-Marten; Kuzyakov, Yakov
2016-04-01
Kobresia pygmaea is a dominant plant species on the Tibetan Plateau covering ca. one fifth of the total area. Severe degradation by overgrazing is ongoing at K. pygmaea pastures in recent decades. Nitrogen (N) deposition is also increasingly exacerbated across the Tibetan Plateau. Up to now the response of K. pygmaea pastures with increasing degradation to N deposition is unclear. We aimed at: (1) evaluating the effect of pasture degradation on carbon (C) and N contents of soil, root, microbial biomass and leachate, (2) determining N allocation to plant, soil and microbial biomass after N addition and (3) making an estimation of N storage and loss in Kobresia pasture. We used three Kobresia root mat types varying in their degradation stages: (1) living root mats, (2) dying root mats and (3) dead root mats. We also added two levels of 15NH415NO3 solution to simulate N deposition (control: 2.5 kg N/ha; deposition 50.9 kg N/ha) and traced the 15N in the soil-plant system. Leaching of NH4+, NO3- and DON were detected by homogeneously adding distilled water to each sample and collecting the leachate afterwards. Total N content lost by leaching increased 6.5 times following the degradation from living to dead root mats. This indicated that living Kobresia effectively decreased N loss from leaching due to N uptake by plants. The microbial biomass C to N (MBC/MBN) ratio narrowed from 10.2 to 7.5 and then to 5.0 for living, dying and dead root mats, respectively. This shows the degradation K. pygmaea shift the ecosystem from a N-limited to a C-limited status for microbes. Nitrogen addition increased above-ground plant biomass (AGB) as well as its total N content in living root mat while MBC and MBN were not affected. This shows K. pygmaea is more sensitive to N addition than microorganisms. N allocation (% of total N added) by AGB, below-ground plant biomass and soil in living root mats were 22.1%, 22.7% and 17.6%, respectively. No significant effect between these parameters was identified indicating that N allocation was independent to the giving amount of N. Up to 1.86 Mg N/ha were stored in living root mat (0-5 cm). In contrast, dead and dying root mats maintained about 2.0 Mg N/ha and 2.1 Mg N/ha, respectively. N loss in leachate of living root mat regarding a precipitation of 355 mm during growing season (equal to 85% of annual precipitation) was estimated to be around 3.6 kg N/ha (3.4 kg DON and 0.2 kg NH4-N). This amount was up to 6.5 times higher in dead root mat (23.6 kg N/ha with 19.1 kg NO3-N, 4 kg DON and 0.5 kg NH4-N). Therefore, degradation of K. pygmaea significantly increased N loss via leaching, especially NO3-N loss. We conclude N deposition facilitates the growth of K. pygmaea, which may positively affect plant productivity as well as C sequestration. In the absence of K. pygmaea, however, N deposition will lead to high N loss. Key words: Nitrogen allocation, Kobresia pygmaea, above-ground biomass, microbial biomass carbon and nitrogen
Soil microbial biomass and root growth in Bt and non-Bt cotton
NASA Astrophysics Data System (ADS)
Tan, D. K. Y.; Broughton, K.; Knox, O. G.; Hulugalle, N. R.
2012-04-01
The introduction of transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) has had a substantial impact on pest management in the cotton industry. While there has been substantial research done on the impact of Bt on the above-ground parts of the cotton plant, less is known about the effect of Bt genes on below ground growth of cotton and soil microbial biomass. The aim of this research was to test the hypothesis that Bt [Sicot 80 BRF (Bollgard II Roundup Ready Flex®)] and non-Bt [Sicot 80 RRF (Roundup Ready Flex®)] transgenic cotton varieties differ in root growth and root turnover, carbon indices and microbial biomass. A field experiment was conducted in Narrabri, north-western NSW. The experimental layout was a randomised block design and used minirhizotron and core break and root washing methods to measure cotton root growth and turnover during the 2008/09 season. Root growth in the surface 0-0.1 m of the soil was measured using the core break and root washing methods, and that in the 0.1 to 1 m depth was measured with a minirhizotron and an I-CAP image capture system. These measurements were used to calculate root length per unit area, root carbon added to the soil through intra-seasonal root death, carbon in roots remaining at the end of the season and root carbon potentially added to the soil. Microbial biomass was also measured using the ninhydrin reactive N method. Root length densities and length per unit area of non-Bt cotton were greater than Bt cotton. There were no differences in root turnover between Bt and non-Bt cotton at 0-1 m soil depth, indicating that soil organic carbon stocks may not be affected by cotton variety. Cotton variety did not have an effect on soil microbial biomass. The results indicate that while there are differences in root morphology between Bt and non-Bt cotton, these do not change the carbon turnover dynamics in the soil.
NASA Astrophysics Data System (ADS)
Nichols, Virginia A.
It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize. Contrary to our hypothesis, total growing-season root CO2 flux was not proportional to end-of-season root biomass of cropping systems; unfertilized prairie contained nearly twice the root biomass of N-fertilized prairie, but the two systems' total root CO2 fluxes were not significantly different in either year. We found that the total growing-season flux of both root- and organic matter-derived CO 2 was higher in the prairie systems compared to the maize system. However, on a percentage basis, the prairies' soil-surface CO2 flux from May-September averaged 29% root-derived while from mid-June through September the maize averaged 22% root-derived. The percentage of the total CO2 flux that was root-derived in a given system varied from year to year, indicating there is no set relationship for a given cropping system.
Yang, Wenhao; Zhang, Taoxiang; Lin, Sen; Ni, Wuzhong
2017-06-01
The recovery of microbial community and activities is crucial to the remediation of contaminated soils. Distance-dependent variations of microbial community composition and metabolic characteristics in the rhizospheric soil of hyperaccumulator during phytoextraction are poorly understood. A 12-month phytoextraction experiment with Sedum alfredii in a Cd-contaminated soil was conducted. A pre-stratified rhizobox was used for separating sub-layer rhizospheric (0-2, 2-4, 4-6, 6-8, 8-10 mm from the root mat)/bulk soils. Soil microbial structure and function were analyzed by phospholipid fatty acid (PLFA) and MicroResp™ methods. The concentrations of total and specified PLFA biomarkers and the utilization rates for the 14 substrates (organic carbon) in the 0-2-mm sub-layer rhizospheric soil were significantly increased, as well as decreased with the increase in the distance from the root mat. Microbial structure measured by the ratios of different groups of PLFAs such as fungal/bacterial, monounsaturated/saturated, ratios of Gram-positive to Gram-negative (GP/GN) bacterial, and cyclopropyl/monoenoic precursors and 19:0 cyclo/18:1ω7c were significantly changed in the 0-2-mm soil. The PLFA contents and substrate utilization rates were negatively correlated with pH and total, acid-soluble, and reducible fractions of Cd, while positively correlated with labile carbon. The dynamics of microbial community were likely due to root exudates and Cd uptake by S. alfredii. This study revealed the stimulations and gradient changes of rhizosphere microbial community through phytoextraction, as reduced Cd concentration, pH, and increased labile carbons are due to the microbial community responses.
Unresolving the "real age" of fine roots in forest ecosystems
NASA Astrophysics Data System (ADS)
Solly, Emily; Brunner, Ivano; Herzog, Claude; Schöning, Ingo; Schrumpf, Marion; Schweigruber, Fritz; Trumbore, Susan; Hagedorn, Frank
2016-04-01
Estimating the turnover time of tree fine roots is crucial for modelling soil organic matter dynamics, but it is one of the biggest challenges in soil ecology and one of the least understood aspects of the belowground carbon cycle. The methods used - ranging from radiocarbon to ingrowth cores and root cameras (minirhizotrons) - yield very diverse pictures of fine root dynamics in forest ecosystems with turnover rates reaching from less than one year to decades. These have huge implications on estimates of carbon allocation to root growth and maintenance and on the persistence of root carbon in soils before it is decomposed or leached. We will present a new approach, involving techniques to study plant anatomy, which unravels the "real age" of fine roots. For a range of forests with diverse water and nutrient limitations located at different latitudes, we investigated the annual growth rings in the secondary xylem of thin transversal sections of fine roots belonging to tree species which form distinct growth rings. In temperate forests we find mean root "ring ages" of 1-2 years while in sub-arctic forests living fine roots can also persist for several years. The robustness of these results were tested by counting the maximum yearly growth rings in tree seedlings of known age and by counting the maximum number of growth rings of fine roots grown in ingrowth cores which were kept in temperate forest soils for one and two years. Radiocarbon estimates of mean "carbon ages", which define the time elapsed since structural carbon was fixed from the atmosphere, instead average around a decade in root systems of temperate forests (mixture of newly produced and older living roots). This dramatic difference may not be related to methodological bias, but to a time lag between C assimilation and production of a portion of fine root tissues due to the storage of older carbon components. The time lag depends very likely on tree species and environmental conditions. We further observed that the root ring age increases with root diameter although it does not appear to be related to the branching order. Our findings suggest that both the physiological and radiocarbon ages must be modelled jointly in forest ecosystems, if we want to correctly account for the inputs of root litter
Ahmad, Feroz; Tabassum, Nahida
2013-01-01
To carry out a preliminary phytochemical, acute oral toxicity and antihepatotoxic study of the roots of Paeonia officinalis (P. officinalis) L. Preliminary phytochemical investigation was done as per standard procedures. Acute oral toxicity study was conducted as per OECD 425 guidelines. The antihepatotoxic activity of aqueous extract of root of P. officinalis was evaluated against carbon tetrachloride (CCl4) induced hepatic damage in rats. Aqueous extract of P. officinalis at the dose levels of 100 and 200 mg/kg body weight was administered daily for 14 d in experimental animals. Liver injury was induced chemically, by CCl4 administration (1 mL/kg i.p.). The hepatoprotective activity was assessed using various biochemical parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum alkaline phosphatase (SALP), total bilirubin and total protein (TP) along with histopathological studies. Phytochemical screening revealed that the roots of P. officinalis contain alkaloids, tannins, saponins, glycosides, carbohydrates, flavonoids, terpenes, steroids and proteins. The aqueous extract did not cause any mortality up to 2 000 mg/kg. In rats that had received the root extract at the dose of 100 and 200 mg/kg, the substantially elevated AST, ALT, SALP, total bilirubin levels were significantly lowered, respectively, in a dose dependent manner, along with CCl4 while TP levels were elevated in these groups. Histopathology revealed regeneration of the livers in extract treated groups while Silymarin treated rats were almost normal. The aqueous extract of P. officinalis is safe and possesses antihepatotoxic potential.
Mortley, Desmond G.; Bonsi, Conrad K.; Hill, Walter A.; Morris, Carlton E.; Williams, Carol S.; Davis, Ceyla F.; Williams, John W.; Levine, Lanfang H.; Petersen, Barbara V.; Wheeler, Raymond M.
2009-01-01
Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Colombia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of flight samples than those found in the ground-based samples. Carbon dioxide levels were 50% greater and oxygen marginally lower in the flight plants, whereas ethylene levels were similar and averaged less than 10 nL·L −1. Despite the greater accumulation of carbohydrates in the stems, and greater root growth in the flight cuttings, overall results showed minimal differences in cell development between space flight and ground-based tissues. This suggests that the space flight environment did not adversely impact sweetpotato metabolism and that vegetative cuttings should be an acceptable approach for propagating sweetpotato plants for space applications. PMID:20186286
Drought impact on forest carbon dynamics and fluxes in Amazonia.
Doughty, Christopher E; Metcalfe, D B; Girardin, C A J; Amézquita, F Farfán; Cabrera, D Galiano; Huasco, W Huaraca; Silva-Espejo, J E; Araujo-Murakami, A; da Costa, M C; Rocha, W; Feldpausch, T R; Mendoza, A L M; da Costa, A C L; Meir, P; Phillips, O L; Malhi, Y
2015-03-05
In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the absence of growth. We propose that weakened maintenance and defence investment may, in turn, cause the increase in post-drought tree mortality observed at our plots.
Exposure to(ozone 0-3)has been shown to decrease the allocation of carbon to tree roots. Decreased allocation of carbon to roots might disrupt root metabolism and rhizosphere organisms. The effects of soil type and shoot 0, exposure on below-ground respiration and soil microbial ...
To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd
2010-09-08
Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.
Keiluweit, Marco; Bougoure, Jeremy J.; Nico, Peter S.; ...
2015-03-30
Multiple lines of existing evidence suggest that climate change enhances root exudation of organic compounds into soils. Recent experimental studies show that increased exudate inputs may cause a net loss of soil carbon. This stimulation of microbial carbon mineralization (‘priming’) is commonly rationalized by the assumption that exudates provide a readily bioavailable supply of energy for the decomposition of native soil carbon (co-metabolism). Here we show that an alternate mechanism can cause carbon loss of equal or greater magnitude. We find that a common root exudate, oxalic acid, promotes carbon loss by liberating organic compounds from protective associations with minerals.more » By enhancing microbial access to previously mineral-protected compounds, this indirect mechanism accelerated carbon loss more than simply increasing the supply of energetically more favourable substrates. Lastly, our results provide insights into the coupled biotic–abiotic mechanisms underlying the ‘priming’ phenomenon and challenge the assumption that mineral-associated carbon is protected from microbial cycling over millennial timescales.« less
High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2
NASA Technical Reports Server (NTRS)
Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.
2016-01-01
Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.
The Economics of Root Distributions of Terrestrial Biomes in Response to Elevated CO2
NASA Astrophysics Data System (ADS)
Lu, M.; Hedin, L. O. O.
2017-12-01
Belowground root distributions of terrestrial biomes are central to understanding soil biogeochemical processes and land carbon sink. Yet models are thus far not able to predict root distributions across plant functional groups and major biomes, limiting our ability to predict the response of land systems to elevated CO2 concentration. Of particular concern is the apparent lack of stimulation of the aboveground carbon sink despite 30% increase of atmospheric CO2 over the past half-century, and despite the clear acceleration of the land carbon sink over the same period. This apparent discrepancy in land ecosystem response has led to the proposition that changes in belowground root dynamics might be responsible for the overlooked land sink. We here present a new modeling approach for predicting the response of root biomass and soil carbon storage to increased CO2. Our approach considers the first-principle mechanisms and tradeoffs by which plants and plant roots invest carbon to gain belowground resources, in collaboration with distinct root symbioses. We allow plants to locally compete for nutrients, with the ability to allocate biomass at different depths in the soil profile. We parameterized our model using an unprecedented global dataset of root traits, and validated our biome-level predictions with a recently updated global root biomass database. Our results support the idea that plants "dig deeper" when exposed to increased CO2, and we offer an economic-based mechanism for predicting the plant root response across soil conditions, plant functional groups and major biomes. Our model also recreates the observed responses across a range of free-air CO2 enrichment experiments, including a distinct response between plants associated with ectomycorrhizal and arbuscular mycorrhizal fungi. Most broadly, our findings suggest that roots may be increasingly important in the land carbon sink, and call for a greater effort to quantify belowground responses to elevated atmospheric CO2.
Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests
NASA Astrophysics Data System (ADS)
Girardin, C. A. J.; Aragão, L. E. O. C.; Malhi, Y.; Huaraca Huasco, W.; Metcalfe, D. B.; Durand, L.; Mamani, M.; Silva-Espejo, J. E.; Whittaker, R. J.
2013-01-01
The key role of tropical forest belowground carbon stocks and fluxes is well recognised as one of the main components of the terrestrial ecosystem carbon cycle. This study presents the first detailed investigation of spatial and temporal patterns of fine root stocks and fluxes in tropical forests along an elevational gradient, ranging from the Peruvian Andes (3020 m) to lowland Amazonia (194 m), with mean annual temperatures of 11.8°C to 26.4 °C and annual rainfall values of 1900 to 1560 mm yr-1, respectively. Specifically, we analyse abiotic parameters controlling fine root dynamics, fine root growth characteristics, and seasonality of net primary productivity along the elevation gradient. Root and soil carbon stocks were measured by means of soil cores, and fine root productivity was recorded using rhizotron chambers and ingrowth cores. We find that mean annual fine root below ground net primary productivity in the montane forests (0-30 cm depth) ranged between 4.27±0.56 Mg C ha-1 yr-1 (1855 m) and 1.72±0.87 Mg C ha-1 yr-1 (3020 m). These values include a correction for finest roots (<0.6 mm diameter), which we suspect are under sampled, resulting in an underestimation of fine roots by up to 31% in current ingrowth core counting methods. We investigate the spatial and seasonal variation of fine root dynamics using soil depth profiles and an analysis of seasonal amplitude along the elevation gradient. We report a stronger seasonality of NPPFineRoot within the cloud immersion zone, most likely synchronised to seasonality of solar radiation. Finally, we provide the first insights into root growth characteristics along a tropical elevation transect: fine root area and fine root length increase significantly in the montane cloud forest. These insights into belowground carbon dynamics of tropical lowland and montane forests have significant implications for our understanding of the global tropical forest carbon cycle.
Hendriks, P.W.; Kirkegaard, J.A.; Lilley, J.M.; Gregory, P.J.; Rebetzke, G.J.
2016-01-01
Genetic modification of shoot and root morphology has potential to improve water and nutrient uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering inhibition (tin) gene and representing multiple genetic backgrounds were phenotyped in contrasting, controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar until tillering, whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 145%. Together, the root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed greater root-to-shoot ratios with regular tiller removal in non-tin-containing genotypes. In validating these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but was associated with significantly (P<0.05) reduced tiller number (–37%), leaf area index (–26%), and spike number (–35%) to reduce plant biomass (–19%) at anthesis. Root biomass, root-to-shoot ratio at early stem elongation, and root depth at maturity were all increased in tin-containing NILs. Soil water use was slowed in tin-containing NILs, resulting in greater water availability, greater stomatal conductance, cooler canopy temperatures, and maintenance of green leaf area during grain-filling. Together these effects contributed to increases in harvest index and grain yield. In both the controlled and field environments, the tin gene was commonly associated with increased root length and biomass, but the significant influence of genetic background and environment suggests careful assessment of tin-containing progeny in selection for genotypic increases in root growth. PMID:26494729
Quantifying the coarse-root biomass of intensively managed loblolly pine plantations
Ashley T. Miller; H. Lee Allen; Chris A. Maier
2006-01-01
Most of the carbon accumulation during a forest rotation is in plant biomass and the forest floor. Most of the belowground biomass in older loblolly pine (Pinus taeda L.) forests is in coarse roots, and coarse roots persist longer after harvest than aboveground biomass and fine roots. The main objective was to assess the carbon accumulation in coarse...
Temporal variations of mobile carbohydrates in Abies fargesii at the upper tree limits.
Dang, H S; Zhang, K R; Zhang, Q F; Xu, Y M
2015-01-01
Low temperatures are associated high-altitude treelines, but the functional mechanism of treeline formation remains controversial. The relative contributions of carbon limitation (source activity) and growth limitation (sink activity) require more tests across taxa and regions. We examined temporal variations of mobile carbon supply in different tissues of Abies fargesii across treeline ecotones on north- and south-facing slopes of the Qinling Mountains, China. Non-structural carbohydrate (NSC) concentrations in tissues along the altitudinal gradient on both slopes changed significantly in the early and late growing season, but not in the mid-growing season, indicating the season-dependent carbon supply status. Late in the growing season on both slopes, trees at the upper limits had the highest NSC concentrations and total soluble sugars and lowest starch concentrations compared to trees at the lower elevations. NSC concentrations tended to increase in needles and branches throughout the growing season with increasing elevation on both slopes, but declined in roots and stems. NSC concentrations across sampling dates also indicated increases in needles and branches, and decreases in roots and stem with increasing elevation. Overall altitudinal trends of NSC in A. fargesii revealed no depletion of mobile carbon reserves at upper elevation limits, suggesting limitation of sink activity dominates tree life across treeline ecotones in both north- and south-facing slopes. Carbon reserves in storage tissues (especially roots) in the late growing season might also play an important role in winter survival and early growth in spring at upper elevations on both slopes, which define the uppermost limit of A. fargesii. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.
2014-01-01
Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351
NASA Astrophysics Data System (ADS)
Pal, David; Jaffe, Peter
2015-04-01
Estimates of global CH4 emissions from wetlands indicate that wetlands are the largest natural source of CH4 to the atmosphere. In this paper, we propose that there is a missing component to these models that should be addressed. CH4 is produced in wetland sediments from the microbial degradation of organic carbon through multiple fermentation steps and methanogenesis pathways. There are multiple sources of carbon for methananogenesis; in vegetated wetland sediments, microbial communities consume root exudates as a major source of organic carbon. In many methane models propionate is used as a model carbon molecule. This simple sugar is fermented into acetate and H2, acetate is transformed to methane and CO2, while the H2 and CO2 are used to form an additional CH4 molecule. The hydrogenotrophic pathway involves the equilibrium of two dissolved gases, CH4 and H2. In an effort to limit CH4 emissions from wetlands, there has been growing interest in finding ways to limit plant transport of soil gases through root systems. Changing planted species, or genetically modifying new species of plants may control this transport of soil gases. While this may decrease the direct emissions of methane, there is little understanding about how H2 dynamics may feedback into overall methane production. The results of an incubation study were combined with a new model of propionate degradation for methanogenesis that also examines other natural parameters (i.e. gas transport through plants). This presentation examines how we would expect this model to behave in a natural field setting with changing sulfate and carbon loading schemes. These changes can be controlled through new plant species and other management practices. Next, we compare the behavior of two variations of this model, with or without the incorporation of H2 interactions, with changing sulfate, carbon loading and root volatilization. Results show that while the models behave similarly there may be a discrepancy of nearly 50% of total CH4 production predictions depending on the inclusion of H2 interactions and other loading parameters. This discrepancy can have a meaningful impact on the estimates of total global CH4 emissions from wetlands, or even change the predicted carbon balance of specific wetlands. Overall, this model indicates the importance of H2 interactions in methanogenesis modeling, and may impact how we manage/design and construct wetlands for treatment or carbon sequestration.
Ngoma, Justine; Moors, Eddy; Kruijt, Bart; Speer, James H; Vinya, Royd; Chidumayo, Emmanuel N; Leemans, Rik
2018-04-01
This paper presents data on carbon stocks of tropical tree species along a rainfall gradient. The data was generated from the Sesheke, Namwala, and Kabompo sites in Zambia. Though above-ground data was generated for all these three sites, we uprooted trees to determine below-ground biomass from the Sesheke site only. The vegetation was assessed in all three sites. The data includes tree diameter at breast height (DBH), total tree height, wood density, wood dry weight and root dry weight for large (≥ 5 cm DBH) and small (< 5 cm DBH) trees. We further presented Root-to-Shoot Ratios of uprooted trees. Data on the importance-value indices of various species for large and small trees are also determined. Below and above-ground carbon stocks of the surveyed tree species are presented per site. This data were used by Ngoma et al. (2018) [1] to develop above and below-ground biomass models and the reader is referred to this study for additional information, interpretation, and reflection on applying this data.
Zhang, Si-Hui; Lian, Jian-Hong; Cao, Zhi-Ping; Zhao, Li
2013-06-01
A field experiment with successive planting of tomato was conducted to study the effects of adding different amounts of winter wheat straw (2.08 g x kg(-1), 1N; 4.16 g x kg(-1), 2N; and 8.32 g x kg(-1), 4N) to the soil seriously suffered from root knot nematode disease on the soil microbial biomass and protozoa abundance. Adding straw carbon source had significant effects on the contents of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the abundance of soil protozoa, which all decreased in the order of 4N > 2N > 1N > CK. The community structure of soil protozoa also changed significantly under straw addition. In the treatments with straw addition, the average proportion of fagellate, amoeba, and ciliates accounted for 36.0%, 59.5%, and 4.5% of the total protozoa, respectively. Under the same adding amounts of wheat straw, there was an increase in the soil MBC and MBN contents, MBC/MBN ratio, and protozoa abundance with increasing cultivation period.
Artificial Root Exudate System (ARES): a field approach to simulate tree root exudation in soils
NASA Astrophysics Data System (ADS)
Lopez-Sangil, Luis; Estradera-Gumbau, Eduard; George, Charles; Sayer, Emma
2016-04-01
The exudation of labile solutes by fine roots represents an important strategy for plants to promote soil nutrient availability in terrestrial ecosystems. Compounds exuded by roots (mainly sugars, carboxylic and amino acids) provide energy to soil microbes, thus priming the mineralization of soil organic matter (SOM) and the consequent release of inorganic nutrients into the rhizosphere. Studies in several forest ecosystems suggest that tree root exudates represent 1 to 10% of the total photoassimilated C, with exudation rates increasing markedly under elevated CO2 scenarios. Despite their importance in ecosystem functioning, we know little about how tree root exudation affect soil carbon dynamics in situ. This is mainly because there has been no viable method to experimentally control inputs of root exudates at field scale. Here, I present a method to apply artificial root exudates below the soil surface in small field plots. The artificial root exudate system (ARES) consists of a water container with a mixture of labile carbon solutes (mimicking tree root exudate rates and composition), which feeds a system of drip-tips covering an area of 1 m2. The tips are evenly distributed every 20 cm and inserted 4-cm into the soil with minimal disturbance. The system is regulated by a mechanical timer, such that artificial root exudate solution can be applied at frequent, regular daily intervals. We tested ARES from April to September 2015 (growing season) within a leaf-litter manipulation experiment ongoing in temperate deciduous woodland in the UK. Soil respiration was measured monthly, and soil samples were taken at the end of the growing season for PLFA, enzymatic activity and nutrient analyses. First results show a very rapid mineralization of the root exudate compounds and, interestingly, long-term increases in SOM respiration, with negligible effects on soil moisture levels. Large positive priming effects (2.5-fold increase in soil respiration during the growing season) were observed in absence of aboveground forest litter, with lower or no priming when the litter was present. Preliminary results show that soil microbial community is also significantly affected by ARES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Craig H.; Smart, Lawrence B.
Here, the root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow ( Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness inmore » allometric models for root and stem dry biomass. As a result, strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Here, this work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration.« less
Carlson, Craig H.; Smart, Lawrence B.
2016-08-19
Here, the root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow ( Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness inmore » allometric models for root and stem dry biomass. As a result, strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Here, this work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration.« less
Contribution of stumps to carbon and nitrogen pools in southern Appalachian hardwood forests
Eric B. Sucre; Thomas R. Fox
2008-01-01
Decomposing stumps are prevalent in managed forest ecosystems although the impact of these microsites on nutrient retention and cycling is relatively unknown. In this study, stumps were defined as the aboveground and belowground (i.e., root system) left over from previous harvests. The objective of this study was to quantify the total soil volume occupied by stumps and...
Predicting longleaf pine coarse root decomposition in the southeastern US
Peter H. Anderson; Kurt H. Johnsen; John R. Butnor; Carlos A. Gonzalez-Benecke; Lisa J. Samuelson
2018-01-01
Storage of belowground carbon (C) is an important component of total forest C. However, belowground C changes temporally due to forest growth and tree mortality (natural and via harvesting) and these fluctuations are critical for modeling C in forests under varying management regimes. To date, little progress has been made in quantifying the rate of decay of southern...
Liu, Qi; Cai, Hui-Ying; Jin, Guang-Ze
2013-10-01
To accurately quantify forest carbon density and net primary productivity (NPP) is of great significance in estimating the role of forest ecosystems in global carbon cycle. By using the forest inventory and allometry approaches, this paper measured the carbon density and NPP of the virgin broadleaved-Korean pine (Pinus koraiensis) forest and of the broadleaved-Korean pine forest after 34 years selective-cutting (the cutting intensity was 30%, and the cutting trees were in large diameter class). The total carbon density of the virgin and selective-cutting broadleaved-Korean pine forests was (397.95 +/- 93.82) and (355.61 +/- 59.37) t C x hm(-2), respectively. In the virgin forest, the carbon density of the vegetation, debris, and soil accounted for 31.0%, 3.1%, and 65.9% of the total carbon pool, respectively; in the selective-cutting forest, the corresponding values were 31.7%, 2.9%, and 65.4%, respectively. No significant differences were observed in the total carbon density and the carbon density of each component between the two forests. The total NPP of the virgin and selective-cutting forests was (36.27 +/- 0.36) and (6.35 +/- 0.70) t C x hm(-2) x a(-1), among which, the NPP of overstory, understory, and fine roots in virgin forest and selective-cutting forest accounted for 60.3%, 2.0%, and 37.7%, and 66.1%, 2.0%, and 31.2%, respectively. No significant differences were observed in the total NPP and the contribution rate of each component between the two forests. However, the ratios of the needle and broadleaf NPPs of the virgin and selective-cutting forests were 47.24:52.76 and 20.48:79.52, respectively, with a significant difference. The results indicated that the carbon density and NPP of the broadleaved-Korean pine forest after 34 years selective-cutting recovered to the levels of the virgin broadleaved-Korean pine forest.
Kafle, Arjun; Garcia, Kevin; Wang, Xiurong; Pfeffer, Philip E; Strahan, Gary D; Bücking, Heike
2018-06-02
Legumes form tripartite interactions with arbuscular mycorrhizal (AM) fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the SUT and SWEET family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Becerra, C.; Schimel, J.
2013-12-01
Soil is the largest reservoir of organic carbon in terrestrial ecosystems and as such, represents a potential sink for carbon dioxide.The decomposition products of dead roots buried in the soil is a contributor to soil organic carbon. However, changing precipitation patterns may affect its fate by influencing the microbial community responsible for decomposing dead roots. To assess the impact of changing precipitation patterns, we constructed microcosms with grassland soil collected from the UCSB Sedgwick Reserve, an active and long-term research site, and dead roots from greenhouse-grown grass, Bromus diandrus. Microcosms were wetted continuously, every seven days, or every twenty days. Sets of microcosms were periodically deconstructed to assess the soil versus the roots-associated microbial community and its function. Differences in respiration rates of microcosms continuously wetted or wetted every 7 days versus microcosms wetted every 20 days existed for the first 70 days. After which, no differences in respiration rates were seen with microcosms containing roots and the no roots control. Relatedly, after a 70% roots mass loss by day 50, there was no difference in the respiration rate of microcosms containing roots and the no roots control. More than half of the roots mass loss had occurred by 30 days. By the end of the incubation period, the roots mass loss in continuously wet and 7-day wetted microcosms were over 80% compared to 67% for the microcosms wetted every 20 days. Microbial biomass in the soil were constant over time and showed no difference in treatment except with the no roots control during the first half of the incubation period. Hydrolytic enzyme activities (β-1,4-glucosidase; α-1,4-glucosidase; β-1,4-xylosidase; β-1,4-cellobiosidase) on the roots versus the soil attached to the roots were over an order greater and decreased faster with the exception of N-acetyl-glucosaminidase and acid phosphatase. Oxidative enzyme activities (phenol oxidase and peroxidase) on the roots versus the soil were also an order of magnitude greater, however the activities were constant over time regardless of the treatment, whereas the activities in the soil increased then decreased after 50 days. Our results suggest that the frequency of precipitation affects early root decomposition and long-term soil carbon storage of dead roots relatively unaffected by changing precipitation patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, N.; Singh, R.S.; Singh, J.S.
The goal of our research was to assess the impact of post-mining land subsidence, caused due to underground coal mining operations, on fine root biomass and root tips count; plant available nutrient status, microbial biomass N (MBN) and N-mineralization rates of a Southern tropical dry deciduous forest of Singareni Coalfields of India. The changes were quantified in all the three (rainy, winter and summer) seasons, in slope and depression microsites of the subsided land and an adjacent undamaged forest microsite. Physico-chemical characteristics were found to be altered after subsidence, showing a positive impact of subsidence on soil moisture, bulk density,more » water holding capacity, organic carbon content, total N and total P. The increase in all the parameters was found in depression microsites, while in slope microsites, the values were lower. Fine root biomass and root tips count increased in the subsided depression microsites, as demonstrated by increases of 62% and 45%, respectively. Soil nitrate-N and phosphate-P concentrations were also found to be higher in depression microsite, showing an increase of 35.68% and 24.74%, respectively. Depression microsite has also shown the higher MBN value with an increase over control. Net nitrification, net N-mineralization and MBN were increased in depression microsite by 29.77%, 25.72% and 34%, respectively. There was a positive relation of microbial N with organic C, fine root biomass and root tips.« less
Ahmad, Feroz; Tabassum, Nahida
2013-01-01
Objective To carry out a preliminary phytochemical, acute oral toxicity and antihepatotoxic study of the roots of Paeonia officinalis (P. officinalis) L. Methods Preliminary phytochemical investigation was done as per standard procedures. Acute oral toxicity study was conducted as per OECD 425 guidelines. The antihepatotoxic activity of aqueous extract of root of P. officinalis was evaluated against carbon tetrachloride (CCl4) induced hepatic damage in rats. Aqueous extract of P. officinalis at the dose levels of 100 and 200 mg/kg body weight was administered daily for 14 d in experimental animals. Liver injury was induced chemically, by CCl4 administration (1 mL/kg i.p.). The hepatoprotective activity was assessed using various biochemical parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum alkaline phosphatase (SALP), total bilirubin and total protein (TP) along with histopathological studies. Result Phytochemical screening revealed that the roots of P. officinalis contain alkaloids, tannins, saponins, glycosides, carbohydrates, flavonoids, terpenes, steroids and proteins. The aqueous extract did not cause any mortality up to 2 000 mg/kg. In rats that had received the root extract at the dose of 100 and 200 mg/kg, the substantially elevated AST, ALT, SALP, total bilirubin levels were significantly lowered, respectively, in a dose dependent manner, along with CCl4 while TP levels were elevated in these groups. Histopathology revealed regeneration of the livers in extract treated groups while Silymarin treated rats were almost normal. Conclusions The aqueous extract of P. officinalis is safe and possesses antihepatotoxic potential. PMID:23570019
Controls on Ecosystem and Root Respiration in an Alaskan Peatland
NASA Astrophysics Data System (ADS)
McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.
2010-12-01
Boreal ecosystems cover 14% of the vegetated surface on earth and account for 25-30% of the world’s soil carbon (C), mainly due to large carbon stocks in deep peat and frozen soil layers. While peatlands have served as historical sinks of carbon, global climate change may trigger re-release of C to the atmosphere and may turn these ecosystems into net C sources. Rates of C release from a peatland are determined by regional climate and local biotic and abiotic factors such as vegetation cover, thaw depth, and peat thickness. Soil CO2 fluxes are driven by both autotrophic (plant) respiration and heterotrophic (microbial) respiration. Thus, changes in plant and microbial activity in the soil will impact CO2 emissions from peatlands. In this study, we explored environmental and vegetation controls on ecosystem respiration and root respiration in a variety of wetland sites. The study was conducted at the Alaskan Peatland Experiment (APEX; www.uoguelph.ca/APEX) sites in the Bonanza Creek Experimental Forest located 35 km southwest of Fairbanks Alaska. We measured ecosystem respiration, root respiration, and monitored a suite of environmental variables along a vegetation and soil moisture gradient including a black spruce stand with permafrost, a shrubby site with permafrost, a tussock grass site, and a herbaceous open rich fen. Within the rich fen, we have been conducting water table manipulations including a control, lowered, and raised water table treatment. In each of our sites, we measured total ecosystem respiration using static chambers and root respiration by harvesting roots from the uppermost 20 cm and placing them in a root cuvette to obtain a root flux. Ecosystem respiration (ER) on a μmol/m2/sec basis varied across sites. Water table was a significant predictor of ER at the lowered manipulation site and temperature was a strong predictor at the control site in the rich fen. Water table and temperature were both significant predictors of ER at the raised manipulation site. Root respiration fluxes on a ppm CO2/sec/g dry mass basis were highest for herbaceous species, which dominated the open rich fen sites. Root respiration flux was significantly lower in tree-dominated black spruce sites. It appears that the variation in root respiration explains the variation in ER between herbaceous and tree-dominated systems. Therefore an important next step is to partition ER into heterotrophic and autotrophic components across these ecosystems. This in turn will provide a better assessment of peatland C responses to global climate change.
NASA Astrophysics Data System (ADS)
Landhäusser, Simon; Karst, Justine; Wiley, Erin; Gaster, Jacob
2016-04-01
Environmental stress can influence carbon assimilation and the accumulation and distribution of carbon between growth, reserves, and exudation; however, it is unclear how these processes vary by different stress types. Partitioning of carbon to growth and reserves in plants might also vary between different organs. Roots reserves are of particular interest as they link the plant with the soil carbon cycle through exudation. Simple models of diffusion across concentration gradients predict the more C reserves in roots, the more C should be exuded from roots. However, the mechanisms underlying the accumulation and loss of C from roots may differ depending on the stress experienced by the plants. In a controlled study we tested whether different types of stresses (shade, cold soil, and drought) have differential effects on the distribution, abundance, and form (sugar vs. starch) of carbohydrates in seedlings, and whether these changes alone could explain differences in root exudation between stress types. Non-structural carbohydrate (NSC) concentration and pool sizes varied by stress type and between organs. Mass-specific C exudation increased with fine root sugar concentration; however, stress type affected exudation independently of reserve concentration. Seedlings exposed to cold soils exuded the most C on a per root mass basis followed by shade and drought. Through 13C labeling, we also found that depending on the stress type, aspen seedlings may be less able to control the loss of C to the soil compared with unstressed seedlings, resulting in more C leaked to the rhizosphere. The loss of C beyond that predicted by simple concentration gradients might have important implications for ecosystem functioning and carbon balance. If stressed plants lose proportionally more carbon to the soil, existing interactions between plants and soils may decouple under stress, and may include unexpected C fluxes between trees, soils and the atmosphere with a changing climate.
Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique
NASA Astrophysics Data System (ADS)
Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.
2010-12-01
Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated belowground.
Porto, Alessandra Nogueira; Borges, Álvaro Henrique; Semenoff-Segundo, Alex; Raslan, Suzane A; Pedro, Fábio Luis Miranda; Jorge, Antônio Olavo Cardoso; Bandeca, Matheus Coelho
2015-05-01
Repeated sterilizations cycles cause undesirable alterations in the material properties of the instruments, such as corrosion, alterations in the hardness of the metal and the loss of the cutting sharpness of the instrument. This research examined the effect of repeated dry heat sterilization and autoclaves cycles on carbon steel (CS) and stainless steel (SS) curettes during the scaling and root planning. A total of 77 Gracey curettes were used in this study. Of these, 35 were SS and 42 were CS curettes submitted in different process: Dry heat, autoclave, inhibition of corrosion and autoclave, scaling, root planning and dry heat, scaling, root planning, inhibition of corrosion and autoclave. The inhibition of corrosion used on the carbon curettes (prior to sterilization in the autoclave) was sodium nitrite at 2%. The curettes received 10 consecutive cycles of sterilization and after that the cutting edges were examined in the electronic microscope, at 60 and 100 magnification times. The images were evaluated by three independent examiners, who compared the photographs of each group with the control group. The surface corrosion products and a deterioration of the edges were observed and the results showed that the SS curettes suffered little alteration with sterilization, scaling, root planning whereas the CS curettes were visibly affected by sterilization in the autoclave, but when the inhibition of corrosion was used prior to the sterilization, the oxidation was considerably reduced.
Prescribed fire effects on field-derived and simulated forest carbon stocks over time
Nicole M. Vaillant; Alicia L. Reiner; Erin K. Noonan-Wright
2013-01-01
To better understand the impact of prescribed fire on carbon stocks, we quantified aboveground and belowground carbon stocks within five pools (live trees and coarse roots, dead trees and coarse roots, live understory vegetation, down woody debris, and litter and duff) and potential carbon emissions from a simulated wildfire before and up to 8 years after prescribed...
[Fine root dynamics and its relationship with soil fertility in tropical rainforests of Chocó].
Quinto, Harley; Caicedo, Haylin; Thelis Perez, May; Moreno, Flavio
2016-12-01
The fine roots play an important role in the acquisition of water and minerals from the soil, the global carbon balance and mitigation of climate change. The dynamics (productivity and turnover) of fine roots is essential for nutrient cycling and carbon balance of forest ecosystems. The availability of soil water and nutrients has significantly determined the productivity and turnover of fine roots. It has been hypothesized that fine roots dynamics increases with the availability of soil resources in tropical forest ecosystems. To test this hypothesis in tropical rainforests of Chocó (ecosystems with the highest rainfall in the world), five one-ha permanent plots were established in the localities of Opogodó and Pacurita, where the productivity and turnover of fine roots were measured at 0-10 cm and 10-20 cm depth. The measurement of the fine root production was realized by the Ingrowth core method. The fine root turnover was measured like fine roots production divided mean annual biomass. In addition, soil fertility parameters (pH, nutrients, and texture) were measured and their association with productivity and turnover of fine roots was evaluated. It was found that the sites had nutrient-poor soils. The localities also differ in soil; Opogodó has sandy soils and flat topography, and Pacurita has clay soils, rich in aluminum and mountainous topography. In Opogodó fine root production was 6.50 ± 2.62 t/ha.yr (mean ± SD). In Pacurita, fine root production was 3.61 ± 0.88 t/ha.yr. Also in Opogodó, the fine root turnover was higher than in Pacurita (1.17 /y and 0.62 /y, respectively). Fine root turnover and production in the upper soil layers (10 cm upper soil) was considerably higher. Productivity and turnover of fine roots showed positive correlation with pH and contents of organic matter, total N, K, Mg, and sand; whereas correlations were negative with ECEC and contents of Al, silt, and clay. The percentage of sand was the parameter that best explained the variations of fine root production. The fine root turnover was negatively explained by soil Al availability. Results suggested the increase of fine root dynamics with soil fertility at a local scale, which also indicates that under the oligotrophic conditions of soils in tropical rainforests, fine roots tend to proliferate rapidly in small patches of soil rich in sand and nutrients.
Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin
2016-06-13
Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement.
Benchmark map of forest carbon stocks in tropical regions across three continents.
Saatchi, Sassan S; Harris, Nancy L; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T A; Salas, William; Zutta, Brian R; Buermann, Wolfgang; Lewis, Simon L; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra
2011-06-14
Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ± 6% to ± 53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ± 5% and ca. ± 1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.
NASA Astrophysics Data System (ADS)
Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico
2013-04-01
Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.
NASA Astrophysics Data System (ADS)
Ventura, Maurizio; Alberti, Giorgio; Panzacchi, Pietro; Delle Vedove, Gemini; Miglietta, Franco; Tonon, Giustino
2016-04-01
Biochar application to soil has been proposed as a promising strategy for carbon (C) sequestration and climate change mitigation, helping at the same time to maintain soil fertility. However, most of the knowledge on biochar stability is based on short-term lab incubation experiments, as field studies are scarce. Therefore, little is known about the interactions between biochar and roots and the related effects on biochar stability in field conditions. The present study aimed to assess the stability of biochar, its effect on original soil organic matter (SOM) decomposition, and the effect of plant roots on biochar stability in field conditions in Northern Italy, for a three-year monitoring period within the EuroChar project. The experiment was conducted in a poplar short rotation coppice (SRC). Biochar produced from maize (δ13C = -13.8‰) silage pellets in a gasification plant was applied in a poplar short rotation coppice (SRC) plantation in Northern Italy. Root exclusion subplots were established using the trenching method to measure heterotrophic respiration. Total (Rtot) and heterotrophic (Rh) respiration were measured every 2 hours in control and biochar-treated soil, with a closed dynamic soil respiration system. δ13C of the soil-emited CO2 was periodically measured using the Keeling plot method. The percentage of biochar-derived soil respiration (fB), was calculated using an isotopic mass balance. Results showed that fB varied between 7% and 37% according to the sampling date, and was generally higher in the presence of roots than in trenched plots where the root growth was excluded. Without roots, only the 14% of the carbon originally added with biochar was decomposed. In the presence of roots, this percentage increased to 21%, suggesting a positive priming effect of roots on biochar decomposition. On the other hand, biochar decreased the decomposition of original SOM by about 17%, suggesting a protective effect of biochar on SOM.
NASA Astrophysics Data System (ADS)
Ouimette, A.; Ollinger, S. V.; Hobbie, E. A.; Lepine, L. C.; Stephens, R.; Rowe, R.; Vadeboncoeur, M. A.; Tumber-Davila, S. J.
2017-12-01
Species composition and resource availability exert a strong influence on the dynamics of carbon allocation among different forest ecosystem components. Recent work in temperate forests has highlighted a tradeoff between carbon allocation to aboveground woody tissues (access to light), and belowground to fine roots (access to soil nutrients). Although root-associated mycorrhizal fungi are crucial for N acquisition and can receive 20% or more of annual net primary production, most studies fail to explicitly include carbon allocation to mycorrhizal fungi. In part, this is due to the inherent difficulties in accurately quantifying fungal production. We took several approaches to quantify production of mycorrhizal fungi, including a carbon budget approach and isotopic techniques. Here we present data on patterns of carbon allocation to aboveground (wood and foliar production), and belowground components (production of fine roots and mycorrhizal fungi), across temperate forest stands spanning a range of nitrogen availability and species composition. We found that as the proportion of conifer species decreased, and stand nitrogen availability increased, both the absolute amount and the fraction of net primary production increased for foliage, aboveground wood, and fine roots ("a rising tide lifts all boats"). While allocation to plant pools increased, allocation to mycorrhizal fungi significantly decreased with decreasing conifer dominance and increasing soil nitrogen availability. We did not find a strong trade-off between carbon allocation to fine roots and aboveground wood or foliage. Instead, a negative relationship is seen between allocation to mycorrhizal fungi and other plant pools. Effort to estimate carbon allocation to mycorrhizal fungi is important for gaining a more complete understanding of how ecosystems respond to changes in growth-limiting resources.
NASA Astrophysics Data System (ADS)
Preusser, Sebastian; Poll, Christian; Marhan, Sven; Kandeler, Ellen
2017-04-01
At the global scale, soil organic carbon (SOC) represents the largest active terrestrial organic carbon (OC) pool. Carbon dynamics in subsoil, however, vary from those in topsoil with much lower C concentrations in subsoil than in topsoil horizons, although more than 50 % of SOC is stored in subsoils below 30 cm soil depth. In addition, microorganisms in subsoil are less abundant, more heterogeneously distributed and the microbial communities have a lower diversity than those in topsoil. Especially in deeper soil, the impact of changes in habitat conditions on microorganisms involved in carbon cycling are largely unexplored and consequently the understanding of microbial functioning is limited. A reciprocal translocation experiment allowed us to investigate the complex interaction effects of altered environmental and substrate conditions on microbial decomposer communities in both topsoil and subsoil habitats under in situ conditions. We conducted this experiment with topsoil (5 cm soil depth) and subsoil (110 cm) samples of an acid and sandy Dystric Cambisol from a European beech (Fagus sylvatica L.) forest in Lower Saxony, Germany. In total 144 samples were buried into three depths (5 cm, 45 cm and 110 cm) and 13C-labelled root litter was added to expose the samples to different environmental conditions and to increase the substrate availability, respectively. Samples were taken in three month intervals up to a maximum exposure time of one year to follow the temporal development over the experimental period. Analyses included 13Cmic and 13C PLFA measurements to investigate the response of microbial abundance, community structure and 13C-root decomposition activity under the different treatments. Environmental conditions in the respective soil depths such as soil temperature and water content were recorded throughout the experimental period. All microbial groups (gram+ and gram- bacteria, fungi) showed highest relative 13C incorporation in 110 cm depth and samples with root addition had generally higher microbial abundances than those with no root addition. Here, especially fungi benefited from the additional carbon source with highly increased abundances in all incorporation depths. Also the altered environmental conditions in the different incorporation depths significantly influenced the different microbial groups. The steepest decrease with depth was detected in fungal abundance, while bacteria were less affected and increased in relative abundance in soil samples incorporated into subsoil layers. The highest seasonal variability in microbial abundance, however, was determined in 5 cm incorporation depth demonstrating the higher amplitude in micro-climatic and micro-environmental conditions in this near-surface soil habitat. In summary, this experiment demonstrated that carbon quality and quantity are the main factors restricting fungal abundance in deeper soil layers, while bacterial decomposer communities are adapted to a wider range of habitat conditions.
Kell, Douglas B.
2011-01-01
Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565
Kell, Douglas B
2011-09-01
The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from 'root crops') mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO(2). This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing.
Carbon Budgets for Four Forests in Northern California
NASA Astrophysics Data System (ADS)
Mattson, K. G.; Zhang, J.; Cohn, E. P.
2016-12-01
Carbon pools and fluxes are being measured in the first two years in four forest types in Northern California as part of a long-term experiment where canopies will be experimentally thinned to test the effects of forest canopy on carbon cycling. All major pools of carbon have been quantified along with most fluxes between pools. The pools are not techincally difficult to measure or estimate, the fluxes can be more difficult. But using our field measures are in a bookkeeping model of carbon pools and annual fluxes we can develop reasonably accurate carbon cycles in these four forests. We use direct measures as much as possible (litterfall, soil CO2 efflux, wood decay, harvests, etc), then make reasonable assumptions for more difficult measures (e.g., annual gross primary production, tree mortality, root decomposition, soil carbon turnover), and finally make some estimates by difference (root mortality or soil carbon turnover). We are able to construct models that balance carbon pools similar to our measures. The four forest types range considerably in their carbon budgets and cycles. Above ground live biomass carbon pool ranges from 104Mg C ha-1 for the 50 year old Ponderosa Pine conversion stands to more than double that 265 for the True Fir stand found at higher elevation (greater than 6,000 feet). The Mixed Conifer (the most representative forest type) and the Oak Stand (up to 60 % basal area California black oak) are both mid way between at 140 and 155, respectively. The detrital carbon pools generally follow the above ground biomass trends and contain greater pool sizes (down to 100 cm soil depths). Approximately 2/3rds of the detrital carbon is stored in the mineral soil but significant amounts are also stored in the forest floors and woody debris. Live small roots are relatively small pools of about 5 Mg C ha-1 but active and nearly turnover each year. Live roots produce about half the soil CO2 efflux. Dead roots are generally twice the size of live roots and turnover at half the rate. Woody debris appears to be an important contributor to below ground carbon. We have derived a humification coefficient where 2/3 of the decomposed carbon leaves the system as CO2 but more importantly up 1/3 remains behind to enter the next pool.
Ground Penetrating Radar For Estimating Root Biomass Through Empirical Analysis
NASA Astrophysics Data System (ADS)
Wolfe, M.; Dobreva, I. D.; Delgado, A.; Hays, D. B.; Bishop, M. P.; Huo, D.; Wang, X.; Teare, B. L.; Burris, S.
2017-12-01
Variability in soil carbon storage due to agricultural practices is an important component of the carbon cycle. Enhancing soil organic content is a means for restoring degraded soils and for improving soil quality, but also for carbon sequestration. In particular, accurate estimates of soil organic content are essential for quantifying carbon sequestration capabilities of agricultural systems. This project aims to advance the technological and analytical capabilities of Ground Penetrating Radar (GPR) for diagnoses of the soil carbon storage occurring due to the perennial grasses which are often utilized as biofuels. A new GPR processing workflow applied via a prototype software was tested on simulated GPR data of roots with different densities and depths to determine the sensitivity and capability of this technology to quantify these parameters. Field experiments were also conducted in long-term trials of different genotypes of perennial grasses over field sites in Texas to determine the application in authentic environments. GPR scans and soil samples were collected, and root dry biomass was obtained. Evaluation of pre-processing techniques was conducted to provide optimal resolution for assessment. The novel backscatter spatial structure workflow was implemented, and empirical relationships between root biomass and GPR derived observations were developed. Preliminary results suggest that the backscatter spatial structure changes in the presence of high density root biomass conditions, and these variations are indicative of root zone depth and density. Our results illustrate promising applications in root detection, and therefore, the soil organic content accumulation that is pertinent to a healthy soil system.
Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J P L; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M
2016-01-01
Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior.
Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J. P. L.; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M.
2016-01-01
Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior. PMID:27610112
Durand, Mickaël; Porcheron, Benoît; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie
2016-01-01
Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. 14CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots. PMID:26802041
NASA Astrophysics Data System (ADS)
Bouda, Martin; Saiers, James E.
2017-12-01
Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, descriptions of RSA have not been included because of their three-dimensional complexity, which makes them generally too computationally costly. Here we demonstrate a new, process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA under different soil moisture conditions: the RSA stencil. Using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, we show that the RSA stencil predicts plant water potentials within 2% to the outputs of a full 3D model, under the same assumptions on soil moisture heterogeneity, despite its trivial computational cost, resulting in improved predictions of water uptake and soil moisture compared to a model without RSA in a transient simulation. Our results suggest that LSM predictions of soil moisture dynamics and dependent variables can be improved by the implementation of this model, calibrated for individual PFTs using field observations.
Wan, Xiao-Hua; Huang, Zhi-Qun; He, Zong-Ming; Hu, Zhen-Hong; Yang, Jing-Yu; Yu, Zai-Peng; Wang, Min-huang
2013-02-01
A comparative study was conducted on the soil C and N pools in a 19-year-old broadleaf plantation and a Chinese fir (Cunninghamia lanceolata) plantation in subtropical China, aimed to understand the effects of tree species on the soil C and N pools. In the broadleaf plantation, the C and N stocks in 0-40 cm soil layer were 99.41 Mg.hm-2 and 6. 18 Mg.hm-2, being 33.1 % and 22. 6 % larger than those in Chinese fir plantation, respectively. The standing biomass and the C and N stocks of forest floor in the broadleaf plantation were 1.60, 1.49, and 1.52 times of those in Chinese fir plantation, respectively, and the differences were statistically significant. There was a significant negative relationship between the forest floor C/N ratio and the soil C and N stocks. In the broadleaf plantation, the fine root biomass in 0-80 cm soil layer was 1.28 times of that in the Chinese fir plantation, and the fine root biomass in 0-10 cm soil layer accounted for 48. 2 % of the total fine root biomass. The C and N stocks in the fine roots in the broadleaf plantation were also higher than those in the Chinese fir plantation. In 0-10 cm soil layer, its C stock had a significant positive relationship with the fine root C stock. It was suggested that as compared with Chinese fir plantation, the soil in broadleaf plantation had a greater potential to accumulate organic carbon.
Zhao, Hongmei; Huang, Gang; Li, Yan; Ma, Jian; Sheng, Jiandong; Jia, Hongtao; Li, Congjuan
2015-01-01
Background Climate change scenarios that include precipitation shifts and nitrogen (N) deposition are impacting carbon (C) budgets in arid ecosystems. Roots constitute an important part of the C cycle, but it is still unclear which factors control root mass loss and nutrient release in arid lands. Methodology/Principal Findings Litterbags were used to investigate the decomposition rate and nutrient dynamics in root litter with water and N-addition treatments in the Gurbantunggut Desert in China. Water and N addition had no significant effect on root mass loss and the N and phosphorus content of litter residue. The loss of root litter and nutrient releases were strongly controlled by the initial lignin content and the lignin:N ratio, as evidenced by the negative correlations between decomposition rate and litter lignin content and the lignin:N ratio. Fine roots of Seriphidium santolinum (with higher initial lignin content) had a slower decomposition rate in comparison to coarse roots. Conclusion/Significance Results from this study indicate that small and temporary changes in rainfall and N deposition do not affect root decomposition patterns in the Gurbantunggut Desert. Root decomposition rates were significantly different between species, and also between fine and coarse roots, and were determined by carbon components, especially lignin content, suggesting that root litter quality may be the primary driver of belowground carbon turnover. PMID:26544050
Aspinwall, Michael J; Blackman, Chris J; de Dios, Víctor Resco; Busch, Florian A; Rymer, Paul D; Loik, Michael E; Drake, John E; Pfautsch, Sebastian; Smith, Renee A; Tjoelker, Mark G; Tissue, David T
2018-05-08
Intraspecific variation in biomass production responses to elevated atmospheric carbon dioxide (eCO2) could influence tree species' ecological and evolutionary responses to climate change. However, the physiological mechanisms underlying genotypic variation in responsiveness to eCO2 remain poorly understood. In this study, we grew 17 Eucalyptus camaldulensis Dehnh. subsp. camaldulensis genotypes (representing provenances from four different climates) under ambient atmospheric CO2 and eCO2. We tested whether genotype leaf-scale photosynthetic and whole-tree carbon (C) allocation responses to eCO2 were predictive of genotype biomass production responses to eCO2. Averaged across genotypes, growth at eCO2 increased in situ leaf net photosynthesis (Anet) (29%) and leaf starch concentrations (37%). Growth at eCO2 reduced the maximum carboxylation capacity of Rubisco (-4%) and leaf nitrogen per unit area (Narea, -6%), but Narea calculated on a total non-structural carbohydrate-free basis was similar between treatments. Growth at eCO2 also increased biomass production and altered C allocation by reducing leaf area ratio (-11%) and stem mass fraction (SMF, -9%), and increasing leaf mass area (18%) and leaf mass fraction (5%). Overall, we found few significant CO2 × provenance or CO2 × genotype (within provenance) interactions. However, genotypes that showed the largest increases in total dry mass at eCO2 had larger increases in root mass fraction (with larger decreases in SMF) and photosynthetic nitrogen-use efficiency (PNUE) with CO2 enrichment. These results indicate that genetic differences in PNUE and carbon sink utilization (in roots) are both important predictors of tree productivity responsiveness to eCO2.
NASA Astrophysics Data System (ADS)
Tumber-Davila, S. J.; Schenk, H. J.; Jackson, R. B.
2017-12-01
This synthesis examines plant rooting distributions globally, by doubling the number of entries in the Root Systems of Individual Plants database (RSIP) created by Schenk and Jackson. Root systems influence many processes, including water and nutrient uptake and soil carbon storage. Root systems also mediate vegetation responses to changing climatic and environmental conditions. Therefore, a collective understanding of the importance of rooting systems to carbon sequestration, soil characteristics, hydrology, and climate, is needed. Current global models are limited by a poor understanding of the mechanisms affecting rooting, carbon stocks, and belowground biomass. This improved database contains an extensive bank of records describing the rooting system of individual plants, as well as detailed information on the climate and environment from which the observations are made. The expanded RSIP database will: 1) increase our understanding of rooting depths, lateral root spreads and above and belowground allometry; 2) improve the representation of plant rooting systems in Earth System Models; 3) enable studies of how climate change will alter and interact with plant species and functional groups in the future. We further focus on how plant rooting behavior responds to variations in climate and the environment, and create a model that can predict rooting behavior given a set of environmental conditions. Preliminary results suggest that high potential evapotranspiration and seasonality of precipitation are indicative of deeper rooting after accounting for plant growth form. When mapping predicted deep rooting by climate, we predict deepest rooting to occur in equatorial South America, Africa, and central India.
NASA Astrophysics Data System (ADS)
Hays, D. B.; Delgado, A.; Bruton, R.; Dobreva, I. D.; Teare, B.; Jessup, R.; Rajan, N.; Bishop, M. P.; Lacey, R.; Neely, H.; Hons, F.; Novo, A.
2016-12-01
Selection of the ideal high biomass energy feedstock and crop cultivars for our national energy and production needs should consider not only the value of the harvested above ground feedstock, but also the local and global environmental services it provides in terms of terrestrial carbon (C) phyto-sequestration and improved soil organic matter enrichment. Selection of ideal crops cultivars is mature, while biofuel feedstock is well under way. What is lacking, however, is high throughput phenotyping (HTP) and integrated real-time data analysis technologies for selecting ideal genotypes within these crops that also confer recalcitrant high biomass or perennial root systems not only for C phyto-sequestration, but also for adaptation to conservation agro-ecosystems, increasing soil organic matter and soil water holding capacity. In no-till systems, significant studies have shown that increasing soil organic carbon is derived primarily from root and not above ground biomass. As such, efforts to increase plant soil phyto-sequestration will require a focus on developing optimal root systems within cultivated crops. We propose to achieve a significant advancement in the use of ground penetrating radar (GPR) as one approach to phenotype root biomass and 3D architecture, and to quantify soil carbon sequestration. In this context, GPR can be used for genotypic selection in breeding nurseries and unadapted germplasm with favorable root architectures, and for assessing management and nutrient practices that promote root growth. GPR has been used for over a decade to successfully map coarse woody roots. Only few have evaluated its efficacy for imaging finer fibrous roots found in grasses, or tap root species. The objectives of this project is to: i) Empirically define the optimal ground penetrating radar (GPR)-antenna array for 3D root and soil organic carbon imaging and quantification in high biomass grass systems; and ii) Develop novel 3- and 4-dimensional data analysis methodologies for using GPR for non-invasive crop root and soil C phyto-sequestration 3-D imaging and quantification within a spatially variable soil matrix. Current results and future directions will be presented and discussed.
NASA Astrophysics Data System (ADS)
Sulman, B. N.; Oishi, C.; Shevliakova, E.; Pacala, S. W.
2013-12-01
The soil carbon formulations commonly used in global carbon cycle models and Earth System models (ESMs) are based on first-order decomposition equations, where turnover of carbon is determined only by the size of the carbon pool and empirical functions of responses to temperature and moisture. These models do not include microbial dynamics or protection of carbon in microaggregates and mineral complexes, making them incapable of simulating important soil processes like priming and the influence of soil physical structure on carbon turnover. We present a new soil carbon dynamics model - Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) - that explicitly represents microbial biomass and protected carbon pools. The model includes multiple types of carbon with different chemically determined turnover rates that interact with a single dynamic microbial biomass pool, allowing the model to simulate priming effects. The model also includes the formation and turnover of protected carbon that is inaccessible to microbial decomposers. The rate of protected carbon formation increases with microbial biomass. CORPSE has been implemented both as a stand-alone model and as a component of the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) ESM. We calibrated the model against measured soil carbon stocks from the Duke FACE experiment. The model successfully simulated the seasonal pattern of heterotrophic CO2 production. We investigated the roles of priming and protection in soil carbon accumulation by running the model using measured inputs of leaf litter, fine roots, and root exudates from the ambient and elevated CO2 plots at the Duke FACE experiment. Measurements from the experiment showed that elevated CO2 caused enhanced root exudation, increasing soil carbon turnover in the rhizosphere due to priming effects. We tested the impact of increased root exudation on soil carbon accumulation by comparing model simulations of carbon accumulation under elevated CO2 with and without increased root exudation. Increased root exudation stimulated microbial activity in the model, resulting in reduced accumulation of chemically recalcitrant carbon, but increasing the formation of protected carbon. This indicates that elevated CO2 could cause decreases in soil carbon storage despite increases in productivity in ecosystems where protection of soil carbon is limited. These effects have important implications for simulations of soil carbon response to elevated CO2 in current terrestrial carbon cycle models. The CORPSE model has been implemented in LM3, the terrestrial component of the GFDL ESM. In addition to the functionality described above, this model adds vertically resolved carbon pools and vertical transfers of carbon, leading to a decrease in carbon turnover rates with depth due to leaching of priming agents from the surface. We present preliminary global simulations using this model, including the variation of microbial activity and protected carbon with latitude and the resulting impacts on the sensitivity of soil carbon to climatic warming.
Regional scale patterns of fine root lifespan and turnover under current and future climate
M. Luke McCormack; David M. Eissenstat; Anantha M. Prasad; Erica A. Smithwick
2013-01-01
Fine root dynamics control a dominant flux of carbon from plants and into soils and mediate potential uptake and cycling of nutrients and water in terrestrial ecosystems. Understanding of these patterns is needed to accurately describe critical processes like productivity and carbon storage from ecosystem to global scales. However, limited observations of root dynamics...
Filipe G. Sanchez; Maurice M. Bursey
2002-01-01
The region immediately adjacent to established roots of mature trees has been termed the "reoccurring rhizosphere" and it has been hypothesized that organic matter input from fine root turnover, root exudates and sloughing may result in a build up of the soil carbon in this region. The "reoccurring rhizosphere" for first-, second- and third-order...
Quantifying the coarse-root biomass of intensively managed loblolly pine plantations
Ashley T. Miller; H. Lee Allen; Chris A. Maier
2006-01-01
Most of the carbon accumulation during a forest rotation is in plant biomass and the forest floor. Most of the belowground biomass in older loblolly pine (Pinus taeda L.) forests is in coarse roots, and coarse roots ersist longer after harvest than aboveground biomass and fine oots. The main objective was to assess the carbon accumulation in coarse...
Hamdi, Helmi; De La Torre-Roche, Roberto; Hawthorne, Joseph; White, Jason C
2015-03-01
The effect of non-functionalized and amino-functionalized multiwall carbon nanotube (CNT) exposure, as well as the impact of CNT presence on coexistent pesticide accumulation, was investigated in lettuce (Lactuca sativa L.). Lettuce seeds were sown directly into CNT-amended vermiculite (1000 mg L(-1)) to monitor phytotoxicity during germination and growth. During growth, lettuce seedlings were subsequently exposed to chlordane (cis-chlordane [CS], trans-chlordane [TC] and trans-nonachlor [TN]) and p,p'-DDE (all at 100 ng/L) in the irrigation solution for a 19-d growth period. CNT exposure did not significantly influence seed germination (82-96%) or plant growth. Similarly, pesticide exposure had no impact on plant growth, total pigment production or tissue lipid peroxidation. After 19 d, the root content of total chlordane and p,p'-DDE was 390 and 73.8 µg g(-1), respectively; in plants not exposed to CNTs, the shoot levels were 1.58 and 0.40 µg g(-1), respectively. The presence and type of CNT significantly influenced pesticide availability to lettuce seedlings. Non-functionalized CNT decreased the root and shoot pesticide content by 88% and 78%, respectively, but amino-functionalized CNT effects were significantly more modest, with decreases of 57% in the roots and 23% in the shoots, respectively. The presence of humic acid completely reversed the reduced accumulation of pesticides induced by amino-functionalized CNT, likely due to strong competition over adsorption sites on the nanomaterial (NM). These findings have implications for food safety and for the use of engineered NMs in agriculture, especially with leafy vegetables.
Changes in Root Decomposition Rates Across Soil Depths
NASA Astrophysics Data System (ADS)
Hicks Pries, C.; Porras, R. C.; Castanha, C.; Torn, M. S.
2016-12-01
Over half of global soil organic carbon (SOC) is stored in subsurface soils (>30 cm). Turnover times of soil organic carbon (SOC) increases with depth as evidenced by radiocarbon ages of 1,000 to more than 10,000 years in many deep soil horizons but the reasons for this increase are unclear. Many factors that potentially control SOC decomposition change with depth such as increased protection of SOC in aggregates or organo-mineral complexes and increased spatial heterogeneity of SOC "hotspots" like roots, which limit the accessibility of SOC to microbes. Lower concentrations of organic matter at depth may inhibit microbial activity due to energy limitation, and the microbial community itself changes with depth. To investigate how SOC decomposition differs with depth, we inserted a 13C-labeled fine root substrate into three depths (15, 50, and 90 cm) in a coniferous forest Alfisol and measured the root carbon remaining in particulate (>2 mm), bulk (< 2mm), free light, and mineral soil fractions over 2.5 years. We also characterized how the microbial community and SOC changed with depth. Initial rates of decomposition were unaffected by soil depth—50% of root carbon was lost from all depths within the first year. However, after 2.5 years, decomposition rates were affected by soil depth with only 15% of the root carbon remaining at 15 cm while 35% remained at 90 cm. Microbial communities, based on phospholipid fatty acid analysis, changed with depth—fungal biomarkers decreased whereas actinomycetes biomarkers increased. However, the preferences of different microbial groups for the 13C-labeled root carbon were consistent with depth. In contrast, the amount of mineral-associated SOC did not change with depth. Thus, decreased decomposition rates in this deep soil are not due to mineral associations limiting SOC availability, but may instead be due to changes in microbial communities, particularly in the microbes needed to carry out the later stages of root decomposition.
Katherine Sinacore; Jefferson Scott Hall; Catherine Potvin; Alejandro A. Royo; Mark J. Ducey; Mark S. Ashton; Shijo Joseph
2017-01-01
The potential benefits of planting trees have generated significant interest with respect to sequestering carbon and restoring other forest based ecosystem services. Reliable estimates of carbon stocks are pivotal for understanding the global carbon balance and for promoting initiatives to mitigate CO2 emissions through forest management. There...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Mary
The soil surrounding plant roots, the rhizosphere, has long been recognized as a zone of great functional importance to plants and the terrestrial ecosystems they inhabit. The primary objective of this research project was to determine how organic carbon (C) decomposition and stabilization processes in soil are impacted by the interactions between plant roots and the soil microbial community. The project addressed three hypotheses: H1: The microbiomes of the rhizosphere and detritosphere undergo a functional succession driven by the molecular composition and quantity of root-derived C. H2: Elevated CO 2 impacts the function and succession of rhizosphere communities thus alteringmore » the fate of root-derived C. H3: Microbial metabolism of root derived C is a critical controller of the accumulation of organic C in the mineral-associated soil pool. Researchers combined stable isotope approaches with metagenomic analyses in order to map the flow of C from roots to specific organisms within the rhizosphere. These analyses allowed us to assess the metabolic capabilities and functional profiles of the organisms using root carbon.« less
Geography of Global Forest Carbon Stocks & Dynamics
NASA Astrophysics Data System (ADS)
Saatchi, S. S.; Yu, Y.; Xu, L.; Yang, Y.; Fore, A.; Ganguly, S.; Nemani, R. R.; Zhang, G.; Lefsky, M. A.; Sun, G.; Woodall, C. W.; Naesset, E.; Seibt, U. H.
2014-12-01
Spatially explicit distribution of carbon stocks and dynamics in global forests can greatly reduce the uncertainty in the terrestrial portion of the global carbon cycle by improving estimates of emissions and uptakes from land use activities, and help with green house gas inventory at regional and national scales. Here, we produce the first global distribution of carbon stocks in living woody biomass at ~ 100 m (1-ha) resolution for circa 2005 from a combination of satellite observations and ground inventory data. The total carbon stored in live woody biomass is estimated to be 337 PgC with 258 PgC in aboveground and 79 PgC in roots, and partitioned globally in boreal (20%), tropical evergreen (50%), temperate (12%), and woodland savanna and shrublands (15%). We use a combination of satellite observations of tree height, remote sensing data on deforestation and degradation to quantify the dynamics of these forests at the biome level globally and provide geographical distribution of carbon storage dynamics in terms sinks and sources globally.
Aluminum stress increases carbon-centered radicals in soybean roots.
Abo, Mitsuru; Yonehara, Hiroki; Yoshimura, Etsuro
2010-10-15
The formation of radical species was examined in roots of soybean seedlings exposed to aluminum (Al). Electron spin resonance (ESR) spectra of root homogenates with the spin-trapping reagent 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) indicated the presence of carbon-centered radicals in plants not exposed to Al. Plants exposed to 50 microM Al showed a similar spectrum, with increased signal intensity. These radicals were likely produced through a H-atom abstraction reaction by hydroxyl (*OH) radicals, the synthesis of which was initiated by the formation of superoxide (O2*-) anions. The increased production of the carbon-centered radicals may be responsible for the lipid peroxidation in Al-treated roots. Copyright (c) 2010 Elsevier GmbH. All rights reserved.
Benchmark map of forest carbon stocks in tropical regions across three continents
Saatchi, Sassan S.; Harris, Nancy L.; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T. A.; Salas, William; Zutta, Brian R.; Buermann, Wolfgang; Lewis, Simon L.; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra
2011-01-01
Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a “benchmark” map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ±6% to ±53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ±5% and ca. ±1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete. PMID:21628575
Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil.
Sanquetta, Carlos R; Corte, Ana Pd; da Silva, Fernando
2011-09-24
The Biomass Expansion Factor (BEF) and the Root-to-Shoot Ratio (R) are variables used to quantify carbon stock in forests. They are often considered as constant or species/area specific values in most studies. This study aimed at showing tree size and age dependence upon BEF and R and proposed equations to improve forest biomass and carbon stock. Data from 70 sample Pinus spp. grown in southern Brazil trees in different diameter classes and ages were used to demonstrate the correlation between BEF and R, and forest inventory data, such as DBH, tree height and age. Total dry biomass, carbon stock and CO2 equivalent were simulated using the IPCC default values of BEF and R, corresponding average calculated from data used in this study, as well as the values estimated by regression equations. The mean values of BEF and R calculated in this study were 1.47 and 0.17, respectively. The relationship between BEF and R and the tree measurement variables were inversely related with negative exponential behavior. Simulations indicated that use of fixed values of BEF and R, either IPCC default or current average data, may lead to unreliable estimates of carbon stock inventories and CDM projects. It was concluded that accounting for the variations in BEF and R and using regression equations to relate them to DBH, tree height and age, is fundamental in obtaining reliable estimates of forest tree biomass, carbon sink and CO2 equivalent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, Jr, C. T.; Smith, Jeffery L.; Tyler, Donald D.
2010-02-15
Switchgrass is a potential bioenergy crop that could promote soil C sequestration in some environments. We compared four cultivars on a well-drained Alfisol to test for differences in biomass, C, and N dynamics during the fourth growing season. There was no difference (P > 0.05) among cultivars and no significant cultivar x time interaction in analyses of dry mass, C stocks, or N stocks in aboveground biomass and surface litter. At the end of the growing season, mean (±SE) aboveground biomass was 2.1±0.13 kg m-2, and surface litter dry mass was approximately 50% of aboveground biomass. Prior to harvest, themore » live root:shoot biomass ratio was 0.76. There was no difference (P > 0.05) among cultivars for total biomass, C, and N stocks belowground. Total belowground biomass (90-cm soil depth) as well as coarse (greater than or equal to 1 mm diameter) and fine (< 1 mm diameter) live root biomass increased from April to October. Dead roots were less than 7% of live root biomass to a depth of 90 cm. Net production of total belowground biomass (505 ±132 g m-2) occurred in the last half of the growing season. The increase in total live belowground biomass (426 ±139 g m-2) was more or less evenly divided among rhizomes, coarse, and fine roots. The N budget for annual switchgrass production was closely balanced with 6.3 g N m-2 removed by harvest of aboveground biomass and 6.7 g N m-2 supplied by fertilization. At the location of our study in west Tennessee, intra-annual changes in biomass, C, and N stocks belowground were of greater importance to crop management for C sequestration than were differences among cultivars.« less
Ohtsuka, Toshiyuki; Shizu, Yoko; Nishiwaki, Ai; Yashiro, Yuichiro; Koizumi, Hiroshi
2010-07-01
Secondary mixed forests are one of the dominant forest cover types in human-dominated temperate regions. However, our understanding of how secondary succession affects carbon cycling and carbon sequestration in these ecosystems is limited. We studied carbon cycling and net ecosystem production (NEP) over 4 years (2004-2008) in a cool-temperate deciduous forest at an early stage of secondary succession (18 years after clear-cutting). Net primary production of the 18-year-old forest in this study was 5.2 tC ha(-1 )year(-1), including below-ground coarse roots; this was partitioned into 2.5 tC ha(-1 )year(-1) biomass increment, 1.6 tC ha(-1 )year(-1) foliage litter, and 1.0 tC ha(-1 )year(-1) other woody detritus. The total amount of annual soil surface CO(2) efflux was 6.8 tC ha(-1 )year(-1), which included root respiration (1.9 tC ha(-1 )year(-1)) and heterotrophic respiration (RH) from soils (4.9 tC ha(-1 )year(-1)). The 18-year forest at this study site exhibited a great increase in biomass pool as a result of considerable total tree growth and low mortality of tree stems. In contrast, the soil organic matter (SOM) pool decreased markedly (-1.6 tC ha(-1 )year(-1)), although further study of below-ground detritus production and RH of SOM decomposition is needed. This young 18-year forest was a weak carbon sink (0.9 tC ha(-1 )year(-1)) at this stage of secondary succession. The NEP of this 18-year forest is likely to increase gradually because biomass increases with tree growth and with the improvement of the SOM pool through increasing litter and dead wood production with stand development.
Porto, Alessandra Nogueira; Borges, Álvaro Henrique; Semenoff-Segundo, Alex; Raslan, Suzane A; Pedro, Fábio Luis Miranda; Jorge, Antônio Olavo Cardoso; Bandeca, Matheus Coelho
2015-01-01
Background: Repeated sterilizations cycles cause undesirable alterations in the material properties of the instruments, such as corrosion, alterations in the hardness of the metal and the loss of the cutting sharpness of the instrument. This research examined the effect of repeated dry heat sterilization and autoclaves cycles on carbon steel (CS) and stainless steel (SS) curettes during the scaling and root planning. Materials and Methods: A total of 77 Gracey curettes were used in this study. Of these, 35 were SS and 42 were CS curettes submitted in different process: Dry heat, autoclave, inhibition of corrosion and autoclave, scaling, root planning and dry heat, scaling, root planning, inhibition of corrosion and autoclave. The inhibition of corrosion used on the carbon curettes (prior to sterilization in the autoclave) was sodium nitrite at 2%. The curettes received 10 consecutive cycles of sterilization and after that the cutting edges were examined in the electronic microscope, at 60 and 100 magnification times. Results: The images were evaluated by three independent examiners, who compared the photographs of each group with the control group. Conclusion: The surface corrosion products and a deterioration of the edges were observed and the results showed that the SS curettes suffered little alteration with sterilization, scaling, root planning whereas the CS curettes were visibly affected by sterilization in the autoclave, but when the inhibition of corrosion was used prior to the sterilization, the oxidation was considerably reduced. PMID:26028893
NASA Astrophysics Data System (ADS)
Zwetsloot, Marie; Bauerle, Taryn; Kessler, André; Wickings, Kyle
2017-04-01
Temperate forest tree species composition has been highly dynamic over the past few centuries and is expected to only further change under current climate change predictions. While aboveground changes in forest biodiversity have been widely studied, the impacts on belowground processes are far more challenging to measure. In particular, root exudation - the process through which roots release organic and inorganic compounds into the rhizosphere - has received little scientific attention yet may be the key to understanding root-facilitated carbon cycling in temperate forest ecosystems. The aim of this study was to analyze the extent by which tree species' variation in phenolic root exudate profiles influences soil carbon cycling in temperate forest ecosystems. In order to answer this question, we grew six temperate forest tree species in a greenhouse including Acer saccharum, Alnus rugosa, Fagus grandifolia, Picea abies, Pinus strobus, and Quercus rubra. To collect root exudates, trees were transferred to hydroponic growing systems for one week and then exposed to cellulose acetate strips in individual 800 mL jars with a sterile solution for 24 hours. We analyzed the methanol-extracted root exudates for phenolic composition with high-performance liquid chromatography (HPLC) and determined species differences in phenolic abundance, diversity and compound classes. This information was used to design the subsequent soil incubation study in which we tested the effect of different phenolic compound classes on rhizosphere carbon cycling using potassium hydroxide (KOH) traps to capture soil CO2 emissions. Our findings show that tree species show high variation in phenolic root exudate patterns and that these differences can significantly influence soil CO2 fluxes. These results stress the importance of linking belowground plant traits to ecosystem functioning. Moreover, this study highlights the need for research on root and rhizosphere processes in order to improve terrestrial carbon cycling models and estimate forest ecosystem feedbacks to climate change.
Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests
Andrei G. Lapenis; Gregory B. Lawrence; Alexander Heim; Chengyang Zheng; Walter Shortle
2013-01-01
Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots...
Song, Yali; Yu, Jingjin; Huang, Bingru
2014-01-01
Elevated CO2 concentration may promote plant growth while high temperature is inhibitory for C3 plant species. The interactive effects of elevated CO2 and high temperatures on C3 perennial grass growth and carbon metabolism are not well documented. Kentucky bluegrass (Poa pratensis) plants were exposed to two CO2 levels (400 and 800 μmol mol-1) and five temperatures (15/12, 20/17, 25/22, 30/27, 35/32°C, day/night) in growth chambers. Increasing temperatures to 25°C and above inhibited leaf photosynthetic rate (Pn) and shoot and root growth, but increased leaf respiration rate (R), leading to a negative carbon balance and a decline in soluble sugar content under ambient CO2. Elevated CO2 did not cause shift of optimal temperatures in Kentucky bluegrass, but promoted Pn, shoot and root growth under all levels of temperature (15, 20, 25, 30, and 35°C) and mitigated the adverse effects of severe high temperatures (30 and 35°C). Elevated CO2-mitigation of adverse effects of high temperatures on Kentucky bluegrass growth could be associated with the maintenance of a positive carbon balance and the accumulation of soluble sugars and total nonstructural carbohydrates through stimulation of Pn and suppression of R and respiratory organic acid metabolism.
Heinemeyer, A; Ineson, P; Ostle, N; Fitter, A H
2006-01-01
* Although arbuscular mycorrhizal (AM) fungi are a major pathway in the global carbon cycle, their basic biology and, in particular, their respiratory response to temperature remain obscure. * A pulse label of the stable isotope (13)C was applied to Plantago lanceolata, either uninoculated or inoculated with the AM fungus Glomus mosseae. The extra-radical mycelium (ERM) of the fungus was allowed to grow into a separate hyphal compartment excluding roots. We determined the carbon costs of the ERM and tested for a direct temperature effect on its respiration by measuring total carbon and the (13)C:(12)C ratio of respired CO(2). With a second pulse we tested for acclimation of ERM respiration after 2 wk of soil warming. * Root colonization remained unchanged between the two pulses but warming the hyphal compartment increased ERM length. delta(13)C signals peaked within the first 10 h and were higher in mycorrhizal treatments. The concentration of CO(2) in the gas samples fluctuated diurnally and was highest in the mycorrhizal treatments but was unaffected by temperature. Heating increased ERM respiration only after the first pulse and reduced specific ERM respiration rates after the second pulse; however, both pulses strongly depended on radiation flux. * The results indicate a fast ERM acclimation to temperature, and that light is the key factor controlling carbon allocation to the fungus.
Accounting carbon storage in decaying root systems of harvested forests.
Wang, G Geoff; Van Lear, David H; Hu, Huifeng; Kapeluck, Peter R
2012-05-01
Decaying root systems of harvested trees can be a significant component of belowground carbon storage, especially in intensively managed forests where harvest occurs repeatedly in relatively short rotations. Based on destructive sampling of root systems of harvested loblolly pine trees, we estimated that root systems contained about 32% (17.2 Mg ha(-1)) at the time of harvest, and about 13% (6.1 Mg ha(-1)) of the soil organic carbon 10 years later. Based on the published roundwood output data, we estimated belowground biomass at the time of harvest for loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina. We then calculated C that remained in the decomposing root systems in 2005 using the decay function developed for loblolly pine. Our calculations indicate that the amount of C stored in decaying roots of loblolly-shortleaf pine forests harvested between 1995 and 2005 in South Carolina was 7.1 Tg. Using a simple extrapolation method, we estimated 331.8 Tg C stored in the decomposing roots due to timber harvest from 1995 to 2005 in the conterminous USA. To fully account for the C stored in the decomposing roots of the US forests, future studies need (1) to quantify decay rates of coarse roots for major tree species in different regions, and (2) to develop a methodology that can determine C stock in decomposing roots resulting from natural mortality.
A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation
NASA Astrophysics Data System (ADS)
Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.
2008-12-01
Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).
J. S. King; K. S. Pregitzer; D. R. Zak; J. Sober; J. G. Isebrands; R. E. Dickson; G. R. Hendrey; D. F. Karnosky
2001-01-01
Rising atmospheric CO2 may stimulate future forest productivity, possibly increasing carbon storage in terrestrial ecosystems, but how tropospheric ozone will modify this response is unknown. Because of the importance of fine roots to the belowground C cycle, we monitored fine-root biomass and associated C fluxes in regenerating stands of...
Systematic structure of the neutron drip-line {sup 22}C nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana
2014-10-24
In the present work we systematically discuss the nuclear structure of the the heaviest particle-bound carbon isotope, {sup 22}C. The ground state wave function of the carbon isotope is calculated using the {sup 20}C core plus two-valence neutron based on a phenomenological mean-field MF potential. We apply the deduced wave function to provide the nuclear matter density which is necessary in the calculations of the total reaction cross section. Calculations show that there is a reasonable good description of the experimental binding energy BE and root-mean square RMS radius. The exotic structure and configuration of the ground state carbon isotopemore » is explained and a consistent explanation on the two-neutron halo (Borromean) nucleus is given.« less
Thompson, Michael; Gamage, Dananjali; Hirotsu, Naoki; Martin, Anke; Seneweera, Saman
2017-01-01
Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO2]) are predicted to continue to rise. Elevated [CO2] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO2]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO2]. At elevated [CO2], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO2]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO2]. PMID:28848452
Thompson, Michael; Gamage, Dananjali; Hirotsu, Naoki; Martin, Anke; Seneweera, Saman
2017-01-01
Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO 2 ]) are predicted to continue to rise. Elevated [CO 2 ] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO 2 ]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO 2 ]. At elevated [CO 2 ], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO 2 ]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO 2 ].
NASA Astrophysics Data System (ADS)
Dannoura, M.; Kominami, Y.; Takanashi, S.; Takahashi, K.
2013-12-01
Studying carbon allocation in trees is a key to better understand belowground carbon cycle and its response to climate change. Tracing 13C in tree and soil compartments after pulse labeling is one of powerful tool to study the fate of carbon in forest ecosystems. This experiment was conducted in Yamashiro experimental forest, Kyoto, Japan. Annual mean temperature and precipitation from 1994 to 2009 are 15.5 ° C and 1,388 mm respectively. The branch pulse labeling were done 7 times in 2011 using same branch of Quercus serrata (H:11.7 m, DBH; 33.7 cm) to see seasonal variations of carbon velocity. Whole crown labeling of Quercus serrata (H:9 m, DBH; 13.7 cm) was done in 2012 to study carbon allocation and to especially focus on belowground carbon flux until to the hyphae respiration. Pure 13CO2 (99.9%) was injected to the labeling chamber which was set to branch or crown. Then, after one hour of branch labeling and 3.5 hour for crown labeling, the chamber was opened. Trunk respiration chambers, fine root chambers and hyphae chambers were set to the target tree to trace labeled carbon in the CO2 efflux. 41 μm mesh was used to exclude ingrowth of roots into hyphae chambers. The results show that the velocity of carbon through the tree varied seasonally, with higher velocity in summer than autumn, averaging 0.47 m h-1. Half-lives of labeled carbon in autotrophic respiration were similar above and below ground during the growing season, but they were twice longer in trunk than in root in autumn. From the whole crown labeling done end of growing season, the 13CO2 signal was observed 25 hours after labeling in trunk chamber and 34-37.7 hours after labeling in fine root and hyphae respiration almost simultaneously. Half-lives of 13 was longer in trunk than below ground. Trunk respiration was still using labelled carbon during winter suggesting that winter trunk respiration is partly fueled by carbon stored in the trunk at the end of the growing season.
Philpott, Timothy J; Barker, Jason S; Prescott, Cindy E; Grayston, Sue J
2018-02-01
Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year after burial) in Douglas fir forests in coastal British Columbia, Canada. Fungal species and guilds were identified from decomposed fine roots using high-throughput sequencing. Variable retention had short-term effects on β-diversity; harvest treatment modified the fungal community composition at the 6-year-postharvest site, but not at the 13-year-postharvest site. Ericoid and ectomycorrhizal guilds were not more abundant under VRH, but stand age significantly structured species composition. Guild composition varied by decay stage, with ruderal species later replaced by saprotrophs and ectomycorrhizae. Ectomycorrhizal abundance on decomposing fine roots may partially explain why fine roots typically decompose more slowly than surface litter. Our results indicate that stand age structures fine-root decomposers but that decay stage is more important in structuring the fungal community than shifts caused by harvesting. The rapid postharvest recovery of fungal communities decomposing fine roots suggests resiliency within this community, at least in these young regenerating stands in coastal British Columbia. IMPORTANCE Globally, fine roots are a dominant source of carbon in forest soils, yet the fungi that decompose this material and that drive the sequestration or respiration of this carbon remain largely uncharacterized. Fungi vary in their capacity to decompose plant litter, suggesting that fungal community composition is an important determinant of decomposition rates. Variable-retention harvesting is a forestry practice that modifies fungal communities by providing refuge for ectomycorrhizal fungi. We evaluated the effects of variable retention and clear-cut harvesting on fungal communities decomposing fine roots at two sites (6 and 13 years postharvest), at two decay stages (43 days and 1 year), and in uncut stands in temperate rainforests. Harvesting impacts on fungal community composition were detected only after 6 years after harvest. We suggest that fungal community composition may be an important factor that reduces fine-root decomposition rates relative to those of above-ground plant litter, which has important consequences for forest carbon cycling. Copyright © 2018 American Society for Microbiology.
Fan, T W; Lane, A N; Pedler, J; Crowley, D; Higashi, R M
1997-08-15
Root exudates in the rhizosphere are vital to the normal life cycle of plants. A key factor is phytometallophores, which function in the nutritional acquisition of iron and zinc and are likely to be important in the uptake of pollutant metals by plants. Unraveling the biochemistry of these compounds is tedious using traditional analyses, which also fall short in providing the overall chemical composition or in detecting unknown or unexpected organic ligands in the exudates. Here, we demonstrate a comprehensive analysis of the exudate composition directly by 1H and 13C multidimensional NMR and silylation GC-MS. The advantages are (a) minimal sample preparation, with no loss of unknown compounds, and reduced net analysis time; (b) structure-based analysis for universal detection and identification; and (c) simultaneous analysis of a large number of constituents in a complex mixture. Using barley root exudates, a large number of common organic and amino acids were identified. Three derivatives of mugineic acid phytosiderophores were also determined, the major one being 3-epihydroxymugineic acid, for which complete 1H and 13C NMR assignments were obtained. Quantification of all major components using these methods revealed a sevenfold increase in total exudation under moderate iron deficiency, with 3-epihydroxymugineic acid comprising approximately 22% of the exudate mixture. As iron deficiency increased, total quantities of exudate per gram of root remained unchanged, but the relative quantity of carbon allocated to phytosiderophore increased to approximately 50% of the total exudate in response to severe iron deficiency.
Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W. W.; Hankoua, Bertrand B.
2018-01-01
To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability. PMID:29541080
Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W W; Hankoua, Bertrand B
2018-01-01
To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava ( Manihot esculenta ), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus , together with the gene encoding a modified ADP-glucose pyrophosphorylase ( glgC ) from Escherichia coli , were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.
Chelcy R. Ford; Nina Wurzburger; Ronald L. Henderick; Robert O. Teskey
2007-01-01
Plants can aquaire carbon from sources other than atmospheric carbon dioxide (CO2), including soil-dissolved inorganic carbon (DIC). Although the next flux of CO2 is out of the root, soil DIC can be taken up by the root, transported within the plant, and fixed either photosynthetically or anaplerotically by plant tissues....
Phytoxicity study of the products of wet oxidation of a representative biomass (lettuce)
NASA Technical Reports Server (NTRS)
Onisko, B. L.; Wydeven, T.
1983-01-01
In an attempt to verify the results reported previously concerning the phytotoxicity of wet-oxidation (wet-ox) products, lettuce solids were suspended in water and then heated to 548 K for 3.6 ksec (1 hr) under 4.1x10 to the -7 Pa (400 psig at 294 K) oxygen pressure and 1.52x10 to the 8th (1500 psig at 548 K) total pressure. Such treatment resulted in oxidation of 80% of the initial organic carbon to carbon dioxide. Thirty-three percent of the remaining organic carbon was present in acetic acid. Organic nitrogen in the feed was decreased 90% by the wet-ox treatment. Ammonia and nitrogen gas were the main nitrogen products. Analysis of the liquid product of wet-ox indicated that most of the minerals essential for plant growth were present. However, when tested using a lettuce-root growth-rate assay, the solution was toxic. This toxicity was not due to excessive salt or ammonia or to an improper pH. Analysis of the wet-ox solution revealed the presence of silver and chromium, thus implicating reactor corrosion as the cause of the phytotoxicity. Both cation and anion exchange resins removed the silver and the toxicity of the liquid effluent, indicating silver as the toxic component. Uptake of both silver and chromium by lettuce roots correlated with diminished root growth. Toxicity of the solution from wet-ox was not observed when precautions were taken to minimize contact of the liquid in the reactor with the metal reactor components.
Roth, Marla; Hussain, Altaf; Cale, Jonathan A; Erbilgin, Nadir
2018-02-01
Lodgepole pine (Pinus contorta) forests have experienced severe mortality from mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North America for the last several years. Although the mechanisms by which beetles kill host trees are unclear, they are likely linked to pine defense monoterpenes that are synthesized from carbohydrate reserves. However, how carbohydrates and monoterpenes interact in response to MPB colonization is unknown. Understanding this relationship could help to elucidate how pines succumb to bark beetle attack. We compared concentrations of individual and total monoterpenes and carbohydrates in the phloem of healthy pine trees with those naturally colonized by MPB. Trees attacked by MPB had nearly 300% more monoterpenes and 40% less carbohydrates. Total monoterpene concentrations were most strongly associated with the concentration of sugars in the phloem. These results suggest that bark beetle colonization likely depletes carbohydrate reserves by increasing the production of carbon-rich monoterpenes, and other carbon-based secondary compounds. Bark beetle attacks also reduce water transport causing the disruption of carbon transport between tree foliage and roots, which restricts carbon assimilation. Reduction in carbohydrate reserves likely contributes to tree mortality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, V.M.; Klarman, W.L.
1975-01-01
Various flow rates of air, air containing methane, and air containing carbon dioxide were passed through sterile, nutrient-saturated sand in one-liter flasks. Sixteen-day-old axenic seedlings of Pinus virginiana were planted either prior to or immediately following treatment of medium. Some flasks were also inoculated with Amanita rubescens, a fungus commonly mycorrhizal with P. virginiana. Seedlings were maintained under continuous illumination for 30 days at 24 C and roots were then examined to determine development and/or mycorrhizal association. Dry weights of roots and whole seedlings were measured. Root development of seedlings planted in medium prior to treatment with air increased withmore » increase of flow-rate to 1.25 liters per hour. When treated with methane or carbon-dioxide fewer seedlings with developed root systems were produced. Seedlings planted in medium colonized by A. rubescens and treated with air or air containing carbon-dioxide produced increasing numbers of developed roots as flow rate increased, but other seedlings treated with methane produced fewer developed roots with increase in flow-rate. Mycorrhizal production was maximum at flow-rates between 0.25 and 0.6 liters. Generally fewer developed roots and/or mycorrhizae were produced by seedlings planted in treated medium than on similar seedlings planted before gas treatment. Dry weights generally paralleled root development.« less
Dorion, Sonia; Clendenning, Audrey; Rivoal, Jean
2017-03-01
Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphate from a donor nucleoside triphosphate to an acceptor nucleoside diphosphate. In this study we used a targeted metabolomic approach and measurement of physiological parameters to report the effects of the genetic manipulation of cytosolic NDPK (NDPK1) expression on physiology and carbon metabolism in potato (Solanum tuberosum) roots. Sense and antisense NDPK1 constructs were introduced in potato using Agrobacterium rhizogenes to generate a population of root clones displaying a 40-fold difference in NDPK activity. Root growth, O 2 uptake, flux of carbon between sucrose and CO 2 , levels of reactive oxygen species and some tricarboxylic acid cycle intermediates were positively correlated with levels of NDPK1 expression. In addition, NDPK1 levels positively affected UDP-glucose and cellulose contents. The activation state of ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was higher in antisense roots than in roots overexpressing NDPK1. Further analyses demonstrated that ADP-glucose pyrophosphorylase was more oxidized, and therefore less active, in sense clones than antisense clones. Consequently, antisense NDPK1 roots accumulated more starch and the starch to cellulose ratio was negatively affected by the level of NDPK1. These data support the idea that modulation of NDPK1 affects the distribution of carbon between starch and cellulose biosynthetic pathways. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Total carbon accumulation in a tropical forest landscape.
Sierra, Carlos A; Del Valle, Jorge I; Restrepo, Hector I
2012-12-19
Regrowing tropical forests worldwide sequester important amounts of carbon and restore part of the C emissions emitted by deforestation. However, there are large uncertainties concerning the rates of carbon accumulation after the abandonment of agricultural and pasture land. We report here accumulation of total carbon stocks (TCS) in a chronosequence of secondary forests at a mid-elevation landscape (900-1200 m asl) in the Andean mountains of Colombia. We found positive accumulation rates for all ecosystem pools except soil carbon, which showed no significant trend of recovery after 36 years of secondary succession. We used these data to develop a simple model to predict accumulation of TCS over time. This model performed remarkably well predicting TCS at other chronosequences in the Americas (Root Mean Square Error < 40 Mg C ha-1), which provided an opportunity to explore different assumptions in the calculation of large-scale carbon budgets. Simulations of TCS with our empirical model were used to test three assumptions often made in carbon budgets: 1) the use of carbon accumulation in tree aboveground biomass as a surrogate for accumulation of TCS, 2) the implicit consideration of carbon legacies from previous land-use, and 3) the omission of landscape age in calculating accumulation rates of TCS. Our simulations showed that in many situations carbon can be released from regrowing secondary forests depending on the amount of carbon legacies and the average age of the landscape. In most cases, the rates used to predict carbon accumulation in the Americas were above the rates predicted in our simulations. These biome level rates seemed to be realistic only in landscapes not affected by carbon legacies from previous land-use and mean ages of around 10 years.
Total carbon accumulation in a tropical forest landscape
2012-01-01
Background Regrowing tropical forests worldwide sequester important amounts of carbon and restore part of the C emissions emitted by deforestation. However, there are large uncertainties concerning the rates of carbon accumulation after the abandonment of agricultural and pasture land. We report here accumulation of total carbon stocks (TCS) in a chronosequence of secondary forests at a mid-elevation landscape (900-1200 m asl) in the Andean mountains of Colombia. Results We found positive accumulation rates for all ecosystem pools except soil carbon, which showed no significant trend of recovery after 36 years of secondary succession. We used these data to develop a simple model to predict accumulation of TCS over time. This model performed remarkably well predicting TCS at other chronosequences in the Americas (Root Mean Square Error < 40 Mg C ha-1), which provided an opportunity to explore different assumptions in the calculation of large-scale carbon budgets. Simulations of TCS with our empirical model were used to test three assumptions often made in carbon budgets: 1) the use of carbon accumulation in tree aboveground biomass as a surrogate for accumulation of TCS, 2) the implicit consideration of carbon legacies from previous land-use, and 3) the omission of landscape age in calculating accumulation rates of TCS. Conclusions Our simulations showed that in many situations carbon can be released from regrowing secondary forests depending on the amount of carbon legacies and the average age of the landscape. In most cases, the rates used to predict carbon accumulation in the Americas were above the rates predicted in our simulations. These biome level rates seemed to be realistic only in landscapes not affected by carbon legacies from previous land-use and mean ages of around 10 years. PMID:23249727
Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Liu, Jianmin; Ni, Weidou
2014-01-01
Measurement of coal carbon content using laser-induced breakdown spectroscopy (LIBS) is limited by its low precision and accuracy. A modified spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal using LIBS. The proposed method used the molecular emissions of diatomic carbon (C2) and cyanide (CN) to compensate for the diminution of atomic carbon emissions in high volatile content coal samples caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with standard plasma temperature, electron number density, and total number density of carbon, under which the carbon line intensity is proportional to its concentration in the coal samples. To obtain better compensation for fluctuations of total carbon number density, the segmental spectral area was used and an iterative algorithm was applied that is different from our previous spectrum standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal samples. The results demonstrate that the proposed method has superior performance over the generally applied normalization methods. The average relative standard deviation was 3.21%, the coefficient of determination was 0.90, the root mean square error of prediction was 2.24%, and the average maximum relative error for the modified model was 12.18%, showing an overall improvement over the corresponding values for the normalization with segmental spectrum area, 6.00%, 0.75, 3.77%, and 15.40%, respectively.
Razeq, Fakhria M; Kosma, Dylan K; Rowland, Owen; Molina, Isabel
2014-10-01
Camelina sativa (L.) Crantz is an emerging low input, stress tolerant crop with seed oil composition suitable for biofuel and bioproduct production. The chemical compositions and ultrastructural features of surface waxes from C. sativa aerial cuticles, seeds, and roots were analyzed using gas chromatography and microscopy. Alkanes, primary fatty alcohols, and free fatty acids were common components of all analyzed organs. A particular feature of leaf waxes was the presence of alkyl esters of long-chain fatty acids and very long-chain fatty alcohols, ranging from C38 to C50 and dominated by C42, C44 and C46 homologues. Stem waxes were mainly composed of non-sterol pentacyclic triterpenes. Flowers accumulated significant amounts of methyl-branched iso-alkanes (C29 and C31 total carbon number) in addition to straight-chain alkanes. Seed waxes were mostly primary fatty alcohols of up to 32 carbons in length and unbranched C29 and C31 alkanes. The total amount of identified wax components extracted by rapid chloroform dipping of roots was 280μgg(-1) (fresh weight), and included alkyl hydroxycinnamates, predominantly alkyl coumarates and alkyl caffeates. This study provides qualitative and quantitative information on the waxes of C. sativa root, shoot, and seed boundary tissues, allowing the relative activities of wax biosynthetic pathways in each respective plant organ to be assessed. This detailed description of the protective surface waxes of C. sativa may provide insights into its drought-tolerant and pathogen-resistant properties, and also identifies C. sativa as a potential source of renewable high-value natural products. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vogel, J. G.; Bacon, A. R.; Bracho, R. G.; Gonzalez-Benecke, C. A.; Fox, T. D.; Laviner, M. A.; Kane, M.; Burkhart, H.; Martin, T.; Will, R.; Ross, C. W.; Grunwald, S.; Jokela, E. J.; Meek, C.
2016-12-01
Extending from Virginia to east Texas in the southeastern United States, managed pine plantations are an important component of the region's carbon cycle. An objective of the Pine Integrated Network: Education, Mitigation, and Adaptation project (PINEMAP) is to improve estimates of how ecosystem carbon pools respond to the management strategies used to increase the growth of loblolly pine plantations. Experimental studies (108 total) that have been used to understand plantation productivity and stand dynamics by university-forest industry cooperatives were measured for the carbon stored in the trees, roots, coarse-wood, detritus in soil, forest floor, understory and soils to 1-meter. The age of the studied plantations ranged from 4-26 years at the time of sampling, with 26 years very near the period when these plantations are commonly harvested. Across all study sites, 455 experimental plots were measured. The average C storage across all pools, sites, and treatments was 192 Mg C ha-1, with the average percentage of the total coming from soil (44%), tree biomass (40%), forest floor (8%), root (5%), soil detritus (2%), understory biomass (1%), and coarse-wood (<1%) pools. Plots had as a treatment either fertilization, competition control, and stand density control (thinning), and every possible combination of treatments including `no treatment'. A paired plot analysis was used where two plots at a site were examined for relative differences caused by a single treatment and these differences averaged across the region. Thinning as a stand-alone treatment significantly reduced forest floor mass by 60%, and the forest floor in the thinned plus either competition control or fertilization was 18.9% and 19.2% less, respectively, than unthinned stands combined with the same treatments. Competition control increased C storage in tree biomass by 12% and thinning decreased tree biomass by 32%. Thinning combined with fertilization had lower soil carbon (0-1 m) than unthinned-fertilized plots (22%), although the replication for this combination was relatively low (n=6). Overall these results suggest that maintaining higher tree densities increases ecosystem carbon storage across multiple pools of C in loblolly pine plantations.
Human impacts on soil carbon dynamics of deep-rooted Amazonian forests
NASA Technical Reports Server (NTRS)
Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.
1994-01-01
Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.
Cheng, Lingyun; Tang, Xiaoyan; Vance, Carroll P.; White, Philip J.; Zhang, Fusuo; Shen, Jianbo
2014-01-01
Light intensity affects photosynthetic carbon (C) fixation and the supply of carbon to roots. To evaluate interactions between carbon supply and phosphorus (P) supply, effects of light intensity on sucrose accumulation, root growth, cluster root formation, carboxylate exudation, and P uptake capacity were studied in white lupin (Lupinus albus L.) grown hydroponically with either 200 µmol m–2 s–1 or 600 µmol m–2 s–1 light and a sufficient (50 µM P) or deficient (1 µM P) P supply. Plant biomass and root:shoot ratio increased with increasing light intensity, particularly when plants were supplied with sufficient P. Both low P supply and increasing light intensity increased the production of cluster roots and citrate exudation. Transcripts of a phosphoenol pyruvate carboxylase gene (LaPEPC3) in cluster roots (which is related to the exudation of citrate), transcripts of a phosphate transporter gene (LaPT1), and P uptake all increased with increasing light intensity, under both P-sufficient and P-deficient conditions. Across all four experimental treatments, increased cluster root formation and carboxylate exudation were associated with lower P concentration in the shoot and greater sucrose concentration in the roots. It is suggested that C in excess of shoot growth capabilities is translocated to the roots as sucrose, which serves as both a nutritional signal and a C-substrate for carboxylate exudation and cluster root formation. PMID:24723402
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudinski, Julia B.; Torn, Margaret S.; Riley, W. J.
2009-01-01
Characterizing the use of C reserves in trees is important for understanding stress responses, impacts of asynchrony between photosynthesis and growth demand, and isotopic exchanges in plant dynamic studies. Using an inadvertent, whole ecosystem radiocarbon (14C) exposure in a temperate deciduous oak forest and numerical modeling, we calculated that the mean age of stored C used to grow leaf buds and new fine root tissue is 0.5-1.0 y. The mean age of stored C used to grow new roots was about 0.7 y across a range of realistic values of 14C inputs to the system. The amount of stored Cmore » used on an annual basis to grow fine roots was between 15 and 55% of total root growth, with the range defined by the assumed 14C input profile. We estimate the annually-averaged mean age of C in new root tissues is 1-5 months. Therefore, accounting for storage C use in isotope root models may be unnecessary in all but the fastest cycling root populations (i.e., mean age <1 y). Consistent with the whole ecosystem labeling results, we found, using "bomb-14C," that the mean C age of new root tissues in three additional forest sites (one deciduous, two coniferous) was less than 2 years. We conclude that in many ecosystem types, growth from stored C is insufficient to impact bomb-14C based estimates of long root lifetimes.« less
NASA Astrophysics Data System (ADS)
Ostonen, I.; Kupper, P.; Sõber, J.; Aosaar, J.; Varik, M.; Lõhmus, K.
2012-04-01
A facility for free air humidity manipulation (FAHM) was established to investigate the effect of increased air humidity on belowground biomass and turnover in silver birch (Betula pendula Roth.) forest ecosystems with respect to rising air humidity predicted for Northern Europe. Fine root and rhizomes are short-lived and recognized as the most important component contributing to below-ground C fluxes in forests. The FAHM system enables air relative humidity to be increased on average 7 units (%) over the ambient level during mist fumigation. The experimental site contains humidified (H) and control (C) plots; each plot contains sectors with diverse "forest" understory and early successional grasses. The trees were planted in 2006, humidification started in spring 2008, and soil cores to study fine root and rhizome biomass and turnover were taken in 2007, 2009 and 2010. In July 2009, total fine root and rhizome biomass was 8 tons per ha in C and 16 tons per ha in H plots. The roots of understory formed 86% in C and 93% H plots, respectively. Our preliminary data suggest that the increased humidity affected more the roots of understory plants: fine root and rhizome biomass and production increased approximately twice by increasing air humidity. However, the tendency was similar for fine root biomass and production of silver birch. Fine root turnover speeded up for both silver birch and understory roots in H plots. Hence, changes in air humidity can significantly affect forest carbon cycling.
NASA Astrophysics Data System (ADS)
Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa; Egsgaard, Helge; Kappel Schmidt, Inger; Jakobsen, Iver; Ambus, Per
2013-04-01
The global terrestrial soil organic matter stock is the biggest terrestrial carbon pool (1500 Pg C) of which about 4 % is turned over annually. Thus, terrestrial ecosystems have the potential to accelerate or diminish atmospheric climate change effects via belowground carbon processes. We investigated the effect of elevated CO2 (510 ppm), prolonged spring/summer droughts and increased temperature (1 ˚C) on belowground carbon allocation and on the recovery of carbon by the soil microbial community. An in-situ 13C-carbon pulse-labeling experiment was carried out in a temperate heath/grassland (Denmark) in May 2011. Recently assimilated 13C-carbon was traced into roots, soil and microbial biomass 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in microbial functional groups on the basis of phospholipid fatty acids (PLFAs) in roots. Gram-negative and gram-positive bacteria were distinguished from the decomposer groups of actinomycetes (belonging to the group of gram-positive bacteria) and saprophytic fungi. Mycorrhizal fungi specific PLFAs were not detected probably due to limited sample size in combination with restricted sensitivity of the used GC-c-IRMS setup. Climate treatments did not affect 13C allocation into roots, soil and microbial biomass carbon and also the total microbial biomass size stayed unchanged as frequently observed. However, climate treatments changed the composition of the microbial community: elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy) but did not affect the abundance of decomposers. Drought favored the bacterial community whereas increased temperatures showed reduced abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). However, not only the microbial community composition was affected by the applied climatic conditions, but also the activity of microbial functional groups in their utilization of recently assimilated carbon. Particularly the negative effect of the future treatment combination (CO2×T×D) on actinomycetes activity was surprising. By means of activity patterns of gram-negative bacteria, we observed the fastest carbon turnover rate under elevated CO2, and the slowest under extended drought conditions. A changed soil microbial community in combination with altered activities of different microbial functional groups leads to the conclusion that carbon allocation belowground was different under ambient and future climatic conditions and indicated reduced utilization of soil organic matter in the future due to a change of actinomycetes abundance and activity.
Visualization of the Dynamic Rhizosphere Environment: Microbial and Biogeochemical Perspectives
NASA Astrophysics Data System (ADS)
Cardon, Z. G.; Forbes, E. S.; Thomas, F.; Herron, P. M.; Gage, D. J.; Thomas, S.; Larsen, M.; Arango Pinedo, C.; Sievert, S. M.; Giblin, A. E.
2014-12-01
The rhizosphere is a hotbed of nutrient cycling fueled by carbon from plants and controlled by microbes. Plants also strongly affect the rhizosphere by driving water flow into and out of roots, and by oxygenating saturated soil and sediment. Location and dynamics of plant-spurred microbial growth and activities are impossible to discern with destructive soil assays mixing microbe-scale soil microenvironments in a single"snap-shot" sample. Yet data are needed to inform (and validate) models describing microbial activity and biogeochemistry in the ebb and flow of the dynamic rhizosphere. Dynamics and localization of rapid microbial growth in the rhizosphere can be assessed over time using living soil microbiosensors. We used the bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constituitive promoter nptII and luxCDABE(genes coding for light production). High light production by KT2440/pZKH2 correlated with rapid microbial growth supported by high carbon availability. Biosensors were used in clear-sided microcosms filled with non-sterile soil in which corn, black poplar or tomato were growing. KT2440/pZKH2 revealed that root tips are not necessarily the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots. Roots can also be sources of oxygen (O2) to the rhizosphere in saturated soil. We quantified spatial distributions of O2 using planar optodes placed against the face of sediment blocks cut from vegetated salt marsh at Plum Island Ecosystems LTER. Integrated over time, Spartina alterniflora roots were O2 sources to the rhizosphere. However, "sun-up" (light on) did not uniformly enhance rhizosphere O2 concentrations (as stomata opened and O2 production commenced). In some regions, the balance of O2 supply (from roots) and O2 demand (root and microbial) tipped toward demand at sun-up (repeatedly, over days). We speculate that in these regions, carbon produced during photosynthesis was released from roots and stimulated microbial O2 demand in the light. In situ, such dynamics in O2 and carbon availability around plant roots will influence interlinked sulfur, nitrogen, and carbon cycling in salt marsh rhizosphere.
NASA Astrophysics Data System (ADS)
Gonzalez-Garrido, Laura; Delgado, Juan Antonio; Martinez, Teodora
2010-05-01
Soil respiration is one of the largest carbon flux components within terrestrial ecosystems, and small changes in the magnitude of soil respiration could have a large effect on the concentration of CO2 in the atmosphere. The main objective is evaluating the factors controlling soil respiration on the global carbon cycle in riparian areas of Henares River. We evaluated total soil respiration as it was affected by soil temperature, soil moisture, root respiration and organic matter in four areas differing in vegetation cover. We specifically assessed the contribution of soil organic matter and fine root biomass (≤1 mm.) in soil carbon dioxide flux. The study area is located on the riverbanks of Henares River where it passes through the municipal term of Alcala de Henares (Madrid) in Central Spain. Measurements were performed in spring and autumn of 2009. The study was conducted on four different types of riparian vegetation: natural Mediterranean riparian forest, reforestation of 1994, reforestation of 1999 and riparian grassland without trees. In each area of study 3, 25x25 m, plots were delimited and within each plot three sampling units of 50x50 cm were selected at random. The temperature of the ground was taken during the measures from respiration using a Multi-thermometer (-50°C - +300°C) at 5 cm depth. The moisture content of the ground was measured at 5 cm of depth with a HH2 Moisture meter (Delta Devices, Cambridge, UK). The measures of respiration of the ground were realised in field by means of LCI portable (LC pro ADC Bioscientific, Ltd. UK) connected to a ground respiration camera. We introduced the camera 3 cm into the soil just after eliminating the vegetation grass of the surface of measurement cutting carefully the aerial part, without damaging the roots. Soil CO2 flux measurements were registered after stabilization. Immediately after CO2 measurements, we obtained soil samples by means of a drill of 2.18 cm of diameter taking samples to 10 cm and 20 cm depth. Soil samples were dried to the air with the aim of preserving the roots the sample contained. They were extracted manually by means of very fine tweezers. We separate roots by diameter (Fine roots ≤ 1mm; rest of roots > 1mm) and dead from alive using texture and colour as clues. Finally the dry weight of roots was taking with a precision balance +-0.0001. Soil organic matter to 10 and 20 cm of depth were measure in laboratory using the method of Walkley and Black (1934). Differences in Soil CO2 flux, organic matter, fine root biomass, temperature and moisture between areas were analyzed using one-way ANOVAs. Our results suggest that fine root biomass present a larger impact than soil organic matter in soil CO2 flux values. Natural riparian forest presented higher values of soil CO2 flux than the rest of areas even when differences in root biomass and soil organic matter were controlled. Between the grassy area and both reforestations there were no differences in soil CO2 flux. In addition, we found that soil CO2 flux in our study area was more affected by soil temperature than by moisture, which could be relevant in the interpretation of the possible effects of global change. Key words: riparian forest, fine roots, carbon cycle, soil CO2 flux, root respiration. Acknowledgements: Research projects, n°FP08-AG02 IMIDRA and RTA 2006-00101-00-00 INIA and predoctoral scholarship FPI-INIA.
NASA Astrophysics Data System (ADS)
Black, C. K.; Miller, J. N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.
2014-12-01
Annually-harvested agroecosystems have the potential to be net carbon sinks only if their root systems allocate sufficient carbon belowground and if this carbon is then retained as stable soil organic matter. Soil respiration measurements are the most common approach to evaluate the stability of soil carbon at experimental time scales, but valid inferences require the partitioning of soil respiration into root-derived (current-year C) and heterotrophic (older C) components. This partitioning is challenging at the field scale because roots and soil are intricately mixed and physical separation in impossible without disturbing the fluxes to be measured. To partition soil flux and estimate the C sink potential of bioenergy crops, we used the carbon isotope difference between C3 and C4 plant species to quantify respiration from roots of three C4 grasses (maize, Miscanthus, and switchgrass) grown in a site with a mixed cropping history where respiration from the breakdown of old soil carbon has a mixed C3-C4 signature. We used a Keeling plot approach to partition fluxes both at the soil surface using soil chambers and from the whole field using continuous flow sampling of air within and above the canopy. Although soil respiration rates from perennial grasses were higher than those from maize, the isotopic signature of respired carbon indicated that the fraction of soil CO2 flux attributable to current-year vegetation was 1.5 (switchgrass) to 2 (Miscanthus) times greater in perennials than that from maize, indicating that soil CO2 flux came mostly from roots and turnover of soil organic matter was reduced in the perennial crops. This reduction in soil heterotrophic respiration, combined with the much greater quantities of C allocated belowground by perennial grasses compared to maize, suggests that perennial grasses grown as bioenergy crops may be able to provide an additional climate benefit by acting as carbon sinks in addition to reducing fossil fuel consumption.
Burns, Anna Elizabeth; Gleadow, Roslyn Margaret; Zacarias, Anabela M; Cuambe, Constantino Estevão; Miller, Rebecca Elizabeth; Cavagnaro, Timothy Richard
2012-05-16
The purpose of this study was to assess the quality of cassava cultivars, in terms of cyanogenic potential and composition of macro- and micronutrients, sampled from different locations in rural Mozambique. Total cyanide concentrations in fresh cassava tissues were measured using portable cyanide testing kits, and elemental nutrients were later analyzed from dried plant tissue. Variation in cyanogenic potential and nutrient composition occurred both among cultivars and across locations. The majority of cultivars contained >100 ppm total cyanide, fresh weight, and are therefore considered to be dangerously poisonous unless adequately processed before consumption. Leaf cyanogenic and nutrient content varied with plant water status, estimated using carbon isotope discrimination (δ(13)C). The colonization of roots of all cultivars by arbuscular mycorrhizal fungi was also quantified and found to be high, indicating that mycorrhizas could play a key role in plant nutrient acquisition in these low-input farming systems.
Mycorrhizae in forest tree nurseries
Michelle M. Cram; R. Kasten Dumroese
2012-01-01
Mycorrhizae are symbiotic fungus-root associations. The colonization of roots by mycorrhizal fungi can benefit the host by improving nutrient and water uptake. In exchange, the host plant provides the mycorrhizal fungi carbohydrates (carbon) from photosynthesis. A substantial portion of this carbon is ultimately transferred to the rhizosphere and is estimated to...
Single-walled carbon nanotubes (SWNT) have many potential beneficial uses with additional applications constantly being investigated. However, these unique properties create a potential cause for concern of toxicity, not only in humans and animals, but also in plants. Root elong...
Xue, Xian; Peng, Fei; You, Quangang; Xu, Manhou; Dong, Siyang
2015-09-01
Recent studies found that the largest uncertainties in the response of the terrestrial carbon cycle to climate change might come from changes in soil moisture under the elevation of temperature. Warming-induced change in soil moisture and its level of influence on terrestrial ecosystems are mostly determined by climate, soil, and vegetation type and their sensitivity to temperature and moisture. Here, we present the results from a warming experiment of an alpine ecosystem conducted in the permafrost region of the Qinghai-Tibet Plateau using infrared heaters. Our results show that 3 years of warming treatments significantly elevated soil temperature at 0-100 cm depth, decreased soil moisture at 10 cm depth, and increased soil moisture at 40-100 cm depth. In contrast to the findings of previous research, experimental warming did not significantly affect NH 4 (+)-N, NO 3 (-)-N, and heterotrophic respiration, but stimulated the growth of plants and significantly increased root biomass at 30-50 cm depth. This led to increased soil organic carbon, total nitrogen, and liable carbon at 30-50 cm depth, and increased autotrophic respiration of plants. Analysis shows that experimental warming influenced deeper root production via redistributed soil moisture, which favors the accumulation of belowground carbon, but did not significantly affected the decomposition of soil organic carbon. Our findings suggest that future climate change studies need to take greater consideration of changes in the hydrological cycle and the local ecosystem characteristics. The results of our study will aid in understanding the response of terrestrial ecosystems to climate change and provide the regional case for global ecosystem models.
Pan, Ping; Zhao, Fang; Ning, Jinkui; Zhang, Ling; Ouyang, Xunzhi; Zang, Hao
2018-01-01
Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality.
Pan, Ping; Zhao, Fang; Ning, Jinkui; Ouyang, Xunzhi; Zang, Hao
2018-01-01
Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality. PMID:29377926
Variation in the concentration and age of nonstructural carbon stored in different tree tissues
NASA Astrophysics Data System (ADS)
Richardson, Andrew; Carbone, Mariah; Huggett, Brett; Furze, Morgan; Czimczik, Claudia I.; Xu, Xiaomei
2014-05-01
Trees store nonstructural carbon (NSC), in the form of sugars and starch, in the ray parenchyma cells of woody tissues. These reserves provide a carbon buffer when demand (growth, protection, or metabolism) exceeds supply (photosynthesis). This is particularly important in the context of resilience to stress and disturbance, such as might be associated with various global change factors. However, storage allocation processes and the availability of stored reserves remain poorly understood in woody plants. To better understand how NSC reserves are distributed throughout the tree, and the degree to which NSC reserves mix across ring boundaries and tissue types, we destructively sampled two 30-year-old trees (one red oak, Quercus rubra L., and one white pine, Pinus strobus L.) growing at Harvard Forest, an oak-dominated temperate forest in the northeastern United States. We analyzed stemwood samples (divided into individual rings, bark, and phloem), coarse and fine branches, and coarse (separated into three depths) and fine roots for concentrations of total sugars and starch. For a subset of samples we used the radiocarbon (14C) "bomb spike" method to estimate the mean age of extracted sugars and starch. In oak, stemwood sugar and starch concentrations were highest (50 mg/g) in the youngest (most recently-formed) rings, and dropped off rapidly (to 10 mg/g or less) across the 10 most recent rings. In oak phloem tissue, sugar concentrations were high (90 mg/g) compared to starch (10 mg/g). In pine, sugar concentrations dropped off rapidly across the three most recent rings (from 30 mg/g to 10 mg/g) whereas starch concentrations were low even for the youngest rings (10 mg/g or less). In pine, phloem concentrations of both sugar (190 mg/g) and starch (20 mg/g) were both substantially higher than in oak. Such strong radial trends must be accounted for when scaling up to whole-tree budgets, as whole increment cores cannot properly integrate (on a ring-area basis) across the depth profile. In oak, fine root concentrations of sugar and starch were similar (40 mg/g), and coarse roots had very high concentrations of starch (140 mg/g) compared to sugar (50 mg/g). In pine, fine root concentrations of both sugar and starch (60 mg/g) were higher than in coarse roots (10 mg/g). Coarse root NSC concentrations did not vary substantially along a radial gradient into the root. Even assuming a 1:5 root:shoot ratio, these data indicate that a large portion of the whole-tree NSC budget is stored belowground. For both sugars and starch, the 14C data indicated substantial mixing of new and older carbon across the youngest stemwood rings (up to 5 y), beyond which NSC age increased linearly with ring age. Coarse root NSC age also increased with radial depth and wood tissue age, and root NSC was consistently younger in pine than oak. The fact that NSC age is not constant with radial depth in the aboveground samples demonstrates that NSC reserves cannot be treated as a single, well-mixed pool. Rather, these results are consistent with previous observation suggesting last-in/first-out dynamics. From a modeling standpoint, these results support a simple two-pool structure where new photosynthate not used for current growth or metabolism enters a well-mixed and young "fast" pool, but over time storage in older rings is transferred to a distinct and older "slow" pool with which mixing no longer occurs.
Hao, Yi; Yu, Feifan; Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan
2016-01-01
The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones.
Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan
2016-01-01
The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones. PMID:27284692
NASA Astrophysics Data System (ADS)
Farmer, Jenny; Manning, Frances; Smith, Jo; Arn Teh, Yit
2017-04-01
The effects of drainage and deforestation of South East Asian peat swamp forests for the development of oil palm plantations has received considerable attention in both mainstream media and academia, and is the source of significant discussion and debate. However, data on the long-term carbon losses from these peat soils as a result of this land use change is still limited and the methods with which to collect this data are still developing. Here we present the ongoing evolution and implementation of a method for separating autotrophic and heterotrophic respiration by sampling carbon dioxide emissions at increasing distance from palm trees. We present the limitations of the method, modelling approaches and results from our studies. In 2011 we trialled this method in Sumatra, Indonesia and collected rate measurements over a six day period in three ages of oil palm. In the four year oil palm site there were thirteen collars that had no roots present and from these the peat based carbon losses were recorded to be 0.44 g CO2 m2 hr-1 [0.34; 0.57] (equivalent to 39 t CO2 ha-1 yr-1 [30; 50]) with a mean water table depth of 0.40 m, or 63% of the measured total respiration across the plot. In the two older palm sites of six and seven years, only one collar out of 100 had no roots present, and thus a linear random effects model was developed to calculate heterotrophic emissions for different distances from the palm tree. This model suggested that heterotrophic respiration was between 37 - 59% of total respiration in the six year old plantation and 39 - 56% in the seven year old plantation. We applied this method in 2014 to a seven year old plantation, in Sarawak, Malaysia, modifying the method to include the heterotrophic contribution from beneath frond piles and weed covered areas. These results indicated peat based carbon losses to be 0.42 g CO2 m2 hr-1 [0.27;0.59] (equivalent to 37 t CO2 ha-1 yr-1 [24; 52]) at an average water table depth of 0.35 m, 47% of the measured total respiration of the plot. We conclude that, despite a few limitations, it is possible to use a linear modelling approach to partition heterotrophic respiration from the total respiration in oil palm plantations.
NASA Astrophysics Data System (ADS)
Sokol, N.; Bradford, M.
2016-12-01
Plant inputs are the primary sources of carbon (C) to soil organic carbon (SOC) pools. Historically, detrital plant sources were thought to dominate C supply to SOC pools. An emerging body of research highlights the previously underestimated role of root exudates and other rhizodeposits. However, few experimental field studies have directly tracked the relative contributions of rhizodeposits versus detritial C inputs into different SOC pools, due to how methodologically challenging they are to measure in a field setting. Here, I present the first 3 years of data from an experimental field study of the prolific, C4 invasive grass species Microstegium vimineum. I use its unique isotopic signature in plots manipulated to contain detrital-only and rhizodeposit-only inputs, to track their relative contributions into microbial biomass C, particulate organic C (POC; >53 um) and mineral-associated organic C (MIN C; <53 um) soil pools. After 3 years, the presence of M. vimineum significantly affected both total SOC and the proportion of M. vimineum-derived C in POC pools. Both detrital inputs and rhizodeposit inputs from M. vimineum caused an increase in total SOC. Total SOC was 38% greater in detrital-only plots compared to control plots, and 39% greater in rhizodeposit-only plots compared to control plots. The proportion of M. vimineum-derived C in the POC was pool was 32% greater in rhizodeposit-only plots compared to detrital-only plots. The proportion of M.vimineum-derived C in the MIN C pool was not significantly different between treatments (at p<0.05). Microbial biomass was highest in rhizodeposit-only plots (p=0.03). Overall, plots containing rhizodeposit-only inputs contributed more Microstegium-derived C than did plots containing detrital-only inputs. While this observation is consistent with emerging theory on the primacy of the belowground, root-associated pathway in supplying C to soil C pools, this increase is generally assumed to be through the MIN C pool due to 1) the lower molecular weight of rhizodeposit compounds, and 2) the close physical association between rhizodeposits and soil mineral surfaces. Our results point to an underappreciated, central role of the POM C pool as a passageway for both detrital and rhizodeposit C inputs to the soil.
NASA Astrophysics Data System (ADS)
McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.
2011-12-01
Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).
NASA Astrophysics Data System (ADS)
Rattanachot, Ekkalak; Prathep, Anchana
2015-12-01
Roots and rhizomes of seagrass play an important role in coastline zone by anchoring the substrate firmly which prevent resuspension and also controlling sediment biogeochemistry. The aim of this study was to compare the physical and chemical differences of sediments for 3 seagrass species, which have different root morphology between summer (February 2013) and the monsoon month (September 2013). Seven seagrass communities were studied and are: the mono stand of Halophila ovalis, Thalassia hemprichii, and Cymodocea rotundata, the mixed patches of H. ovalis with T. hemprichii, H. ovalis with C. rotundata, and T. hemprichii with C. rotundata and the mixed patches of 3 seagrass species. The roots of seagrasses were the main driver of differences in sediment properties; the branched, long root species, C. rotundata, showed an increasing redox potential by means of oxygen releasing from their roots. The unbranched, long root with dense root hair species, T. hemprichii, tended to cause more poorly sorted sediments. The carbon storage was also estimated and results showed a trend of higher organic carbon density was in the multispecific patches, the mono specific patches and bare sand, respectively. Season also influenced the sediment properties; high wave action in the monsoon stirred up the sediments, this led to lower organic carbon density and high redox potential. Our results suggest that the roots of seagrass species both increase and decrease sediment properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, Frank P.
2015-02-06
Coarse roots play a significant role in belowground carbon cycling and will likely play an increasingly crucial role in belowground carbon sequestration as atmospheric CO 2 levels continue to rise, yet they are one of the most difficult ecosystem parameters to quantify. Despite promising results with ground-penetrating radar (GPR) as a nondestructive method of quantifying biomass of coarse roots, this application of GPR is in its infancy and neither the complete potential nor limitations of the technology have been fully evaluated. The primary goals and questions of this study fell into four groups: (1) GPR methods: Can GPR detect changemore » in root biomass over time, differentiate live roots from dead roots, differentiate between coarse roots, fine roots bundled together, and a fine root mat, remain effective with varied soil moisture, and detect shadowed roots (roots hidden below larger roots); (2) CO 2 enrichment study at Kennedy Space Center in Brevard County, Florida: Are there post-fire legacy effects of CO 2 fertilization on plant carbon pools following the end of CO 2application ? (3) Disney Wilderness Study: What is the overall coarse root biomass and potential for belowground carbon storage in a restored longleaf pine flatwoods system? Can GPR effectively quantify coarse roots in soils that are wetter than the previous sites and that have a high percentage of saw palmetto rhizomes present? (4) Can GPR accurately represent root architecture in a three-dimensional model? When the user is familiar with the equipment and software in a setting that minimizes unsuitable conditions, GPR is a relatively precise, non-destructive, useful tool for estimating coarse root biomass. However, there are a number of cautions and guidelines that should be followed to minimize inaccuracies or situations that are untenable for GPR use. GPR appears to be precise as it routinely predicts highly similar values for a given area across multiple scanning events; however, it appears to lack sufficient accuracy at small scales. Knowledge of soil conditions and their effects on GPR wave propagation and reception are paramount for the collection of useful data. Strong familiarity with the software and equipment is both important and necessary for GPR use in estimating coarse root biomass. GPR must be utilized at low soil moisture levels in order to accurately represent existing coarse root structures. Our results from Disney Wilderness Preserve highlight the need for a strong understanding of the limitations of GPR, specifically knowledge of root structures (saw palmetto rhizomes) or environmental factors (low moisture content) that may hinder its application within a given system. The 3D modeling of course roots with GPR appears quite promising, as it has become more accurate and precise as the software has advanced and become more robust, but there is still a need for more precision before it will likely be able to model anything more than simple root systems comprised mostly of large diameter roots. Our results from Kennedy Space Center suggest that there are legacy effects from CO 2 fertilization in the form of more root mass providing a greater capacity for aboveground plant regrowth following fire, even 7 years after treatment ended.« less
Wang, Huan; Xiao, Wendan; Niu, Yaofang; Jin, Chongwei; Chai, Rushan; Tang, Caixian; Zhang, Yongsong
2013-01-01
Elevated carbon dioxide (CO₂) has been shown to enhance the growth and development of plants, especially of roots. Amongst them, lateral roots play an important role in nutrient uptake, and thus alleviate the nutrient limitation to plant growth under elevated CO₂. This paper examined the mechanism underlying CO₂ elevation-induced lateral root formation in tomato. The endogenous nitric oxide (NO) in roots was detected by the specific probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA). We suggest that CO₂ elevation-induced NO accumulation was important for lateral root formation. Elevated CO₂ significantly increased the activity of nitric oxide synthase in roots, but not nitrate reductase activity. Moreover, the pharmacological evidence showed that nitric oxide synthase rather than nitrate reductase was responsible for CO₂ elevation-induced NO accumulation. Elevated CO₂ enhanced the activity of nitric oxide synthase and promoted production of NO, which was involved in lateral root formation in tomato under elevated CO₂.
The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling.
Easlon, Hsien Ming; Bloom, Arnold J
2013-01-01
Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root-shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source-sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot-root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot-root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source-sink interactions.
Foliage Plants for Improving Indoor Air Quality
NASA Technical Reports Server (NTRS)
Wolverton, B. C.
1988-01-01
NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.
Tree species diversity interacts with elevated CO2 to induce a greater root system response.
Smith, Andrew R; Lukac, Martin; Bambrick, Michael; Miglietta, Franco; Godbold, Douglas L
2013-01-01
As a consequence of land-use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2 . However, natural forests are often intimate mixtures of a number of co-occurring species. To investigate the interaction between tree mixture and elevated CO2 , Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 μmol mol(-1) ) for 4 years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterized with data from species grown in monoculture may be underestimating the belowground response to global change. © 2012 Blackwell Publishing Ltd.
Endophytic Colonization of Rice by a Diazotrophic Strain of Serratia marcescens
Gyaneshwar, Prasad; James, Euan K.; Mathan, Natarajan; Reddy, Pallavolu M.; Reinhold-Hurek, Barbara; Ladha, Jagdish K.
2001-01-01
Six closely related N2-fixing bacterial strains were isolated from surface-sterilized roots and stems of four different rice varieties. The strains were identified as Serratia marcescens by 16S rRNA gene analysis. One strain, IRBG500, chosen for further analysis showed acetylene reduction activity (ARA) only when inoculated into media containing low levels of fixed nitrogen (yeast extract). Diazotrophy of IRBG500 was confirmed by measurement of 15N2 incorporation and by sequence analysis of the PCR-amplified fragment of nifH. To examine its interaction with rice, strain IRBG500 was marked with gusA fused to a constitutive promoter, and the marked strain was inoculated onto rice seedlings under axenic conditions. At 3 days after inoculation, the roots showed blue staining, which was most intense at the points of lateral root emergence and at the root tip. At 6 days, the blue precipitate also appeared in the leaves and stems. More detailed studies using light and transmission electron microscopy combined with immunogold labeling confirmed that IRBG500 was endophytically established within roots, stems, and leaves. Large numbers of bacteria were observed within intercellular spaces, senescing root cortical cells, aerenchyma, and xylem vessels. They were not observed within intact host cells. Inoculation of IRBG500 resulted in a significant increase in root length and root dry weight but not in total N content of rice variety IR72. The inoculated plants showed ARA, but only when external carbon (e.g., malate, succinate, or sucrose) was added to the rooting medium. PMID:11274124
Cheng, Lingyun; Tang, Xiaoyan; Vance, Carroll P; White, Philip J; Zhang, Fusuo; Shen, Jianbo
2014-07-01
Light intensity affects photosynthetic carbon (C) fixation and the supply of carbon to roots. To evaluate interactions between carbon supply and phosphorus (P) supply, effects of light intensity on sucrose accumulation, root growth, cluster root formation, carboxylate exudation, and P uptake capacity were studied in white lupin (Lupinus albus L.) grown hydroponically with either 200 µmol m(-2) s(-1) or 600 µmol m(-2) s(-1) light and a sufficient (50 µM P) or deficient (1 µM P) P supply. Plant biomass and root:shoot ratio increased with increasing light intensity, particularly when plants were supplied with sufficient P. Both low P supply and increasing light intensity increased the production of cluster roots and citrate exudation. Transcripts of a phosphoenol pyruvate carboxylase gene (LaPEPC3) in cluster roots (which is related to the exudation of citrate), transcripts of a phosphate transporter gene (LaPT1), and P uptake all increased with increasing light intensity, under both P-sufficient and P-deficient conditions. Across all four experimental treatments, increased cluster root formation and carboxylate exudation were associated with lower P concentration in the shoot and greater sucrose concentration in the roots. It is suggested that C in excess of shoot growth capabilities is translocated to the roots as sucrose, which serves as both a nutritional signal and a C-substrate for carboxylate exudation and cluster root formation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Edy, Nur; Meyer, Marike; Corre, Marife D.; Polle, Andrea
2015-01-01
Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization). Traits were measured as root community-weighed traits (RCWTs) in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems. PMID:26366576
Sahner, Josephine; Budi, Sri Wilarso; Barus, Henry; Edy, Nur; Meyer, Marike; Corre, Marife D; Polle, Andrea
2015-01-01
Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization). Traits were measured as root community-weighed traits (RCWTs) in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems.
Advancing the use of minirhizotrons in wetlands
C. M. Iversen; M. T. Murphy; M. F. Allen; J. Childs; D. M. Eissenstat; E.A. Lilleskov; T. M. Sarjala; V. L. Sloan; P. F. Sullivan
2012-01-01
Background. Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However,...
Elevated atmospheric CO2 concentrations and warming may affect the quality of litters of forest plants and their subsequent decomposition in ecosystems, thereby potentially affecting the global carbon cycle. However, few data on root tissues are available to test this feedback to...
Dean, Christopher; Kirkpatrick, Jamie B; Osborn, Jon; Doyle, Richard B; Fitzgerald, Nicholas B; Roxburgh, Stephen H
2018-01-01
Abstract There is high uncertainty in the contribution of land-use change to anthropogenic climate change, especially pertaining to below-ground carbon loss resulting from conversion of primary-to-secondary forest. Soil organic carbon (SOC) and coarse roots are concentrated close to tree trunks, a region usually unmeasured during soil carbon sampling. Soil carbon estimates and their variation with land-use change have not been correspondingly adjusted. Our aim was to deduce allometric equations that will allow improvement of SOC estimates and tree trunk carbon estimates, for primary forest stands that include large trees in rugged terrain. Terrestrial digital photography, photogrammetry and GIS software were used to produce 3D models of the buttresses, roots and humus mounds of large trees in primary forests dominated by Eucalyptus regnans in Tasmania. Models of 29, in situ eucalypts were made and analysed. 3D models of example eucalypt roots, logging debris, rainforest tree species, fallen trees, branches, root and trunk slices, and soil profiles were also derived. Measurements in 2D, from earlier work, of three buttress ‘logs’ were added to the data set. The 3D models had high spatial resolution. The modelling allowed checking and correction of field measurements. Tree anatomical detail was formulated, such as buttress shape, humus volume, root volume in the under-sampled zone and trunk hollow area. The allometric relationships developed link diameter at breast height and ground slope, to SOC and tree trunk carbon, the latter including a correction for senescence. These formulae can be applied to stand-level carbon accounting. The formulae allow the typically measured, inter-tree SOC to be corrected for not sampling near large trees. The 3D models developed are irreplaceable, being for increasingly rare, large trees, and they could be useful to other scientific endeavours. PMID:29593855
Dean, Christopher; Kirkpatrick, Jamie B; Osborn, Jon; Doyle, Richard B; Fitzgerald, Nicholas B; Roxburgh, Stephen H
2018-03-01
There is high uncertainty in the contribution of land-use change to anthropogenic climate change, especially pertaining to below-ground carbon loss resulting from conversion of primary-to-secondary forest. Soil organic carbon (SOC) and coarse roots are concentrated close to tree trunks, a region usually unmeasured during soil carbon sampling. Soil carbon estimates and their variation with land-use change have not been correspondingly adjusted. Our aim was to deduce allometric equations that will allow improvement of SOC estimates and tree trunk carbon estimates, for primary forest stands that include large trees in rugged terrain. Terrestrial digital photography, photogrammetry and GIS software were used to produce 3D models of the buttresses, roots and humus mounds of large trees in primary forests dominated by Eucalyptus regnans in Tasmania. Models of 29, in situ eucalypts were made and analysed. 3D models of example eucalypt roots, logging debris, rainforest tree species, fallen trees, branches, root and trunk slices, and soil profiles were also derived. Measurements in 2D, from earlier work, of three buttress 'logs' were added to the data set. The 3D models had high spatial resolution. The modelling allowed checking and correction of field measurements. Tree anatomical detail was formulated, such as buttress shape, humus volume, root volume in the under-sampled zone and trunk hollow area. The allometric relationships developed link diameter at breast height and ground slope, to SOC and tree trunk carbon, the latter including a correction for senescence. These formulae can be applied to stand-level carbon accounting. The formulae allow the typically measured, inter-tree SOC to be corrected for not sampling near large trees. The 3D models developed are irreplaceable, being for increasingly rare, large trees, and they could be useful to other scientific endeavours.
Survival strategies in semi-arid climate for isohydric and anisohydric species
NASA Astrophysics Data System (ADS)
Guerin, M. F.; Gentine, P.; Uriarte, M.
2013-12-01
The understanding of survival strategies in dry land remains a challenging problem aiming at the interrelationship between local hydrology, plant physiology and climate. Carbon starvation and hydraulic failure are thought to be the two main factors leading to drought-induced mortality beside biotic perturbation. In order to better comprehend mortality the understanding of abiotic mechanisms triggering mortality is being studied in a tractable model for soil-plant-atmosphere continuum emphasizing the role of soil hydraulic properties, photosynthesis, embolism, leaf-gas exchange and climate. In particular the role of the frequency vs. the intensity of droughts is highlighted within such model. The analysis of the model included a differentiation between isohydric and anisohydric tree regulation and is supported by an extensive dataset of Pinion and Juniper growing in a semi-arid ecosystem. An objective of reduced number of parameters was approached with allometric equations to characterize tree's main traits and their hydraulic controls. Leaf area, sapwood area and tree's height are used to derive capacitance, conductance and photosynthetic abilities of the plant. A parameter sensitivity is performed highlighting the role of root:shoot ratio, rooting depth, photosynthetic capacity, quantum efficiency, and most importantly water use efficiency. Analytic development emphasizes two regimes of transpiration/photosynthesis denoted as stage-I (no embolism) and stage-II (embolism dominated) in analogy with stage I-stage II treminology for evaporation (Phillip,1957). Anisohydric species tend to remain in stage-I during which they still can assimilate carbon at full potential thus avoiding carbon starvation. Isohydric species tend to remain longer in stage-II. The effects of drought intensity/frequency on those 2 stages are described. Figure: sensitivity of Piñons stage 1 (top left), stage 2 (top right), and total cavitation duration (sum of stage 1 and stage 2 - bottom left) and time to carbon starvation (defined as 0-crossover of NSC content - bottom right) to Leaf Area Index (LAI) and root:shoot area.
Effect of CO_2 levels on nutrient content of lettuce and radish
NASA Astrophysics Data System (ADS)
McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.
Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO_2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar `Waldmann's Green' and radish (Raphanus sativus L.) cultivar `Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO_2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO_2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO_2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish roots and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO_2 level.
Productivity and nutrient cycling in bioenergy cropping systems
NASA Astrophysics Data System (ADS)
Heggenstaller, Andrew Howard
One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem (Andropogon geradii Vitman), switchgrass (Panicum virgatum L.), indiangrass [ Sorghastrum nutans (L.) Nash], and eastern gamagrass (Tripsacum dactyloides L.). Generally, the optimum rate of fertilization for biomass yield by the grasses was 140 kg N ha-1. Nitrogen inputs also had pronounced but grass-specific effects on biomass and nutrient partitioning, and on carbon storage. For big bluestem and switchgrass, 140 kg N ha -1. maximized root biomass, favored allocation of nutrients to roots over shoots, and led to net increases in carbon storage over the study duration. In contrast, for indiangrass and eastern gamagrass, root biomass and root nutrient allocation were generally adversely affected by N fertilization and carbon storage increased only with 0 or 65 kg N ha-1. For all grasses, 220 kg N ha -1 tended to shift allocation of nutrients to shoots over roots and resulted in no net increase in carbon storage. Optimal nitrogen management strategies for perennial, warm-season grass energy crops should take into consideration the effects of N on biomass yield as well as factors such as nutrient and carbon balance that will also impact economic feasibility and environmental sustainability.
The role of the upper tidal estuary in wetland blue carbon storage and flux
Krauss, Ken W.; Noe, Gregory B.; Duberstein, Jamie A.; Conner, William H.; Stagg, Camille L.; Cormier, Nicole; Jones, Miriam C.; Bernhardt, Christopher E.; Lockaby, B. Graeme; From, Andrew S.; Doyle, Thomas W.; Day, Richard H.; Ensign, Scott H.; Pierfelice, Katherine N.; Hupp, Cliff R.; Chow, Alex T.; Whitbeck, Julie L.
2018-01-01
Carbon (C) standing stocks, C mass balance, and soil C burial in tidal freshwater forested wetlands (TFFW) and TFFW transitioning to low‐salinity marshes along the upper estuary are not typically included in “blue carbon” accounting, but may represent a significant C sink. Results from two salinity transects along the tidal Waccamaw and Savannah rivers of the US Atlantic Coast show total C standing stocks were 321‐1264 Mg C ha‐1 among all sites, generally shifting to greater soil storage as salinity increased. Carbon mass balance inputs (litterfall, woody growth, herbaceous growth, root growth, surface accumulation) minus C outputs (surface litter and root decomposition, gaseous C) over a period of up to 11 years were 340‐900 g C m‐2 yr‐1. Soil C burial was variable (7‐337 g C m‐2 yr‐1), and lateral C export was estimated as C mass balance minus soil C burial as 267‐849 g C m‐2yr‐1. This represents a large amount of C export to support aquatic biogeochemical transformations. Despite reduced C persistence within emergent vegetation, decomposition of organic matter, and higher lateral C export, total C storage increased as forests converted to marsh with salinization. These tidal river wetlands exhibited high N mineralization in salinity‐stressed forested sites and considerable P mineralization in low salinity marshes. Large C standing stocks and rates of C sequestration suggest that TFFW and oligohaline marshes are considerably important globally to coastal C dynamics and in facilitating energy transformations in areas of the world in which they occur.
Leifeld, Jens; Meyer, Stefanie; Budge, Karen; Sebastia, Maria Teresa; Zimmermann, Michael; Fuhrer, Juerg
2015-01-01
Root turnover is an important carbon flux component in grassland ecosystems because it replenishes substantial parts of carbon lost from soil via heterotrophic respiration and leaching. Among the various methods to estimate root turnover, the root’s radiocarbon signature has rarely been applied to grassland soils previously, although the value of this approach is known from studies in forest soils. In this paper, we utilize the root’s radiocarbon signatures, at 25 plots, in mountain grasslands of the montane to alpine zone of Europe. We place the results in context of a global data base on root turnover and discuss driving factors. Root turnover rates were similar to those of a subsample of the global data, comprising a similar temperature range, but measured with different approaches, indicating that the radiocarbon method gives reliable, plausible and comparable results. Root turnover rates (0.06–1.0 y-1) scaled significantly and exponentially with mean annual temperatures. Root turnover rates indicated no trend with soil depth. The temperature sensitivity was significantly higher in mountain grassland, compared to the global data set, suggesting additional factors influencing root turnover. Information on management intensity from the 25 plots reveals that root turnover may be accelerated under intensive and moderate management compared to low intensity or semi-natural conditions. Because management intensity, in the studied ecosystems, co-varied with temperature, estimates on root turnover, based on mean annual temperature alone, may be biased. A greater recognition of management as a driver for root dynamics is warranted when effects of climatic change on belowground carbon dynamics are studied in mountain grasslands. PMID:25734640
NASA Astrophysics Data System (ADS)
Aubrey, D. P.; Teskey, R. O.
2011-12-01
Forest ecosystem respiration releases one of the largest annual CO2 fluxes of the global carbon cycle and is dominated by belowground autotrophic and heterotrophic contributions. A mechanistic understanding of forest respiratory flux pathways is imperative to understanding carbon cycling in forests. We recently demonstrated that, on a daily basis, the amount of CO2 that fluxes upward from tree root systems into stems via the xylem stream rivals the amount of CO2 diffusing from the soil surface. However, our original observations were limited to only four individual eastern cottonwood (Populus deltoides L.) trees over a single week where environmental conditions remained similar. Here, we expand our investigation to an entire growing season using nine trees. We calculated the internal transport of root-derived CO2 as the product of sap flow and dissolved CO2 concentration ([CO2]) in the xylem at the base of the stem and measured soil CO2 efflux using the [CO2] gradient approach. We then compared the magnitude of these two flux pathways throughout the growing season. The internal transport of root-derived CO2 was equivalent to one-third of the total belowground respiration throughout the growing season. This indicates that autotrophic respiration was substantially higher than previously estimated, and also higher than heterotrophic soil respiration. The quantity of internally transported CO2 was influenced by both seasonal and daily environmental factors that influenced sap flow rates. We observed high concentrations of CO2 in xylem sap which ranged from 1% to 20% [CO2] among and within individual trees through time. Our results provide evidence that belowground autotrophic respiration consumes a larger amount-and stem respiration consumes a smaller amount-of carbohydrates than previously realized. The magnitude of the internal pathway for root-derived CO2 flux highlights the inadequacy of using the CO2 efflux from the soil surface to the atmosphere alone to measure root respiration. We suggest the internal transport of root-derived CO2 should be measured concurrently with CO2 efflux to the atmosphere to more fully understand the components of ecosystem respiration.
Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests
Lapenis, Andrei Gennady; Lawrence, Gregory B.; Heim, Alexander; Zheng, Chengyang; Shortle, Walter
2013-01-01
Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.
[Study on Chemical Constituents of Fat-soluble Extraction from Lepidium meyenii].
Fan, Cai-hong; Ge, Fa-huan
2015-02-01
To study the chemical constituents of the fat-soluble extraction from Lepidium meyenii root. Different extraction methods were studied, including supercritical carbon dioxide extraction, circumfluence extraction and steam distillation. Chemical constituents of the fat-soluble extraction from Lepidium meyenii were analyzed by GC/MS. The number of compounds isolated by the above four methods were 38, 31, 14, 21 (specific gravity less than 1 in steam distillation) , and 25 (specific gravity greater than 1 in steam distillation), accounting for 85.79%, 81.18%, 62.08%, 98.36% (specific gravity less than 1 in steam distillation) and 81.54% (specific gravity greater than 1 in steam distillation) of each total peak area, respectively. This study lays a certain foundation for further study and development of functional factors in Lepidium meyenii root.
How can soil organic carbon stocks in agriculture be maintained or increased?
NASA Astrophysics Data System (ADS)
Don, Axel; Leifeld, Jens
2015-04-01
CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.
Kell, Douglas B
2012-06-05
The soil holds twice as much carbon as does the atmosphere, and most soil carbon is derived from recent photosynthesis that takes carbon into root structures and further into below-ground storage via exudates therefrom. Nonetheless, many natural and most agricultural crops have roots that extend only to about 1 m below ground. What determines the lifetime of below-ground C in various forms is not well understood, and understanding these processes is therefore key to optimising them for enhanced C sequestration. Most soils (and especially subsoils) are very far from being saturated with organic carbon, and calculations show that the amounts of C that might further be sequestered (http://dbkgroup.org/carbonsequestration/rootsystem.html) are actually very great. Breeding crops with desirable below-ground C sequestration traits, and exploiting attendant agronomic practices optimised for individual species in their relevant environments, are therefore important goals. These bring additional benefits related to improvements in soil structure and in the usage of other nutrients and water.
Localization of 15N uptake in a Tibetan alpine Kobresia pasture
NASA Astrophysics Data System (ADS)
Schleuß, Per-Marten; Kuzyakov, Yakov
2014-05-01
The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation of Kobresia ecosystems. Considering only the nitrogen uptake of AGB hardly any differences appeared between the six injection depths. Nevertheless, it could be shown, that 50.4 % percent of total variance of AGB nitrogen uptake could be explained by combining root density and root activity. Concluding, from the upper root mat horizons highest amounts of nitrogen were taken up by plants, because root densities are correspondingly high. However, in deeper root mat layers the root activity increases and accordingly plays a key role for plant nitrogen supply in this depth. Underlying causes for increasing root activities may be better soil moisture conditions, lower variation of soil temperature and/or a higher access to plant available nitrogen in deeper soil layers.Please fill in your abstract text.
Indirect quantification of fine root production in a near tropical wet mountainous region
NASA Astrophysics Data System (ADS)
Lu, X.; Zhang, J.; Huang, C.
2016-12-01
The main functions of fine root (defined as diameter <= 2 mm) are water and nutrient transports. Besides being a carbon (C) storage pool, it also provides a C flux pathway through soil and plant. Fine root takes up a small portion, normally 5%, of biomass in forest ecosystems, but 30% to 70% of total net primary production. Therefore, quantifying fine root productivity is important to study the forest C budget. Presumably, belowground growth can be indirectly estimated by the more accessible aboveground vegetation structure dynamics. To verify the relationship with fine root productivity, we take internal (floristic) and external (environmental) factors into account, including litter production, canopy density (leaf area index), leaf nutrients (N, K, Ca, Mg, P), weather and/or soil physical conditions (air temperature, humidity, precipitation, solar radiation and soil moisture). The study was conducted in near tropical broadleaf (700 m asl) and conifer (1700 m asl) forests in northeastern Taiwan, generally receiving more than 4000 mm of precipitation per year. For each site, 16 50-cm long minirhizotron tubes were installed. Fine root images were acquired every three weeks. Growth and decline, newly presence and absence of fine roots were delineated by image processing algorithms to derive fine-root productivity through time. Aforementioned internal and external attributes were simultaneously collected as well. Some of these variables were highly correlated and were detrended using principal component analysis. We found that these transformed variables (mainly associated with litter production, precipitation and solar radiation) can delineate the spatiotemporal dynamics of root production well (r2 = 0.87, p = 0.443). In conclusion, this study demonstrated the feasibility of utilized aboveground variables to indirectly assess fine root growth, which could be further developed for the regional scale mapping with aid of remote sensing.
NASA Astrophysics Data System (ADS)
Watanabe, Akira; Kimura, Makoto
1998-08-01
The growth of rice plants greatly influences CH4 emission from paddy fields through the supply of organic materials such as root exudates and sloughed tissues, the release of oxygen to the root environment, and the transfer of CH4 from the rhizosphere into the atmosphere through the aerenchyma. In the present pot experiments, the effects of the release of water-soluble organic substances from roots, the air space in roots, and the CH4-oxidizing capacity of roots on intervarietal differences in CH4 emission were examined using three Japonica type cultivars (Norin 25, Nipponbare, and Aoinokaze), which differ in morphological properties. The CH4 emission rates varied among the cultivars from mid-July (tillering stage) to the beginning of September (heading stage).Total CH4 emission throughout the rice growth period was largest for Norin 25, followed by Nipponbare, and Aoinokaze. In August, the rate of release of water-soluble organic substances from roots was largest for Norin 25. The air space in roots was also largest in Norin 25 and least in Aoinokaze. The stable carbon isotopic ratios (δ13C) of CH4 in roots were 3-10‰ higher than those in soil in August. The difference in δ13C values of CH4 between roots and soil was largest for Aoinokaze and smallest for Norin 25. In September, the difference in δ13C values of CH4 between roots and soil became small (2-3‰). These findings suggest that the proportion of CH4 oxidation in the rhizosphere was largest in the cultivar which emitted the smallest amount of CH4 and that the proportion became smaller with continued plant growth.
Sun, Lijuan; Ataka, Mioko; Kominami, Yuji; Yoshimura, Kenichi
2017-08-01
Plants allocate a considerable amount of carbon (C) to fine roots as respiration and exudation. Fine-root exudation could stimulate microbial activity, which further contributes to soil heterotrophic respiration. Although both root respiration and exudation are important components of belowground C cycling, how they relate to each other is less well known. In this study, we aimed to explore this relationship on mature trees growing in the field. The measurements were performed on two canopy species, Quercus serrata Thunb. and Quercus glauca, in a warm temperate forest. The respiration and exudation rates of the same fine-root segment were measured in parallel with a syringe-basis incubation and a closed static chamber, respectively. We also measured root traits and ectomycorrhizal colonization ratio because these indexes commonly relate to root respiration and reflect root physiology. The microbial activity enhanced by root exudation was investigated by comparing the dissolved organic carbon (DOC) and microbial biomass carbon (MBC) between rhizosphere soils and bulk soils. Mean DOC concentration and MBC were ca two times higher in the rhizosphere soils and positively related to exudation rates, indicating that exudation further relates to the C dynamics in the soils. Flux rates of exudation and respiration were positively correlated with each other. Both root exudation and respiration rates positively related to ectomycorrhizal colonization and root tissue nitrogen, and therefore the relationship between the two fluxes may be attributed to fine-root activity. The flux rates of root respiration were 8.7 and 10.5 times as much as those of exudation on a root-length basis and a root-weight basis, respectively. In spite of the fact that flux rates of respiration and exudation varied enormously among the fine-root segments of the two Quercus species, exudation was in proportion to respiration. This result gives new insight into the fine-root C-allocation strategy and the belowground C dynamics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hennion, Nils; Durand, Mickael; Vriet, Cécile; Doidy, Joan; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie
2018-04-28
In plants, root is a typical sink organ that relies exclusively on the import of sugar from the aerial parts. Sucrose is delivered by the phloem to the most distant root tips and, en route to the tip, is used by the different root tissues for metabolism and storage. Besides, a certain portion of this carbon is exuded in the rhizosphere, supplied to beneficial microorganisms and diverted by parasitic microbes. The transport of sugars towards these numerous sinks either occurs symplastically through cell connections (plasmodesmata) or is apoplastically mediated through membrane transporters (MST, SUT/SUC and SWEET) that control monosaccharide and sucrose fluxes. Here, we review recent progresses on carbon partitioning within and outside roots, discussing membrane transporters involved in plant responses to biotic and abiotic factors. This article is protected by copyright. All rights reserved.
Drake, Bert G
2014-11-01
An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Fatichi, Simone; Manzoni, Stefano; Or, Dani; Paschalis, Athanasios
2016-04-01
The potential of a given ecosystem to store and release carbon is inherently linked to soil biogeochemical processes. These processes are deeply connected to the water, energy, and vegetation dynamics above and belowground. Recently, it has been advocated that a mechanistic representation of soil biogeochemistry require: (i) partitioning of soil organic carbon (SOC) pools according to their functional role; (ii) an explicit representation of microbial dynamics; (iii) coupling of carbon and nutrient cycles. While some of these components have been introduced in specialized models, they have been rarely implemented in terrestrial biosphere models and tested in real cases. In this study, we combine a new soil biogeochemistry model with an existing model of land-surface hydrology and vegetation dynamics (T&C). Specifically the soil biogeochemistry component explicitly separates different litter pools and distinguishes SOC in particulate, dissolved and mineral associated fractions. Extracellular enzymes and microbial pools are explicitly represented differentiating the functional roles of bacteria, saprotrophic and mycorrhizal fungi. Microbial activity depends on temperature, soil moisture and litter or SOC stoichiometry. The activity of macrofauna is also modeled. Nutrient dynamics include the cycles of nitrogen, phosphorous and potassium. The model accounts for feedbacks between nutrient limitations and plant growth as well as for plant stoichiometric flexibility. In turn, litter input is a function of the simulated vegetation dynamics. Root exudation and export to mycorrhiza are computed based on a nutrient uptake cost function. The combined model is tested to reproduce respiration dynamics and nitrogen cycle in few sites where data were available to test plausibility of results across a range of different metrics. For instance in a Swiss grassland ecosystem, fine root, bacteria, fungal and macrofaunal respiration account for 40%, 23%, 33% and 4% of total belowground respiration, respectively. Root exudation and carbon export to mycorrhizal represent about 7% of plant Net Primary Production. The model allows exploring the temporal dynamics of respiration fluxes from the different ecosystem components and designing virtual experiments on the controls exerted by environmental variables and/or soil microbes and mycorrhizal associations on soil carbon storage, plant growth, and nutrient leaching.
NASA Technical Reports Server (NTRS)
Davidson, Eric A.; Nepstad, Daniel C.; Trumbore, Susan E.
1994-01-01
The objective of this grant was to complete below-ground carbon budgets for pastures and forest soils in the Amazon. Profiles of radon and carbon dioxide were used to estimate depth distribution of CO2 production in soil. This information is necessary for determining the importance of deep roots as sources of carbon inputs. Samples were collected for measuring root biomass from new research sites at Santana de Araguaia and Trombetas. Soil gases will be analyzed for CO2 and (14)CO2, and soil organic matter will be analyzed for C-14. Estimates of soil texture from the RADAMBRASIL database were merged with climate data to calculate soil water extraction by forest canopies during the dry season. In addition, a preliminary map of areas where deep roots are needed for deep soil water was produced. A list of manuscripts and papers prepared during the reporting periods is given.
Eric A. Kuehler; Mary Anne Sword Sayer; James D. Haywood; C. Dan Andries
2004-01-01
Depending on the season and intensity of fire, as well as the phenology of foliage and new root growth, fire may damage foliage, and subsequently decrease whole-crown carbon fixation and allocation to the root system. In central Louisiana the authors investigated how season of prescribed burning affects fine-root dynamics, root carbohydrate relations, and leaf area...
New dual in-growth core isotopic technique to assess the root litter carbon input to the soil
USDA-ARS?s Scientific Manuscript database
The root-derived carbon (C) input to the soil, whose quantification is often neglected because of methodological difficulties, is considered a crucial C flux for soil C dynamics and net ecosystem productivity (NEP) studies. In the present study, we compared two independent methods to quantify this C...
Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds
NASA Astrophysics Data System (ADS)
Luo, Shanwei; Zhou, Libin; Li, Wenjian; Du, Yan; Yu, Lixia; Feng, Hui; Mu, Jinhu; Chen, Yuze
2016-09-01
Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M1 populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD50) for a large-scale mutant screening. Among 2472 M2 plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M2 populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.
Basset , Gilles; Raymond, Philippe; Malek, Lada; Brouquisse, Renaud
2002-01-01
The 20S proteasome (multicatalytic proteinase) was purified from maize (Zea mays L. cv DEA 1992) roots through a five-step procedure. After biochemical characterization, it was shown to be similar to most eukaryotic proteasomes. We investigated the involvement of the 20S proteasome in the response to carbon starvation in excised maize root tips. Using polyclonal antibodies, we showed that the amount of proteasome increased in 24-h-carbon-starved root tips compared with freshly excised tips, whereas the mRNA levels of α3 and β6 subunits of 20S proteasome decreased. Moreover, in carbon-starved tissues, chymotrypsin-like and caseinolytic activities of the 20S proteasome were found to increase, whereas trypsin-like activities decreased. The measurement of specific activities and kinetic parameters of 20S proteasome purified from 24-h-starved root tips suggested that it was subjected to posttranslational modifications. Using dinitrophenylhydrazine, a carbonyl-specific reagent, we observed an increase in carbonyl residues in 20S proteasome purified from starved root tips. This means that 20S proteasome was oxidized during starvation treatment. Moreover, an in vitro mild oxidative treatment of 20S proteasome from non-starved material resulted in the activation of chymotrypsin-like, peptidyl-glutamyl-peptide hydrolase and caseinolytic-specific activities and in the inhibition of trypsin-like specific activities, similar to that observed for proteasome from starved root tips. Our results provide the first evidence, to our knowledge, for an in vivo carbonylation of the 20S proteasome. They suggest that sugar deprivation induces an oxidative stress, and that oxidized 20S proteasome could be associated to the degradation of oxidatively damaged proteins in carbon starvation situations. PMID:11891269
Kolton, Max; Meller Harel, Yael; Pasternak, Zohar; Graber, Ellen R; Elad, Yigal; Cytryn, Eddie
2011-07-01
Adding biochar to soil has environmental and agricultural potential due to its long-term carbon sequestration capacity and its ability to improve crop productivity. Recent studies have demonstrated that soil-applied biochar promotes the systemic resistance of plants to several prominent foliar pathogens. One potential mechanism for this phenomenon is root-associated microbial elicitors whose presence is somehow augmented in the biochar-amended soils. The objective of this study was to assess the effect of biochar amendment on the root-associated bacterial community composition of mature sweet pepper (Capsicum annuum L.) plants. Molecular fingerprinting (denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism) of 16S rRNA gene fragments showed a clear differentiation between the root-associated bacterial community structures of biochar-amended and control plants. The pyrosequencing of 16S rRNA amplicons from the rhizoplane of both treatments generated a total of 20,142 sequences, 92 to 95% of which were affiliated with the Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes phyla. The relative abundance of members of the Bacteroidetes phylum increased from 12 to 30% as a result of biochar amendment, while that of the Proteobacteria decreased from 71 to 47%. The Bacteroidetes-affiliated Flavobacterium was the strongest biochar-induced genus. The relative abundance of this group increased from 4.2% of total root-associated operational taxonomic units (OTUs) in control samples to 19.6% in biochar-amended samples. Additional biochar-induced genera included chitin and cellulose degraders (Chitinophaga and Cellvibrio, respectively) and aromatic compound degraders (Hydrogenophaga and Dechloromonas). We hypothesize that these biochar-augmented genera may be at least partially responsible for the beneficial effect of biochar amendment on plant growth and viability.
Valverde-Barrantes, Oscar J; Smemo, Kurt A; Feinstein, Larry M; Kershner, Mark W; Blackwood, Christopher B
2018-03-01
Functional differences between trees with arbuscular (AM) or ectomycorrhizal (ECM) partnerships influence important ecological processes including nutrient cycling, community assembly, and biomass allocation patterns. Although most broadleaf temperate forests show both mycorrhizal types, relatively few studies have addressed functional difference among coexisting mycorrhizal tree species. The maintenance of ECM associations usually requires higher C investment than AM, leading to (A) lower root biomass and (B) more conservative root trait syndromes in ECM tree species compared to AM species. Here we quantified the representation and trait syndromes of 14 canopy tree species associated with either AM or ECM fungi in a natural forest community. Our results showed that, whereas species root abundance was proportional to basal area, some ECM tree roots were largely under-represented (up to ~ 33%). Most of the under-representation was due to lower than expected root abundance of Quercus rubra and Fagus grandifolia. Functional root traits in tree species were similar, with the exception of higher tissue density in ECM species. Moreover, closely related AM and ECM exhibited similar traits, suggesting inherited trait syndrome from a common ancestor. Thus, we found little evidence of divergent functional root trait syndromes between mycorrhizal types. Cores dominated by ECM species influenced trait distribution at the community level, but not total biomass, suggesting that mycorrhizal affiliation may have a stronger effect on the spatial distribution of traits but not on biomass stocks. Our results present an important step toward relating belowground carbon dynamics to species traits, including mycorrhizal type, in broadleaf temperate forests.
Chen, H; Rygiewicz, P T; Johnson, M G; Harmon, M E; Tian, H; Tang, J W
2008-01-01
Elevated atmospheric CO(2) concentrations and warming may affect the quality of litters of forest plants and their subsequent decomposition in ecosystems, thereby potentially affecting the global carbon cycle. However, few data on root tissues are available to test this feedback to the atmosphere. In this study, we used fine (diameter < or = 2 mm) and small (2-10 mm) roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings that were grown for 4 yr in a 2 x 2 factorial experiment: ambient or elevated (+ 180 ppm) atmospheric CO(2) concentrations, and ambient or elevated (+3.8 degrees C) atmospheric temperature. Exposure to elevated CO(2) significantly increased water-soluble extractives concentration (%WSE), but had little effect on the concentration of N, cellulose, and lignin of roots. Elevated temperature had no effect on substrate quality except for increasing %WSE and decreasing the %lignin content of fine roots. No significant interaction was found between CO(2) and temperature treatments on substrate quality, except for %WSE of the fine roots. Short-term (< or = 9 mo) root decomposition in the field indicated that the roots from the ambient CO(2) and ambient temperature treatment had the slowest rate. However, over a longer period of incubation (9-36 mo) the influence of initial substrate quality on root decomposition diminished. Instead, the location of the field incubation sites exhibited significant control on decomposition. Roots at the warmer, low elevation site decomposed significantly faster than the ones at the cooler, high elevation site. This study indicates that short-term decomposition and long-term responses are not similar. It also suggests that increasing atmospheric CO(2) had little effect on the carbon storage of Douglas-fir old-growth forests of the Pacific Northwest.
Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape
Mahmood, Shahid; Ekblad, Alf; Alström, Sadhna; Högberg, Nils; Finlay, Roger
2017-01-01
ABSTRACT RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13CO2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia, Proteobacteria, Planctomycetes, Acidobacteria, Gemmatimonadetes, Actinobacteria, and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13C- and 12C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces, Rhizobium, and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas (Kaistobacter) were dominant in rhizosphere soil. “Candidatus Nitrososphaera” was enriched in 13C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napus. IMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13CO2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture. PMID:28887416
Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape.
Gkarmiri, Konstantia; Mahmood, Shahid; Ekblad, Alf; Alström, Sadhna; Högberg, Nils; Finlay, Roger
2017-11-15
RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13 CO 2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia , Proteobacteria , Planctomycetes , Acidobacteria , Gemmatimonadetes , Actinobacteria , and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13 C- and 12 C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces , Rhizobium , and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas ( Kaistobacter ) were dominant in rhizosphere soil. " Candidatus Nitrososphaera" was enriched in 13 C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12 C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13 C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13 C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napus IMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13 CO 2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture. Copyright © 2017 American Society for Microbiology.
Structural Break, Stock Prices of Clean Energy Firms and Carbon Market
NASA Astrophysics Data System (ADS)
Wang, Yubao; Cai, Junyu
2018-03-01
This paper uses EU ETS carbon future price and Germany/UK clean energy firms stock indices to study the relationship between carbon market and clean energy market. By structural break test, it is found that the ‘non-stationary’ variables judged by classical unit root test do own unit roots and need taking first difference. After analysis of VAR and Granger causality test, no causal relationships are found between the two markets. However, when Hsiao’s version of causality test is employed, carbon market is found to have power in explaining the movement of stock prices of clean energy firms, and stock prices of clean energy firms also affect the carbon market.
Andrew J. Burton; Kurt S. Pregitzer
2002-01-01
Inhibition of respiration has been reported as a short-term response of tree roots to elevated measurement CO2 concentration ([CO2]), calling into question the validity of root respiration rates determined at CO2 concentrations that differ from the soil [CO2] in the rooting zone...
Carbon allocation to young loblolly pine roots and stems
Paul P. Kormanik; Shi-Jean S. Sung; Clanton C. Black; Stanley J. Zarnoch
1995-01-01
This study of root biomass with loblolly pine was designed with the following objectives: (1) to measure the root biomass for a range of individual trees between the ages of 3 and 10 years on different artificial and natural forest sites and (2) to relate the root biomass to aboveground biomass components.
Elevated CO2 or O3 effects on fine-root survivorship in ponderosa pine
Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograp...
ELEVATED CO2 AND O3 EFFECTS ON FINE-ROOT SURVIVORSHIP IN PONDEROSA PINE MESOCOSMS
Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograph...
Protein tyrosine nitration in pea roots during development and senescence
Corpas, Francisco J.
2013-01-01
Protein tyrosine nitration is a post-translational modification mediated by reactive nitrogen species (RNS) that is associated with nitro-oxidative damage. No information about this process is available in relation to higher plants during development and senescence. Using pea plants at different developmental stages (ranging from 8 to 71 days), tyrosine nitration in the main organs (roots, stems, leaves, flowers, and fruits) was analysed using immunological and proteomic approaches. In the roots of 71-day-old senescent plants, nitroproteome analysis enabled the identification a total of 16 nitrotyrosine-immunopositive proteins. Among the proteins identified, NADP-isocitrate dehydrogenase (ICDH), an enzyme involved in the carbon and nitrogen metabolism, redox regulation, and responses to oxidative stress, was selected to evaluate the effect of nitration. NADP-ICDH activity fell by 75% during senescence. Analysis showed that peroxynitrite inhibits recombinant cytosolic NADP-ICDH activity through a process of nitration. Of the 12 tyrosines present in this enzyme, mass spectrometric analysis of nitrated recombinant cytosolic NADP-ICDH enabled this study to identify the Tyr392 as exclusively nitrated by peroxynitrite. The data as a whole reveal that protein tyrosine nitration is a nitric oxide-derived PTM prevalent throughout root development and intensifies during senescence. PMID:23362300
Accounting for black carbon lowers estimates of blue carbon storage services.
Chew, Swee Theng; Gallagher, John B
2018-02-07
The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO 2 , is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.
Does drought legacy alter the recovery of grassland carbon dynamics from drought?
NASA Astrophysics Data System (ADS)
Bahn, M.; Hasibeder, R.; Fuchslueger, L.; Ingrisch, J.; Ladreiter-Knauss, T.; Lair, G.; Reinthaler, D.; Richter, A.; Kaufmann, R.
2016-12-01
Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing with increasing drought frequency and involving changes in both plant functional composition and soil structure and processes.
Does drought legacy alter the recovery of grassland carbon dynamics from drought?
NASA Astrophysics Data System (ADS)
Bahn, Michael; Hasibeder, Roland; Fuchslueger, Lucia; Ingrisch, Johannes; Ladreiter-Knauss, Thomas; Lair, Georg; Reinthaler, David; Richter, Andreas; Kaufmann, Rüdiger
2017-04-01
Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Isotopic pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing with increasing drought frequency and involving changes in both plant functional composition and soil structure and processes.
Coastal Landforms and Accumulation of Mangrove Peat Increase Carbon Sequestration and Storage
NASA Astrophysics Data System (ADS)
Costa, M. T.; Excurra, P.; Ezcurra, E.; Garcillan, P. P.; Aburto-Oropeza, O.
2016-02-01
Many studies have highlighted the considerable belowground carbon storage of mangroves and other coastal ecosystems (as much 30% of total ocean carbon storage). Mangroves are among the most carbon-rich forests in the tropics, containing on average more than 1,000 Mg C/ha. We sampled mangrove sediments in four locations along the Pacific Coast of Mexico, from the Baja California Sur in the north to Chiapas near the Guatemalan boarder. These sites varied in their coastal geomorphology and rainfall regimes. The mangroves of rainy Chiapas possessed the deepest and most carbon-rich Rhizophora peat deposits of any of the sites (in places more than 2,000 Mg/ha). More surprisingly, in Balandra, one of the desert mangrove lagoons of Baja California Sur, the Avicennia-dominated mudflat zone of the forest possessed deep and rich peat deposits, ranging from 400-1,300 Mg/ha. This forest, hemmed in by relatively steep hillsides demonstrates the potential for mangroves to accrete carbon-rich peat vertically when local topography precludes their landwards expansion with sea-level rise. Our microscopic examination of root fibers from these peat deposits revealed the importance of Avicennia to the formation of buried organic matter deposits. We used 14C dating to track the age of the Baja California deposits, whose ages ranged between 1193 and 1636 BP. Plotting the calibrated 14C age of each peat sample from Balandra against the depth of the sample below the mean sea-level, we found a very significant linear trend (r2 = 0.87, P < 0.0001) with a slope of 0.070 ±0.007 mm/yr. Belowground carbon sequestration rates during recent decades varied from very low (ca. 0.1 Mg.ha-1.yr-1) in a receding fringe in Bahía Magdalena or a halophilic hinterland in Balandra, to 9-20 Mg.ha-1.yr-1 in a Rhizophora mudflat in La Encrucijada. With only 0.49% of the total area, the mangroves around the Gulf of California store 18% of the total belowground carbon pool of the whole region, 76 Tg in total.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, Charles T.; Brice, Deanne J.; Castro, Hector F.
2011-01-01
Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha -1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P ≤ 0.05) at the highest fertilizer nitrogen treatment (2.16 ±more » 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha -1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Finally, fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.« less
Root traits predict decomposition across a landscape-scale grazing experiment
Smith, Stuart W; Woodin, Sarah J; Pakeman, Robin J; Johnson, David; van der Wal, René
2014-01-01
Root litter is the dominant soil carbon and nutrient input in many ecosystems, yet few studies have considered how root decomposition is regulated at the landscape scale and how this is mediated by land-use management practices. Large herbivores can potentially influence below-ground decomposition through changes in soil microclimate (temperature and moisture) and changes in plant species composition (root traits). To investigate such herbivore-induced changes, we quantified annual root decomposition of upland grassland species in situ across a landscape-scale livestock grazing experiment, in a common-garden experiment and in laboratory microcosms evaluating the influence of key root traits on decomposition. Livestock grazing increased soil temperatures, but this did not affect root decomposition. Grazing had no effect on soil moisture, but wetter soils retarded root decomposition. Species-specific decomposition rates were similar across all grazing treatments, and species differences were maintained in the common-garden experiment, suggesting an overriding importance of litter type. Supporting this, in microcosms, roots with lower specific root area (m2 g−1) or those with higher phosphorus concentrations decomposed faster. Our results suggest that large herbivores alter below-ground carbon and nitrogen dynamics more through their effects on plant species composition and associated root traits than through effects on the soil microclimate. PMID:24841886
A model analysis of climate and CO2 controls on tree growth in a semi-arid woodland
NASA Astrophysics Data System (ADS)
Li, G.; Harrison, S. P.; Prentice, I. C.
2015-03-01
We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.
Root and Shoot Phenology May Respond Differently to Warming
NASA Astrophysics Data System (ADS)
Radville, L.; Eissenstat, D. M.; Post, E.
2015-12-01
Climate change is increasing temperatures and extending the growing season for many organisms. Shifts in phenology have been widely reported in response to global warming and have strong effects on ecosystem processes and greenhouse gas emissions. It is well understood that warming generally advances aboveground plant phenology, but the influence of temperature on root phenology is unclear. Most terrestrial biosphere models assume that root and shoot growth occur at the same time and are influenced by warming in the same way, but recent studies suggest that this may not be the case. Testing this assumption is particularly important in the Arctic where over 70% of plant biomass can be belowground and warming is happening faster than in other ecosystems. In 2013 and 2014 we examined the timing of root growth in the Arctic in plots that had been warmed or unwarmed for 10 years. We found that peak root growth occurred about one month before leaf growth, suggesting that spring root phenology is not controlled by carbon produced during spring photosynthesis. If root phenology is not controlled by photosynthate early in the season, earlier spring leaf growth may not cause earlier spring root growth. In support of this, we found that warming advanced spring leaf cover but did not significantly affect root phenology. Root growth was not significantly correlated with soil temperature and did not appear to be limited by near-freezing temperatures above the permafrost. These results suggest that although shoots are influenced by temperature, roots in this system may be more influenced by photosynthesis and carbon storage. Aboveground phenology, one of the most widely measured aspects of climate change, may not represent whole-plant phenology and may be a poor indicator of the timing of whole-plant carbon fluxes. Additionally, climate model assumptions that roots and shoots grow at the same time may need to be revised.
Adapting Ground Penetrating Radar for Non-Destructive In-Situ Root and Tuber Assessment
NASA Astrophysics Data System (ADS)
Teare, B. L.; Hays, D. B.; Delgado, A.; Dobreva, I. D.; Bishop, M. P.; Lacey, R.; Huo, D.; Wang, X.
2017-12-01
Ground penetrating radar (GPR) is a rapidly evolving technology extensively used in geoscience, civil science, archeology, and military, and has become a novel application in agricultural systems. One promising application of GPR is for root and tuber detection and measurement. Current commercial GPR systems have been used for detection of large roots, but few studies have attempted to detect agronomic roots, and even fewer have attempted to measure and quantify the total root mass. The ability to monitor and measure root and tuber mass and architecture in an agricultural setting would have far-reaching effects. A few of these include the potential for breeding higher yielding root and tuber crops, rapid bulking roots, discovery of crops with greater carbon sequestration, discovery of plant varieties which have greater ability to stabilize slopes against erosion and slope failure, and drought tolerant varieties. Despite the possible benefits and the current maturity of GPR technology, several challenges remain in the attempt to optimize its use for root and tuber detection. These challenges center on three categories: spatial resolution, data processing, and field-deployable hardware configuration. This study is centered around tuber measurement and its objectives are to i) identify ideal antenna array configurations, frequency, and pulse density; ii) develop novel processing techniques which leverage powerful computer technologies to provide highly accurate measurements of detected features; and iii) develop a cart system which is appropriate for agricultural fields and non-destructive sampling. Already, a 2 GHz multiarray antenna has been identified as an optimal system for tuber detection. Software and processing algorithm development is ongoing, but has already shown improvement over current software offerings. Recent field activity suggest that carts should be width adjustable and sport independent suspension systems to maintain antenna orientation.
J.-C. Domec; J.S. King; A. Noormets; E. Treasure; M.J. Gavazzi; G. Sun; S.G. McNulty
2010-01-01
Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of...
John S. King; Timothy J. Albaugh; H. Lee Allen; Boyd R. Strain; Phillip Dougherty
2002-01-01
Availability of growth limiting resources may alter root dynamics in forest ecosystems, possibly affecting the land-atmosphere exchange of carbon. This was evaluated for a commercially important southern timber species by installing a factorial experiment of fertilization and irrigation treatments in an 8-yr-old loblolly pine (Pinus taeda) plantation...
Alterations in internal partitioning of carbon in soybean plants in response to nitrogen stress
NASA Technical Reports Server (NTRS)
Rufty, T. W. Jr; Raper, C. D. Jr; Huber, S. C.
1984-01-01
Alterations in internal partitioning of carbon were evaluated in plants exposed to limited nitrogen supply. Vegetative, nonnodulated soybean plants (Glycine max (L.) Merrill, 'Ransom') were grown for 21 days with 1.0 mM NO3- and then exposed to solutions containing 1.0, 0.1, or 0.0 mM NO3- for a 25-day treatment period. In nitrogen-limited plants, there were decreases in emergence of new leaves and in the expansion rate and final area at full expansion of individual leaves. As indicated by alterations in accumulation of dry weight, a larger proportion of available carbon in the plant was partitioned to the roots with decreased availability of nitrogen. Partitioning of reduced nitrogen to the root also was increased and, in plants devoid of an external supply, considerable redistribution of reduced nitrogen from leaves to the root occurred. The general decrease in growth potential and sink strength for nutrients in leaves of nitrogen-limited plants suggested that factors other than simply availability of nitrogen likely were involved in the restriction of growth in the leaf canopy and the associated increase in carbon allocation to the roots.
NASA Astrophysics Data System (ADS)
Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue
2016-04-01
Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.
Reszka, Przemysław; Nowicka, Alicja; Lipski, Mariusz; Dura, Włodzimierz; Droździk, Agnieszka; Woźniak, Krzysztof
2016-01-01
Objective. The present study assessed the chemical elements in two novel calcium silicate-containing root canal sealers, BioRoot RCS and Well-Root ST, compared to a calcium silicate-containing root canal sealer that has been on the market for several years, MTA Fillapex, and epoxy resin-based sealer AHPlus. Material and Methods. The sealers were mixed and manipulated according to the manufacturers' instructions. Twelve cylindrical molds (inner diameter 4 mm; height 3 mm) were placed on a glass petri dish and packed with the materials. The dish was transferred to an incubator. After 72 h the molds were examined by scanning electron microscopy and energy dispersive X-ray microanalysis. Results. BioRoot RCS and Well-Root ST had high peaks of calcium, zirconium, oxygen, carbon, silicon, and chlorine. Well-Root ST also had sodium, magnesium, aluminum, and titanium peaks. MTA Fillapex and AHPlus had carbon, oxygen, calcium, titanium, and bismuth peaks. A silicon peak was also observed for MTA Fillapex, and zirconium and tungsten peaks for AHPlus. Conclusion. BioRoot RSC had the highest degree of purity. The clinical implication of metals contained in the other sealers needs to be investigated.
The unseen iceberg: Plant roots in arctic tundra
Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, A. David; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.
2015-01-01
Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.
A Comparative Chemical Study of Calcium Silicate-Containing and Epoxy Resin-Based Root Canal Sealers
Reszka, Przemysław; Dura, Włodzimierz; Droździk, Agnieszka; Woźniak, Krzysztof
2016-01-01
Objective. The present study assessed the chemical elements in two novel calcium silicate-containing root canal sealers, BioRoot RCS and Well-Root ST, compared to a calcium silicate-containing root canal sealer that has been on the market for several years, MTA Fillapex, and epoxy resin-based sealer AHPlus. Material and Methods. The sealers were mixed and manipulated according to the manufacturers' instructions. Twelve cylindrical molds (inner diameter 4 mm; height 3 mm) were placed on a glass petri dish and packed with the materials. The dish was transferred to an incubator. After 72 h the molds were examined by scanning electron microscopy and energy dispersive X-ray microanalysis. Results. BioRoot RCS and Well-Root ST had high peaks of calcium, zirconium, oxygen, carbon, silicon, and chlorine. Well-Root ST also had sodium, magnesium, aluminum, and titanium peaks. MTA Fillapex and AHPlus had carbon, oxygen, calcium, titanium, and bismuth peaks. A silicon peak was also observed for MTA Fillapex, and zirconium and tungsten peaks for AHPlus. Conclusion. BioRoot RSC had the highest degree of purity. The clinical implication of metals contained in the other sealers needs to be investigated. PMID:28097154
Wu, Yun; Xia, Yi-ping; Zhang, Jia-ping; Du, Fang; Zhang, Lin; Ma, Yi-di; Zhou, Hong
2016-01-01
Bulblet development is a problem in global lily bulb production and carbohydrate metabolism is a crucial factor. Micropropagation acts as an efficient substitute for faster propagation and can provide a controllable condition to explore bulb growth. The present study was conducted to investigate the effects of humic acid (HA) on bulblet swelling and the carbohydrate metabolic pathway in Lilium Oriental Hybrids ‘Sorbonne’ under in vitro conditions. HA greatly promoted bulblet growth at 0.2, 2.0, and 20.0 mg/L, and pronounced increases in bulblet sucrose, total soluble sugar, and starch content were observed for higher HA concentrations (≥2.0 mg/L) within 45 d after transplanting (DAT). The activities of three major starch synthetic enzymes (including adenosine 5'-diphosphate glucose pyrophosphorylase, granule-bound starch synthase, and soluble starch synthase) were enhanced dramatically after HA application especially low concentration HA (LHA), indicating a quick response of starch metabolism. However, higher doses of HA also caused excessive aboveground biomass accumulation and inhibited root growth. Accordingly, an earlier carbon starvation emerged by observing evident starch degradation. Relative bulblet weight gradually decreased with increased HA doses and thereby broke the balance between the source and sink. A low HA concentration at 0.2 mg/L performed best in both root and bulblet growth. The number of roots and root length peaked at 14.5 and 5.75 cm, respectively. The fresh bulblet weight and diameter reached 468 mg (2.9 times that under the control treatment) and 11.68 mm, respectively. Further, sucrose/starch utilization and conversion were accelerated and carbon famine was delayed as a result with an average relative bulblet weight of 80.09%. To our knowledge, this is the first HA application and mechanism research into starch metabolism in both in vitro and in vivo condition in bulbous crops. PMID:27819136
Wu, Yun; Xia, Yi-Ping; Zhang, Jia-Ping; Du, Fang; Zhang, Lin; Ma, Yi-di; Zhou, Hong
Bulblet development is a problem in global lily bulb production and carbohydrate metabolism is a crucial factor. Micropropagation acts as an efficient substitute for faster propagation and can provide a controllable condition to explore bulb growth. The present study was conducted to investigate the effects of humic acid (HA) on bulblet swelling and the carbohydrate metabolic pathway in Lilium Oriental Hybrids 'Sorbonne' under in vitro conditions. HA greatly promoted bulblet growth at 0.2, 2.0, and 20.0 mg/L, and pronounced increases in bulblet sucrose, total soluble sugar, and starch content were observed for higher HA concentrations (≥2.0 mg/L) within 45 d after transplanting (DAT). The activities of three major starch synthetic enzymes (including adenosine 5'-diphosphate glucose pyrophosphorylase, granule-bound starch synthase, and soluble starch synthase) were enhanced dramatically after HA application especially low concentration HA (LHA), indicating a quick response of starch metabolism. However, higher doses of HA also caused excessive aboveground biomass accumulation and inhibited root growth. Accordingly, an earlier carbon starvation emerged by observing evident starch degradation. Relative bulblet weight gradually decreased with increased HA doses and thereby broke the balance between the source and sink. A low HA concentration at 0.2 mg/L performed best in both root and bulblet growth. The number of roots and root length peaked at 14.5 and 5.75 cm, respectively. The fresh bulblet weight and diameter reached 468 mg (2.9 times that under the control treatment) and 11.68 mm, respectively. Further, sucrose/starch utilization and conversion were accelerated and carbon famine was delayed as a result with an average relative bulblet weight of 80.09%. To our knowledge, this is the first HA application and mechanism research into starch metabolism in both in vitro and in vivo condition in bulbous crops.
He, Huaijiang; Zhang, Chunyu; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang
2018-01-01
Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China.
He, Huaijiang; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang
2018-01-01
Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9–12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China. PMID:29351291
NASA Astrophysics Data System (ADS)
Wacha, K. M.; Papanicolaou, T.; Wilson, C. G.
2010-12-01
Field measurements and numerical models are currently being used to estimate quantities of Total Belowground Carbon Allocation (TBCA) for three representative land uses, viz. corn, soybeans, and prairie bromegrass for CRP (Conservation Reserve Program) of an agricultural Iowa sub-watershed, located within the Clear Creek Watershed (CCW). Since it is difficult to measure TBCA directly, a mass balance approach has been implemented to estimate TBCA as follows: TBCA = FS + FE+ Δ(CS + CR + CL) - FA , where the term Fs denotes soil respiration; FE is the carbon content of the eroded/deposited soil; ΔCS, ΔCR, ΔCL denote the changes in carbon content of the mineral soil, plant roots, and litter layer, respectively; and FA is the above ground litter fall of dead plant material to the soil. The terms are hypothesized to have a huge impact on TBCA within agricultural settings due to intensive tillage practices, water-driven soil erosion/deposition, and high usage of fertilizer. To test our hypothesis, field measurements are being performed at the plot scale, replicating common agricultural land management practices. Soil respiration (FS) is being measured with an EGM-4 CO2 Gas Analyzer and SRC-1 Soil Respiration Chamber (PP Systems), soil moisture and temperature are recorded in the top 20 cm for each respective soil respiration measurement, and litter fall rates (FA) are acquired by collecting the residue in a calibrated pan. The change in carbon content of the soil (ΔCS), roots (ΔCR) and litter layer (ΔCL) are being analyzed by collecting soil samples throughout the life cycle of the plant. To determine the term FE for the three representative land management practices, a funnel collection system located at the plot outlet was used for collecting the eroded material after natural rainfall events. Field measurements of TBCA at the plot scale via the mass balance approach are used to calibrate the numerical agronomic process model DAYCENT, which simulates the daily fluxes of carbon (CS) and soil respiration (FS) and incorporates a plant-growth model that allows the determination of the terms FA, CR, and CL. Once calibrated, DAYCENT can be used in conjunction with the Watershed Erosion Prediction Project (WEPP) model, which calculates erosion/deposition rates, to provide estimates of TBCA at a larger global scale.
Lopez-Sangil, Luis; George, Charles; Medina-Barcenas, Eduardo; Birkett, Ali J; Baxendale, Catherine; Bréchet, Laëtitia M; Estradera-Gumbau, Eduard; Sayer, Emma J
2017-09-01
Root exudation is a key component of nutrient and carbon dynamics in terrestrial ecosystems. Exudation rates vary widely by plant species and environmental conditions, but our understanding of how root exudates affect soil functioning is incomplete, in part because there are few viable methods to manipulate root exudates in situ . To address this, we devised the Automated Root Exudate System (ARES), which simulates increased root exudation by applying small amounts of labile solutes at regular intervals in the field.The ARES is a gravity-fed drip irrigation system comprising a reservoir bottle connected via a timer to a micro-hose irrigation grid covering c . 1 m 2 ; 24 drip-tips are inserted into the soil to 4-cm depth to apply solutions into the rooting zone. We installed two ARES subplots within existing litter removal and control plots in a temperate deciduous woodland. We applied either an artificial root exudate solution (RE) or a procedural control solution (CP) to each subplot for 1 min day -1 during two growing seasons. To investigate the influence of root exudation on soil carbon dynamics, we measured soil respiration monthly and soil microbial biomass at the end of each growing season.The ARES applied the solutions at a rate of c . 2 L m -2 week -1 without significantly increasing soil water content. The application of RE solution had a clear effect on soil carbon dynamics, but the response varied by litter treatment. Across two growing seasons, soil respiration was 25% higher in RE compared to CP subplots in the litter removal treatment, but not in the control plots. By contrast, we observed a significant increase in microbial biomass carbon (33%) and nitrogen (26%) in RE subplots in the control litter treatment.The ARES is an effective, low-cost method to apply experimental solutions directly into the rooting zone in the field. The installation of the systems entails minimal disturbance to the soil and little maintenance is required. Although we used ARES to apply root exudate solution, the method can be used to apply many other treatments involving solute inputs at regular intervals in a wide range of ecosystems.
Frankincense tapping reduces the carbohydrate storage of Boswellia trees.
Mengistu, Tefera; Sterck, Frank J; Fetene, Masresha; Bongers, Frans
2013-06-01
Carbohydrates fixed by photosynthesis are stored in plant organs in the form of starch or sugars. Starch and sugars sum to the total non-structural carbohydrate pool (TNC) and may serve as intermediate pools between assimilation and utilization. We examined the impact of tapping on TNC concentrations in stem-wood, bark and root tissues of the frankincense tree (Boswellia papyrifera (Del.) Hochst) in two natural woodlands of Ethiopia. Two tapping treatments, one without tapping (control) and the other with tapping at 12 incisions, are applied on experimental trees. Trees are tapped in the leafless dry period, diminishing their carbon storage pools. If storage pools are not refilled by assimilation during the wet season, when crowns are in full leaf, tapping may deplete the carbon pool and weaken Boswellia trees. The highest soluble sugar concentrations were in the bark and the highest starch concentrations in the stem-wood. The stem-wood contains 12 times higher starch than soluble sugar concentrations. Hence, the highest TNC concentrations occurred in the stem-wood. Moreover, wood volume was larger than root or bark volumes and, as a result, more TNC was stored in the stem-wood. As predicted, tapping reduced the TNC concentrations and pool sizes in frankincense trees during the dry season. During the wet season, these carbon pools were gradually filled in tapped trees, but never to the size of non-tapped trees. We conclude that TNC is dynamic on a seasonal time scale and offers resilience against stress, highlighting its importance for tree carbon balance. But current resin tapping practices are intensive and may weaken Boswellia populations, jeopardizing future frankincense production.
Root carbon flow from an invasive plant to belowground foodwebs
Mark A. Bradford; Michael S. Strickland; Jayna L. DeVore; John C. Maerz
2012-01-01
Aims Soil foodwebs are based on plant production. This production enters belowground foodwebs via numerous pathways, with root pathways likely dominating supply. Indeed, root exudation may fuel 30â50 % of belowground activity with photosynthate fixed only hours earlier. Yet we have limited knowledge of root fluxes of recent-photosynthate from invasive plants to...
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Xie, Zhenghui; Jia, Binghao
2016-09-01
Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon-nitrogen (CN) interactions (CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83 (BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production (GPP) and latent heat flux (LE) for the dry season, and improved the carbon (C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m-2 d-1, net ecosystem exchange by 1.96 g C m-2 d-1, LE by 5.0 W m-2, and soil moisture by 0.03 m3 m-3, at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses (including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.
Miller, R.L.; Jackson, L.E.
1998-01-01
The occurrence of vesicular-arbuscular mycorrhizae (VAM) root colonization and spore number in soil was assessed for 18 fields under intensive lettuce (Lactuca sativa L.) production in California during July and August of 1995. Data on management practices and soil characteristics were compiled for each field, and included a wide range of conditions. The relationship between these factors and the occurrence of VAM in these fields was explored with multivariate statistical analysis. VAM colonization of lettuce tended to decrease with the use of chemical inputs, such as pesticides and high amounts of P and N fertilizers. Addition of soil organic matter amendments, the occurrence of other host crops in the rotation, and soil carbon:phosphorus and carbon:nitrogen ratios, were positively associated with VAM colonization of lettuce roots. The number of VAM spores in soil was strongly correlated with the number of other host crops in the rotation, the occurrence of weed hosts and sampling date, but was more affected by general soil conditions than by management inputs. Higher total soil N, C and P, as well as CEC, were inversely related to soil spore number. A glasshouse study of the two primary lettuce types sampled in the field showed no significant differences in the extent of root colonization under similar growing conditions. The results of this study are compared with other studies on the effects of management and soil conditions on mycorrhizal occurrence in agriculture.
Sensitivity of greenhouse summer dryness to changes in plant rooting characteristics
Milly, P.C.D.
1997-01-01
A possible consequence of increased concentrations of greenhouse gases in Earth's atmosphere is "summer dryness," a decrease of summer plant-available soil water in middle latitudes, caused by increased availability of energy to drive evapotranspiration. Results from a numerical climate model indicate that summer dryness and related changes of land-surface water balances are highly sensitive to possible concomitant changes of plant-available water-holding capacity of soil, which depends on plant rooting depth and density. The model suggests that a 14% decrease of the soil volume whose water is accessible to plant roots would generate the same summer dryness, by one measure, as an equilibrium doubling of atmospheric carbon dioxide. Conversely, a 14% increase of that soil volume would be sufficient to offset the summer dryness associated with carbon-dioxide doubling. Global and regional changes in rooting depth and density may result from (1) plant and plant-community responses to greenhouse warming, to carbon-dioxide fertilization, and to associated changes in the water balance and (2) anthropogenic deforestation and desertification. Given their apparently critical role, heretofore ignored, in global hydroclimatic change, such changes of rooting characteristics should be carefully evaluated using ecosystem observations, theory, and models.
Belowground carbon trade among tall trees in a temperate forest.
Klein, Tamir; Siegwolf, Rolf T W; Körner, Christian
2016-04-15
Forest trees compete for light and soil resources, but photoassimilates, once produced in the foliage, are not considered to be exchanged between individuals. Applying stable carbon isotope labeling at the canopy scale, we show that carbon assimilated by 40-meter-tall spruce is traded over to neighboring beech, larch, and pine via overlapping root spheres. Isotope mixing signals indicate that the interspecific, bidirectional transfer, assisted by common ectomycorrhiza networks, accounted for 40% of the fine root carbon (about 280 kilograms per hectare per year tree-to-tree transfer). Although competition for resources is commonly considered as the dominant tree-to-tree interaction in forests, trees may interact in more complex ways, including substantial carbon exchange. Copyright © 2016, American Association for the Advancement of Science.
Helmisaari, Heljä-Sisko; Derome, John; Nöjd, Pekka; Kukkola, Mikko
2007-10-01
Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.
Christopher M. Gough; John R. Seiler
2004-01-01
While the effect of soil temperature and rnoisture on soil C02 efflux (Ec) has becn widely investigated, the relationship between Ec and soil carbon (C). root, and stand parameters has not been comprehensively examined or quantified across extensive spatial and temporal scales. Wle measured E
Effects of prolonged drought stress on Scots pine seedling carbon allocation.
Aaltonen, Heidi; Lindén, Aki; Heinonsalo, Jussi; Biasi, Christina; Pumpanen, Jukka
2017-04-01
As the number of drought occurrences has been predicted to increase with increasing temperatures, it is believed that boreal forests will become particularly vulnerable to decreased growth and increased tree mortality caused by the hydraulic failure, carbon starvation and vulnerability to pests following these. Although drought-affected trees are known to have stunted growth, as well as increased allocation of carbon to roots, still not enough is known about the ways in which trees can acclimate to drought. We studied how drought stress affects belowground and aboveground carbon dynamics, as well as nitrogen uptake, in Scots pine (Pinus sylvestris L.) seedlings exposed to prolonged drought. Overall 40 Scots pine seedlings were divided into control and drought treatments over two growing seasons. Seedlings were pulse-labelled with 13CO2 and litter bags containing 15N-labelled root biomass, and these were used to follow nutrient uptake of trees. We determined photosynthesis, biomass distribution, root and rhizosphere respiration, water potential, leaf osmolalities and carbon and nitrogen assimilation patterns in both treatments. The photosynthetic rate of the drought-induced seedlings did not decrease compared to the control group, the maximum leaf specific photosynthetic rate being 0.058 and 0.045 µmol g-1 s-1 for the drought and control treatments, respectively. The effects of drought were, however, observed as lower water potentials, increased osmolalities as well as decreased growth and greater fine root-to-shoot ratio in the drought-treated seedlings. We also observed improved uptake of labelled nitrogen from soil to needles in the drought-treated seedlings. The results indicate acclimation of seedlings to long-term drought by aiming to retain sufficient water uptake with adequate allocation to roots and root-associated mycorrhizal fungi. The plants seem to control water potential with osmolysis, for which sufficient photosynthetic capability is needed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Chairungsee, Naruenat; Gay, Frederic; Thaler, Philippe; Kasemsap, Poonpipope; Thanisawanyangkura, Sornprach; Chantuma, Arak; Jourdan, Christophe
2013-01-01
Fine roots (FR) play a major role in the water and nutrient uptake of plants and contribute significantly to the carbon and nutrient cycles of ecosystems through their annual production and turnover. FR growth dynamics were studied to understand the endogenous and exogenous factors driving these processes in a 14-year-old plantation of rubber trees located in eastern Thailand. FR dynamics were observed using field rhizotrons from October 2007 to October 2009. This period covered two complete dry seasons (November to March) and two complete rainy seasons (April to October), allowing us to study the effect of rainfall seasonality on FR dynamics. Rainfall and its distribution during the two successive years showed strong differences with 1500 and 950 mm in 2008 and 2009, respectively. FR production (FRP) completely stopped during the dry seasons and resumed quickly after the first rains. During the rainy seasons, FRP and the daily root elongation rate (RER) were highly variable and exhibited strong annual variations with a total FRP of 139.8 and 40.4 mm-2 and an average RER of 0.16 and 0.12 cm day-1 in 2008 and 2009, respectively. The significant positive correlations found between FRP, RER, the appearance of new roots, and rainfall at monthly intervals revealed the impact of rainfall seasonality on FR dynamics. However, the rainfall patterns failed to explain the weekly variations of FR dynamics observed particularly during the rainy seasons. At this time step, FRP, RER, and the appearance of new FR were negatively correlated to the average soil matric potential measured at a depth of between 30 and 60 cm. In addition, our study revealed a significant negative correlation between FR dynamics and the monthly production of dry rubber. Consequently, latex harvesting might disturb carbon dynamics in the whole tree, far beyond the trunk where the tapping was performed. These results exhibit the impact of climatic conditions and tapping system in the carbon budget of rubber plantations. PMID:24400016
Carbon and Nitrogen dynamics in deciduous and broad leaf trees under drought stress
NASA Astrophysics Data System (ADS)
Joseph, Jobin; Schaub, Marcus; Arend, Matthias; Saurer, Matthias; siegwolf, Rolf; Weiler, Markus; Gessler, Arthur
2017-04-01
Climate change is projected to lead to an increased frequency and duration of severe drought events in future. Already within the last twenty years, however, drought stress related forest mortality has been increasing across the globe. Tree and forest die off events have multiple adverse effects on ecosystem functioning and might convert previous carbon sinks to act as carbon sources instead and can thus intensify the effect of climate change and global warming. Current predictions of forest's functioning under drought and thus forest mortality under future climatic conditions are constrained by a still incomplete picture of the trees' physiological reactions that allows some trees to survive drought periods while others succumb. Concerning the effects of drought on the carbon balance and on tree hydraulics our picture is getting more complete, but still interactions between abiotic factors and pest and diseases as well as the interaction between carbon and nutrient balances as factors affecting drought induced mortality are not well understood. Reduced carbon allocation from shoots to roots might cause a lack of energy for root nutrient uptake and to a shortage of carbon skeletons for nitrogen assimilation and thus to an impaired nutrient status of trees. To tackle these points, we have performed a drought stress experiment with six different plant species, 3 broad leaf (maple, beech and oak) and 3 deciduous (pine, fir and spruce). Potted two-year-old seedlings were kept inside a greenhouse for 5 months and 3 levels of drought stress (no stress (control), intermediate and intensive drought stress) were applied by controlling water supply. Gas exchange measurements were performed periodically to monitor photosynthesis, transpiration, stomatal conductance. At the pinnacle of drought stress, we applied isotopic pulse labelling: On the one hand we exposed trees to 13CO2 to investigate on carbon dynamics and the allocation of new assimilates within the plant. Moreover, we labelled the soil with 15N nitrate by injecting nitrate solution into the soil without strongly changing the water content for investigating nitrogen uptake and distribution along different compartments of the plant soil continuum. We observed a distinct difference in the carbon and nitrogen dynamics and allocation pattern between broad leaf and conifer seedlings. Broad leaf species showed a lower reduction of CO2 assimilation under drought and still allocated significant amounts of the new assimilates to the roots. Especially in maple and oak the belowground transfer of assimilates was kept at high levels even under severe drought stress, while there was a reduction in assimilation transport in beech. Instead, only small amounts of 13C labelled new assimilates arrived in the roots of conifers in the drought treatments. In the deciduous species 15N taken up the roots was more intensively allocated to aboveground tissues compared to conifers under control conditions, which retained the largest amounts within the fine roots. 15N uptake was reduced in the drought treatments in all species assessed. There was, however, no clear relation of this reduction to changes in 13C allocation to the roots. We thus cannot conclude that the reduction of nitrogen uptake is due to reduced transport of new assimilates belowground. We thus need to assume that carbon storage is sufficient to provide energy and carbon for nitrogen uptake and assimilation at least over the short-term. During longer drought periods, however, depletion of carbon stores might adversely affect the nutrient uptake and balance of trees.
Linking root hydraulic properties to carbon allocation patterns in annual plant
NASA Astrophysics Data System (ADS)
Hosseini, A.; Ewers, B. E.; Adjesiwor, A. T.; Kniss, A. R.
2017-12-01
Incorporation of root structure and function into biophysical models is an important tool to predict plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils. Most of the models describing root water uptake (RWU) are based on semi-empirical (i.e. built on physiological hypotheses, but still combined with empirical functions) approaches and hydraulic parameters involved are hardly available. Root conductance is essential to define the interaction between soil-to-root and canopy-to-atmosphere. Also root hydraulic limitations to water flow can impact gas exchange rates and plant biomass partitioning. In this study, sugar beet (B. vulgaris) seeds under two treatments, grass (Kentucky bluegrass) and no grass (control), were planted in 19 L plastic buckets in June 2016. Photosynthetic characteristics (e.g. gas exchange and chlorophyll fluorescence), leaf morphology and anatomy, root morphology and above and below ground biomass of the plants was monitored at 15, 30, 50, 70 and 90 days after planting (DAP). Further emphasis was placed on the limits to water flow by coupling of hydraulic conductance (k) whole root-system with water relation parameters and gas exchange rates in fully established plants.
GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
DAVIS J M
2007-10-11
Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, themore » ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.« less
Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms
USDA-ARS?s Scientific Manuscript database
Upon attack by leaf-herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated this aspect in maize seedlings infested by the specialist root herbivore Diabrotica virgifera. By using...
Wang, Cheng; Ji, Junfeng; Yang, Zhongfang; Chen, Lingxiao; Browne, Patrick; Yu, Ruilian
2012-08-01
In order to identify the effects of soil properties on the transfer of Cd from soil to wheat under actual field conditions, 126 pairs of topsoil and wheat samples were collected from the Yangtze River delta region, China. Relevant parameters (Cd, Ca, Mg, Fe, Mn, Zn, N, P, K, S, pH, total organic carbon, and speciation of soil Cd) in soil and wheat tissues were analyzed, and the results were treated by statistical methods. Soil samples (19.8%) and 14.3% of the wheat grain samples exceeded the relevant maximum permissible Cd concentrations in China for agricultural soil and wheat grain, respectively. The major speciations of Cd in soil were exchangeable, bound to carbonates and fulvic and humic acid fraction, and they were readily affected by soil pH, total Ca, Mg, S and P, DTPA-Fe, Ex-Ca, and Ex-Mg. Cadmium showed a strong correlation with Fe, S, and P present in the grain and the soil, whereas there was no significant correlation in the straw or root. Generally, soil pH, Ca, Mg, Mn, P, and slowly available K restricted Cd transfer from soil to wheat, whereas soil S, N, Zn, DTPA-Fe, and total organic carbon enhance Cd uptake by wheat.
Zeng, Quanchao; Lal, Rattan; Chen, Yanan; An, Shaoshan
2017-01-01
Caragana korshinskii, a leguminous shrub, a common specie, is widely planted to prevent soil erosion on the Loess Plateau. The objective of this study was to determine how the plantation ages affected soil, leaf and root nutrients and ecological stoichiometry. The chronosequence ages of C. korshinskii plantations selected for this study were 10, 20 and 30 years. Soil organic carbon (SOC) and soil total nitrogen (STN) of C. korshinskii plantations significantly increased with increase in the chronosequence age. However, soil total phosphorous (STP) was not affected by the chronosequence age. The soil C: N ratio decreased and the soil C: P and N: P ratios increased with increasing plantation age. The leaf and root concentrations of C, N, and P increased and the ratios C: N, C: P, and N: P decreased with age increase. Leaf N: P ratios were >20, indicating that P was the main factor limiting the growth of C. korshinskii. This study also demonstrated that the regeneration of natural grassland (NG) effectively preserved and enhanced soil nutrient contents. Compared with NG, shrub lands (C. korshinskii) had much lower soil nutrient concentrations, especially for long (>20 years) chronosequence age. Thus, the regeneration of natural grassland is an ecologically beneficial practice for the recovery of degraded soils in this area. PMID:28076357
Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe
2016-02-01
The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
How to get into bones: proton pump and carbonic anhydrase in Osedax boneworms
Tresguerres, Martin; Katz, Sigrid; Rouse, Greg W.
2013-01-01
Osedax are gutless siboglinid worms that thrive on vertebrate bones lying on the ocean floor, mainly those of whales. The posterior body of female Osedax penetrates into the bone forming extensions known as ‘roots’, which host heterotrophic symbiotic bacteria in bacteriocytes beneath the epidermis. The Osedax root epithelium presumably absorbs bone collagen and/or lipids, which are metabolized by the symbiotic bacteria that in turn serve for Osedax's nutrition. Here, we show that Osedax roots express extremely high amounts of vacuolar-H+-ATPase (VHA), which is located in the apical membrane and in cytoplasmic vesicles of root and ovisac epithelial cells. The enzyme carbonic anhydrase (CA), which catalyses the hydration of CO2 into H+ and HCO3−, is also expressed in roots and throughout Osedax body. These results suggest Osedax roots have massive acid-secreting capacity via VHA, fuelled by H+ derived from the CA-catalysed hydration of CO2 produced by aerobic metabolism. We propose the secreted acid dissolves the bone carbonate matrix to then allow the absorption of bone-derived nutrients across the skin. In an exciting example of convergent evolution, this model for acid secretion is remarkably similar to mammalian osteoclast cells. However, while osteoclasts dissolve bone for repairing and remodelling, the Osedax root epithelium secretes acid to dissolve foreign bone to access nutrients. PMID:23760644
Lindahl, Björn D; de Boer, Wietse; Finlay, Roger D
2010-07-01
Ectomycorrhizal fungi dominate the humus layers of boreal forests. They depend on carbohydrates that are translocated through roots, via fungal mycelium to microsites in the soil, wherein they forage for nutrients. Mycorrhizal fungi are therefore sensitive to disruptive disturbances that may restrict their carbon supply. By disrupting root connections, we induced a sudden decline in mycorrhizal mycelial abundance and studied the consequent effects on growth and activity of free living, saprotrophic fungi and bacteria in pine forest humus, using molecular community analyses in combination with enzyme activity measurements. Ectomycorrhizal fungi had decreased in abundance 14 days after root severing, but the abundance of certain free-living ascomycetes was three times higher within 5 days of the disturbance compared with undisturbed controls. Root disruption also increased laccase production by an order of magnitude and cellulase production by a factor of 5. In contrast, bacterial populations seemed little affected. The results indicate that access to an external carbon source enables mycorrhizal fungi to monopolise the humus, but disturbances may induce rapid growth of opportunistic saprotrophic fungi that presumably use the dying mycorrhizal mycelium. Studies of such functional shifts in fungal communities, induced by disturbance, may shed light on mechanisms behind nutrient retention and release in boreal forests. The results also highlight the fundamental problems associated with methods that study microbial processes in soil samples that have been isolated from living roots.
NASA Astrophysics Data System (ADS)
Kumar, P.; Quijano, J. C.; Drewry, D.
2010-12-01
Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling results using coupled partial differential equations of transport in soils and roots along with that for nutrient dynamics. We study the feedbkack of HR on the dynamics of water and nitrogen cycling in the soil and how these dynamics influence root water and nitrogen uptake and consequently carbon assimilation by the canopy. The forcing data is obtained from the Ameriflux Tower located in Blodgett Forest, Sierra Nevada, California. We consider single-species (Ponderosa Pine) and multi-species (overstory Ponderosa Pine and understory shrubs) interaction. When single species is considered, the near surface soil-moisture available from HR during dry summer season is an important source of evaporation and contributes significantly to the total ET flux. However, when multi-species interactions are taken into account, the soil-water from the HR becomes an important source of transpiration from the understory. The results also show that passive plant nitrogen uptake is higher when HR is present and it is critical for sustaining expected rates of carbon assimilation.
Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows
NASA Astrophysics Data System (ADS)
Röhr, Maria Emilia; Boström, Christoffer; Canal-Vergés, Paula; Holmer, Marianne
2016-11-01
Although seagrasses cover only a minor fraction of the ocean seafloor, their carbon sink capacity accounts for nearly one-fifth of the total oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems. We sampled 10 eelgrass (Zostera marina) meadows in Finland and 10 in Denmark to explore seagrass carbon stocks (Corg stock) and carbon accumulation rates (Corg accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation. The Corg stock integrated over the top 25 cm of the sediment averaged 627 g C m-2 in Finland, while in Denmark the average Corg stock was over 6 times higher (4324 g C m-2). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha-1. Our results suggest that the Finnish eelgrass meadows are minor carbon sinks compared to the Danish meadows, and that majority of the Corg produced in the Finnish meadows is exported. Our analysis further showed that > 40 % of the variation in the Corg stocks was explained by sediment characteristics, i.e. dry density, porosity and silt content. In addition, our analysis show that the root : shoot ratio of Z. marina explained > 12 % and the contribution of Z. marina detritus to the sediment surface Corg pool explained > 10 % of the variation in the Corg stocks. The mean monetary value for the present carbon storage and carbon sink capacity of eelgrass meadows in Finland and Denmark, were 281 and 1809 EUR ha-1, respectively. For a more comprehensive picture of seagrass carbon storage capacity, we conclude that future blue carbon studies should, in a more integrative way, investigate the interactions between sediment biogeochemistry, seascape structure, plant species architecture and the hydrodynamic regime.
Assessment of potential greenhouse gas mitigation from changes to crop root mass and architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paustian, Keith; Campbell, Nell; Dorich, Chris
Reducing (and eventually reversing) the increase in greenhouse gases (GHGs) in the atmosphere due to human activities, and thus reducing the extent and severity of anthropogenic climate change, is one of the great challenges facing humanity. While most of the man-caused increase in GHGs has been due to fossil fuel use, land use (including agriculture) currently accounts for about 25% of total GHG emissions and thus there is a need to include emission reductions from the land use sector as part of an effective climate change mitigation strategy. In addition, analyses included in the recent IPCC 5th Climate Change Assessmentmore » report suggests that it may not be possible to achieve large enough emissions reductions in the energy, transport and industrial sectors alone to stabilize GHG concentrations at a level commensurate with a less than 2°C global average temperature increase, without the help of a substantial CO 2 sink (i.e., atmospheric CO 2 removal) from the land use sector. One of the potential carbon sinks that could contribute to this goal is increasing C storage in soil organic matter on managed lands. This report details a preliminary scoping analysis, to assess the potential agricultural area in the US – where appropriate soil, climate and land use conditions exist – to determine the land area on which ‘improved root phenotype’ crops could be deployed and to evaluate the potential long-term soil C storage, given a set of ‘bounding scenarios’ of increased crop root input and/or rooting depth for major crop species (e.g., row crops (corn, sorghum, soybeans), small grains (wheat, barley, oats), and hay and pasture perennial forages). The enhanced root phenotype scenarios assumed 25, 50 and 100% increase in total root C inputs, in combination with five levels of modifying crop root distributions (i.e., no change and four scenarios with increasing downward shift in root distributions). We also analyzed impacts of greater root production on the soil-crop nitrogen balance, from the standpoint of increased need for additional N inputs and consequences for increased N 2O flux, as well as potential impacts if more and deeper roots contributed to reduced N leaching. In the enhanced root phenotype scenarios, the implicit assumption was that increases in overall plant production could be achieved (e.g., through increased CO 2 assimilation, greater growth efficiency) without reducing the harvested yield – that is, we did not include potential leakage and land substitution effects from potential decreased crop yield in the analysis.« less
The unseen iceberg: plant roots in arctic tundra.
Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D
2015-01-01
Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions. No claim to original US Government works New Phytologist © 2014 New Phytologist Trust.
Long-term soil gas flux and root mortality, Tapajos National Forest
W. L. Silver; A. W. Thompson; M. E. McGroddy; R. K. Varner; J. R. Robertson; J. D. Dias; H. Silva; P. Crill; M. Keller
2012-01-01
This data set reports measurements of trace gas fluxes of methane (CH4), nitric oxide (N2O), nitrous oxide (NO), carbon dioxide (CO2) from soils at a study site in the Tapajos National Forest (TNF), near the km 83 on the Santarem-Cuiaba Highway south of Santarem, Para, Brazil. Data for root mass and carbon content, soil nitrogen (N), nitrification, and moisture content...
ROOT GROWTH AND TURNOVER IN DIFFERENT AGED PONDEROSA PINE STANDS IN OREGON, USA
The impacts of pollution and climate change on soil carbon dynamics are poorly understood, in part due to a lack of information regarding root production and turnover in natural ecosystems. In order to examine how root dynamics change with stand age in ponderosa pine forests (...
USDA-ARS?s Scientific Manuscript database
Background and aims: Root functional traits are determinants of soil carbon storage; plant productivity; and ecosystemproperties. However, few studies look at both annual and perennial roots, soil properties, and productivity in the context of field scale agricultural systems. Methods: In Long Term...
Herron, Patrick M.; Gage, Daniel J.; Arango Pinedo, Catalina; Haider, Zane K.; Cardon, Zoe G.
2013-01-01
The rhizosphere is a hotbed of microbial activity in ecosystems, fueled by carbon compounds from plant roots. Basic questions about the location and dynamics of plant-spurred microbial growth in the rhizosphere are difficult to answer with standard, destructive soil assays mixing a multitude of microbe-scale microenvironments in a single, often sieved, sample. Soil microbial biosensors designed with the luxCDABE reporter genes fused to a promoter of interest enable continuous imaging of the microbial perception of (and response to) environmental conditions in soil. We used the common soil bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constitutive promoter nptII and luxCDABE (coding for light-emitting proteins) from Vibrio fischeri. Experiments in liquid media demonstrated that high light production by KT2440/pZKH2 was associated with rapid microbial growth supported by high carbon availability. We applied the biosensors in microcosms filled with non-sterile soil in which corn (Zea mays L.), black poplar (Populus nigra L.), or tomato (Solanum lycopersicum L.) was growing. We detected minimal light production from microbiosensors in the bulk soil, but biosensors reported continuously from around roots for as long as six days. For corn, peaks of luminescence were detected 1–4 and 20–35 mm along the root axis behind growing root tips, with the location of maximum light production moving farther back from the tip as root growth rate increased. For poplar, luminescence around mature roots increased and decreased on a coordinated diel rhythm, but was not bright near root tips. For tomato, luminescence was dynamic, but did not exhibit a diel rhythm, appearing in acropetal waves along roots. KT2440/pZKH2 revealed that root tips are not always the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots. PMID:24032034
Voisin, A S; Salon, C; Jeudy, C; Warembourg, F R
2003-12-01
The relationships between symbiotic nitrogen fixation (SNF) activity and C fluxes were investigated in pea plants (Pisum sativum L. cv. Baccara) using simultaneous 13C and 15N labelling. Analysis of the dynamics of labelled CO2 efflux from the nodulated roots allowed the different components associated with SNF activity to be calculated, together with root and nodule synthetic and maintenance processes. The carbon costs for the synthesis of roots and nodules were similar and decreased with time. Carbon lost by turnover, associated with maintenance processes, decreased with time for nodules while it increased in the roots. Nodule turnover remained higher than root turnover until flowering. The effect of the N source on SNF was investigated using plants supplied with nitrate or plants only fixing N2. SNF per unit nodule biomass (nodule specific activity) was linearly related to the amount of carbon allocated to the nodulated roots regardless of the N source, with regression slopes decreasing across the growth cycle. These regression slopes permitted potential values of SNF specific activity to be defined. SNF activity decreased as the plants aged, presumably because of the combined effects of both increasing C costs of SNF (from 4.0 to 6.7 g C g-1 N) and the limitation of C supply to the nodules. SNF activity competed for C against synthesis and maintenance processes within the nodulated roots. Synthesis was the main limiting factor of SNF, but its importance decreased as the plant aged. At seed-filling, SNF was probably more limited by nodule age than by C supply to the nodulated roots.
Henkes, Gunnar J.; Jousset, Alexandre; Bonkowski, Michael; Thorpe, Michael R.; Scheu, Stefan; Lanoue, Arnaud; Schurr, Ulrich; Röse, Ursula S. R.
2011-01-01
Soil bacteria such as pseudomonads may reduce pathogen pressure for plants, both by activating plant defence mechanisms and by inhibiting pathogens directly due to the production of antibiotics. These effects are hard to distinguish under field conditions, impairing estimations of their relative contributions to plant health. A split-root system was set up with barley to quantify systemic and local effects of pre-inoculation with Pseudomonas fluorescens on the subsequent infection process by the fungal pathogen Fusarium graminearum. One root half was inoculated with F. graminearum in combination with P. fluorescens strain CHA0 or its isogenic antibiotic-deficient mutant CHA19. Bacteria were inoculated either together with the fungal pathogen or in separate halves of the root system to separate local and systemic effects. The short-term plant response to fungal infection was followed by using the short-lived isotopic tracer 11CO2 to track the delivery of recent photoassimilates to each root half. In the absence of bacteria, fungal infection diverted carbon from the shoot to healthy roots, rather than to infected roots, although the overall partitioning from the shoot to the entire root system was not modified. Both local and systemic pre-inoculation with P. fluorescens CHA0 prevented the diversion of carbon as well as preventing a reduction in plant biomass in response to F. graminearum infection, whereas the non-antibiotic-producing mutant CHA19 lacked this ability. The results suggest that the activation of plant defences is a central feature of biocontrol bacteria which may even surpass the effects of direct pathogen inhibition. PMID:21561952
Mark Coleman
2007-01-01
In forest trees, roots mediate such significant carbon fluxes as primary production and soil C02 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of...
NASA Astrophysics Data System (ADS)
Proctor, C.; He, Y.
2017-12-01
Deposition of carbon belowground via the root exudation pathway is the net of root-borne efflux and influx processes. For select exudates, root have a remarkable ability to actively recapture lost compounds, suggesting that influx mechanisms regulate exudation. However, roots are not the sole sink for root effluxed carbon. Roots compete with solute sorption and microbial uptake, whom are regulated by a unique set of soil environmental conditions. Peatland soil features stark vertical gradients in their physical, chemical, biological, and hydrological properties, which has downstream implications for the relative competitive ability of each actor in root-soil-microbial interactions. This study developed a single root exudate model using the Barber-Cushman approach to examine the radial accumulation of exudates in simulated peatland soil with vertical gradients. The model simulated efflux, influx, solute diffusion, solute mineralization and solid phase sorption mechanisms as depth dependent on bulk density, porosity, tortuosity, buffer power, temperature, and microbial biomass. Deeper peat soil reduced the porosity that permits solute transport, increased tortuosity which lowered the effective diffusion rate, increased solute-solid sorption, and reduced microbial mineralization of effluxed compounds. Slower mineralization rates were partially juxtaposed by increases in sorption, albeit the net removal of effluxed compounds was lower, leading to a larger amount of exudates to remain in the rhizosphere around deeper roots. Increase in the solid phase, and its subsequent constriction of solute migration, lead to a higher accumulation of effluxed compounds on the rhizoplane, up to 1.23x higher than shallow soil. Subsequently, influx mechanisms captured a larger fraction of effluxed compounds (69.06% at -10cm versus 84.8% at -80 cm), reducing net exudation rates from 0.641 to 0.315 nmol cm-1 hr-1 between -10 and -80cm depths. These results suggest that localized environmental conditions around roots can be a considerable influence on root influx and competition for root exudates. The insights provided by this model help provide a better understanding of exudate regulation in peatlands and the quantity and quality of carbon deposited to the methanogen community.
Snell, Helen S K; Robinson, David; Midwood, Andrew J
2014-11-15
Microbial degradation of soil organic matter (heterotrophic respiration) is a key determinant of net ecosystem exchange of carbon, but it is difficult to measure because the CO2 efflux from the soil surface is derived not only from heterotrophic respiration, but also from plant root and rhizosphere respiration (autotrophic). Partitioning total CO2 efflux can be achieved using the different natural abundance stable isotope ratios (δ(13)C) of root and soil CO2. Successful partitioning requires very accurate measurements of total soil efflux δ(13)CO2 and the δ(13)CO2 of the autotrophic and heterotrophic sources, which typically differ by just 2-8‰. In Scottish moorland and grass mesocosm studies we systematically tested some of the most commonly used techniques in order to identify and minimise methodological errors. Typical partitioning methods are to sample the total soil-surface CO2 efflux using a chamber, then to sample CO2 from incubated soil-free roots and root-free soil. We investigated the effect of collar depth on chamber measurements of surface efflux δ(13)CO2 and the effect of incubation time on estimates of end-member δ(13)CO2. (1) a 5 cm increase in collar depth affects the measurement of surface efflux δ(13)CO2 by -1.5‰ and there are fundamental inconsistencies between modelled and measured biases; (2) the heterotrophic δ(13)CO2 changes by up to -4‰ within minutes of sampling; we recommend using regression to estimate the in situ δ(13)CO2 values; (3) autotrophic δ(13)CO2 measurements are reliable if root CO2 is sampled within an hour of excavation; (4) correction factors should be used to account for instrument drift of up to 3‰ and concentration-dependent non-linearity of CRDS (cavity ringdown spectroscopy) analysis. Methodological biases can lead to large inaccuracies in partitioning estimates. The utility of stable isotope partitioning of soil CO2 efflux will be enhanced by consensus on the optimum measurement protocols and by minimising disturbance, particularly during chamber measurements. Copyright © 2014 John Wiley & Sons, Ltd.
Gao, Jun-Qin; Gao, Ju-Juan; Zhang, Xue-Wen; Xu, Xing-Liang; Deng, Zhao-Heng; Yu, Fei-Hai
2015-01-01
Waterlogging has been suggested to affect carbon (C) turnover in wetlands, but how it affects C allocation and stocks remains unclear in alpine wetlands. Using in situ 13CO2 pulse labelling, we investigated C allocation in both waterlogged and non-waterlogged sites in the Zoigê wetlands on the Tibetan Plateau in August 2011. More than 50% of total 13C fixed by photosynthesis was lost via shoot respiration. Shoots recovered about 19% of total 13C fixed by photosynthesis at both sites. Only about 26% of total fixed 13C was translocated into the belowground pools. Soil organic C pool accounted for 19% and roots recovered about 5–7% of total fixed 13C at both sites. Waterlogging significantly reduced soil respiration and very little 13C was lost via soil respiration in the alpine wetlands compared to that in grasslands. We conclude that waterlogging did not significantly alter C allocations among the C pools except the 13CO2 efflux derived from soil respiration and that shoots made similar contributions to C sequestration as the belowground parts in the Zoigê alpine wetlands. Therefore, changes in waterlogging due to climate change will not affect C assimilate partitioning but soil C efflux. PMID:25797457
Beyene, Getu; Solomon, Felix R; Chauhan, Raj D; Gaitán-Solis, Eliana; Narayanan, Narayanan; Gehan, Jackson; Siritunga, Dimuth; Stevens, Robyn L; Jifon, John; Van Eck, Joyce; Linsler, Edward; Gehan, Malia; Ilyas, Muhammad; Fregene, Martin; Sayre, Richard T; Anderson, Paul; Taylor, Nigel J; Cahoon, Edgar B
2017-11-28
Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A β-carotene. In this study, β-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 μg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%-90% of these carotenoids accumulated as all-trans-β-carotene, the most nutritionally efficacious carotenoid. β-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in β-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between β-carotene and dry matter content, with reductions of 50%-60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between β-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Wang, G M; Coleman, D C; Freckman, D W; Dyer, M I; McNAUGHTON, S J; Agra, M A; Goeschl, J D
1989-08-01
Gas exchange and carbon allocation patterns were studied in two populations of Panicum coloratum, an Africa C-4 grass. The plants were grown in split-root pots, containing partially sterilized soil, with one side either inoculated (I) or not inoculated (NI) with a vesicular arbuscular (VA) mycorrhizal Fungus, Gigaspora margarita. Net carbon exchange rates (CER) and stomatal conductances were measured with conventional gas exchange apparatus, and carbon assimilation, translocation, and allocation were measured using photosynthetically-fixed 11 CO 2 . Mycorrhizal infection on one half of the split-root system caused a 20%, increase in CER. The effect on CER was less in tillers on the opposite side of the plants from the infected half of the roots. The rate at which photosynthates were stored in the leaves was 45% higher. Sink activity (concentration of labelled photosynthates in stem phloem tissue) more than doubled in 1 versus NI plants. CER and stomatal conductances, along with most of the carbon allocation patterns, were nearly identical between the NI (control) high grazing and low grazing ecotypes. However, VA mycorrhizal fungi caused a greater storage of photosynthates in the low grazing ecotype.
Flores-Monterroso, Aranzazu; Canales, Javier; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M
2013-06-01
Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.
Effect of Carbon Dioxide Enrichment on Radish Production Using Nutrient Film Technique (NFT)
NASA Technical Reports Server (NTRS)
Mackowiak, C. L.; Ruffe, L. M.; Yorio, N. C.; Wheeler, R. M.
1994-01-01
Radish plants (Raphanus sativus L. cvs. Cherry Belle, Giant White Globe, and Early Scarlet Globe) were grown in four different CO2 enriched environments, 0.04, 0.10, 0.50, and 1.00 kPa (400, 1000, 5000, 10000 ppm). Cultivar responses to CO2 treatments varied, where cv. Cherry Belle showed no significant response to CO2 enrichment, cv. Giant White Globe was moderately affected and Early Scarlet Globe was strongly affected. Enrichment at 0.10 kPa led to greater root dry matter (DM) than 1.00 kPa for cv. Giant White Glove, whereas 0.10 kPa produced greater storage root, shoot, and root DM than 1.00 kPa for cv. Early Scarlet Globe. The data suggest that 1.00 kPa CO2 may be detrimental to the growth of certain radish cultivars. Root:shoot ratios tended to increase with increasing CO2 concentration. Water use efficiency (g biomass/kg H2O) increased with increasing CO2 enrichment, up to 0.5 kPa but then declined at the 1.00 kPa treatment. The total nitric acid used to maintain nutrient solution pH was lowest at the 1.00 kPa treatment as well, suggesting a decreased demand of nutrients by the plants at the highest CO2 level.
Long-Term Simulated Atmospheric Nitrogen Deposition Alters ...
Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we previously observed that 10 years of chronic simulated nitrogen deposition (30 kg N ha-1 yr-1) increased soil organic carbon. Over three years at these sites, we investigated the effects of nitrogen additions on decomposition of two substrates with documented differences in biochemistry: leaf litter (more labile) and fine roots (more recalcitrant). Further, we combined decomposition rates with annual leaf and fine root litter production to estimate how nitrogen additions altered the accumulation of soil organic matter. Nitrogen additions marginally stimulated early-stage decomposition of leaf litter, a substrate with little acid-insoluble material (e.g., lignin). In contrast, nitrogen additions inhibited the late stage decomposition of fine roots, a substrate with high amount of acid insoluble material and a change consistent with observed decreases in lignin-degrading enzyme activities with nitrogen additions at these sites. At the ecosystem scale, the slower fine root decomposition led to additional root mass retention (g m-2), which explained 5, 48, and 52 % of previously-documented soil carbon accumulation due to nitrogen additions. Our results demonstrated that nitrogen deposition ha
Romero-Munar, Antònia; Del-Saz, Néstor Fernández; Ribas-Carbó, Miquel; Flexas, Jaume; Baraza, Elena; Florez-Sarasa, Igor; Fernie, Alisdair Robert; Gulías, Javier
2017-07-01
The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO 2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots. © 2017 John Wiley & Sons Ltd.
Toxicity of Inorganic Mercury to Native Australian Grass Grown in Three Different Soils.
Mahbub, Khandaker Rayhan; Kader, Mohammed; Krishnan, Kannan; Labbate, Maurizio; Naidu, Ravi; Megharaj, Mallavarapu
2017-06-01
In this study, three native Australian grasses namely Iseilema membranaceum (Barcoo), Dichanthium sericeum (Queensland Blue) and Sporobolus africanus (Tussock) were grown in three different soils spiked with different concentrations of inorganic mercury and the root elongation was monitored up to 28 days following the germination. Results showed that mercury at certain concentrations significantly inhibited the root growth of all three tested native grasses grown in three soils, however, the toxicity was less in the soil with high organic carbon content and acidic pH. The calculated EC 50 values ranged from 10 to 224 mg/kg total Hg in soil. However, the EC 10 values indicated that existing guideline values for mercury may be of protective to the native Australian vegetation. Considering their tolerance to soil mercury, these grass species have the potential for their use in rehabilitation of mercury contaminated sites.
When growth and photosynthesis don't match: implications for carbon balance models
NASA Astrophysics Data System (ADS)
Medlyn, B.; Mahmud, K.; Duursma, R.; Pfautsch, S.; Campany, C.
2017-12-01
Most models of terrestrial plant growth are based on the principle of carbon balance: that growth can be predicted from net uptake of carbon via photosynthesis. A key criticism leveled at these models by plant physiologists is that there are many circumstances in which plant growth appears to be independent of photosynthesis: for example, during the onset of drought, or with rising atmospheric CO2 concentration. A crucial problem for terrestrial carbon cycle models is to develop better representations of plant carbon balance when there is a mismatch between growth and photosynthesis. Here we present two studies providing insight into this mismatch. In the first, effects of root restriction on plant growth were examined by comparing Eucalyptus tereticornis seedlings growing in containers of varying sizes with freely-rooted seedlings. Root restriction caused a reduction in photosynthesis, but this reduction was insufficient to explain the even larger reduction observed in growth. We applied data assimilation to a simple carbon balance model to quantify the response of carbon balance as a whole in this experiment. We inferred that, in addition to photosynthesis, there are significant effects of root restriction on growth respiration, carbon allocation, and carbohydrate utilization. The second study was carried out at the EucFACE Free-Air CO2 Enrichment experiment. At this experiment, photosynthesis of the overstorey trees is increased with enriched CO2, but there is no significant effect on above-ground productivity. These mature trees have reached their maximum height but are at significant risk of canopy loss through disturbance, and we hypothesized that additional carbon taken up through photosynthesis is preferentially allocated to storage rather than growth. We tested this hypothesis by measuring stemwood non-structural carbohydrates (NSC) during a psyllid outbreak that completely defoliated the canopy in 2015. There was a significant drawdown of NSC during canopy re-flushing but no effect of CO2 enrichment on NSC storage nor the rate of canopy renewal. Our studies highlight an important uncertainty in current carbon balance models and demonstrate quantitative approaches than can be used to address this uncertainty.
NASA Astrophysics Data System (ADS)
Spielvogel, Sandra; Steingräber, Laura; Schleuß, Per; Kuzyakov, Yakov; Guggenberger, Georg
2015-04-01
Kobresia pastures of the Tibetan Plateau represent the world's largest alpine ecosystem. Moderate husbandry on Kobresia pastures is beneficial for the storage of soil organic carbon (OC), nitrogen (N) and other nutrients and prevents erosion by establishment of sedge-turf root mats with high OC allocation rates below ground. However, undisturbed root mats are affected by freezing and thawing processes, which cause initial ice cracks. As a consequence decomposition of root mat layers will be accelerated and current sedentarization programs with concomitant increased grazing intensity may additionally enhance root mat degradation. Finally, cracks are enlarged by water and wind erosion as well as pika activities until bare soil surface areas without root mat horizons occur. The aim of this study was to understand the impact of the root mat layer on soil organic carbon stabilization and microbial functioning depending on soil depths and to predict future changes (OC, N and nutrient losses, soil microbial functioning in SOM transformation) by overgrazing and climate change. We investigated the mineral soil below Kobresia root mats along a false time degradation sequence ranging from stage 1 (intact root mat) to stage 4 (mats with large cracks and bare soil patches). Vertical gradients of δ13C values, neutral sugar, cutin and suberin contents as well as microbial biomass estimated by total phospholipid fatty acid (PLFA), microbial community composition (PLFA profiles) and activities of six extracellular enzymes involved in the C, N, and P cycle were assessed. Soil OC and N contents as well as C/N ratios indicate an increasing illuviation of topsoil material into the subsoil with advancing root mat degradation. This was confirmed by more negative δ13C values as well as significantly (p ≤ 0.05) increasing contributions of cutin derived hydroxy fatty acids to OC in the subsoils from degradation stages 1 to 4. PLFA profiles were surprisingly similar in the subsoils of degradation stages 1, 2 and 3 although OC contents and composition in the subsoil changed progressively from stage 1 to 4. Only the PLFA profiles of stage 4 differed from those of the other subsoils, suggesting that microbial communities were mainly controlled by other factors than C and N contents and SOM composition. These findings were also confirmed by the activities of β-glucosidase, xylanase, amino-peptidases and proteases. Those enzyme activities were highest in the subsoil of degradation stage 4, whereas degradation stages 2 and 3 showed low enzyme activities in the subsoil if related to soil OC amount and composition. We conclude that pasture degradation decreases not only mechanical protection of soil surface by Kobresia root mats, but also changes their biochemical and microbial functions.
Jean-Christophe Domec; Jérôme Ogée; Asko Noormets; Julien Jouangy; Michael Gavazzi; Emrys Treasure; Ge Sun; Steve G. McNulty; John S. King
2012-01-01
Deep root water uptake and hydraulic redistribution (HR) have been shown to play a major role in forest ecosystems during drought, but little is known about the impact of climate change, fertilization and soil characteristics on HR and its consequences on water and carbon fluxes. Using data from three mid-rotation loblolly pine plantations, and simulations with the...
Interior Landscape Plants for Indoor Air Pollution Abatement
NASA Technical Reports Server (NTRS)
Wolverton, B. C.; Johnson, Anne; Bounds, Keith
1989-01-01
In this study, the leaves, roots, soil, and associated microorganisms of plants have been evaluated as a possible means of reducing indoor air pollutants. Additionally, a novel approach of using plant systems for removing high concentrations of indoor air pollutants such as cigarette smoke, organic solvents, and possibly radon has been designed from this work. This air filter design combines plants with an activated carbon filter. The rationale for this design, which evolved from wastewater treatment studies, is based on moving large volumes of contaminated air through an activated carbon bed where smoke, organic chemicals, pathogenic microorganisms (if present), and possibly radon are absorbed by the carbon filter. Plant roots and their associated microorganisms then destroy the pathogenic viruses, bacteria, and the organic chemicals, eventually converting all of these air pollutants into new plant tissue. It is believed that the decayed radon products would be taken up the plant roots and retained in the plant tissue.
Climate Change Mitigation through Enhanced Weathering in Bioenergy Crops
NASA Astrophysics Data System (ADS)
Kantola, I. B.; Masters, M. D.; Wolz, K. J.; DeLucia, E. H.
2016-12-01
Bioenergy crops are a renewable alternative to fossil fuels that reduce the net flux of CO2 to the atmosphere through carbon sequestration in plant tissues and soil. A portion of the remaining atmospheric CO2 is naturally mitigated by the chemical weathering of silica minerals, which sequester carbon as carbonates. The process of mineral weathering can be enhanced by crushing the minerals to increase surface area and applying them to agricultural soils, where warm temperatures, moisture, and plant roots and root exudates accelerate the weathering process. The carbonate byproducts of enhanced weathering are expected accumulate in soil water and reduce soil acidity, reduce nitrogen loss as N2O, and increase availability of certain soil nutrients. To determine the potential of enhanced weathering to alter the greenhouse gas balance in both annual (high disturbance, high fertilizer) and perennial (low disturbance, low fertilizer) bioenergy crops, finely ground basalt was applied to fields of maize, soybeans, and miscanthus at the University of Illinois Energy Farm. All plots showed an immediate soil temperature response at 10 cm depth, with increases of 1- 4 °C at midday. Early season CO2 and N2O fluxes mirrored soil temperature prior to canopy closure in all crops, while total N2O fluxes from miscanthus were lower than corn and soybeans in both basalt treatment and control plots. Mid-season N2O production was reduced in basalt-treated corn compared to controls. Given the increasing footprint of bioenergy crops, the ability to reduce GHG emissions in basalt-treated fields has the potential to mitigate atmospheric warming while benefitting soil fertility with the byproducts of weathering.
Topographic and soil influences on root productivity of three bioenergy cropping systems
Todd A. Ontl; Kirsten S. Hofmockel; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka
2013-01-01
Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this need by quantifying annual root production of three bioenergy systems (continuous corn, triticale/sorghum, switchgrass) in response to variation in soil properties across a toposequence within a Midwestern...
CONTRIBUTIONS OF CURRENT YEAR PHOTOSYNTHATE TO FINE ROOTS ESTIMATED USING A 13C-DEPLETED CO2 SOURCE
The quantification of root turnover is necessary for a complete understanding of plant carbon (C) budgets, especially in terms of impacts of global climate change. To improve estimates of root turnover, we present a method to distinguish current- from prior-year allocation of ca...
Luo, Da; Liu, Shun; Shi, Zuo Min; Feng, Qiu Hong; Liu, Qian Li; Zhang, Li; Huang, Quan; He, Jian She
2017-02-01
The effects of four Picea asperata plantations with different ages (50-, 38-, 27- and 20-year-old), in subalpine of western Sichuan, on the characteristics of soil microbial diversity and microbial community structure were studied by the method of phospholipid fatty acid (PLFA) profiles. The results showed that, with the increase of age, the contents of soil organic carbon and total nitrogen gradually improved, while Shannon's diversity index and Pielou's evenness index of soil microorganisms increased at first and then decreased. The amounts of microbial total PLFAs, bacterial PLFAs, fungal PLFAs, actinobacterial PLFAs, and arbuscular mycorrhizal fungal (AMF) PLFAs in soils consistently increased with increasing age. The principal component analysis (PCA) indicated that the soil microbial communities in different plantations were structurally distinct from each other. The first principal component (PC1) and the second principal component (PC2) together accounted for 66.8% of total variation of the soil microbial community structure. The redundancy analysis (RDA) of soil microbial community structure and environmental factors showed that soil organic carbon, total nitrogen, total potassium, and fine root mass were the key determinants influencing the microbial community structure. Our study suggested that, with the extension of artificialafforestation time, the soil fertility and microbial biomass were enhanced, and the restoration processes of forest ecosystem were stable.
Can plant phloem properties affect the link between ecosystem assimilation and respiration?
NASA Astrophysics Data System (ADS)
Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E.
2012-04-01
Phloem transport of carbohydrates in plants under field conditions is currently not well understood. This is largely the result of the lack of techniques suitable for measuring phloem physiological properties continuously under field conditions. This lack of knowledge is currently hampering our efforts to link ecosystem-level processes of carbon fixation, allocation and use, especially belowground. On theoretical grounds, the properties of the transport pathway from canopy to roots must be important in affecting the link between carbon assimilation and respiration, but it is unclear whether their effect is partially or entirely masked by processes occurring in other parts of the ecosystem. One can also predict the characteristic time scales over which these effects should occur and, as consequence, predict whether the transfer of turgor and osmotic signals from the site of carbon assimilation to the sites of carbon use are likely to control respiration. We will present two sources of evidence suggesting that the properties of the phloem transport system may affect processes that are dependent on the supply of carbon substrate, such as root or soil respiration. Firstly, we will summarize the results of a literature survey on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy to the soil surface was determined. Estimates of the transfer speed could be grouped according to whether the study employed isotopic or canopy soil flux-based techniques. These two groups provided very different estimates of transfer times likely because transport of sucrose molecules, and pressure-concentration waves, in phloem differed. Secondly, we will argue that simultaneous measurements of bark and xylem diameters provide a novel tool to determine the continuous variations of phloem turgor in vivo in the field. We will present a model that interprets these changes in xylem and live bark diameters and present data testing the model predictions for mature trees in the field. At the diurnal scale, the calculated phloem turgor signal related to patterns of photosynthetic activity and inferred phloem loading. At the seasonal scale, phloem turgor showed rapid changes during two droughts and after two rainfall events consistent with physiological predictions of phloem transport. Daily cumulative totals of calculated phloem osmotic concentrations were strongly related to daily cumulative totals of canopy photosynthesis. We propose that this method has potential for continuous field monitoring of tree phloem function.
Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest
NASA Astrophysics Data System (ADS)
Nyirambangutse, Brigitte; Zibera, Etienne; Uwizeye, Félicien K.; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran
2017-03-01
As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tropical forest ecosystems (ca. 8 %, elevation > 1000 m a.s.l.), there are still significant knowledge gaps regarding the carbon dynamics and stocks of these forests, and how these differ between early (ES) and late successional (LS) stages. This study examines the carbon (C) stock, relative growth rate (RGR) and net primary production (NPP) of ES and LS forest stands in an Afromontane tropical rainforest using data from inventories of quantitatively important ecosystem compartments in fifteen 0.5 ha plots in Nyungwe National Park in Rwanda. The total C stock was 35 % larger in LS compared to ES plots due to significantly larger above-ground biomass (AGB; 185 and 76 Mg C ha-1 in LS and ES plots), while the soil and root C stock (down to 45 cm depth in the mineral soil) did not significantly differ between the two successional stages (178 and 204 Mg C ha-1 in LS and ES plots). The main reasons for the difference in AGB were that ES trees had significantly lower stature and wood density compared to LS trees. However, ES and LS stands had similar total NPP (canopy, wood and roots of all plots ˜ 9.4 Mg C ha-1) due to counterbalancing effects of differences in AGB (higher in LS stands) and RGR (higher in ES stands). The AGB in the LS plots was considerably higher than the average value reported for old-growth tropical montane forest of south-east Asia and Central and South America at similar elevations and temperatures, and of the same magnitude as in tropical lowland forest of these regions. The results of this study highlight the importance of accounting for disturbance regimes and differences in wood density and allometry of tree species dominating at different successional stages in an attempt to quantify the C stock and sink strength of tropical montane forests and how they may differ among continents.
Variability of Root Traits in Spring Wheat Germplasm
Narayanan, Sruthi; Mohan, Amita; Gill, Kulvinder S.; Prasad, P. V. Vara
2014-01-01
Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat. PMID:24945438
Trevathan-Tackett, Stacey M.; Macreadie, Peter I.; Sanderman, Jonathan; Baldock, Jeff; Howes, Johanna M.; Ralph, Peter J.
2017-01-01
Seagrass ecosystems have recently been identified for their role in climate change mitigation due to their globally-significant carbon sinks; yet, the capacity of seagrasses to sequester carbon has been shown to vary greatly among seagrass ecosystems. The recalcitrant nature of seagrass tissues, or the resistance to degradation back into carbon dioxide, is one aspect thought to influence sediment carbon stocks. In this study, a global survey investigated how the macromolecular chemistry of seagrass leaves, sheaths/stems, rhizomes and roots varied across 23 species from 16 countries. The goal was to understand how this seagrass chemistry might influence the capacity of seagrasses to contribute to sediment carbon stocks. Three non-destructive analytical chemical analyses were used to investigate seagrass chemistry: thermogravimetric analysis (TGA) and solid state 13C-NMR and infrared spectroscopy. A strong latitudinal influence on carbon quality was found, whereby temperate seagrasses contained 5% relatively more labile carbon, and tropical seagrasses contained 3% relatively more refractory carbon. Sheath/stem tissues significantly varied across taxa, with larger morphologies typically containing more refractory carbon than smaller morphologies. Rhizomes were characterized by a higher proportion of labile carbon (16% of total organic matter compared to 8–10% in other tissues); however, high rhizome biomass production and slower remineralization in anoxic sediments will likely enhance these below-ground tissues' contributions to long-term carbon stocks. Our study provides a standardized and global dataset on seagrass carbon quality across tissue types, taxa and geography that can be incorporated in carbon sequestration and storage models as well as ecosystem valuation and management strategies. PMID:28659936
NASA Astrophysics Data System (ADS)
Xia, M.; Pregitzer, K. S.; Talhelm, A. F.
2012-12-01
Plant litter is a major source of soil organic carbon (C). This litter is not homogenous, but instead primarily composed of fine root and leaf litter that adapted to different physiological functions. These unique functions suggest that root and leaf litter likely have different biochemical traits, and thus different decomposition patterns. However, few studies have compared their substrate quality and contributions to soil C. Also, much less attention has been given to fine roots although they can represent a substantial litter production. Here we hypothesize that 1) leaf litter and fine roots have different substrate quality as they are highly different in biochemical composition; 2) the biochemical composition of leaf litter and fine roots responds differently to the simulated nitrogen (N) deposition. To test these hypotheses, we collected leaf litter and fine roots of Acer saccharum (the dominant species in the northern temperate ecosystems we studied) in both ambient and N addition treatment plots at four sites of Michigan N deposition gradient study. We quantified ten biochemical components thought to be important on decomposition. Strikingly, we found a consistently three-fold higher lignin concentration in fine roots than that in leaf litter (P< 0.01). On average, lignin concentration of fine roots was 45.4±0.3% while that of leaf litter was 13.5±0.2%. Lignin has been considered highly recalcitrant and hypothesized as the major precursor of humus substance. Condensed tannin (CT) concentration in fine roots (13.13±0.51%) was also substantially higher than that in leaf litter (P< 0.01, 4.63±0.42 %). Tissue CT can inhibit litter decay by both precipitating proteins and by having antimicrobial properties. In contrast, fine roots exhibited lower concentrations of non-structural carbohydrates (NSC), soluble phenolics, and holocellulose (hemicelluloses & cellulose) than leaf litter (P< 0.01). These components are considered more easily accessible, and may stimulate the decay of lignin by providing required energy. Therefore, fine roots of Acer saccharum have a relatively recalcitrant nature based on their distinct biochemical composition, suggesting fine roots may be the major driver of soil carbon formation in the ecosystems we studied. Litter type and N addition had significant interactions on lignin, holocellulose, and NSC (P< 0.05), indicating these traits of different litter types respond differently to N addition. In leaf litter, the concentrations of lignin, NSC, and bound CT were affected by N addition (P< 0.05). By contrast, N addition only reduced the soluble protein concentration in fine roots (P< 0.05). Hence, substrate quality of leaf litter and fine roots responds differently to the simulated N deposition, and may eventually lead to different responses in decomposition pattern. This is one of few studies comparing the detailed biochemical profile of leaf litter and fine roots in a dominant tree species. Different biochemical traits of fine roots and leaf litter may reflect the different specializations for their physiological functions. This work highlights the importance of fine root in the soil carbon formation due to its recalcitrant nature, and emphasizes the necessity of differentiating the responses of leaf litter and fine root decompositions to environmental changes when modeling biogeochemical cycles.
Lv, Fenglian; Xue, Sha; Wang, Guoliang; Zhang, Chao
2017-01-01
Atmospheric nitrogen (N) deposition profoundly alters the soil microbial communities and will thus affect nutrient cycles. The effects of N availability on microbial community, however, are not clear. We used PLFA analysis to evaluate the effects of a gradient of N addition (0, 2.8, 5.6, 11.2, and 22.4 g N m-2 y-1) for three years on the rhizospheric microbial community of Pinus tabuliformis seedlings. The main factors influencing the community were quantified using structural equation modelling and redundancy analysis. At the microbial-community level, N addition increased the total phospholipid fatty acids content by increasing the dissolved organic carbon (DOC) and root biomass. Increases in soil microbial biomass carbon and N, however, was attributed to the increased DOC, N content and decreased pH. At the microbial-groups level, Fungal, arbuscular mycorrhizal fungal (AMF), gram-positive bacterial (GP) abundances and the GP:GN ratio first increased and then decreased with N addition. Nitrogen addition increased the abundances of bacteria, fungi, and actinomycetes mainly by increasing the DOC content and decreasing root biomass. Additionally, the decrease of pH and ammonium N caused by N addition increased the fungal abundances and reduced actinomycete abundances, respectively. Nitrogen addition shifted the rhizospheric microbial community mainly by altering the DOC content and root biomass. The current rate of N deposition (2.5 g N m-2 y-1) benefits plant growth and increases the abundances of fungi, arbuscular mycorrhizal fungi, GP, actinomycetes and the GP:GN ratio. PMID:28234932
NASA Astrophysics Data System (ADS)
Godbold, Douglas; Smith, Andrew; Lukac, Martin
2013-04-01
Free Air Carbon dioxide Enrichment (FACE) has often been used predict the response of forest ecosystems to a future high CO2 world. Many of these investigations have been restricted to exposure of single species or genotypes to elevated CO2. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 for 4 years. Aboveground woody biomass was increased in polyculture under both ambient and elevated CO2, but the response to elevated CO2 was smaller in polyculture than in the monocultures. In some years, a longer leaf retention was shown under high CO2, and is an indication that environmental factors may moderate tree response to high CO2. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were also measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots, and fine root area index. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our results show that the aboveground and belowground response to elevated CO2 is significantly affected by intra- and inter-specific competition, and that elevated CO2 response may be reduced in forest communities comprised of tree species with contrasting functional traits but also that other environmental factors may induce previously unseen effects.
How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?
Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna
2018-01-01
Black alder (Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella, Lactarius, and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter, Granulicella, and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages of plant development should be taken into account in further studies. PMID:29720967
How Does Salinity Shape Bacterial and Fungal Microbiomes of Alnus glutinosa Roots?
Thiem, Dominika; Gołębiewski, Marcin; Hulisz, Piotr; Piernik, Agnieszka; Hrynkiewicz, Katarzyna
2018-01-01
Black alder ( Alnus glutinosa Gaertn.) belongs to dual mycorrhizal trees, forming ectomycorrhizal (EM) and arbuscular (AM) root structures, as well as represents actinorrhizal plants that associate with nitrogen-fixing actinomycete Frankia sp. We hypothesized that the unique ternary structure of symbionts can influence community structure of other plant-associated microorganisms (bacterial and fungal endophytes), particularly under seasonally changing salinity in A. glutinosa roots. In our study we analyzed black alder root bacterial and fungal microbiome present at two forest test sites (saline and non-saline) in two different seasons (spring and fall). The dominant type of root microsymbionts of alder were ectomycorrhizal fungi, whose distribution depended on site (salinity): Tomentella , Lactarius , and Phialocephala were more abundant at the saline site. Mortierella and Naucoria (representatives of saprotrophs or endophytes) displayed the opposite tendency. Arbuscular mycorrhizal fungi belonged to Glomeromycota (orders Paraglomales and Glomales), however, they represented less than 1% of all identified fungi. Bacterial community structure depended on test site but not on season. Sequences affiliated with Rhodanobacter , Granulicella , and Sphingomonas dominated at the saline site, while Bradyrhizobium and Rhizobium were more abundant at the non-saline site. Moreover, genus Frankia was observed only at the saline site. In conclusion, bacterial and fungal community structure of alder root microsymbionts and endophytes depends on five soil chemical parameters: salinity, phosphorus, pH, saturation percentage (SP) as well as total organic carbon (TOC), and seasonality does not appear to be an important factor shaping microbial communities. Ectomycorrhizal fungi are the most abundant symbionts of mature alders growing in saline soils. However, specific distribution of nitrogen-fixing Frankia (forming root nodules) and association of arbuscular fungi at early stages of plant development should be taken into account in further studies.
Jiao, Yu; Chen, Yinghao; Ma, Chaofeng; Qin, Jingjing; Nguyen, Thi Hong Nhung; Liu, Di; Gan, Honghao; Ding, Shen; Luo, Zhi-Bin
2018-01-01
To investigate the physiological responses of poplars to amino acids as sole nitrogen (N) sources, Populus × canescens (Ait.) Smith plants were supplied with one of three nitrogen fertilizers (NH4NO3, phenylalanine (Phe) or the mixture of NH4NO3 and Phe) in sand culture. A larger root system, and decreased leaf size and CO2 assimilation rate was observed in Phe- versus NH4NO3-treated poplars. Consistently, a greater root biomass and a decreased shoot growth were detected in Phe-supplied poplars. Decreased enzymatic activities of nitrate reductase (NR), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) and elevated activities of nitrite reductase (NiR), phenylalanine ammonia lyase (PAL), glutamine synthetase (GS) and asparagine synthase (AS) were found in Phe-treated roots. Accordingly, reduced concentrations of NH4+, NO3- and total N, and enhanced N-use efficiencies (NUEs) were detected in Phe-supplied poplars. Moreover, the transcript levels of putative Phe transporters ANT1 and ANT3 were upregulated, and the mRNA levels of NR, glutamine synthetase 2 (GS2), NADH-dependent glutamate synthase (NADH-GOGAT), GDH and asparagine synthetase 2 (ASN2) were downexpressed in Phe-treated roots and/or leaves. The 15N-labeled Phe was mainly allocated in the roots and only a small amount of 15N-Phe was translocated to poplar aerial parts. These results indicate that poplar roots can acquire Phe as an N source to support plant growth and that Phe-induced NUEs in the poplars are probably associated with NH4+ re-utilization after Phe deamination and the carbon bonus simultaneously obtained during Phe uptake. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cui, Weiti; Qi, Fang; Zhang, Yihua; Cao, Hong; Zhang, Jing; Wang, Ren; Shen, Wenbiao
2015-03-01
Methane-rich water triggered adventitious rooting by regulating heme oxygenase1/carbon monoxide and calcium pathways in cucumber explants. Heme oxygenase1/carbon monoxide (HO1/CO) and calcium (Ca(2+)) were reported as the downstream signals in auxin-induced cucumber adventitious root (AR) formation. Here, we observed that application of methane-rich water (MRW; 80% saturation) obviously induced AR formation in IAA-depleted cucumber explants. To address the universality, we checked adventitious rooting in soybean and mung bean explants, and found that MRW (50 and 10% saturation, respectively) exhibited the similar inducing results. To further determine if the HO1/CO system participated in MRW-induced adventitious rooting, MRW, HO1 inducer hemin, its activity inhibitor zinc protoporphyrin IX (ZnPP), and its catalytic by-products CO, bilirubin, and Fe(2+) were used to detect their effects on cucumber adventitious rooting in IAA-depleted explants. Subsequent results showed that MRW-induced adventitious rooting was blocked by ZnPP and further reversed by 20% saturation CO aqueous solution. However, the other two by-products of HO1, bilirubin and Fe(2+), failed to induce AR formation. Above responses were consistent with the MRW-induced increases of HO1 transcript and corresponding protein level. Further molecular evidence indicted that expression of marker genes, including auxin signaling-related genes and cell cycle regulatory genes, were modulated by MRW alone but blocked by the cotreatment with ZnPP, the latter of which could be significantly rescued by the addition of CO. By using the Ca(2+)-channel blocker and Ca(2+) chelator, the involvement of Ca(2+) pathway in MRW-induced adventitious rooting was also suggested. Together, our results indicate that MRW might serve as a stimulator of adventitious rooting, which was partially mediated by HO1/CO and Ca(2+) pathways.
A new method to enhance rhizosheath formation
NASA Astrophysics Data System (ADS)
Ahmadi, katayoun; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea
2016-04-01
The rhizosheath is defined as the soil that adheres to the roots by help of root hairs and mucilage. Rhizosheath maintain the contact between roots and soil improving water and nutrient uptake. Here we introduce: (1) a technique to quantify the formation of rhizosheath around the roots, and (2) a method to enhance the formation of rhizosheath around the roots. Additionally, we measured the relation between rhizosheath thickness and the carbon content and enzyme activities in the rhizosphere. We grew lupine plants in aluminum containers (28×30×1 cm) filled with a sandy soil. When plants were two weeks-old and the soil had a water content of 30%, we stopped the irrigation and let the plants to uptake water to a soil water content of 4-5%. Thereafter, half of the plants (4 plants) were irrigated with water and the other half with water with an additive (international patent is pending). We repeated the drying and rewetting cycle three times. At the end of the third drying cycle, when plants were 40 days old and soil had a water content of 4-5%,the containers were opened and roots and their surrounding soils were gently collected. We used imaging to quantify the rhizosheath formation. The method consists of scanning the roots and the surrounding soil using the Winrhizo software. By image analysis we quantified the thickness of roots and their rhizosheath. The plants irrigated with the additive had 63% thicker rhizopsheath than plants irrigated with water. So, the additive enhanced gelation of mucilage exuded by the roots. Carbon content and enzyme activity in the collected rhizosheath showed that the rhizosheath of plants irrigated with the additive had higher carbon content and enzyme activity than the rhizopsheath of plants irrigated with water. The new method to increase rhizosheath has the great advantage that can be easily applied to the irrigation water to improve plant uptake of water and nutrients in semiarid and arid areas.
Mind the Roots: Phenotyping Below-Ground Crop Diversity and Its Influence on Final Yield
NASA Astrophysics Data System (ADS)
Nieters, C.; Guadagno, C. R.; Lemli, S.; Hosseini, A.; Ewers, B. E.
2017-12-01
Changes in global climate patterns and water regimes are having profound impacts on worldwide crop production. An ever-growing population paired with increasing temperatures and unpredictable periods of severe drought call for accurate modeling of future crop yield. Although novel approaches are being developed in high-throughput, above-ground image phenotyping, the below-ground plant system is still poorly phenotyped. Collection of plant root morphology and hydraulics are needed to inform mathematical models to reliably estimate yields of crops grown in sub-optimal conditions. We used Brassica rapa to inform our model as it is a globally cultivated crop with several functionally diverse cultivars. Specifically, we use 7 different accessions from oilseed (R500 and Yellow Sarson), leafy type (Pac choi and Chinese cabbage), a vegetable turnip, and two Wisconsin Fast Plants (Imb211 and Fast Plant self-compatible), which have shorter life cycles and potentially large differences in allocation to roots. Bi-weekly, we harvested above and below-ground biomass to compare the varieties in terms of carbon allocation throughout their life cycle. Using WinRhizo software, we analyzed root system length and surface area to compare and contrast root morphology among cultivars. Our results confirm that root structural characteristics are crucial to explain plant water use and carbon allocation. The root:shoot ratio reveals a significant (p < 0.01) difference among crop accession. To validate the procedure across different varieties and life stages we also compared surface area results from the image-based technology to dry biomass finding a strong linear relationship (R2= 0.85). To assess the influence of a diverse above-ground morphology on the root system we also measured above-ground anatomical and physiological traits such as gas exchange, chlorophyll content, and chlorophyll a fluorescence. A thorough analysis of the root system will clarify carbon dynamics and hydraulics at the whole-plant level, improving final yield predictions.
Root carbon decomposition and microbial biomass response at different soil depths
NASA Astrophysics Data System (ADS)
Rumpel, C.
2012-12-01
The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 < 90 < 60 cm). Its composition was soil depth independent suggesting that microbial communities in all three soil depths had similar degradation abilities. Microbial biomass C and fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.
Interactions between soil and tree roots accelerate long-term soil carbon decomposition.
Dijkstra, Feike A; Cheng, Weixin
2007-11-01
Decomposition of soil organic carbon (SOC) is the main process governing the release of CO(2) into the atmosphere from terrestrial systems. Although the importance of soil-root interactions for SOC decomposition has increasingly been recognized, their long-term effect on SOC decomposition remains poorly understood. Here we provide experimental evidence for a rhizosphere priming effect, in which interactions between soil and tree roots substantially accelerate SOC decomposition. In a 395-day greenhouse study with Ponderosa pine and Fremont cottonwood trees grown in three different soils, SOC decomposition in the planted treatments was significantly greater (up to 225%) than in soil incubations alone. This rhizosphere priming effect persisted throughout the experiment, until well after initial soil disturbance, and increased with a greater amount of root-derived SOC formed during the experiment. Loss of old SOC was greater than the formation of new C, suggesting that increased C inputs from roots could result in net soil C loss.
NASA Technical Reports Server (NTRS)
Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.
1992-01-01
The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.
Allard-Massicotte, Rosalie; Tessier, Laurence; Lécuyer, Frédéric; Lakshmanan, Venkatachalam; Lucier, Jean-François; Garneau, Daniel; Caudwell, Larissa; Vlamakis, Hera; Bais, Harsh P.
2016-01-01
ABSTRACT Colonization of plant roots by Bacillus subtilis is mutually beneficial to plants and bacteria. Plants can secrete up to 30% of their fixed carbon via root exudates, thereby feeding the bacteria, and in return the associated B. subtilis bacteria provide the plant with many growth-promoting traits. Formation of a biofilm on the root by matrix-producing B. subtilis is a well-established requirement for long-term colonization. However, we observed that cells start forming a biofilm only several hours after motile cells first settle on the plant. We also found that intact chemotaxis machinery is required for early root colonization by B. subtilis and for plant protection. Arabidopsis thaliana root exudates attract B. subtilis in vitro, an activity mediated by the two characterized chemoreceptors, McpB and McpC, as well as by the orphan receptor TlpC. Nonetheless, bacteria lacking these chemoreceptors are still able to colonize the root, suggesting that other chemoreceptors might also play a role in this process. These observations suggest that A. thaliana actively recruits B. subtilis through root-secreted molecules, and our results stress the important roles of B. subtilis chemoreceptors for efficient colonization of plants in natural environments. These results demonstrate a remarkable strategy adapted by beneficial rhizobacteria to utilize carbon-rich root exudates, which may facilitate rhizobacterial colonization and a mutualistic association with the host. PMID:27899502
Accounting for variation in root wood density and percent carbon in belowground carbon estimates
Brandon H. Namm; John-Pascal Berrill
2012-01-01
Little is known about belowground biomass and carbon in tanoak. Although tanoaks rarely provide merchantable wood, an assessment of belowground carbon loss due to tanoak removal and Sudden Oak Death will inform conservation and management decisions in redwood-tanoak ecosystems.The carbon content of woody biomass is a function of...
NASA Astrophysics Data System (ADS)
Gray, Christopher M.; Monson, Russell K.; Fierer, Noah
2014-04-01
Nonmethane biogenic volatile organic compounds (BVOCs) play key roles in the atmosphere, where they can influence a wide range of chemical processes, and in soils, where they can alter the rates of biogeochemical cycles and impact the growth of plants and soil organisms. However, the diversity and quantities of BVOCs released from or taken up by soils remain poorly characterized as do the biotic and abiotic controls on these fluxes. Here we used proton transfer reaction mass spectrometry to quantify BVOC flux rates from soils with and without active root systems in a subalpine coniferous forest. The total measured BVOC flux averaged 102 nmol m-2 h-1 (an estimated 2.0 µg-C m-2 h-1). The individual BVOCs with the highest net emissions from soil included monoterpenes and methanol (averaging 646 and 641 ng-C m-2 h-1, respectively) while soil represented a net sink of isoprene (-98 ng-C m-2 h-1) and formaldehyde (-37 ng-C m-2 h-1). Tree roots, directly or indirectly, contributed an average of 53% of the total carbon emitted from the soil as BVOCs, with methanol and acetaldehyde among those BVOCs most strongly associated with active root presence. The fluxes of most of the dominant BVOCs emitted from soil, including methanol, increased linearly with increasing temperature. Together the fluxes of certain BVOCs into or out of the forest floor (particularly methanol, isoprene, and monoterpenes) are likely relevant to ecosystem-level processes and belowground ecology, but these fluxes are highly variable and are strongly controlled by both root presence and soil abiotic conditions.
Uga, Yusaku; Assaranurak, Ithipong; Kitomi, Yuka; Larson, Brandon G; Craft, Eric J; Shaff, Jon E; McCouch, Susan R; Kochian, Leon V
2018-04-20
Genetic improvement of root system architecture is a promising approach for improved uptake of water and mineral nutrients distributed unevenly in the soil. To identify genomic regions associated with the length of different root types in rice, we quantified root system architecture in a set of 26 chromosome segment substitution lines derived from a cross between lowland indica rice, IR64, and upland tropical japonica rice, Kinandang Patong, (IK-CSSLs), using 2D & 3D root phenotyping platforms. Lengths of seminal and crown roots in the IK-CSSLs grown under hydroponic conditions were measured by 2D image analysis (RootReader2D). Twelve CSSLs showed significantly longer seminal root length than the recurrent parent IR64. Of these, 8 CSSLs also exhibited longer total length of the three longest crown roots compared to IR64. Three-dimensional image analysis (RootReader3D) for these CSSLs grown in gellan gum revealed that only one CSSL, SL1003, showed significantly longer total root length than IR64. To characterize the root morphology of SL1003 under soil conditions, SL1003 was grown in Turface, a soil-like growth media, and roots were quantified using RootReader3D. SL1003 had larger total root length and increased total crown root length than did IR64, although its seminal root length was similar to that of IR64. The larger TRL in SL1003 may be due to increased crown root length. SL1003 carries an introgression from Kinandang Patong on the long arm of chromosome 1 in the genetic background of IR64. We conclude that this region harbors a QTL controlling crown root elongation.
Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David
2016-02-01
Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both interactive and divergent impacts on various aspects of ecosystem functioning. © 2015 John Wiley & Sons Ltd.
Metalaxyl Effects on Antioxidant Defenses in Leaves and Roots of Solanum nigrum L.
de Sousa, Alexandra; AbdElgawad, Hamada; Asard, Han; Pinto, Ana; Soares, Cristiano; Branco-Neves, Simão; Braga, Teresa; Azenha, Manuel; Selim, Samy; Al Jaouni, Soad; Fidalgo, Fernanda; Teixeira, Jorge
2017-01-01
Overuse of pesticides has resulted in environmental problems, threating public health through accumulation in food chains. Phytoremediation is a powerful technique to clean up contaminated environments. However, it is necessary to unravel the metabolic mechanisms underlying phytoremediation in order to increase the efficiency of this process. Therefore, growth, physiological and biochemical responses in leaves and roots of Solanum nigrum L. exposed to the commonly used fungicide metalaxyl were investigated. This species shows characteristics that make it valuable as a potential tool for the remediation of organic pollutants. We found that once inside the plant, metalaxyl altered carbon metabolism, which resulted in a reduction of growth and lower biomass accumulation due to impairment of carbohydrate production (total soluble sugar, starch, rubisco) and increased photorespiration (glycolate oxidase, Gly/Ser ratio). A significant increase of antioxidant defenses (polyphenols, flavonoids, tocopherols, ascorbate, glutathione, superoxide dismutase, catalase, peroxidases, monodehydroascorbate- and dehydroascorbate reductase, gluthatione reductase) kept reactive oxygen species (ROS) levels under control (superoxide anion) leaving cell membranes undamaged. The results suggest that enhancing carbon assimilation and antioxidant capacity may be target parameters to improve this species’ phytoremediation capacities. Highlights • Metalaxyl inhibits growth by reducing photosynthesis and inducing photorespiration • Elevated antioxidant defenses protect metalaxyl-treated plants from oxidative damage • Ascorbate and glutathione are key antioxidants in metalaxyl tolerance. PMID:29250085
Toward a Low-Cost System for High-Throughput Image-Based Phenotyping of Root System Architecture
NASA Astrophysics Data System (ADS)
Davis, T. W.; Schneider, D. J.; Cheng, H.; Shaw, N.; Kochian, L. V.; Shaff, J. E.
2015-12-01
Root system architecture is being studied more closely for improved nutrient acquisition, stress tolerance and carbon sequestration by relating the genetic material that corresponds to preferential physical features. This information can help direct plant breeders in addressing the growing concerns regarding the global demand on crops and fossil fuels. To help support this incentive comes a need to make high-throughput image-based phenotyping of plant roots, at the individual plant scale, simpler and more affordable. Our goal is to create an affordable and portable product for simple image collection, processing and management that will extend root phenotyping to institutions with limited funding (e.g., in developing countries). Thus, a new integrated system has been developed using the Raspberry Pi single-board computer. Similar to other 3D-based imaging platforms, the system utilizes a stationary camera to photograph a rotating crop root system (e.g., rice, maize or sorghum) that is suspended either in a gel or on a mesh (for hydroponics). In contrast, the new design takes advantage of powerful open-source hardware and software to reduce the system costs, simplify the imaging process, and manage the large datasets produced by the high-resolution photographs. A newly designed graphical user interface (GUI) unifies the system controls (e.g., adjusting camera and motor settings and orchestrating the motor motion with image capture), making it easier to accommodate a variety of experiments. During each imaging session, integral metadata necessary for reproducing experiment results are collected (e.g., plant type and age, growing conditions and treatments, camera settings) using hierarchical data format files. These metadata are searchable within the GUI and can be selected and extracted for further analysis. The GUI also supports an image previewer that performs limited image processing (e.g., thresholding and cropping). Root skeletonization, 3D reconstruction and trait calculation (e.g., rooting depth, rooting angle, total volume of roots) is being developed in conjunction with this project.
Liu, Xin; Zhao, Wenrui; Meng, Miaojing; Fu, Zhiyuan; Xu, Linhao; Zha, Yan; Yue, Jianmin; Zhang, Shuifeng; Zhang, Jinchi
2018-03-15
The influence of acid rain on forest trees includes direct effects on foliage as well as indirect soil-mediated effects that cause a reduction in fine-root growth. In addition, the concentration of NO 3 - in acid rain increases with the rapidly growing of nitrogen deposition. In this study, we investigated the impact of simulated acid rain with different SO 4 2- /NO 3 - (S/N) ratios, which were 5:1 (S), 1:1 (SN) and 1:5 (N), on fine-root growth from March 2015 to February 2016. Results showed that fine roots were more sensitive to the effects of acid rain than soils in the short-term. Both soil pH and fine root biomass (FRB) significantly decreased as acid rain pH decreased, and also decreased with the percentage of NO 3 - increased in acid rain. Acid rain pH significantly influenced soil total carbon and available potassium in summer. Higher acidity level (pH=2.5), especially of the N treatments, had the strongest inhibitory impact on soil microbial activity after summer. The structural equation modelling results showed that acid rain S/N ratio and pH had stronger direct effects on FRB than indirect effects via changed soil and fine root properties. Fine-root element contents and antioxidant enzymes activities were significantly affected by acid rain S/N ratio and pH during most seasons. Fine-root Al ion content, Ca/Al, Mg/Al ratios and catalase activity were used as better indicators than soil parameters for evaluating the effects of different acid rain S/N ratios and pH on forests. Our results suggest that the ratio of SO 4 2- to NO 3 - in acid rain is an important factor which could affect fine-root growth in subtropical forests of China. Copyright © 2017. Published by Elsevier B.V.
Aidoo, Moses Kwame; Bdolach, Eyal; Fait, Aaron; Lazarovitch, Naftali; Rachmilevitch, Shimon
2016-09-01
Roots play important roles in regulating whole-plant carbon and water relations in response to extreme soil temperature. Three foxtail millet (Setaria italica L.) lines (448-Ames 21521, 463-P1391643 and 523-P1219619) were subjected to two different soil temperatures (28 and 38 °C). The gas exchange, chlorophyll fluorescence, root morphology and central metabolism of leaves and roots were studied at the grain-filling stage. High soil temperature (38 °C) significantly influenced the shoot transpiration, stomatal conductance, photosynthesis, root growth and metabolism of all lines. The root length and area were significantly reduced in lines 448 and 463 in response to the stress, while only a small non-specific reduction was observed in line 523 in response to the treatment. The shift of root metabolites in response to high soil temperature was also genotype specific. In response to high soil temperature, glutamate, proline and pyroglutamate were reduced in line 448, and alanine, aspartate, glycine, pyroglutamate, serine, threonine and valine were accumulated in line 463. In the roots of line 523, serine, threonine, valine, isomaltose, maltose, raffinose, malate and itaconate were accumulated. Root tolerance to high soil temperature was evident in line 523, in its roots growth potential, lower photosynthesis and stomatal conductance rates, and effective utilization and assimilation of membrane carbon and nitrogen, coupled with the accumulation of protective metabolites. Copyright © 2016. Published by Elsevier Masson SAS.
Purnama, Monica; Yaghmaee, Parastoo; Durance, Tim D; Kitts, David D
2010-09-01
Air drying (AD), freeze-drying (FD), and vacuum-microwave drying (VMD) were applied to fresh North American ginseng roots to evaluate the effect of different drying techniques on pore characteristics and the subsequent recovery of ginsenoside content. FD ginseng root produced the lowest reductions in both total moisture content and water activity (P < 0.05), with no differences noted between Ontario or British Columbia ginseng. Ginseng roots from Ontario and British Columbia sources were therefore pooled to conduct the root porosity and ginsenoside measurements. Among samples, FD ginseng obtained the highest total porosity followed by VMD and AD, respectively (P < 0.05). All dehydrated samples had a porous structure with sizes that ranged from 0.002 μm to 172 μm, dominated by macropores (>1.5 μm). Pore characteristics of dried ginseng root were shown to affect recovery of ginsenosides, with the general trend being an increase in total porosity resulting in an increase in total ginsenoside recovered. High performance liquid chromatography results obtained on specific ginsenosides showed that AD of ginseng root resulted in the lowest recovery of total ginsenosides, most notably, Rg1 and Rb1, followed by VMD and FD, respectively. There was no specific difference in total ginsenoside recovery from roots dried at increasing power of VMD.
Fine roots (roots 2 mm in diameter) are one of the principal absorptive surfaces for water and nutrients in terrestrial plants. As such they are vital for plant growth and survival, while their turnover serves as a primary mechanism for carbon addition to soil. Little is known...
Kurt H. Johnsen; Chris A. Maier; Lance W. Kress
2005-01-01
In order to help assess spatial competition for below-ground resources, we quantified the effects of fertilization on root biomass quantity and lateral root distribution of midrotation Pinus taeda trees. Open-top chambers exposed trees to ambient or ambient plus 200 µmol mol-1 atmospheric CO2...
Colleen M. Iversen; Joanne Childs; Richard J. Norby; Todd A. Ontl; Randall K. Kolka; Deanne J. Brice; Karis J. McFarlane; Paul J. Hanson
2017-01-01
Background and aims. Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. We aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat...
NASA Astrophysics Data System (ADS)
Bouda, M.
2017-12-01
Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.
NASA Astrophysics Data System (ADS)
Phillips, R. P.; Fahey, T. J.
2003-12-01
Rhizosphere carbon flux (RCF) has rarely been measured for intact root-soil systems. We measured RCF for eight year-old saplings of sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) collected from Hubbard Brook Experimental Forest and transplanted into 35 cm diameter pots with native soil horizons intact. We hypothesized birch roots which support ectomycorrhizal fungi would release more C to the rhizosphere than sugar maple roots which support vesicular-arbuscular mycorrhizal fungi. Saplings (n=5) were pulse-labeled with 13CO2 at ambient CO2 concentrations for 4-6 hours, and the label was chased through rhizosphere and bulk soil pools in organic and mineral horizons for 7 days. We observed immediate appearance of the label in rhizosphere soil, and there was a striking difference in the temporal pattern of 13C concentration between species. In maple, peak concentration of the label appeared at day 1 and declined over time whereas in birch the label increased in concentration over the 7 day chase period. As a result, total RCF was 2-3 times greater from birch roots. We estimate at least 5% and 10% of NPP may be released from this flux pathway in sugar maple and yellow birch saplings respectively. These results suggest that rhizosphere C flux likely represents a substantial proportion of NPP in northern hardwood forests, and may be influenced by trees species and mycorrhizal association.
Marler, Thomas E.; Lindström, Anders J.
2014-01-01
The sugars fructose, glucose, maltose, and sucrose were quantified in seven tissues of Zamia muricata Willd. to determine their distribution throughout various organs of a model cycad species, and in lateral structural roots of 18 cycad species to determine the variation in sugar concentration and composition among species representing every cycad genus. Taproot and lateral structural roots contained more sugars than leaf, stem, female strobilus, or coralloid roots. For example, taproot sugar concentration was 6.4-fold greater than stem sugar concentration. The dominant root sugars were glucose and fructose, and the only detected stem sugar was sucrose. Sucrose also dominated the sugar profile for leaflet and coralloid root tissue, and fructose was the dominant sugar in female strobilus tissue. Maltose was a minor constituent of taproot, leaflet, and female strobilus tissue, but absent in other tissues. The concentration of total free sugars and each of the four sugars did not differ among genera or families. Stoichiometric relationships among the sugars, such as the quotient hexoses/disaccharides, differed among organs and families. Although anecdotal reports on cycad starch have been abundant due to its historical use as human food and the voluminous medical research invested into cycad neurotoxins, this is the first report on the sugar component of the non-structural carbohydrate profile of cycads. Fructose, glucose, and sucrose are abundant in cycad tissues, with their relative abundance highly contrasting among organs. Their importance as forms of carbon storage, messengers of information, or regulators of cycad metabolism have not been determined to date. PMID:25339967
Life in the dark: Roots and how they regulate plant-soil interactions
NASA Astrophysics Data System (ADS)
Wu, Y.; Chou, C.; Peruzzo, L.; Riley, W. J.; Hao, Z.; Petrov, P.; Newman, G. A.; Versteeg, R.; Blancaflor, E.; Ma, X.; Dafflon, B.; Brodie, E.; Hubbard, S. S.
2017-12-01
Roots play a key role in regulating interactions between soil and plants, an important biosphere process critical for soil development and health, global food security, carbon sequestration, and the cycling of elements (water, carbon, nutrients, and environmental contaminants). However, their underground location has hindered studies of plant roots and the role they play in regulating plant-soil interactions. Technological limitations for root phenotyping and the lack of an integrated approach capable of linking root development, its environmental adaptation/modification with subsequent impact on plant health and productivity are major challenges faced by scientists as they seek to understand the plant's hidden half. To overcome these challenges, we combine novel experimental methods with numerical simulations, and conduct controlled studies to explore the dynamic growth of crop roots. We ask how roots adapt to and change the soil environment and their subsequent impacts on plant health and productivity. Specifically, our efforts are focused on (1) developing novel geophysical approaches for non-invasive plant root and rhizosphere characterization; (2) correlating root developments with key canopy traits indicative of plant health and productivity; (3) developing numerical algorithms for novel geophysical root signal processing; (4) establishing plant growth models to explore root-soil interactions and above and below ground traits co-variabilities; and (5) exploring how root development modifies rhizosphere physical, hydrological, and geochemical environments for adaptation and survival. Our preliminary results highlight the potential of using electro-geophysical methods to quantifying key rhizosphere traits, the capability of the ecosys model for mechanistic plant growth simulation and traits correlation exploration, and the combination of multi-physics and numerical approach for a systematic understanding of root growth dynamics, impacts on soil physicochemical environments, and plant health and productivity.
NASA Astrophysics Data System (ADS)
Pendall, E.; Drake, J. E.; Furze, M.; Barton, C. V.; Carillo, Y.; Richter, A.; Tjoelker, M. G.
2017-12-01
Climate warming has the potential to alter the balance between photosynthetic carbon assimilation and respiratory losses in forest trees, leading to uncertainty in predicting their future physiological functioning. In a previous experiment, warming decreased canopy CO2 assimilation (A) rates of Eucalyptus tereticornis trees, but respiration (R) rates were usually not significantly affected, due to physiological acclimation to temperature. This led to a slight increase in (R/A) and thus decrease in plant carbon use efficiency with climate warming. In contrast to carbon fluxes, the effect of warming on carbon allocation and residence time in trees has received less attention. We conducted a study to test the hypothesis that warming would decrease the allocation of C belowground owing to reduced cost of nutrient uptake. E. parramattensis trees were grown in the field in unique whole-tree chambers operated at ambient and ambient +3 °C temperature treatments (n=3 per treatment). We applied a 13CO2 pulse and followed the label in CO2 respired from leaves, roots, canopy and soil, in plant sugars, and in rhizosphere microbes over a 3-week period in conjunction with measurements of tree growth. The 9-m tall, 57 m3 whole-tree chambers were monitored for CO2 concentrations in independent canopy and below ground (root and soil) compartments; periodic monitoring of δ13C values in air in the compartments allowed us to quantify the amount of 13CO2 assimilated and respired by each tree. Warmed trees grew faster and assimilated more of the label than control trees, but the 13C allocation to canopy, root and soil respiration was not altered. However, warming appeared to reduce the residence time of carbon respired from leaves, and especially from roots and soil, indicating that autotrophic respiration has the potential to feedback to climate change. This experiment provides insights into how warming may affect the fate of assimilated carbon from the leaf to the ecosystem scale.
NASA Astrophysics Data System (ADS)
Mayerhofer, Werner; Dietrich, Marlies; Schintlmeister, Arno; Gabriel, Raphael; Gorka, Stefan; Wiesenbauer, Julia; Martin, Victoria; Schweiger, Peter; Reipert, Siegfried; Weidinger, Marieluise; Richter, Andreas; Woebken, Dagmar; Kaiser, Christina
2016-04-01
Translocation of recently photoassimilated plant carbon (C) into soil via root exudates or mycorrhizal fungi is key to understand global carbon cycling. Plants support symbiotic fungi and soil microorganisms with recent photosynthates to get access to essential elements, such as nitrogen (N) and phosphorus. While a 'reciprocal reward strategy' (plants trade C in exchange for nutrients from the fungus) has been shown for certain types of mycorrhizal associations, only little is known about the mechanisms of C and N exchange between mycorrhizal fungal hyphae and soil bacteria. Our understanding of the underlying mechanisms is hampered by the fact that C and N transfer between plants, mycorrhizal fungi and soil bacteria takes place at the micrometer scale, which makes it difficult to explore at the macro scale. In this project we intended to analyse carbon and nitrogen flows between roots of beech trees (Fagus sylvatica), their associated ectomycorrhizal fungi and bacterial community. In order to visualize this nutrient flow at a single cell level, we used a stable isotope double labelling (13C and 15N) approach. Young mycorrhizal beech trees were transferred from a forest to split-root boxes, consisting of two compartments separated by a membrane (35 μm mesh size) which was penetrable for hyphae but not for plant roots. After trees and mycorrhizal fungi were allowed to grow for one year in these boxes, 15N-labelled nitrogen solution was added only to the root-free compartment to allow labelled nitrogen supply only through the fungal network. 13C- labelled carbon was applied by exposing the plants to a 13CO2 gas atmosphere for 8 hours. Spatial distribution of the isotopic label was visualised at the microscale in cross sections of mycorrhizal root-tips (the plant/mycorrhizal fungi interface) and within and on the surface of external mycorrhizal hyphae (the fungi/soil bacteria interface) using nanoscale secondary ion mass spectrometry (NanoSIMS). Corresponding morphological structures were established using light microscopy and scanning electron microscopy. In addition, isotopic signals in plant tissue as well as in fungal and soil microbial communities were traced by EA-IRMS and GC-C-IRMS of 13C phospholipid fatty acid, respectively. Our NanoSIMS images demonstrate a rapid transfer of photoassimilated plant C from the root's central cylinder to 1) ectomycorrhizal fungal cells in the Hartig net in the root cortex, and 2) to external ectomycorrhizal hyphae residing in the root-free compartment. In the cross-section of the mycorrhizal root, 13C enrichment was spatially correlated to 15N enrichment indicating a strongly controlled exchange of C and N between plant and fungus. Overall, our study shows the potential of NanoSIMS imaging as a tool for getting insight into mechanisms of plant-soil interactions by visualizing in situ C and N flows between plants, fungi and soil microbes at the microscale.
NASA Astrophysics Data System (ADS)
McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.
2013-12-01
Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root decomposition rates; only Ledum roots decomposed slower than the other three species and the overall root litter respiration rates increased with the duration of the experiment (in contrast to leaf liter respiration). A fertilized environment had no effect on overall weight loss of the leaf or root litter within the time of our study, but leaf and root litter respiration rates were significantly larger at the end of the study in the fertilized tundra.The temperature sensitivity of leaf respiration was significantly lower for leaf litter respiration than root liter respiration after fist snow melt, but this difference disappeared throughout the first growing season and neither was influenced by species composition or fertilization with N+P. Overall, our results suggest that as arctic vegetation shifts towards shrub-dominated tundra, both species composition and seasonally dependent processes will determine effects of changing vegetation types on carbon turnover in arctic ecosystems.
Wu, Juan; Dai, Yanran; Rui, Shengyang; Cui, Naxin; Zhong, Fei; Cheng, Shuiping
2015-12-01
Sediment anoxia generally results from intense organic enrichment and is a limiting factor in the restoration of vegetation in eutrophic waters. To investigate the effect of sediment anoxia on a typical pollution-tolerant submerged macrophyte species, Hydrilla verticillata, and acclimation mechanisms in the plant, a gradient of sediment anoxia was simulated with additions of sucrose to the sediment, which can stimulate increased concentrations of total nitrogen, NH4(+) and Fe in pore water. H. verticillata growth was significantly affected by highly anoxic conditions, as indicated by reduced total biomass in the 0.5 and 1% sucrose treatments. However, slight anoxia (0.1% sucrose addition) promoted growth, and the shoot biomass was 22.64% higher than in the control. In addition to morphologic alterations, H. verticillata showed physiological acclimations to anoxia, including increased anaerobic respiration and changes in carbon and nitrogen metabolism in roots. The soluble protein and soluble carbohydrate contents in roots of the 1% treatment were both significantly higher compared with those in the control. The increase in alcohol dehydrogenase activity and pyruvate content in the roots suggested that H. verticillata has a well-developed capacity for anaerobic fermentation. This study suggests that highly anoxic sediments inhibit the growth of H. verticillata and the species has a degree of tolerance to anoxic conditions. Further in situ investigations should be conducted on the interactions between sediment conditions and macrophytes to comprehensively evaluate the roles of sediment in the restoration of vegetation in eutrophic waters.
Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone
M.D. Coleman; R.E. Dickson; J.G. Isebrands; D.F. Karnosky
1995-01-01
Clones of aspen (Populus tremuloides Michx.) were identified that differ in biomass production in response to O3exposure. 14Carbon tracer studies were used to determine if the differences in biomass response were linked to shifts in carbon allocation and carbon partitioning patterns. Rooted cuttings from...
Chen, Yue; Wang, Meng; Hu, Linli; Liao, Weibiao; Dawuda, Mohammed M.; Li, Chunlan
2017-01-01
Hydrogen gas (H2) and carbon monoxide (CO) are involved in plant growth and developmental processes and may induce plant tolerance to several stresses. However, the independent roles and interaction effect of H2 and CO in adventitious root development under drought conditions have still not received the needed research attention. We hypothesize that there exists crosstalk between H2 and CO during adventitious root development under drought stress. The results of our current study revealed that 50% (v/v) hydrogen-rich water (HRW), 500 μM Hemin (the CO donor) and 30% (w/v) CO aqueous solution apparently promoted the development of adventitious roots in cucumber explants (Cucumis Sativus L.) under drought stress. H2 and CO increased relative water content (RWC), leaf chlorophyll content (chlorophyll a, b, and a+b), and chlorophyll fluorescence parameters [photochemical efficiency of photosystem II (PSII), PSII actual photochemical efficiency and photochemical quench coefficient] under drought condition. When the CO scavenger hemoglobin (Hb) or zinc protoporphyrin IX (ZnPPIX) was added to HRW/CO aqueous solution, the positive effect of HRW/CO aqueous solution on RWC, leaf chlorophyll content, and chlorophyll fluorescence parameters were reversed. Additionally, superoxide dismutases, peroxidase, catalase, and ascorbate peroxidase was significantly increased in the explants treated with HRW and CO aqueous solution under drought stress, thus alleviating oxidative damage, as indicated by decreases in thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and superoxide radical (O2-) levels. H2 and CO also improved the levels of water soluble carbohydrate, total soluble protein, and proline content. However, the above CO/H2-mediated effects were reversed by CO scavenger Hb or CO specific synthetic inhibitor ZnPPIX. Therefore, CO may be involved in H2-induced adventitious rooting under drought stress and alleviate oxidative damage by enhancing RWC, leaf chlorophyll content, chlorophyll fluorescence parameters, metabolic constituent content, activating anti-oxidant enzymes and reducing TBARS, O2-, and H2O2 levels. PMID:28223992
Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model
NASA Technical Reports Server (NTRS)
Barata, Raquel A.; Drewry, Darren
2012-01-01
The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.
The root economics spectrum: divergence of absorptive root strategies with root diameter
NASA Astrophysics Data System (ADS)
Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.
2015-08-01
Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.
Experimental geobiology links evolutionary intensification of rooting systems and weathering
NASA Astrophysics Data System (ADS)
Quirk, Joe; Beerling, David; Leake, Jonathan
2016-04-01
The evolution of mycorrhizal fungi in partnership with early land plants over 440 million years ago led to the greening of the continents by plants of increasing biomass, rooting depth, nutrient demand and capacity to alter soil minerals, culminating in modern forested ecosystems. The later co-evolution of trees and rooting systems with arbuscular mycorrhizal (AM) fungi, together driving the biogeochemical cycling of elements and weathering of minerals in soil to meet subsequent increased phosphorus demands is thought to constitute one the most important biotic feedbacks on the geochemical carbon cycle to emerge during the Phanerozoic, and fundamentally rests on the intensifying effect of trees and their root-associating mycorrhizal fungal partners on mineral weathering. Here I present experimental and field evidence linking these evolutionary events to a mechanistic framework whereby: (1) as plants evolved in stature, biomass, and rooting depth, their mycorrhizal fungal partnerships received increasing amounts of plant photosynthate; (2) this enabled intensification of plant-driven fungal weathering of rocks to release growth-limiting nutrients; (3) in turn, this increased land-to-ocean export of Ca and P and enhanced ocean carbonate precipitation impacting the global carbon cycle and biosphere-geosphere-ocean-atmosphere interactions over the past 410 Ma. Our findings support an over-arching hypothesis that evolution has selected plant and mycorrhizal partnerships that have intensified mineral weathering and altered global biogeochemical cycles.
Renault, Hugues; El Amrani, Abdelhak; Berger, Adeline; Mouille, Grégory; Soubigou-Taconnat, Ludivine; Bouchereau, Alain; Deleu, Carole
2013-05-01
Environmental constraints challenge cell homeostasis and thus require a tight regulation of metabolic activity. We have previously reported that the γ-aminobutyric acid (GABA) metabolism is crucial for Arabidopsis salt tolerance as revealed by the NaCl hypersensitivity of the GABA transaminase (GABA-T, At3g22200) gaba-t/pop2-1 mutant. In this study, we demonstrate that GABA-T deficiency during salt stress causes root and hypocotyl developmental defects and alterations of cell wall composition. A comparative genome-wide transcriptional analysis revealed that expression levels of genes involved in carbon metabolism, particularly sucrose and starch catabolism, were found to increase upon the loss of GABA-T function under salt stress conditions. Consistent with the altered mutant cell wall composition, a number of cell wall-related genes were also found differentially expressed. A targeted quantitative analysis of primary metabolites revealed that glutamate (GABA precursor) accumulated while succinate (the final product of GABA metabolism) significantly decreased in mutant roots after 1 d of NaCl treatment. Furthermore, sugar concentration was twofold reduced in gaba-t/pop2-1 mutant roots compared with wild type. Together, our results provide strong evidence that GABA metabolism is a major route for succinate production in roots and identify GABA as a major player of central carbon adjustment during salt stress. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Kelleway, Jeffrey J.; Mazumder, Debashish; Baldock, Jeffrey A.; Saintilan, Neil
2018-05-01
The ratio of stable isotopes of carbon (δ13C) is commonly used to track the flow of energy among individuals and ecosystems, including in mangrove forests. Effective use of this technique requires understanding of the spatial variability in δ13C among primary producer(s) as well as quantification of the isotopic fractionations that occur as C moves within and among ecosystem components. In this experiment, we assessed δ13C variation in the cosmopolitan mangrove Avicennia marina across four sites of varying physico-chemical conditions across two estuaries. We also compared the isotopic values of five distinct tissue types (leaves, woody stems, cable roots, pneumatophores and fine roots) in individual plants. We found a significant site effect (F3, 36 = 15.78; P < 0.001) with mean leaf δ13C values 2.0‰ more depleted at the lowest salinity site compared to the other locations. There was a larger within-plant fractionation effect, however, with leaf samples (mean ± SE = -29.1 ± 0.2) more depleted in 13C than stem samples (-27.1 ± 0.1), while cable root (-25. 8 ± 0.1), pneumatophores (-25.7 ± 0.1) and fine roots (-26.0 ± 0.2) were more enriched in 13C relative to both aboveground tissue types (F4, 36 = 223.45; P < 0.001). The within-plant δ13C fractionation we report for A. marina is greater than that reported in most other ecosystems. This has implications for studies of estuarine carbon cycling. The consistent and large size of the fractionation from leaf to woody stem (∼2.0‰) and mostly consistent fractionation from leaf to root tissues (>3.0‰) means that it may now be possible to partition the individual contributions of various mangrove tissues to estuarine food webs. Similarly, the contributions of mangrove leaves, woody debris and belowground sources to blue carbon stocks might also be quantified. Above all, however, our results emphasize the importance of considering appropriate mangrove tissue types when using δ13C to trace carbon cycling in estuarine systems.
Irregular sesquiterpenoids from Ligusticum grayi roots
USDA-ARS?s Scientific Manuscript database
Root oil of Ligusticum grayi (Apiaceae) contains numerous irregular sesquiterpenoids. In addition to the known acyclic sesquilavandulol and a new sesquilavandulyl aldehyde, two thapsanes, one epithapsane, and fourteen sesquiterpenoids representing eight novel carbon skeletons were found. The new sk...
21 CFR 872.3680 - Polytetrafluoroethylene (PTFE) vitreous carbon materials.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the sockets in which teeth are rooted) or intended to coat metal surgical implants to be placed in the alveoli (sockets in which the teeth are rooted) or the temporomandibular joints (the joint between the...
21 CFR 872.3680 - Polytetrafluoroethylene (PTFE) vitreous carbon materials.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the sockets in which teeth are rooted) or intended to coat metal surgical implants to be placed in the alveoli (sockets in which the teeth are rooted) or the temporomandibular joints (the joint between the...
21 CFR 872.3680 - Polytetrafluoroethylene (PTFE) vitreous carbon materials.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the sockets in which teeth are rooted) or intended to coat metal surgical implants to be placed in the alveoli (sockets in which the teeth are rooted) or the temporomandibular joints (the joint between the...
21 CFR 872.3680 - Polytetrafluoroethylene (PTFE) vitreous carbon materials.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the sockets in which teeth are rooted) or intended to coat metal surgical implants to be placed in the alveoli (sockets in which the teeth are rooted) or the temporomandibular joints (the joint between the...
21 CFR 872.3680 - Polytetrafluoroethylene (PTFE) vitreous carbon materials.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the sockets in which teeth are rooted) or intended to coat metal surgical implants to be placed in the alveoli (sockets in which the teeth are rooted) or the temporomandibular joints (the joint between the...
Improved grazing management may increase soil carbon sequestration in temperate steppe
NASA Astrophysics Data System (ADS)
Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B.; Wang, Xiaoya; Shen, Yue
2015-07-01
Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.
Improved grazing management may increase soil carbon sequestration in temperate steppe.
Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B; Wang, Xiaoya; Shen, Yue
2015-07-03
Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.
Who's on first? Part I: Influence of plant growth on C association with fresh soil minerals
NASA Astrophysics Data System (ADS)
Neurath, R.; Whitman, T.; Nico, P. S.; Pett-Ridge, J.; Firestone, M. K.
2015-12-01
Mineral surfaces provide sites for carbon stabilization in soils, protecting soil organic matter (SOM) from microbial degradation. SOM distributed across mineral surfaces is expected to be patchy and certain minerals undergo re-mineralization under dynamic soil conditions, such that soil minerals surfaces can range from fresh to thickly-coated with SOM. Our research investigates the intersection of microbiology and geochemistry, and aims to build a mechanistic understanding of plant-derived carbon (C) association with mineral surfaces and the factors that determine SOM fate in soil. Plants are the primary source of C in soil, with roots exuding low-molecular weight compounds during growth and contributing more complex litter compounds at senescence. We grew the annual grass, Avena barbata, (wild oat) in a 99 atom% 13CO2 atmosphere in soil microcosms incubated with three mineral types representing a spectrum of reactivity and surface area: quartz, kaolinite, and ferrihydrite. These minerals, isolated in mesh bags to exclude roots but not microorganisms, were extracted and analyzed for total C and 13C at multiple plant growth stages. At plant senescence, the quartz had the least mineral-bound C (0.40 mg-g-1) and ferrihydrite the most (0.78 mg-g-1). Ferrihydrite and kaolinite also accumulated more plant-derived C (3.0 and 3.1% 13C, respectively). The experiment was repeated with partially digested 13C-labled root litter to simulate litter decomposition during plant senescence. Thus, we are able evaluate contributions derived from living and dead root materials on soil minerals using FTIR and 13C-NMR. We find that mineral-associated C bears a distinct microbial signature, with soil microbes not only transforming SOM prior to mineral association, but also populating mineral surfaces over time. Our research shows that both soil mineralogy and the chemical character of plant-derived compounds are important controls of mineral protection of SOM.
Model Effects on GLAS-Based Regional Estimates of Forest Biomass and Carbon
NASA Technical Reports Server (NTRS)
Nelson, Ross
2008-01-01
ICESat/GLAS waveform data are used to estimate biomass and carbon on a 1.27 million sq km study area. the Province of Quebec, Canada, below treeline. The same input data sets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include nonstratified and stratified versions of a multiple linear model where either biomass or (square root of) biomass serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial biomass estimates of up to 0.35 Gt (range 4.942+/-0.28 Gt to 5.29+/-0.36 Gt). The results suggest that if different predictive models are used to estimate regional carbon stocks in different epochs, e.g., y2005, y2015, one might mistakenly infer an apparent aboveground carbon "change" of, in this case, 0.18 Gt, or approximately 7% of the aboveground carbon in Quebec, due solely to the use of different predictive models. These findings argue for model consistency in future, LiDAR-based carbon monitoring programs. Regional biomass estimates from the four GLAS models are compared to ground estimates derived from an extensive network of 16,814 ground plots located in southern Quebec. Stratified models proved to be more accurate and precise than either of the two nonstratified models tested.
Dong, Yan; Dong, Kun; Zheng, Yi; Tang, Li; Yang, Zhi-Xian
2014-07-01
Field experiment and hydroponic culture were conducted to investigate effects of three wheat varieties (Yunmai 42, Yunmai 47 and Mianyang 29) and faba bean intercropping on the shoot biomass, disease index of fusarium wilt, functional diversity of microbial community and the amount of Fusarium oxysporum in rhizosphere of faba bean. Contents and components of the soluble sugars, free amino acids and organic acids in the root exudates were also examined. Results showed that, compared with monocropped faba bean, shoot biomass of faba bean significantly increased by 16.6% and 13.4%, disease index of faba bean fusarium wilt significantly decreased by 47.6% and 23.3% as intercropped with Yunmai 42 and Yunmai 47, but no significant differences of both shoot biomass and disease index were found as intercropped with Mianyang 29. Compared with monocropped faba bean, the average well color development (AWCD value) and total utilization ability of carbon sources of faba bean significantly increased, the amount of Fusarium oxysporum of faba bean rhizosphere significantly decreased, and the microbial community structures of faba bean rhizosphere changed as intercropped with YM42 and YM47, while no significant effects as intercropped with MY29. Total contents of soluble sugar, free amino acids and organic acids in root exudates were in the trend of MY29>YM47>YM42. Contents of serine, glutamic, glycine, valine, methionine, phenylalanine, lysine in root exudates of MY29 were significantly higher than that in YM42 and YM47. The arginine was detected only in the root exudates of YM42 and YM47, and leucine was detected only in the root exudates of MY29. Six organic acids of tartaric acid, malic acid, citric acid, succinic acid, fumaric acid, t-aconitic acid were detected in root exudates of MY29 and YM47, and four organic acids of tartaric acid, malic acid, citric acid, fumaric acid were detected in root exudates of YM42. Malic acid content in root exudates of YM47 and MY29 was significantly higher than that of YM42. In conclusion, intercropping influenced the microbial activity and substrate utilization of soil microorganisms, altered the microbial community diversity in rhizosphere of faba bean, reduced the amount of F. oxysporum and disease index of faba bean fusarium wilt, and promoted faba bean growth. Effects of intercropping on disease control were influenced by the intercropped wheat variety, suggesting that the differences of root exudates of wheat were important factors that affected soil-borne diseases control in intercropping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filley, T. R.; Boutton, T. W.; Liao, J. D.
Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plantmore » carbon to POM. Woody clusters exhibited reduced concentrations of cutin-derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization.« less
NASA Astrophysics Data System (ADS)
Filley, Timothy R.; Boutton, Thomas W.; Liao, Julia D.; Jastrow, Julie D.; Gamblin, David E.
2008-09-01
Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plant carbon to POM. Woody clusters exhibited reduced concentrations of cutin-derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization.
Nishida, Hanna; Suzaki, Takuya
2018-05-30
Root nodule symbiosis is one of the best-characterized mutualistic relationships between plants-microbes symbiosis, where mainly leguminous species can obtain nitrogen sources fixed by nitrogen-fixing rhizobia through the formation of symbiotic organs root nodules. In order to drive this symbiotic process, plants need to provide carbon sources that should be used for their growth. Therefore, a balance between the benefits of obtaining nitrogen sources and the costs of losing carbon sources needs to be maintained during root nodule symbiosis. Plants have developed at least two negative regulatory systems of root nodule symbiosis. One strategy involves the regulation of nodule number in response to rhizobial infection. For this regulation, a systemic long-range signaling between roots and shoots called autoregulation of nodulation has a pivotal role. Another strategy involves the regulation of root nodule symbiosis in response to nitrate, the most abundant form of nitrogen nutrients in the soil. Recent studies indicate that a long-distance signaling is shared between the two strategies, where NIN and NRSYM1, two paralogous RWP-RK transcription factors, can activate the production of nodulation-related CLE peptides in response to different inputs. Here, we give an overview of such progress in our understanding of molecular mechanisms relevant to the control of the symbiotic balance, including their biological significance.
NASA Astrophysics Data System (ADS)
Baker, S.; Berryman, E.; Hawbaker, T. J.; Ewers, B. E.
2015-12-01
While much attention has been focused on large scale forest disturbances such as fire, harvesting, drought and insect attacks, small scale forest disturbances that create gaps in forest canopies and below ground root and mycorrhizal networks may accumulate to impact regional scale carbon budgets. In a lodgepole pine (Pinus contorta) forest near Fox Park, WY, clusters of 15 and 30 trees were removed in 1988 to assess the effect of tree gap disturbance on fine root density and nitrogen transformation. Twenty seven years later the gaps remain with limited regeneration present only in the center of the 30 tree plots, beyond the influence of roots from adjacent intact trees. Soil respiration was measured in the summer of 2015 to assess the influence of these disturbances on carbon cycling in Pinus contorta forests. Positions at the centers of experimental disturbances were found to have the lowest respiration rates (mean 2.45 μmol C/m2/s, standard error 0.17 C/m2/s), control plots in the undisturbed forest were highest (mean 4.15 μmol C/m2/s, standard error 0.63 C/m2/s), and positions near the margin of the disturbance were intermediate (mean 3.7 μmol C/m2/s, standard error 0.34 C/m2/s). Fine root densities, soil nitrogen, and microclimate changes were also measured and played an important role in respiration rates of disturbed plots. This demonstrates that a long-term effect on carbon cycling occurs when gaps are created in the canopy and root network of lodgepole forests.
NASA Astrophysics Data System (ADS)
Or, Dani; Ruiz, Siul; Schymanski, Stanlislaus
2015-04-01
Soil structure is the delicate arrangement of solids and voids that facilitate numerous hydrological and ecological soil functions ranging from water infiltration and retention to gaseous exchange and mechanical anchoring of plant roots. Many anthropogenic activities affect soil structure, e.g. via tillage and compaction, and by promotion or suppression of biological activity and soil carbon pools. Soil biological activity is critical to the generation and maintenance of favorable soil structure, primarily through bioturbation by earthworms and root proliferation. The study aims to quantify the mechanisms, rates, and energetics associated with soil bioturbation, using a new biomechanical model to estimate stresses required to penetrate and expand a cylindrical cavity in a soil under different hydration and mechanical conditions. The stresses and soil displacement involved are placed in their ecological context (typical sizes, population densities, burrowing rates and behavior) enabling estimation of mechanical energy requirements and impacts on soil organic carbon pool (in the case of earthworms). We consider steady state plastic cavity expansion to determine burrowing pressures of earthworms and plant roots, akin to models of cone penetration representing initial burrowing into soil volumes. Results show that with increasing water content the strain energy decreases and suggest trade-offs between cavity expansion pressures and energy investment for different root and earthworm geometries and soil hydration. The study provides a quantitative framework for estimating energy costs of bioturbation in terms of soil organic carbon or the mechanical costs of soil exploration by plant roots as well as mechanical and hydration limits to such activities.
Ectomycorrhizal fungi slow soil carbon cycling.
Averill, Colin; Hawkes, Christine V
2016-08-01
Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. © 2016 John Wiley & Sons Ltd/CNRS.
Madsen, T. V.; Breinholt, M.
1995-01-01
Callitriche cophocarpa Sendtner is a heterophyllous amphibious macrophyte that produces apical rosettes of floating leaves. The importance of air contact for inorganic carbon and N uptake and for growth was investigated. Plants were grown with the floating rosette in contact with air of various humidities (10, 50, and >90% relative humidity) and with the submerged parts in N-free water at 350 [mu]M free CO2 and the roots in sediment with low or high NH3-N content. Humidity greatly affected the transpiration rate, whereas growth rate and N content were unaffected and were comparable to values measured for fully submerged shoots. Air contact had, however, a significant impact on growth when the free CO2 concentration in the water was low. Thus, the growth rate of shoots with air contact was about 3 times faster than the rate of fully submerged shoots when grown at air-equilibrium concentration of dissolved free CO2 in the water (16 [mu]M). This difference decreased with increased dissolved free CO2 concentration in the water, and the two shoot types grew at the same rate when the submerged shoots received >350 [mu]M free CO2. The quantitative importance of the floating rosette for total carbon uptake declined also with decreased ratio of floating rosette to total shoot weight. It is concluded that floating rosettes can enhance the inorganic carbon uptake of Callitriche. In contrast, air contact is of minor importance for nutrient transport. PMID:12228350
Børja, Isabella; De Wit, Heleen A; Steffenrem, Arne; Majdi, Hooshang
2008-05-01
We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1-2 and 2-5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m(-2), SLR from 13.4 to 19.8 m g(-1), RLD from 980 to 11,650 m m(-3) and RSA from 2.4 to 35.4 m(2) m(-3). Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0-5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in spring than in fall. We conclude that fine root biomass, especially in the finest fraction (< 1 mm in diameter), is strongly dependent on stand age. Among stands, carbon concentration in fine root biomass was highest in the 30-year-old stand, and appeared to be associated with the high tree and canopy density during the early stage of stand development. Values of RLD and RSA, morphological features indicative of stand nutrient-uptake efficiency, were higher in the 30-year-old stand than in the other stands.
NASA Astrophysics Data System (ADS)
Carrara, J.; Walter, C. A.; Govindarajulu, R.; Hawkins, J.; Brzostek, E. R.
2017-12-01
Nitrogen (N) deposition has enhanced the ability of trees to capture atmospheric carbon (C). The effect of elevated N on belowground C cycling, however, is variable and response mechanisms are largely unknown. Recent research has highlighted distinct differences between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees in the strength of root-microbial interactions. In particular, ECM trees send more C to rhizosphere microbes to stimulate enzyme activity and nutrient mobilization than AM trees, which primarily rely on saprotrophic microbes to mobilize N. As such, we hypothesized that N fertilization would weaken root-microbial interactions and soil decomposition in ECM stands more than in AM stands. To test this hypothesis, we measured root-microbial interactions in ECM and AM plots in two long-term N fertilization studies, the Fernow Experimental Forest, WV and Bear Brook Watershed, ME. We found that N fertilization led to declines in plant C allocation belowground to fine root biomass, branching, and root exudation in ECM stands to a greater extent than in AM stands. As ECM roots are tightly coupled to the soil microbiome through energy and nutrient exchange, reductions in belowground C allocation were mirrored by shifts in microbial community composition and reductions in fungal gene expression. These shifts were accompanied by larger reductions in fungal-derived lignolytic and hydrolytic enzyme activity in ECM stands than in AM stands. In contrast, as the AM soil microbiome is less reliant on trees for C and are more adapted to high inorganic nutrient environments, the soil metagenome and transcriptome were more resilient to decreases in belowground C allocation. Collectively, our results indicate the N fertilization decoupled root-microbial interactions by reducing belowground carbon allocation in ECM stands. Thus, N fertilization may reduce soil turnover and increase soil C storage to a greater extent in forests dominated by ECM than AM trees.
Influence of biochar and plant growth on organic matter dynamics in a reclaimed mine residue
NASA Astrophysics Data System (ADS)
Moreno-Barriga, Fabián; Díaz, Vicente; Alberto, Jose; Faz, Ángel; Zornoza, Raúl
2016-04-01
This study aims at assessing the impact of biochar and marble waste amendment and the development of vegetation in acidic mine wastes on organic matter dynamics. For this purpose, a mine residue was collected in a tailing pond from the Sierra Minera of Cartagena-La Unión (SE Spain), and a greenhouse experiment was established for 120 days. Marble waste (MW) was added in a rate of 200 g kg-1 as a source of calcium carbonate to increase the pH from 3 to 7.5-8 (average pH in the native soils of the area). We added biochar as a source of organic carbon and nutrients, in two different rates, 50 g kg-1 (BC1) and 100 g kg-1 (BC2). To assess the influence of vegetation growth on the creation of a technosoil from mine residues and its impact on organic matter dynamics, the plant species Piptatherum miliaceum (PM) was planted in half the pots with the different amendments. Thus, five treatments were established: unamended and unplanted control (CT), BC1, BC2, BC1+PM and BC2+PM. Results showed that the different treatments had no significant effect on aggregates stability, microbial biomass carbon and the emission of N2O and CH4. So, it seems that longer periods are needed to increase the stability of aggregates and microbial populations, since even the combined use of biochar, marble waste and vegetation was not enough to increase these properties in 120 days. Nonetheless, it was positive that the addition of biochar and the release of root exudates did not trigger the emission of greenhouse gases. Organic carbon significantly increased with the addition of biochar, with values similar to the dose applied, indicating high stability and low mineralization of the amendment. The addition of amendments significantly increased arylesterase activity, while the growth of the plant was needed to significantly increase β-glucosidase activity. The soluble carbon significantly decreased in BC1 and BC2 with regards to CT, while no significant differences were observed among CT and treatments with plant. Arylestarase showed significant correlations with pH and organic carbon, while β-glucosidase was related to total and soluble organic carbon. Thus, the high recalcitrance of biochar increased the total organic carbon, but decreased soluble carbon, likely by adsorption, and was not able to activate microbial populations. A labile source of organic matter should be added together with the proposed amendments to promote the activation of microbial communities and likely the formation of stable aggregates, since root exudates were not enough for this purpose. Acknowledgement : This work has been funded by Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain) by the project 18920/JLI/13
Tian, Hui; Yuan, Xiaolei; Duan, Jianfeng; Li, Wenhu; Zhai, Bingnian; Gao, Yajun
2017-01-01
Arbuscular mycorrhizal (AM) colonization of plant roots causes the down-regulation of expression of phosphate (Pi) or nitrogen (N) transporter genes involved in direct nutrient uptake pathways. The mechanism of this effect remains unknown. In the present study, we sought to determine whether the expression of Pi or N transporter genes in roots of winter wheat colonized by AM fungus responded to (1) Pi or N nutrient signals transferred from the AM extra-radical hyphae, or (2) carbon allocation changes in the AM association. A three-compartment culture system, comprising a root compartment (RC), a root and AM hyphae compartment (RHC), and an AM hyphae compartment (HC), was used to test whether the expression of Pi or N transporter genes responded to nutrients (Pi, NH4+ and NO3-) added only to the HC. Different AM inoculation density treatments (roots were inoculated with 0, 20, 50 and 200 g AM inoculum) and light regime treatments (6 hours light and 18 hours light) were established to test the effects of carbon allocation on the expression of Pi or N transporter genes in wheat roots. The expression of two Pi transporter genes (TaPT4 and TaPHT1.2), five nitrate transporter genes (TaNRT1.1, TaNRT1.2, TaNRT2.1, TaNRT2.2, and TaNRT2.3), and an ammonium transporter gene (TaAMT1.2) was quantified using real-time polymerase chain reaction. The expression of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by AM colonization only when roots of host plants received Pi or N nutrient signals. However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3 was down-regulated by AM colonization, regardless of whether there was nutrient transfer from AM hyphae. The expression of TaNRT1.2 was also down-regulated by AM colonization even when there was no nutrient transfer from AM hyphae. The present study showed that an increase in carbon consumption by the AM fungi did not necessarily result in greater down-regulation of expression of Pi or N transporter genes. PMID:28207830
Tian, Hui; Yuan, Xiaolei; Duan, Jianfeng; Li, Wenhu; Zhai, Bingnian; Gao, Yajun
2017-01-01
Arbuscular mycorrhizal (AM) colonization of plant roots causes the down-regulation of expression of phosphate (Pi) or nitrogen (N) transporter genes involved in direct nutrient uptake pathways. The mechanism of this effect remains unknown. In the present study, we sought to determine whether the expression of Pi or N transporter genes in roots of winter wheat colonized by AM fungus responded to (1) Pi or N nutrient signals transferred from the AM extra-radical hyphae, or (2) carbon allocation changes in the AM association. A three-compartment culture system, comprising a root compartment (RC), a root and AM hyphae compartment (RHC), and an AM hyphae compartment (HC), was used to test whether the expression of Pi or N transporter genes responded to nutrients (Pi, NH4+ and NO3-) added only to the HC. Different AM inoculation density treatments (roots were inoculated with 0, 20, 50 and 200 g AM inoculum) and light regime treatments (6 hours light and 18 hours light) were established to test the effects of carbon allocation on the expression of Pi or N transporter genes in wheat roots. The expression of two Pi transporter genes (TaPT4 and TaPHT1.2), five nitrate transporter genes (TaNRT1.1, TaNRT1.2, TaNRT2.1, TaNRT2.2, and TaNRT2.3), and an ammonium transporter gene (TaAMT1.2) was quantified using real-time polymerase chain reaction. The expression of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by AM colonization only when roots of host plants received Pi or N nutrient signals. However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3 was down-regulated by AM colonization, regardless of whether there was nutrient transfer from AM hyphae. The expression of TaNRT1.2 was also down-regulated by AM colonization even when there was no nutrient transfer from AM hyphae. The present study showed that an increase in carbon consumption by the AM fungi did not necessarily result in greater down-regulation of expression of Pi or N transporter genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. E. APPLE; C. I. THEE; V. L. SMITH-LONGOZO
2004-01-01
The percentage of fine roots colonized by arbuscular mycorrhizal (AM) fungi varied with season and with species in the co-dominant shrubs Lurreu tridentutu and Ambrosia dumosu at a site adjacent to the Nevada Desert FACE (Free-Air CO{sub 2} Enrichment) Facility (NDFF) in the Mojave Desert. We excavated downward and outward from the shrub bases in both species to collect and examine fine roots (< 1.0 mm diameter) at monthly intervals throughout 2001 and from October 2002 to September 2003. Fungal structures became visible in cleared roots stained with trypan blue. We quantified the percent colonization of roots by AM fungimore » via the line intercept method. In both years and for both species, colonization was highest in fall, relatively low in spring when root growth began, increased in late spring, and decreased during summer drought periods. Increases in colonization during summer and fall reflect corresponding increases in precipitation. Spring mycorrhizal colonization is low despite peaks in soil water availability and precipitation, indicating that precipitation is not the only factor influencing mycorrhizal colonization. Because the spring decrease in mycorrhizal colonization occurs when these shrubs initiate a major flush of fine root growth, other phenological events such as competing demands for carbon by fine root initiation, early season shoot growth, and flowering may reduce carbon availability to the fungus, and hence decrease colonization. Another possibility is that root growth exceeds the rate of mycorrhizal colonization.« less
The dynamic life of arbuscular mycorrhizal fungal symbionts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bach, Elizabeth M.; Narvaez-Rivera, Giselle; Murray, Kira
One of the most fascinating biological interactions lies just beneath our feet. Arbuscular mycorrhizal fungi (AMF), fungi from the phylum Glomeromycota, form a text-book example of symbiosis with more than 80% of plant species. Yet, few people have the opportunity to observe AMF directly. Most AMF living within a root have three distinct body structures that can be observed under a microscope: hyphae, arbuscules, and vesicles. Hyphae are thin, wispy projections that reach out from the root and absorb nutrients like phosphorous from the soil (Fig. 1a, c). Hyphae transport nutrients back to the roots through arbuscules that extend intomore » the root cells. Arbuscules are highly branched networks that exchange the nutrients from the soil for carbohydrates produced by the host plant during photosynthesis. AMF are also able to store lipids in vesicles, which are small, round structures within the root cells (Fig. 1b, d). AMF produce the lipids stored in vesicles from plant-derived carbon and use them for energy when the plant is not actively photosynthesizing. The host plant cannot access lipids within vesicles, so their production represents a complete transfer of carbon from plant host to fungus. Most roots do not contain all AMF structures. Even on plants colonized by AMF, not all roots show signs of colonization. On some roots, a multitude of fungal structures are evident within the roots. On others, those structures are nowhere to be found.« less
CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone
Walvoord, Michelle Ann; Striegl, Robert G.; Prudic, David E.; Stonestrom, David A.
2005-01-01
Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured δ13C (in CO2), and δ14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ∼97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ∼0.1 mol m−2 yr−1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled δ14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.
Distribution of different surface modified carbon dots in pumpkin seedlings.
Qian, Kun; Guo, Huiyuan; Chen, Guangcai; Ma, Chuanxin; Xing, Baoshan
2018-05-22
The distribution of surface modified carbon dots (CDs) in the pumpkin seedlings was studied by visualization techniques and their potential phytotoxicity was investigated at both the physiological and biochemical levels. The average size of carbon dots was approximately 4 nm. The fluorescent peaks of bared CDs, CD-PEI and CD-PAA were between 420 nm and 500 nm, indicating CDs could emit blue and green fluorescence. Fluorescent images showed that all three types of CDs could accumulate in the pumpkin roots and translocate to the shoots, although the distribution pattern of each CDs was obviously different. At the biochemical level, the elevated antioxidant enzymes in pumpkin roots suggest that all the CDs could potentially trigger the antioxidant defense systems in pumpkin seedlings. Additionally, such alteration was greater in the roots than in the shoots. Our study represents a new perspective on CD visualization in plant tissues and provide useful information for the potential toxicity of different types of CDs to terrestrial plants, which is of importance to agricultural application.
Lovelock, Catherine E; Ruess, Roger W; Feller, Ilka C
2006-12-01
Root respiration uses a significant proportion of photosynthetically fixed carbon (C) and is a globally important source of C liberated from soils. Mangroves, which are an important and productive forest resource in many tropical and subtropical countries, sustain a high ratio of root to shoot biomass which may indicate that root respiration is a particularly important component in mangrove forest carbon budgets. Mangroves are often exposed to nutrient pollution from coastal waters. Here we assessed the magnitude of fine root respiration in mangrove forests in Belize and investigated how root respiration is influenced by nutrient additions. Respiration rates of excised fine roots of the mangrove, Rhizophora mangle L., were low (4.01 +/- 0.16 nmol CO(2) g(-1) s(-1)) compared to those measured in temperate tree species at similar temperatures. In an experiment where trees where fertilized with nitrogen (N) or phosphorus (P) in low productivity dwarf forests (1-2 m height) and more productive, taller (4- 7 m height) seaward fringing forests, respiration of fine roots did not vary consistently with fertilization treatments or with forest stature. Fine roots of taller fringe trees had higher concentrations of both N and P compared to dwarf trees. Fertilization with P enhanced fine root P concentrations in both dwarf and fringe trees, but reduced root N concentrations compared to controls. Fertilization with N had no effect on root N or P concentrations. Unlike photosynthetic C gain and growth, which is strongly limited by P availability in dwarf forests at this site, fine root respiration (expressed on a mass basis) was variable, but showed no significant enhancements with nutrient additions. Variation in fine root production and standing biomass are, therefore, likely to be more important factors determining C efflux from mangrove sediments than variations in fine root respiration per unit mass.
Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings.
Bricker, T J; Pichtel, J; Brown, H J; Simmons, M
2001-01-01
In a growth chamber, maize (Zea mays) and Indian mustard (Brassica juncea) were grown over two croppings in soil from a Superfund site (PbTotal = 65,200 mg/kg and CdTotal = 52mg/kg). Soil treatments consisted of ethylenediaminetetraacetic acid, sodium citrate and composted sewage sludge, each at two rates (EDTA .05%, EDTA .2%, citrate .05%, citrate .2%, CSS 5% and CSS 10%, respectively). In most cases, the EDTA and citrate treatments were superior in terms of solubilizing soil Pb for root uptake and translocation into above-ground biomass. In the first maize crop, the EDTA .2% treatment resulted in 2,435 and 9,389mg/kg Pb in shoot and root tissues, respectively. The CSS treatments typically resulted in lowest Pb and Cd removal efficiencies. Lead remaining in the soil after two croppings was mainly associated with the carbonate, organic, and residual fractions, which represent the less bioavailable forms. Soil Cd was generally more mobile for plant uptake than soil Pb. The EDTA .2% and citrate treatments were most successful in promoting Cd uptake by both maize and mustard. Although Pb concentrations (mg/kg tissue) were lower for maize than mustard, the former removed more total Pb (0.2 mg per pot, mean over all treatments), compared to mustard (0.03 mg), by virtue of its higher biomass production.
Borowicz, V A; Fitter, A H
1990-03-01
We examined how combinations of parentage, fungicide application, and artificial herbivory influence growth and shoot phosphorus content in pre-reproductive Lotus corniculatus, using young offspring arising from three parental crosses, two of which had one parent in common. Soil with vesicular-arbuscular mycorrhizal (VAM) fungi was treated with either water or benomyl, an anti-VAM fungicide, and added to trays containing groups of four full siblings. There were two experiments; in the first no plants were clipped while in the second two of the four plants were clipped to simulate herbivory. In both experiments plants of the two related crosses accumulated more biomass and total shoot P than did plants of the third cross. Plants inoculated with watertreated soil had greater shoot mass and P concentration than did fungicide-treated replicates but the extent of increase in P concentration varied among crosses. In Experiment 2, clipping reduced root mass and resulted in higher shoot P concentration. In this experiment there was a significant interaction of fungicide application and clipping: both unclipped and clipped plants grew better in soil not treated with fungicide, but the increase in shoot mass, total mass, and total P was greater in unclipped plants. Significant interaction of fungicide treatment and clipping is most likely due to reduced availability of carbon to the roots of clipped plants, resulting in poorer symbiotic functioning.
Quality characteristics of the radish grown under reduced atmospheric pressure
NASA Astrophysics Data System (ADS)
Levine, Lanfang H.; Bisbee, Patricia A.; Richards, Jeffrey T.; Birmele, Michele N.; Prior, Ronald L.; Perchonok, Michele; Dixon, Mike; Yorio, Neil C.; Stutte, Gary W.; Wheeler, Raymond M.
This study addresses whether reduced atmospheric pressure (hypobaria) affects the quality traits of radish grown under such environments. Radish (Raphanus sativus L. cv. Cherry Bomb Hybrid II) plants were grown hydroponically in specially designed hypobaric plant growth chambers at three atmospheric pressures; 33, 66, and 96 kPa (control). Oxygen and carbon dioxide partial pressures were maintained constant at 21 and 0.12 kPa, respectively. Plants were harvested at 21 days after planting, with aerial shoots and swollen hypocotyls (edible portion of the radish referred to as the “root” hereafter) separated immediately upon removal from the chambers. Samples were subsequently evaluated for their sensory characteristics (color, taste, overall appearance, and texture), taste-determining factors (glucosinolate and soluble carbohydrate content and myrosinase activity), proximate nutrients (protein, dietary fiber, and carbohydrate) and potential health benefit attributes (antioxidant capacity). In roots of control plants, concentrations of glucosinolate, total soluble sugar, and nitrate, as well as myrosinase activity and total antioxidant capacity (measured as ORACFL), were 2.9, 20, 5.1, 9.4, and 1.9 times greater than the amount in leaves, respectively. There was no significant difference in total antioxidant capacity, sensory characteristics, carbohydrate composition, or proximate nutrient content among the three pressure treatments. However, glucosinolate content in the root and nitrate concentration in the leaf declined as the atmospheric pressure decreased, suggesting perturbation to some nitrogen-related metabolism.
Bathellier, Camille; Tcherkez, Guillaume; Mauve, Caroline; Bligny, Richard; Gout, Elizabeth; Ghashghaie, Jaleh
2009-09-01
The response of root metabolism to variations in carbon source availability is critical for whole-plant nitrogen (N) assimilation and growth. However, the effect of changes in the carbohydrate input to intact roots is currently not well understood and, for example, both smaller and larger values of root:shoot ratios or root N uptake have been observed so far under elevated CO(2). In addition, previous studies on sugar starvation mainly focused on senescent or excised organs while an increasing body of data suggests that intact roots may behave differently with, for example, little protein remobilization. Here, we investigated the carbon and nitrogen primary metabolism in intact roots of French bean (Phaseolus vulgaris L.) plants maintained under continuous darkness for 4 days. We combined natural isotopic (15)N/(14)N measurements, metabolomic and (13)C-labeling data and show that intact roots continued nitrate assimilation to glutamate for at least 3 days while the respiration rate decreased. The activity of the tricarboxylic acid cycle diminished so that glutamate synthesis was sustained by the anaplerotic phosphoenolpyruvate carboxylase fixation. Presumably, the pentose phosphate pathway contributed to provide reducing power for nitrate reduction. All the biosynthetic metabolic fluxes were nevertheless down-regulated and, consequently, the concentration of all amino acids decreased. This is the case of asparagine, strongly suggesting that, as opposed to excised root tips, protein remobilization in intact roots remained very low for 3 days in spite of the restriction of respiratory substrates. Copyright (c) 2009 John Wiley & Sons, Ltd.
Kilburn, K H; Warshaw, R H; Thornton, J C; Thornton, K; Miller, A
1992-01-01
BACKGROUND: Published predicted values for total lung capacity and residual volume are often based on a small number of subjects and derive from different populations from predicted spirometric values. Equations from the only two large studies gave smaller predicted values for total lung capacity than the smaller studies. A large number of subjects have been studied from a population which has already provided predicted values for spirometry and transfer factor for carbon monoxide. METHODS: Total lung capacity was measured from standard posteroanterior and lateral chest radiographs and forced vital capacity by spirometry in a population sample of 771 subjects. Prediction equations were developed for total lung capacity (TLC), residual volume (RV) and RV/TLC in two groups--normal and total. Subjects with signs or symptoms of cardiopulmonary disease were combined with the normal subjects and equations for all subjects were also modelled. RESULTS: Prediction equations for TLC and RV in non-smoking normal men and women were square root transformations which included height and weight but not age. They included a coefficient for duration of smoking in current smokers. The predictive equation for RV/TLC included weight, age, age and duration of smoking for current smokers and ex-smokers of both sexes. For the total population the equations took the same form but the height coefficients and constants were slightly different. CONCLUSION: These population based prediction equations for TLC, RV and RV/TLC provide reference standards in a population that has provided reference standards for spirometry and single breath transfer factor for carbon monoxide. PMID:1412094
The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants
Franklin, Oskar; Cambui, Camila Aguetoni; Gruffman, Linda; ...
2016-06-29
The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that themore » carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production.« less
The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, Oskar; Cambui, Camila Aguetoni; Gruffman, Linda
The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that themore » carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production.« less
The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants
Cambui, Camila Aguetoni; Gruffman, Linda; Palmroth, Sari; Oren, Ram; Näsholm, Torgny
2016-01-01
Abstract The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production. PMID:27241731
Identifying seedling root architectural traits associated with yield and yield components in wheat.
Xie, Quan; Fernando, Kurukulasuriya M C; Mayes, Sean; Sparkes, Debbie L
2017-05-01
Plant roots growing underground are critical for soil resource acquisition, anchorage and plant-environment interactions. In wheat ( Triticum aestivum ), however, the target root traits to improve yield potential still remain largely unknown. This study aimed to identify traits of seedling root system architecture (RSA) associated with yield and yield components in 226 recombinant inbred lines (RILs) derived from a cross between the bread wheat Triticum aestivum 'Forno' (small, wide root system) and spelt Triticum spelta 'Oberkulmer' (large, narrow root system). A 'pouch and wick' high-throughput phenotyping pipeline was used to determine the RSA traits of 13-day-old RIL seedlings. Two field experiments and one glasshouse experiment were carried out to investigate the yield, yield components and phenology, followed by identification of quantitative trait loci (QTLs). There was substantial variation in RSA traits between genotypes. Seminal root number and total root length were both positively associated with grains m -2 , grains per spike, above-ground biomass m -2 and grain yield. More seminal roots and longer total root length were also associated with delayed maturity and extended grain filling, likely to be a consequence of more grains being defined before anthesis. Additionally, the maximum width of the root system displayed positive relationships with spikes m -2 , grains m -2 and grain yield. Ten RILs selected for the longest total roots exhibited the same effects on yield and phenology as described above, compared with the ten lines with the shortest total roots. Genetic analysis revealed 38 QTLs for the RSA, and QTL coincidence between the root and yield traits was frequently observed, indicating tightly linked genes or pleiotropy, which concurs with the results of phenotypic correlation analysis. Based on the results from the Forno × Oberkulmer population, it is proposed that vigorous early root growth, particularly more seminal roots and longer total root length, is important to improve yield potential, and should be incorporated into wheat ideotypes in breeding. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
STUDYING FOREST ROOT SYSTEMS - AN OVERVIEW OF METHODOLOGICAL PROBLEMS
The study of tree root systems is central to understanding forest ecosystem carbon and nutrient cycles, nutrient and water uptake, C allocation patterns by trees, soil microbial populations, adaptation of trees to stress, soil organic matter production, etc. Methodological probl...
Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren
2016-02-01
Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (P<0.00 1). Significant positive relationship was detected between mean annual precipitation and soil organic carbon concentration (r=0.838, P<0.001) in the of pooled data. From south to north (start from northernmost Ordos), i.e. along the 368-591 mm precipitation gradient, the soil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland.
Separation of soil respiration: a site-specific comparison of partition methods
NASA Astrophysics Data System (ADS)
Comeau, Louis-Pierre; Lai, Derrick Y. F.; Jinglan Cui, Jane; Farmer, Jenny
2018-06-01
Without accurate data on soil heterotrophic respiration (Rh), assessments of soil carbon (C) sequestration rate and C balance are challenging to produce. Accordingly, it is essential to determine the contribution of the different sources of the total soil CO2 efflux (Rs) in different ecosystems, but to date, there are still many uncertainties and unknowns regarding the soil respiration partitioning procedures currently available. This study compared the suitability and relative accuracy of five different Rs partitioning methods in a subtropical forest: (1) regression between root biomass and CO2 efflux, (2) lab incubations with minimally disturbed soil microcosm cores, (3) root exclusion bags with hand-sorted roots, (4) root exclusion bags with intact soil blocks and (5) soil δ13C-CO2 natural abundance. The relationship between Rh and soil moisture and temperature was also investigated. A qualitative evaluation table of the partition methods with five performance parameters was produced. The Rs was measured weekly from 3 February to 19 April 2017 and found to average 6.1 ± 0.3 Mg C ha-1 yr-1. During this period, the Rh measured with the in situ mesh bags with intact soil blocks and hand-sorted roots was estimated to contribute 49 ± 7 and 79 ± 3 % of Rs, respectively. The Rh percentages estimated with the root biomass regression, microcosm incubation and δ13C-CO2 natural abundance were 54 ± 41, 8-17 and 61 ± 39 %, respectively. Overall, no systematically superior or inferior Rs partition method was found. The paper discusses the strengths and weaknesses of each technique with the conclusion that combining two or more methods optimizes Rh assessment reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudinski, J.B.; Torn, M.S.; Riley, W.J.
2009-02-01
Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon ({sup 14}C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissuemore » is {approx}0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-{sup 14}C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1-2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).« less
Nitrogen uptake and utilization by intact plants
NASA Technical Reports Server (NTRS)
Raper, C. D., Jr.; Tolley-Henry, L. C.
1986-01-01
The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.
Root disease can rival fire and harvest in reducing forest carbon storage
Sean P. Healey; Crystal L. Raymond; I. Blakey Lockman; Alexander J. Hernandez; Chris Garrard; Chengquan Huang
2016-01-01
Root diseases are known to suppress forest regeneration and reduce growth rates, and they may become more common as susceptible tree species become maladapted in parts of their historic ranges due to climate change. However, current ecosystem models do not track the effects of root disease on net productivity, and there has been little research on how the dynamics of...
Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar
Daniel B. Stover; Frank P. Day; John R Butnor; Bert G. Drake
2007-01-01
Growth and distribution of coarse roots in time and space represent a gap in our understanding of belowground ecology. Large roots may play a critical role in carbon sequestration belowground. Using ground-penetrating radar (GPR), we quantified coarseroot biomass from an open-top chamber experiment in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. GPR...
Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon?
Selosse, Marc-André; Martos, Florent
2014-11-01
The roots of orchids associate with mycorrhizal fungi, the rhizoctonias, which are considered to exchange mineral nutrients against plant carbon. The recent discovery that rhizoctonias grow endophytically in non-orchid plants raises the possibility that they provide carbon to orchids, explaining why some orchids differ in isotopic abundances from autotrophic plants.
Tri-party underground symbiosis between a weevil, bacteria and a desert plant.
Shelef, Oren; Helman, Yael; Friedman, Ariel-Leib-Leonid; Behar, Adi; Rachmilevitch, Shimon
2013-01-01
Inhabitants of arid ecosystems face severe nitrogen and water limitations. Inventive adaptations by organisms occupying such habitats are essential for survival. This study describes a tri-party symbiotic interaction between a plant (Salsola inermis), a beetle (Conorhynchus pistor), and a bacterium (Klebsiella pneumonia). The weevil survives by living within a mud structure affixed to the plant roots, thus benefiting from increased carbon and water, and refuge from predators and parasites. Active nitrogen-fixing bacteria harbored within the weevil's gut mediate this interaction, by supplying nitrogen to the system, which eventually promotes seed development. We studied the correlation between the weevil's existence and (i) root carbon and nitrogen content, (ii) soil water content and (iii) seed weight. Roots hosting weevils contained more nitrogen, heavier seeds and less carbon. In addition, water content was higher around the roots than in open spaces a short distance from the plant stem. Bacterial studies and nitrogen-fixation analyses, including molecular and chemical assays, indicated atmospheric nitrogen fixation in the larval stage and identified the bacterium. The coexistence of weevil and bacterial behavior coinciding with the plant's life cycle was revealed here by a long period of field observations. Out of over 60,000 known weevils, this is the only report of a weevil living most of its life underground without harming plants. The unique tri-party interaction described herein shows the important ecological role of desert plant roots and provides an example of a sustainable consortium of living organisms coping with the challenging desert environment.
ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS
Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...
ASSESSING ROOT DEMOGRAPHY AND CARBOHYDRATE DYNAMICS OF ZOSTERA MARINA
To help establish protective criteria for Zostera marina a more complete understanding of the factors affecting the status, condition, distribution and ecophysiology of Z. marina is needed. While Z. marina shoots are readily observed, assessing growth and carbon dynamics of roots...
Nabubuya, Agnes; Namutebi, Agnes; Byaruhanga, Yusuf; Narvhus, Judith; Wicklund, Trude
2017-11-01
Changes in total starch and reducing sugar content in five sweetpotato varieties were investigated weekly during root development and following subjection of the roots to different postharvest handling and storage conditions. Freshly harvested (noncured) roots and cured roots (spread under the sun for 4 days at 29-31°C and 63-65% relative humidity [RH]) were separately stored at ambient conditions (23°C-26°C and 70-80% RH) and in a semiunderground pit (19-21°C and 90-95% RH). Changes in pasting properties of flour from sweetpotato roots during storage were analyzed at 14-day intervals. Significant varietal differences ( p < .05) in total starch, sucrose, glucose, maltose, and fructose concentrations were registered. The total starch and sucrose content of the roots did not change significantly ( p < .05) during root development (72.4 and 7.4%, respectively), whereas the average concentrations of glucose, maltose, and fructose decreased markedly (0.46-0.18%, 0.55-0.28%, and 0.43-0.21%), respectively. Storage led to decrease in total starch content (73-47.7%) and increase in sucrose and glucose concentrations (8.1-11.2% and 0.22-1.57%, respectively). Storage also resulted in reduction in sweetpotato flour pasting viscosities. Curing resulted in increased sucrose and glucose concentrations (9.1-11.2% and 0.45-0.85%, respectively) and marked reduction ( p < .05) in total starch content (72.9-47.6%). This resulted in low pasting viscosities compared to flour from storage of uncured roots. These findings show that significant changes occur in the carbohydrate components of sweetpotato roots during storage compared to development and present an opportunity for diverse utilization of flours from sweetpotato roots in the food industry.
NASA Technical Reports Server (NTRS)
Monje, O.; Bugbee, B.
1998-01-01
The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.
Root-shoot allometry of tropical forest trees determined in a large-scale aeroponic system.
Eshel, Amram; Grünzweig, José M
2013-07-01
This study is a first step in a multi-stage project aimed at determining allometric relationships among the tropical tree organs, and carbon fluxes between the various tree parts and their environment. Information on canopy-root interrelationships is needed to improve understanding of above- and below-ground processes and for modelling of the regional and global carbon cycle. Allometric relationships between the sizes of different plant parts will be determined. Two tropical forest species were used in this study: Ceiba pentandra (kapok), a fast-growing tree native to South and Central America and to Western Africa, and Khaya anthotheca (African mahogany), a slower-growing tree native to Central and Eastern Africa. Growth and allometric parameters of 12-month-old saplings grown in a large-scale aeroponic system and in 50-L soil containers were compared. The main advantage of growing plants in aeroponics is that their root systems are fully accessible throughout the plant life, and can be fully recovered for harvesting. The expected differences in shoot and root size between the fast-growing C. pentandra and the slower-growing K. anthotheca were evident in both growth systems. Roots were recovered from the aeroponically grown saplings only, and their distribution among various diameter classes followed the patterns expected from the literature. Stem, branch and leaf allometric parameters were similar for saplings of each species grown in the two systems. The aeroponic tree growth system can be utilized for determining the basic allometric relationships between root and shoot components of these trees, and hence can be used to study carbon allocation and fluxes of whole above- and below-ground tree parts.
Haider, Muhammad Sajjad; Barnes, Jeremy D.; Cushman, John C.; Borland, Anne M.
2012-01-01
In the halophytic species Mesembryanthemum crystallinum, the induction of crassulacean acid metabolism (CAM) by salinity requires a substantial investment of resources in storage carbohydrates to provide substrate for nocturnal CO2 uptake. Acclimation to salinity also requires the synthesis and accumulation of cyclitols as compatible solutes, maintenance of root respiration, and nitrate assimilation. This study assessed the hierarchy and coordination of sinks for carbohydrate in leaves and roots during acclimation to salinity in M. crystallinum. By comparing wild type and a CAM-/starch-deficient mutant of this species, it was sought to determine if other metabolic sinks could compensate for a curtailment in CAM and enable acclimation to salinity. Under salinity, CAM deficiency reduced 24 h photosynthetic carbon gain by >50%. Cyclitols were accumulated to comparable levels in leaves and roots of both the wild type and mutant, but represented only 5% of 24 h carbon balance. Dark respiration of leaves and roots was a stronger sink for carbohydrate in the mutant compared with the wild type and implied higher maintenance costs for the metabolic processes underpinning acclimation to salinity when CAM was curtailed. CAM required the nocturnal mobilization of >70% of primary carbohydrate in the wild type and >85% of carbohydrate in the mutant. The substantial allocation of carbohydrate to CAM limited the export of sugars to roots, and the root:shoot ratio declined under salinity. The data suggest a key role for the vacuole in regulating the supply and demand for carbohydrate over the day/night cycle in the starch-/CAM-deficient mutant. PMID:22219316
NASA Astrophysics Data System (ADS)
domec, J.; King, J. S.; Ogée, J.; Noormets, A.; Warren, J.; Meinzer, F. C.; Sun, G.; Jordan-Meille, L.; Martineau, E.; Brooks, R. J.; Laclau, J.; Battie Laclau, P.; McNulty, S.
2012-12-01
INVITED ABSTRACT: Deep root water uptake and hydraulic redistribution (HR) play a major role in forest ecosystems during drought, but little is known about the impact of climate change on root-zone processes influencing HR and its consequences on water and carbon fluxes. Using data from two old growth sites in the western USA, two mature sites in the eastern USA, one site in southern Brazil, and simulations with the process-based model MuSICA, our objectives were to show that HR can 1) mitigate the effects of soil drying on root functioning, and 2) have important implications for carbon uptake and net ecosystem exchange (NEE). In a dry, old-growth ponderosa pine (USA) and a eucalyptus stand (Brazil) both characterized by deep sandy soils, HR limited the decline in root hydraulic conductivity and increased dry season tree transpiration (T) by up to 30%, which impacted NEE through major increases in gross primary productivity (GPP). The presence of deep-rooted trees did not necessarily imply high rates of HR unless soil texture allowed large water potential gradients to occur, as was the case in the wet old-growth Douglas-fir/mixed conifer stand. At the Duke mixed hardwood forest characterized by a shallow clay-loam soil, modeled HR was low but not negligible, representing annually up to 10% of T, and maintaining root conductance high. At this site, in the absence of HR, it was predicted that annual GPP would have been diminished by 7-19%. At the coastal loblolly pine plantation, characterized by deep organic soil, HR limited the decline in shallow root conductivity by more than 50% and increased dry season T by up to 40%, which increased net carbon gain by the ecosystem by about 400 gC m-2 yr-1, demonstrating the significance of HR in maintaining the stomatal conductance and assimilation capacity of the whole ecosystem. Under future climate conditions (elevated atmospheric [CO2] and temperature), HR is predicted to be reduced by up to 50%; reducing the resilience of trees to droughts. Under future conditions, T is predicted to stay the same at the Duke mixed hardwood forest, but to decline slightly at the coastal loblolly pine plantation and slightly increase at the old-growth ponderosa pine stand and the eucalyptus plantation. As a consequence, water use efficiency in all sites was predicted to improve dramatically under future climate conditions. Our simulations also showed that the negative effect of drier nights on HR would be greater under future climate conditions. Assuming no increase in stomatal control with increasing drier nights, increased vapor pressure deficit at night under future conditions was sufficient to drive significant nighttime T at all sites , which reduced HR, because the plant and the atmosphere became a sink for hydraulically redistributed water . We concluded that the predicted reductions in HR under future climate conditions are expected to play an important regulatory role in land-atmosphere interactions by affecting whole ecosystem carbon and water balance. We suggest that root distribution should be treated dynamically in response to climate change and that HR and its interactions with rooting depth and soil texture should be implemented in soil-vegetation-atmosphere transfer models.
Lenzewski, Nikola; Mueller, Peter; Meier, Robert Johannes; Liebsch, Gregor; Jensen, Kai; Koop-Jakobsen, Ketil
2018-04-01
Root-mediated CO 2 uptake, O 2 release and their effects on O 2 and CO 2 dynamics in the rhizosphere of Lobelia dortmanna were investigated. Novel planar optode technology, imaging CO 2 and O 2 distribution around single roots, provided insights into the spatiotemporal patterns of gas exchange between roots, sediment and microbial community. In light, O 2 release and CO 2 uptake were pronounced, resulting in a distinct oxygenated zone (radius: c. 3 mm) and a CO 2 -depleted zone (radius: c. 2 mm) around roots. Simultaneously, however, microbial CO 2 production was stimulated within a larger zone around the roots (radius: c. 10 mm). This gave rise to a distinct pattern with a CO 2 minimum at the root surface and a CO 2 maximum c. 2 mm away from the root. In darkness, CO 2 uptake ceased, and the CO 2 -depleted zone disappeared within 2 h. By contrast, the oxygenated root zone remained even after 8 h, but diminished markedly over time. A tight coupling between photosynthetic processes and the spatiotemporal dynamics of O 2 and CO 2 in the rhizosphere of Lobelia was demonstrated, and we suggest that O 2 -induced stimulation of the microbial community in the sediment increases the supply of inorganic carbon for photosynthesis by building up a CO 2 reservoir in the rhizosphere. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Leaching of Mixtures of Biochar and Fly Ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palumbo, Anthony Vito; Porat, Iris; Phillips, Jana Randolph
2009-01-01
Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments.2, 5, 6 Both the residual char from biomass pyrolysis7-9, 12 (biochar) and fly ash from coal combustion1, 13, 14 have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations.10, 11, 16 Adding biochar to soil generally raises pH, increases total nitrogenmore » and total phosphorous, encourages greater root development, improves cation exchange capacity and reduces available aluminum.3, 17 Combinations of these benefits likely lead to the observed increased yields for crops including corn and sugarcane.17 with biochar addition to soil. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) 8, 17 than do unammended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way.18 Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes.15 Here, we are examining the properties of mixtures of biochar, fly ash, and soil and evaluating leaching of organic carbon and metals from the mixtures.« less
Cirocco, Robert M; Facelli, José M; Watling, Jennifer R
2017-01-01
Associations between plants and nitrogen (N)-fixing rhizobia intensify with decreasing N supply and come at a carbon cost to the host. However, what additional impact parasitic plants have on their leguminous hosts' carbon budget in terms of effects on host physiology and growth is unknown. Under glasshouse conditions, Ulex europaeus and Acacia paradoxa either uninfected or infected with the hemiparasite Cassytha pubescens were supplied (high nitrogen (HN)) or not (low nitrogen (LN)) with extra N. The photosynthetic performance and growth of the association were measured. Cassytha pubescens significantly reduced the maximum electron transport rates and total biomass of U. europaeus but not those of A. paradoxa, regardless of N. Infection significantly decreased the root biomass of A. paradoxa only at LN, while the significant negative effect of infection on roots of U. europaeus was less severe at LN. Infection had a significant negative impact on host nodule biomass. Ulex europaeus supported significantly greater parasite biomass (also per unit host biomass) than A. paradoxa, regardless of N. We concluded that rhizobia do not influence the effect of a native parasite on overall growth of leguminous hosts. Our results suggest that C. pubescens will have a strong impact on U. europaeus but not A. paradoxa, regardless of N in the field. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Chronic nitrogen deposition influences the chemical dynamics ...
Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linking these microbial responses to changes in the degradation of specific compounds in decaying litter is sparse. We used wet chemistry and Fourier transform infrared spectroscopy (FTIR) methodologies to study the effects of chronic simulated nitrogen deposition on leaf litter and fine root chemistry during a three-year decomposition experiment at four northern hardwood forests in the north-central USA. Leaf litter and fine roots were highly different in initial chemistry such as concentrations of acid-insoluble fraction (AIF, or Klason lignin) and condensed tannins (CTs). These initial differences persisted over the course of decomposition. Results from gravimetrically-defined AIF and lignin/carbohydrate reference IR peak ratios both provide evidence that lignin in fine roots was selectively preserved under simulated nitrogen deposition. Lignin/carbohydrate peak ratios were strongly correlated with AIF, suggesting that AIF is a good predictor of lignin. Because AIF is abundant in fine roots, slower AIF degradation was the major driver of the slower fine root decomposition under nitrogen enrichment, explaining 73.9 % of the additional root mass retention. Nitrogen enrichment also slowed the
Marupakula, Srisailam; Mahmood, Shahid; Jernberg, Johanna; Nallanchakravarthula, Srivathsa; Fahad, Zaenab A; Finlay, Roger D
2017-11-01
Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov
2014-01-01
Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)–the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed. PMID:24722409
[Effects of long-term different fertilizations on biomass and nutrient content of maize root].
Cai, Miao; Meng, Yan; Mohammad Amin, Ahmadzai; Zhou, Jian-bin
2015-08-01
Taking two long-term local field trials at the south edge of the Loess Plateau, which were found in 1990 and 2003, respectively, as test subjects, the effects of different fertilization practices on the maize root biomass and nutrient content were investigated in this paper. Maize roots in the 0-20 cm top soil post-maize harvest from the different fertilization practices were collected by hand in October 2011. The results showed that compared with control without fertilization and N, NK, or PK treatments, the NP, NPK, fertilizers plus manure (M1NPK and M2NPK) or plus straw return (SNPK) treatments significantly increased the dry mass of maize root. The C, N, P and K contents in maize roots in the NP, NPK, M1 NPK, M2NPK and SNPK treatments were also significantly higher than those of control, especially in the NPK plus organic manure treatments (M1 NPK and M2NPK) in the trial. Compared with the N fertilizer free treatment (N0), root biomass in the 120 kg N · hm(-2) (N120) and 240 kg N · hm(-2) ( N240) fertilization treatments increased by 38% and 45%, respectively, but there was no significant difference between N120 and N240 treatments. Nitrogen fertilizer application (N120 and N240) also improved the C, N, P and K contents in maize root. The water soluble organic C and total soluble N contents of maize root in the NP, NPK, M1NPK, M2NPK, SNPK and the N120 and N240 treatments were greater than those of control and other treatments. Otherwise, the cellulose and lignin contents in maize roots declined in the NPK, M1NPK, M2NPK, and SNPK treatments compared with other treatments. So the root C/N and lignin/N ratios in the control, PK and N0 treatments were significantly higher than those in the NP, NPK, M1NPK, M2NPK and SNPK treatments. We concluded that the optimum fertilization (e. g., NP, NPK, MNPK and SNPK treatments) could increase maize root growth and nutrient content and improve soil fertility and carbon sequestration through root residue into soil.
Ferlian, Olga; Wirth, Christian; Eisenhauer, Nico
2017-11-01
Soil microorganisms are the main primary decomposers of plant material and drive biogeochemical processes like carbon and nitrogen cycles. Hence, knowledge of their nutritional demands and limitations for activity and growth is of particular importance. However, potential effects of the stoichiometry of soil and plant species on soil microbial activity and carbon use efficiency are poorly understood. Soil properties and plant traits are assumed to drive microbial carbon and community structure. We investigated the associations between C and N concentrations of leaf, root, and soil as well as their ratios and soil microbial biomass C and activity (microbial basal respiration and specific respiratory quotient) across 32 young native angiosperm tree species at two locations in Central Germany. Correlations between C:N ratios of leaves, roots, and soil were positive but overall weak. Only regressions between root and leaf C:N ratios as well as between root and soil C:N ratios were significant at one site. Soil microbial properties differed significantly between the two sites and were significantly correlated with soil C:N ratio across sites. Soil C concentrations rather than N concentrations drove significant effects of soil C:N ratio on soil microbial properties. No significant correlations between soil microbial properties and leaf as well as root C:N ratios were found. We found weak correlations of C:N ratios between plant aboveground and belowground tissues. Furthermore, microorganisms were not affected by the stoichiometry of plant tissues in the investigated young trees. The results suggest that soil stoichiometry represents a consistent determinant of soil microbial biomass and respiration. Our study indicates that stoichiometric relationships among tree organs can be weak and poor predictors of soil microbial properties in young tree stands. Further research in controlled experimental settings with a wide range of tree species is needed to study the role of plant chemical traits like the composition and stoichiometry of root exudates in determining interactions between above- and belowground compartments.
NASA Astrophysics Data System (ADS)
Bradley, Robert; Paterson, Eric; Chapman, Steve; Thornton, Barry; Sim, Allan
2013-04-01
Plant roots provide various forms of soil labile carbon (i.e., rhizodeposition), which stimulate the growth of heterotrophic bacteria in the rhizosphere. This, in turn, provides a food source for phagotrophic protozoa and other bacterivores, whose carbon:nutrient ratios are generally higher than those of their food source. In order to maintain their stoichiometric composition, bacterivores release their extra nutrients into the rhizosphere, where they may be absorbed by plant roots. Thus, rhizodeposition should reduce carbon limitation, but increase nutrient demand, of the soil microbial biomass. We hypothesized that this shift towards nutrient deficiency would stimulate the production of microbial enzymes that depolymerise soil organic matter into microbial available forms. In other words, roots should stimulate the decomposition of soil organic matter. We report on experiment where we tested such a "root-priming" effect using 3 contrasting plant species (Achillea millefolium, Lolium perenne, Trifolium repens). An agricultural soil, with a delta-13C value of approximately -14 ‰ , was transferred into 30 pots and planted with seeds of each species. A ring was inserted in the middle of each pot, and no seeds were planted within the ring. Plants were grown in a growth chamber designed to deliver 13C-depleted air. The resulting plant biomass had a delta-13C value of approximately -52 ‰ . On 7 occasions during the growth trial, pots were sampled for the flux and delta-13C value of soil CO2. Using similar data from control pots without plants, we compared the expected vs. observed contributions of CO2 from roots and soil organic matter. Results from this study revealed a negative root-priming effect for all three species. We discuss the experimental conditions that could have led to this observation, as well as the novelty and potential of our experimental protocol.
Role of plant-rock interactions in the N cycle of oligotrophic environments
NASA Astrophysics Data System (ADS)
Gaddis, E. E.; Zaharescu, D. G.; Dontsova, K.; Chorover, J.; Galey, M.; Huxman, T. E.
2013-12-01
The vital role of nitrogen--an abundant, but inaccessible building block for growth--in plants is well known. At the same time, plants and microorganisms are driving forces for accumulation of available N in the soils as they form. A deep understanding of N cycle initiation, progression, and link to ecological systems and their development is therefore necessary. A mesocosm experiment was set up with the goal of exploring the role of interactions between four rock types and biota on N fate in oligotrophic environments. Basalt, rhyolite, granite, and schist were used with 6 treatments: abiotic control; microbes only; grass and microbes; pine and microbes; grass, microbes, and mycorrhizal fungi; and pine, microbes, and mycorrhizal fungi. Pinus ponderosa and Buchloe dactyloides were seeded on the different rock media and maintained with purified air and water but no nutrient additions for 8 month. Throughout the experiment leachate solution was collected and its chemical composition characterized, including organic and inorganic C and N. In addition, plant roots were scanned and their images analyzed to quantify their morphological features. Root parameters included measurements of length, surface area, diameter, volume, the number of tips, forks and links, altitude, and overall plant biomass. Over the 8 month period, there was sustained vegetation growth on all rocks without N addition. A high C:N ratio was seen across all substrates, indicating N deficiency. A strong relationship was observed between total N removal in soil leachate and a number of plant parameters, including plant biomass, total surface area of the roots, sum of the root tips, and total root volume. These relationships were the strongest in basalt, where the pines had higher root surface area than grasses and this was accompanied by higher total N in leachate. There was also a positive correlation between total N removal and the total biomass, total N and the sum of the root tips, and total N and the sum of the root volume. This work shows the strong root-rock interactions effect on N that is characteristic of oligotrophic environments. Significant differences in total N between rock types
Delaplace, Pierre; Delory, Benjamin M; Baudson, Caroline; Mendaluk-Saunier de Cazenave, Magdalena; Spaepen, Stijn; Varin, Sébastien; Brostaux, Yves; du Jardin, Patrick
2015-08-12
Plant growth-promoting rhizobacteria are increasingly being seen as a way of complementing conventional inputs in agricultural systems. The effects on their host plants are diverse and include volatile-mediated growth enhancement. This study sought to assess the effects of bacterial volatiles on the biomass production and root system architecture of the model grass Brachypodium distachyon (L.) Beauv. An in vitro experiment allowing plant-bacteria interaction throughout the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth-promotion ability over a 10-day co-cultivation period. Five groups of bacteria were defined and characterised based on their combined influence on biomass production and root system architecture. The observed effects ranged from unchanged to greatly increased biomass production coupled with increased root length and branching. Primary root length was increased only by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03, which induced an 81 % increase in total biomass, as well as enhancing total root length, total secondary root length and total adventitious root length by 88.5, 201.5 and 474.5 %, respectively. This study is the first report on bacterial volatile-mediated growth promotion of a grass plant. Contrasting modulations of biomass production coupled with changes in root system architecture were observed. Most of the strains that increased total plant biomass also modulated adventitious root growth. Under our screening conditions, total biomass production was strongly correlated with the length and branching of the root system components, except for primary root length. An analysis of the emission kinetics of the bacterial volatile compounds is being undertaken and should lead to the identification of the compounds responsible for the observed growth-promotion effects. Within the context of the inherent characteristics of our in vitro system, this paper identifies the next critical experimental steps and discusses them from both a fundamental and an applied perspective.
Chen, Yaping; Chen, Guangcheng; Ye, Yong
2015-09-01
Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27 mg CO2 m(-2) h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14 μmol m(-2) h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. Copyright © 2015. Published by Elsevier B.V.
Postharvest conservation of the tuberous roots of Pachyrhizus Ahipa (Wedd) Parodi.
Mussury, Rosilda M; Scalon, Silvana P Q; Silva, Magaiver A; Silva, Tatiane F; Gomes, Hellen; Gassi, Rosimeire
2013-01-01
This paper aimed to evaluate the effects of storage periods on the conservation of Pachyrhizus ahipa roots at different temperatures and packaging materials. The roots were harvested, washed, packed in PVC, plastic bags, without wrappings (control) and stored in polystyrene trays in refrigerators, or cold chambers, or at room temperature. Total titratable acidity (TTA), total soluble solids (TSS), pH, as well as their ash, lipid, total carbohydrate and protein (dry basis) contents were analyzed. The lowest loss of root fresh weight was observed in the cold chamber and plastic bags. The TTA remained higher among roots stored in the cold chamber and in PVC packaging. The lowest TSS contents were observed for roots stored in the cold chamber, and these did not vary among the packing materials. The average carbohydrate content percentage for all treatments was 84.9%. The percentage of lipids was highest in roots stored at room temperature while protein and ash contents were highest in roots under refrigeration. The best storage conditions for roots are plastic bags packaging in a cold chamber, with the roots retaining appropriate quality for commercialization for up to 30 days.
NASA Astrophysics Data System (ADS)
Fraterrigo, J.; Ream, K.; Knoepp, J.
2017-12-01
Forest insects and pathogens (FIPs) can cause uncertain changes in forest carbon balance, potentially influencing global atmospheric carbon dioxide (CO2) concentrations. We quantified the effects of hemlock (Tsuga canadensis L. Carr.) mortality on soil carbon fluxes and pools for a decade following either girdling or natural infestation by hemlock woolly adelgid (HWA; Adelges tsugae) to improve mechanistic understanding of soil carbon cycling response to FIPs. Although soil respiration (Rsoil) was similar among reference plots and plots with hemlock mortality, both girdled and HWA-infested plots had greater activities of β-glucosidase, a cellulose-hydrolyzing extracellular enzyme, and decreased O-horizon mass and fine root biomass from 2005 to 2013. During this period, total mineral soil carbon accumulated at a higher rate in disturbed plots than in reference plots in both the surface (0-10 cm) and subsurface (10-30 cm); increases were predominantly in the mineral-associated fraction of the soil organic matter. In contrast, particulate organic matter carbon accrued slowly in surface soils and declined in the subsurface of girdled plots. δ13C values of this fraction demonstrate that particulate organic matter carbon in the surface soil has become more microbially processed over time, suggesting enhanced decomposition of organic matter in this pool. Together, these findings indicate that hemlock mortality and subsequent forest regrowth has led to enhanced soil carbon stabilization in southern Appalachian forests through the translocation of carbon from detritus and particulate soil organic matter pools to the mineral-associated organic matter pool. These findings have implications for ecosystem management and modeling, demonstrating that forests may tolerate moderate disturbance without diminishing soil carbon storage when there is a compensatory growth response by non-host trees.
Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico
Návar-Chaidez, Jose de Jesus
2008-01-01
Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem. For the period of 1980–1996, the Tamaulipan thornscrub is presenting an annual deforestation rate of 2.27% indicating that approximately 600 km2 of this plant community are lost every year and that 60% of the original Mexican Tamaulipan thornscrub vegetation has been lost since the 1950's. On the other hand, intensive agriculture, including introduced grasslands increased (4,000 km2) from 32 to 42% of the total studied area, largely at the expense of the Tamaulipan thornscrub forests. Land-use changes from Tamaulipan thornscrub forest to agriculture contribute 2.2 Tg to current annual carbon emissions and standing biomass averages 0.24 ± 0.06 Tg, root biomass averages 0.17 ± 0.03 Tg, and soil organic carbon averages 1.80 ± 0.27 Tg. Land-use changes from 1950 to 2000 accounted for Carbon emissions of the order of 180.1 Tg. Projected land-use changes will likely contribute to an additional carbon flux of 98.0 Tg by the year 2100. Practices to conserve sequester, and transfer carbon stocks in semi-arid ecosystems are discussed as a means to reduce carbon flux from deforestation practices. PMID:18826617
Developing Tools for Ecological Forestry and Carbon Management in Longleaf Pine
2016-08-01
22 Table 5.2. Carbon concentrations of plants in the ground cover layer by growth form and carbon concentrations in longleaf...harvest. The stand is connected at the edges to form periodic boundary conditions (toroidal) ...............................................241...coarse root mass. Table 5.2. Carbon concentrations (%) of plants in the ground cover layer (< 1 m in height) by growth form and C
Richard E. Dickson; Patricia T. Tomlinson; J. G. Isebrands
2000-01-01
The episodic or flushing growth habit of northern red oak (Quercus rubra L.,) has a significant influence on carbon fixation, carbon transport from source leaves, and carbon allocation within the plant; however, the impact of episodic growth on carbon parciprioning among chemical fractions is unknown. Median-flush leaves of the first and second flush...
Světlíková, P; Hájek, T; Těšitel, J
2018-01-01
Melampyrum pratense is an annual root-hemiparasitic plant growing mostly in forest understorey, an environment with unstable light conditions. While photosynthetic responses of autotrophic plants to variable light conditions are in general well understood, light responses of root hemiparasites have not been investigated. We carried out gas exchange measurements (light response and photosynthetic induction curves) to assess the photosynthetic performance of M. pratense in spring and summer. These data and recorded light dynamics data were subsequently used to model carbon balance of the hemiparasite throughout the entire growth season. Summer leaves had significantly lower rates of saturated photosynthesis and dark respiration than spring leaves, a pattern expected to reflect the difference between sun- and shade-adapted leaves. However, even the summer leaves of the hemiparasite exhibited a higher rate of light-saturated photosynthesis than reported in non-parasitic understorey herbs. This is likely related to its annual life history, rare among other understorey herbs. The carbon balance model considering photosynthetic induction still indicated insufficient autotrophic carbon gain for seed production in the summer months due to limited light availability and substantial carbon loss through dark respiration. The results point to potentially high importance of heterotrophic carbon acquisition in M. pratense, which could be of at least comparable importance as in other mixotrophic plants growing in forests - mistletoes and partial mycoheterotrophs. It is remarkable that despite apparent evolutionary pressure towards improved carbon acquisition from the host, M. pratense retains efficient photosynthesis and high transpiration rate, the ecophysiological traits typical of related root hemiparasites in the Orobanchaceae. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Plant traits and trait-based vegetation modeling in the Arctic
NASA Astrophysics Data System (ADS)
Xu, C.; Sevanto, S.; Iversen, C. M.; Salmon, V. G.; Rogers, A.; Wullschleger, S.; Wilson, C. J.
2017-12-01
Arctic tundra environments are characterized by extremely cold temperatures, strong winds, short growing season and thin, nutrient-poor soil layer impacted by permafrost. To survive in this environment vascular plants have developed traits that simultaneously promote high productivity under favorable environments, and survival in harsh conditions. To improve representation of Arctic tundra vegetation in Earth System Models we surveyed plant trait data bases for key trait parameters that influence modeled ecosystem carbon balance, and compared the traits within plant families occurring in the boreal, temperate and arctic zones. The parameters include photosynthetic carbon uptake efficiency (Vcmax and Jmax), root:shoot ratio, and root and leaf nitrogen content, and we focused on woody shrubs. Our results suggest that root nitrogen content in non-nitrogen fixing tundra shrubs is lower than in representatives of the same families in the boreal or temperate zone. High tissue nitrogen concentrations have been related to high vulnerability to drought. The low root nitrogen concentrations in tundra shrubs may thus be an indication of acclimation to shallow soils, and frequent freezing that has a similar impact on the plant conductive tissue as drought. With current nitrogen availability, nitrogen limitation reduces the benefits of increased temperatures and longer growing seasons to the tundra ecosystem carbon balance. Thawing of permafrost will increase nitrogen availability, and promote plant growth and carbon uptake, but it could also make the shrubs more vulnerable to freeze-thaw cycles, with the overall result of reduced shrub coverage. The final outcome of warming temperatures and thawing of permafrost on tundra shrubs will thus depend on the relative speed of warming and plant acclimation.
Rastogi, Pavitra Kumar; Lal, Nand; Garg, Nimit; Anand, Vishal; Singhal, Rameshwari
2012-01-01
Localised gingival recessions continue to represent an important aesthetic condition requiring treatment in periodontics. Various techniques have been tried to treat exposed root surfaces to improve aesthetics with high percentage of success and minimal discomfort. Root biomodification is done to improve the predictability of these procedures. This clinical report describes periodontal plastic procedure involving subepithelial connective tissue graft with lateral repositioned flap technique and root biomodification with CO2 laser for the management of gingival recession. PMID:22778454
NASA Astrophysics Data System (ADS)
Splettstößer, T.; Pausch, J.
2016-12-01
Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment, which enabled us to monitor CO2 fluxes under zea mays plants with high resolution. The experiment was conducted in a climate chamber where the plants were grown in thin, tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. 13C-CO2 was introduced to allow differentiation between plant and soil derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I δ13C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. In order to visualize the spatial distribution of carbon allocation to the root system a few plants were additionally labeled with 14C and 14C distribution was monitored by 14C imaging of the root systems over 4 days. Based on the 14C distribution a grid was chosen and the soil was sampled from each square of the grid to investigate the impact of carbon allocation hotspots on enzymatic activities and microbial biomass. First initial results show an increase of soil CO2 efflux in the night periods, whereby the contribution of priming is not fully analyzed yet. Additionally, root tips were identified as hotspots of short term carbon allocation via 14C imaging and an in increase in microbial biomass could be measured in this regions. The full results will be shown at AGU 2016.
The allocation of ecosystem net primary productivity in tropical forests
Malhi, Yadvinder; Doughty, Christopher; Galbraith, David
2011-01-01
The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of that ecosystem, and an important feature to correctly represent in terrestrial ecosystem models. Here, we collate and analyse a global dataset of NPP allocation in tropical forests, and compare this with the representation of NPP allocation in 13 terrestrial ecosystem models. On average, the data suggest an equal partitioning of allocation between all three main components (mean 34 ± 6% canopy, 39 ± 10% wood, 27 ± 11% fine roots), but there is substantial site-to-site variation in allocation to woody tissue versus allocation to fine roots. Allocation to canopy (leaves, flowers and fruit) shows much less variance. The mean allocation of the ecosystem models is close to the mean of the data, but the spread is much greater, with several models reporting allocation partitioning outside of the spread of the data. Where all main components of NPP cannot be measured, litterfall is a good predictor of overall NPP (r2 = 0.83 for linear fit forced through origin), stem growth is a moderate predictor and fine root production a poor predictor. Across sites the major component of variation of allocation is a shifting allocation between wood and fine roots, with allocation to the canopy being a relatively invariant component of total NPP. This suggests the dominant allocation trade-off is a ‘fine root versus wood’ trade-off, as opposed to the expected ‘root–shoot’ trade-off; such a trade-off has recently been posited on theoretical grounds for old-growth forest stands. We conclude by discussing the systematic biases in estimates of allocation introduced by missing NPP components, including herbivory, large leaf litter and root exudates production. These biases have a moderate effect on overall carbon allocation estimates, but are smaller than the observed range in allocation values across sites. PMID:22006964
Aguadé, D; Poyatos, R; Gómez, M; Oliva, J; Martínez-Vilalta, J
2015-03-01
Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below -2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants.
Franklin, Oskar; Cambui, Camila Aguetoni; Gruffman, Linda; Palmroth, Sari; Oren, Ram; Näsholm, Torgny
2017-01-01
The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower - up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Root architecture impacts on root decomposition rates in switchgrass
NASA Astrophysics Data System (ADS)
de Graaff, M.; Schadt, C.; Garten, C. T.; Jastrow, J. D.; Phillips, J.; Wullschleger, S. D.
2010-12-01
Roots strongly contribute to soil organic carbon accrual, but the rate of soil carbon input via root litter decomposition is still uncertain. Root systems are built up of roots with a variety of different diameter size classes, ranging from very fine to very coarse roots. Since fine roots have low C:N ratios and coarse roots have high C:N ratios, root systems are heterogeneous in quality, spanning a range of different C:N ratios. Litter decomposition rates are generally well predicted by litter C:N ratios, thus decomposition of roots may be controlled by the relative abundance of fine versus coarse roots. With this study we asked how root architecture (i.e. the relative abundance of fine versus coarse roots) affects the decomposition of roots systems in the biofuels crop switchgrass (Panicum virgatum L.). To understand how root architecture affects root decomposition rates, we collected roots from eight switchgrass cultivars (Alamo, Kanlow, Carthage, Cave-in-Rock, Forestburg, Southlow, Sunburst, Blackwell), grown at FermiLab (IL), by taking 4.8-cm diameter soil cores from on top of the crown and directly next to the crown of individual plants. Roots were carefully excised from the cores by washing and analyzed for root diameter size class distribution using WinRhizo. Subsequently, root systems of each of the plants (4 replicates per cultivar) were separated in 'fine' (0-0.5 mm), 'medium' (0.5-1 mm) and 'coarse' roots (1-2.5 mm), dried, cut into 0.5 cm (medium and coarse roots) and 2 mm pieces (fine roots), and incubated for 90 days. For each of the cultivars we established five root-treatments: 20g of soil was amended with 0.2g of (1) fine roots, (2) medium roots, (3) coarse roots, (4) a 1:1:1 mixture of fine, medium and coarse roots, and (5) a mixture combining fine, medium and coarse roots in realistic proportions. We measured CO2 respiration at days 1, 3, 7, 15, 30, 60 and 90 during the experiment. The 13C signature of the soil was -26‰, and the 13C signature of plants was -12‰, enabling us to differentiate between root-derived C and native SOM-C respiration. We found that the relative abundance of fine, medium and coarse roots were significantly different among cultivars. Root systems of Alamo, Kanlow and Cave-in-Rock were characterized by a large abundance of coarse-, relative to fine roots, whereas Carthage, Forestburg and Blackwell had a large abundance of fine, relative to coarse roots. Fine roots had a 28% lower C:N ratio than medium and coarse roots. These differences led to different root decomposition rates. We conclude that root architecture should be taken into account when predicting root decomposition rates; enhanced understanding of the mechanisms of root decomposition will improve model predictions of C input to soil organic matter.
Zhao, Ya; Lai, Xiao-Pin; Yao, Hai-Yan; Zhao, Ran; Wu, Yi-Na; Li, Geng
2014-03-01
To investigate the effects of superfine comminution extraction technology of ginseng total saponins from Panax ginseng fibrous root, and to make sure the optimal extraction condition. Optimal condition of ginseng total saponins from Panax ginseng fibrous root was based on single factor experiment to study the effects of crushing degree, extraction time, alcohol concentration and extraction temperature on extraction rate. Response surface method was used to investigate three main factors such as superfine comminution time, extraction time and alcohol concentration. The relationship between content of ginseng total saponins in Panax ginseng fibrous root and three factors fitted second degree polynomial models. The optimal extraction condition was 9 min of superfine comminution time, 70% of alcohol, 50 degrees C of extraction temperature and 70 min of extraction time. Under the optimal condition, ginseng total saponins from Panax ginseng fibrous root was average 94. 81%, which was consistent with the predicted value. The optimization of technology is rapid, efficient, simple and stable.
Wang, Xiao-juan; Jiang, Lin
2014-12-01
To explore the spectrum-effect relationship between the HPLC fingerprint of Arctium lappa root methanol extract and the total antioxidant activity. The experiment was carried out with Gemini C18 110A (250 mm x 4.6 mm, 5 µm) column using methanol-0.04% phosphoric acid as gradient mobile phase at the flow rate of 1.0 mL/min, detection wavelength of 320 nm. The total antioxidant activity was determined by measuring the absorbance of each sample after being reacted with ammonium molybdate reagent. The spectrum-effect relationship was investigated using canonical correlation analysis (CCA). The spectrum-effect relationship between the HPLC fingerprint of Arctium lappa root methanol extract and the total antioxidant activity were established, the similarity of fingerprint of all samples was above 0.9. Peaks 1, 6, 9, 12 and 14 were principle components of Arctium lappa root for the total antioxidant activity. This method contributes to the fast comprehensive evaluation of quality of Arctium lappa root.
Meunier, Félicien; Zarebanadkouki, Mohsen; Ahmed, Mutez A; Carminati, Andrea; Couvreur, Valentin; Javaux, Mathieu
2018-01-26
Improving or maintaining crop productivity under conditions of long term change of soil water availability and atmosphere demand for water is one the big challenges of this century. It requires a deep understanding of crop water acquisition properties, i.e. root system architecture and root hydraulic properties among other characteristics of the soil-plant-atmosphere continuum. A root pressure probe technique was used to measure the root hydraulic conductances of seven-week old maize and lupine plants grown in sandy soil. Unbranched root segments were excised in lateral, seminal, crown and brace roots of maize, and in lateral roots of lupine. Their total hydraulic conductance was quantified under steady-state hydrostatic gradient for progressively shorter segments. Furthermore, the axial conductance of proximal root regions removed at each step of root shortening was measured as well. Analytical solutions of the water flow equations in unbranched roots developed recently and relating root total conductance profiles to axial and radial conductivities were used to retrieve the root radial hydraulic conductivity profile along each root type, and quantify its uncertainty. Interestingly, the optimized root radial conductivities and measured axial conductances displayed significant differences across root types and species. However, the measured root total conductances did not differ significantly. As compared to measurements reported in the literature, our axial and radial conductivities concentrate in the lower range of herbaceous species hydraulic properties. In a final experiment, the hydraulic conductances of root junctions to maize stem were observed to highly depend on root type. Surprisingly maize brace root junctions were an order of magnitude more conductive than the other crown and seminal roots, suggesting potential regulation mechanism for root water uptake location and a potential role of the maize brace roots for water uptake more important than reported in the literature. Copyright © 2018 Elsevier GmbH. All rights reserved.
Input-decomposition balance of heterotrophic processes in a warm-temperate mixed forest in Japan
NASA Astrophysics Data System (ADS)
Jomura, M.; Kominami, Y.; Ataka, M.; Makita, N.; Dannoura, M.; Miyama, T.; Tamai, K.; Goto, Y.; Sakurai, S.
2010-12-01
Carbon accumulation in forest ecosystem has been evaluated using three approaches. One is net ecosystem exchange (NEE) estimated by tower flux measurement. The second is net ecosystem production (NEP) estimated by biometric measurements. NEP can be expressed as the difference between net primary production and heterotrophic respiration. NEP can also be expressed as the annual increment in the plant biomass (ΔW) plus soil (ΔS) carbon pools defined as follows; NEP = ΔW+ΔS The third approach needs to evaluate annual carbon increment in soil compartment. Soil carbon accumulation rate could not be measured directly in a short term because of the small amount of annual accumulation. Soil carbon accumulation rate can be estimated by a model calculation. Rothamsted carbon model is a soil organic carbon turnover model and a useful tool to estimate the rate of soil carbon accumulation. However, the model has not sufficiently included variations in decomposition processes of organic matters in forest ecosystems. Organic matter in forest ecosystems have a different turnover rate that creates temporal variations in input-decomposition balance and also have a large variation in spatial distribution. Thus, in order to estimate the rate of soil carbon accumulation, temporal and spatial variation in input-decomposition balance of heterotrophic processes should be incorporated in the model. In this study, we estimated input-decomposition balance and the rate of soil carbon accumulation using the modified Roth-C model. We measured respiration rate of many types of organic matters, such as leaf litter, fine root litter, twigs and coarse woody debris using a chamber method. We can illustrate the relation of respiration rate to diameter of organic matters. Leaf and fine root litters have no diameter, so assumed to be zero in diameter. Organic matters in small size, such as leaf and fine root litter, have high decomposition respiration. It could be caused by the difference in structure of organic matter. Because coarse woody debris has shape of cylinder, microbes decompose from the surface of it. Thus, respiration rate of coarse woody debris is lower than that of leaf and fine root litter. Based on this result, we modified Roth-C model and estimate soil carbon accumulation rate in recent years. Based on the results from a soil survey, the forest soil stored 30tC ha-1 in O and A horizon. We can evaluate the modified model using this result. NEP can be expressed as the annual increment in the plant biomass plus soil carbon pools. So if we can estimate NEP using this approach, then we can evaluate NEP estimated by micrometeorological and ecological approaches and reduce uncertainty of NEP estimation.
The role of root distribution in eco-hydrological modeling in semi-arid regions
NASA Astrophysics Data System (ADS)
Sivandran, G.; Bras, R. L.
2010-12-01
In semi arid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Niche separation, through rooting strategies, is one manner in which different species coexist. At present, land surface models prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. These models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings and therefore tend to underestimate the resilience of many of these ecosystems. A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point scale simulations were carried out using two vertical root distribution schemes: (i) Static - a temporally invariant root distribution; and (ii) Dynamic - a temporally variable allocation of assimilated carbon at any depth within the root zone in order to minimize the soil moisture-induced stress on the vegetation. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semi-arid Walnut Gulch Experimental Watershed in Arizona. For the static root distribution scheme, a series of simulations were carried out varying the shape of the rooting profile. The optimal distribution for the simulation was defined as the root distribution with the maximum mean transpiration over a 200 year period. This optimal distribution was determined for 5 soil textures and using 2 plant functional types, and the results varied from case to case. The dynamic rooting simulations allow vegetation the freedom to adjust the allocation of assimilated carbon to different rooting depths in response to changes in stress caused by the redistribution and uptake of soil moisture. The results obtained from these experiments elucidate the strong link between plant functional type, soil texture and climate and highlight the potential errors in the modeling of hydrologic fluxes from imposing a static root profile.
Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie
NASA Astrophysics Data System (ADS)
Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.
2016-05-01
Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not only does fire affect the soil community and root decomposition, but the lower microbial abundance, greater root turnover, and the increased incorporation of root litter C by microbes and nematodes for AB suggests that annual burning increases root-litter-derived C flow through the soil food web of the tallgrass prairie.
La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong
2009-06-01
The effects of CO(2) enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO(2) concentration was elevated from 350 to 800 microl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO(2) concentration, N concentration, and CO(2)xN interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO(2). However, at 20 mmol N/L, elevated CO(2) had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO(2) concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO(2) concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO(2) condition.
Effect of CO2 levels on nutrient content of lettuce and radish.
McKeehen, J D; Smart, D J; Mackowiak, C L; Wheeler, R M; Nielsen, S S
1996-01-01
Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.
Effect of CO2 levels on nutrient content of lettuce and radish
NASA Technical Reports Server (NTRS)
McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)
1996-01-01
Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domec, Jean-Christophe; Palmroth, Sari; Oren, Ram
The primary objective of this project is to characterize and quantify how the temporal variability of hydraulic redistribution (HR) and its physiological regulation in unmanaged and complex forests is affecting current water and carbon exchange and predict how future climate scenarios will affect these relationships and potentially feed back to the climate. Specifically, a detailed study of ecosystem water uptake and carbon exchange in relation to root functioning was proposed in order to quantify the mechanisms controlling temporal variability of soil moisture dynamic and HR in three active AmeriFlux sites, and to use published data of two other inactive AmeriFluxmore » sites. Furthermore, data collected by our research group at the Duke Free Air CO2 enrichment (FACE) site was also being utilized to further improve our ability to forecast future environmental impacts of elevated CO2 concentration on soil moisture dynamic and its effect on carbon sequestration and terrestrial climatology. The overarching objective being to forecast, using a soil:plant:atmosphere model coupled with a biosphere:atmosphere model, the impact of root functioning on land surface climatology. By comparing unmanaged sites to plantations, we also proposed to determine the effect of land use change on terrestrial carbon sequestration and climatology through its effect on soil moisture dynamic and HR. Our simulations of HR by roots indicated that in some systems HR is an important mechanism that buffers soil water deficit, affects energy and carbon cycling; thus having significant implications for seasonal climate. HR maintained roots alive and below 70% loss of conductivity and our simulations also showed that the increased vapor pressure deficit at night under future conditions was sufficient to drive significant nighttime transpiration at all sites, which reduced HR. This predicted reduction in HR under future climate conditions played an important regulatory role in land atmosphere interactions by affecting whole ecosystem carbon and water balance. Under future climatic scenarios, HR was reduced thus affecting negatively plant water use and carbon assimilation. The discrepancy between the predicted and actual surface warming and atmospheric water vapor caused by the persistence of evapotranspiration during the dry season, increasing energy transfer in the form of latent heat. Under those simulations, we also evaluated how the hydraulic properties of soil and xylem limited the rate of carbon uptake, and carbon net ecosystem exchange. The multilayered hydraulically driven soil vegetation atmosphere carbon and water transfer model was designed to represent processes common to vascular plants, so that ecosystem atmosphere exchange could be captured by the same processes at different sites. Those models shown to be well suited for investigating the impact of drought on forest ecosystems because of its explicit treatment of water transport to leaves. This modeling work also confirmed that unmanaged, mixed hardwood site are more resilient to climatic variations than an adjacent pine plantation, but that future climatic conditions will reverse this trends.« less
Shading responses of carbon allocation dynamics in mountain grassland
NASA Astrophysics Data System (ADS)
Bahn, M.; Lattanzi, F. A.; Brueggemann, N.; Siegwolf, R. T.; Richter, A.
2012-12-01
Carbon (C) allocation strongly influences plant and soil processes. Global environmental changes can alter source - sink relations of plants with potential implications for C allocation. Short-term C allocation dynamics in ecosystems and their responses to environmental changes are still poorly understood. To analyze effects of assimilate supply (i.e. C source strength) on ecosystem C allocation dynamics and the role of non-structural carbohydrates, canopy sections of a mountain meadow were pulse labeled with 13CO2 and subsequently shaded for a week or left unshaded (control). Tracer dynamics in above- and belowground sucrose and starch pools were analysed and coupled using compartmental modelling. The hypothesis was tested that shading affects tracer dynamics in non-structural carbohydrates and diminishes the transfer of recently assimilated C to roots and their storage pools. In unshaded plots up to 40% of assimilated C was routed through short-term storage in shoot starch and sucrose to buffer day / night cycles in photosynthesis. Shoot- and root sucrose and shoot starch were kinetically closely related pools. The tracer dynamics of the modelled root sucrose pool corresponded well with those in soil CO2 efflux. Root starch played no role in buffering day / night cycles and likely acted as a seasonal store. Shading strongly reduced sucrose and starch concentrations in shoots but not roots and resulted in a massive reduction of leaf respiration, while root respiration was much less diminished. Shading affected tracer dynamics in sucrose and starch of shoots: shoot starch rapidly lost tracer, while sucrose transiently increased its tracer content. Surprisingly, shading did not alter the dynamics of root carbohydrates. Even under severe C limitation after one week of shading, tracer C continued to be incorporated in root starch. Also the amount of 13C incorporated in phospholipid fatty acids of soil microbial communities was not reduced by shading, though its residence time followed a changed pattern, suggesting an influence of C source strength on the utilization and turnover of recent plant-derived C. These findings will be discussed in the broader context of plant and ecosystem carbon allocation, with particular reference to the concepts of 'source versus sink strength' and 'passive versus active C storage'.
Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem.
Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H
2017-01-01
Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.
D. Jean Lodge; Dirk Winter; Grizelle Gonzalez; Naomi Clum
2016-01-01
Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20â50 cm away from large trunks of two...
Active summer carbon storage for winter persistence in trees at the cold alpine treeline.
Li, Mai-He; Jiang, Yong; Wang, Ao; Li, Xiaobin; Zhu, Wanze; Yan, Cai-Feng; Du, Zhong; Shi, Zheng; Lei, Jingpin; Schönbeck, Leonie; He, Peng; Yu, Fei-Hai; Wang, Xue
2018-03-12
The low-temperature limited alpine treeline is one of the most obvious boundaries in mountain landscapes. The question of whether resource limitation is the physiological mechanism for the formation of the alpine treeline is still waiting for conclusive evidence and answers. We therefore examined non-structural carbohydrates (NSC) and nitrogen (N) in treeline trees (TATs) and low-elevation trees (LETs) in both summer and winter in 11 alpine treeline cases ranging from subtropical monsoon to temperate continental climates across Eurasia. We found that tissue N concentration did not decrease with increasing elevation at the individual treeline level, but the mean root N concentration was lower in TATs than in LETs across treelines in summer. The TATs did not have lower tissue NSC concentrations than LETs in summer. However, the present study with multiple tree species across a large geographical scale, for the first time, revealed a common phenomenon that TATs had significantly lower NSC concentration in roots but not in the aboveground tissues than LETs in winter. Compared with LETs, TATs exhibited both a passive NSC storage in aboveground tissues in excess of carbon demand and an active starch storage in roots at the expense of growth reduction during the growing season. This starch accumulation disappeared in winter. Our results highlight some important aspects of the N and carbon physiology in relation to season in trees at their upper limits. Whether or to what extent the disadvantages of winter root NSC and summer root N level of TATs affect the growth of treeline trees and the alpine treeline formation needs to be further studied.
Tri-Party Underground Symbiosis between a Weevil, Bacteria and a Desert Plant
Shelef, Oren; Helman, Yael; Friedman, Ariel-Leib-Leonid; Behar, Adi; Rachmilevitch, Shimon
2013-01-01
Inhabitants of arid ecosystems face severe nitrogen and water limitations. Inventive adaptations by organisms occupying such habitats are essential for survival. This study describes a tri-party symbiotic interaction between a plant (Salsola inermis), a beetle (Conorhynchus pistor), and a bacterium (Klebsiella pneumonia). The weevil survives by living within a mud structure affixed to the plant roots, thus benefiting from increased carbon and water, and refuge from predators and parasites. Active nitrogen-fixing bacteria harbored within the weevil's gut mediate this interaction, by supplying nitrogen to the system, which eventually promotes seed development. We studied the correlation between the weevil's existence and (i) root carbon and nitrogen content, (ii) soil water content and (iii) seed weight. Roots hosting weevils contained more nitrogen, heavier seeds and less carbon. In addition, water content was higher around the roots than in open spaces a short distance from the plant stem. Bacterial studies and nitrogen-fixation analyses, including molecular and chemical assays, indicated atmospheric nitrogen fixation in the larval stage and identified the bacterium. The coexistence of weevil and bacterial behavior coinciding with the plant's life cycle was revealed here by a long period of field observations. Out of over 60,000 known weevils, this is the only report of a weevil living most of its life underground without harming plants. The unique tri-party interaction described herein shows the important ecological role of desert plant roots and provides an example of a sustainable consortium of living organisms coping with the challenging desert environment. PMID:24244267
USDA-ARS?s Scientific Manuscript database
The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition...
Ozone exposure decreases belowground carbon allocation and root growth of plants;however,the extent to which these effects persist and the cumulative impact of ozone stress on plant growth are poorly understood.To evaluate the potential for plant compensation,we followed the prog...
Martin Jurgensen; Dana Richter; Carl C. Trettin; Mary Davis
2000-01-01
Mycorrhizae, a mutual partnership between certain soil fungi and fine root tips, contribute to tree growth and vigor by increasing both water and nutrient uptake, especially nitrogen (N) and phosphorus (P). The fungal hyphae increase root surface contact with the soil, while the fungi are supplied with a reliable source of carbon (Allen 1991, George and Marschner 1995...
Root features related to plant growth and nutrient removal of 35 wetland plants.
Lai, Wen-Ling; Wang, Shu-Qiang; Peng, Chang-Lian; Chen, Zhang-He
2011-07-01
Morphological, structural, and eco-physiological features of roots, nutrient removal, and correlation between the indices were comparatively studied for 35 emergent wetland plants in small-scale wetlands for further investigation into the hypothesis of two types of wetland plant roots (Chen et al., 2004). Significant differences in root morphological, structural, and eco-physiological features were found among the 35 species. They were divided into two types: fibrous-root plants and thick-root plants. The fibrous-root plants had most or all roots of diameter (D) ≤ 1 mm. Roots of D > 1 mm also had many fine and long lateral roots of D ≤ 1 mm. The roots of these plants were long and had a thin epidermis and a low degree of lignification. The roots of the thick-root plants were almost all thicker than 1 mm, and generally had no further fine lateral roots. The roots were short, smooth, and fleshy, and had a thick epidermis. Root porosity of the fibrous-root plants was higher than that of the thick-root plants (p = 0.001). The aerenchyma of the fibrous-root plants was composed of large cavities which were formed from many small cavities, and distributed radially between the exodermis and vascular tissues. The aerenchyma of the thick-root plants had a large number of small cavities which were distributed in the mediopellis. The fibrous-root plants had a significantly larger root biomass of D ≤ 1 mm, of 1 mm < D < 3 mm, above-ground biomass, total biomass, and longer root system, but shorter root longevity than those of the thick-root plants (p = 0.003, 0.018, 0.020, 0.032, 0.042, 0.001). The fibrous-root plants also had significantly higher radial oxygen loss (ROL), root activity, photosynthetic rate, transpiration rate, and removal rates of total nitrogen and total phosphorus than the thick-root plants (p = 0.001, 0.008, 0.010, 0.004, 0.020, 0.002). The results indicate that significantly different root morphological and structural features existed among different wetland plants, and these features had a close relationship to nutrient removal capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.
von Fischer, J.C.; Tieszen, L.L.; Schimel, D.S.
2008-01-01
We analyzed the ??13 C of soil organic matter (SOM) and fine roots from 55 native grassland sites widely distributed across the US and Canadian Great Plains to examine the relative production of C3 vs. C4 plants (hereafter %C4) at the continental scale. Our climate vs. %C4 results agreed well with North American field studies on %C4, but showed bias with respect to %C4 from a US vegetation database (statsgo) and weak agreement with a physiologically based prediction that depends on crossover temperature. Although monthly average temperatures have been used in many studies to predict %C4, our analysis shows that high temperatures are better predictors of %C4. In particular, we found that July climate (average of daily high temperature and month's total rainfall) predicted %C4 better than other months, seasons or annual averages, suggesting that the outcome of competition between C3 and C4 plants in North American grasslands was particularly sensitive to climate during this narrow window of time. Root ??13 C increased about 1??? between the A and B horizon, suggesting that C 4 roots become relatively more common than C3 roots with depth. These differences in depth distribution likely contribute to the isotopic enrichment with depth in SOM where both C3 and C4 grasses are present. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.
Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem
NASA Astrophysics Data System (ADS)
Cailleau, G.; Braissant, O.; Verrecchia, E. P.
2011-07-01
An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as defined by ecological theory.
Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem
NASA Astrophysics Data System (ADS)
Cailleau, G.; Braissant, O.; Verrecchia, E. P.
2011-02-01
An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the theoretical acidic conditions of these soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. Regarding the carbonate flux, another direct consequence of wood feeding is a concomitant flux of carbonate formed in wood tissues, which is not consumed by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter. Therefore, an oxalate pool is formed on the forest ground. Then, wood rotting gents (mainly termites, fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition some of these gents are themselves producers of oxalate (fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as define by the ecological theory.
Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Constantineau, Simon; Munro, Lara; Labrecque, Michel
2017-06-03
The phytoextraction of the trace elements (TEs) As, Cd, Cu, Ni, Pb, and Zn by willow cultivars (Fish Creek, SV1 and SX67) was measured during a 3-year field trial in a mildly contaminated soil. Biomass ranged from 2.8 to 4.4 Mg/ha/year at 30,000 plants/ha. Shoots (62%) were the main component followed by leaves (23%) and roots (15%). Biomass was positively linked to soluble soil dissolved organic carbon, K, and Mg, while TEs, not Cd and Zn, had a negative effect. The TE concentration ranking was: Zn > Cu > Cd > Ni, Pb > As, and distribution patterns were: (i) minima in shoots (As, Ni), (ii) maxima in leaves (Cd, Zn), or (iii) maxima in roots (Cu, Pb). Correlations between soil and plant TE were significant for the six TEs in roots. The amounts extracted were at a maximum for Zn, whereas Fish Creek and SV1 extracted more TE than SX67. More than 60% (91-94% for Cd and Zn) of the total TE was in the aboveground parts. Uptake increased with time because of higher biomass. Fertilization, the selection of cultivars, and the use of complementary plants are required to improve productivity and Cd and Zn uptake.
The decomposition of fine and coarse roots: their global patterns and controlling factors
Zhang, Xinyue; Wang, Wei
2015-01-01
Fine root decomposition represents a large carbon (C) cost to plants, and serves as a potential soil C source, as well as a substantial proportion of net primary productivity. Coarse roots differ markedly from fine roots in morphology, nutrient concentrations, functions, and decomposition mechanisms. Still poorly understood is whether a consistent global pattern exists between the decomposition of fine (<2 mm root diameter) and coarse (≥2 mm) roots. A comprehensive terrestrial root decomposition dataset, including 530 observations from 71 sampling sites, was thus used to compare global patterns of decomposition of fine and coarse roots. Fine roots decomposed significantly faster than coarse roots in middle latitude areas, but their decomposition in low latitude regions was not significantly different from that of coarse roots. Coarse root decomposition showed more dependence on climate, especially mean annual temperature (MAT), than did fine roots. Initial litter lignin content was the most important predictor of fine root decomposition, while lignin to nitrogen ratios, MAT, and mean annual precipitation were the most important predictors of coarse root decomposition. Our study emphasizes the necessity of separating fine roots and coarse roots when predicting the response of belowground C release to future climate changes. PMID:25942391
A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture
NASA Astrophysics Data System (ADS)
Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.
2017-12-01
This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.
A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings.
Grelet, Gwen-Aëlle; Ba, Ren; Goeke, Dagmar F; Houliston, Gary J; Taylor, Andy F S; Durall, Daniel M
2017-11-01
Typically, Mycena species are viewed as saprotrophic fungi. However, numerous detections of Mycena spp. in the roots of green plants suggest that a continuum from saprotrophy to biotrophy could exist. In particular, mycenoid species have repeatedly been found in Ericaceae plant roots. Our study asked whether (1) Mycena species are commonly found in the roots of green Ericaceae plants; (2) Mycena sequences are limited to a single group/lineage within the genus; and (3) a Mycena sp. can behave as a beneficial root associate with a typical ericoid mycorrhizal plant (Vaccinium corymbosum), regardless of how much external labile carbon is available. We detected Mycena sequences in roots of all sampled Ericaceae plants. Our Mycena sequences clustered in four different groups distributed across the Mycena genus. Only one group could be assigned with confidence to a named species (M. galopus). Our Mycena sequences clustered with other Mycena sequences detected in roots of ericoid mycorrhizal plant species collected throughout Europe, America, and Australia. An isolate of M. galopus promoted growth of V. corymbosum seedlings in vitro regardless of external carbon supply in the media. Seedlings inoculated with M. galopus grew as well as those inoculated with the ericoid mycorrhizal fungus Rhizoscyphus ericae. Surprisingly, this M. galopus isolate colonized Vaccinium roots and formed distinctive peg-like structures. Our results suggest that Mycena species might operate along a saprotroph-symbiotic continuum with a range of ericoid mycorrhizal plant species. We discuss our results in terms of fungal partner recruitment by Ericaceae plants.
NASA Astrophysics Data System (ADS)
Gocke, M. I.; Kessler, F.; van Mourik, J. M.; Jansen, B.; Wiesenberg, G. L. B.
2015-12-01
Soil studies commonly comprise the uppermost meter for tracing e.g. soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of e.g. nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift- and coversands. The study site is located at Bedafse Bergen (SE Netherlands) in a 200 year old oak stand. A recent Podzol developed on driftsand covering a Plaggic Anthrosol that established in a relict Podzol on Late Glacial eolian coversand. Root-free soil and sediment samples, collected in 10-15 cm depth increments, were subjected to a multi-proxy physical and geochemical approach. The Plaggic Anthrosol revealed low bulk density and high phosphorous and organic carbon contents, whereas the relict Podzol was characterized by high iron and aluminum contents. Frequencies of fine (≤ 2 mm) and medium roots (2-5 mm) were determined on horizontal levels and the profile wall for a detailed pseudo-three-dimensional insight. On horizontal levels, living roots maximized in the uppermost part of the relict Podzol with ca. 4450 and 220 m-2, significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the nutrient-rich Plaggic Anthrosol, whereas increased compactness and high aluminum contents of the relict Podzol caused a strong decrease of roots. The approach demonstrated the benefit of comprehensive root investigation to support and explain pedogenic investigations of soil profiles, as fine roots can be significantly underestimated when quantified at the profile wall. The possible rooting of soil parent material and paleosols long after their burial confirmed recent studies on the potential influence of rooting to overprint sediment-(paleo)soil sequences of various ages, sedimentary and climatic settings. Potential consequences of deep rooting for terrestrial deep carbon stocks, located to a relevant part in paleosols, remain largely unknown and require further investigation.
NASA Astrophysics Data System (ADS)
Gocke, Martina I.; Kessler, Fabian; van Mourik, Jan M.; Jansen, Boris; Wiesenberg, Guido L. B.
2016-10-01
Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (southeastern Netherlands) in a 200-year-old oak stand. A recent Podzol developed on drift sand covering a Plaggic Anthrosol that was piled up on a relict Podzol on Late Glacial eolian cover sand. Root-free soil and sediment samples, collected in 10-15 cm depth increments, were subjected to a multi-proxy physical and geochemical approach. The Plaggic Anthrosol revealed low bulk density and high phosphorous and organic carbon contents, whereas the relict Podzol was characterized by high iron and aluminum contents. Frequencies of fine (diameter ≤ 2 mm) and medium roots (2-5 mm) were determined on horizontal levels and the profile wall for a detailed pseudo-three-dimensional insight. On horizontal levels, living roots were most abundant in the uppermost part of the relict Podzol with ca. 4450 and 220 m-2, significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the nutrient-rich Plaggic Anthrosol, whereas increased compactness and high aluminum contents of the relict Podzol caused a strong decrease of roots. The approach demonstrated the benefit of comprehensive root investigation to support interpretation of soil profiles, as fine roots can be significantly underestimated when quantified at the profile wall. The possible rooting of soil parent material and paleosols long after their burial confirmed recent studies on the potential influence of rooting to overprint sediment-(paleo)soil sequences of various ages, sedimentary and climatic settings. Potential consequences of deep rooting for terrestrial deep carbon stocks, located to a relevant part in paleosols, remain largely unknown and require further investigation.
Allard-Massicotte, Rosalie; Tessier, Laurence; Lécuyer, Frédéric; Lakshmanan, Venkatachalam; Lucier, Jean-François; Garneau, Daniel; Caudwell, Larissa; Vlamakis, Hera; Bais, Harsh P; Beauregard, Pascale B
2016-11-29
Colonization of plant roots by Bacillus subtilis is mutually beneficial to plants and bacteria. Plants can secrete up to 30% of their fixed carbon via root exudates, thereby feeding the bacteria, and in return the associated B. subtilis bacteria provide the plant with many growth-promoting traits. Formation of a biofilm on the root by matrix-producing B. subtilis is a well-established requirement for long-term colonization. However, we observed that cells start forming a biofilm only several hours after motile cells first settle on the plant. We also found that intact chemotaxis machinery is required for early root colonization by B. subtilis and for plant protection. Arabidopsis thaliana root exudates attract B. subtilis in vitro, an activity mediated by the two characterized chemoreceptors, McpB and McpC, as well as by the orphan receptor TlpC. Nonetheless, bacteria lacking these chemoreceptors are still able to colonize the root, suggesting that other chemoreceptors might also play a role in this process. These observations suggest that A. thaliana actively recruits B. subtilis through root-secreted molecules, and our results stress the important roles of B. subtilis chemoreceptors for efficient colonization of plants in natural environments. These results demonstrate a remarkable strategy adapted by beneficial rhizobacteria to utilize carbon-rich root exudates, which may facilitate rhizobacterial colonization and a mutualistic association with the host. Bacillus subtilis is a plant growth-promoting rhizobacterium that establishes robust interactions with roots. Many studies have now demonstrated that biofilm formation is required for long-term colonization. However, we observed that motile B. subtilis mediates the first contact with the roots. These cells differentiate into biofilm-producing cells only several hours after the bacteria first contact the root. Our study reveals that intact chemotaxis machinery is required for the bacteria to reach the root. Many, if not all, of the B. subtilis 10 chemoreceptors are involved in the interaction with the plant. These observations stress the importance of root-bacterium interactions in the B. subtilis lifestyle. Copyright © 2016 Allard-Massicotte et al.
Valdés, María; Asbjornsen, Heidi; Gómez-Cárdenas, Martín; Juárez, Margarita; Vogt, Kristiina A
2006-03-01
The effects of a severe drought on fine-root and ectomycorrhizal biomass were investigated in a forest ecosystem dominated by Pinus oaxacana located in Oaxaca, Mexico. Root cores were collected during both the wet and dry seasons of 1998 and 1999 from three sites subjected to different forest management treatments in 1990 and assessed for total fine-root biomass and ectomycorrhizal-root biomass. Additionally, a bioassay experiment with P. oaxacana seedlings was conducted to assess the ectomycorrhizal inoculum potential of the soil for each of the three stands. Results indicated that biomasses of both fine roots and ectomycorrhizal roots were reduced by almost 60% in the drought year compared to the nondrought year. There were no significant differences in ectomycorrhizal and fine-root biomass between the wet and dry seasons. Further, the proportion of total root biomass consisting of ectomycorrhizal roots did not vary between years or seasons. These results suggest that both total fine-root biomass and ectomycorrhizal-root biomass are strongly affected by severe drought in these high-elevation tropical pine forests, and that these responses outweigh seasonal effects. Forest management practices in these tropical pine forests should consider the effects of drought on the capacity of P. oaxacana to maintain sufficient levels of ectomycorrhizae especially when there is a potential for synergistic interactions between multiple disturbances that may lead to more severe stress in the host plant and subsequent reductions in ectomycorrhizal colonization.
Liu, Yan; Song, Tong-Qing; Cai, De-Suo; Zeng, Fu-Ping; Peng, Wan-Xia; Du, Hu
2014-06-01
Soil samples were collected from the depressions between karst hills by grid sampling method (5 m x 5 m), soil pH, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP), and available potassium (AK) in surface layer (0-20 cm) under different land use patterns (burning, cutting, cutting plus root removal, enclosure, maize plantation, and pasture plantation) were measured, the main factors of influencing the soil fertility was identified by principal component analysis (PCA), and the relationships between soil nutrients and microorganisms were demonstrated by canonical correlation analysis (CCA). The results showed that the soil was slightly alkaline (pH 7.83-7.98), and the soil fertility differed under the different land use patterns, with 76.78-116.05 g x kg(-1) of SOC, 4.29-6.23 g x kg(-1) of TN, 1.15-1.47 g x kg(-1) of TP, 3.59-6.05 g x kg(-1) of TK, 331.49-505.49 mg x kg(-1) of AN), 3.92-10.91 mg x kg(-1) of AP, and 136.28-198.10 mg x kg(-1) of AK. These soil indexes except pH showed moderate or strong variation. Different land use patterns had various impacts on soil fertility: Soil nutrients such as SOC, TN, TP, and AN were most significantly influenced by land use patterns in the depressions between karst hills; Followed by soil microorganisms, especially soil actinomycetes, and the effect decreased with the increasing gradient of human disturbance from enclosure, burning, cutting, cutting plus root removal, pasture plantation, and maize plantation. CCA elucidated that considerable interactions existed in soil TP with MBP (microbial biomass phosphorus), TK with MBC (microbial biomass carbon), TN with actinomycetes in the burned area, while TN and MBC in the cutting treatment, AP and MBN (microbial biomass nitrogen) in the treatment of cutting plus root removal, pH with MBC and fungus in the enclosure treatment, TN and TK with MBP in the maize plantation, pH with fungi and actinomycetes in the pasture plantation. Land use patterns changed the soil fertility in the depressions between karst hills; therefore, in the ecological restoration and reconstruction of karst region with fragmented landforms and shallow soil, rational land use patterns should be adopted to improve the soil quality of degraded ecosystems.
El-Esawi, Mohamed A; Elkelish, Amr; Elansary, Hosam O; Ali, Hayssam M; Elshikh, Mohamed; Witczak, Jacques; Ahmad, Margaret
2017-01-01
Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS) were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones ( p < 0.01). Transgenic hairy roots exhibited a 54.8-96.7% increase in the total phenolic content, 38.1-76.2% increase in the total flavonoid content, and 56.7-96.7% increase in the total reducing power when compared with the nontransgenic roots ( p < 0.01). DPPH results also revealed that the transgenic hairy roots exhibited a 31.6-50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola .