Liang, X Q; Chen, Y X; Nie, Z Y; Ye, Y S; Liu, J; Tian, G M; Wang, G H; Tuong, T P
2013-10-01
Resource-conserving irrigation and fertilizer management practices have been developed for rice systems which may help address water quality concerns by reducing N and P losses via surface runoff. Field experiments under three treatments, i.e., farmers' conventional practice (FCP), alternate wetting and drying (AWD), and AWD integrated with site-specific nutrient management (AWD + SSNM) were carried out during two rice seasons at two sites in the southwest Yangtze River delta region. Across site years, results indicated that under AWD irrigation (i.e., AWD and AWD + SSNM), water inputs were reduced by 13.4~27.5 % and surface runoff was reduced by 30.2~36.7 % compared to FCP. When AWD was implemented alone, total N and P loss masses via surface runoff were reduced by 23.3~30.4 % and 26.9~31.7 %, respectively, compared to FCP. However, nutrient concentrations of surface runoff did not decrease under AWD alone. Under AWD + SSNM, total N and P loss masses via surface runoff were reduced to a greater extent than AWD alone (39.4~47.6 % and 46.1~48.3 % compared to FCP, respectively), while fertilizer inputs and N surpluses significantly decreased and rice grain yields increased relative to FCP. Therefore, by more closely matching nutrient supply with crop demand and reducing both surface runoff and nutrient concentrations of surface runoff, our results demonstrate that integration of AWD and SSNM practices can mitigate N and P losses via surface runoff from rice fields while maintaining high yields.
Udeigwe, Theophilus K; Wang, Jim J; Zhang, Hailin
2007-01-01
This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, P<0.001) while it was inversely related to soil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, P<0.01). A newly-devised laboratory test, termed "soil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, P<0.001) and PP (y=0.04x+2.68, R2=0.85, P<0.001). In addition, SST alone yielded similar R2 value to that of combining soil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.
Impact of dynamically changing land cover on runoff process: the case of Iligan river basin
NASA Astrophysics Data System (ADS)
Salcedo, Stephanie Mae B.; Suson, Peter D.; Milano, Alan E.; Ignacio, Ma. Teresa T.
2016-10-01
Iligan river basin located in Northern Mindanao, Philippines covers 165.7 km2 of basin area. In December 2011, tropical storm Sendong (Washi) hit Iligan City, leaving a trail of wrecked infrastructures and about 490 persons reported dead. What transpired was a wake up call to mitigate future flood disasters. Fundamental to mitigation is understanding runoff behavior inside a basin considering that this is the main source of flooding. For this reason, the present study evaluated total runoff volume, peak discharge and lag time given land cover scenarios in four different years- 1973, 1989, 1998 and 2008. IFSAR and LIDAR DEM were integrated to generate the basin model in ArcGIS. HEC-HMS was used in simulating models for each scenario with Soil Conservation Service Curve Number (SCS CN) as the loss parameter method. Four simulation models of the runoff with varying CN values were established using RIDF as rainfall input with 5 year, 10 year, 25 year, 50 year and 100 year Rainfall Return Period (RRP). Total Runoff volume, peak discharge and lag time were progressively higher from 1973 to 2008 with 1989 land cover as exception where runoff parameters was its lowest. The total runoff volume, peak discharge and lag time is governed by vegetation type. When vegetation is characterized predominantly with woody perennials, runoff volume and peak time is lower. Conversely, when the presence of woody perennials is minimal, these parameters are higher. This study shows that an important way to mitigate flooding is to reduce surface runoff by maintaining vegetation predominantly composed of woody perennials.
Integration of transport concepts for risk assessment of pesticide erosion.
Yang, Xiaomei; Van Der Zee, Sjoerd E A T M; Gai, Lingtong; Wesseling, Jan G; Ritsema, Coen J; Geissen, Violette
2016-05-01
Environmental contamination by agrochemicals has been a large problem for decades. Pesticides are transported in runoff and remain attached to eroded soil particles, posing a risk to water and soil quality and human health. We have developed a parsimonious integrative model of pesticide displacement by runoff and erosion that explicitly accounts for water infiltration, erosion, runoff, and pesticide transport and degradation in soil. The conceptual framework was based on broadly accepted assumptions such as the convection-dispersion equation and lognormal distributions of soil properties associated with transport, sorption, degradation, and erosion. To illustrate the concept, a few assumptions are made with regard to runoff in relatively flat agricultural fields: dispersion is ignored and erosion is modelled by a functional relationship. A sensitivity analysis indicated that the total mass of pesticide associated with soil eroded by water scouring increased with slope, rain intensity, and water field capacity of the soil. The mass of transported pesticide decreased as the micro-topography of the soil surface became more distinct. The timing of pesticide spraying and rate of degradation before erosion negatively affected the total amount of transported pesticide. The mechanisms involved in pesticide displacement, such as runoff, infiltration, soil erosion, and pesticide transport and decay in the topsoil, were all explicitly accounted for, so the mathematical complexity of their description can be high, depending on the situation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hailegeorgis, Teklu T.; Alfredsen, Knut
2018-02-01
Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is useful for better computation of runoff generated from different land cover, for assessments of stormwater management techniques (e.g. the Low Impact Development or LID) and the impacts of land cover and climate change. There are some simplifications or limitations such as the runoff routing does not involve detailed sewer hydraulics, effects of leakages from water supply systems and faulty/illegal connections from sanitary sewer are not considered, the model cannot identify actual locations of the interactions between the subsurface runoff and sewer pipes and lacks parsimony.
Cao, Yansheng; Sun, Huifeng; Liu, Yaqin; Fu, Zishi; Chen, Guifa; Zou, Guoyan; Zhou, Sheng
2017-02-01
To better understand N runoff losses from rice-wheat rotation and demonstrate the effectiveness of improved fertilizer management in reducing N runoff losses, a field study was conducted for three consecutive rice-wheat rotations. Nitrogen losses through surface runoff were measured for five treatments, including CK without N application, C200, C300 simulating the conventional practices, CO200, and CO300. Optimum N rate was applied for C200 and CO200, and 30% of chemical fertilizer was substituted with organic fertilizer for CO200 and CO300 with respect to C200 and C300, respectively. Rice season had higher runoff coefficients than wheat season. Approximately 52% of total N was lost as NH 4 + -N in rice season, ranging from 21 to 83%, and in wheat season, the proportion of NO 3 - -N in total N averaged 53% with a variation from 38 to 67%. The N treatments lost less total N in rice season (1.67-10.7 kg N ha -1 ) than in wheat season (1.72-17.1 kg N ha -1 ). These suggested that a key to controlling N runoff losses from rice-wheat rotation was to limit NO 3 - -N accumulation in wheat season. In both seasons, N runoff losses for C200 and CO300 were lower than those for C300. CO200 better cut N losses than C200 and CO300, with 64 and 57% less N in rice and wheat seasons than C300, respectively. Compared with the conventional practices, optimum N inputs integrated with co-application of organic and chemical fertilizers could reduce N runoff losses with a better N balance under rice-wheat rotation.
Uncertainties in stormwater runoff data collection from a small urban catchment, Southeast China.
Huang, Jinliang; Tu, Zhenshun; Du, Pengfei; Lin, Jie; Li, Qingsheng
2010-01-01
Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.
Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.
Tuset, J; Vericat, D; Batalla, R J
2016-01-01
The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important role in modifying the cycles of water and sediment yields in Mediterranean mountain catchments. Copyright © 2015 Elsevier B.V. All rights reserved.
Osmotically driven membrane process for the management of urban runoff in coastal regions.
Li, Zhenyu; Valladares Linares, Rodrigo; Abu-Ghdaib, Muhannad; Zhan, Tong; Yangali-Quintanilla, Victor; Amy, Gary
2014-01-01
An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier to reject runoff-derived contaminants. The process was demonstrated by a lab scale testing using synthetic urban runoff (as the feed solution) and synthetic seawater (as the draw solution). The submerged forward osmosis process was conducted under neutral, acidic and natural organic matter fouling condition, respectively. Forward osmosis flux decline was mainly attributed to the dilution of seawater during a semi-batch process in lab scale testing. However, it is possible to minimize flux decrease by maintaining a constant salinity at the draw solution side. Various changes in urban runoff water quality, including acidic conditions (acid rain) and natural organic matter presence, did not show significant effects on the rejection of trace metals and phosphorus, but influenced salt leakage and the rejection of nitrate and total nitrogen. Rejection of trace metals varied from 98% to 100%, phosphorus varied from 97% to 100, nitrate varied from 52% to 94% and total nitrogen varied from 65% to 85% under different feed water conditions. The work described in this study contributes to an integrated system of urban runoff management, seawater desalination and possible power generation in coastal regions to achieve a sustainable solution to the water-energy nexus. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, W; Che, W; Liu, D K; Gan, Y P; Lv, F F
2012-01-01
In order to investigate the characterization of runoff in storm sewer from various urban catchments, three monitoring systems at different spatial scales have been installed separately. They have been held since July 2010 in urban area of Beijing (China). The monitoring data revealed that chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), and NH(3)-N values significantly exceed the Class V surface water quality standard developed by Ministry of Environmental Protection of the People's Republic of China (MEP). A surface solids buildup and wash off model for small watershed was adopted to analyze and discuss the process of a runoff pollutant discharge. More than a half of pollutant parameters presented a good fit to the model. However, a slightly worse-fit to the wash off model appeared in less than half of the data. Due to the influence of sewer sediments, sewer system characteristics, catchment characteristics, and other reasons, first flush was seldom observed in storm sewer runoff from these three survey areas. Meanwhile, the correlation between TSS and any other pollutant was analyzed according to cumulative load of pollutants in runoff events. An event mean concentrations (EMCs) approach was adopted to quantify the pollution of runoff. EMCs of various pollutants in storm sewer runoff between different rainfall events were slightly higher than the typical values observed in similar areas at home and abroad, according to other studies reported in literature. Based on quantitative analysis, it can be concluded that urban non-point source pollution is recognized as the major causes of quality deterioration in the receiving water bodies. This is after the point source pollution has been controlled substantially in Beijing. An integrated strategy, which combines centralized and decentralized control, along with the conditions of meteorology, hydrology, urban planning, existing drainage system, etc., will be an effective and economic approach to urban runoff pollution control.
Evaluation of nutrient loads from a mountain forest including storm runoff loads.
Kunimatsu, T; Otomori, T; Osaka, K; Hamabata, E; Komai, Y
2006-01-01
Water quality and flow rates at a weir installed on the end of Aburahi-S Experimental Watershed (3.34 ha) were measured once a week from 2001 to 2003 and in appropriate intervals from 30 min to 6 h during five storm runoff events caused by each rainfall from 8 mm to 417 mm. The average annual loads of total nitrogen (TN) and total phosphorus (TP) were calculated to be 19.0 and 0.339 kg ha(-1) y(-1) from the periodical data by using the integration interval-loads method (ILM), which did not properly account for storm runoff loads. Three types of L(Q) equations (L = aQ(b)) were derived from correlations between loading rates L and flow rates Q obtained from the periodic observation and from storm runoff observation. L(Q) equation method (LQM), which was derived from the storm runoff observation and allowed for the hysteresis of discharge of materials, gave 9.68 and 0.159 kg ha(-1) y(-1), respectively, by substitution of the sequential hourly data of flow rates. L(R) equation (L = c(R - r)d) was derived from the correlations between the loads and the effective rainfall depth (R - r) measured during the storm runoff events, and L(R) equation method (LRM) calculated 9.83 +/- 1.68 and 0.175 +/- 0.0761 kg ha(-1) y(-1), respectively, by using the rainfall data for the past 16 years. The atmospheric input-fluxes of TN and TP were 16.5 and 0.791 kg ha(-1) y(-1).
Characterizing dry deposition of mercury in urban runoff
Fulkerson, M.; Nnadi, F.N.; Chasar, L.S.
2007-01-01
Stormwater runoff from urban surfaces often contains elevated levels of toxic metals. When discharged directly into water bodies, these pollutants degrade water quality and impact aquatic life and human health. In this study, the composition of impervious surface runoff and associated rainfall was investigated for several storm events at an urban site in Orlando, Florida. Total mercury in runoff consisted of 58% particulate and 42% filtered forms. Concentration comparisons at the start and end of runoff events indicate that about 85% of particulate total mercury and 93% of particulate methylmercury were removed from the surface before runoff ended. Filtered mercury concentrations showed less than 50% reduction of both total and methylmercury from first flush to final flush. Direct comparison between rainfall and runoff at this urban site indicates dry deposition accounted for 22% of total inorganic mercury in runoff. ?? 2007 Springer Science+Business Media B.V.
A "total parameter estimation" method in the varification of distributed hydrological models
NASA Astrophysics Data System (ADS)
Wang, M.; Qin, D.; Wang, H.
2011-12-01
Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in China. The application results demonstrate that this comprehensive testing method is very useful in the development of a distributed hydrological model and it provides a new way of thinking in hydrological sciences.
Lindner-Lunsford, J. B.; Ellis, S.R.
1987-01-01
Multievent, conceptually based models and a single-event, multiple linear-regression model for estimating storm-runoff quantity and quality from urban areas were calibrated and verified for four small (57 to 167 acres) basins in the Denver metropolitan area, Colorado. The basins represented different land-use types - light commercial, single-family housing, and multi-family housing. Both types of models were calibrated using the same data set for each basin. A comparison was made between the storm-runoff volume, peak flow, and storm-runoff loads of seven water quality constituents simulated by each of the models by use of identical verification data sets. The models studied were the U.S. Geological Survey 's Distributed Routing Rainfall-Runoff Model-Version II (DR3M-II) (a runoff-quantity model designed for urban areas), and a multievent urban runoff quality model (DR3M-QUAL). Water quality constituents modeled were chemical oxygen demand, total suspended solids, total nitrogen, total phosphorus, total lead, total manganese, and total zinc. (USGS)
Roof selection for rainwater harvesting: quantity and quality assessments in Spain.
Farreny, Ramon; Morales-Pinzón, Tito; Guisasola, Albert; Tayà, Carlota; Rieradevall, Joan; Gabarrell, Xavier
2011-05-01
Roofs are the first candidates for rainwater harvesting in urban areas. This research integrates quantitative and qualitative data of rooftop stormwater runoff in an urban Mediterranean-weather environment. The objective of this paper is to provide criteria for the roof selection in order to maximise the availability and quality of rainwater. Four roofs have been selected and monitored over a period of 2 years (2008-2010): three sloping roofs - clay tiles, metal sheet and polycarbonate plastic - and one flat gravel roof. The authors offer a model for the estimation of the runoff volume and the initial abstraction of each roof, and assess the physicochemical contamination of roof runoff. Great differences in the runoff coefficient (RC) are observed, depending mostly on the slope and the roughness of the roof. Thus, sloping smooth roofs (RC>0.90) may harvest up to about 50% more rainwater than flat rough roofs (RC=0.62). Physicochemical runoff quality appears to be generally better than the average quality found in the literature review (conductivity: 85.0 ± 10.0 μS/cm, total suspended solids: 5.98 ± 0.95 mg/L, total organic carbon: 11.6 ± 1.7 mg/L, pH: 7.59 ± 0.07 upH). However, statistically significant differences are found between sloping and flat rough roofs for some parameters (conductivity, total organic carbon, total carbonates system and ammonium), with the former presenting better quality in all parameters (except for ammonium). The results have an important significance for local governments and urban planners in the (re)design of buildings and cities from the perspective of sustainable rainwater management. The inclusion of criteria related to the roof's slope and roughness in city planning may be useful to promote rainwater as an alternative water supply while preventing flooding and water scarcity. Copyright © 2011 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Soil microbial biomass carbon (MBC) and nitrogen (MBN) are integral parts to soil organic matter. Increased production costs and chemical runoff can result from excessive application of fertilizer if these measurements are not used in total nutrient calculations. More timely and cost-effective me...
Buck, Stephanie D.
2014-01-01
The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.
Surface water hydrology and the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.
2016-12-01
Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.
Sharma, Anitha Kumari; Vezzaro, Luca; Birch, Heidi; Arnbjerg-Nielsen, Karsten; Mikkelsen, Peter Steen
2016-01-01
This study investigated the potential effect of climate changes on stormwater pollution runoff characteristics and the treatment efficiency of a stormwater retention pond in a 95 ha catchment in Denmark. An integrated dynamic stormwater runoff quality and treatment model was used to simulate two scenarios: one representing the current climate and another representing a future climate scenario with increased intensity of extreme rainfall events and longer dry weather periods. 100-year long high-resolution rainfall time series downscaled from regional climate model projections were used as input. The collected data showed that total suspended solids (TSS) and total copper (Cu) concentrations in stormwater runoff were related to flow, rainfall intensity and antecedent dry period. Extreme peak intensities resulted in high particulate concentrations and high loads but did not affect dissolved Cu concentrations. The future climate simulations showed an increased frequency of higher flows and increased total concentrations discharged from the catchment. The effect on the outlet from the pond was an increase in the total concentrations (TSS and Cu), whereas no major effect was observed on dissolved Cu concentrations. Similar results are expected for other particle bound pollutants including metals and slowly biodegradable organic substances such as PAH. Acute toxicity impacts to downstream surface waters seem to be only slightly affected. A minor increase in yearly loads of sediments and particle-bound pollutants is expected, mainly caused by large events disrupting the settling process. This may be important to consider for the many stormwater retention ponds existing in Denmark and across the world.
Characterization of urban runoff pollution between dissolved and particulate phases.
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.
Prairie and turf buffer strips for controlling runoff from paved surfaces.
Steinke, K; Stier, J C; Kussow, W R; Thompson, A
2007-01-01
Eutrophication of surface waters due to nonpoint source pollution from urban environments has raised awareness of the need to decrease runoff from roads and other impervious surfaces. These concerns have led to precautionary P application restrictions on turf and requirements for vegetative buffer strips. The impacts of two plant communities and three impervious/pervious surface ratios were assessed on runoff water quality and quantity. A mixed forb/grass prairie and a Kentucky bluegrass (Poa pratensis L.) blend were seeded and runoff was monitored and analyzed for total volume, total P, soluble P, soluble organic P, bioavailable P, total suspended solids, and total organic suspended solids. Mean annual runoff volumes, all types of mean annual P nutrient losses, and sediment loads were not significantly affected by treatments because over 80% of runoff occurred during frozen soil conditions. Total P losses from prairie and turf were similar, averaging 1.96 and 2.12 kg ha(-1) yr(-1), respectively. Vegetation appeared to be a likely contributor of nutrients, particularly from prairie during winter dormancy. When runoff occurred during non-frozen soil conditions turf allowed significantly (P < or = 0.10) lower runoff volumes compared with prairie vegetation and the 1:2 and 1:4 impervious/pervious surface ratios had less runoff than the 1:1 ratio (P < or = 0.05). In climates where the majority of runoff occurs during frozen ground conditions, vegetative buffers strips alone are unlikely to dramatically reduce runoff and nutrient loading into surface waters. Regardless of vegetation type or size, natural nutrient biogeochemical cycling will cause nutrient loss in surface runoff waters, and these values may represent baseline thresholds below which values cannot be obtained.
Ockerman, Darwin J.; Petri, Brian L.
2001-01-01
During 1996?98, rainfall and runoff were monitored on a 49,680-acre agricultural watershed in Kleberg and Nueces Counties in South Texas. Nineteen rainfall samples were analyzed for selected nutrients, and runoff samples from 29 storms were analyzed for major ions, nutrients, and pesticides. Loads of nutrients in rainfall and loads of nutrients and pesticides in runoff were computed. For a 40,540-acre part of the watershed (lower study area), constituent loads entering the watershed in rainfall, in runoff from the upper study area, and from agricultural chemical applications to the lower study area were compared with runoff loads exiting the lower study area. Total rainfall for 1996?98 averaged 25.86 inches per year, which is less than the long-term annual average rainfall of 29.80 inches for the area. Rainfall and runoff during 1996?98 were typical of historical patterns, with periods of below average rainfall and runoff interspersed with extreme events. Five individual storms accounted for about 38 percent of the total rainfall and 94 percent of the total runoff. During the 3-year study, the total nitrogen runoff yield from the lower study area was 1.3 pounds per acre per year, compared with 49 pounds per acre per year applied as fertilizer and 3.1 pounds per acre per year from rainfall. While almost all of the fertilizer and rainfall nitrogen was ammonia and nitrate, most of the nitrogen in runoff was particulate organic nitrogen, associated with crop residue. Total nitrogen exiting the lower study area in surface-water runoff was about 2.5 percent of the nitrogen inputs (fertilizer and rainfall nitrogen). Annual deposition of total nitrogen entering the lower study area in rainfall exceeded net yields of total nitrogen exiting the watershed in runoff because most of the rainfall does not contribute to runoff. During the study, the total phosphorus runoff yield from the lower study area was 0.48 pound per acre per year compared with 4.2 pounds per acre per year applied as fertilizer and 0.03 pound per acre per year from rainfall. Twenty-one pesticides were detected in runoff with varying degrees of frequency during the study. The herbicide atrazine was detected in all runoff samples. All of the most frequently detected pesticides (atrazine, trifluralin, simazine, pendimethalin, and diuron) exhibited higher concentrations during the pre-harvest period (March? May) than during the post-harvest period (August? October). During 1996?98, an average of 0.37 pound per acre per year of atrazine was applied to the lower study area. During the same period, 0.0027 pound per acre per year of atrazine and its breakdown product deethylatrazine exited the lower study area in runoff (about 0.7 percent of the total atrazine applied to the cropland). During 1997, when heavy rainfall occurred during the months of April and May, the atrazine plus deethylatrazine exiting the lower study area was 1.8 percent of the applied atrazine. The 1996?98 average sediment yield was 610 pounds per acre per year. Sediment loads from the study area are associated with large storm events. Of the 45,300 tons of sediment transported from the study area during 1996?98 about 87 percent was transported during the three largest runoff events (April 1997, October 1997, and October 1998). Runoff-weighted average concentrations were computed for selected nutrients and pesticides. The 1996?98 runoff-weighted concentrations for total nitrogen and total phosphorus were 1.3 and 0.50 milligrams per liter, respectively. The 1996?98 runoff-weighted concentration for atrazine plus deethylatrazine was 2.7 micrograms per liter.
Managing broiler litter application rate and grazing to decrease watershed runoff losses.
Sistani, K R; Brink, G E; Oldham, J L
2008-01-01
Pasture management and broiler litter application rate are critical factors influencing the magnitude of nutrients being transported by runoff from fields. We investigated the impact of pasture management and broiler litter application rate on nutrient runoff from bermudagrass (Cynodon dactylon) pastures. The experiment was conducted on a Ruston fine sandy loam with a factorial arrangement on 21 large paddocks. Runoff water was collected from natural rainfall events from 2001 to 2003. Runoff water and soil samples were analyzed for nutrients and sediments. Runoff was generally greater (29%) from grazed than hayed pastures regardless of the litter application rate. There was greater inorganic N in the runoff from grazed paddocks when litter rate was based on N rather than P. The mean total P loss per runoff event for all treatments ranged from 7 to 45 g ha(-1) and the grazed treatment with litter applied on N basis had the greatest total P loss. Total dissolved P was the dominant P fraction in the runoff, ranging from 85% to 93% of the total P. The soluble reactive P was greater for treatments with litter applied on N basis regardless of pasture management. Runoff total sediments were greater for N-based litter application compared to those which received litter on P basis. Our results indicate that litter may be applied on N basis if the pasture is hayed and the soil P is low. In contrast, litter rates should be based on a P-basis if pasture is grazed.
Risk assessment of pesticide transport with water erosion: A conceptual model
NASA Astrophysics Data System (ADS)
Yang, Xiaomei; Van Der Zee, Sjoerd E. A. T. M.; Gai, Lingtong; Wesseling, Jan G.; Ritsema, Coen J.; Geissen, Violette
2017-04-01
Pesticides are widely used in agriculture, horticulture, and forestry, and pesticide pollution has become an important issue worldwide. Entraining in runoff and being attached to eroded soil particles, posing a risk to water and soil quality and human health. In order to assess the risk of pesticide during water erosion processes, a simple integrative model of pesticide transport by runoff and erosion was developed. Taking soil hydrological and pesticide behaviour into account, such as water infiltration, erosion, runoff, and pesticide transport and degradation in soil, the conceptual framework was based on the known assumptions such as the convection-dispersion equation and lognormal distributions of soil properties associated with transport, sorption, degradation, and erosion. A sensitivity analysis was conducted and the results indicated that the total amount of pesticide related to soil eroded by water washing increased with slope gradient, rainfall intensity, and water field capacity of the soil. The mass of transported pesticide decreased as the micro-topography of the soil surface became obviously and the time from pesticide sprayed to erosion occurring associated with pesticide degradation negatively influenced the total amount of transported pesticide. The mechanisms involved in pesticide transport, such as runoff, infiltration, soil erosion, and pesticide transport and decay in the topsoil, thus can be well accounted for pesticide risk assessment especially in the region with intensive pesticide use and soil water erosion events.
Lopez, M.A.; Giovannelli, R.F.
1984-01-01
Rainfall, runoff, and water quality data were collected at nine urban watersheds in the Tampa Bay area from 1975 to 1980. Watershed drainage area ranged from 0.34 to 0.45 sq mi. Land use was mixed. Development ranged from a mostly residential watershed with a 19% impervious surface, to a commercial-residential watershed with a 61% impervious surface. Average biochemical oxygen demand concentrations of base flow at two sites and of stormwater runoff at five sites exceeded treated sewage effluent standards. Average coliform concentrations of stormwater runoff at all sites were several orders of magnitude greater than standards for Florida Class III receiving water (for recreation or propagation and management of fish and wildlife). Average concentrations of lead and zinc in stormwater runoff were consistently higher than Class III standards. Stormwater-runoff loads and base-flow concentrations of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus, and lead were related to runoff volume, land use, urban development, and antecedent daily rainfall by multiple linear regression. Stormwater-runoff volume was related to pervious area, hydraulically connected impervious surfaces, storm rainfall, and soil-infiltration index. Base-flow daily discharge was related to drainage area and antecedent daily rainfall. The flow regression equations of this report were used to compute 1979 water-year loads of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus , and total lead for the nine Tampa Bay area urban watersheds. (Lantz-PTT)
Stuntebeck, Todd D.; Komiskey, Matthew J.; Peppler, Marie C.; Owens, David W.; Frame, Dennis R.
2011-01-01
A cooperative study between the U.S. Geological Survey, the University of Wisconsin (UW)-Madison Discovery Farms program (Discovery Farms), and the UW-Platteville Pioneer Farm program (Pioneer Farm) was developed to identify typical ranges and magnitudes, temporal distributions, and principal factors affecting concentrations and yields of sediment, nutrients, and other selected constituents in runoff from agricultural fields. Hydrologic and water-quality data were collected year-round at 23 edge-of-field monitoring stations on 5 privately owned Discovery Farms and on Pioneer Farm during water years 2003-8. The studied farms represented landscapes, soils, and farming systems typical of livestock farms throughout southern Wisconsin. Each farm employed a variety of soil, nutrient, and water-conservation practices to help minimize sediment and nutrient losses from fields and to improve crop productivity. This report summarizes the precipitation-runoff relations and water-quality characteristics measured in edge-of-field runoff for 26 "farm years" (aggregate years of averaged station data from all 6 farms for varying monitoring periods). A relatively wide range of constituents typically found in agricultural runoff were measured: suspended sediment, phosphorus (total, particulate, dissolved reactive, and total dissolved), and nitrogen (total, nitrate plus nitrite, organic, ammonium, total Kjeldahl and total Kjeldahl-dissolved), chloride, total solids, total suspended solids, total volatile suspended solids, and total dissolved solids. Mean annual precipitation was 32.8 inches for the study period, about 3 percent less than the 30-year mean. Overall mean annual runoff was 2.55 inches per year (about 8 percent of precipitation) and the distribution was nearly equal between periods of frozen ground (54 percent) and unfrozen ground (46 percent). Mean monthly runoff was highest during two periods: February to March and May to June. Ninety percent of annual runoff occurred between January and the end of June. Event mean concentrations of suspended sediment in runoff during unfrozen-ground periods were significantly higher (p2= 0.92), indicating that the sources of nitrogen and phosphorus in runoff were likely similar. Analysis of runoff, concentration, and yield data on annual, monthly, and seasonal time scales, when combined with precipitation, soil moisture, soil temperature, and on-farm field-activity information, revealed conditions in which runoff was most likely. The analysis also revealed the effects that field conditions and the timing of field-management activities-most notably, manure applications and tillage-had on the quantity and quality of surface runoff from agricultural fields.
Mean annual, seasonal, and monthly precipitation and runoff in Arkansas, 1951-2011
Pugh, Aaron L.; Westerman, Drew A.
2014-01-01
This report describes long-term annual, seasonal, and monthly means for precipitation and runoff in Arkansas for the period from 1951 through 2011. Precipitation means were estimated using data from the Parameter-elevation Regressions on Independent Slopes Model database; while total runoff, groundwater runoff, and surface runoff means were estimated using data from 123 active and inactive U.S. Geological Survey continuous-record streamflow-gaging stations located in Arkansas and surrounding States. Annual precipitation in Arkansas for the period from 1951 through 2011 had a mean of 49.8 inches. Of the six physiographic sections in Arkansas, the Ouachita Mountains had the largest mean annual precipitation at 53.0 inches, while the Springfield-Salem plateaus had the smallest mean annual precipitation at 45.5 inches. The mean annual total runoff for Arkansas was 17.8 inches. The Ouachita Mountains had the largest mean annual total runoff at 20.4 inches, while the Springfield-Salem plateaus had the smallest mean annual total runoff at 15.0 inches. Runoff is diminished during the dry season, which is attributed to increased losses from evapotranspiration, consumptive uses including irrigation, and increased withdrawals for public and private water supplies. The decline in runoff during the dry season is observed across the State in all physiographic sections. Spatial results for precipitation and runoff are presented in a series of maps that are available for download from the publication Web page in georeferenced raster formats.
Joint variability of global runoff and global sea surface temperatures
McCabe, G.J.; Wolock, D.M.
2008-01-01
Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.
Spectral analysis of temporal non-stationary rainfall-runoff processes
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2018-04-01
This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.
Zhang, Ming-Kui; Wang, Yang; Huang, Chao
2011-12-01
By the method of site-specific observation, and selecting 27 field plots with 7 planting patterns in Shaoxing county of Zhejiang Province as test objects, this paper studied the characteristics of nitrogen (N) and phosphorous (P) runoff losses, loads, and their affecting factors in the croplands with different planting patterns in riverine plain area of the Province under natural rainfall. The mean annual runoff loads of total P, dissolved P, and particulate P from the field plots were 4.75, 0.74 and 4.01 kg x hm(-2), respectively, and the load of particulate P was much higher than that of dissolved P. The mean annual runoff loads of total N, dissolved total N, dissolved organic N, NH4(+)-N, and NO3(-)-N were 21.87, 17.19, 0.61, 3.63 and 12.95 kg x hm(-2), respectively, and the load of different fractions of dissolved total N was in the sequence of NO3(-)-N > NH4(+)-N > dissolved organic N. As for the field plots with different planting patterns, the runoff loads of total N, dissolved total N, dissolved organic N, and NO3(-)-N were in the sequence of fallow land < nursery land < single late rice field < double rice field < rape (or wheat)-single late rice field < wheat-early rice-late rice field < vegetable field, while those of total P and particulate P were in the sequence of fallow land < nursery land < single late rice field and double rice field < wheat-early rice-late rice field < rape (wheat)-single late rice field < vegetable field. No significant difference was observed in the load of water-dissolved P among the test plots with different planting patterns. The runoff losses of N and P mainly occurred in crop growth period, and the proportions of N and P losses in the growth period increased with increasing multiple crop index. The runoff losses of total N, dissolved N, and NO3(-)-N were mainly related to the application rate of N fertilizer, and soil NO3(-)-N content also had obvious effects on the runoff losses of total N and dissolved N. The runoff loss of dissolved organic N was related not only to N application rate, but also to soil total N and organic carbon. The runoff loss of NH4(+)-N was mainly related to soil available NH4(+)-N, but not related to N application rate. The runoff losses of total P and particulate P were related to both P application rate and soil available P, while the runoff loss of water dissolved P was less related to P application rate but had relations to soil total P and available P.
USDA-ARS?s Scientific Manuscript database
To better understand, implement and integrate best management practices (BMPs) in agricultural watersheds, critical information on their effectiveness is required. A representative agricultural watershed, Beasley Lake, was used to compare runoff water quality draining through an integrated system of...
Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases
Wei, Zhang; Simin, Li; Fengbing, Tang
2013-01-01
To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444
Total pollution effect of urban surface runoff.
Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue
2009-01-01
For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.
Percentage entrainment of constituent loads in urban runoff, south Florida
Miller, R.A.
1985-01-01
Runoff quantity and quality data from four urban basins in south Florida were analyzed to determine the entrainment of total nitrogen, total phosphorus, total carbon, chemical oxygen demand, suspended solids, and total lead within the stormwater runoff. Land use of the homogeneously developed basins are residential (single family), highway, commercial, and apartment (multifamily). A computational procedure was used to calculate, for all storms that had water-quality data, the percentage of constituent load entrainment in specified depths of runoff. The plot of percentage of constituent load entrained as a function of runoff is termed the percentage-entrainment curve. Percentage-entrainment curves were developed for three different source areas of basin runoff: (1) the hydraulically effective impervious area, (2) the contributing area, and (3) the drainage area. With basin runoff expressed in inches over the contributing area, the depth of runoff required to remove 90 percent of the constituent load ranged from about 0.4 inch to about 1.4 inches; and to remove 80 percent, from about 0.3 to 0.9 inch. Analysis of variance, using depth of runoff from the contributing area as the response variable, showed that the factor 'basin' is statistically significant, but that the factor 'constituent' is not statistically significant in the forming of the percentage-entrainment curve. Evidently the sewerage design, whether elongated or concise in plan dictates the shape of the percentage-entrainment curve. The percentage-entrainment curves for all constituents were averaged for each basin and plotted against basin runoff for three source areas of runoff-the hydraulically effective impervious area, the contributing area, and the drainage area. The relative positions of the three curves are directly related to the relative sizes of the three source areas considered. One general percentage-entrainment curve based on runoff from the contributing area was formed by averaging across both constituents and basins. Its coordinates are: 0.25 inch of runoff for 50-percent entrainment, 0.65 inch of runoff for 80-percent entrainment, and 0.95 inch of runoff for 90-percent entrainment. The general percentage-entrainment curve based on runoff from the hydraulically effective impervious area has runoff values of 0.35, 0.95, 1.6 inches, respectively.
NASA Astrophysics Data System (ADS)
Lee, Mi-Hee; Payeur-Poirier, Jean-Lionel; Park, Ji-Hyung; Matzner, Egbert
2016-09-01
Heavy storm events may increase the amount of organic matter in runoff from forested watersheds as well as the relation of dissolved to particulate organic matter. This study evaluated the effects of monsoon storm events on the runoff fluxes and on the composition of dissolved (< 0.45 µm) and particulate (0.7 µm to 1 mm) organic carbon and nitrogen (DOC, DON, POC, PON) in a mixed coniferous/deciduous (mixed watershed) and a deciduous forested watershed (deciduous watershed) in South Korea. During storm events, DOC concentrations in runoff increased with discharge, while DON concentrations remained almost constant. DOC, DON and NO3-N fluxes in runoff increased linearly with discharge pointing to changing flow paths from deeper to upper soil layers at high discharge, whereas nonlinear responses of POC and PON fluxes were observed likely due to the origin of particulate matter from the erosion of mineral soil along the stream benches. The integrated C and N fluxes in runoff over the 2-month study period were in the order of DOC > POC and NO3-N > DON > PON. The integrated DOC fluxes in runoff during the study period were much larger at the deciduous watershed (16 kg C ha-1) than at the mixed watershed (7 kg C ha-1), while the integrated NO3-N fluxes were higher at the mixed watershed (5.2 kg N ha-1) than at the deciduous watershed (2.9 kg N ha-1). The latter suggests a larger N uptake by deciduous trees. Integrated fluxes of POC and PON were similar at both watersheds. The composition of organic matter in soils and runoff indicates that the contribution of near-surface flow to runoff was larger at the deciduous than at the mixed watershed. Our results demonstrate different responses of particulate and dissolved C and N in runoff to storm events as a combined effect of tree species composition and watershed specific flow paths.
NASA Astrophysics Data System (ADS)
Li, Dongyue; Wrzesien, Melissa L.; Durand, Michael; Adam, Jennifer; Lettenmaier, Dennis P.
2017-06-01
In the western United States, the seasonal phase of snow storage bridges between winter-dominant precipitation and summer-dominant water demand. The critical role of snow in water supply has been frequently quantified using the ratio of snowmelt-derived runoff to total runoff. However, current estimates of the fraction of annual runoff generated by snowmelt are not based on systematic analyses. Here based on hydrological model simulations and a new snowmelt tracking algorithm, we show that 53% of the total runoff in the western United States originates as snowmelt, despite only 37% of the precipitation falling as snow. In mountainous areas, snowmelt is responsible for 70% of the total runoff. By 2100, the contribution of snowmelt to runoff will decrease by one third for the western U.S. in the Intergovernmental Panel on Climate Change Representative Concentration Pathway 8.5 scenario. Snowmelt-derived runoff currently makes up two thirds of the inflow to the region's major reservoirs. We argue that substantial impacts on water supply are likely in a warmer climate.
Influence of Cattle Trails on Runoff Quantity and Quality.
Miller, Jim J; Curtis, Tony; Chanasyk, David S; Willms, Walter D
2017-03-01
Cattle trails in grazed pastures close to rivers may adversely affect surface water quality of the adjacent river by directing runoff to it. The objective of this 3-yr study (2013-2015) in southern Alberta, Canada, was to determine if cattle trails significantly increased the risk of runoff and contaminants (sediment, nutrients) compared with the adjacent grazed pasture (control). A portable rainfall simulator was used to generate artificial rainfall (140 mm h) and runoff. The runoff properties measured were time to runoff and initial abstraction (infiltration), total runoff depth and average runoff rates, as well as concentrations and mass loads of sediment, N, and P fractions. Cattle trails significantly ( ≤ 0.10) decreased time to runoff and initial abstraction (26-32%) in the 2 yr measured and increased total runoff depth, runoff coefficients, and average runoff rates (21-51%) in 2 of 3 yr. Concentrations of sediment, N, and P fractions in runoff were not significantly greater for cattle trails than for control areas. However, mass loads of total suspended solids (57-85% increase), NH-N (31-90%), and dissolved reactive P (DRP) (30-92%) were significantly greater because of increased runoff volumes. Overall, runoff quantity and loads of sediment, NH-N, and DRP were greater for cattle trails compared with the adjacent grazed pasture, and hydrologic connection with cattle-access sites on the riverbank suggests that this could adversely affect water quality in the adjacent river. Extrapolation of the study results should be tempered by the specific conditions represented by this rainfall simulation study. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Modeling phosphorus losses from soils amended with cattle manures and chemical fertilizers.
Wang, Zhaozhi; Zhang, T Q; Tan, C S; Vadas, P; Qi, Z M; Wellen, C
2018-05-22
While applied manure/fertilizer is an important source of P loss in surface runoff, few models simulate the direct transfer of phosphorus (P) from soil-surface-applied manure/fertilizer to surface runoff. The SurPhos model was tested with 2008-2010 growing season daily surface runoff data from clay loam experimental plots subject to different manure/fertilizer applications. Model performance was evaluated on the basis of the coefficient of determination (R 2 ), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and the ratio of the root mean square error to the standard deviation of observed values (RSR). The model offered an acceptable performance in simulating soil labile P dynamics (R 2 = 0.75, NSE = 0.55, PBIAS = 10.43%, and RSR = 0.67) and dissolved reactive P (DRP) loss in surface runoff (R 2 ≥ 0.74 and NSE ≥ 0.69) for both solid and liquid cattle manure, as well as inorganic fertilizer. Simulated direct P loss in surface runoff from solid and liquid cattle manure accounted for 39% and 40% of total growing season DRP losses in surface runoff. To compensate for the unavailability of daily surface runoff observations under snow melt condition, the whole four years' (2008-2011) daily surface runoff predicted by EPIC (Environmental Policy Integrated Climate) was used as SurPhos input. The accuracy of simulated DRP loss in surface runoff under the different manure/fertilizer treatments was acceptable (R 2 ≥ 0.55 and NSE ≥ 0.50). For the solid cattle manure treatment, of all annual DRP losses, 19% were derived directly from the manure. Beyond offering a reliable prediction of manure/fertilizer P loss in surface runoff, SurPhos quantified different sources of DRP loss and dynamic labile P in soil, allowing a better critical assessment of different P management measures' effectiveness in mitigating DRP losses. Copyright © 2018 Elsevier B.V. All rights reserved.
[Pollution load and the first flush effect of phosphorus in urban runoff of Wenzhou City].
Zhou, Dong; Chen, Zhen-lou; Bi, Chun-juan
2012-08-01
Five typical rainfalls were monitored in two different research areas of Wenzhou municipality. The pH and concentrations of total phosphorus (TP), dissolved phosphorus (DP), particulate phosphorus (PP), total inorganic carbon (TIC), total organic carbon (TOC), total suspended substances (TSS), BOD5 and COD in six different kinds of urban runoff were measured. The results showed that, the concentrations of TP, DP and PP in different kinds of urban runoff of Wenzhou ranged from 0.01 to 4.32 mg x L(-1), ND to 0.88 mg x L(-1) and ND to 4.31 mg x L(-1), respectively. In the early stages of runoff process PP was dominated, while in the later, the proportion of DP in most of the runoff samples would show a rising trend, especially in roof and outlet runoff. Judged by the event mean concentration (EMC) of TP and DP in these five rainfalls, some kinds of urban runoff could cause environmental pressure to the next level receiving water bodies. Meanwhile, the differences among the TP and DP content (maximum, minimum and mean content) in various urban runoffs were significant, and so were the differences among various rainfall events. According to the M (V) curve, the first flush effect of TP in most kinds of urban runoff was common; while the first flush effect of DP was more difficult to occur comparing with TP. Not only the underlying surface types but also many physico-chemical properties of runoff could affect the concentration of TP in urban runoff. All the results also suggested that different best management plans (BMPs) should be selected for various urban runoff types for the treatment of phosphorus pollution, and reducing the concentration of TSS is considered as one of the effective ways to decrease the pollution load of phosphorus in urban runoff.
NASA Astrophysics Data System (ADS)
Wang, Deng; Jian, Shengqi; Wu, Zening; Zhang, Zhaoxi; Hu, Caihong
2018-06-01
The runoff of the Fenhe River flowed into the Yellow River (RRY) is reducing significantly due to the influence of climate change and human activities. It is generating bad situation of shortage of water resources and led to the deterioration of ecological environment of Shanxi Province. At the same time, the reduction in RRY causes the runoff reduction in Yellow River and exacerbated the water resources shortage of the middle area of the Yellow River. Therefore, it is important to alleviate water shortage and develop the soil and water conservation measurements and regional water policy by analyzing the influence of human activities and climate change on the RRY. The existing study quantified the reduction in amount of RRY which caused by human activities and climate change using statistical methods and watershed hydrological model. The main results of the study were as follow:
Potential contributions of mature prairie and turfgrass to phosphorus in urban runoff.
Steinke, K; Kussow, W R; Stier, J C
2013-07-01
Urban vegetative plantings are considered desirable to mitigate and filter stormwater runoff and nonpoint-source pollution. Phosphorus fertilization of turfgrass may enhance P in urban runoff; however, the amount of P from nonfertilized, native vegetation that could potentially replace some turf is not known. This study was conducted to measure the relative contributions of nonfertilized, native prairie vegetation and fertilized turfgrass to runoff water and P loads. Six replicates of side-by-side mature urban prairie and turfgrass were monitored for mean annual runoff volumes and P loads, biomass production, vegetative nutrient composition, and changes in soil moisture. Vegetation type did not significantly affect seasonal or annual runoff volumes or P loads. The mean annual total P loads of 0.46 kg ha for prairie and 0.28 kg ha for turfgrass were significant and comparable to those reported by other researchers when studied separately. Total P concentrations in runoff water from prairie and turf vegetation were above USEPA limits, averaging 1.86 and 1.63 mg L, respectively, over 2 yr. Averaged across 2 yr, 78% of runoff P was collected when the soil was frozen. Biomass P reductions over the period of November to April were strongly related to quantities of runoff total P from frozen soil ( = 0.874). Phosphorus losses from urban areas appeared to be primarily correlated with runoff depth, not vegetation type, because correlation coefficients revealed 86 and 45% of the Year 1 and Year 2 total P loads were directly accounted for by runoff volumes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Wei, Qunshan; Zhu, Gefu; Wu, Peng; Cui, Li; Zhang, Kaisong; Zhou, Jingjing; Zhang, Wenru
2010-01-01
The pollutants in urban storm runoff, which lead to an non-point source contamination of water environment around cities, are of great concerns. The distributions of typical contaminants and the variations of their species in short term storm runoff from different land surfaces in Xiamen City were investigated. The concentrations of various contaminants, including organic matter, nutrients (i.e., N and P) and heavy metals, were significantly higher in parking lot and road runoff than those in roof and lawn runoff. The early runoff samples from traffic road and parking lot contained much high total nitrogen (TN 6-19 mg/L) and total phosphorus (TP 1-3 mg/L). A large proportion (around 60%) of TN existed as total dissolved nitrogen (TDN) species in most runoff. The percentage of TDN and the percentage of total dissolved phosphorus remained relatively stable during the rain events and did not decrease as dramatically as TN and TP. In addition, only parking lot and road runoff were contaminated by heavy metals, and both Pb (25-120 microg/L) and Zn (0.1-1.2 mg/L) were major heavy metals contaminating both runoff. Soluble Pb and Zn were predominantly existed as labile complex species (50%-99%), which may be adsorbed onto the surfaces of suspended particles and could be easily released out when pH decreased. This would have the great impact to the environment.
Characterization and first flush analysis in road and roof runoff in Shenyang, China.
Li, Chunlin; Liu, Miao; Hu, Yuanman; Gong, Jiping; Sun, Fengyun; Xu, Yanyan
2014-01-01
As urbanization increases, urban runoff is an increasingly important component of total urban non-point source pollution. In this study, the properties of urban runoff were examined in Shenyang, in northeastern China. Runoff samples from a tiled roof, a concrete roof and a main road were analyzed for key pollutants (total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), Pb, Cd, Cr, Cu, Ni, and Zn). The event mean concentration, site mean concentration, M(V) curves (dimensionless cumulative curve of pollutant load with runoff volume), and mass first flush ratio (MFF30) were used to analyze the characteristics of pollutant discharge and first flush (FF) effect. For all events, the pollutant concentration peaks occurred in the first half-hour after the runoff appeared and preceded the flow peaks. TN is the main pollutant in roof runoff. TSS, TN, TP, Pb, and Cr are the main pollutants in road runoff in Shenyang. There was a significant correlation between TSS and other pollutants except TN in runoff, which illustrated that TSS was an important carrier of organic matter and heavy metals. TN had strong positive correlations with total rainfall (Pearson's r = 0.927), average rainfall (Pearson's r = 0.995), and maximum rainfall intensity (Pearson's r = 0.991). TP had a strong correlation with rainfall intensity (Pearson's r = 0.940). A significant positive correlation between COD and rainfall duration (Pearson's r = 0.902, significance level = 0.05) was found. The order of FF intensity in different surfaces was concrete roof > tile roof > road. Rainfall duration and the length of the antecedent dry period were positively correlated with the FF. TN tended to exhibit strong flush for some events. Heavy metals showed a substantially stronger FF than other pollutant.
Pilon, C; Moore, P A; Pote, D H; Martin, J W; DeLaune, P B
2017-03-01
Metal runoff from fields fertilized with poultry litter may pose a threat to aquatic systems. Buffer strips located adjacent to fields may reduce nutrients and solids in runoff. However, scant information exists on the long-term effects of buffer strips combined with grazing management on metal runoff from pastures. The objective of this study was to assess the 12-yr impact of grazing management and buffer strips on metal runoff from pastures receiving poultry litter. The research was conducted using 15 watersheds (25 m wide and 57 m long) with five treatments: hayed (H), continuously grazed (CG), rotationally grazed (R), rotationally grazed with a buffer strip (RB), and rotationally grazed with a fenced riparian buffer strip (RBR). Poultry litter was applied annually in spring at 5.6 Mg ha. Runoff samples were collected after every rainfall event. Aluminum (Al) and iron (Fe) concentrations were strongly and positively correlated with total suspended solids, indicating soil erosion was the primary source. Soluble Al and Fe were not related to total Al and Fe. However, there was a strong positive correlation between soluble and total copper (Cu) concentrations. The majority of total Cu and zinc was in water-soluble form. The CG treatment had the highest metal concentrations and loads of all treatments. The RBR and H treatments resulted in lower concentrations of total Al, Cu, Fe, potassium, manganese, and total organic carbon in the runoff. Rotational grazing with a fenced riparian buffer and converting pastures to hayfields appear to be effective management systems for decreasing concentrations and loads of metals in surface runoff from pastures fertilized with poultry litter. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Phosphorus runoff from sewage sludge applied to different slopes of lateritic soil.
Chen, Yan Hui; Wang, Ming Kuang; Wang, Guo; Chen, Ming Hua; Luo, Dan; Ding, Feng Hua; Li, Rong
2011-01-01
Sewage sludge (SS) applied to sloping fields at rates that exceed annual forest nutrient requirements can be a source of phosphorus (P) in runoff. This study investigates the effects of different slopes (18, 27, 36, and 45%) on P in runoff from plots amended with SS (120 Mg ha). Lateritic soil (pH 5.2) was exposed to five simulated rainfalls (90 mm h) on outdoor plots. When sludge was broadcast and mixed with surface soils, the concentrations and loss in runoff of total P in the mixed sample (MTP), total P in the settled sample (STP), total particulate P (TPP), total suspended P (TSP), and total dissolved P (TDP) were highest at 1 or 18 d after application. Initially, pollution risks to surface waters generally increased to different degrees with steeper slopes, and then diminished gradually with dwindling differences between the slopes. The runoff losses coefficient of MTP increased in the order 36 > 45 > 27 > 18%. The initial event (1 and 18 d) accounted for 67.0 to 83.6% of total runoff P losses. Particulate fraction were dominant carriers for P losses, while with the lower slopes there was higher content of P per unit particulate fraction in runoff. Phosphorus losses were greatly affected by the interaction of sludge-soil-runoff and the modification of soil properties induced by sludge amendment. It is recommended to choose lower slopes (<27%) to reduce risk of P losses. Thus, the risk of application sludge to sloping fields in acid soils should be studied further in the field under a wider diversity of conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Ogden, Fred L.; Crouch, Trey D.; Stallard, Robert F.; Hall, Jefferson S.
2013-01-01
A paired catchment methodology was used with more than 3 years of data to test whether forests increase base flow in the dry season, despite reduced annual runoff caused by evapotranspiration (the “sponge-effect hypothesis”), and whether forests reduce maximum runoff rates and totals during storms. The three study catchments were: a 142.3 ha old secondary forest, a 175.6 ha mosaic of mixed age forest, pasture, and subsistence agriculture, and a 35.9 ha actively grazed pasture subcatchment of the mosaic catchment. The two larger catchments are adjacent, with similar morphology, soils, underlying geology, and rainfall. Annual water balances, peak runoff rates, runoff efficiencies, and dry season recessions show significant differences. Dry season runoff from the forested catchment receded more slowly than from the mosaic and pasture catchments. The runoff rate from the forest catchment was 1–50% greater than that from the similarly sized mosaic catchment at the end of the dry season. This observation supports the sponge-effect hypothesis. The pasture and mosaic catchment median runoff efficiencies were 2.7 and 1.8 times that of the forest catchment, respectively, and increased with total storm rainfall. Peak runoff rates from the pasture and mosaic catchments were 1.7 and 1.4 times those of the forest catchment, respectively. The forest catchment produced 35% less total runoff and smaller peak runoff rates during the flood of record in the Panama Canal Watershed. Flood peak reduction and increased streamflows through dry periods are important benefits relevant to watershed management, payment for ecosystem services, water-quality management, reservoir sedimentation, and fresh water security in the Panama Canal watershed and similar tropical landscapes.
NASA Astrophysics Data System (ADS)
Genxu, W.
2017-12-01
There is a lack of knowledge about how to quantify runoff generation and the hydrological processes operating in permafrost catchments on permafrost-dominant catchments. To understand the mechanism of runoff generation processes in permafrost catchments, a typical headwater catchment with continuous permafrost on the Tibetan Plateau was measured. A new approach is presented in this study to account for runoff processes on the spring thawing period and autumn freezing period, when runoff generation clearly differs from that of non-permafrost catchments. This approach introduces a soil temperature-based water saturation function and modifies the soil water storage curve with a soil temperature threshold. The results show that surface soil thawing induced saturation excess runoff and subsurface interflow account for approximately 66-86% and 14-34% of total spring runoff, respectively, and the soil temperature significantly affects the runoff generation pattern, the runoff composition and the runoff coefficient with the enlargement of the active layer. The suprapermafrost groundwater discharge decreases exponentially with active layer frozen processes during autumn runoff recession, whereas the ratio of groundwater discharge to total runoff and the direct surface runoff coefficient simultaneously increase. The bidirectional freezing of the active layer controls and changes the autumn runoff processes and runoff composition. The new approach could be used to further develop hydrological models of cold regions dominated by permafrost.
Ghodsi, Seyed Hamed; Kerachian, Reza; Zahmatkesh, Zahra
2016-04-15
In this paper, an integrated framework is proposed for urban runoff management. To control and improve runoff quality and quantity, Low Impact Development (LID) practices are utilized. In order to determine the LIDs' areas and locations, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), which considers three objective functions of minimizing runoff volume, runoff pollution and implementation cost of LIDs, is utilized. In this framework, the Storm Water Management Model (SWMM) is used for stream flow simulation. The non-dominated solutions provided by the NSGA-II are considered as management scenarios. To select the most preferred scenario, interactions among the main stakeholders in the study area with conflicting utilities are incorporated by utilizing bargaining models including a non-cooperative game, Nash model and social choice procedures of Borda count and approval voting. Moreover, a new social choice procedure, named pairwise voting method, is proposed and applied. Based on each conflict resolution approach, a scenario is identified as the ideal solution providing the LIDs' areas, locations and implementation cost. The proposed framework is applied for urban water quality and quantity management in the northern part of Tehran metropolitan city, Iran. Results show that the proposed pairwise voting method tends to select a scenario with a higher percentage of reduction in TSS (Total Suspended Solid) load and runoff volume, in comparison with the Borda count and approval voting methods. Besides, the Nash method presents a management scenario with the highest cost for LIDs' implementation and the maximum values for percentage of runoff volume reduction and TSS removal. The results also signify that selection of an appropriate management scenario by stakeholders in the study area depends on the available financial resources and the relative importance of runoff quality improvement in comparison with reducing the runoff volume. Copyright © 2016 Elsevier B.V. All rights reserved.
Phosphorus and nitrogen in runoff after phosphorus- or nitrogen-based manure applications.
Miller, Jim J; Chanasyk, David S; Curtis, Tony W; Olson, Barry M
2011-01-01
Application of beef cattle () manure based on nitrogen (N) requirements of crops has resulted in elevated concentrations of soil test phosphorus (P) in surface soils, and runoff from this cropland can contribute to eutrophication of surface waters. We conducted a 3-yr field study (2005-2007) on a Lethbridge loam soil cropped to dryland barley () in southern Alberta, Canada to evaluate the effect of annual and triennial P-based and annual N-based feedlot manure on P and N in runoff. The manure was spring applied and incorporated. There was one unamended control plot. A portable rainfall simulator was used to generate runoff in the spring of each year after recent manure incorporation, and the runoff was analyzed for total P, total dissolved P, total particulate P, dissolved reactive P, total N, total dissolved N, total particulate N, NO-N, and NH-N. Annual or triennial P-based application resulted in significantly ( ≤ 0.05) lower (by 50 to 94%) concentrations or loads of mainly dissolved P fractions in runoff for some years compared with annual N-based application, and this was related to lower rates of annual manure P applied. For example, mean dissolved reactive P concentrations in 2006 and 2007 were significantly lower for the annual P-based (0.12-0.20 mg L) than for the annual N-based application (0.24-0.48 mg L), and mean values were significantly lower for the triennial P-based (0.06-0.13 mg L) than for the annual N-based application. In contrast, other P fractions in runoff were unaffected by annual P-based application. Our findings suggested no environmental benefit of annual P-based application over triennial P-based application with respect to P and N in runoff. Similar concentrations and loads of N fractions in runoff for the P- and N-based applications indicated that shifting to a P-based application would not significantly influence N in runoff. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
NASA Astrophysics Data System (ADS)
Badawy, M.
2012-04-01
Wadi El Arish is the largest drainage system in Sinai Peninsula, Egypt. The Wadi was subject to severe thunderstorms on 17 and 18 January 2010 followed by an extreme and violent flood that had not been known in Sinai since 1980. The flood claimed six victims, injured tens of people, and devastated vital infrastructure and hundreds of houses. Hydrologic characteristics of the Wadi are not fully understood due to substantial lack of the detailed hydro-meteorological information. Hence, remote sensing and GIS techniques were used to provide better spatial understanding of rainfall characteristics and drainage basin response. The study was based on the analysis of the TRMM images and 6 hourly average HYDIS data of rainfall analyses. A hydrological model was constructed using ASTER DEMs. The empirical black box model was used depending on the curve number approach to predict stream runoff. Landcover and hydrological soil groups were identified from the Landsat ETM+ mosaic using multispectral supervised classification. The curve numbers were adjusted to ARC I (dry condition) as the total rain in a 5-day period preceding the storm were very low (≤5 mm). We found, that the Wadi received a total rain volume of 665.4 x 106 m3. Most of it fell on 17 January, when the rain intensity ranged between 4-8 mm/hr. The estimated total surface runoff Q was 123.3 x 103 mm and the total runoff volume was 124 x 106 m3 that constitutes 18.8 % of the total rain volume. The results are in agreement with the observed values in the Wadi and highly required for many applications related to water harvesting and flood protection studies.
NASA Astrophysics Data System (ADS)
Thomas, Ian; Murphy, Paul; Fenton, Owen; Shine, Oliver; Mellander, Per-Erik; Dunlop, Paul; Jordan, Phil
2015-04-01
A new phosphorus index (PI) tool is presented which aims to improve the identification of critical source areas (CSAs) of phosphorus (P) losses from agricultural land to surface waters. In a novel approach, the PI incorporates topographic indices rather than watercourse proximity as proxies for runoff risk, to account for the dominant control of topography on runoff-generating areas and P transport pathways. Runoff propensity and hydrological connectivity are modelled using the Topographic Wetness Index (TWI) and Network Index (NI) respectively, utilising high resolution digital elevation models (DEMs) derived from Light Detection and Ranging (LiDAR) to capture the influence of micro-topographic features on runoff pathways. Additionally, the PI attempts to improve risk estimates of particulate P losses by incorporating an erosion factor that accounts for fine-scale topographic variability within fields. Erosion risk is modelled using the Unit Stream Power Erosion Deposition (USPED) model, which integrates DEM-derived upslope contributing area and Universal Soil Loss Equation (USLE) factors. The PI was developed using field, sub-field and sub-catchment scale datasets of P source, mobilisation and transport factors, for four intensive agricultural catchments in Ireland representing different agri-environmental conditions. Datasets included soil test P concentrations, degree of P saturation, soil attributes, land use, artificial subsurface drainage locations, and 2 m resolution LiDAR DEMs resampled from 0.25 m resolution data. All factor datasets were integrated within a Geographical Information System (GIS) and rasterised to 2 m resolution. For each factor, values were categorised and assigned relative risk scores which ranked P loss potential. Total risk scores were calculated for each grid cell using a component formulation, which summed the products of weighted factor risk scores for runoff and erosion pathways. Results showed that the new PI was able to predict in-field risk variability and hence was able to identify CSAs at the sub-field scale. PI risk estimates and component scores were analysed at catchment and subcatchment scales, and validated using measured dissolved, particulate and total P losses at subcatchment snapshot sites and gauging stations at catchment outlets. The new PI provides CSA delineations at higher precision compared to conventional PIs, and more robust P transport risk estimates. The tool can be used to target cost-effective mitigation measures for P management within single farm units and wider catchments.
Komiskey, Matthew J.; Stuntebeck, Todd D.; Frame, Dennis R.; Madison, Fred W.
2011-01-01
Nutrients and sediment in surface runoff from frozen agricultural fields were monitored within three small (16.0 ha [39.5 ac] or less), adjacent basins at a no-till farm in southwest Wisconsin during four winters from 2003 to 2004 through 2006 to 2007. Runoff depths and flow-weighted constituent concentrations were compared to determine the impacts of surface-applied liquid-dairy or solid-beef manure to frozen and/or snow-covered ground. Despite varying the manure type and the rate and timing of applications, runoff depths were not significantly different among basins within each winter period. Sediment losses were low (generally less than 22 kg ha−1 [20 lb ac−1] in any year) and any statistical differences in sediment concentrations among basins were not related to the presence or absence of manure or the amount of runoff. Concentrations and losses of total nitrogen and total phosphorus were significantly increased in basins that had either manure type applied less than one week preceding runoff. These increases occurred despite relatively low application rates. Lower concentrations and losses were measured in basins that had manure applied in fall and early winter and an extended period of time (months) had elapsed before the first runoff event. The highest mean, flow-weighted concentrations of total nitrogen (31.8 mg L−1) and total phosphorus (10.9 mg L−1) occurred in winter 2003 to 2004, when liquid-dairy manure was applied less than one week before runoff. On average, dissolved phosphorus accounted for over 80% of all phosphorus measured in runoff during frozen-ground periods. The data collected as part of this study add to the limited information on the quantity and quality of frozen-ground runoff at field edges, and the results highlight the importance of manure management decisions during frozen-ground periods to minimize nutrients lost in surface runoff.
How snowmelt changed due to climate change in an ungauged catchment on the Tibetan Plateau?
NASA Astrophysics Data System (ADS)
Wang, Rui; Yao, Zhijun
2017-04-01
Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial-temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from MODIS snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree-day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9 3 d/10a and the end time of snow melt has become later by 0.6 2.3 d/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6 % and 6.8 %, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River.
Integrated assessment of climate change impact on surface runoff contamination by pesticides.
Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald
2016-07-01
Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC.
[Effect of antecedent dry weather period on urban storm runoff pollution load].
Li, Li-qing; Yin, Cheng-qing; Kong, Ling-li; He, Qing-ci
2007-10-01
Twelve storm events were surveyed at Shilipu catchment in Wuhan City through three-year monitoring regime. The flow discharges, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in runoff were measured to study the mechanism of urban stormwater runoff pollution. The relationship between the event pollution load and the antecedent dry weather period was identified to discuss the influence of the urban surface sanitation management, operation of sewer pipe maintenance and rainfall characteristics on the urban stormwater runoff pollution. It was found that the antecedent dry weather period and runoff amount were the important determining factors in the generation of urban stormwater runoff pollution. The event pollution load was positively correlated to the antecedent dry weather period between two rainfall events (R2 = 0.95, p < 0.01). It was the most important hydrological factor influencing the events pollution loads. The best regression equation to estimate pollution load for storm events was developed based on the antecedent dry weather period and runoff depth. Source control including improving urban street sweeping activities and operation of sewer pipe maintenance should be made to reduce the amount of available pollutant over the dry days. It is important alternative to control urban stormwater runoff pollution for Hanyang District.
Lee, Chia-Hsing; Wang, Chung-Chi; Lin, Huan-Hsuan; Lee, Sang Soo; Tsang, Daniel C W; Jien, Shih-Hao; Ok, Yong Sik
2018-04-01
Climate change gives rise to rapid degradation of rural soils in sloping subtropical and tropical areas and might further threaten environmental sustainability. In this study, we conducted an integrated evaluation of the effects of wood biochar (WB) application mixed with a green waste dreg compost (GWC) on runoff quality, soil losses, and agricultural productivity for a highly weathered tropical soil. A conventional agriculture method, in which soils are treated with anionic polyacrylamide (PAM), was also conducted for comparison. The amounts of runoff and soil loss, and nutrient retention were evaluated a year after WB application. Soil fertility was also investigated through a year pot experiment with rape (Brassica campestris L.) cultivation. Our results showed that the WB application not only effectively increased soil pH, soil organic carbon (SOC) and exchangeable K + but also increased the production of rape plants. Significant reduction of runoff and the increases of inorganic nitrogen (IN) and total phosphorus (TP) were found in the WB-treated soil. Compared to the control, the co-application of WB and GWC, particularly for the WB at 4%, decreased runoff by 16.8%, soil loss by 25%, and IN loss (via runoff) by 41.8%. Meanwhile, compared to the control and PAM treatments, the co-application of WB and GWC improved soil acidity and the contents of SOC, IN, TP, and exchangeable K + . The co-application of WB and GWC could be an alternative agricultural strategy to obtain benefits to agricultural productivity and environmental sustainability. Copyright © 2017 Elsevier B.V. All rights reserved.
Runoff, sediment and nutrient exports from a Portuguese vineyard under integrated production
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Abrantes, Nelson; Santos, Leisly; Serpa, Dalila; Keizer, Jacob; Ferreira, António
2017-04-01
Vineyard is one of the most important fruit crops in the world, and particularly in Portugal, where it represents 27% of permanent crops (INE, 2011). It has an unquestionable impact on Portuguese economy, due to direct impacts on primary sector, since it embodies 49% of drink industry sales and it is the seventh vegetable product best quoted (INE, 2015), but also due to indirect impacts on tourism. Although the economical relevance of vineyards, crop sustainability may be endangered due to land degradation. In the Mediterranean region, vineyards are reported as being the land use with highest erosion rates, threatening the long-term agricultural sustainability (Biddoccu et al., 2016). Several research studies have investigated runoff and erosion processes on vineyards, but relatively few focused on nutrient losses. This study aims to (i) quantify surface runoff, sediment and nutrient losses in a Portuguese vineyard managed under integrated production; (ii) relate these losses with rainfall pattern; and (iii) discuss the sustainability of vineyards under integrated production. The study was carried out in a commercial vineyard framed in the specialized wine region of Bairrada, in North-Central Portugal. The vineyard was managed with minimum tillage (non-inversion), performed once per year in some plant rows (changing every year), in order to maintain partial vegetation cover. Fertilization, mostly foliar, is performed twice per year (between May and July), according with integrated production regulations. The climate is Mediterranean but with a significant influence of the Atlantic Ocean. The average annual rainfall is 1077 mm and the average annual temperature is 15.7°C. The soil is a Calcaric Cambisol, with clay texture, and gentle slopes (<10%). Six runoff plots were installed (78-122 m2) in September 2012. The plots were naturally bounded by a path on the top and by plant strips on the sides. At the bottom of each plot, a collector grid was buried and connected to a 80-L tank. Overland flow was periodically (once per week, depending on rainfall pattern) quantified and sampled for suspended sediment (TSS) quantification and dissolved nutrient analyses: total phosphorus (TP), total nitrogen (TN) and nitrates (N-NO3). The study was performed from October 2012 until September 2014. Over the two years period, plot runoff coefficient ranged from 10.7% to 18.3%, but between monitoring periods it reached 46.4 - 57.1% during winter storms. Suspended sediment exports recorded 3.5-8.1 ton/ha/year. Nutrient losses in overland flow reached 0.7 - 3.4 Kg TP/ha/year, 3.1 - 11.1 Kg TN/ha/year and 0.3 - 0.5 Kg N- NO3/ha/year. Great export of sediments and nutrients are largely performed under storms in wettest conditions. These results highlight the great susceptibility of this kind of crops to land degradation and diffuse pollution, even with management practices concerned to minimize the environmental impacts, such as the ones involved in integrated production. Improved agricultural practices are required to mitigate land degradation and ensure long term crop sustainability in vineyards.
An integrated vegetated ditch system reduces chlorpyrifos loading in agricultural runoff.
Phillips, Bryn M; Anderson, Brian S; Cahn, Michael; Rego, Jessa L; Voorhees, Jennifer P; Siegler, Katie; Zhang, Xuyang; Budd, Robert; Goh, Kean; Tjeerdema, Ron S
2017-03-01
Agricultural runoff containing toxic concentrations of the organophosphate pesticide chlorpyrifos has led to impaired water body listings and total maximum daily load restrictions in California's central coast watersheds. Chlorpyrifos use is now tightly regulated by the Central Coast Regional Water Quality Control Board. This study evaluated treatments designed to reduce chlorpyrifos in agricultural runoff. Initial trials evaluated the efficacy of 3 different drainage ditch installations individually: compost filters, granulated activated carbon (GAC) filters, and native grasses in a vegetated ditch. Treatments were compared to bare ditch controls, and experiments were conducted with simulated runoff spiked with chlorpyrifos at a 1.9 L/s flow rate. Chlorpyrifos concentrations and toxicity to Ceriodaphnia dubia were measured at the input and output of the system. Input concentrations of chlorpyrifos ranged from 858 ng/L to 2840 ng/L. Carbon filters and vegetation provided the greatest load reduction of chlorpyrifos (99% and 90%, respectively). Toxicity was completely removed in only one of the carbon filter trials. A second set of trials evaluated an integrated approach combining all 3 treatments. Three trials were conducted each at 3.2 L/s and 6.3 L/s flow rates at input concentrations ranging from 282 ng/L to 973 ng/L. Chlorpyrifos loadings were reduced by an average of 98% at the low flow rate and 94% at the high flow rate. Final chlorpyrifos concentrations ranged from nondetect (<50 ng/L) to 82 ng/L. Toxicity to C. dubia was eliminated in 3 of 6 integrated trials. Modeling of the ditch and its components informed design alterations that are intended to eventually remove up to 100% of pesticides and sediment. Future work includes investigating the adsorption capacity of GAC, costs associated with GAC disposal, and real-world field trials to further reduce model uncertainties and confirm design optimization. Trials with more water-soluble pesticides such as neonicotinoids are also recommended. Integr Environ Assess Manag 2017;13:423-430. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-11-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-01-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Von Guerard, Paul; Weiss, W.B.
1995-01-01
The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110 to 1,400 micrograms per liter. The data for 30 storms representing rainfall runoff from 5 drainage basins were used to develop single-storm local-regression models. The response variables, storm-runoff loads, volume, and event-mean concentrations were modeled using explanatory variables for climatic, physical, and land-use characteristics. The r2 for models that use ordinary least-squares regression ranged from 0.57 to 0.86 for storm-runoff loads and volume and from 0.25 to 0.63 for storm-runoff event-mean concentrations. Except for cadmium, standard errors of estimate ranged from 43 to 115 percent for storm- runoff loads and volume and from 35 to 66 percent for storm-runoff event-mean concentrations. Eleven of the 30 concentrations collected during rainfall runoff for total-recoverable cadmium were censored (less than) concentrations. Ordinary least-squares regression should not be used with censored data; however, censored data can be included with uncensored data using tobit regression. Standard errors of estimate for storm-runoff load and event-mean concentration for total-recoverable cadmium, computed using tobit regression, are 247 and 171 percent. Estimates from single-storm regional-regression models, developed from the Nationwide Urban Runoff Program data base, were compared with observed storm-runoff loads, volume, and event-mean concentrations determined from samples collected in the study area. Single-storm regional-regression models tended to overestimate storm-runoff loads, volume, and event-mean con-centrations. Therefore, single-storm local- and regional-regression models were combined using model-adjustment procedures to take advantage of the strengths of both models while minimizing the deficiencies of each model. Procedures were used to develop single-stormregression equations that were adjusted using local data and estimates from single-storm regional-regression equations. Single-storm regression models developed using model- adjustment proce
USDA-ARS?s Scientific Manuscript database
Increasing urbanization changes runoff patterns to be flashy and instantaneous with decreased base flow. A model with the ability to simulate sub-daily rainfall–runoff processes and continuous simulation capability is required to realistically capture the long-term flow and water quality trends in w...
A Synopsis of Technical Issues for Monitoring Sediment in Highway and Urban Runoff
Bent, Gardner C.; Gray, John R.; Smith, Kirk P.; Glysson, G. Douglas
2000-01-01
Accurate and representative sediment data are critical for assessing the potential effects of highway and urban runoff on receiving waters. The U.S. Environmental Protection Agency identified sediment as the most widespread pollutant in the Nation's rivers and streams, affecting aquatic habitat, drinking water treatment processes, and recreational uses of rivers, lakes, and estuaries. Representative sediment data are also necessary for quantifying and interpreting concentrations, loads, and effects of trace elements and organic constituents associated with highway and urban runoff. Many technical issues associated with the collecting, processing, and analyzing of samples must be addressed to produce valid (useful for intended purposes), current, complete, and technically defensible data for local, regional, and national information needs. All aspects of sediment data-collection programs need to be evaluated, and adequate quality-control data must be collected and documented so that the comparability and representativeness of data obtained for highway- and urban-runoff studies may be assessed. Collection of representative samples for the measurement of sediment in highway and urban runoff involves a number of interrelated issues. Temporal and spatial variability in runoff result from a combination of factors, including volume and intensity of precipitation, rate of snowmelt, and features of the drainage basin such as area, slope, infiltration capacity, channel roughness, and storage characteristics. In small drainage basins such as those found in many highway and urban settings, automatic samplers are often the most suitable method for collecting samples of runoff for a variety of reasons. Indirect sediment-measurement methods are also useful as supplementary and(or) surrogate means for monitoring sediment in runoff. All of these methods have limitations in addition to benefits, which must be identified and quantified to produce representative data. Methods for processing raw sediment samples (including homogenization and subsampling) for subsequent analysis for total suspended solids or suspended-sediment concentration often increase variance and may introduce bias. Processing artifacts can be substantial if the methods used are not appropriate for the concentrations and particle-size distributions present in the samples collected. Analytical methods for determining sediment concentrations include the suspended-sediment concentration and the total suspended solids methods. Although the terms suspended-sediment concentration and total suspended solids are often used interchangeably to describe the total concentration of suspended solid-phase material, the analytical methods differ and can produce substantially different results. The total suspended solids method, which commonly is used to produce highway- and urban-runoff sediment data, may not be valid for studies of runoff water quality. Studies of fluvial and highway-runoff sediment data indicate that analyses of samples by the total suspended solids method tends to under represent the true sediment concentration, and that relations between total suspended solids and suspended-sediment concentration are not transferable from site to site even when grain-size distribution information is available. Total suspended solids data used to calculate suspended-sediment loads in highways and urban runoff may be fundamentally unreliable. Consequently, use of total suspended solids data may have adverse consequences for the assessment, design, and maintenance of sediment-removal best management practices. Therefore, it may be necessary to analyze water samples using the suspended-sediment concentration method. Data quality, comparability, and utility are important considerations in collection, processing, and analysis of sediment samples and interpretation of sediment data for highway- and urban-runoff studies. Results from sediment studies must be comparable and readily transf
An assessment of the effects of cell size on AGNPS modeling of watershed runoff
Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.
2008-01-01
This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.
[Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].
Dong, Wen; Li, Huai-En; Li, Jia-Ke
2013-02-01
In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.
[Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land].
Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo
2006-12-01
In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.
NASA Astrophysics Data System (ADS)
Han, P.; Long, D.
2017-12-01
Snow water equivalent (SWE) and total water storage (TWS) changes are important hydrological state variables over cryospheric regions, such as China's Upper Yangtze River (UYR) basin. Accurate simulation of these two state variables plays a critical role in understanding hydrological processes over this region and, in turn, benefits water resource management, hydropower development, and ecological integrity over the lower reaches of the Yangtze River, one of the largest rivers globally. In this study, an improved CREST model coupled with a snow and glacier melting module was used to simulate SWE and TWS changes over the UYR, and to quantify contributions of snow and glacier meltwater to the total runoff. Forcing, calibration, and validation data are mainly from multi-source remote sensing observations, including satellite-based precipitation estimates, passive microwave remote sensing-based SWE, and GRACE-derived TWS changes, along with streamflow measurements at the Zhimenda gauging station. Results show that multi-source remote sensing information can be extremely valuable in model forcing, calibration, and validation over the poorly gauged region. The simulated SWE and TWS changes and the observed counterparts are highly consistent, showing NSE coefficients higher than 0.8. The results also show that the contributions of snow and glacier meltwater to the total runoff are 8% and 6%, respectively, during the period 2003‒2014, which is an important source of runoff. Moreover, from this study, the TWS is found to increase at a rate of 5 mm/a ( 0.72 Gt/a) for the period 2003‒2014. The snow melting module may overestimate SWE for high precipitation events and was improved in this study. Key words: CREST model; Remote Sensing; Melting model; Source Region of the Yangtze River
Reducing equifinality of hydrological models by integrating Functional Streamflow Disaggregation
NASA Astrophysics Data System (ADS)
Lüdtke, Stefan; Apel, Heiko; Nied, Manuela; Carl, Peter; Merz, Bruno
2014-05-01
A universal problem of the calibration of hydrological models is the equifinality of different parameter sets derived from the calibration of models against total runoff values. This is an intrinsic problem stemming from the quality of the calibration data and the simplified process representation by the model. However, discharge data contains additional information which can be extracted by signal processing methods. An analysis specifically developed for the disaggregation of runoff time series into flow components is the Functional Streamflow Disaggregation (FSD; Carl & Behrendt, 2008). This method is used in the calibration of an implementation of the hydrological model SWIM in a medium sized watershed in Thailand. FSD is applied to disaggregate the discharge time series into three flow components which are interpreted as base flow, inter-flow and surface runoff. In addition to total runoff, the model is calibrated against these three components in a modified GLUE analysis, with the aim to identify structural model deficiencies, assess the internal process representation and to tackle equifinality. We developed a model dependent (MDA) approach calibrating the model runoff components against the FSD components, and a model independent (MIA) approach comparing the FSD of the model results and the FSD of calibration data. The results indicate, that the decomposition provides valuable information for the calibration. Particularly MDA highlights and discards a number of standard GLUE behavioural models underestimating the contribution of soil water to river discharge. Both, MDA and MIA yield to a reduction of the parameter ranges by a factor up to 3 in comparison to standard GLUE. Based on these results, we conclude that the developed calibration approach is able to reduce the equifinality of hydrological model parameterizations. The effect on the uncertainty of the model predictions is strongest by applying MDA and shows only minor reductions for MIA. Besides further validation of FSD, the next steps include an extension of the study to different catchments and other hydrological models with a similar structure.
Jones, Perry M.; Winterstein, Thomas A.
2000-01-01
The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources and the Heron Lake Watershed District, conducted a study to characterize the rainfall-runoff response and to examine the effects of wetland restoration on the rainfall-runoff response within the Heron Lake Basin in southwestern Minnesota. About 93 percent of the land cover in the Heron Lake Basin consists of agricultural lands, consisting almost entirely of row crops, with less than one percent consisting of wetlands. The Hydrological Simulation Program – Fortran (HSPF), Version 10, was calibrated to continuous discharge data and used to characterize rainfall-runoff responses in the Heron Lake Basin between May 1991 and August 1997. Simulation of the Heron Lake Basin was done as a two-step process: (1) simulations of five small subbasins using data from August 1995 through August 1997, and (2) simulations of the two large basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Simulations of the five small subbasins was done to determine basin parameters for the land segments and assess rainfall-runoff response variability in the basin. Simulations of the two larger basins were done to verify the basin parameters and assess rainfall-runoff responses over a larger area and for a longer time period. Best-fit calibrations of the five subbasin simulations indicate that the rainfall-runoff response is uniform throughout the Heron Lake Basin, and 48 percent of the total rainfall for storms becomes direct (surface and interflow) runoff. Rainfall-runoff response variations result from variations in the distribution, intensity, timing, and duration of rainfall; soil moisture; evapotranspiration rates; and the presence of lakes in the basin. In the spring, the amount and distribution of rainfall tends to govern the runoff response. High evapotranspiration rates in the summer result in a depletion of moisture from the soils, substantially affecting the rainfall-runoff relation. Five wetland restoration simulations were run for each of five subbasins using data from August 1995 through August 1997, and for the two larger basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Results from linear regression analysis of total simulated direct runoff and total rainfall data for simulated storms in the wetland-restoration simulations indicate that the portion of total rainfall that becomes runoff will be reduced by 46 percent if 45 percent of current cropland is converted to wetland. The addition of wetlands reduced peak runoff in most of the simulations, but the reduction varied with antecedent soil moisture, the magnitude of the peak flow, and the presence of current wetlands and lakes. Reductions in the simulated total and peak runoff from the Jack Creek Basin for most of the simulated storms were greatest when additional wetlands were simulated in the North Branch Jack Creek or the Upper Jack Creek Subbasins. In the Okabena Creek Basin, reductions in simulated peak runoff for most of the storms were greatest when additional wetlands were simulated in the Lower Okabena Creek Subbasin.
Water storage capacity of natural wetland depressions in the Devils Lake basin of North Dakota
Ludden, A.P.; Frink, D.L.; Johnson, D.H.
1983-01-01
Photogrammetric mapping techniques were used to derive the water storage capacities of natural wetland depressions other than lakes in the Devils Lake Basin of North Dakota. Results from sample quarter-section areas were expanded to the entire basin. Depressions in the Devils Lake Basin have a maximum storage capacity of nearly 811,000 cubic dekameters (657,000 acre-feet). The depressions store about 72 percent of the total runoff volume from a 2-year-frequency runoff and about 41 percent of the total runoff volume from a 100-year-frequency runoff.
[Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].
Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing
2010-12-01
Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.
Gaddam, Vinay Kumar; Kulkarni, Anil V; Gupta, Anil Kumar
2018-02-20
Hydrological regimes of most of the Himalayan river catchments are poorly studied due to sparse hydro-meteorological data. Hence, stream runoff assessment becomes difficult for various socio-industrial activities in the Himalaya. Therefore, an attempt is made in this study to assess the stream runoff of Baspa River in Himachal Pradesh, India, by evaluating the contribution from snow-ice melt and rainfall runoff. The total volume of flow was computed for a period of 15 years, from 2000 to 2014, and validated with the long-term field discharge measurements, obtained from Jaipee Hydropower station (31° 32' 35.53″ N, 78° 00' 54.80″ E), at Kuppa barrage in the basin. The observations suggest (1) a good correlation (r 2 > 0.80) between the modeled runoff and field discharge measurements, and (2) out of the total runoff, 81.2% are produced by snowmelt, 11.4% by rainfall, and 7.4% from ice melt. The catchment receives ~75% of its total runoff in the ablation period (i.e., from May to September). In addition, an early snowmelt is observed in accumulation season during study period, indicating the significant influence of natural and anthropogenic factors on high-altitude areas.
Urban Runoff and Nutrients Loading Control from Sustainable BMPs (Invited)
NASA Astrophysics Data System (ADS)
Xiao, Q.
2009-12-01
Climate change alters hydrodynamic and nutrient dynamic in both large and small geographic scales. These changes in our freshwater system directly affect drinking water, food production, business, and all aspects of our life. Along with climate change is increasing urbanization which alters natural landscape. Urban runoff has been identified as one of many potential drivers of the decline of pelagic fishes in san Francisco Bay-Delta region. Recent found of Pyrethroids in American River has increased scientists, public, and policy makers’ concern about our fresh water system. Increasing our understanding about the fundamental hydrodynamic, nutrient dynamics, and the transport mechanics of runoff and nutrients are important for future water resource and ecosystem management. Urbanization has resulted in significantly increasing the amount of impervious land cover. Most impervious land covers are hydrophobic that alters surface runoff because of the effects on surface retention storage, rainfall interception, and infiltration. Large volumes of excess storm runoff from urbanized areas cause flooding, water pollution, groundwater recharge deficits, destroyed habitat, beach closures, and toxicity to aquatic organisms. Parking lot alone accounts for more than 11% of these impervious surfaces. Contrast to impervious parking lot, turfgrass can accouter for 12% of urban land in California. Irrigated urban landscapes create considerable benefits to our daily living. However, the use of fertilizers and pesticides has caused environmental problems. Preventing fertilizers and pesticides from entering storm drains is an important goal for both landscape and storm runoff managers. Studies of urban runoff have found that the most fertilizers and pesticides are from dry weather runoff which conveys pollutants to sidewalks, streets, and storm drains. Controlling surface runoff is critical to preventing these pollutants from entering storm drains and water bodies. Large scale construction of runoff retention basins and treatment facilities to meet TMDL (Total Maximum Daily Load) regulations are not cost-effective or practical. An alternative approach is to control runoff and nutrients on-site through installation of decentralized BMPs that detain and infiltrate runoff before it reaches storm drains. Recent developed green-infrastructure which integrating engineered soil and trees to reduce runoff and nutrients loading is a self-sustained best management practice (BMP). This BMP has been testing and used in urban runoff control. In Davis, CA this type of BMPs were installed in a parking lot and a residential property to evaluate the system’s effectiveness on reducing storm runoff and pollutant loading from the parking lot and irrigated landscape. Storm runoff and pollutant loading were measured and monitored during February 2007 thru May 2009 from the parking lot. The BMP reduced surface runoff and nutrients by 88.8% and 95.3%, respectively. In the residential irrigated landscape, the dry-weather runoff was monitored during 2007 irrigation season, the BMP captured almost all dry weather runoff. The performance of these BMPs demonstrated their potential use for reducing runoff and nutrients loading. Control urban runoff from these 23% landscape (i.e., parking lot and irrigated turf grass) could largely alter the runoff and nutrients transport and their dynamic in our water system.
Bent, G.C.
2001-01-01
The effects of forest-management activities (timber cutting and herbicide application) on runoff components (total streamflow, direct runoff, and base flow) and on ground-water recharge per unit area were evaluated for two separate paired drainage basins of Quabbin Reservoir in central Massachusetts. The Cadwell Creek study area, studied from 1962-1973, included an experimental basin (Upper Cadwell Creek) and a control basin (Lower Cadwell Creek). In the experimental basin, herbicide was applied to mixed oaks, northern hardwoods, and understory vegetation in different riparian zones during the summers of 1967 and 1968, and some pine plantations were thinned or clear-cut during the winter of 1967-1968. These forest-management activities decreased the total basal area by about 34%. The decrease in total basal area resulted in an increase in total streamflow, direct runoff (total streamflow minus base flow), and ground-water recharge for six dormant seasons (October-April) and six growing seasons (May-September) during 1968-1973. Base flow increased for three dormant seasons and two growing seasons during 1968-1970 and the dormant seasons of 1971 and 1973. Base flow accounted for 34% and direct runoff accounted for 66% of the 94 mm (15%) increase in total streamflow during water years 1968-1973. Sixty-one percent of this increase in total streamflow occurred in the dormant seasons. The Dickey Brook study area, studied from 1985-1989, included an experimental basin (Dickey Brook) and a control basin (Dickey Brook Tributary). Some pine plantations were thinned or clear-cut in the headwaters of the experimental basin from October 1986 to March 1987 and October to December 1988. These forest-management activities decreased the total basal area by 24% during 1986-1987 and an additional 8% during 1988. The decrease in total basal area resulted in an increase in total streamflow, base flow, and ground-water recharge for only one dormant season and one growing season in 1987. Direct runoff only increased slightly during the 1987 dormant season. Base flow accounted for 91% and direct runoff accounted for 9% of the 92 mm (21%) increase in total streamflow during water year 1987. Seventy-seven percent of this increase in total streamflow occurred in the dormant season.
Zhang, Qichun; Shamsi, Imran Haider; Wang, Jinwen; Song, Qiujin; Xue, Qiaoyun; Yu, Yan; Lin, Xianyong; Hussain, Sayed
2013-07-01
Nitrogen (N) losses from agricultural fields have been extensively studied. In contrast, surface runoff and N losses have rarely been considered for bamboo forests that are widespread in regions such as southern China. The thriving of bamboo industries has led to increasing fertilizer use in bamboo forests. In this study, we evaluated surface runoff and N losses in runoff following different fertilization treatments under field conditions in a bamboo (Phyllostachys pubescens) forest in the catchment of Lake Taihu in Jiangsu, China. Under three different fertilization regimes, i.e., control, site-specific nutrient management (SSNM), and farmer's fertilization practice (FFP), the water runoff rate amounted to 356, 361, and 342 m(3) ha(-1) and accounted for 1.91, 1.98, and 1.85% of the water input, respectively, from June 2009 to May 2010. The total N losses via surface runoff ranged from 1.2 to 1.8 kg ha(-1). Compared with FFP, the SSNM treatment reduced total nitrogen (TN) and dissolved nitrogen (DN) losses by 31 and 34%, respectively. The results also showed that variations in N losses depended mainly on runoff fluxes, not N concentrations. Runoff samples collected from all treatments throughout the year showed TN concentrations greater than 0.35 mg L(-1), with the mean TN concentration in the runoff from the FFP treatment reaching 8.97 mg L(-1). The loss of NO3(-)-N was greater than the loss of NH4(+)-N. The total loss of dissolved organic nitrogen (DON) reached 23-41% of the corresponding DN. Therefore, DON is likely the main N species in runoff from bamboo forests and should be emphasized in the assessment and management of N losses in bamboo forest.
Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management.
Bierman, Peter M; Horgan, Brian P; Rosen, Carl J; Hollman, Andrew B; Pagliari, Paulo H
2010-01-01
Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.
Urban Stormwater Runoff: A New Class of Environmental Flow Problem
Walsh, Christopher J.; Fletcher, Tim D.; Burns, Matthew J.
2012-01-01
Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use. PMID:23029257
Granato, Gregory E.; Jones, Susan C.; Dunn, Christopher N.; Van Weele, Brian
2017-01-01
The stochastic empirical loading and dilution model (SELDM) was used to demonstrate methods for estimating risks for water-quality exceedances of event-mean concentrations (EMCs) of total-copper. Monte Carlo methods were used to simulate stormflow, total-hardness, suspended-sediment, and total-copper EMCs as stochastic variables. These simulations were done for the Charles River Basin upstream of Interstate 495 in Bellingham, Massachusetts. The hydrology and water quality of this site were simulated with SELDM by using data from nearby, hydrologically similar sites. Three simulations were done to assess the potential effects of the highway on receiving-water quality with and without highway-runoff treatment by a structural best-management practice (BMP). In the low-development scenario, total copper in the receiving stream was simulated by using a sediment transport curve, sediment chemistry, and sediment-water partition coefficients. In this scenario, neither the highway runoff nor the BMP effluent caused concentration exceedances in the receiving stream that exceed the once in three-year threshold (about 0.54 percent). In the second scenario, without the highway, runoff from the large urban areas in the basin caused exceedances in the receiving stream in 2.24 percent of runoff events. In the third scenario, which included the effects of the urban runoff, neither the highway runoff nor the BMP effluent increased the percentage of exceedances in the receiving stream. Comparison of the simulated geometric mean EMCs with data collected at a downstream monitoring site indicates that these simulated values are within the 95-percent confidence interval of the geometric mean of the measured EMCs.
NASA Astrophysics Data System (ADS)
Marciniak, Marek; Dragon, Krzysztof; Chudziak, Łukasz
2014-05-01
This article presents an investigation of the runoff of a glacial river located in the high Arctic region of Spitsbergen. The Ebba River runoff was measured during three melting seasons of 2007, 2008 and 2009. The most important component of the river recharge is the flow of melting water from glaciers (76-82% of total river runoff). However, the other components (surface water and groundwater) also made a significant contribution to the river recharge. The contribution of groundwater flow in total river runoff was estimated by measurements performed in four groups of piezometers located in different parts of the valley. The hydrogeological parameters that characterize shallow aquifer (thickness of the active layer, hydraulic conductivity, groundwater level fluctuations) were recognized by direct field measurements. The groundwater recharging river was the most variable recharge component, and ranged from 1% of the total runoff at the beginning of the melting season to even 27% at the end of summer.
Performance of compost filtration practice for green infrastructure stormwater applications.
Faucette, Britt; Cardoso, Fatima; Mulbry, Walter; Millner, Pat
2013-09-01
Urban storm water runoff poses a substantial threat of pollution to receiving surface waters. Green infrastructure, low impact development, green building ordinances, National Pollutant Discharge Elimination System (NPDES) storm water permit compliance, and Total Maximum Daily Load (TMDL) implementation strategies have become national priorities; however, designers need more sustainable, low-cost solutions to meet these goals and guidelines. The objective of this study was to determine the multiple-event removal efficiency and capacity of compost filter socks (FS) and filter socks with natural sorbents (NS) to remove soluble phosphorus, ammonium-nitrogen, nitrate-nitrogen, E. coli, Enterococcus, and oil from urban storm water runoff. Treatments were exposed to simulated storm water pollutant concentrations consistent with urban runoff originating from impervious surfaces, such as parking lots and roadways. Treatments were exposed to a maximum of 25 runoff events, or when removal efficiencies were < or = 25%, whichever occurred first. Experiments were conducted in triplicate. The filter socks with natural sorbents removed significantly greater soluble phosphorus than the filter socks alone, removing a total of 237 mg/linear m over eight runoff events, or an average of 34%. The filter socks with natural sorbents removed 54% of ammonium-nitrogen over 25 runoff events, or 533 mg/linear m, and only 11% of nitrate-nitrogen, or 228 mg/linear m. The filter socks and filter socks with natural sorbents both removed 99% of oil over 25 runoff events, or a total load of 38,486 mg/linear m. Over 25 runoff events the filter socks with natural sorbents removed E. coli and Enteroccocus at 85% and 65%, or a total load of 3.14 CFUs x 10(8)/ linear m and 1.5 CFUs x 10(9)/linear m, respectively; both were significantly greater than treatment by filter socks alone. Based on these experiments, this technique can be used to reduce soluble pollutants from storm water over multiple runoff events.
De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P
2014-01-01
Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.
How much runoff originates as snow in the western United States and what its future changes tell us?
NASA Astrophysics Data System (ADS)
Li, D.; Wrzesien, M.; Durand, M. T.; Adam, J. C.; Lettenmaier, D. P.
2017-12-01
Snow is a vital hydrologic cycle component in the western United States. The seasonal phase of snowmelt bridges between winter-dominant precipitation and summer-dominant human and ecosystem water demand. Current estimates of the fraction of total annual runoff generated by snowmelt (f_Q,snow) are not based on defensible, systematic analyses. Here, based on hydrological model simulations, we describe a new algorithm that explicitly quantifies the contribution of snow to runoff in the Western U.S. Specifically, the algorithm tracks the fate of the snowmelt runoff in the modeled hydrological fluxes in the soil, surface water, and the atmosphere, and accounts for the exchanges among the three. The hydrological fluxes are simulated by the Variable Infiltration Capacity (VIC) model using an ensemble of ten general circulation model (GCM) outputs trained by ground observations. We conducted the tracking to the VIC modeling ensemble and reported the mean of the ten tracking results. We computed the historical f_Q,snow with the modeling estimates from 1960 to 2005, and predicted the future f_Q,snow using the modeling estimates from 2006 to 2100 in the RCP4.5 and RCP8.5 scenarios. Our tracking results show that from 1960 to 2005, slightly over one-half of the total runoff in the western United States originated as snowmelt, despite only 37% of the region's total precipitation falling as snow; snowfall is more efficient than rainfall in runoff generation. Snow's importance varies physiographically: snowmelt from the mountains is responsible for over 70% of the total runoff in the West. Snowmelt-derived runoff currently makes up about 2/3 of the inflow to the region's major reservoirs; for Lake Mead and Lake Powell, which are the two largest reservoirs of the nation, snow contributes over 70% of their storage. The contribution of snowmelt to the total runoff will decrease in a warmer climate, by about 1/3 over the West by 2100. Snow will melt earlier and the snowmelt-induced peak flow will shift earlier by 1.5 to up to 4 weeks. Thus, in the context of predicted reductions and earlier shifts of the snow-induced runoff, and the fact that the region's major reservoirs were designed for the historical snow climatology, we argue that substantial impacts on water supply may occur especially in the summer season when water demand peaks.
Wang, Jun; Cheng, Qingyu; Xue, Shengguo; Rajendran, Manikandan; Wu, Chuan; Liao, Jiaxin
2018-04-01
A great deal of manganese and associated heavy metals (such as Ni, Cu, Zn, Cd, Pb, etc.) was produced in manganese mining, smelting, and other processes and weathering and leaching of waste slag, which entered rainwater runoff by different means under the action of rainfall runoff. It caused heavy metal pollution in water environment to surrounding areas, and then environmental and human health risks were becoming increasingly serious. In the Xiangtan manganese mine, we studied the characteristics of nutritional pollutants and heavy metals by using the method of bounded runoff plots on the manganese tailing wasteland after carrying out some site treatments using three different approaches, such as (1) exposed tailings, the control treatment (ET), (2) external-soil amelioration and colonization of Cynodon dactylon (Linn.) Pers. turf (EC), and (3) external-soil amelioration and seedling seeding propagation of Cynodon dactylon (Linn.) Pers. (ES). The research showed that the maximum runoff occurred in 20,140,712 rainfall events, and the basic law of runoff was EC area > ET area > ES area in the same rainfall event. The concentration of total suspended solids (TSS) and chemical oxygen demand (COD) of three ecological restoration areas adopted the following rule: ET area > EC area > ES area. Nitrogen (N) existed mainly in the form of water soluble while phosphorus (P) was particulate. The highest concentrations of total nitrogen (TN) and total phosphorus (TP) were 11.57 ± 2.99 mg/L in the EC area and 1.42 ± 0.56 mg/L in the ET area, respectively. Cr, Ni, Pb, Zn, Mn, and Cu in surface runoff from three restoration types all exceeded the class V level of the environmental quality standard for surface water except Cu in EC and ES areas. Pollution levels of heavy metals in surface runoff from three restoration areas are shown as follows: ET area > EC area > ES area. There was a significant positive correlation between TSS and runoff, COD, and TP. And this correlation was significant between total dissolved nitrogen (TDN), TN, total dissolved phosphorus (TDP), and TP. The six heavy metals (Cu, Ni, Pb, Zn, Mn, and Cr) in surface runoff of different ecological restoration areas were strongly related to each other, and were significantly related to the TSS.
The synergy of permeable pavements and geothermal heat pumps for stormwater treatment and reuse.
Tota-Maharaj, K; Scholz, M; Ahmed, T; French, C; Pagaling, E
2010-12-14
The use of permeable pavement systems with integrated geothermal heat pumps for the treatment and recycling of urban runoff is novel and timely. This study assesses the efficiency of the combined technology for controlled indoor and uncontrolled outdoor experimental rigs. Water quality parameters such as biochemical oxygen demand, nutrients, total viable heterotrophic bacteria and total coliforms were tested before and after treatment in both rigs. The water borne bacterial community genomic deoxyribonucleic acid (DNA) was analyzed by polymerase chain reaction (PCR) amplification followed by denaturing gradient gel electrophoresis (DGGE) and was further confirmed by DNA sequencing techniques. Despite the relatively high temperatures in the indirectly heated sub-base of the pavement, potentially pathogenic organisms such as Salmonella spp., Escherichia coli, faecal Streptococci and Legionella were not detected. Moreover, mean removal rates of 99% for biochemical oxygen demand, 97% for ammonia-nitrogen and 95% for orthophosphate-phosphates were recorded. This research also supports decision-makers in assessing public health risks based on qualitative molecular microbiological data associated with the recycling of treated urban runoff.
Key factors affecting urban runoff pollution under cold climatic conditions
NASA Astrophysics Data System (ADS)
Valtanen, Marjo; Sillanpää, Nora; Setälä, Heikki
2015-10-01
Urban runoff contains various pollutants and has the potential of deteriorating the quality of aquatic ecosystems. In this study our objective is to shed light on the factors that control the runoff water quality in urbanized catchments. The effects of runoff event characteristics, land use type and catchment imperviousness on event mass loads (EML) and event mean concentrations (EMC) were studied during warm and cold periods in three study catchments (6.1, 6.5 and 12.6 ha in size) in the city of Lahti, Finland. Runoff and rainfall were measured continuously for two years at each catchment. Runoff samples were taken for total nutrients (tot-P and tot-N), total suspended solids (TSS), heavy metals (Zn, Cr, Al, Co, Ni, Cu, Pb, Mn) and total organic carbon (TOC). Stepwise multiple linear regression analysis (SMLR) was used to identify general relationships between the following variables: event water quality, runoff event characteristics and catchment characteristics. In general, the studied variables explained 50-90% of the EMLs but only 30-60% of the EMCs, with runoff duration having an important role in most of the SMLR models. Mean runoff intensity or peak flow was also often included in the runoff quality models. Yet, the importance (being the first, second or third best) and role (negative or positive impact) of the explanatory variables varied between the cold and warm period. Land use type often explained cold period concentrations, but imperviousness alone explained EMCs weakly. As for EMLs, the influence of imperviousness and/or land use was season and pollutant dependent. The study suggests that pollutant loads can be - throughout the year - adequately predicted by runoff characteristics given that seasonal differences are taken into account. Although pollutant concentrations were sensitive to variation in seasonal and catchment conditions as well, the accurate estimation of EMCs would require a more complete set of explanatory factors than used in this study.
NASA Astrophysics Data System (ADS)
Ervinia, A.; Huang, J.; Zhang, Z.
2015-06-01
Study on runoff dynamics across different physiographic regions is fundamentally important to formulate the sound strategies for water resource management especially in the coastal watershed where peoples heavily concentrated and relied on water resources. The L-R diagram, a conceptual model by which the land-changes evapotranspiration (ΔL) was estimated as the difference between actual and climate evapotranspiration to identify the specific impact of land-use changes on annual runoff changes (ΔR), was developed using the 53-year hydro-climatic data of Jiulong River Watershed, a typical medium-sized subtropical coastal watershed in China. This study found that land-use changes have reinforced the impact of climatic changes on runoff changes where nearly all points were scattered in II and IV quadrant. Deforestation and expansion of built up area has diminished the water retention capacity in a catchment as well as evapotranspiration thus produce extra runoff accounting for 12-183 % of total runoff increase. In contrast, reforestation makes the significant contribution to decreasing annual runoff for about 21-82 % of total runoff loss. This study revealed the river runoff has become more vulnerable to intensive anthropogenic disturbances under the context of climate changes in a coastal watershed.
Runoff from small peatland watersheds
Roger R. Bay
1969-01-01
Runoff was measured on four forested bog watersheds in northern Minnesota for 5 years. The experimental basins ranged in size from 24 to 130 acres and included both organic and mineral soils. Annual runoff was not evenly distributed. Spring runoff, from the beginning of flow in late March to the 1 st of June, accounted for 66 % of total annual water yield. Summer and...
NASA Astrophysics Data System (ADS)
Painter, T. H.; Andreadis, K.; Berisford, D. F.; Goodale, C. E.; Hart, A. F.; Heneghan, C.; Deems, J. S.; Gehrke, F.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Seidel, F. C.; Skiles, M.; Trangsrud, A.; Winstral, A. H.; Kirchner, P.; Zimdars, P. A.; Yaghoobi, R.; Boustani, M.; Khudikyan, S.; Richardson, M.; Atwater, R.; Horn, J.; Goods, D.; Verma, R.; Boardman, J. W.
2013-12-01
Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. However, we face significant water resource challenges due to the intersection of increasing demand from population growth and changes in runoff total and timing due to climate change. Moreover, increasing temperatures in desert systems will increase dust loading to mountain snow cover, thus reducing the snow cover albedo and accelerating snowmelt runoff. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still poorly quantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. Recognizing this need, JPL developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. Critical in the design of the ASO system is the availability of snow water equivalent and albedo products within 24 hours of acquisition for timely constraint of snowmelt runoff forecast models. In spring 2013, ASO was deployed for its first year of a multi-year Demonstration Mission of weekly acquisitions in the Tuolumne River Basin (Sierra Nevada) and monthly acquisitions in the Uncompahgre River Basin (Colorado). The ASO data were used to constrain spatially distributed models of varying complexities and integrated into the operations of the O'Shaughnessy Dam on the Hetch Hetchy reservoir on the Tuolumne River. Here we present the first results from the ASO Demonstration Mission 1 along with modeling results with and without the constraint by the ASO's high spatial resolution and spatially complete acquisitions. ASO ultimately provides a potential foundation for coming spaceborne missions.
Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.
Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R
2015-01-01
When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Burns, Douglas A.; McDonnell, Jeffery J.; Hooper, R.P.; Peters, N.E.; Freer, J.E.; Kendall, C.; Beven, K.
2001-01-01
The geographic sources and hydrologic flow paths of stormflow in small catchments are not well understood because of limitations in sampling methods and insufficient resolution of potential end members. To address these limitations, an extensive hydrologic dataset was collected at a 10 ha catchment at Panola Mountain research watershed near Atlanta, GA, to quantify the contribution of three geographic sources of stormflow. Samples of stream water, runoff from an outcrop, and hillslope subsurface stormflow were collected during two rainstorms in the winter of 1996, and an end-member mixing analysis model that included five solutes was developed. Runoff from the outcrop, which occupies about one-third of the catchment area, contributed 50-55% of the peak streamflow during the 2 February rainstorm, and 80-85% of the peak streamflow during the 6-7 March rainstorm; it also contributed about 50% to total streamflow during the dry winter conditions that preceded the 6-7 March storm. Riparian groundwater runoff was the largest component of stream runoff (80-100%) early during rising streamflow and throughout stream recession, and contributed about 50% to total stream runoff during the 2 February storm, which was preceded by wet winter conditions. Hillslope runoff contributed 25-30% to peak stream runoff and 15-18% to total stream runoff during both storms. The temporal response of the three runoff components showed general agreement with hydrologic measurements from the catchment during each storm. Estimates of recharge from the outcrop to the riparian aquifer that were independent of model calculations indicated that storage in the riparian aquifer could account for the volume of rain that fell on the outcrop but did not contribute to stream runoff. The results of this study generally indicate that improvements in the ability of mixing models to describe the hydrologic response accurately in forested catchments may depend on better identification, and detailed spatial and temporal characterization of the mobile waters from the principal hydrologic source areas that contribute to stream runoff. Copyright ?? 2001 John Wiley & Sons, Ltd.
First flush of storm runoff pollution from an urban catchment in China.
Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li
2007-01-01
Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.
NASA Astrophysics Data System (ADS)
Han, Z.; Long, D.; Hong, Y.
2017-12-01
Snow and glacier meltwater in cryospheric regions replenishes groundwater and reservoir storage and is critical to water supply, hydropower development, agricultural irrigation, and ecological integrity. Accurate simulating and predicting snow and glacier meltwater is therefore fundamental to develop a better understanding of hydrological processes and water resource management for alpine basins and its lower reaches. The Upper Mekong River (or the Lancang River in China) as one of the most important transboundary rivers originating from the Tibetan Plateau (TP), features active dam construction and complicated water resources allocation of the stakeholders. Confronted by both climate change and significant human activities, it is imperative to examine contributions of snow and glacier meltwater to the total runoff and how it will change in the near future. This will greatly benefit hydropower development in the upper reach of the Mekong and better water resources allocation and management across the relevant countries. This study aims to improve snowfall and snow water equivalent (SWE) simulation using improved methods, and combines both modeling skill and remote sensing (i.e., passive microwave-based SWE, and satellite gravimetry-based total water storage) to quantify the contributions of snow and glacier meltwater there. In addition, the runoff of the Lancang River under a range of climate change scenarios is simulated using the improved modeling scheme to evaluate how climate change will impact hydropower development in the upper reaches.
[Influence of green roof application on water quantity and quality in urban region].
Wang, Shu-Min; Li, Xing-Yang; Zhang, Jun-Hua; Yu, Hui; Hao, You-Zhi; Yang, Wan-Yi
2014-07-01
Green roof is widely used in advanced stormwater management as a major measure now. Taking Huxi catchment in Chongqing University as the study area, the relationships between green roof installation with runoff volume and water quality in urban region were investigated. The results showed that roof greening in the urban region contributed to reducing the runoff volume and pollution load. In addition, the spatial distribution and area of green roof also had effects on the runoff water quality. With the conditions that the roof area was 25% of the total watershed area, rainfall duration was 15 min and rainfall intensity was 14.8 mm x h(-1), the peak runoff and total runoff volume were reduced by 5.3% and 31%, the pollution loads of total suspended solid (TSS), total phosphorus (TP) and total nitrogen (TN) decreased by 40.0%, 31.6% and 29.8%, their peak concentrations decreased by 21.0%, 16.0% and -12.2%, and the EMCs (event mean concentrations) were cut down by 13.1%, 0.9% and -1.7%, respectively, when all impervious roofs were greened in the research area. With the increase of roof greening rate, the reduction rates of TSS and TP concentrations increased, while the reduction rate of TN concentration decreased on the whole. Much more improvement could be obtained with the use of green roofs near the outlet of the watershed.
Marques, M; Hogland, W
2001-02-01
Stormwater run-off from twelve different areas and roads has been characterized in a modern waste disposal site, where several waste management activities are carried out. Using nonparametric statistics, medians and confidence intervals of the medians, 22 stormwater quality parameters were calculated. Suspended solids, chemical oxygen demand, biochemical oxygen demand, total nitrogen and total phosphorus, as well as run-off from several areas, showed measured values above standard limits for discharge into recipient waters--even higher than those of leachate from covered landfill cells. Of the heavy metals analyzed, copper, zinc and nickel were the most prevalent, being detected in every sample. Higher concentrations of metals such as zinc, nickel, cobalt, iron and cadmium were found in run-off from composting areas, compared to areas containing stored and exposed scrap metal. This suggests that factors other than the total amount of exposed material affect the concentration of metals in run-off, such as binding to organic compounds and hydrological transport efficiency. The pollutants transported by stormwater represent a significant environmental threat, comparable to leachate. Careful design, monitoring and maintenance of stormwater run-off drainage systems and infiltration elements are needed if infiltration is to be used as an on-site treatment strategy.
Runoff and erosion response of simulated waste burial covers in a semi-arid environment
Bent, G.C.; Goff, B.F.; Rightmire, K.G.; Sidle, R.C.
1999-01-01
Control of runoff (reducing infiltration) and erosion at shallow land burials is necessary in order to assure environmentally safe disposal of low-level radioactive-waste and other waste products. This study evaluated the runoff and erosion response of two perennial grass species on simulated waste burial covers at Idaho National Engineering and Environmental Laboratory (INEEL). Rainfall simulations were applied to three plots covered by crested wheatgrass [Agropyron desertorum (Fischer ex Link) Shultes], three plots covered by streambank wheatgrass [Elymus lanceolatus (Scribner and Smith) Gould spp. lanceolatus], and one bare plot. Average total runoff for rainfall simulations in 1987, 1989, and 1990 was 42 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Average total soil loss for rainfall simulations in 1987 and 1990 was 105 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Total runoff and soil loss from natural rainfall and snowmelt events during 1987 were 25 and 105 percent greater, respectively, on streambank wheatgrass plots than on crested wheatgrass plots. Thus, crested wheatgrass appears to be better suited in revegetation of waste burial covers at INEEL than streambank wheatgrass due to its much lower erosion rate and only slightly higher infiltration rate (lower runoff rate).
Brooks, John P; Adeli, Ardeshir; Read, John J; McLaughlin, Michael R
2009-01-01
Runoff water following a rain event is one possible source of environmental contamination after a manure application. This greenhouse study used a rainfall simulator to determine bacterial-associated runoff from troughs of common bermudagrass [Cynodon dactylon (L.) Pers.] that were treated with P-based, N-based, and N plus lime rates of poultry (Gallus gallus) litter, recommended inorganic fertilizer, and control. Total heterotrophic plate count (HPC) bacteria, total and thermotolerant coliforms, enterococci, staphylococci, Clostridium perfringens, Salmonella, and Campylobacter, as well as antibiotic resistance profiles for the staphylococci and enterococci isolates were all monitored in runoff waters. Analysis following five rainfall events indicated that staphylococci, enterococci, and clostridia levels were related to manure application rate. Runoff release of staphylococci, enterococci, and C. perfringens were approximately 3 to 6 log10 greater in litter vs. control treatment. In addition, traditional indicators such as thermotolerant and total coliforms performed poorly as fecal indicators. Some isolated enterococci demonstrated increased antibiotic resistance to polymixin b and/or select aminoglyocosides, while many staphylococci were susceptible to most antimicrobials tested. Results indicated poultry litter application can lead to microbial runoff following simulated rain events. Future studies should focus on the use of staphylococci, enterococci, and C. perfringens as indicators.
Yang, Fan; Jiang, Yi-feng; Wang, Cui-cui; Huang, Xiao-nan; Wu, Zhi-ying; Chen, Lin
2016-01-15
In order to understand the non-point source pollution status in Longhong ravine basin of Westlake, the characteristics of nutrient losses in runoff was investigated during three rainstorms in one year. The results showed that long duration rainstorm event generally formed several runoff peaks, and the time of its lag behind the peaks of rain intensity was dependent on the distribution of heavy rainfall. The first flush was related to the antecedent rainfall, and the less rainfall in the earlier period, the more total phosphorus (TP) and ammonia (NH4+ -N) in runoff was washed off. During the recession of runoff, more subsurface runoff would result in a concentration peak of total nitrogen (TN) and nitrogen (NO3- -N) . The event mean concentration (EMC) of runoff nitrogen had a negative correlation with rainfall, rainfall duration, maximum rain intensity and average rain intensity except for antecedent rainfall, whereas the change in TP EMC showed the opposite trend. The transport fluxes of nutrients increased with an elevation in runoffs, and Pearson analysis showed that the transport fluxes of TN and NO3- -N had good correlations with runoff depth. The average transport fluxes of TP, TN, NH4+ -N and NO3- -N were 34.10, 1195.55, 1006.62 and 52.38 g x hm(-2), respectively, and NO3- -N was the main nitrogen form and accounted for 84% of TN.
Eckley, Chris S; Branfireun, Brian
2009-08-01
This research focuses on mercury (Hg) mobilization in stormwater runoff from an urban roadway. The objectives were to determine: how the transport of surface-derived Hg changes during an event hydrograph; the influence of antecedent dry days on the runoff Hg load; the relationship between total suspended sediments (TSS) and Hg transport, and; the fate of new Hg input in rain and its relative importance to the runoff Hg load. Simulated rain events were used to control variables to elucidate transport processes and a Hg stable isotope was used to trace the fate of Hg inputs in rain. The results showed that Hg concentrations were highest at the beginning of the hydrograph and were predominantly particulate bound (HgP). On average, almost 50% of the total Hg load was transported during the first minutes of runoff, underscoring the importance of the initial runoff on load calculations. Hg accumulated on the road surface during dry periods resulting in the Hg runoff load increasing with antecedent dry days. The Hg concentrations in runoff were significantly correlated with TSS concentrations (mean r(2)=0.94+/-0.09). The results from the isotope experiments showed that the new Hg inputs quickly become associated with the surface particles and that the majority of Hg in runoff is derived from non-event surface-derived sources.
Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei
2012-12-30
Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gan, Huayang; Zhuo, Muning; Li, Dingqiang; Zhou, Yongzhang
2008-05-01
Accurate knowledge of the quality and environmental impact of the highway runoff in Pear River Delta, South China is required to assess this important non-point pollution source. This paper presents the quality characterization and environmental impact assessment of rainfall runoff from highways in urban and rural area of Guangzhou, the largest city of Pear River Delta over 1 year's investigation. Multiple regression and Pearson correlation analysis were used to determine influence of the rainfall characteristics on water quality and correlations among the constituents in highway runoff. The results and analysis indicates that the runoff water is nearly neutral with low biodegradability. Oil and grease (O&G), suspended solids (SS) and heavy metals are the dominant pollutants in contrast to the low level of nutrient constituents in runoff. Quality of highway runoff at rural site is better than that of at urban site for most constituents. Depth and antecedent dry period are the main rainfall factors influencing quality of highway runoff. The correlation patterns among constituents in highway runoff at urban site are consistent with their dominant phases in water. Strong correlations (r > or = 0.80) are found among chemical oxygen demand (COD), total phosphorus, Cu and Zn as well as conductivity, nitrate nitrogen and total nitrogen. O&G, COD, SS and Pb in highway runoff at urban site substantially exceed their concentrations in receiving water of Pear River. The soil directly discharged by highway runoff at rural site has contaminated seriously by heavy metals in surface layer accompanying with pH conversion from original acidic to alkaline at present.
Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure.
Verbree, David A; Duiker, Sjoerd W; Kleinman, Peter J A
2010-01-01
Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.
Analysis of sediment production from two small semiarid basins in Wyoming
Rankl, J.G.
1987-01-01
Data were collected at two small, semiarid basins in Wyoming to determine the relation between rainfall, runoff, and sediment production. The basins were Dugout Creek tributary and Saint Marys Ditch tributary. Sufficient rainfall and runoff data were collected at Dugout Creek tributary to determine the source of sediment and the dominant sediment production processes. Because runoff from only one storm occurred in Saint Marys Ditch tributary, emphasis of the study was placed on the analysis of data collected at Dugout Creek tributary. At Dugout Creek tributary, detailed measurements were made to establish the source of sediment. To determine the quantity of material removed from headcuts during the study, two headcuts were surveyed. Aerial photographs were used to define movement of all headcuts. The total quantity of sediment removed from all headcuts between September 26, 1982, and September 26, 1983, was estimated to be 1,220 tons, or 15%-25% of the estimated total sediment load passing the streamflow-gaging station. A soil plot was used to sample upland erosion. A rainfall and runoff modeling system was used to evaluate the interaction between the physical processes which control sediment production. The greatest change in computed sediment load was caused by changing the parameter values for equations used to compute the detachment of sediment particles by rainfall and overland flow resulted in very small changes in computed sediment load. The upland areas were the primary source of sediment. A relationship was developed between the peak of storm runoff and the total sediment load for that storm runoff. The sediment concentration used to compute the total sediment load for the storm runoff was determined from sediment samples collected by two automatic pumping samplers. The coefficient of variation of the relationship is 34% with a 0.99 correlation coefficient. (Author 's abstract)
Zhou, Xiang-Xiang; Zhang, Li-Quan; Yuan, Lian-Qi
2008-02-01
By using biological slope-protection techniques, oxidation pond system, and zeolite treatment system, a demonstration project of ecological restoration of ditches at the Qianwei Village of Chongming County in Shanghai was implemented, and an evaluation on the project was made via a runoff simulation experiment and the measurements of the parameters soil shear strength, biodiversity, and ditch water quality. The results showed that covering the dich slopes with shrub could significantly increase soil shear strength, compactness and moisture content, and the formed vegetation had significant effects on retarding runoff and removing TSS (P < 0.05). Applying live fascines could significantly increase soil shear strength and TSS removal rate (P < 0.05), but its effects on increasing soil compactness and moisture content and retaining runoff were not significant. After the implement of the demonstration project, the total N and P concentrations in ditch water decreased significantly, habitat quality and aesthetic value of ditch slope improved, and biodiversity enhanced greatly. The integration of the biological techniques with other ecological restoration measures could stabilize ditch slope, improve ditch habitat quality, and restore the ecological environment of the ditches.
Spot Spraying Reduces Herbicide Concentrations in Runoff.
Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen
2016-05-25
Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.
Runoff sensitivity to climate change in the Nile River Basin
NASA Astrophysics Data System (ADS)
Hasan, Emad; Tarhule, Aondover; Kirstetter, Pierre-Emmanuel; Clark, Race; Hong, Yang
2018-06-01
In data scarce basins, such as the Nile River Basin (NRB) in Africa, constraints related to data availability, quality, and access often complicate attempts to estimate runoff sensitivity using conventional methods. In this paper, we show that by integrating the concept of the aridity index (AI) (derived from the Budyko curve) and climate elasticity, we can obtain the first order response of the runoff sensitivity using minimal data input and modeling expertise or experience. The concept of runoff elasticity relies on the fact that the energy available for evapotranspiration plays a major role in determining whether the precipitation received within a drainage basin generates runoff. The approach does not account for human impacts on runoff modification and or diversions. By making use of freely available gauge-corrected satellite data for precipitation, temperature, runoff, and potential evapotranspiration, we derived the sensitivity indicator (β) to determine the runoff response to changes in precipitation and temperature for four climatic zones in the NRB, namely, tropical, subtropical, semiarid and arid zones. The proposed sensitivity indicator can be partitioned into different elasticity components i.e: precipitation (εp), potential evapotranspiration (εETp), temperature (εT) and the total elasticity (εtot) . These elasticities allow robust quantification of the runoff response to the potential changes in precipitation and temperature with a high degree of accuracy. Results indicate that the tropical zone is energy-constrained with low sensitivity, (β < 1.0) , implying that input precipitation exceeds the amounts that can be evaporated given the available energy. The subtropical zone is subdivided into two distinct regions, the lowland (Machar and Sudd marshes), and the highland area (Blue Nile Basin), where each area has a unique sensitivity. The lowland area has high sensitivity, (β > 1.0) . The subtropical-highland zone moves between energy-limited to water-limited conditions during periods of wet and dry spells with varying sensitivity. The semiarid and arid zones are water limited, with high sensitivity, (β > 1.0) . The calculated runoff elasticities show that a 10% decrease in precipitation leads to a decrease in runoff of between 19% in the tropical zone and 30% in the arid zones. On the other hand, a 10% precipitation increase leads to a runoff increase of 14% in the tropical zone and 22% in the arid zone. The estimated runoff changes are consistent with the result obtained using other methods. Thus, the elasticity approach combines data parsimony and analytical simplicity to produce results that are practically useful for most purposes while facilitating communication with stakeholders with different levels of scientific knowledge. More research is needed to extend the application of the method to incorporate the effects of human activities, and land use change.
Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia
NASA Astrophysics Data System (ADS)
Glotov, V. E.; Glotova, L. P.
2018-01-01
The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some minor negative consequences of it can be successfully prevented.
NASA Astrophysics Data System (ADS)
Aditya, M. R.; Hernina, R.; Rokhmatuloh
2017-12-01
Rapid development in Jakarta which generates more impervious surface has reduced the amount of rainfall infiltration into soil layer and increases run-off. In some events, continuous high rainfall intensity could create sudden flood in Jakarta City. This article used rainfall data of Jakarta during 10 February 2015 to compute rainfall intensity and then interpolate it with ordinary kriging technique. Spatial distribution of rainfall intensity then overlaid with run-off coefficient based on certain land use type of the study area. Peak run-off within each cell resulted from hydrologic rational model then summed for the whole study area to generate total peak run-off. For this study area, land use types consisted of 51.9 % industrial, 37.57% parks, and 10.54% residential with estimated total peak run-off 6.04 m3/sec, 0.39 m3/sec, and 0.31 m3/sec, respectively.
Efficiencies of multilayer infiltration systems for the removal of urban runoff pollutants.
Hou, Lizhu; Liu, Fang; Feng, Chuanping; Wan, Li
2013-01-01
Current rates of urban development will result in water runoff becoming a major complication of urban water pollution. To address the worsening situation regarding water resource shortage and pollution, novel multilayer infiltration systems were designed and their effectiveness for removing pollutants in urban runoff tested experimentally. The multilayer infiltration systems effectively removed most pollutants, including organic matter (chemical oxygen demand (CODCr)), total nitrogen (TN), ammonia-nitrogen (NH4(+)-N) and total phosphorus (TP). CODCr, TN, NH4(+)-N, and TP were reduced by 68.67, 23.98, 82.66 and 92.11%, respectively. The main mechanism for nitrogen removal was biological nitrogen removal through nitrification and denitrification. Phosphorus in the urban runoff was removed mainly by fixation processes in the soil, such as adsorption and chemical precipitation. The results indicate that the proposed novel system has potential for removal of pollutants from urban runoff and subsequent reuse of the treated water.
Controlling Highway Runoff Pollution In Drinking Water Supply Reservoir Watersheds
DOT National Transportation Integrated Search
1999-10-01
This study evaluated the effectiveness of an innovative stormwater best management practice in treating highway runoff and protecting the integrity of the drinking water reservoir in Warrenton, Virginia. The research focused on the use of a biodetent...
The Pechora River Runoff, Atmospheric Circulation and Solar Activity
NASA Astrophysics Data System (ADS)
Golovanov, O. F.
This study presents an attempt to define and estimate the factors effecting and possi- bly, determining the spatial-temporal characteristics of the Pechora River hydrological regime. The time-series of hydrometeorological observations (runoff, precipitation, air temperature) carried out within the basin of the impact object U the Pechora River U are close to secular and include the year of the century maximum of the solar activ- ity (1957). The joint statistical analysis of these characteristics averaged both for a year and for the low water periods in spring (V-VII), summer-autumn (VIII-IX) and winter (X-IV) demonstrated the majority of integral curves to have minimums coin- ciding or slightly differing from the solar activity maximum in 1957. It is especially typical for the spring high water runoff along the entire length of the Pechora River. Only the curves of the air temperature in the summer-autumn low water period are in the opposite phase relative to all other elements. In the upper Pechora the inte- gral curves of winter and annual precipitation are synchronous to the runoff curves. The multiyear variability of the Pechora runoff corresponds to that of the atmospheric circulation in the northern hemisphere. This is clearly illustrated by the decrease of the Pechora runoff and increase of the climate continentality in its basin, that is ac- companied with predominating of the meridional circulation, anticyclone invasion and precipitation decrease while the solar activity grows. This process takes place at the background of the prevailing mass transport of E+C type, increase of number of the elementary synoptic processes (ESP). The maximum number of ESP (observed in 1963) was recorded soon after the century maximum of the solar activity. This fact may be explained by the anticyclone circulation prevalence which results in growth of the climate continentality in the Pechora basin in this period. The enumerated in- flection points of the integral curves of the runoff and meteorological characteristics agree well with some characteristics of the macro-circulation processes (high latitude indexes and process types) connected with the circumpolar vortex dynamics. In par- ticular, in the inner-annual scale the B-type process prevalence leads to formation of the maximum extreme water discharge. The hydrometeorological observations in the Pechora basin are correlated with the solar activity dynamics more closely than the observations held in the lower reaches of neighboring northern or Siberian rivers. The correlation between the hydro- and meteorological characteristics (from one side) and the solar wind energy summed for the cold season (from other side) was examined on the example of the synchronous 24 year time-series. The reason for such analysis was 1 the study executed by the group of the AARI geophysicists (Shirochkov A.V.) The significant correlation between this parameter and spring runoff was detected while the correlation with precipitation and Qmax was absent. The experimental regression equation for the runoff summed for three spring-summer months was obtained. The basic predictor in this equation is the total for the cold season precipitation in Troitsko- Pechorsk. Its weight in the equation is equal to 62 per cent. The weight of the solar wind total energy is 29 per cent. The integral correlation coefficient, if using the latter parameter, increases from 0.70 to 0.80. The probability obtained on dependent and limited independent material is 80 and 75 per cent respectively, the S/s ratio is equal to 0.66. The pair correlation between the solar wind and the spring high water runoff in the Pechora mouth appeared significant (r=0.43) enough for designing the fore- cast regression model. The pair correlation coefficient between the spring runoff and the solar wind energy increases along the Pechora from head to mouth. In the lower reaches of the other great northern and Siberian rivers (except for the Yenisey River) the partial correlation coefficient is less and sometimes changes its sign. There are hypothese regarding the impact of this energy on the atmosphere-Earth system (Shi- rochkov A.V.), but they still do not explain the existing correlation between the solar wind and the high water runoff of the Yenisey and Pechora rivers. The only thing that can be noted is that during the period of snow cover formation in the northern regions, under the polar night condition, the effect of the Sun ray energy is absent, and, hence, the detected impact of the corpuscular energy on the higher atmosphere prevails. The results obtained give an opportunity to continue the study in the direction of search- ing new significant dependencies for revealing the mechanism of interaction within the atmosphere-hydrosphere system in order to obtain the new practical means for calculation and forecast of the rivers runoff and its future tendencies. 2
Wang, Min; Huang, Yu-Chi; Wu, Jian-Qiang
2010-11-01
By using the constructed buffer strips test base and the runoff hydrometric devices, a research on stagnant runoff and nitrogen (N), phosphorous (P) pollutants removal capacity of the vegetated buffer strips was conducted. The results show that the vegetated buffer strips might reduce the speed of runoff significantly and improve the hydraulic permeability of soil. The runoff water output time of 19 m buffer strips planted with Cynodon dactylon, Festuca arundinacea and Trifolium repens are 2.46, 1.72 and 2.03 times higher than the control (no vegetation) respectively; The seepage water quantity of three vegetation buffer strips are 3.01, 2.16 and 2.45 times higher than the control respectively as well. Total removal efficiency of the three buffer strips increase about 237%, 268% and 274% comparing with the control respectively. The N, P removal capacity of seepage is significantly higher than that of the runoff, the larger seepage water quantity will cause higher N, P total removal efficiency and removal loads of unit area. With different vegetated buffer strips, the TN, NH4(+) -N, TP removal ratio of seepage and runoff are 2.79, 2.02 and 2.83 respectively.
Brown, R.G.
1984-01-01
The atmospheric contribution to nonpoint-source-runoff pollution of nitrogen, in the form of nitrite-plus-nitrate, and lead was extremely high contributing as much as 84 percent of the runoff load. In contrast, phosphorus and chloride inputs were low averaging of 6 percent of the total runoff load. Future investigations of nonpoint-source pollution in runoff might include collection of data on atmospheric deposition of nitrite-plus-nitrate nitrogen and lead because of the importance of that source of these constituents in runoff.
ZumBerge, Jeremy Ryan; Perry, James A.; Lee, Kathy E.
2003-01-01
While it is difficult to determine the relative influence of watershed runoff potential and local riparian cover, invertebrate communities may be more strongly influenced by local wooded riparian cover than by watershed runoff potential. Invertebrate community measures indicate greater degradation at the open riparian cover, high runoff potential sites and less degradation at the wooded riparian cover, low runoff potential sites. In addition, differences between streams with wooded riparian cover and sites with open riparian cover were greater in watersheds with high runoff potential. The variance explained by riparian cover and runoff potential is relatively independent of other land-use effects. Wooded riparian cover influences invertebrate community composition by its relation to the other physical environmental variables. This study indicates that wooded riparian cover may be effective in maintaining stream biotic integrity in watersheds dominated by agricultural land use.
Chen, Yan-Hui; Chen, Ming-Hua; Wang, Guo; Chen, Wen-Xiang; Yang, Shun-Cheng; Chai, Peng
2010-10-01
The effects of different slopes on nitrogen transport along with runoff from sloping plots amended with sewage sludge on a lateritic red soil were studied under simulated rainfall conditions. When the sludge was broadcasted and mixed with surface soils (BM), the MTN (total nitrogen of mixing sample), STN (total nitrogen of settled sample), TPN (total particulate nitrogen), TSN (total suspended nitrogen), TDN (total dissolved nitrogen) and NH4(+) -N concentrations and nitrogen loss amounts in runoff of all treatments were highest at 1 day or 18 days after application. The highest concentrations and the loss amounts of MTN and STN in the slope runoff for the BM treatment increased with slope degree, showing increasing pollution risks to the surface waters. The STN concentration and loss amounts from the 25 degrees plots were 126.1 mg x L(-1) and 1788.6 mg x m(-2), respectively, being 4.6 times and 5.8 times of the corresponding values from the 10 degrees plots, respectively. Then the concentrations and the loss amounts of nitrogen (except NO3(-) -N) from the BM plots diminished rapidly first and then tended to be stable with dwindling differences between the slopes. The loss of MTN and STN in early runoff (1 day and 18 days) accounted for 68.6% -73.4% and 62.3% -66.7% of the cumulative loss amounts during the experimental period for all the broadcasted treatments. Runoff loss coefficients of MTN increased in the order of 20 degrees > 25 degrees > 15 degrees > 10 degrees. Nitrogen was largely lost in dissolved species while large portion of NH4(+) -N was lost with particulates.
NASA Astrophysics Data System (ADS)
Ragettli, S.; Pellicciotti, F.; Immerzeel, W.
2014-12-01
In high-elevation watersheds of the Himalayan region the correct representation of the internal states and process dynamics in glacio-hydrological models can often not be verified due to missing in-situ measurements. The aim of this study is to provide a fundamental understanding of the hydrology of a Himalayan watershed through the systematic integration of in-situ data in a glacio-hydrological model. We use ground data from the upper Langtang valley in Nepal combined with high resolution satellite data to understand specific processes and test the application of new model components specifically developed. We apply a new model for ablation under debris that takes into account the varying effect of debris thickness on melt rates. A novel approach is tested to reconstruct spatial fields of debris thickness through combination of energy balance modelling, UAV-derived geodetic mass balance and statistical techniques. The systematic integration of in-situ data for model calibration enables the application of a state-of-the art model with many parameters to model glacier evolution and catchment runoff in spite of the lack of continuous long-term historical records. It allows drawing conclusions on the importance of processes that have been suggested as being relevant but never quantified before. The simulations show that 8.7% of total water inputs originate from sub-debris ice melt. 4.5% originate from melted avalanched snow. These components can be locally much more important, since the spatial variability of processes within the valley is high. The model is then used to simulate the response of the catchment to climate change. We show that climate warming leads to an increase in future icemelt and a peak in glacier runoff by mid-century. The increase in total icemelt is due to higher melt rates and large areas that are currently located above the equilibrium line altitude additionally that will contribute to melt. Catchment runoff will not reach below current levels throughout the 21st century due to precipitation increases. Debris covered glacier area will disappear at a slower pace than non-debris covered area. Still, due to the relative climate insensitivity of melt rates below thick debris, the contribution of sub-debris icemelt to runoff will not exceed 10% at all times.
Yu, Kewei; Delaune, Ronald D; Tao, Rui; Beine, Robert L
2008-01-01
A watershed analysis of nonpoint-source pollution associated with sugarcane (Saccharum officinarum L.) production was conducted. Runoff water samples following major rainfall events from two representative sugarcane fields (SC1 and SC2) were collected and analyzed. The impact of runoff on two receiving water bodies, St. James canal (SJC) and Bayou Chevreuil (BC) in a drainage basin (Baratarian Basin), was studied. Results show that runoff flow/rainfall ratios at the SC1 were significantly higher (P < 0.0001, n = 14) than at the SC2, probably mainly due to higher sand content and higher infiltration rate of surface soil at the SC2. In runoff water samples, total suspended solids (TSS) showed a significant correlation with the concentrations of N and P. Sugarcane runoff showed a direct impact on the SJC and BC locations where seasonal variations of pollutant concentrations in the waters followed the patterns of runoff loadings. Swamp forest runoff (SFR) location showed a buffering effect of forested wetlands on water quality with the lowest measured pollutant concentrations. The ratios in total N/total P and in inorganic N/organic N in runoff waters indicated that fertilization in spring greatly contributed to the temporal increase of N loadings, especially in forms of inorganic N. Isotope signature of (15)N-nitrate in the water samples verified that the nitrate was derived from fertilizers and was consumed during transportation. Both N and P concentrations in the receiving water bodies were above the eutrophic level. During the study period, herbicide concentrations in the receiving water bodies rarely exceeded the drinking water standards.
Characterization of wood mulch and leachate/runoff from three wood recycling facilities.
Kannepalli, Sarat; Strom, Peter F; Krogmann, Uta; Subroy, Vandana; Giménez, Daniel; Miskewitz, Robert
2016-11-01
Large-scale open storage of wood mulch is common practice at wood recycling facilities. During rain and snow melt, leachate with soluble compounds and suspended particles is released from mulch stockpiles. The objective of this study was to determine the quality of leachate/runoff from wood recycling facilities to evaluate its potential to contaminate receiving waterbodies. Wood mulch (n = 30) and leachate/runoff (n = 26) samples were collected over 1.5 years from three wood recycling facilities in New Jersey, USA. Differences by site were found (p < 0.05) for most of the 21 constituents tested in the solid wood mulch samples. Biochemical oxygen demand (range <20-3000 mg/L), chemical oxygen demand (134-6000 mg/L) and total suspended solids (69-401 mg/L) median concentrations of the leachate/runoff samples were comparable to those of untreated domestic wastewater. Total Kjeldahl N, total P and fecal coliform median values were slightly lower than typical wastewater values. Dose-response studies with leachate/runoff samples using zebrafish (Danio rerio) embryos showed that mortality and developmental defects typically did not occur even at the highest concentration tested, indicating low toxicity, although delayed development did occur. Based on this study, leachate/runoff from wood recycling facilities should not be released to surface waters as it is a potential source of organic contamination and low levels of nutrients. A study in which runoff from a controlled drainage area containing wood mulch of known properties is monitored would allow for better assessment of the potential impact of stormwater runoff from wood recycling facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de Winnaar, G.; Jewitt, G. P. W.; Horan, M.
Water scarce countries such as South Africa are subject to various hydrological constraints which can often be attributed to poor rainfall partitioning, particularly within resource poor farming communities that are reliant on rainfed agriculture. Recent initiatives to address this have shifted focus to explore more efficient alternatives to water supply and the recognition of numerous opportunities to implement runoff harvesting as a means to supplement water availability. However, increasing the implementation of runoff harvesting, without encountering unintended impacts on downstream hydrological and ecological systems, requires better understanding of the hydrologic and environmental impacts at catchment scale. In this paper the representation of spatial variations in landscape characteristics such as soil, land use, rainfall and slope information is shown to be an important step in identifying potential runoff harvesting sites, after which modelling the hydrological response in catchments where extensive runoff harvesting is being considered can be performed and likely impacts assessed. Geographic information systems (GIS) was utilised as an integrating tool to store, analyse and manage spatial information and when linked to hydrological response models, provided a rational means to facilitate decision making by providing catchment level identification, planning and assessment of runoff harvesting sites as illustrated by a case study at the Potshini catchment, a small sub-catchment in the Thukela River basin, South Africa. Through the linked GIS, potential runoff harvesting sites are identified relative to areas that concentrate runoff and where the stored water will be appropriately distributed. Based on GIS analysis it was found that 17% percent of the Potshini catchment area has a high potential for generating surface runoff, whereas an analysis of all factors which influence the location of such systems, shows that 18% is highly suitable for runoff harvesting. Details of the spatially explicit method that was adopted in this paper are provided and output from the integrated GIS modelling system is presented using suitability maps. It is concluded that providing an accurate spatial representation of the runoff generation potential within a catchment is an important step in developing a strategic runoff harvesting plan for any catchment.
Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping
2018-03-01
The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide useful information for the identification of highly polluted areas, and aid the development of integrated watershed management system in the drinking water resource area.
Runoff amount and quality as influenced by tillage and fertilizer management choices in a Cecil soil
USDA-ARS?s Scientific Manuscript database
Tillage and fertilizer choices and their interactions have varying impacts on levels and qualities of runoff from agricultural fields. We quantified runoff, sediment loss, concentrations and loads of ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (PO4-P) and total...
Flood damage claims reveal insights about surface runoff in Switzerland
NASA Astrophysics Data System (ADS)
Bernet, D. B.; Prasuhn, V.; Weingartner, R.
2015-12-01
A few case studies in Switzerland exemplify that not only overtopping water bodies frequently cause damages to buildings. Reportedly, a large share of the total loss due to flooding in Switzerland goes back to surface runoff that is formed and is propagating outside of regular watercourses. Nevertheless, little is known about when, where and why such surface runoff occurs. The described process encompasses surface runoff formation, followed by unchannelised overland flow until a water body is reached. It is understood as a type of flash flood, has short response times and occurs diffusely in the landscape. Thus, the process is difficult to observe and study directly. A promising source indicating surface runoff indirectly are houseowners' damage claims recorded by Swiss Public Insurance Companies for Buildings (PICB). In most of Switzerland, PICB hold a monopoly position and insure (almost) every building. Consequently, PICB generally register all damages to buildings caused by an insured natural hazard (including surface runoff) within the respective zones. We have gathered gapless flood related claim records of most of all Swiss PICB covering more than the last two decades on average. Based on a subset, we have developed a methodology to differentiate claims related to surface runoff from other causes. This allows us to assess the number of claims as well as total loss related to surface runoff and compare these to the numbers of overtopping watercourses. Furthermore, with the good data coverage, we are able to analyze surface runoff related claims in space and time, from which we can infer spatial and temporal characteristics of surface runoff. Although the delivered data of PICB are heterogeneous and, consequently, time-consuming to harmonize, our first results show that exploiting these damage claim records is feasible and worthwhile to learn more about surface runoff in Switzerland.
Impact of Roadway Stormwater Runoff on Microbial Contamination in the Receiving Stream.
Wyckoff, Kristen N; Chen, Si; Steinman, Andrew J; He, Qiang
2017-09-01
Stormwater runoff from roadways has increasingly become a regulatory concern for water pollution control. Recent work has suggested roadway stormwater runoff as a potential source of microbial pollutants. The objective of this study was to determine the impact of roadway runoff on the microbiological quality of receiving streams. Microbiological quality of roadway stormwater runoff and the receiving stream was monitored during storm events with both cultivation-dependent fecal bacteria enumeration and cultivation-independent high-throughput sequencing techniques. Enumeration of total coliforms as a measure of fecal microbial pollution found consistently lower total coliform counts in roadway runoff than those in the stream water, suggesting that roadway runoff was not a major contributor of microbial pollutants to the receiving stream. Further characterization of the microbial community in the stormwater samples by 16S ribosomal RNA gene-based high-throughput amplicon sequencing revealed significant differences in the microbial composition of stormwater runoff from the roadways and the receiving stream. The differences in microbial composition between the roadway runoff and stream water demonstrate that roadway runoff did not appear to have a major influence on the stream in terms of microbiological quality. Thus, results from both fecal bacteria enumeration and high-throughput amplicon sequencing techniques were consistent that roadway stormwater runoff was not the primary contributor of microbial loading to the stream. Further studies of additional watersheds with distinct characteristics are needed to validate these findings. Understanding gained in this study could support the development of more effective strategies for stormwater management in sensitive watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
[Nitrogen and phosphorus composition in urban runoff from the new development area in Beijing].
Li, Li-Qing; Lü, Shu-Cong; Zhu, Ren-Xiao; Liu, Ze-Quan; Shan, Bao-Qing
2012-11-01
Stormwater runoff samples were collected from two impervious roof and road of the new development area in Beijing, during three rainfall events in an attempt to characterize the urban runoff and determine nitrogen and phosphorus composition. The outcomes are expected to offer the practical guidance in sources control of urban runoff pollution. The results indicated that the stormwater runoff from the studied area presented a strong first flush for all monitored events and constituents. Eighty percent of the total pollutant loads were transported by the first 10 mm flow volume for roof runoff, whereas 80% of the total pollutant loads were discharged by the first 15 mm flow volume for road runoff. Average EMCs of TSS, COD, TN, NH4(+) -N, NO3(-) -N and TP for roof runoff were 50.2 mg x L(-1), 81.7 mg x L(-1), 6.07 mg x L(-1), 2.94 mg x L(-1), 1.05 mg x L(-1), and 0.11 mg x L(-1), respectively. Average EMCs of TSS, COD, TN, NH4(+) -N, NO3(-)-N and TP for road runoff were 539.0 mg x L(-1), 276.4 mg x L(-1), 7.00 mg x L(-1), 1.71 mg x L(-1), 1.51 mg x L(-1), and 0.61 mg x L(-1), respectively. Moreover, for the roof runoff, the particle-bound fraction was 20.8% for COD, 12.3% for TN, and 49.7% for TP. For road runoff, the particle-bound fraction was 68.6% for COD, 20.0% for TN, and 73.6% for TP. Nitrogen in roof runoff was predominantly dissolved (87.7%), with ammonia (57.6%) and nitrate (22.5%). Nitrogen in road runoff was also predominantly dissolved (80.0%), with ammonia (42.1%) and nitrate (35.0%). These findings can assist the development of effective source control strategies to immobilize dissolved and particulate-bound nitrogen/phosphorus in urban stormwater.
Sun, Xiaoxiao; Liang, Xinqiang; Zhang, Feng; Fu, Chaodong
2016-11-01
Nutrient runoff losses from cropping fields can lead to nonpoint source pollution; however, the level of nutrient export is difficult to evaluate, particularly at the regional scale. This study aimed to establish a novel yet simple approach for estimating total nitrogen (TN) and total phosphorus (TP) runoff losses from regional paddy fields. In this approach, temporal changes of nutrient concentrations in floodwater were coupled with runoff-processing functions in rice ( L.) fields to calculate nutrient runoff losses for three site-specific field experiments. Validation experiments verified the accuracy of this method. The geographic information system technique was used to upscale and visualize the TN and TP runoff losses from field to regional scales. The results indicated that nutrient runoff losses had significant spatio-temporal variation characteristics during rice seasons, which were positively related to fertilizer rate and precipitation. The average runoff losses over five study seasons were 20.21 kg N ha for TN and 0.76 kg P ha for TP. Scenario analysis showed that TN and TP losses dropped by 7.64 and 3.0%, respectively, for each 10% reduction of fertilizer input. For alternate wetting and drying water management, the corresponding reduction ratio was 24.7 and 14.0% respectively. Our results suggest that, although both water and fertilizer management can mitigate nutrient runoff losses, the former is significantly more effective. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.
2001-12-01
It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the hillslope reservoir/stormflow flux partially controls the relative contributions of hillslope and riparian zones to catchment runoff and solute dynamics.
A Pulse of Mercury and Major Ions in Snowmelt Runoff from a Small Arctic Alaska Watershed.
Douglas, Thomas A; Sturm, Matthew; Blum, Joel D; Polashenski, Christopher; Stuefer, Svetlana; Hiemstra, Christopher; Steffen, Alexandra; Filhol, Simon; Prevost, Romain
2017-10-03
Atmospheric mercury (Hg) is deposited to Polar Regions during springtime atmospheric mercury depletion events (AMDEs) that require halogens and snow or ice surfaces. The fate of this Hg during and following snowmelt is largely unknown. We measured Hg, major ions, and stable water isotopes from the snowpack through the entire spring melt runoff period for two years. Our small (2.5 ha) watershed is near Barrow (now Utqiaġvik), Alaska. We measured discharge, made 10 000 snow depths, and collected over 100 samples of snow and meltwater for chemical analysis in 2008 and 2009 from the watershed snowpack and ephemeral stream channel. Results show an "ionic pulse" of mercury and major ions in runoff during both snowmelt seasons, but major ion and Hg runoff concentrations were roughly 50% higher in 2008 than in 2009. Though total discharge as a percent of total watershed snowpack water equivalent prior to the melt was similar in both years (36% in 2008 melt runoff and 34% in 2009), it is possible that record low precipitation in the summer of 2007 led to the higher major ion and Hg concentrations in 2008 melt runoff. Total dissolved Hg meltwater runoff of 14.3 (± 0.7) mg/ha in 2008 and 8.1 (± 0.4) mg/ha in 2009 is five to seven times higher than that reported from other arctic watersheds. We calculate 78% of snowpack Hg was exported with snowmelt runoff in 2008 and 41% in 2009. Our results suggest AMDE Hg complexed with Cl - or Br - may be less likely to be photochemically reduced and re-emitted to the atmosphere prior to snowmelt, and we estimate that roughly 25% of the Hg in snowmelt is attributable to AMDEs. Projected Arctic warming, with more open sea ice leads providing halogen sources that promote AMDEs, may provide enhanced Hg deposition, reduced Hg emission and, ultimately, an increase in snowpack and snowmelt runoff Hg concentrations.
NASA Astrophysics Data System (ADS)
MacAvoy, S. E.; Mucha, S.; Williamson, G.
2017-12-01
While green roofs have well understood benefits for retaining runoff, there is less of a consensus regarding the potential for retaining and absorbing nutrients or suspended solids from roof runoff that would otherwise travel to waterways. Additionally, there are numerous designs, materials and maintenance plans associated with "green" roofs/surfaces that may greatly impact not only their hydrological benefit but also their pollution mitigation potential. Here we examine the NO3, NH4, total organic carbon (TOC), total phosphorus (TP) and total suspended solids (TSS) retention potential from planted and unplanted foam roofs and traditional soil roofs. Direct precipitation, untreated runoff and throughflow from the different roof types were collected for 3 to 11 rain events over a year (depending on roof). Unplanted and traditional roofs reduced TSS by 80% or better relative to runoff. Traditional roofs showed 50% lower TP than runoff or other roof types. TOC was higher than direct precipitation for all treatments, although there were no differences among the treatments themselves. Taken as averages over the 11 events, NO3 and NH4 concentrations were highly variable for runoff and treatments and significant differences were not detected. Preliminary analysis suggests there were no differences between performance of traditional versus foam-based roofs, although a greater sample size is required to be definitive.
Arroyo channel head evolution in a flash-flood-dominated discontinuous ephemeral stream system
DeLong, Stephen B.; Johnson, Joel P.L.; Whipple, Kelin X.
2014-01-01
We study whether arroyo channel head retreat in dryland discontinuous ephemeral streams is driven by surface runoff, seepage erosion, mass wasting, or some combination of these hydrogeomorphic processes. We monitored precipitation, overland flow, soil moisture, and headcut migration over several seasonal cycles at two adjacent rangeland channel heads in southern Arizona. Erosion occurred by headward retreat of vertical to overhanging faces, driven dominantly by surface runoff. No evidence exists for erosion caused by shallow-groundwater–related processes, even though similar theater-headed morphologies are sometimes attributed to seepage erosion by emerging groundwater. At our field site, vertical variation in soil shear strength influenced the persistence of the characteristic theater-head form. The dominant processes of erosion included removal of grains and soil aggregates during even very shallow (1–3 cm) overland flow events by runoff on vertical to overhanging channel headwalls, plunge-pool erosion during higher-discharge runoff events, immediate postrunoff wet mass wasting, and minor intra-event dry mass wasting on soil tension fractures developing subparallel to the headwall. Multiple stepwise linear regression indicates that the migration rate is most strongly correlated with flow duration and total precipitation and is poorly correlated with peak flow depth or time-integrated flow depth. The studied channel heads migrated upslope with a self-similar morphologic form under a wide range of hydrological conditions, and the most powerful flash floods were not always responsible for the largest changes in landscape form in this environment.
NASA Astrophysics Data System (ADS)
Latorre Torres, I. B.; Amatya, D. M.; Callahan, T. J.; Levine, N. S.
2007-12-01
Hydrology research in the Southeast U.S. has primarily focused on upland mountainous areas; however, much less is known about hydrological processes in Lower Coastal Plain (LCP) watersheds. Such watersheds are difficult to characterize due to shallow water table conditions, low topographic gradient, complex surface- subsurface water interaction, and lack of detailed soil information. Although opportunities to conduct long term monitoring in relatively undeveloped watersheds are often limited, stream flow and rainfall in the Turkey Creek watershed (third-order watershed, about 7200 ha in the Francis Marion National Forest near Charleston, SC) have been monitored since 1964. In this study, event runoff-rainfall ratios have been determined for 51 storm events using historical data from 1964-1973. One of our objectives was to characterize relationships between seasonal event rainfall and storm outflow in this watershed. To this end, observed storm event data were compared with values predicted by established hydrological methods such as the Soil Conservation Service runoff curve number (SCS-CN) and the rational method integrated within a Geographical Information System (GIS), to estimate total event runoff and peak discharge, respectively. Available 1:15000 scale aerial images were digitized to obtain land uses, which were used with the SCS soil hydrologic groups to obtain the runoff coefficients (C) for the rational method and the CN values for the SCS-CN method. These methods are being tested with historical storm event responses in the Turkey Creek watershed scale, and then will be used to predict event runoff in Quinby Creek, an ungauged third-order watershed (8700 ha) adjacent to Turkey Creek. Successful testing with refinement of parameters in the rational method and SCS-CN method, both designed for small urban and agricultural dominated watersheds, may allow widespread application of these methods for studying the event rainfall-runoff dynamics for similar watersheds in the Lower Coastal Plain of the Southeast U.S.
Monitoring runoff and nutrient transport in the coastal zone of a Danish lowland river
NASA Astrophysics Data System (ADS)
Ovesen, N. B.; Windolf, J.; Kronvang, B.
2012-04-01
Denmark has a very long coastline compared to its total area, and therefore large parts of the lower river reaches are influenced by tidal and coastal backwater effects. In general the gradients of these lowland rivers are very low, and furthermore thousands of small watercourses are flowing directly to the sea along the coastline. This situation makes it impossible to gauge the runoff to many fjords and marine inland waters utilizing traditional monitoring techniques, and consequently, even though Denmark is covered with several hundreds of gauging stations, only 50 percent of the country is gauged. Models are today used to estimate the total runoff and loads of nutrients to coastal waters. One of the major problems in the calibration of the models is however, the lacking of data from the lower part of rivers influenced by tidal and coastal backwater. In order to investigate the possibilities of improving the Danish gauging network and to test the models used for runoff estimation in the ungauged areas, a new monitoring station was established in the summer of 2011 in the River Skjern very close to the outlet in Ringkobing Fjord at the west coast of Jutland. The hydraulic conditions are here affected by tidal and backwater effects and the nutrient transport may be influenced by stratified flow conditions. The catchment area to the new station is 2455 km2, and the width of the channel is 70-80meters. The velocity distribution is measured in the profile by both horizontal and vertical multi cell Doppler sensors. Conductivity (salinity), turbidity and water temperature are measured by sensors in 2 levels, near bottom and in the upper part of the depth profile. Time integrated water samples are collected also in 2 levels with a 2 hour interval and analyzed for total nitrogen, nitrate, ammonium, total phosphorous, and phosphate. The wind speed and direction is registered at the station. The preliminary results show a strong correlation between the water velocities and the wind especially during the winter storms coming mainly from the vest and northwest. Also the nutrient concentrations and the suspended sediments are changing heavily during and following the storm events, and stratification and intrusion of brackish water from the fjord is registered. Data from the new monitoring station and the model outputs will be compared and evaluated.
Hur, Sungchul; Nam, Kisung; Kim, Jungsoo; Kwak, Changjae
2018-01-01
An urban runoff model that is able to compute the runoff, the pollutant loadings, and the concentrations of water-quality constituents in urban drainages during the first flush was developed. This model, which is referred to as FFC-QUAL, was modified from the existing ILLUDAS model and added for use during the water-quality analysis process for dry and rainy periods. For the dry period, the specifications of the coefficients for the discharge and water quality were used. During rainfall, we used the Clark and time-area methods for the runoff analyses of pervious and impervious areas to consider the effects of the subbasin shape; moreover, four pollutant accumulation methods and the washoff equation for computing the water quality each time were used. According to the verification results, FFC-QUAL provides generally similar output as the measured data for the peak flow, total runoff volume, total loadings, peak concentration, and time of peak concentration for three rainfall events in the Gunja subbasin. In comparison with the ILLUDAS, SWMM, and MOUSE models, there is little difference between these models and the model developed in this study. The proposed model should be useful in urban watersheds because of its simplicity and its capacity to model common pollutants (e.g., biological oxygen demand, chemical oxygen demand, Escherichia coli, suspended solids, and total nitrogen and phosphorous) in runoff. The proposed model can also be used in design studies to determine how changes in infrastructure will affect the runoff and pollution loads. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhou, Dong; Bi, Chun-Juan; Chen, Zhen-Lou; Yu, Zhong-Jie; Wang, Jun; Han, Jing-Chao
2013-11-01
Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg · L(-1), 0.01 to 0.48 mg · L(-1), and 0.02 to 2.43 mg · L(-1), respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p<0.01), while TDP was positively correlated with BOD/COD only (p<0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p<0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p<0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.
Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework
NASA Astrophysics Data System (ADS)
Achieng, K. O.; Zhu, J.
2017-12-01
There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?
Liu, Chen; Wu, Guangxia; Mu, Huanzhen; Yuan, Zonghuan; Tang, Lianyi; Lin, Xiangwei
2008-01-01
In this article, alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin, starch, acrylamide, and acrylic acid). Its practical application effect and environmental safety were studied. The results of field simulation experiment indicated that the application of LSAA significantly affected the output of the runoff and pollutants. The runoff quantity was decreased by 16.67%-47.00% and the loads of total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were reduced by 17.78%-62.14%, 26.32%-59.91%, 15.25%-47.42%, and 22.18%-52.78%, respectively. The tests on its environmental safety showed that LSAA did no harm the soil. Compared with polyacrylamide (PAM), a dominant product in this field, LSAA exhibited similar effects and cheap cost. Thus, this study not only created a new product for controlling runoff water quality but also offered a beneficial application for industrial paper waste.
USDA-ARS?s Scientific Manuscript database
Runoff from manured fields is often considered to be the source of microorganisms in the surface water used for irrigation, recreation, and household needs. Concerns about microbial safety of this water resulted in development of predictive models for estimating the concentrations and total numbers ...
Ockerman, Darwin J.
2008-01-01
The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and quality of rainfall and storm runoff of two (primarily) agricultural areas (subwatersheds) of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is 5,145 acres. The other area, a subwatershed drained by an unnamed Oso Creek tributary (hereinafter, Oso Creek tributary), is 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during October 2005-September 2007. Fourteen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Nineteen composite runoff samples (10 West Oso Creek, nine Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-two discrete suspended-sediment samples (10 West Oso Creek, 12 Oso Creek tributary) and 13 bacteria samples (eight West Oso Creek, five Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the study subwatersheds. Quantities of fertilizers and pesticides applied in the subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff at both subwatershed outlet sites occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 10.83 inches compared with 7.28 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 2-year study period averaged 2.61 pounds per acre per year from the West Oso Creek subwatershed and 0.966 pound per acre per year from the Oso Creek tributary subwatershed. Total phosphorus yields from the West Oso Creek and the Oso Creek tributary subwatersheds for the 2-year period were 0.776 and 0.498 pound per acre per year. Runoff yields of nitrogen and phosphorus were relatively small compared to inputs of nitrogen in fertilizer and rainfall deposition. Average annual runoff yield of total nitrogen (subwatersheds combined) represents about 2.4 percent of nitrogen applied as fertilizer and nitrogen entering the subwatersheds through rainfall deposition. Average annual runoff yield of total phosphorus (subwatersheds combined) represents about 4.4 percent of the phosphorus in applied fertilizer and rainfall deposition. Suspended-sediment yields from the West Oso Creek subwatershed were more than twice those from the Oso Creek tributary subwatershed. The average suspended-sediment yield from the West Oso Creek subwatershed was 582 pounds per acre per year. The average suspended-sediment yield from the Oso Creek tributary subwatershed was 257 pounds per acre per year. Twenty-two herbicides and eight insecticides were detected in runoff samples collected from the two subwatershed outlet sites. At the West Oso Creek site, 18 herbicides and four insecticides were detected, and at the Oso Creek tributary site, 17 herbicides and six insecticides. Seventeen pesticides were detected in only one sample at low concentrations (near the laboratory reporting level). Atrazine, atrazine degradation byproducts 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT) and 2-hydroxy-4-isopropylamino-6-ethylamino-s-triazine (OIET), glyphosate, and glyphosate byproduct aminomethylphosphonic acid (AMPA) were detected in all samples. Of all pesticides detected in runoff, the highest runoff yields were for glyphosate, 0.013 pound per acre per year for the West Oso Creek subwatershed and 0.001 pound per acre per year for the Oso Creek t
Ockerman, Darwin J.; Fernandez, Carlos J.
2010-01-01
The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3-year study period averaged 2.62 pounds per acre per year from the West Oso Creek subwatershed and 0.839 pound per acre per year from the Oso Creek tributary subwatershed. Total phosphorus yields from the West Oso Creek and Oso Creek tributary subwatersheds for the 3-year period were 0.644 and 0.419 pound per acre per year, respectively. Runoff yields of nitrogen and phosphorus were relatively small compared to inputs of nitrogen in fertilizer and rainfall deposition. Average annual runoff yield of total nitrogen (subwatersheds combined) represents about 2.5 percent of nitrogen applied as fertilizer to cropland in the watershed and nitrogen entering the subwatersheds through rainfall deposition. Average annual runoff yield of total phosphorus (subwatersheds combined) represents about 4.0 percent of the phosphorus in applied fertilizer and rainfall deposition. Suspended-sediment yields from the West Oso Creek subwatershed were more than twice those from the Oso Creek tributary subwatershed. The average suspended-sediment yield from the West Oso Creek subwatershed was 522 pounds per acre per year and from the Oso Creek tributary subwatershed was 139 pounds per acre per year. Twenty-four herbicides and eight insecticides were detected in runoff samples collected at the two subwatershed outlets. At the West Oso Creek site, 19 herbicides and 4 insecticides were detected; at the Oso Creek tributary site, 18 herbicides and 6 insecticides were detected. Fourteen pesticides were detected in only one sample at low concentrations (near the laboratory reporting level). Atrazine and atrazine degradation byproduct 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT) were detected in all samples. Glyphosate and glyphosate byproduct aminomethylphosphonic acid (AMPA) were detected in all samples collected and analyzed during water years 2006-07 but were not included in analysis for samples collected in water year 2008. Of all pesticides detected in runoff, the highest runoff yields w
Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.
Huang, Hong; Zhang, Baifa; Lu, Jun
2014-01-01
We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.
USDA-ARS?s Scientific Manuscript database
Soil erosion and sediment loss with runoff are closely linked to global carbon and nitrogen cycles. Reducing tillage has been shown to reduce erosion and runoff sediment-bound carbon (C) and nitrogen (N) losses. However, published studies represent only a few soil types and regions and rarely direct...
Rankl, James G.
1982-01-01
This report describes a method to estimate infiltration rates of soils for use in estimating runoff from small basins. Average rainfall intensity is plotted against storm duration on log-log paper. All rainfall events are designated as having either runoff or nonrunoff. A power-decay-type curve is visually fitted to separate the two types of rainfall events. This separation curve is an incipient-ponding curve and its equation describes infiltration parameters for a soil. For basins with more than one soil complex, only the incipient-ponding curve for the soil complex with the lowest infiltration rate can be defined using the separation technique. Incipient-ponding curves for soils with infiltration rates greater than the lowest curve are defined by ranking the soils according to their relative permeabilities and optimizing the curve position. A comparison of results for six basins produced computed total runoff for all events used ranging from 16.6 percent less to 2.3 percent more than measured total runoff. (USGS)
Reducing runoff and nutrient loss from agricultural land in the Lower Mississippi River Basin
NASA Astrophysics Data System (ADS)
Reba, M. L.; Bouldin, J.; Teague, T.; Choate, J.
2011-12-01
The Lower Mississippi River Basin (LMRB) yields suspended sediment, total phosphorus, total nitrogen and silicate that are disproportionately high for the area. In addition, groundwater pumping of the alluvial aquifer has been deemed unsustainable under current practices. Much of the LMRB is used for large-scale agricultural production of primarily cotton, soybeans and rice. The incorporation of conservation practices may improve nutrient use efficiency and reduce runoff from agricultural fields. Three paired fields have been instrumented at the edge-of-field to quantify nutrients and runoff. The fields are located in northeastern Arkansas in the Little River Ditches and St. Francis watersheds. Nutrient use efficiency will be gained by utilizing variable rate fertilizer application technology. Reduced runoff will be gained through improved irrigation management. This study quantifies the runoff and nutrient loss from the first year of a 5-year study and will serve as a baseline for a comparative study of conservation practices employed on the paired fields.
Comparison of planted soil infiltration systems for treatment of log yard runoff.
Hedmark, Asa; Scholz, Miklas; Aronsson, Par; Elowson, Torbjorn
2010-07-01
Treatment of log yard runoff is required to avoid contamination of receiving watercourses. The research aim was to assess if infiltration of log yard runoff through planted soil systems is successful and if different plant species affect the treatment performance at a field-scale experimental site in Sweden (2005 to 2007). Contaminated runoff from the log yard of a sawmill was infiltrated through soil planted with Alnus glutinosa (L.) Gärtner (common alder), Salix schwerinii X viminalis (willow variety "Gudrun"), Lolium perenne (L.) (rye grass), and Phalaris arundinacea (L.) (reed canary grass). The study concluded that there were no treatment differences when comparing the four different plants with each other, and there also were no differences between the tree and the grass species. Furthermore, the infiltration treatment was effective in reducing total organic carbon (55%) and total phosphorus (45%) concentrations in the runoff, even when the loads on the infiltration system increased from year to year.
He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Bu, He; Wo, Qiang
2018-01-01
Phosphorus (P) loss with surface runoff accounts for the P input to and acceleration of eutrophication of the freshwater. Many studies have focused on factors affecting P loss with surface runoff from soils, but rarely on the relationship among these factors. In the present study, rainfall simulation on P loss with surface runoff was conducted in Huihe National Nature Reserve, in Hulunbeier grassland, China, and the relationships between P loss with surface runoff, soil properties, and rainfall conditions were examined. Principal component analysis and path analysis were used to analyze the direct and indirect effects on P loss with surface runoff. The results showed that P loss with surface runoff was closely correlated with soil electrical conductivity, soil pH, soil Olsen P, soil total nitrogen (TN), soil total phosphorus (TP), and soil organic carbon (SOC). The main driving factors which influenced P loss with surface runoff were soil TN, soil pH, soil Olsen P, and soil water content. Path analysis and determination coefficient analysis indicated that the standard multiple regression equation for P loss with surface runoff and each main factor was Y = 7.429 - 0.439 soil TN - 6.834 soil pH + 1.721 soil Olsen-P + 0.183 soil water content (r = 0.487, p < 0.01, n = 180). Soil TN, soil pH, soil Olsen P, and soil water content and the interactions between them were the main factors affecting P loss with surface runoff. The effect of physical and chemical properties of undisturbed soils on P loss with surface runoff was discussed, and the soil water content and soil Olsen P were strongly positive influences on the P loss with surface runoff.
Dairy heifer manure management, dietary phosphorus, and soil test P effects on runoff phosphorus.
Jokela, William E; Coblentz, Wayne K; Hoffman, Patrick C
2012-01-01
Manure application to cropland can contribute to runoff losses of P and eutrophication of surface waters. We conducted a series of three rainfall simulation experiments to assess the effects of dairy heifer dietary P, manure application method, application rate, and soil test P on runoff P losses from two successive simulated rainfall events. Bedded manure (18-21% solids) from dairy heifers fed diets with or without supplemental P was applied on a silt loam soil packed into 1- by 0.2-m sheet metal pans. Manure was either surface-applied or incorporated (Experiment 1) or surface-applied at two rates (Experiment 2) to supply 26 to 63 kg P ha. Experiment 3 evaluated runoff P from four similar nonmanured soils with average Bray P1-extractable P levels of 11, 29, 51, and 75 mg kg. We measured runoff quantity, total P (TP), dissolved reactive P (DRP), and total and volatile solids in runoff collected for 30 min after runoff initiation from two simulated rain events (70 mm h) 3 or 4 d apart. Manure incorporation reduced TP and DRP concentrations and load by 85 to 90% compared with surface application. Doubling the manure rate increased runoff DRP and TP concentrations an average of 36%. In the same experiment, P diet supplementation increased water-extractable P in manure by 100% and increased runoff DRP concentration threefold. Concentrations of solids, TP, and DRP in runoff from Rain 2 were 25 to 75% lower than from Rain 1 in Experiments 1 and 2. Runoff DRP from nonmanured soils increased quadratically with increasing soil test P. These results show that large reductions in P runoff losses can be achieved by incorporation of manure, avoiding unnecessary diet P supplementation, limiting manure application rate, and managing soils to prevent excessive soil test P levels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Zuo, Xiaojun; Fu, Dafang; Li, He
2012-11-01
Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments.
Shigaki, Francirose; Sharpley, Andrew; Prochnow, Luis Ignacio
2007-02-01
Phosphorus runoff from agricultural fields amended with mineral fertilizers and manures has been linked to freshwater eutrophication. A rainfall simulation study was conducted to evaluate the effects of different rainfall intensities and P sources differing in water soluble P (WSP) concentration on P transport in runoff from soil trays packed with a Berks loam and grassed with annual ryegrass (Lolium multiflorum Lam.). Triple superphosphate (TSP; 79% WSP), low-grade super single phosphate (LGSSP; 50% WSP), North Carolina rock phosphate (NCRP; 0.5% WSP) and swine manure (SM; 70% WSP), were broadcast (100 kg total P ha-1) and rainfall applied at 25, 50 and 75 mm h-1 1, 7, 21, and 56 days after P source application. The concentration of dissolved reactive (DRP), particulate (PP), and total P (TP) was significantly (P<0.01) greater in runoff with a rainfall intensity of 75 than 25 mm h-1 for all P sources. Further, runoff DRP increased as P source WSP increased, with runoff from a 50 mm h-1 rain 1 day after source application having a DRP concentration of 0.25 mg L-1 for NCRP and 28.21 mg L-1 for TSP. In contrast, the proportion of runoff TP as PP was greater with low (39% PP for NCRP) than high WSP sources (4% PP for TSP) averaged for all rainfall intensities. The increased PP transport is attributed to the detachment and transport of undissolved P source particles during runoff. These results show that P source water solubility and rainfall intensity can influence P transport in runoff, which is important in evaluating the long-term risks of P source application on P transport in surface runoff.
White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L
2010-01-01
Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.
NASA Astrophysics Data System (ADS)
Aljoumani, Basem; Kluge, Björn; sanchez, Josep; Wessolek, Gerd
2017-04-01
Highways and main roads are potential sources of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Prediction of heavy metals transfer near the roadside into deeper soil layers are very important to prevent the groundwater pollution. This study was carried out on data of a number of lysimeters which were installed along the A115 highway (Germany) with a mean daily traffic of 90.000 vehicles per day. Three polyethylene (PE) lysimeters were installed at the A115 highway. They have the following dimensions: length 150 cm, width 100 cm, height 60 cm. The lysimeters were filled with different soil materials, which were recently used for embankment construction in Germany. With the obtained data, we will develop a time series analysis model to predict total and dissolved metal concentration in road runoff and in soil solution of the roadside embankments. The time series consisted of monthly measurements of heavy metals and was transformed to a stationary situation. Subsequently, the transformed data will be used to conduct analyses in the time domain in order to obtain the parameters of a seasonal autoregressive integrated moving average (ARIMA) model. Four phase approaches for identifying and fitting ARIMA models will be used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, will use to enhance this flexible approach to model building
Integrated watershed management for saturation excess generated runoff, erosion and nutrient control
USDA-ARS?s Scientific Manuscript database
Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. An important question for judging effectiveness of soil and water conservation practices is whether runoff erosion and nutrient loss is affected by infil...
EFFECTIVENESS OF RESTORED WETLANDS FOR THE TREATMENT OF AGRICULTURAL RUNOFF
The integration of the tax ditches into a drainage management system provides obvious benefits, but can also present a source of significant nonpoint source pollution from agricultural runoff. Many of Delaware's tax ditches have been listed on Delaware's Clean
Water Act 303(d)...
Volumetric runoff coefficients for experimental rural catchments in the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Taguas, Encarnación V.; Molina, Cecilio; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Farguell, Joaquim; Giménez, Rafael; Giráldez, Juan V.; Gómez, Helena; Gómez, Jose A.; González-Hidalgo, J. Carlos; Keizer, J. Jacob; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Sussane; Serrano-Muela, M. Pilar
2015-04-01
Analysis of runoff and peaks therein is essential for designing hydraulic infrastructures and for assessing the hydrological implications of likely scenarios of climate and/or land-use change. Different methods are available to calculate runoff coefficients. For instance, the runoff coefficient of a catchment can be described either as the ratio of total depth of runoff to total depth of rainfall or as the ratio of peak flow to rainfall intensity for the time of concentration (Dhakal et al. 2012). If the first definition is considered, runoff coefficients represent the global effect of different features and states of catchments and its determination requires a suitable analysis according to the objectives pursued (Chow et al., 1988). In this work, rainfall-runoff data and physical attributes from small rural catchments located in the Iberian Peninsula (Portugal and Spain) were examined in order to compare the representative values of runoff coefficients using three different approaches: i) statistical analysis of rainfall-runoff data and their quantiles (Dhakal et al., 2012); ii) probabilistic runoff coefficients from the rank-ordered pairs of observed rainfall-runoff data and their relationships with rainfall depths (Schaake et al., 1967); iii) finally, a multiple linear model based on geomorphological attributes. These catchments exhibit great variety with respect to their natural settings, such as climate, topography and lithology. We present a preliminary analysis of the rainfall-runoff relationships as well as their variability in a complex context such as the Iberian Peninsula where contrasted environmental systems coexist. We also discuss reference parameters representing runoff coefficients commonly included into hydrological models. This study is conceived as the first step to explore further working protocols and modeling gaps in a very susceptible area to the climate change such as the Iberian Peninsula's, where the analysis of runoff coefficients is crucial for designing appropriate decision making tools for water management. REFERENCES Chow V.T., Maidment D.R. and Mays, L.W. 1988. Applied Hydrology. MCGraw Hill, Nueva York. Dhakal, N., Fang, X., Cleveland, T., Thompson, D., Asquith, W., and Marzen, L. (2012). "Estimation of Volumetric Runoff Coefficients for Texas Watersheds Using Land-Use and Rainfall-Runoff Data." Journal of Irrigation and Drainage Engineering, 1(2012):43-54. Schaake JC, Geyer JC,Knapp JW. 1967. Experimental examination of the rational method. J. Hydr.Div. 93(6),353-70
Zhao, Jinhui; Zhao, Yaqian; Zhao, Xiaoli; Jiang, Cheng
2016-05-01
The performance of a field grassed swales (GSs) coupled with wetland detention ponds (WDPs) system was monitored under four typical rainfall events to assess its effectiveness on agricultural runoff pollution control in Taihu Basin, China. The results indicated that suspended solids (SS) derived from the flush process has significant influence on pollution loads in agricultural runoff. Determination of first flush effect (FFE) indicated that total suspended solids (TSS) and total phosphorus (TP) exhibited moderate FFE, while chemical oxygen demand (COD) and total nitrogen (TN) showed weak FFE. Average removal efficiencies of 83.5 ± 4.5, 65.3 ± 6.8, 91.6 ± 3.8, and 81.3 ± 5.8 % for TSS, COD, TN, and TP were achieved, respectively. The GSs played an important role in removing TSS and TP and acted as a pre-treatment process to prevent clogging of the subsequent WDPs. Particle size distributions (PSDs) analysis indicated that coarse particles larger than 75 μm accounted for 80 % by weight of the total particles in the runoff. GSs can effectively reduce coarse particles (≥75 μm) in runoff, while its removal efficiency for fine particles (<75 μm) was low, even minus results being recorded, especially for particles smaller than 25 μm. The length of GSs is a key factor in its performance. The WDPs can remove particles of all sizes by sedimentation. In addition, WDPs can improve water quality due to their buffering and dilution capacity during rainfall as well as their water purification ability during dry periods. Overall, the ecological system of GSs coupled with WDPs is an effective system for agricultural runoff pollution control.
Repeated compost application effects on phosphorus runoff in the Virginia Piedmont.
Spargo, John T; Evanylo, Gregory K; Alley, Marcus M
2006-01-01
Increasing amounts of animal and municipal wastes are being composted before land application to improve handling and spreading characteristics, and to reduce odor and disease incidence. Repeated applications of composted biosolids and manure to cropland may increase the risk for P enrichment of agricultural runoff. We conducted field research in 2003 and 2004 on a Fauquier silty clay loam (Ultic Hapludalfs) to compare the effects of annual (since 1999) applications of composted and uncomposted organic residuals on P runoff characteristics. Biosolids compost (BSC), poultry litter-yard waste compost (PLC), and uncomposted poultry litter (PL) were applied based on estimated plant-available N. A commercial fertilizer treatment (CF) and an unamended control treatment (CTL) were also included. Corn (Zea mays L.) and a cereal rye (Secale cereal L.) cover crop were planted each year. We applied simulated rainfall in fall 2004 and analyzed runoff for dissolved reactive P (DRP), total dissolved P (TDP), total P (TP), total organic C (TOC), and total suspended solids (TSS). End of season soil samples were analyzed for Mehlich-3 P (M3P), EPA 3050 P (3050P), water soluble P (WSP), degree of P saturation (DPS), soil C, and bulk density. Compost treatments significantly increased soil C, decreased bulk density, and increased M3P, 3050P, WSP, and DPS. The concentration of DRP, TDP, and TP in runoff was highest in compost treatments, but the mass of DRP and TDP was not different among treatments because infiltration was higher and runoff lower in compost-amended soil. Improved soil physical properties associated with poultry litter-yard waste compost application decreased loss of TP and TSS.
Recognition of predictors for mid-long term runoff prediction based on lasso
NASA Astrophysics Data System (ADS)
Xie, S.; Huang, Y.
2017-12-01
Reliable and accuracy mid-long term runoff prediction is of great importance in integrated management of reservoir. And many methods are proposed to model runoff time series. Almost all forecast lead times (LT) of these models are 1 month, and the predictors are previous runoff with different time lags. However, runoff prediction with increased LT, which is more beneficial, is not popular in current researches. It is because the connection between previous runoff and current runoff will be weakened with the increase of LT. So 74 atmospheric circulation factors (ACFs) together with pre-runoff are used as alternative predictors for mid-long term runoff prediction of Longyangxia reservoir in this study. Because pre-runoff and 74 ACFs with different time lags are so many and most of these factors are useless, lasso, which means `least absolutely shrinkage and selection operator', is used to recognize predictors. And the result demonstrates that 74 ACFs are beneficial for runoff prediction in both validation and test sets when LT is greater than 6. And there are 6 factors other than pre-runoff, most of which are with big time lag, are selected as predictors frequently. In order to verify the effect of 74 ACFs, 74 stochastic time series generated from normalized 74 ACFs are used as input of model. The result shows that these 74 stochastic time series are useless, which confirm the effect of 74 ACFs on mid-long term runoff prediction.
Rill erosion in natural and disturbed forests: 1. Measurements
P. R. Robichaud; J. W. Wagenbrenner; R. E. Brown
2010-01-01
Rill erosion can be a large portion of the total erosion in disturbed forests, but measurements of the runoff and erosion at the rill scale are uncommon. Simulated rill erosion experiments were conducted in two forested areas in the northwestern United States on slopes ranging from 18 to 79%. We compared runoff rates, runoff velocities, and sediment flux rates from...
Estuarine and Riverine Areas Final Programmatic Environmental Assessment
2004-06-25
sources in the study area include WWTP spray field runoff, urban and agricultural runoff, septic tank leachate , landfill leachate , silviculture...overland sheet flow. Urban and agricultural runoff are sources of fecal and total coliform and fecal streptococcus bacteria. Septic tank leachate and...in leachate from experiments using sand showed the greatest mobility of tungsten. Outdoor exposures and accelerated aging tests studied the
Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.
Wang, Yuanyuan; Zhang, Yongqiang; Chiew, Francis H S; McVicar, Tim R; Zhang, Lu; Li, Hongxia; Qin, Guanghua
2017-11-13
As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-2014. The basin-scale reconstructed streamflow variability matched well with gauge observations for five large rivers. Annual runoff increased strongly in dry part because of increases in precipitation, but decreased in wet part because of decreases in precipitation, aggravated by noticeable increases in evapotranspiration in the north of wet part. Although precipitation primarily governed temporal-spatial pattern of runoff, total water storage change contributed greatly to runoff variation in regions with wide-spread permanent snow/ice or permafrost. Our study indicates that the contrasting runoff trends between the dry and wet parts of eastern TP requires a change in water security strategy, and attention should be paid to the negative water resources impacts detected for southwestern part which has undergone vast glacier retreat and decreasing precipitation.
Characterization of bridge deck runoff.
DOT National Transportation Integrated Search
2015-03-01
In this study, time-weighted composite samples of bridge runoff and hourly traffic data were collected at four sampling : locations in Nebraska. Total suspended solids (TSS) and hexane extractable material (HEM) had the highest concentrations : durin...
Evaldi, R.D.; Moore, B.L.
1994-01-01
Linear regression models are presented for estimating storm-runoff volumes, and mean con- centrations and loads of selected constituents in storm runoff from urban watersheds of Jefferson County, Kentucky. Constituents modeled include dissolved oxygen, biochemical and chemical oxygen demand, total and suspended solids, volatile residue, nitrogen, phosphorus and phosphate, calcium, magnesium, barium, copper, iron, lead, and zinc. Model estimations are a function of drainage area, percentage of impervious area, climatological data, and land uses. Estimation models are based on runoff volumes, and concen- trations and loads of constituents in runoff measured at 6 stormwater outfalls and 25 streams in Jefferson County.
Yu, Pengtao; Wang, Yanhui; Coles, Neil; Xiong, Wei; Xu, Lihong
2015-01-01
The "Grain for Green Project" is a country-wide ecological program to converse marginal cropland to forest, which has been implemented in China since 2002. To quantify influence of this significant vegetation change, Guansihe Hydrological (GSH) Model, a validated physically-based distributed hydrological model, was applied to simulate runoff responses to land use change in the Guansihe watershed that is located in the upper reaches of the Yangtze River basin in Southwestern China with an area of only 21.1 km2. Runoff responses to two single rainfall events, 90 mm and 206 mm respectively, were simulated for 16 scenarios of cropland to forest conversion. The model simulations indicated that the total runoff generated after conversion to forest was strongly dependent on whether the land was initially used for dry croplands without standing water in fields or constructed (or walled) paddy fields. The simulated total runoff generated from the two rainfall events displayed limited variation for the conversion of dry croplands to forest, while it strongly decreased after paddy fields were converted to forest. The effect of paddy terraces on runoff generation was dependent on the rainfall characteristics and antecedent moisture (or saturation) conditions in the fields. The reduction in simulated runoff generated from intense rainfall events suggested that afforestation and terracing might be effective in managing runoff and had the potential to mitigate flooding in southwestern China. PMID:26192181
Guo, Weijie; Li, Zhu; Cheng, Shuiping; Liang, Wei; He, Feng; Wu, Zhenbin
2014-01-01
To examine the performance of a constructed wetland system on stormwater runoff and domestic sewage (SRS) treatment in central east China, two parallel pilot-scale integrated constructed wetland (ICW) systems were operated for one year. Each ICW consisted of a down-flow bed, an up-flow bed and a horizontal subsurface flow bed. The average removal rates of chemical oxygen demand (CODCr), total suspended solids (TSS), ammonia (NH4(+)-N), total nitrogen (TN) and total phosphorus (TP) were 63.6, 91.9, 38.7, 43.0 and 70.0%, respectively, and the corresponding amounts of pollutant retention were approximately 368.3, 284.9, 23.2, 44.6 and 5.9 g m(-2) yr(-1), respectively. High hydraulic loading rate (HLR) of 200 mm/d and low water temperatures (<15 °C) resulted in significant decrease in removals for TP and NH4(+)-N, but had no significant effects on removals of COD and TSS. These results indicated that the operation of this ICW at higher HLR (200 mm/d) might be effective and feasible for TSS and COD removal, but for acceptable removal efficiencies of nitrogen and phosphorus it should be operated at lower HLR (100 mm/d). This kind of ICW could be employed as an effective technique for SRS treatment.
[Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].
Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun
2016-03-15
To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.
NASA Astrophysics Data System (ADS)
Zongxing, Li; Qi, Feng; Wei, Liu; Tingting, Wang; Aifang, Cheng; Yan, Gao; Xiaoyan, Guo; Yanhui, Pan; Jianguo, Li; Rui, Guo; Bing, Jia
2014-11-01
Global warming would inevitably lead to the increased glacier-snow meltwater and mountainous discharge. Taking an example the Hulugou River Basin in the Qilian Mountains, this study confirmed the contribution of cryosphere to runoff by means of the isotope hydrograph separation. The hydro-geochemistry and the isotope geochemistry suggested that both the meltwater and rainwater infiltrated into the subsurface and fed into the river runoff of the Hulugou River Basin in the form of springs. The isotopic composition of river water and underground water was close to the Local Meteoric Water Line, and the δ18O and δD ranged among precipitation, glacier-snow meltwater and frozen soil meltwater. The results indicated that 68% of the recharge of the Hulugou River water was the precipitation, thereinto, glacier-snow meltwater and frozen soil meltwater contributing 11% and 21%, respectively. For tributary-1, precipitation accounted for 77% of the total stream runoff, with frozen soil meltwater accounting for 17%, and glacier-snow meltwater only supplied 6%. During the sampling period, the contribution of surface runoff from precipitation was 44% to tributary-2, and glacier-snow meltwater had contributed 42%; only 14% from frozen soil meltwater. For tributary-3, precipitation accounted for 63% of the total runoff, and other 37% originated from the frozen soil meltwater. According to the latest observational data, the glacier-snow meltwater has accounted for 11.36% of the total runoff in the stream outlet, in which the calculation has been verified by hydrograph separation. It is obvious that the contribution of cryosphere has accounted for 1/3 of the outlet runoff in the Hulugou River Basin, which has been an important part of river sources. This study demonstrated that the alpine regions of western China, especially those basins with glaciers, snow and frozen soil, have played a crucial role in regional water resource provision under global warming.
Applicability of GLDAS in the Yarlung Zangbo River Basin under Climate Change
NASA Astrophysics Data System (ADS)
Jia, L.; Hong, Z.; Linglei, Z.; Yun, D.
2017-12-01
The change of runoff has a great influence on global water cycle, and migration or transformation of biogenic matters. As the Tibet's most important economic region, the Yarlung Zangbo River basin is extremely sensitive and fragile to the global climate change. But the river is a typical lack-data basin, where the quantity of available runoff data is extremely limited and the spatial and temporal resolutions are very low. This study Chooses middle reaches of Yarlung Zangbo River basin as the study area, 4 models of Global Land Data Assimilation System (GLDAS) and the water balance equation are used to calculate surface runoff of Nuxia hydrological station from year of 2009 to 2013. Through the analysis of hydrological elements change, the impact of climate factors to surface runoff is discussed. At last, Statistical method is used to compare correlation and error between the 4 models results and in situ runoff observation. The Broke ranking method is applied to evaluate data quality and applicability of the 4 models in the Yarlung Zangbo River basin. The results reveal that the total runoff calculated from 4 models all have similar change cycle around 12 months, and the values all tend to have slight increase as in situ runoff data during research period. Moreover, it can conclude that the runoff time series show obvious period and mutation characters. During study period, monthly mean precipitation and temperature both have obvious seasonal variability, and the variation trend is relatively consistent. Through the analysis of the runoff affecting factors, it shows that the changes of precipitation and temperature are the most direct factors affecting runoff of the Yarlung Zangbo River. Correlation between precipitations, temperature with runoff of Nuxia hydrological station is good, and the correlation coefficients are in the range of 0.727 to 0.924.It shows that climate change controls basin runoff change to some extent. At last, runoff estimated from GLDAS-CLM can better represent runoff of the Yarlung Zangbo River basin than other 3 models with a total ranking score of 2.00. This paper carries out a helpful attempt on hydrological study in lack-data basin. And in the matter of medium and long terms, large and medium scales, the result is benefit to deepen cognition and comprehend on runoff characteristics.
[Characteristics of rainfall and runoff in urban drainage based on the SWMM model.
Xiong, Li Jun; Huang, Fei; Xu, Zu Xin; Li, Huai Zheng; Gong, Ling Ling; Dong, Meng Ke
2016-11-18
The characteristics of 235 rainfall and surface runoff events, from 2009 to 2011 in a typical urban drainage area in Shanghai were analyzed by using SWMM model. The results showed that the rainfall events in the region with high occurrence frequency were characterized by small rainfall amount and low intensity. The most probably occurred rainfall had total amount less than 10 mm, or mean intensity less than 5 mm·h -1 ,or peak intensity less than 10 mm·h -1 , accounting for 66.4%, 88.8% and 79.6% of the total rainfall events, respectively. The study was of great significance to apply low-impact development to reduce runoff and non-point source pollution under condition of less rainfall amount or low mean rainfall intensity in the area. The runoff generally increased with the increase of rainfall. The threshold of regional occurring runoff was controlled by not only rainfall amount, but also mean rainfall intensity and rainfall duration. In general, there was no surface runoff when the rainfall amount was less than 2 mm. When the rainfall amount was between 2 to 4 mm and the mean rainfall intensity was below 1.6 mm·h -1 , the runoff was less than 1 mm. When the rainfall exceeded 4 mm and the mean rainfall intensity was larger than 1.6 mm·h -1 , the runoff would occur generally. Based on the results of the SWMM simulation, three regression equations that were applicable to regional runoff amount and rainfall factors were established. The adjustment R 2 of the three equations were greater than 0.97. This indicated that the equations could reflect well the relationship between runoff and rainfall variables. The results provided the basis of calculations to plan low impact development and better reduce overflow pollution in local drainage area. It also could serve as a useful reference for runoff study in similar drainage areas.
Martínez, F; Casermeiro, M A; Morales, D; Cuevas, G; Walter, Ingrid
2003-04-15
Biosolids and composted municipal solid wastes were surface-applied (0 and 80 Mg ha(-1)) to a degraded soil in a semi-arid environment to determine their effects on the quantity and quality of run-off water. Three and 4 years after application, a simulated rainfall was performed (intensity=942.5 ml min(-1) and kinetic energy=3.92 J m(-2)) on 0.078 m(2) plots using a portable rainfall simulator. The run-off from the different treatment plots was collected and analysed. The type of treatment was highly related to infiltration, run-off and sediment production. The biosolid-treated plots showed the minimum value of total run-off, maximum time to the beginning of run-off and maximum run-off ratio (the relationship between total rainfall and run-off). The MSW-treated plots showed values intermediate between biosolid-treated plots and control plots. Soil losses were also closely related to treatment type. Control plots showed the maximum sediment yield, MSW-treated plots showed intermediate values, and biosolid plots the minimum values for washout. The concentrations of NH(4)-N and PO(4)-P in the run-off water were significantly higher in the treated plots than in control plots. The highest PO(4)-P value, 0.73 mg l(-1), was obtained in the soil treated with biosolids; NO(3)-N concentration also increased significantly with respect to the control and MSW treatments. NH(4)-N concentrations of 15.6 and 15.0 mg l(-1) were recorded in the soils treated with biosolids and MSW, respectively, values approximately five times higher than those obtained in run-off water from untreated soil. However, the concentrations of all these constituents were lower than threshold limits cited in water quality standards for agricultural use. With the exception of Cu, all trace metals analysed in the run-off water were below detection limits.
Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments
NASA Astrophysics Data System (ADS)
Gallo, Erika L.; Brooks, Paul D.; Lohse, Kathleen A.; McLain, Jean E. T.
2013-04-01
SummaryRecharge of urban runoff to groundwater as a stormwater management practice has gained importance in semi-arid regions where water resources are scarce and urban centers are growing. Despite this trend, the importance of land cover in controlling semi-arid catchment runoff quantity and quality remains unclear. Here we address the question: How do land cover characteristics control the amount and quality of storm runoff in semi-arid urban catchments? We monitored summertime runoff quantity and quality from five catchments dominated by distinct urban land uses: low, medium, and high density residential, mixed use, and commercial. Increasing urban land cover increased runoff duration and the likelihood that a rainfall event would result in runoff, but did not increase the time to peak discharge of episodic runoff. The effect of urban land cover on hydrologic responses was tightly coupled to the magnitude of rainfall. At distinct rainfall thresholds, roads, percent impervious cover and the stormwater drainage network controlled runoff frequency, runoff depth and runoff ratios. Contrary to initial expectations, runoff quality did not vary in repose to impervious cover or land use. We identified four major mechanisms controlling runoff quality: (1) variable solute sourcing due to land use heterogeneity and above ground catchment connectivity; (2) the spatial extent of pervious and biogeochemically active areas; (3) the efficiency of overland flow and runoff mobilization; and (4) solute flushing and dilution. Our study highlights the importance of the stormwater drainage systems characteristics in controlling urban runoff quantity and quality; and suggests that enhanced wetting and in-stream processes may control solute sourcing and retention. Finally, we suggest that the characteristics of the stormwater drainage system should be integrated into stormwater management approaches.
Liu, Yaoze; Theller, Lawrence O; Pijanowski, Bryan C; Engel, Bernard A
2016-05-15
The adverse impacts of urbanization and climate change on hydrology and water quality can be mitigated by applying green infrastructure practices. In this study, the impacts of land use change and climate change on hydrology and water quality in the 153.2 km(2) Trail Creek watershed located in northwest Indiana were estimated using the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for the following environmental concerns: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). Using a recent 2001 land use map and 2050 land use forecasts, we found that land use change resulted in increased runoff volume and pollutant loads (8.0% to 17.9% increase). Climate change reduced runoff and nonpoint source pollutant loads (5.6% to 10.2% reduction). The 2050 forecasted land use with current rainfall resulted in the largest runoff volume and pollutant loads. The optimal selection and placement of green infrastructure practices using L-THIA-LID 2.1 model were conducted. Costs of applying green infrastructure were estimated using the L-THIA-LID 2.1 model considering construction, maintenance, and opportunity costs. To attain the same runoff volume and pollutant loads as in 2001 land uses for 2050 land uses, the runoff volume, TSS, TP, TKN, and NOx for 2050 needed to be reduced by 10.8%, 14.4%, 13.1%, 15.2%, and 9.0%, respectively. The corresponding annual costs of implementing green infrastructure to achieve the goals were $2.1, $0.8, $1.6, $1.9, and $0.8 million, respectively. Annual costs of reducing 2050 runoff volume/pollutant loads were estimated, and results show green infrastructure annual cost greatly increased for larger reductions in runoff volume and pollutant loads. During optimization, the most cost-efficient green infrastructure practices were selected and implementation levels increased for greater reductions of runoff and nonpoint source pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.
[Research on evaluation of water quality of Beijing urban stormwater runoff].
Hou, Pei-Qiang; Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Zhou, Xiao-Ping
2012-01-01
The natural rainwater and stormwater runoff samples from three underlying surfaces (rooftop, campus road and ring road) were sampled and analyzed from July to October, 2010 in Beijing. Eight rainfall events were collected totally and thirteen water quality parameters were measured in each event. Grey relationship analysis and principal component analysis were applied to assess composite water quality and identify the main pollution sources of stormwater runoff. The results show that the composite water quality of ring road runoff is mostly polluted, and then is rooftop runoff, campus road runoff and rainwater, respectively. The composite water quality of ring road runoff is inferior to V class of surface water, while rooftop runoff, campus road runoff and rainwater are in II class of surface water. The mean concentration of TN and NH4(+)-N in rainwater and runoff is 5.49-11.75 mg x L(-1) and 2.90-5.67 mg x L(-1), respectively, indicating that rainwater and runoff are polluted by nitrogen (N). Two potential pollution sources are identified in ring road runoff: (1) P, SS and organic pollutant are possibly related to debris which is from vehicle tyre and material of ring road; (2) N and dissolved metal have relations with automobile exhaust emissions and bulk deposition.
Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China
NASA Astrophysics Data System (ADS)
Qin, Huapeng; Tan, Xiaolong; Fu, Guangtao; Zhang, Yingying; Huang, Yuefei
2013-07-01
This paper investigates the frequency distribution of urban runoff quality indicators using a long-term continuous simulation approach and evaluates the impacts of proposed runoff control schemes on runoff quality in an urbanizing catchment in Shenzhen, China. Four different indicators are considered to provide a comprehensive assessment of the potential impacts: total runoff depth, event pollutant load, Event Mean Concentration, and peak concentration during a rainfall event. The results obtained indicate that urban runoff quantity and quality in the catchment have significant variations in rainfall events and a very high rate of non-compliance with surface water quality regulations. Three runoff control schemes with the capacity to intercept an initial runoff depth of 5 mm, 10 mm, and 15 mm are evaluated, respectively, and diminishing marginal benefits are found with increasing interception levels in terms of water quality improvement. The effects of seasonal variation in rainfall events are investigated to provide a better understanding of the performance of the runoff control schemes. The pre-flood season has higher risk of poor water quality than other seasons after runoff control. This study demonstrates that frequency analysis of urban runoff quantity and quality provides a probabilistic evaluation of pollution control measures, and thus helps frame a risk-based decision making for urban runoff quality management in an urbanizing catchment.
A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process
NASA Astrophysics Data System (ADS)
Nourani, Vahid; Komasi, Mehdi
2013-05-01
This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.
Greenland Ice Sheet flow response to runoff variability
NASA Astrophysics Data System (ADS)
Stevens, Laura A.; Behn, Mark D.; Das, Sarah B.; Joughin, Ian; Noël, Brice P. Y.; Broeke, Michiel R.; Herring, Thomas
2016-11-01
We use observations of ice sheet surface motion from a Global Positioning System network operating from 2006 to 2014 around North Lake in west Greenland to investigate the dynamical response of the Greenland Ice Sheet's ablation area to interannual variability in surface melting. We find no statistically significant relationship between runoff season characteristics and ice flow velocities within a given year or season. Over the 7 year time series, annual velocities at North Lake decrease at an average rate of -0.9 ± 1.1 m yr-2, consistent with the negative trend in annual velocities observed in neighboring regions over recent decades. We find that net runoff integrated over several preceding years has a negative correlation with annual velocities, similar to findings from the two other available decadal records of ice velocity in western Greenland. However, we argue that this correlation is not necessarily evidence for a direct hydrologic mechanism acting on the timescale of multiple years but could be a statistical construct. Finally, we stress that neither the decadal slowdown trend nor the negative correlation between velocity and integrated runoff is predicted by current ice-sheet models, underscoring that these models do not yet capture all the relevant feedbacks between runoff and ice dynamics needed to predict long-term trends in ice sheet flow.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
NASA Astrophysics Data System (ADS)
Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.
2011-12-01
Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.
Zhao, Yaqi; Huang, Lei; Chen, Yucheng
2018-07-01
Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.
Amending greenroof soil with biochar to affect runoff water quantity and quality.
Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A
2011-01-01
Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. Copyright © 2011 Elsevier Ltd. All rights reserved.
Microorganisms in stormwater; a summary of recent investigations
Mallard, Gail E.
1980-01-01
All storm runoff contains a variety of bacteria, including total coliform, fecal coliform, and fecal streptococci, which are derived from the land over which the water flows. Most total coliform are native soil organisms, whereas the fecal coliform and fecal streptococci originate from the feces of wild and domestic animals. Urban runoff has been reported to contain pathogenic organisms, but this probably presents little direct threat to human health because the runoff is not ingested. Runoff water can, however, have other negative effects such as contamination of surface water, which may result in beach closures, or contamination of shellfish. This type of contamination is generally of short duration because indicator bacteria and pathogens die out rapidly in the aquatic environment. Similarly, bacteria and viruses deposited on soil by stormwater are inactivated by drying, competition from soil microflora, and a variety of other processes. Every storm producing runoff is unique in the number and type of microorganisms because these vary from site to site, from storm to storm, and during the course of the storm. Stormwater to be examined for microorganisms must be collected in sterile containers and processed immediately. (USGS)
Application of two direct runoff prediction methods in Puerto Rico
Sepulveda, N.
1997-01-01
Two methods for predicting direct runoff from rainfall data were applied to several basins and the resulting hydrographs compared to measured values. The first method uses a geomorphology-based unit hydrograph to predict direct runoff through its convolution with the excess rainfall hyetograph. The second method shows how the resulting hydraulic routing flow equation from a kinematic wave approximation is solved using a spectral method based on the matrix representation of the spatial derivative with Chebyshev collocation and a fourth-order Runge-Kutta time discretization scheme. The calibrated Green-Ampt (GA) infiltration parameters are obtained by minimizing the sum, over several rainfall events, of absolute differences between the total excess rainfall volume computed from the GA equations and the total direct runoff volume computed from a hydrograph separation technique. The improvement made in predicting direct runoff using a geomorphology-based unit hydrograph with the ephemeral and perennial stream network instead of the strictly perennial stream network is negligible. The hydraulic routing scheme presented here is highly accurate in predicting the magnitude and time of the hydrograph peak although the much faster unit hydrograph method also yields reasonable results.
USDA-ARS?s Scientific Manuscript database
Most water quality studies are conducted at the plot, field, or watershed scale; however, studies that integrate the three scales provide information to scale results obtained at one scale to a greater area. The objective of this study was to analyze runoff and water quality measured (1997-2001) fr...
Discussion on runoff purification technology of highway bridge deck based on water quality safety
NASA Astrophysics Data System (ADS)
Tan, Sheng-guang; Liu, Xue-xin; Zou, Guo-ping; Xiong, Xin-zhu; Tao, Shuang-cheng
2018-06-01
Aiming at the actual problems existing, including a poor purification effect of highway bridge runoff collection and treatment system across sensitive water and necessary manual emergency operation, three kinds of technology, three pools system of bridge runoff purification, the integral pool of bridge runoff purification and ecological planting tank, are put forward by optimizing the structure of purification unit and system setting. At the same time, we come up with an emergency strategy for hazardous material leakage basing on automatic identification and remote control of traffic accidents. On the basis of combining these with the optimized pool structure, sensitive water safety can be guaranteed and water pollution, from directly discharging of bridge runoff, can be decreased. For making up for the shortages of green highway construction technology, the technique has important reference value.
NASA Astrophysics Data System (ADS)
Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang
2018-05-01
Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.
Hernández-Guzmán, Rafael; Ruiz-Luna, Arturo; Berlanga-Robles, César Alejandro
2008-10-01
Results on runoff estimates as a response to land-use and land-cover changes are presented. We used remote sensing and GIS techniques with rainfall time-series data, spatial ancillary information, and the curve-number method (NRCS-CN) to assess the runoff response in the San Pedro subbasin. Thematic maps with eight land-cover classes derived from satellite imagery classification (1973, 1990, and 2000) and hydrologic soil-group maps were used as the input for the runoff calculation. About 20% to 25% of the subbasin landscape has changed since 1973, mainly as consequence of the growth of agriculture. Forest is the main cover, although further analyses indicate that forest is degrading from good to poor conditions when evaluated as a function of the spectral response. Soils with low infiltration rates, classified as the hydrological soil-group "C", were dominant in the area (52%). The overlaying of all the hydrological soil groups with the land-use map produced a total of 43 hydro-group and land-use categories for which runoff was calculated using the curve-number method. Estimates of total runoff volumes (26 x 10(6) m3) were similar for the three dates analyzed in spite of landscape changes, but there were temporal variations among the hydro-group and land-use categories as a consequence. Changes are causing the rise of covers with high runoff potential and the increase of runoff depth is expected, but it can be reversed by different management of subbasin hydro-groups and land-use units.
Everaert, Maarten; da Silva, Rodrigo C; Degryse, Fien; McLaughlin, Mike J; Smolders, Erik
2018-03-01
The enrichment of P in surface waters has been linked to P runoff from agricultural fields amended with fertilizers. Novel slow-release mineral fertilizers, such as struvite and P-exchanged layered double hydroxides (LDHs), have received increasing attention for P recycling from waste streams, and these fertilizers may potentially reduce the risk of runoff losses. Here, a rainfall simulation experiment was performed to evaluate P runoff associated with the application of recycled slow-release fertilizers relative to that of a soluble fertilizer. Monoammonium phosphate (MAP), struvite, and LDH granular fertilizers were broadcasted at equal total P doses on soil packed in trays (5% slope) and covered with perennial ryegrass ( L.). Four rainfall simulation events of 30 min were performed at 1, 5, 15, and 30 d after the fertilizer application. Runoff water from the trays was collected, filtered, and analyzed for dissolved P. For the MAP treatment, P runoff losses were high in the first two rain events and leveled off in later rain events. In total, 42% of the applied P in the MAP treatment was lost due to runoff. In the slow-release fertilizer treatments, P runoff losses were limited to 1.9 (struvite) and 2.4% (LDH) of the applied doses and were more similar over the different rain events. The use of these novel P fertilizer forms could be beneficial in areas with a high risk of surface water eutrophication and a history of intensive fertilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.
2012-01-01
This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971–2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.
NASA Astrophysics Data System (ADS)
Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît
2015-06-01
Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.
Li, Songmin; Wang, Xiaoling; Qiao, Bin; Li, Jiansheng; Tu, Jiamin
2017-03-01
Nonpoint storm runoff remains a major threat to surface water quality in China. As a paddy matures, numerous fertilizers are needed, especially in the rainy seasons; the concentration of nitrogen and phosphorus in rainfall runoff from farmland is much higher than at other times, and this poses a great threat to water bodies and is the main reason for water eutrophication, especially in high concentration drainages. To date, most studies regarding the characteristics of pollutants in rainfall runoff have mainly been concentrated on urban runoff and watershed runoff; therefore, it is particularly important to investigate the characteristics of nitrogen and phosphorus loss in rainfall runoff from paddy fields. To study the characteristics of nitrogen and phosphorus loss and whether the first flush effect exists, continuous monitoring of the rainfall runoff process of six rainfall events was conducted in 2013, of which four rainfall events during storm, high, middle, and low intensity rainfalls were analyzed, and runoff and quality parameters, such as suspended solids (SS), total nitrogen (TN), ammonium nitrogen (NH 4 + -N), nitrate nitrogen (NO 3 - -N), total phosphorus (TP), and phosphate (PO 4 3- -P), were analyzed to determine the relationship between runoff and water quality. The paddy field is located north of Wuxi Lake Basin along the Hejia River upstream in Zhoutie town, Yixing city. An analysis of the load distribution during rainfall runoff was conducted. Event mean concentration (EMC) was used to evaluate the pollution situation of the paddy field's rainfall runoff. A curve of the dimensionless normalized cumulative load (L) vs. normalized cumulative flow (F) (L-F curve), the probability of the mass first flush (MFFn), and the pollutants carried by the initial 25% of runoff (FF 25 ) were used to analyze the first flush effect of the paddy field runoff, and different contaminants show different results: the concentration of nitrogen and phosphorus fluctuate and follow a similar trend as runoff changes, NO 3 - -N concentration is lower in the early part of runoff and higher in the later, and TP mainly occurs in the particle state in storm runoff and mainly in the dissolved state when the rainfall intensity is smaller. Nitrogen and phosphorus losses from paddy fields are closely related to the average rainfall intensity and the max rainfall intensity, and the runoff loss of nitrogen and phosphorus is more severe when the rainfall intensity is large. Based on an analysis of multiple methodologies, TN and NH 4 + -N show a certain degree of a first flush effect, whereas the first flush effect of TP is not obvious. The first flush effect of SS is obvious in larger intensity rainfall and shows a slight secondary flush effect in smaller rainfall events.
Measured and simulated runoff to the lower Charles River, Massachusetts, October 1999-September 2000
Zarriello, Phillip J.; Barlow, Lora K.
2002-01-01
The lower Charles River, the water body between the Watertown Dam and the New Charles River Dam, is an important recreational resource for the Boston, Massachusetts, metropolitan area, but impaired water quality has affected its use. The goal of making this resource fishable and swimmable requires a better understanding of combined-sewer-overflow discharges, non-combined-sewer-overflow stormwater runoff, and constituent loads. This report documents the modeling effort used to calculate non-combined-sewer-overflow runoff to the lower Charles River. During the 2000 water year, October 1, 1999?September 30, 2000, the U.S. Geological Survey collected precipitation data at Watertown Dam and compiled data from five other precipitation gages in or near the watershed. In addition, surface-water discharge data were collected at eight sites?three relatively homogenous land-use sites, four major tributary sites, and the Charles River at Watertown Dam, which is the divide between the upper and lower watersheds. The precipitation and discharge data were used to run and calibrate Stormwater Management Models developed for the three land-use subbasins (single-family, multi-family, and commercial), and the two tributary subbasins (Laundry and Faneuil Brooks). These calibrated models were used to develop a sixth model to simulate 54 ungaged outfalls to the lower Charles River. Models developed by the U.S. Geological Survey at gaged sites were calibrated with up to 24 storms. Each model was evaluated by comparing simulated discharge against measured discharge for all storms with appreciable precipitation and reliable discharge data. The model-fit statistics indicated that the models generally were well calibrated to peak discharge and runoff volumes. The model fit of the commercial land-use subbasin was not as well calibrated compared to the other models because the measured flows appear to be affected by variable conditions not represented in the model. A separate Stormwater Management Model of the Stony Brook Subbasin previously developed by others was evaluated with the newly collected data from this study; this model had a model fit comparable to the models developed by the U.S. Geological Survey. The total annual runoff to the lower Charles River during the 2000 water year, not including contributions from combined-sewer-overflows except from the Stony Brook Subbasin, was 16,500 million cubic feet; 92 percent of the inflow was from the Charles River above Watertown Dam, 3 percent was from the Stony Brook Subbasin, 2 percent was from the Muddy River Subbasin, and less than 1 percent was from the combined inflows of Laundry and Faneuil Brooks. The remaining ungaged drainage area contributed about 2 percent of the total annual inflow to the lower Charles River. Excluding discharge from the Charles River above Watertown Dam, total annual runoff to the lower Charles River was 1,240 million cubic feet; 39 percent was from the Stony Brook Subbasin, 27 percent was from the Muddy River, which includes runoff that drains to the Muddy River conduit, 7 percent was from the Laundry Brook Subbasin, and 4 percent was from the Faneuil Brook Subbasin. Flow from the ungaged areas composed about 23 percent of the total annual inflow to the lower Charles River, excluding discharge from the Charles River above Watertown Dam. Runoff to the lower Charles River was calculated for two design storms representing a 3-month and a 1-year event, 1.84 and 2.79 inches of total rainfall, respectively. These simulated discharges were provided to the Massachusetts Water Resources Authority for use in a receiving-water model of the lower Charles River. Total storm runoff to the lower Charles River was 111 and 257 million cubic feet for the 3-month and 1-year storms, respectively. Excluding discharge from the Charles River above Watertown Dam, total runoff to the lower Charles River was 30 and 53 million cubic feet for the 3-month and 1-year storms, respectively. Runoff from
Boosted Regression Tree Models to Explain Watershed ...
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed-use and heavily impacted watershed
Pollutant loading from low-density residential neighborhoods in California.
Bale, Andrew E; Greco, Steven E; Pitton, Bruno J L; Haver, Darren L; Oki, Lorence R
2017-08-01
This paper presents a comparison of pollutant load estimations for runoff from two geographically distinct residential suburban neighborhoods in northern and southern California. The two neighborhoods represent a single urban land use type: low-density residential in small catchments (<0.3 km 2 ) under differing regional climates and irrigation practices. Pollutant loads of pesticides, nutrients, and drinking water constituents of concern are estimated for both storm and non-storm runoff. From continuous flow monitoring, it was found that a daily cycle of persistent runoff that peaks mid-morning occurs at both sites. These load estimations indicate that many residential neighborhoods in California produce significant non-storm pollutant loads year-round. Results suggest that non-storm flow accounted for 47-69% of total annual runoff and significantly contributed to annual loading rates of most nutrients and pesticides at both sites. At the Southern California site, annual non-storm loads are 1.2-10 times higher than storm loads of all conventional constituents and nutrients with one exception (total suspended solids). At the Northern California site, annual storm loads range from 51 to 76% of total loads for all conventional constituents and nutrients with one exception (total dissolved solids). Non-storm yields of pesticides at the Southern California site range from 1.3-65 times higher than those at the Northern California site. The disparity in estimated pollutant loads between the two sites indicates large potential variation from site-to-site within the state and suggests neighborhoods in drier and milder climates may produce significantly larger non-storm loads due to persistent dry season runoff and year-round pest control.
Antibiotic losses from unprotected manure stockpiles.
Dolliver, Holly A S; Gupta, Satish C
2008-01-01
Manure management is a major concern in livestock production systems. Although historically the primary concerns have been nutrients and pathogens, manure is also a source of emerging contaminants, such as antibiotics, to the environment. There is a growing concern that antibiotics in manure are reaching surface and ground waters and contributing to the development and spread of antibiotic resistance in the environment. One such pathway is through leaching and runoff from manure stockpiles. In this study, we quantified chlortetracycline, monensin, and tylosin losses in runoff from beef manure stockpiles during two separate but consecutive experiments representing different weather conditions (i.e., temperature and precipitation amount and form). Concentrations of chlortetracycline, monensin, and tylosin in runoff were positively correlated with initial concentrations of antibiotics in manure. The highest concentrations of chlortetracycline, monensin, and tylosin in runoff were 210, 3175, and 2544 microg L(-1), respectively. Relative antibiotic losses were primarily a function of water losses. In the experiment that had higher runoff water losses, antibiotic losses ranged from 1.2 to 1.8% of total extractable antibiotics in manure. In the experiment with lower runoff water losses, antibiotic losses varied from 0.2 to 0.6% of the total extractable antibiotics in manure. Manure analysis over time suggests that in situ degradation is an important mechanism for antibiotic losses. Degradation losses during manure stockpiling may exceed cumulative losses from runoff events. Storing manure in protected (i.e., covered) facilities could reduce the risk of aquatic contamination associated with manure stockpiling and other outdoor manure management practices.
Threshold responses in runoff from sub-humid heterogeneous low relief regions
NASA Astrophysics Data System (ADS)
Devito, K.; Hokanson, K. J.; Chasmer, L.; Kettridge, N.; Lukenbach, M.; Mendoza, C. A.; Moore, P.; Peters, D.; Silins, U.
2017-12-01
We examined runoff in 20 catchments (50 to 50000 km2) over a 25 year wet and dry climate cycle to understand temporal and spatial thresholds in runoff generation responses in the water limited, glaciated continental Boreal Plains (BP) eco-region of Western Canada. Annual runoff ranged over 3 orders of magnitude (<3 mm to >300 mm/year) but was poorly correlated with annual precipitation. A threshold relationship was observed with multi-year cumulative moisture deficit (CMD) that reflected temporal and spatial differences in effective storage, antecedent moisture state and hydrologic connectivity among catchments with differing portions of land-cover (e.g. wetland vs. forestland) and glacial-deposit types. During dry states (CMD< -200 mm), catchment annual low flow ranged by over one order of magnitude (2 to 80 mm/yr), and increased with percent area of coarse textured deposits. In fine textured catchments, runoff was only observed in catchments with >30% wetland area. During mesic conditions (CMD 0 mm), runoff remained very low in catchments with large proportions of forests and poorly connected open water depressions associated with fine-textured moraines. Runoff was positively correlated with percent peatland area, suggesting that peatland networks were the primary source areas of surface water to regional runoff. During the infrequent wet states (CMD > 200 mm) of the study period, runoff coefficients were similar among all catchments indicating that both forests and peatlands contributed to catchment runoff. . Rather than estimating regional runoff from topographic drainage networks, integrating CMD with the classification of catchments based on land-cover configuration and glacial-deposit type can: 1) better represent water cycling and regional sink-source dynamics controlling regional runoff, and 2) provide an effective management framework for predicting climate and land-use impacts on regional runoff in low relief glacial landscapes such as the Boreal Plain.
Environmental variation and macrofauna response in a coastal area influenced by land runoff
NASA Astrophysics Data System (ADS)
Akoumianaki, Ioanna; Papaspyrou, Sokratis; Kormas, Konstantinos Ar.; Nicolaidou, Artemis
2013-11-01
Macrofauna community interactions with environmental variables in the water column (salinity, temperature, turbidity, transparency, suspended particulate matter, particulate organic matter, choloroplastic pigments) and in the sediment (granulometric variables, organic carbon and pigments) were investigated in a coastal area with high land runoff due to riverine and temporary stream discharges (Greece, Aegean Sea, Maliakos Gulf). Samples were taken along a distance-depositional gradient from the river mouth to the open sea at eight stations, at times of different precipitation regime from August 2000 to May 2001. The physical variables, such as transparency and median grain size, generally increased seawards, and parallelled the depositional gradient as opposed to measures of food inputs and hydrodynamic regime. High environmental heterogeneity was observed during peak precipitation. The total number of species increased seawards and from August (122 species) to May (170 species). Maximum abundance also increased from August (4953 m-2) to May (10,220 individuals m-2), irrespective of distance from river mouth. Species belonging to different functional groups, as to recolonization, feeding, motility and substrate preferences, coexisted at all times indicating high functional diversity. Non-parametric multivariate regression showed that at times of low, rising and falling precipitation 78-81% of community variation was explained by environmental variables, indicating that macrofauna distribution and species composition respond to food inputs and sediment characteristics. During peak land runoff the community-environment relationship weakened (57% of the variability explained). The diversity of functional traits of the most abundant species indicates that the macrofauna community can absorb the impact of increased turbidity, sedimentation and current-driven dispersion. The study offers baseline information for the integrated coastal zone management in microtidal areas with high land runoff under Mediterranean-type climate conditions. During peak land runoff the community-environment relationship weakened (57% of the variability explained) whilst species distribution ranges increased. The study shows that the functional diversity in the study area prior to high discharge period enable macrofauna community to absorb the impact of increased turbidity, sedimentation and current-driven dispersion. The study offers baseline information for the impact of high land runoff in microtidal areas under Mediterranean-type climate conditions.
Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.
2015-01-01
Mean long-term hydrologic budget components, such as recharge and base flow, are often difficult to estimate because they can vary substantially in space and time. Mean long-term fluxes were calculated in this study for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow using long-term estimates of mean ET and precipitation and the assumption that the relative change in storage over that 30-year period is small compared to the total ET or precipitation. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance (SC) data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971-2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. A new approach to estimate riparian ET using seasonal SC data gave results consistent with those from other methods. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia. The method has the potential to be applied in many other states in the U.S. or in other regions or countries of the world where climate and stream flow data are plentiful.
Distributed watershed modeling of design storms to identify nonpoint source loading areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endreny, T.A.; Wood, E.F.
1999-03-01
Watershed areas that generate nonpoint source (NPS) polluted runoff need to be identified prior to the design of basin-wide water quality projects. Current watershed-scale NPS models lack a variable source area (VSA) hydrology routine, and are therefore unable to identify spatially dynamic runoff zones. The TOPLATS model used a watertable-driven VSA hydrology routine to identify runoff zones in a 17.5 km{sup 2} agricultural watershed in central Oklahoma. Runoff areas were identified in a static modeling framework as a function of prestorm watertable depth and also in a dynamic modeling framework by simulating basin response to 2, 10, and 25 yrmore » return period 6 h design storms. Variable source area expansion occurred throughout the duration of each 6 h storm and total runoff area increased with design storm intensity. Basin-average runoff rates of 1 mm h{sup {minus}1} provided little insight into runoff extremes while the spatially distributed analysis identified saturation excess zones with runoff rates equaling effective precipitation. The intersection of agricultural landcover areas with these saturation excess runoff zones targeted the priority potential NPS runoff zones that should be validated with field visits. These intersected areas, labeled as potential NPS runoff zones, were mapped within the watershed to demonstrate spatial analysis options available in TOPLATS for managing complex distributions of watershed runoff. TOPLATS concepts in spatial saturation excess runoff modelling should be incorporated into NPS management models.« less
Fauvel, Blandine; Cauchie, Henry-Michel; Gantzer, Christophe; Ogorzaly, Leslie
2016-05-01
Heavy rainfall events were previously reported to bring large amounts of microorganisms in surface water, including viruses. However, little information is available on the origin and transport of viral particles in water during such rain events. In this study, an integrative approach combining microbiological and hydrological measurements was investigated to appreciate the dynamics and origins of F-specific RNA bacteriophage fluxes during two distinct rainfall-runoff events. A high frequency sampling (automatic sampler) was set up to monitor the F-specific RNA bacteriophages fluxes at a fine temporal scale during the whole course of the rainfall-runoff events. A total of 276 rainfall-runoff samples were collected and analysed using both infectivity and RT-qPCR assays. The results highlight an increase of 2.5 log10 and 1.8 log10 of infectious F-specific RNA bacteriophage fluxes in parallel of an increase of the water flow levels for both events. Faecal pollution was characterised as being mainly from anthropic origin with a significant flux of phage particles belonging to the genogroup II. At the temporal scale, two successive distinct waves of phage pollution were established and identified through the hydrological measurements. The first arrival of phages in the water column was likely to be linked to the resuspension of riverbed sediments that was responsible for a high input of genogroup II. Surface runoff contributed further to the second input of phages, and more particularly of genogroup I. In addition, an important contribution of infectious phage particles has been highlighted. These findings imply the existence of a close relationship between the risk for human health and the viral contamination of flood water. Copyright © 2016 Luxembourg institute of Science and Technology. Published by Elsevier Ltd.. All rights reserved.
Stevens, Michael R.
2001-01-01
The Guanella Pass road, located about 40 miles west of Denver, Colorado, between the towns of Georgetown and Grant, has been designated a scenic byway and is being considered for reconstruction. The purpose of this report is to present an assessment of hydrologic and water-quality conditions in the Guanella Pass area and provide baseline data for evaluation of the effects of the proposed road reconstruction. The data were collected during water years 1995-97 (October 1, 1995, to September 30, 1997).Based on Colorado water-quality standards, current surface-water quality near Guanella Pass road was generally acceptable for specified use classifications of recreation, water supply, agriculture, and aquatic life. Streams had small concentrations of dissolved solids, nutrients, trace elements, and suspended sediment. An exception was upper Geneva Creek, which was acidic and had relatively large concentrations of iron, zinc, and other trace elements related to acid-sulfate weathering. Concentrations of many water-quality constituents, especially particle-related phases and suspended sediment, increased during peak snowmelt and rainstorm events and decreased to prerunoff concentrations at the end of runoff periods. Some dissolved (filtered) trace-element loads in Geneva Creek decreased during rainstorms when total recoverable loads remained generally static or increased, indicating a phase change that might be explained by adsorption of trace elements to suspended sediment during storm runoff.Total recoverable iron and dissolved zinc exceeded Colorado stream-water-quality standards most frequently. Exceedances for iron generally occurred during periods of high suspended-sediment transport in several streams. Zinc standards were exceeded in about one-half the samples collected in Geneva Creek 1.5 miles upstream from Grant.Lake-water quality was generally similar to that of area streams. Nitrogen and phosphorus ratios calculated for Clear and Duck Lakes indicated that phytoplankton in the lakes were probably phosphorus-limited. Measures of trophic status (secchi depth, total phosphorus, and chlorophyll-a) indicated that Duck and Clear Lakes were oligotrophic in 1997.Ground water had relatively low specific conductance (range 24 to 584 microsiemens per centimeter) and did not exceed U.S. Environmental Protection Agency drinking-water standards, except for samples collected from a single well, which exceeded the Proposed Maximum Contaminant Level for uranium.Runoff from the Guanella Pass road enters streams through surface channels connected to culverts and roadside ditches. Fifty-six percent of the total number of culvert and roadside-ditch drainage features on the Guanella Pass road showed evidence of recent surface runoff connection to an adjacent stream. Road runoff is generated during snowmelt and during summer rainstorms.At a road cross-drain culvert monitored continuously for discharge (water years 1996-97), most runoff (77 to 96 percent) was a result of snowmelt, and runoff from the road preceded the basinwide peak streamflow, resulting in sediment and water-quality constituent inputs to the stream when the stream?s capacity for dilution of the road runoff was low. Specific conductance of road-runoff samples ranged from 14 to 468 microsiemens per centimeter. Major-ion composition of some samples indicated effects from deicing salt (sodium chloride) and dust inhibitor (magnesium chloride) applied to sections of the road, but changes in the stream concentrations that might be attributed to the runoff were brief and relatively small.Nutrients were commonly measured in road-runoff samples at larger concentrations than in streamflow. Concentrations of nitrate and ammonia, especially during rainfall-generated road runoff, were more similar to the concentrations in precipitation than to the concentrations in stream water. Concentrations of ammonia plus organic nitrogen (total as N) (range less than 0.2 to 24 milligrams per liter) and t
Lietman, P.L.; Gustafson-Minnich, L. C.; Hall, D.W.
1997-01-01
Terracing effects on surface-runoff and ground- water quantity and quality were investigated by the U.S. Geological Survey, in cooperation with Pennsylvania Department of Environmental Resources, during 1983-89 at a 23.1-acre agricultural site in Lancaster County, Pa., as part of the 1982 Rural Clean Water Program. The site, underlain by carbonate rock, was primarily corn and alfalfa fields; the median slope was 6 percent.Normal precipitation is about 42 inches per year. Average annual runoff was 11 percent and ground- water recharge was 37 percent of precipitation.Runoff quantity, suspended-sediment, and nutrient data, ground-water level and nutrient data, and precipitation-quantity data were collected for 21 months prior to, and 58 months after, pipe-outlet terrace construction. Data were analyzed by use of graphical, regression, covariate, cluster, Mann- Whitney Rank Sum test, and double-mass curvetechniques. Terracing changed runoff characteristics. Storm characteristics were similar throughout the study period. However, after terracing, storms producing less than 0.4 inch of precipitation rarely produced runoff. Total-storm discharge as a function of precipitation did not change significantly throughout the range of runoff-producing storms after terracing. Multiple-discharge peaks on hydrographs before terracing did not occur after terracing when hydrographs reflected the stepwisedraining of each terrace through the pipe outlet. After an initial 2-year period of terrace stabilization, suspended-sediment yield in runoff decreased significantly as a function of runoff. This result was expected because terracing decreased runoff energy, and because terrace ponding allowed time for sediment redeposition. Nitrate plus nitrite yields increased proportionally throughout the range of runoff during the post-terracing period relative to the pre- terracing period. After terracing, a combination of increased soil contact time and increased nitrification caused by wetter soils is believed to have increased nitrate concentrations in runoff. No significant change was found in yields of total nitrogen, ammonia plus organic nitrogen, or total phosphorus relative to runoff before and after terracing. Limited data suggest that fine-sediment particles (less than 0.62 micrometers in diameter), which continued to be discharged from the site, transported most of the phosphorus. Terracing did not significantly change the quantity of recharge to the carbonate aquifer. The mean annual water-table altitude did not change after terracing. Nitrate concentrations of ground water increased significantly at four of the site wells after terracing, probably because of increased contact time of the recharge with nutrient-rich soils in ponded terrace water. Qualitative evidence indicates that large decreases in nutrient requirements and nitrogen applications because of a crop change from corn to alfalfa upgradient of two site wells resulted in either no detectable change or a significant decrease in nitrate concentrations of ground water after terracing.
Hydrologic Impact of Straw Mulch On Runoff from a Burned Area for Various Soil Water Content
NASA Astrophysics Data System (ADS)
Carnicle, M. M.; Moody, J. A.; Ahlstrom, A. K.
2011-12-01
Mountainous watersheds often exhibit increases in runoff and flash floods after wildfires. During 11 days of September 2010, the Fourmile Canyon wildfire burned 2500 hectares of the foothills of the Rocky Mountains near Boulder, Colorado. In an effort to minimize the risk of flash floods after the wildfire, Boulder County aerially applied straw mulch on high-risk areas selected primarily on the basis of their slopes and burn severities. The purpose of this research is to investigate the hydrologic response, specifically runoff, of a burned area where straw mulch is applied. We measured the runoff, at different soil water contents, from 0.8-m diameter plots. Paired plots were installed in June 2011 in a basin burned by the Fourmile Canyon Fire. Two sets of bounded, paired plot (two control and two experimental plots) were calibrated for 35 days without straw on either plot by measuring volumetric soil water content 2-3 times per week and measuring total runoff from each storm. Straw (5 cm thick) was added to the two experimental plots on 19 July 2011 and also to the funnels of two visual rain gages in order to measure the amount of rainfall absorbed by the straw. Initial results during the calibration period showed nearly linear relations between the volumetric soil water content of the control and experimental plots. The regression line for the runoff from the control versus the runoff from the experiment plot did not fit a linear trend; the variability may have been caused by two intense storms, which produced runoff that exceeded the capacity of the runoff gages. Also, during the calibration period, when soil water content was low the runoff coefficients were high. It is anticipated that the final results will show that the total runoff is greater on plots with no straw compared to those with straw, under conditions of various antecedent soil water content. We are continuing to collect data during the summer of 2011 to test this hypothesis.
Horwatich, Judy A.; Bannerman, Roger T.
2010-01-01
To evaluate the treatment efficiency of a stormwater-filtration device (SFD) for potential use at Wisconsin Department of Transportation (WisDOT) park-and-ride facilities, a SFD was installed at an employee parking lot in downtown Madison, Wisconsin. This type of parking lot was chosen for the test site because the constituent concentrations and particle-size distributions (PSDs) were expected to be similar to those of a typical park-and-ride lot operated by WisDOT. The objective of this particular installation was to reduce loads of total suspended solids (TSS) in stormwater runoff to Lake Monona. This study also was designed to provide a range of treatment efficiencies expected for a SFD. Samples from the inlet and outlet were analyzed for 33 organic and inorganic constituents, including 18 polycyclic aromatic hydrocarbons (PAHs). Samples were also analyzed for physical properties, including PSD. Water-quality samples were collected for 51 runoff events from November 2005 to August 2007. Samples from all runoff events were analyzed for concentrations of suspended sediment (SS). Samples from 31 runoff events were analyzed for 15 constituents, samples from 15 runoff events were analyzed for PAHs, and samples from 36 events were analyzed for PSD. The treatment efficiency of the SFD was calculated using the summation of loads (SOL) and the efficiency ratio methods. Constituents for which the concentrations and (or) loads were decreased by the SFD include TSS, SS, volatile suspended solids, total phosphorous (TP), total copper, total zinc, and PAHs. The efficiency ratios for these constituents are 45, 37, 38, 55, 22, 5, and 46 percent, respectively. The SOLs for these constituents are 32, 37, 28, 36, 23, 8, and 48 percent, respectively. The SOL for chloride was -21 and the efficiency ratio was -18. Six chemical constituents or properties-dissolved phosphorus, chemical oxygen demand, dissolved zinc, total dissolved solids, dissolved chemical oxygen demand, and dissolved copper-were not included in the efficiency or SOL, because the difference between concentrations in samples from the inlet and outlet were not significant. Concentrations of TP and TSS were inexplicably high in samples at the inlet for one event.
Murphy, Louise U; Cochrane, Thomas A; O'Sullivan, Aisling
2015-03-01
Atmospheric pollutants deposited on impermeable surfaces can be an important source of pollutants to stormwater runoff; however, modelling atmospheric pollutant loads in runoff has rarely been done, because of the challenges and uncertainties in monitoring their contribution. To overcome this, impermeable concrete boards (≈ 1m(2)) were deployed for 11 months in different locations within an urban area (industrial, residential and airside) throughout Christchurch, New Zealand, to capture spatially distributed atmospheric deposition loads in runoff over varying meteorological conditions. Runoff was analysed for total and dissolved Cu, Zn, Pb, and total suspended solids (TSS). Mixed-effect regression models were developed to simulate atmospheric pollutant loads in stormwater runoff. In addition, the models were used to explain the influence of different meteorological characteristics (e.g. antecedent dry days and rain depth) on pollutant build-up and wash-off dynamics. The models predicted approximately 53% to 69% of the variation in pollutant loads and were successful in predicting pollutant-load trends over time which can be useful for general stormwater planning processes. Results from the models illustrated the importance of antecedent dry days on pollutant build-up. Furthermore, results indicated that peak rainfall intensity and rain duration had a significant relationship with TSS and total Pb, whereas, rain depth had a significant relationship with total Cu and total Zn. This suggested that the pollutant speciation phase plays an important role in surface wash-off. Rain intensity and duration had a greater influence when the pollutants were predominantly in their particulate phase. Conversely, rain depth exerted a greater influence when a high fraction of the pollutants were predominantly in their dissolved phase. For all pollutants, the models were represented by a log-arctan relationship for pollutant build-up and a log-log relationship for pollutant wash-off. The modelling approach enables the site-specific relationships between individual pollutants and rainfall characteristics to be investigated. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A
2015-04-01
The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.M. Gallaher; R.J. Koch
2004-09-15
In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and amore » general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.« less
NASA Astrophysics Data System (ADS)
Ostman, J. S.; Loso, M.; Liljedahl, A. K.; Gaedeke, A.; Geck, J. E.
2017-12-01
Many Alaska glaciers are thinning and retreating, and glacier wastage is projected to affect runoff processes from glacierized basins. Accordingly, effective resource management in glacierized watersheds requires quantification of a glacier's role on streamflow generation. The Eklutna catchment (311 km2) supplies water and electricity for Anchorage, Alaska (pop. 300,000) via Eklutna Lake. The Eklutna headwaters include the West Fork (64 km2, 46% glacier), and the East Fork (101 km2, 12% glacier). Total average annual discharge (2009-2015) is similar from the West (42,100 m3) and East (42,200 m3) forks, while specific annual runoff from the West Fork (2940 mm) exceeds that of the East Fork (1500 mm). To better understand what controls runoff, we are simulating the Eklutna annual water budget using a distributed watershed-level hydrological model. We force the Water Flow and Balance Simulation Model (WaSiM) using continuous air temperature, precipitation, wind speed, shortwave incoming radiation, and relative humidity primarily measured in the West Fork basin. We use Eklutna Glacier snow accumulation and ablation to calibrate the snowmelt and glacier sub-modules. Melt season discharge from the West and East forks is used for runoff comparison. Preliminary results show 2013-2015 simulated glacier point balances (accumulation and melt) are within 15% of glacier stake observations. Runoff was effectively modeled in the West Fork (NSE=0.80), while being over-predicted in the East Fork , which we attribute to a lack of forcing data in the less-glacierized basin. The simulations suggest that 78% of West Fork total runoff is from glacier melt, compared with <40% in the East Fork where glacier runoff contribution is higher during low-snow years.
[Total pollution features of urban runoff outlet for urban river].
Luo, Hong-Bing; Luo, Lin; Huang, Gu; He, Qiang; Liu, Ping
2009-11-01
The urban stormwater runoff discharged to urban river, especially to rainfall source river, cannot be ignored. In this study, the Futian River watershed in Shenzhen city in a typical southern city of China is taken as the research object. In order to guide the pollution control for urban river, the eighteen rainfall events were monitored, and the total pollution features of the urban runoff outlet for this urban river were analyzed and discussed by using the process of pollutographs, the identifying to first flush, event mean concentration (EMC), etc. Results show that the concentrations of COD, SS, TN, TP and BOD5 are ten times more than the grade V of the environmental quality standards for surface water during the runoff time; the pollution caused by heavy metals (Cr, Ge, Cu, Hg and As) in runoff at a typical rainfall event is serious; the average and range of pollutant concentration at this runoff outlet in study area are evidently higher than at Shapingba in Chongqing city of China and at Silerwood in Canada, but are lower than at Shilipu in Wuhan city of China. The first flushes of COD, SS, BOD5, especially COD and SS, are evident, but the TN and TP are not. The average EMC of COD, TN, TP and BOD5 are 224.14, 571.15, 5.223, 2.04, 143.5 mg/L, respectively. To some extent, the EMC of COD is about two times of the value of the near cities, Macao and Zhuhai. The EMC of TN and TP are obviously higher than Beijing, Guangzhou and Shanghai. To compared with foreign counties, the EMC of the study area in Shenzhen is obviously much higher than the cities of Korean, USA and Canada. So the total pollution caused by the urban surface runoff in study area is serious and necessary to be treated.
Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu
2015-01-01
An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (<0.125 mm) of surface dust generated high TN, TP and COD loads. Increases in rainfall intensity and surface slope enhanced the pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.
Kalkhoff, Stephen J.
2013-01-01
Heavy snow and early spring rainfall generated substantial amounts of runoff and flooding in the upper part of the Missouri River Basin in 2011. Spring runoff in the upper and middle parts of the basin exceeded the storage capacity of the Missouri River reservoirs and unprecedented amounts of water were released into the lower parts of the basin resulting in record floods from June through September on the Missouri River in Iowa and Nebraska and extending into Kansas and Missouri. Runoff from the Missouri River Basin in April through September 2011 was 8,440,000 hectare meters (68,400,000 acre feet) and was only exceeded during flooding in 1993 when runoff was 11,200,000 hectare meters (90,700,000 acre feet). Nitrate and total phosphorus concentrations in the Missouri River and selected tributaries in April through September, 2011 generally were within the expected range of concentrations measured during the last 30 years. Substantial discharge from the upper and middle parts of the Missouri River Basin resulted in nitrate concentrations decreasing in the lower Missouri River beginning in June. Concentrations of nitrate in water entering the Mississippi River from the Missouri River were less in 2011 than in 1993, but total phosphorus concentrations entering the Mississippi River were substantially greater in 2011 than in 1993. The Missouri River transported an estimated 79,600 megagrams of nitrate and 38,000 megagrams of total phosphorus to the Mississippi River from April through September 2011. The nitrate flux in 2011 was less than 20 percent of the combined total from the Upper Mississippi and Missouri River Basins. In contrast, the total phosphorus flux of 38,000 megagrams from the Missouri River constituted about 39 percent of the combined total from the Upper Mississippi and Missouri River Basins during April through September 2011. Substantially more nitrate but less total phosphorus was transported from the Missouri River Basin during the historic 1993 than during the 2011 flood. Greater runoff from the lower part of the basin contributed to the greater nitrate transport in 1993. In addition to the differing amounts of runoff and the source of flood waters, changes in land use, and management practices are additional factors that may have contributed to the difference in nitrate and total phosphorus flux between the 1993 and 2011 floods.
Monitor-based evaluation of pollutant load from urban stormwater runoff in Beijing.
Liu, Y; Che, W; Li, J
2005-01-01
As a major pollutant source to urban receiving waters, the non-point source pollution from urban runoff needs to be well studied and effectively controlled. Based on monitoring data from urban runoff pollutant sources, this article describes a systematic estimation of total pollutant loads from the urban areas of Beijing. A numerical model was developed to quantify main pollutant loads of urban runoff in Beijing. A sub-procedure is involved in this method, in which the flush process influences both the quantity and quality of stormwater runoff. A statistics-based method was applied in computing the annual pollutant load as an output of the runoff. The proportions of pollutant from point-source and non-point sources were compared. This provides a scientific basis for proper environmental input assessment of urban stormwater pollution to receiving waters, improvement of infrastructure performance, implementation of urban stormwater management, and utilization of stormwater.
NASA Astrophysics Data System (ADS)
Smiley, C. R.; Kamenos, N.; Hoey, T.; Cottier, F.; Ellam, R. M.
2014-12-01
Greenland Ice Sheet melt has the potential to affect global sea levels and the strength of the thermohaline circulation (THC). Investigating spatial mixing patterns of seawater in Greenlandic fjords can help reveal characteristics of changes in runoff from the GrIS; for example higher runoff may be associated with lower salinity within GrIS fjords, which can be recorded by palaeoenvironmental proxies (Kamenos et al 2012). The Kangerlussuaq Drainage Basin mirrors melt patterns of the whole GrIS and drains into Søndre Strømfjord, a 170km long fjord on the west coast of Greenland. Temperature and salinity profiles to 40m depth were obtained at 11 stations along Søndre Strømfjord during the 2014 melt season. Each station was sampled twice once at high KDB runoff and once at low KDB runoff. With increasing freshwater runoff, salinity decreases by 1.65 - 2.91 at each station over a 7 hour time period. Higher salinities occur at low run-off. In addition, with increasing run-off, the disparity between surface and deeper water (30m) becomes greater with a 19.3 difference between the surface and 30m. With higher KDB runoff temperature increases by 0.47oC - 2.34oC. This information will be integrated with oxygen and deuterium isotope patterns to pinpoint the exact source of the runoff causing salinity reductions. Our data show a relationship between KDB runoff and salinity of Søndre Strømfjord, data that will enable further calibration of marine proxies of GrIS melt.
Sulej, Anna Maria; Polkowska, Żaneta; Namieśnik, Jacek
2011-01-01
Airport runoff can contain high concentrations of various pollutants, in particular polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), the environmental levels of which have to be monitored. Airport runoff water samples, collected at the Gdańsk-Rębiechowo Airport from 2008 to 2009, were analysed for PAHs and PCBs by gas chromatography. The aromatic fractions were separated by liquid-liquid extraction and analysed by GC/MS. Total PAH concentrations were 295–6,758 ng/L in 2008 and 180–1,924 ng/L in 2009, while total PCB levels in 2008 ranged from 0.14 to 0.44 μg/L and in 2009 from 0.06 to 0.23 μg/L. The PAH and PCB compositions in airport runoff waters were examined over a range of spatial and temporal scales to determine distributions, trends and possible sources. This pollution is mainly pyrolytic and related to anthropogenic activity. There were significant differences between the samples collected in the two seasons. An understanding of the magnitude of contamination due to airport runoff water is important for the effective management of airport infrastructure. PMID:22247699
Effects of pasture renovation on hydrology, nutrient runoff, and forage yield.
de Koff, J P; Moore, P A; Formica, J; Van Eps, M; DeLaune, P B
2011-01-01
Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.
Stormwater-runoff data, Madison, Wisconsin, 1993-94
Waschbusch, R.J.
1996-01-01
As required by Section 402(P) of the Water Quality Control Act of 1987, stormwater-runoff samples collected during storms that met three criteria (rainfall depths 50 to 150 percent of average depth range, rainfall durations 50 to 150 percent of average duration, and antecedent dry-weather period of at least 72 hours) were analyzed for semivolatile organic chemicals, total metals, pesticides, polychlorinated biphenyls, inorganic constituents, bacteria, oil and grease, pH, and water temperature. Two of the seven sites also had samples analyzed for volatile organic chemicals. In addition to the required sampling, additional runoff samples that did not necessarily meet the three rainfall criteria, were analyzed for total metals and inorganic constituents. Storm loads of selected constituents were computed.
[Pollution load and the first flush effect of BOD5 and COD in urban runoff of Wenzhou City].
Wang, Jun; Bi, Chun-juan; Chen, Zhen-lou; Zhou, Dong
2013-05-01
Four typical rainfalls were monitored in two different research areas of Wenzhou Municipality. Concentrations of BOD5 and COD in six different urban runoffs were measured. In addition the event mean concentration (EMC), M (V) curve and BOD5/COD of pollutant were calculated. The results showed that concentrations of BOD5 and COD in different urban runoffs of Wenzhou ranged from ND to 69.21 mg x L(-1) and ND to 636 mg x L(-1). Concentrations of BOD5 and COD in different urban runoffs were decreasing over time, so it is greatly significant to manage the initial runoff for reducing organic pollution. Judged by EMC of BOD5 and COD in these five rainfalls, concentrations of pollutant in some urban runoffs were out of the integrated wastewater discharge standard. If these runoffs flowed into river, it would cause environmental pressure to the next level receiving water bodies. According to the M (V) curve, the first flush effect of COD in most urban runoffs was common; while the first flush effect of BOD5 was same as that of COD. The result also showed that organic pollution was serious at the beginning of runoff. The underlying surface type could affect the concentration of BOD5 and COD in urban runoff. While the results of BOD5/COD also suggested that biodegradation was considered as one of the effective ways to decrease the pollution load of organics in urban runoff, and the best management plans (BMPs) should be selected for various urban runoff types for the treatment of organic pollution.
Assessment of surface runoff depth changes in S\\varǎţel River basin, Romania using GIS techniques
NASA Astrophysics Data System (ADS)
Romulus, Costache; Iulia, Fontanine; Ema, Corodescu
2014-09-01
S\\varǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in S\\varǎţel catchment, between 1990-2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mernild, Sebastian Haugard; Hasholt, Bent; Van Den Broeke, Michiel
2009-01-01
This study focuses on runoff from a large sector of the Greenland Ice Sheet (GrIS) - the Kangerlussuaq drainage area, West Greenland - for the runoff observation period 2006/07 to 2007/08. SnowModel, a state-of-the-art snow-evolution modeling system, was used to simulate winter accumulation and summer ablation processes, including runoff. Independent in situ end-of-winter snow depth and high-resolution runoff observations were used for validation of simulated accumulation and ablation processes. Runoff was modeled on both daily and hourly time steps, filling a data gap of runoff exiting part of the GrIS. Using hourly meteorological driving data instead of smoothed daily-averaged datamore » produced more realistic meteorological conditions in relation to snow and melt threshold surface processes, and produced 6-17% higher annual cumulative runoff. The simulated runoff series yielded useful insights into the present conditions of inter-seasonal and inter-annual variability of Kangerlussuaq runoff, and provided an acceptable degree of agreement between simulated and observed runoff. The simulated spatial runoff distributions, in some areas of the GrIS terminus, were as high as 2,750 mm w.eq. of runoff for 2006/07, while only 900 mm w.eq was simulated for 2007/08. The simulated total runoff from Kangerlussuaq was 1.9 km{sup 3} for 2006/07 and 1.2 km{sup 3} for 2007/08, indicating a reduction of 35-40% caused by the climate conditions and changes in the GrIS freshwater storage. The reduction in runoff from 2006/07 to 2007/08 occurred simultaneously with the reduction in the overall pattern of satellite-derived GrIS surface melt from 2007 to 2008.« less
Vijayaraghavan, K; Joshi, Umid Man
2014-11-01
The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.
Watts, D B; Way, T R; Torbert, H A
2011-01-01
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.
Ralph, F.M.; Coleman, T.; Neiman, P.J.; Zamora, R.J.; Dettinger, Mike
2013-01-01
This study is motivated by diverse needs for better forecasts of extreme precipitation and floods. It is enabled by unique hourly observations collected over six years near California’s Russian River and by recent advances in the science of atmospheric rivers (ARs). This study fills key gaps limiting the prediction of ARs and, especially, their impacts by quantifying the duration of AR conditions and the role of duration in modulating hydrometeorological impacts. Precursor soil moisture conditions and their relationship to streamflow are also shown. On the basis of 91 well-observed events during 2004-10, the study shows that the passage of ARs over a coastal site lasted 20 h on average and that 12% of the AR events exceeded 30 h. Differences in storm-total water vapor transport directed up the mountain slope contribute 74% of the variance in storm-total rainfall across the events and 61% of the variance in storm-total runoff volume. ARs with double the composite mean duration produced nearly 6 times greater peak streamflow and more than 7 times the storm-total runoff volume. When precursor soil moisture was less than 20%, even heavy rainfall did not lead to significant streamflow. Predicting which AR events are likely to produce extreme impacts on precipitation and runoff requires accurate prediction of AR duration at landfall and observations of precursor soil moisture conditions.
Water quality of streams tributary to Lakes Superior and Michigan
Zimmerman, Jerome W.
1968-01-01
Water quality of streams tributary to Lakes Superior and Michigan was analyzed for 142 stations on 99 streams tributary to Lake Superior and 83 stations on 56 streams tributary to Lake Michigan during 1962-65. Concentrations of aluminum, copper, and iron were not affected greatly by flow or season. Magnesium, calcium, chlorides, total alkalinity, total hardness, and conductivity varied with the flow, temperature, and season; the lowest values were during the spring runoff and heavy rains, and the highest were during low water in late summer and the colder periods of winter. Concentrations of nitrate, silica, and sulfates were lowest in the spring and summer. Concentrations of tanninlike and ligninlike compounds were highest during the spring runoff and other high-water periods, and were lowest during freezeup when surface runoff was minimal. The pH values were highest from June to September and lowest during the spring runoff. Phenolphthalein alkalinity was detected primarily in the summer and coincided occasionally with low flows just before the spring thaw. Total hardness usually was lower in streams tributary to Lake Superior than in streams tributary to Lake Michigan. The total hardness was higher in the streams in Wisconsin than in the streams in Michigan along the west shore of Lake Michigan. It was lowest in the northernmost streams. The water quality of the streams in an area was related to the geological characteristics of the land.
Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison.
Udawatta, Ranjith P; Krstansky, J John; Henderson, Gray S; Garrett, Harold E
2002-01-01
A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.
Puente, Celso; Atkins, John T.
1989-01-01
Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of the water budget for Drawdy Creek basin indicate that total annual runoff during 1972-73 averaged only 43 percent of average annual precipitation--the lowest of all study basins; annual evapotranspiration losses averaged 49 percent, and interbasin transfer of ground-water losses averaged about 8 percent. Of the total annual runoff, approximately 74 percent was surface and subsurface flow and 26 percent was ground-water discharge. The low total annual runoff at Drawdy Creek probably reflects increased recharge of precipitation and surface and subsurface flow losses to ground water. Most of the increase in ground-water storage is, in turn, lost to a ground-water sink--namely, interbasin transfer of ground water by gravity drainage and (or) mine pumpage from underground mines that extend to adjacent basins. Hypothetical mining situations were posed for model analysis to determine the effects of increased mining on streamflow in the mined basins. Results of model simulations indicate that streamflow characteristics, the water budget, and the seasonal distribution of streamflow would be significantly modified in response to an increase in mining in the basins. Simulations indicate that (1) total annual runoff in the basins would decrease because of increased surface- and subsurface-flow losses and increased recharge of precipitation to ground water (these losses would tend to reduce medium to high flows mainly during winter and spring when losses would be greatest), (2) extreme high flows in response to intense rainstorms would be negligibly affected, regardless of the magnitude of mining in the basins, (3) ground-water discharge also would decrease during winter and spring, but the amount and duration of low flows during summer and fall would substantially increase in response to increased ground-water storage in rocks and in underground mines, and (4) the increase in ground-water storage in the basins would be depleted, mostly by increased losses to a grou
Runoff and water-quality characteristics of three Discovery Farms in North Dakota, 2008–16
Galloway, Joel M.; Nustad, Rochelle A.
2017-12-21
Agricultural producers in North Dakota are aware of concerns about degrading water quality, and many of the producers are interested in implementing conservation practices to reduce the export of nutrients from their farms. Producers often implement conservation practices without knowledge of the water quality of the runoff from their farm or if conservation practices they may implement have any effect on water quality. In response to this lack of information, the U.S. Geological Survey, in cooperation with North Dakota State University Extension Service and in coordination with an advisory group consisting of State agencies, agricultural producers, and commodity groups, implemented a monitoring study as part of a Discovery Farms program in North Dakota in 2007. Three data-collection sites were established at each of three farms near Underwood, Embden, and Dazey, North Dakota. The purpose of this report is to describe runoff and water-quality characteristics using data collected at the three Discovery Farms during 2008–16. Runoff and water-quality data were used to help describe the implications of agricultural conservation practices on runoff and water-quality patterns.Runoff characteristics of monitoring sites at the three farms were determined by measuring flow volume and precipitation. Runoff at the Underwood farm monitoring sites generally was controlled by precipitation in the area, antecedent soil moisture conditions, and, after 2012, possibly by the diversion ditch constructed by the producer. Most of the annual runoff was in March and April each year during spring snowmelt. Runoff characteristics at the Embden farm are complex because of the mix of surface runoff and flow through two separate drainage tile systems. Annual flow volumes for the drainage tiles sites (sites E2 and E3) were several orders of magnitude greater than measured at the surface water site E1. Site E1 generally only had runoff briefly in March and April during spring snowmelt and during only a few large rain events throughout 2009–16. Flow was somewhat continuous at sites E2 and E3 throughout the year during years of increased precipitation, such as in 2010 and 2011. At Dazey farm, annual flow volumes at the most downstream site D3 for 2010–15 ranged from 88 acre-feet (2012) to 12,060 acre-feet (2010). The largest monthly runoff volumes at D1 (most upstream site; combination of data from site D1a [original site] and site D1b [relocated site]) and D3 were in March and April during spring snowmelt runoff and rain events.At Underwood farm, total ammonia and total phosphorus had the highest concentrations at the most upstream site (U1) and decreased sequentially at sites U2 and U3 downstream. Total ammonia and total phosphorus concentrations at the sites for Underwood farm also generally were higher than measured at sites for the Dazey and Embden farms. At Embden farm, nitrate plus nitrite concentrations were lowest at site E1 (surface-water site) and highest at sites E2 and E3 (drainage tile sites). Nitrate plus nitrite concentrations at sites E2 and E3 also were the highest among all the sites at all three farms. Median total nitrate plus nitrite concentrations for sites E1, E2, and E3 were 0.22, 13, and 10 milligrams per liter as nitrogen, respectively. Nutrient concentrations generally were greater at site D1 (most upstream site) compared to site D3 (most downstream site) at Dazey farm. Higher concentrations at site D1, which is farther upstream and closer to potential sources of nutrients, compared to lower concentrations at site D3, which is farther downstream and receives more runoff, indicates that dilution may be the reason concentrations decrease downstream.Annual loads for chloride at all three Underwood sites were the greatest in 2011 and the least in 2012, which coincided with years of the greatest and least annual flow volume, respectively. Total ammonia had a similar pattern at the three sites. Nitrate plus nitrite loads displayed a different pattern than chloride and total ammonia, indicating possible different sources. Chloride, total ammonia, total phosphorus, and suspended sediment were transported past site U1 mostly in March and the least from July through October. Monthly nitrate plus nitrite loads had a different pattern than the other constituents, indicating other possible sources such as fertilizer application in the surrounding cropland.Annual loads for Embden farm were considerably greater at sites E2 and E3 compared to site E1. Annual yields for all constituents also were substantially greater at sites E2 and E3 compared to site E1, mainly because of a combination of higher flow volumes and small contributing drainage areas at sites E2 and E3 compared to site E1.The greatest annual loads at Dazey farm site D3 for chloride, nitrate plus nitrite, and suspended sediment were in 2010 and 2011, and zero loads were estimated for 2012 because no flow was measured at the site. Mean monthly loads generally were greatest for most constituents in March and April at sites D1 and D3 except for suspended sediment that had the greatest monthly loads in May.To mitigate runoff and water-quality effects of their operations, the producers implemented various agricultural conservation practices before and during the Discovery Farms monitoring. Even though it was difficult to quantify the effects of the agricultural conservation practices implemented at the farms, the data collected from the Discovery Farms program provided a better understanding of some of the variables that affect runoff and water quality.
NASA Astrophysics Data System (ADS)
Zahmatkesh, Zahra; Karamouz, Mohammad; Nazif, Sara
2015-09-01
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.
[Urban non-point source pollution control by runoff retention and filtration pilot system].
Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia
2011-09-01
A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.
Impact of the rainfall pattern on synthetic pesticides and copper runoff from a vineyard catchment
NASA Astrophysics Data System (ADS)
Payraudeau, Sylvain; Meite, Fatima; Wiegert, Charline; Imfeld, Gwenaël
2017-04-01
Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticide is rarely evaluated at the catchment scale. Here, we evaluate the influence of rainfall pattern on the mobilization of synthetic pesticides and copper fungicides in runoff from a small vineyard catchment, both at the plot and catchment scales. During two vineyard growing seasons in 2015 and 2016 (from March to October), we monitored rainfall, runoff, and concentrations of copper and 20 fungicides and herbicides applied by winegrowers at the Rouffach vineyard catchment (France, Alsace; 42.5 ha). Rainfall data were recorded within the catchment while runoff measurement and flow-proportional water sampling were carried out at the outlet of the plot (1486 m2; 87.5 × 17 m) and the catchment. In total, discharges of the 14 runoff events were continuously monitored between March and October 2015 using bubbler flow modules combined with Venturi channels. Detailed and distributed dataset on pesticide applications were extracted from survey (copper formulations and type of pesticides, amount and application dates). Pools of copper and synthetic pesticides were quantified weekly in the topsoil (0-3 cm) by systematic sampling across the catchment. The concentrations of copper (10 mg.kg-1 dried soil) and synthetic pesticides (close to the quantification limit, i.e. 0.05 µg.L-1) available in the top soil for off-site transport largely differed over time. Between March and October, an accumulation of copper of 10% was observed in the top-soil while pesticide concentration decreased below the quantification limits after a few days or weeks following application, depending of the compounds. The average runoff generated at the plot scale was very low (0.13% ± 0.30). The maximum runoff reached 1.37% during the storm of July 22, 2015. Synthetic pesticides exported by runoff was less than 1‰ of the applications. The copper mass exported represented about 1% (i.e. 2,085 g at the plot's scale) of the seasonal input, and mainly occurred during the major storm event. Copper were mainly exported in association with suspended particulate matter (SPM) (>80% of the total load). The partitioning between dissolved and SPM phases differs for the synthetic pesticides as expected by their properties. The rainfall pattern influences concentrations and loads of copper and the pesticides. Dissolved pesticide loads normalized by the pesticide mass in soil varied with larger rainfall intensities, runoff discharges and volumes. Contrasted relationships between rainfall characteristics (i.e. intensity, duration and total amount) and the load exported suggest that mechanisms of contaminant delivery from the vineyard soil differs among the pesticides and for copper. The results support the idea that, even in small catchment areas, the rainfall pattern (i.e. rainfall intensity and duration) partly controls the transport of pesticide and copper loads in runoff. Though other factors, such as the chemical characteristics and the amount and timing of applications, are important drivers for pesticide runoff, the rainfall patterns also determine the transport of pesticides from catchment to downstream aquatic ecosystems, and thus the ecotoxicological risk.
Application of GIS in Modeling Zilberchai Basin Runoff
NASA Astrophysics Data System (ADS)
Malekani, L.; Khaleghi, S.; Mahmoodi, M.
2014-10-01
Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Service) based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS) are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.
Li, Xinghua; Wang, Baona; Yang, Tewu; Zhu, Duanwei; Nie, Zhongnan; Xu, Junchi
2017-01-01
Soil phosphorus (P) fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP). Runoff total P (TP) was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region. PMID:28650990
Li, Xinghua; Wang, Baona; Yang, Tewu; Zhu, Duanwei; Nie, Zhongnan; Xu, Junchi
2017-01-01
Soil phosphorus (P) fractions and runoff P concentration were measured to understand the fate of soil P entering surface runoff water during summer cropping season of different double cropping systems under two fertilizer regimes. The dominant form of runoff P was particulate P (PP). Runoff total P (TP) was higher at the vegetative growth stage and lower at the crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P and amounts increased with sediment content in runoff water. Runoff P discharge was closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P load during the summer in this region.
McGlynn, Brian L.; McDonnell, Jeffery J.; Seibert, Jan; Kendall, Carol
2004-01-01
The effects of catchment size and landscape organization on runoff generation are poorly understood. Little research has integrated hillslope and riparian runoff investigation across catchments of different sizes to decipher first‐order controls on runoff generation. We investigated the role of catchment sizes on riparian and hillslope dynamics based on hydrometric and tracer data observed at five scales ranging from trenched hillslope sections (55–285 m2) to a 280‐ha catchment at Maimai on the west coast of the South Island, New Zealand. The highly organized landscape is comprised of similar headwater catchments, regular geology, steep highly dissected topography, relatively consistent soil depths, and topographically controlled shallow through flow. We found a strong correlation between riparian zone groundwater levels and runoff for the headwaters, whereas the water tables in the valley bottom of the larger catchments were uncorrelated to runoff for 14 months of record. While there was no clear relationship between catchment size and new water contribution to runoff in the two storms analyzed in detail, lag times of tracer responses increased systematically with catchment size. The combination of hydrometric and tracer data allowed assessment of the runoff contributions from different parts of the landscape. Runoff was generated consistently in headwater riparian zones. This agreed also with the observed variations of tracer (18O and silica) responses for the different catchments. During wetter antecedent conditions or during larger events (>30 mm under dry antecedent conditions) hillslope and valley bottom floodplains did contribute to event runoff directly. We propose that analysis of landscape‐scale organization and the distribution of dominant landscape features provide a structure for investigation of runoff production and solute transport, especially as catchment‐scale increases from headwaters to the mesoscale.
USDA-ARS?s Scientific Manuscript database
The Agricultural Policy Environmental Extender (APEX) model can simulate crop yields, runoff, and the transport of sediment and nutrients in small watersheds that have combinations of farm level landscapes, cropping systems and/or management practices. The objectives of the study were to parameteri...
Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M Todd
2018-04-17
Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns.
Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M. Todd
2018-01-01
Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns. PMID:29673182
Performance of engineered soil and trees in a parking lot bioswale
Qingfu Xiao; Gregory McPherson
2011-01-01
A bioswale integrating an engineered soil and trees was installed in a parking lot to evaluate its ability to reduce storm runoff, pollutant loading, and support tree growth. The adjacent control and treatment sites each received runoff from eight parking spaces and were identical except that there was no bioswale for the control site. A tree was planted at both sites...
Stoker, Y.E.
1996-01-01
The quantity and quality of stormwater runoff from the Bayside Bridge were evaluated to determine the effectiveness of the stormwater collection and detention pond system of the bridge in reducing constituent loads to Old Tampa Bay. Water-quality samples of stormwater runoff from the bridge and outflow from the detention pond were collected during and after selected storms. These samples were used to compute loads for selected constituents. Stormwater on the Bayside Bridge drained rapidly during rain events. The volume of stormwater runoff from 24 storms measured during the study ranged from 4,086 to 103,705 cubic feet. Storms were most frequent during July through September and were least frequent from February through May. Concentrations of most constituents in stormwater runoff before the bridge opened to traffic were less than or equal to concentrations measured after the bridge was opened to traffic. However, concentrations of arsenic in the outflow from the detention pond generally were greater before the bridge opened than concentrations after, and concentrations of orthophosphorus in the stormwater runoff and outflow from the pond were greater before the bridge opened than during over half the sampled storms after the bridge opened. Concentrations of most constituents measured in stormwater runoff from the bridge were greatest at the beginning of the storm and decreased as the storm continued. Variations in suspended solids, nutrients, and trace element concentrations were not always concurrent with each other. The source of the measured constituent (rainfall or road debris) and the phase of the constituent (suspended or dissolved) probably affected the timing of concentration changes. The quality of stormwater runoff from the Bayside Bridge varied with total runoff volume, with the length of the dry period before the storm, and with season. Average concentrations of suspended solids, ammonia plus organic nitrogen, nitrite plus nitrate nitrogen, orthophosphorus, phosphorus, total organic carbon, aluminum, arsenic, copper, and zinc in stormwater runoff generally were inversely related to runoff volume. The quality of outflow from the detention pond also varied during a storm event and with season. Maximum concentrations generally occurred near the beginning of a storm, and decreased as the storm continued. Maximum concentrations of many constituents occurred in June and July 1995. During the summer months, pH exceeded 9.0 while inorganic nitrogen concentrations were very low. These high pH values and low inorganic nitrogen concentrations are most likely associated with photosynthesis by algae or aquatic plants in the pond. Concentrations of nitrogen, phosphorus, and nickel in stormwater runoff were correlated with total organic carbon concentrations. Concentrations of chromium, copper, iron, nickel, lead, and zinc in stormwater runoff were correlated with aluminum concentrations. The source of these metals is probably the bridge materials and metallic debris from vehicles. The northern detention pond system of the Bayside Bridge effectively reduced concentrations of suspended solids, ammonia nitrogen, nitrite plus nitrate nitrogen, phosphorus, aluminum, cadmium, chromium, copper, iron, lead, nickel, and zinc in stormwater runoff before water discharged from the pond. However, concentrations of ammonia plus organic nitrogen, organic carbon, arsenic, and values for alkalinity, pH, and specific conductance generally were greater in outflow from the pond than in stormwater runoff from the bridge. Stormwater runoff and pond outflow for three storm events were evaluated to determine the effectiveness of the detention pond system in removing selected constituents from the stormwater runoff. Most constituents and constituent loads were reduced in the outflow from the pond. Suspended solids loads were reduced about 30 to 45 percent, inorganic nitrogen loads were reduced by about 60 to 90 percent, and loads of most trace elements
Phosphorus fertilizer and grazing management effects on phosphorus in runoff from dairy pastures.
Dougherty, Warwick J; Nicholls, Paul J; Milham, Paul J; Havilah, Euie J; Lawrie, Roy A
2008-01-01
Fertilizer phosphorus (P) and grazing-related factors can influence runoff P concentrations from grazed pastures. To investigate these effects, we monitored the concentrations of P in surface runoff from grazed dairy pasture plots (50 x 25 m) treated with four fertilizer P rates (0, 20, 40, and 80 kg ha(-1) yr(-1)) for 3.5 yr at Camden, New South Wales. Total P concentrations in runoff were high (0.86-11.13 mg L(-1)) even from the control plot (average 1.94 mg L(-1)). Phosphorus fertilizer significantly (P < 0.001) increased runoff P concentrations (average runoff P concentrations from the P(20), P(40), and P(80) treatments were 2.78, 3.32, and 5.57 mg L(-1), respectively). However, the magnitude of the effect of P fertilizer varied between runoff events (P < 0.01). Further analysis revealed the combined effects on runoff P concentration of P rate, P rate x number of applications (P < 0.001), P rate x time since fertilizer (P < 0.001), dung P (P < 0.001), time since grazing (P < 0.05), and pasture biomass (P < 0.001). A conceptual model of the sources of P in runoff comprising three components is proposed to explain the mobilization of P in runoff and to identify strategies to reduce runoff P concentrations. Our data suggest that the principal strategy for minimizing runoff P concentrations from grazed dairy pastures should be the maintenance of soil P at or near the agronomic optimum by the use of appropriate rates of P fertilizer.
Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina.
Ngabe, B; Bidleman, T F; Scott, G I
2000-06-08
Stormwater runoff was collected in urbanized areas of South Carolina to investigate the levels and sources of polycyclic aromatic hydrocarbons (PAHs). Mean concentrations of total PAHs in runoff (sum(PAHs), 14 compounds), determined by gas chromatography-mass spectrometry, were 5590 ng/l in the city of Columbia and 282 ng/l in the coastal community of Murrells Inlet. Lower concentrations were found in estuarine water at Murrells Inlet (mean = 35 ng/l) and at undeveloped North Inlet estuary (13 ng/l). The PAH profiles in Columbia and Murrells Inlet runoff were similar to those of atmospheric particulate matter and unlike those in used crankcase oil. Examination of the aliphatic fraction of Columbia runoff samples by gas chromatography with flame ionization detection showed patterns that were more similar to used crankcase oil than to urban aerosols.
Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael
2017-05-15
Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.
Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes
Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.
2016-01-01
Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.
NASA Astrophysics Data System (ADS)
Kothyari, B. P.; Verma, P. K.; Joshi, B. K.; Kothyari, U. C.
2004-06-01
The Bhetagad watershed in Kumaon Hills of Central Himalaya represents for hydro-meteorological conditions of the middle mountains over the Hindu Kush Himalayas. This study was conducted to assess the runoff, soil loss and subsequent nutrient losses from different prominent land uses in the Bhetagad watershed of Central Himalayas. Four experimental natural plots each of 20 m length and 5 m width were delineated on four most common land covers viz, pine forests, tea plantation, rainfed agricultural and degraded lands. Monthly values of runoff, soil loss and nutrient loss, for four successive years (1998-2001), from these land uses were quantified following standard methodologies. The annual runoff in these plots ranged between 51 and 3593 m 3/ha while the annual soil loss varied between 0.06 and 5.47 tonnes/ha during the entire study period. The loss of organic matter was found to be maximum in plot having pine forest followed by plot having tea plantation as the land cover. Annual loss of total N (6.24 kg/ha), total P (3.88 kg/ha) and total K (5.98 kg/ha),per unit loss of soil (tonnes/ha), was maximum from the plot having rainfed agricultural crop as the land cover. The loss of total N ranged between 0.30 and 21.27 kg/ha, total P ranged between 0.14 and 9.42 kg/ha, total K ranged from 0.12 to 11.31 kg/ha whereas organic matter loss varied between 3.65 and 255.16 kg/ha, from different experimental plots. The findings will lead towards devising better conservation/management options for mountain land use systems.
NASA Astrophysics Data System (ADS)
Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.
2016-09-01
Hydrologists and engineers may choose from a range of semidistributed rainfall-runoff models such as VIC, PDM, and TOPMODEL, all of which predict runoff from a distribution of watershed properties. However, these models are not easily compared to event-based data and are missing ready-to-use analytical expressions that are analogous to the SCS-CN method. The SCS-CN method is an event-based model that describes the runoff response with a rainfall-runoff curve that is a function of the cumulative storm rainfall and antecedent wetness condition. Here we develop an event-based probabilistic storage framework and distill semidistributed models into analytical, event-based expressions for describing the rainfall-runoff response. The event-based versions called VICx, PDMx, and TOPMODELx also are extended with a spatial description of the runoff concept of "prethreshold" and "threshold-excess" runoff, which occur, respectively, before and after infiltration exceeds a storage capacity threshold. For total storm rainfall and antecedent wetness conditions, the resulting ready-to-use analytical expressions define the source areas (fraction of the watershed) that produce runoff by each mechanism. They also define the probability density function (PDF) representing the spatial variability of runoff depths that are cumulative values for the storm duration, and the average unit area runoff, which describes the so-called runoff curve. These new event-based semidistributed models and the traditional SCS-CN method are unified by the same general expression for the runoff curve. Since the general runoff curve may incorporate different model distributions, it may ease the way for relating such distributions to land use, climate, topography, ecology, geology, and other characteristics.
Burkitt, Lucy L; Dougherty, Warwick J; Corkrey, Ross; Broad, Shane T
2011-01-01
The potential loss of P in runoff is a function of the combined effects of fertilizer-soil interactions and climatic characteristics. In this study, we applied a Bayesian approach to experimental data to model the annualized long-term risk of P runoff following single and split P fertilizer applications using two example catchments with contrasting rainfall/runoff patterns. Split P fertilizer strategies are commonly used in intensive pasture production in Australia and our results showed that three applications of 13.3 kg P ha(-1) resulted in a greater risk of P runoff compared with a single application of 40 kg P ha(-1) when long-term surface runoff data were incorporated into a Bayesian P risk model. Splitting P fertilizer applications increased the likelihood of a coincidence of fertilizer application and runoff occurring. We found that the overall risk of P runoff is also increased in catchments where the rainfall/runoff pattern is less predictable, compared with catchments where rainfall/runoff is winter dominant. The findings of our study also question the effectiveness of current recommendations to avoid applying fertilizer if runoff is likely to occur in the next few days, as we found that total P concentrations at the half-life were still very high (18.2 and 8.2 mg P L(-1)) following single and split P treatments, respectively. Data from the current study also highlight that omitting P fertilizer on soils that already have adequate soil test P concentrations is an effective method of reducing P loss in surface runoff. If P fertilizer must be applied, we recommend less frequent applications and only during periods of the year when the risk of surface P runoff is low.
NASA Astrophysics Data System (ADS)
Tuukkanen, T.; Marttila, H.; Kløve, B.
2017-07-01
Organic matter and nutrient export from drained peatlands is affected by complex hydrological and biogeochemical interactions. Here partial least squares regression (PLSR) was used to relate various soil and catchment characteristics to variations in chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in runoff. Peat core samples and water quality data were collected from 15 peat extraction sites in Finland. PLSR models constructed by cross-validation and variable selection routines predicted 92, 88, and 95% of the variation in mean COD, TN, and TP concentration in runoff, respectively. The results showed that variations in COD were mainly related to net production (temperature and water-extractable dissolved organic carbon (DOC)), hydrology (topographical relief), and solubility of dissolved organic matter (peat sulfur (S) and calcium (Ca) concentrations). Negative correlations for peat S and runoff COD indicated that acidity from oxidation of organic S stored in peat may be an important mechanism suppressing organic matter leaching. Moreover, runoff COD was associated with peat aluminum (Al), P, and sodium (Na) concentrations. Hydrological controls on TN and COD were similar (i.e., related to topography), whereas degree of humification, bulk density, and water-extractable COD and Al provided additional explanations for TN concentration. Variations in runoff TP concentration were attributed to erosion of particulate P, as indicated by a positive correlation with suspended sediment concentration (SSC), and factors associated with metal-humic complexation and P adsorption (peat Al, water-extractable P, and water-extractable iron (Fe)).
McKenzie, Donald J.; Irwin, G.A.
1983-01-01
Runoff from a heavily-traveled, 1.43-acre bridge section of Interstate-95 in Miami, Florida, was comprehensively monitored for both quality and quantity during five selected storms between November 1979 and May 1981. For most water-quality parameters, 6 to 11 samples were collected during each of the 5 runoff events. Concentrations of most parameters in the runoff were quite variable both during individual storm events and among the five storm events; however, the ranges in parameter concentration were about the same magnitude report for numerous other highway and urban drainages. Data were normalized to estimate the average, discharge-weighted parameter loads per storm per acre of bridge surface and results suggested that the most significant factor influencing stormwater loads was parameter concentration. Rainfall intensity and runoff volume, however, influenced rates of loading. The total number of antecedent dry days and traffic volume did not appear to be conspicously related to either runoff concentrations or loads. (USGS)
NASA Astrophysics Data System (ADS)
Lee, B. Y.; Lee, C. H.; KIm, K. T.
2016-02-01
Since 2012 to present, the Tidal Power Plant (TPP) has been operated in Shihwa Coastal Reservoir (SCR) to improve the water quality. The tidal mixing volume increased about 5 times from 0.03 to 0.16 billion ton/day which represents about 50% of the SCR water volume. Water quality monitoring data showed that it break a strong stratification and hypoxia (≤3 mg/L Dissolved Oxygen) during summer season in main tidal channel. In addition, Total Phosphorus (TP), Total Nitrogen (TN) and Chemical Oxygen Demand concentrations in the main tidal channel reached to similar level with outside SCR concentrations. However, inner area with limited tidal mixing has not experienced improvement in TN and TP concentrations after the TPP operation. Trophic State Index (TSI) which was composite index of trophic condition also kept high score (>50) and remained in eutrophic state especially in summer season. Overall, an increase of seawater circulation has a positive effect on water quality in main tidal channel but not in inner area because of limited seawater mixing and effects of stormwater runoff. The stormwater runoff should be properly managed in this case because most point source pollution load is discharged outside of SCR. Acknowledgement : This research was a part of the project titled 'Development of integrated estuarine management system', funded by the Ministry of Oceans and Fisheries, Korea
Brabets, Timothy P.; March, Rod S.; Trabant, Dennis C.
2004-01-01
The Tlikakila River is located in Lake Clark National Park and Preserve and drains an area of 1,610 square kilometers (622 square miles). Runoff from the Tlikakila River Basin accounts for about one half of the total inflow to Lake Clark. Glaciers occupy about one third of the basin and affect the runoff characteristics of the Tlikakila River. As part of a cooperative study with the National Park Service, glacier changes and runoff characteristics in the Tlikakila River Basin were studied in water years 2001 and 2002. Based on analyses of remote sensing data and on airborne laser profiling, most glaciers in the Tlikakila River Basin have retreated and thinned from 1957 to the present. Volume loss from 1957-2001 from the Tanaina Glacier, the largest glacier in the Tlikakila River Basin, was estimated to be 6.1 x 109 cubic meters or 1.4 x 108 cubic meters per year. For the 2001 water year, mass balance measurements made on the three largest glaciers in the Tlikakila River BasinTanaina, Glacier Fork, and North Forkall indicate a negative mass balance. Runoff measured near the mouth of the Tlikakila River for water year 2001 was 1.70 meters. Of this total, 0.18 meters (11 percent) was from glacier ice melt, 1.27 meters (75 percent) was from snowmelt, 0.24 meters (14 percent) was from rainfall runoff, and 0.01 meters (1 percent) was from ground water. Although ground water is a small component of runoff, it provides a critical source of warm water for fish survival in the lower reaches of the Tlikakila River.
NASA Astrophysics Data System (ADS)
Esteban Lucas-Borja, Manuel; Plaza Alvaréz, Pedro Antonio; Sagra, Javier; Alfaro Sánchez, Raquel; Moya, Daniel; Ferrandiz Gotor, Pablo; De las Heras Ibañez, Jorge
2017-04-01
Wildfires have an important influence in forest ecosystems. Contrary to high severity fire, which may have negative impacts on the ecosystems, low severity induce small changes on soil properties. Thus and in order to reduce fire risk, low-severity prescribed fires have been widely used as a fuel reduction tool and silvicultural treatment in Mediterranean forest ecosystems. However, fire may alter microsite conditions and little is known about the impact of prescribed burning on the physico-chemical properties of runoff. In this study, we compared the effects of prescribed burning on physico-chemical properties and quantity of runoff and soil erosion during twelve months after a low severity prescribed fire applied in twelve 16 m2 plot (6 burned plots and 6 control plots used for comparison) set up in the Lezuza forest (Albacete, central-eastern Spain). Physico-chemical properties and quantity of runoff and soil losses were monitored after each rainfall event (five rainfall events in total). Also, different forest stand characteristics (slope, tree density, basal area and shrub/herbal cover) affecting each plot were measured. Results showed that forest stand characteristics were very similar in all used plots. Also, physico-chemical runoff properties were highly modified after the prescribed fire, increasing water pH, carbonates, bicarbonates, total dissolved solids and organic matter content dissolved in water. Electrical conductivity, calcium, sodium, chloride and magnesium were not affected by prescribed fire. Soil losses were highly related to precipitation intensity and tree interception. Tree intercepted the rainfall and significantly reduced soil losses and also runoff quantity. In conclusion and after the first six-month experiment, the influence of prescribed fires on physico-chemical runoff properties should be taken into account for developing proper prescribed burnings guidelines.
Improving the water use efficiency of olive trees growing in water harvesting systems
NASA Astrophysics Data System (ADS)
Berliner, Pedro; Leake, Salomon; Carmi, Gennady; Agam, Nurit
2017-04-01
Water is a primary limiting factor for agricultural development in many arid and semi-arid regions in which a runoff generation is a rather frequent event. If conveyed to dyke surrounded plots and ponded, runoff water can thereafter be used for tree production. One of the most promising runoff collection configurations is that of micro-catchments in which water is collected close to the area in which runoff was generated and stored in adjacent shallow pits. The objective of this work was to assess the effect of the geometry of runoff water collection area (shallow pit or trench) on direct evaporative water losses and on the water use efficiency of olive trees grown in them. The study was conducted during the summer of 2013 and 2014. In this study regular micro-catchments with basins of 9 m2 (3 x 3 m) by 0.1 m deep were compared with trenches of one meter deep and one meter wide. Each configuration was replicated three times. One tree was planted in each shallow basin and the distance between trees in the 12 m long trench was four meters. Access tubes for neutron probes were installed in the micro-catchments and trenches (four and seven, respectively) to depths of 2.5 m. Soil water content in the soil profile was monitored periodically throughout drying periods in between simulated runoff events. Transpiration of the trees was estimated from half-hourly sap flow measurements using a Granier system. Total transpiration fluxes were computed for time intervals corresponding to consecutive soil water measurements. During the first year, a large runoff event was simulated by applying once four cubic meters to each plot; and in the second year the same volume of water was split into four applications, simulating a series of small runoff events. In both geometries, trees received the same amount of water per tree. Evaporation from trenches and micro-catchments was estimated as the difference between evapotranspiration obtained computing the differences in total soil water content between two consecutive measurements and transpiration for this interval estimated from sap flow measurements. In both years the evaporation from micro-catchments was significantly larger than that of trenches. The fractional loss due to evaporation from the total applied water for the second year for example, was 53% and 22% for micro-catchments and trenches, respectively. This indicates that a trench geometry reduces the amount of water lost to direct evaporation from the soil, and is thus more efficient in utilizing harvested runoff water.
A hydrological emulator for global applications - HE v1.0.0
NASA Astrophysics Data System (ADS)
Liu, Yaling; Hejazi, Mohamad; Li, Hongyi; Zhang, Xuesong; Leng, Guoyong
2018-03-01
While global hydrological models (GHMs) are very useful in exploring water resources and interactions between the Earth and human systems, their use often requires numerous model inputs, complex model calibration, and high computation costs. To overcome these challenges, we construct an efficient open-source and ready-to-use hydrological emulator (HE) that can mimic complex GHMs at a range of spatial scales (e.g., basin, region, globe). More specifically, we construct both a lumped and a distributed scheme of the HE based on the monthly abcd model to explore the tradeoff between computational cost and model fidelity. Model predictability and computational efficiency are evaluated in simulating global runoff from 1971 to 2010 with both the lumped and distributed schemes. The results are compared against the runoff product from the widely used Variable Infiltration Capacity (VIC) model. Our evaluation indicates that the lumped and distributed schemes present comparable results regarding annual total quantity, spatial pattern, and temporal variation of the major water fluxes (e.g., total runoff, evapotranspiration) across the global 235 basins (e.g., correlation coefficient r between the annual total runoff from either of these two schemes and the VIC is > 0.96), except for several cold (e.g., Arctic, interior Tibet), dry (e.g., North Africa) and mountainous (e.g., Argentina) regions. Compared against the monthly total runoff product from the VIC (aggregated from daily runoff), the global mean Kling-Gupta efficiencies are 0.75 and 0.79 for the lumped and distributed schemes, respectively, with the distributed scheme better capturing spatial heterogeneity. Notably, the computation efficiency of the lumped scheme is 2 orders of magnitude higher than the distributed one and 7 orders more efficient than the VIC model. A case study of uncertainty analysis for the world's 16 basins with top annual streamflow is conducted using 100 000 model simulations, and it demonstrates the lumped scheme's extraordinary advantage in computational efficiency. Our results suggest that the revised lumped abcd model can serve as an efficient and reasonable HE for complex GHMs and is suitable for broad practical use, and the distributed scheme is also an efficient alternative if spatial heterogeneity is of more interest.
Bach, P M; McCarthy, D T; Deletic, A
2010-01-01
The management of stormwater pollution has placed particular emphasis on the first flush phenomenon. However, definition and current methods of analyses of the phenomena contain serious limitations, the most important being their inability to capture a possible impact of the event size (total event volume) on the first flush. This paper presents the development of a novel approach in defining and assessing the first flush that should overcome these problems. The phenomenon is present in a catchment if the decrease in pollution concentration with the absolute cumulative volume of runoff from the catchment is statistically significant. Using data from seven diverse catchments around Melbourne, Australia, changes in pollutant concentrations for Total Suspended Solids (TSS) and Total Nitrogen (TN) were calculated over the absolute cumulative runoff and aggregated from a collection of different storm events. Due to the discrete nature of the water quality data, each concentration was calculated as a flow-weighted average at 2 mm runoff volume increments. The aggregated concentrations recorded in each increment (termed as a 'slice' of runoff) were statistically compared to each other across the absolute cumulative runoff volume. A first flush is then defined as the volume at which concentrations reach the 'background concentration' (i.e. the statistically significant minimum). Initial results clearly highlight first flush and background concentrations in all but one catchment supporting the validity of this new approach. Future work will need to address factors, which will help assess the first flush's magnitude and volume. Sensitivity testing and correlation with catchment characteristics should also be undertaken.
Schnell, Ronnie W; Vietor, Donald M; Provin, Tony L; Munster, Clyde L; Capareda, Sergio
2012-01-01
Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Watershed and land use-based sources of trace metals in urban storm water.
Tiefenthaler, Liesl L; Stein, Eric D; Schiff, Kenneth C
2008-02-01
Trace metal contributions in urban storm water are of concern to environmental managers because of their potential impacts on ambient receiving waters. The mechanisms and processes that influence temporal and spatial patterns of trace metal loading in urban storm water, however, are not well understood. The goals of the present study were to quantify trace metal event mean concentration (EMC), flux, and mass loading associated with storm water runoff from representative land uses; to compare EMC, flux, and mass loading associated with storm water runoff from urban (developed) and nonurban (undeveloped) watersheds; and to investigate within-storm and within-season factors that affect trace metal concentration and flux. To achieve these goals, trace metal concentrations were measured in 315 samples over 11 storm events in five southern California, USA, watersheds representing eight different land use types during the 2000 through 2005 storm seasons. In addition, 377 runoff samples were collected from 12 mass emission sites (end of watershed) during 15 different storm events. Mean flux at land use sites ranged from 24 to 1,238, 0.1 to 1,272, and 6 to 33,189 g/km(2) for total copper, total lead, and total zinc, respectively. Storm water runoff from industrial land use sites contained higher EMCs and generated greater flux of trace metals than other land use types. For all storms sampled, the highest metal concentrations occurred during the early phases of storm water runoff, with peak concentrations usually preceding peak flow. Early season storms produced significantly higher metal flux compared with late season storms at both mass emission and land use sites.
Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff.
Murdock, Justin N; Shields, F Douglas; Lizotte, Richard E
2013-03-01
Agricultural runoff often contains pollutants with antagonistic impacts. The individual influence of nutrients and atrazine on periphyton has been extensively studied, but their impact when introduced together and with multiple agricultural pollutants is less clear. We simulated a field-scale runoff pulse into a riverine wetland that mimicked pollutant composition typical of field runoff of the Mississippi River Alluvial Plain. Periphyton biomass and functional responses were measured for 2 weeks along a 500 m section. Additionally, laboratory chamber assays were used to identify potential periphyton changes due to nutrients, atrazine, and their interactions. Generally, nutrients stimulated, and atrazine reduced chlorophyll a (Chl a) in chambers. In the wetland, nutrient and atrazine relationships with periphyton were weaker, and when found, were often opposite of trends in chambers. Total nitrogen (TN) was inversely related to Chl a, and total phosphorus was inversely related to respiration (R) rates. Atrazine (10-20 μg L(-1) in the wetland) had a positive relationship with ash-free dry mass (AFDM), and weakened the relationship between TN and AFDM. Wetland periphyton biomass was better correlated to total suspended solids than nutrients or atrazine. Periphyton function was resilient as periphyton gross primary production (GPP)/R ratios were not strongly impacted by runoff. However, whole-system GPP and R decreased over the 2-week period, suggesting that although periphyton metabolism recovered quickly, whole-system metabolism took longer to recover. The individual and combined impacts of nutrients and atrazine in complex pollutant mixtures can vary substantially from their influence when introduced separately, and non-linear impacts can occur with distance downstream of the pollutant introduction point.
Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.
2003-01-01
The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active ingredient was transported during the four storms, and 1.47 pounds active ingredient were considered as baseline load. The total January and February diazinon load in the San Joaquin River near Vernalis was 0.27 percent of dormant application; the total January and February chlorpyrifos load was 0.02 percent of dormant application. The precipitation samples collected during the January 2001 storm event were analyzed for pesticides to evaluate their potential contribution to pesticide loads in the study area. When the average concentrations of diazinon and chlorpyrifos in the precipitation samples were compared with concentrations in urban storm runoff samples, 68 percent of the diazinon concentration in the runoff could be accounted for in the precipitation. Chlorpyrifos, however, had average precipitation concentrations that were 2.5 times higher than what was detected in the runoff. Although no firm conclusions can be made from one storm event, preliminary results indicate that pesticides in precipitation can significantly contribute to pesticide loads in storm runoff.
Ockerman, Darwin J.; McNamara, Kenna C.
2003-01-01
The U.S. Geological Survey developed watershed models (Hydrological Simulation Program—FORTRAN) to simulate streamflow and estimate streamflow constituent loads from five basins that compose the San Antonio River watershed in Bexar County, Texas. Rainfall and streamflow data collected during 1997–2001 were used to calibrate and test the model. The model was configured so that runoff from various land uses and discharges from other sources (such as wastewater recycling facilities) could be accounted for to indicate sources of streamflow. Simulated streamflow volumes were used with land-use-specific, water-quality data to compute streamflow loads of selected constituents from the various streamflow sources.Model simulations for 1997–2001 indicate that inflow from the upper Medina River (originating outside Bexar County) represents about 22 percent of total streamflow. Recycled wastewater discharges account for about 20 percent and base flow (ground-water inflow to streams) about 18 percent. Storm runoff from various land uses represents about 33 percent. Estimates of sources of streamflow constituent loads indicate recycled wastewater as the largest source of dissolved solids and nitrate plus nitrite nitrogen (about 38 and 66 percent, respectively, of the total loads) during 1997–2001. Stormwater runoff from urban land produced about 49 percent of the 1997–2001 total suspended solids load. Stormwater runoff from residential and commercial land (about 23 percent of the land area) produced about 70 percent of the total lead streamflow load during 1997–2001.
Horwatich, J.A.; Corsi, Steven R.; Bannerman, Roger T.
2004-01-01
A pressurized stormwater filtration system was installed in 1998 as a stormwater-treatment practice to treat runoff from a hospital rooftop and parking lot in Green Bay, Wisconsin. This type of filtration system has been installed in Florida citrus groves and sewage treatment plants around the United States; however, this installation is the first of its kind to be used to treat urban runoff and the first to be tested in Wisconsin. The U.S. Geological Survey (USGS) monitored the system between November 2000 and September 2002 to evaluate it as part of the U.S. Environmental Protection Agency's Environmental Technology Verification Program. Fifteen runoff events were monitored for flow and water quality at the inlet and outlet of the system, and comparison of the event mean concentrations and constituent loads was used to evaluate its effectiveness. Loads were decreased in all particulate-associated constituents monitored, including suspended solids (83 percent), suspended sediment (81 percent), total Kjeldahl nitrogen (26 percent), total phosphorus (54 percent), and total recoverable zinc (62 percent). Total dissolved solids, dissolved phosphorus, and nitrate plus nitrite loads remained similar or increased through the system. The increase in some constituents was most likely due to a ground-water contribution between runoff events. Sand/silt split analysis resulted in the median silt content of 78 percent at the inlet, 87 percent at the outlet, and 3 percent at the flow splitter.
Gallagher, D L; Johnston, K M; Dietrich, A M
2001-08-01
The fate and distribution of copper-based crop protectants, applied to plasticulture tomato fields to protect against disease, were investigated in a greenhouse-scale simulation of farming conditions in a coastal environment. Following rainfall, 99% of the applied copper was found to remain on the fields sorbed to the soil and plants; most of the soil-bound copper was found sorbed to the top 2.5 cm of soil between the plasticulture rows. Of the copper leaving the agricultural fields, 82% was found in the runoff with the majority, 74%. sorbed to the suspended solids. The remaining copper, 18%, leached through the soil and entered the groundwater with 10% in the dissolved phase and 8% sorbed to suspended solids. Although only 1% copper was found to leave the field, this was sufficient to cause high copper concentrations (average 2102+/-433 microg/L total copper and 189+/-139 microg/L dissolved copper) in the runoff. Copper concentrations in groundwater samples were also high (average 312+/-198 microg/L total copper and 216+/-99 microg/L dissolved copper). Sedimentation, a best management practice for reducing copper loadings. was found to reduce the total copper concentrations in runoff by 90% to a concentration of 245+/-127 microg/L; however, dissolved copper concentrations remained stable, averaging 139+/-55 microg/L. Total copper concentrations were significantly reduced by the effective removal of suspended solids with sorbed copper.
NASA Astrophysics Data System (ADS)
Trudeau, M. P.; Richardson, Murray
2016-10-01
We conducted an empirical hydrological analysis of high-temporal resolution streamflow records for 27 watersheds within 11 river systems in the Greater Toronto Region of the Canadian Great Lakes basin. Our objectives were to model the event-scale flow response of watersheds to urbanization and to test for scale and threshold effects. Watershed areas ranged from 37.5 km2 to 806 km2 and urban percent land cover ranged from less than 0.1-87.6%. Flow records had a resolution of 15-min increments and were available over a 42-year period, allowing for detailed assessment of changes in event-scale flow response with increasing urban land use during the post-freshet period (May 26 to November 15). Empirical statistical models were developed for flow characteristics including total runoff, runoff coefficient, eightieth and ninety-fifth percentile rising limb event runoff and mean rising limb event acceleration. Changes in some of these runoff metrics began at very low urban land use (<4%). Urban land use had a very strong influence on total runoff and event-scale hydrologic characteristics, with the exception of 80th percentile flows, which had a curvilinear relationship with urban cover. Event flow acceleration increased with increasing urban cover, thus causing 80th percentile runoff depths to be reached sooner. These results indicate the potential for compromised water balance when cumulative changes are considered at the watershed scale. No abrupt or threshold changes in hydrologic characteristics were identified along the urban land use gradient. A positive interaction of urban percent land use and watershed size indicated a scale effect on total runoff. Overall, the results document compromised hydrologic stability attributable to urbanization during a period with no detectable change in rainfall patterns. They also corroborate literature recommendations for spatially distributed low impact urban development techniques; measures would be needed throughout the urbanized area of a watershed to dampen event-scale hydrologic responses to urbanization. Additional research is warranted into event-scale hydrologic trends with urbanization in other regions, in particular rising limb event flow accelerations.
Burwell, Robert W; Beasley, Jeffrey S; Gaston, Lewis A; Borst, Steven M; Sheffield, Ron E; Strahan, Ron E; Munshaw, Gregg C
2011-01-01
Nutrient and sediment runoff from newly constructed levee embankments pose a threat to water quality during soft armor vegetation establishment. Research was initiated in 2008 and 2009 to evaluate the effect of bermudagrass ( L.) coverage and N source on nutrient and sediment runoff from levee embankments during establishment. Bermudagrass plots were seeded at 195.3 kg pure live seed ha and fertilized at 50 kg N ha using a water-soluble N source, urea or NH-NO, or slow-release N source, S-coated urea (SCU) or urea formaldehyde (UF), with controls unfertilized. Vegetative cover percentage, time until the onset of runoff, runoff volume, and total solids (TS), NO-N, and NH-N concentrations were measured from simulated and natural rainfall events for 70 d in 2008 and 56 d in 2009. Bermudagrass at 90% grass cover delayed the onset of runoff an additional 441 to 538 s and reduced runoff volumes 74 to 84% of that exhibited at 10% grass cover. Nitrogen fertilizers did not accelerate bermudagrass growth sufficiently, however, to reduce TS loading compared with unfertilized bermudagrass in either year of the study. The application of urea and SCU resulted in cumulative N losses of 2.45 and 3.13 kg ha compared with 1.59 kg ha from the unfertilized bermudagrass in 2008, and 1.73 kg ha from NH-NO vs. 0.24 kg ha from controls in 2009. Only UF increased bermudagrass establishment without increasing cumulative N losses compared with unfertilized bermudagrass. Therefore, the benefit of greater erosion and runoff resistance expected from N-accelerated vegetative growth did not occur but had the unintended consequence of higher N losses when water-soluble N and SCU fertilizers were applied. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Reducing phosphorus in swine effluent with aluminum chloride treatment during lagoon cleanout
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) runoff from agricultural lands fertilized with swine manure can be a significant environmental issue. The objective of this study was to evaluate the effect of aluminum chloride (AlCl3) applications to a swine lagoon during total clean out on P concentrations in manure and runoff wat...
Approximately 11% of the Southern Piedmont (1.8 million ha) is used for pasture and hay production, mostly under low-input management. Few studies have investigated in the region long-term nitrogen and carbon losses in surface runoff, which can be significant. We present 1999 to ...
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Gao, Yang; Yu, Qiang
2017-09-01
Agricultural nitrogen loss becomes an increasingly important source of water quality deterioration and eutrophication, even threatens water safety for humanity. Nitrogen dynamic mechanism is still too complicated to be well captured at watershed scale due to its multiple existence forms and instability, disturbance of agricultural management practices. Stereoscopic agriculture is a novel agricultural planting pattern to efficiently use local natural resources (e.g., water, land, sunshine, heat and fertilizer). It is widely promoted as a high yield system and can obtain considerable economic benefits, particularly in China. However, its environmental quality implication is not clear. In our study, Qianyanzhou station is famous for its stereoscopic agriculture pattern of Southern China, and an experimental watershed was selected as our study area. Regional characteristics of runoff and nitrogen losses were simulated by an integrated water system model (HEQM) with multi-objective calibration, and multiple agriculture practices were assessed to find the effective approach for the reduction of diffuse nitrogen losses. Results showed that daily variations of runoff and nitrogen forms were well reproduced throughout watershed, i.e., satisfactory performances for ammonium and nitrate nitrogen (NH4-N and NO3-N) loads, good performances for runoff and organic nitrogen (ON) load, and very good performance for total nitrogen (TN) load. The average loss coefficient was 62.74 kg/ha for NH4-N, 0.98 kg/ha for NO3-N, 0.0004 kg/ha for ON and 63.80 kg/ha for TN. The dominating form of nitrogen losses was NH4-N due to the applied fertilizers, and the most dramatic zones aggregated in the middle and downstream regions covered by paddy and orange orchard. In order to control diffuse nitrogen losses, the most effective practices for Qianyanzhou stereoscopic agriculture pattern were to reduce farmland planting scale in the valley by afforestation, particularly for orchard in the downstream regions, followed by fertilizer application optimization.
Wolff, Reuben H.; Wong, Michael F.
2008-01-01
Since November 1998, water-quality data have been collected from the H-3 Highway Storm Drain C, which collects runoff from a 4-mi-long viaduct, and from Halawa Stream on Oahu, Hawaii. From January 2001 to August 2004, data were collected from the storm drain and four stream sites in the Halawa Stream drainage basin as part of the State of Hawaii Department of Transportation Storm Water Monitoring Program. Data from the stormwater monitoring program have been published in annual reports. This report uses these water-quality data to explore how the highway storm-drain runoff affects Halawa Stream and the factors that might be controlling the water quality in the drainage basin. In general, concentrations of nutrients, total dissolved solids, and total suspended solids were lower in highway runoff from Storm Drain C than at stream sites upstream and downstream of Storm Drain C. The opposite trend was observed for most trace metals, which generally occurred in higher concentrations in the highway runoff from Storm Drain C than in the samples collected from Halawa Stream. The absolute contribution from Storm Drain C highway runoff, in terms of total storm loads, was much smaller than at stations upstream and downstream, whereas the constituent yields (the relative contribution per unit drainage basin area) at Storm Drain C were comparable to or higher than storm yields at stations upstream and downstream. Most constituent concentrations and loads in stormwater runoff increased in a downstream direction. The timing of the storm sampling is an important factor controlling constituent concentrations observed in stormwater runoff samples. Automated point samplers were used to collect grab samples during the period of increasing discharge of the storm throughout the stormflow peak and during the period of decreasing discharge of the storm, whereas manually collected grab samples were generally collected during the later stages near the end of the storm. Grab samples were analyzed to determine concentrations and loads at a particular point in time. Flow-weighted time composite samples from the automated point samplers were analyzed to determine mean constituent concentrations or loads during a storm. Chemical analysis of individual grab samples from the automated point sampler at Storm Drain C demonstrated the ?first flush? phenomenon?higher constituent concentrations at the beginning of runoff events?for the trace metals cadmium, lead, zinc, and copper, whose concentrations were initially high during the period of increasing discharge and gradually decreased over the duration of the storm. Water-quality data from Storm Drain C and four stream sites were compared to the State of Hawaii Department of Health (HDOH) water-quality standards to determine the effects of highway storm runoff on the water quality of Halawa Stream. The geometric-mean standards and the 10- and 2-percent-of-the-time concentration standards for total nitrogen, nitrite plus nitrate, total phosphorus, total suspended solids, and turbidity were exceeded in many of the comparisons. However, these standards were not designed for stormwater sampling, in which constituent concentrations would be expected to increase for short periods of time. With the aim of enhancing the usefulness of the water-quality data, several modifications to the stormwater monitoring program are suggested. These suggestions include (1) the periodic analyzing of discrete samples from the automated point samplers over the course of a storm to get a clearer profile of the storm, from first flush to the end of the receding discharge; (2) adding an analysis of the dissolved fractions of metals to the sampling plan; (3) installation of an automatic sampler at Bridge 8 to enable sampling earlier in the storms; (4) a one-time sampling and analysis of soils upstream of Bridge 8 for base-line contaminant concentrations; (5) collection of samples from Halawa Stream during low-flow conditions
Sultan, Dagnenet; Tsunekawa, Atsushi; Haregeweyn, Nigussie; Adgo, Enyew; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Masunaga, Tsugiyuki; Aklog, Dagnachew; Fenta, Ayele Almaw; Ebabu, Kindiye
2018-05-01
Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.
Measurement and modeling of diclosulam runoff under the influence of simulated severe rainfall.
van Wesenbeeck, I J; Peacock, A L; Havens, P L
2001-01-01
A runoff study was conducted near Tifton, GA to measure the losses of water, sediment, and diclosulam (N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo-[1,5c]-pyrimidine- 2-sulfonamide), a new broadleaf herbicide, under a 50-mm-in-3-h simulated rainfall event on three separate 0.05-ha plots. Results of a runoff study were used to validate the Pesticide Root Zone Model (PRZM, v. 3.12) using field-measured soil, chemical, and weather inputs. The model-predicted edge-of-field diclosulam loading was within 1% of the average observed diclosulam runoff from the field study; however, partitioning between phases was not as well predicted. The model was subsequently used with worst-case agricultural practice inputs and a 41-yr weather record from Dublin, GA to simulate edge-of-field runoff losses for the two most prevalent soils (Tifton and Bibb) in the southeastern U.S. peanut (Arachis hypogaea L.) market for 328 simulation years, and showed that the 90th percentile runoff amounts, expressed as percent of applied diclosulam, were 1.8, 0.6, and 5.2% for the runoff study plots and Tifton and Bibb soils, respectively. The runoff study and modeling indicated that more than 97% of the total diclosulam runoff was transported off the field by water, with < 3% associated with the sediment. Diclosulam losses due to runoff can be further reduced by lower application rates, tillage and crop residue management practices that reduce edge-of-field runoff, and conservation practices such as vegetated filter strips.
Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Fu, Dafang
2016-08-01
Nitrogen (N) runoff from paddy fields serves as one of the main sources of water pollution. Our aim was to reduce N runoff from paddy fields by fertilizer management and inoculation with arbuscular mycorrhizal fungi (AMF). In northeast China, Shuangcheng city in Heilongjiang province, a field experiment was conducted, using rice provided with 0%, 20%, 40%, 60%, 80%, and 100% of the local norm of fertilization (including N, phosphorus and potassium), with or without inoculation with Glomus mosseae. The volume, concentrations of total N (TN), dissolved N (DN) and particulate N (PN) of runoff water were measured. We found that the local norm of fertilization led to 18.9kg/ha of N runoff during rice growing season, with DN accounting for 60%-70%. We also found that reduction in fertilization by 20% cut down TN runoff by 8.2% while AMF inoculation decreased N runoff at each fertilizer level and this effect was inhibited by high fertilization. The combination of inoculation with AMF and 80% of the local norm of fertilization was observed to reduce N runoff by 27.2%. Conclusively, we suggested that the contribution of AMF inoculation combined with decreasing fertilization should get more attention to slow down water eutrophication by reducing N runoff from paddy fields. Copyright © 2016. Published by Elsevier B.V.
Potter, Thomas L; Truman, Clint C; Bosch, David D; Bednarz, Craig
2004-01-01
In the Atlantic Coastal Plain region of southern Georgia (USA), cotton (Gossypium hirsutum L.) acreage increased threefold in the past decade. To more effectively protect water quality in the region, best management practices are needed that reduce pesticide runoff from fields in cotton production. This study compared runoff of two herbicides, fluometuron [N,N-dimethyl-N'-[3-(trifluoromethyl)-phenyl]-urea] and pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitro-benzenamine], from plots in strip-tillage (ST) and conventional-tillage (CT) management near Tifton, GA. Rainfall simulations were conducted one day after preemergence herbicide applications to 0.0006-ha plots and runoff from 0.15-ha plots due to natural rainfall following preemergence pendimethalin and fluometuron and postemergence fluometuron use was monitored. Pendimethalin runoff was greater under CT than ST due to strong pendimethalin soil sorption and higher erosion and runoff under CT. The highest losses, 1.3% of applied in CT and 0.22% of applied in ST, were observed during rainfall simulations conducted 1 DAT. Fluometuron runoff from natural rainfall was substantially lower from ST than from CT plots but the trend was reversed in rainfall simulations. In all studies, fluometuron runoff was also relatively low (<1% of applied), and on plots under natural rainfall, desmethylfluometuron (DMF) represented about 50% of total fluometuron runoff. Fluometuron's relatively low runoff rate appeared linked to its rapid leaching, and high DMF detection rates in runoff support DMF inclusion in fluometuron risk assessments. Results showed that ST has the potential to reduce runoff of both herbicides, but fluometuron leaching may be a ground water quality concern.
NASA Astrophysics Data System (ADS)
Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.
2017-12-01
Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.
NASA Astrophysics Data System (ADS)
Barbosa, F. T.; Bertol, I.; de Amaral, A. J.; Grahl dos Santos, P.; Ramos, R. R.; Werner, R. S.; Miras Avalos, J. M.
2012-04-01
Swine manure is used as a soil fertilizer in South Brazil. Commonly, it is applied continuously and in great amounts over surfaces with an important relief and without facilities that avoid water erosion. Thus, this manure is a potential risk of environmental pollution, mainly for the eutrophication of water bodies due to a runoff rich in nutrients. The aim of this work was to assess some soil hydrological parameters and to quantify the dissolved phosphorus losses in the runoff from no-tilled soils after the application of swine liquid manure. The experiment was carried out in the Highlands of Santa Catarina State, Brazil, in June 2009, over a Nitisol. On field plots, a 90-minute simulated rainfall test was performed with a rotating boom rainfall simulator and rainfall intensity of 70 mm h-1. Prior to the rainfall simulation, sowing was performed using a disk planter either with or without tines. Spacing between lines was 0.5 m. Swine liquid manure was applied at rates of 0.0, 30 and 60 m3ha-1 to the plots planted using tines; whereas it was applied at 15, 45 e 75 m3ha-1 to the plots were no tines were used for planting. During rainfall simulation, readings of runoff rate were taken each five minutes; total water loss was calculated by integrating all the 5-minute readings. Runoff samples were collected at 10 minutes intervals, and they were filtered through a 0.45 μm filter to determine dissolved phosphorus. Hydrological variables were significantly affected by the use of tines, which favoured infiltration and reduced runoff as compared to the non-use of tines. Runoff started at 28 and 11 minutes, water losses were 252 and 467 m3 ha-1, maximum runoff rate were 29 and 42 mm h-1 and constant rates of infiltration were 41 and 28 mm h-1, for treatments with and without tines, respectively. Dissolved phosphorus increased with the rate of swine liquid manure applied, with a trend to decrease from the beginning to the end of rainfall. The highest concentration was 0.19 mg L-1 and 0.85 mg L-1, for treatments with and without tines, respectively. Dissolved phosphorus losses (g ha-1) increased linearly with swine liquid manure (m3 ha-1). The angular coefficient of the equation, which relates the increase in phosphorus loss with the applied manure, was lower when using tines, indicating that their use may reduce eutrophication risks from areas where swine manure is used. Equations for phosphorus losses were y = 4.3 + 0.5x and y = 28.1 + 1.9x, for treatments with and without tines, respectively.
Groundwater resources of the Birim basin in Ghana
NASA Astrophysics Data System (ADS)
Asomaning, G.
1992-11-01
An attempt to assess ground water resources of a medium size (4775 km 2) drainage basin located on the Crystalline Complex in southern Ghana is presented. Mean annual rainfall 1578 mm, total river discharge 1,886,588 064 m 3 a -1, surface runoff 1,320,611,645 m 3 a -1, base flow 565,976,419 m 3 a -1, were determined from 13 meteorological and 1 river gauging stations located within the basin. From these data, the total runoff coefficient was 36%, surface runoff coefficient was 25% and the base flow coefficient was 11%. Then, Permanent Water Reserve, Qt = 5,333.20 × 106 m 3 and Recoverable Water Reserve, 2,133.28 × 10 6 m 3 a -1 for the aquifer of the basement complex aquifer of the basin were calculated from 42 boreholes.
Cesium and strontium loads into a combined sewer system from rainwater runoff.
Kamei-Ishikawa, Nao; Yoshida, Daiki; Ito, Ayumi; Umita, Teruyuki
2016-12-01
In this study, combined sewage samples were taken with time in several rain events and sanitary sewage samples were taken with time in dry weather to calculate Cs and Sr loads to sewers from rainwater runoff. Cs and Sr in rainwater were present as particulate forms at first flush and the particulate Cs and Sr were mainly bound with inorganic suspended solids such as clay minerals in combined sewage samples. In addition, multiple linear regression analysis showed Cs and Sr loads from rainwater runoff could be estimated by the total amount of rainfall and antecedent dry weather days. The variation of the Sr load from rainwater to sewers was more sensitive to total amount of rainfall and antecedent dry weather days than that of the Cs load. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mahler, Barbara J.; Van Metre, Peter C.; Wilson, Jennifer T.
2004-01-01
Samples of creek bed sediment collected near seal-coated parking lots in Austin, Texas, by the City of Austin during 2001–02 had unusually elevated concentrations of polycyclic aromatic hydrocarbons (PAHs). To investigate the possibility that PAHs from seal-coated parking lots might be transported to urban creeks, the U.S. Geological Survey, in cooperation with the City of Austin, sampled runoff and scrapings from four test plots and 13 urban parking lots. The surfaces sampled comprise coal-tar-emulsion-sealed, asphalt-emulsion-sealed, unsealed asphalt, and unsealed concrete. Particulates and filtered water in runoff and surface scrapings were analyzed for PAHs. In addition, particulates in runoff were analyzed for major and trace elements. Samples of all three media from coal-tar-sealed parking lots had concentrations of PAHs higher than those from any other types of surface. The mean total PAH concentration in particulates in runoff from parking lots in use were 3,500,000, 620,000, and 54,000 micrograms per kilogram from coal-tar-sealed, asphalt-sealed, and unsealed (asphalt and concrete combined) lots, respectively. The probable effect concentration sediment quality guideline is 22,800 micrograms per kilogram. The mean total PAH (sum of detected PAHs) concentration in filtered water from parking lots in use was 8.6 micrograms per liter for coal-tar-sealed lots; the one sample analyzed from an asphalt-sealed lot had a concentration of 5.1 micrograms per liter and the one sample analyzed from an unsealed asphalt lot was 0.24 microgram per liter. The mean total PAH concentration in scrapings was 23,000,000, 820,000, and 14,000 micrograms per kilogram from coal-tar-sealed, asphalt-sealed, and unsealed asphalt lots, respectively. Concentrations of lead and zinc in particulates in runoff frequently exceeded the probable effect concentrations, but trace element concentrations showed no consistent variation with parking lot surface type.
Chrétien, François; Giroux, Isabelle; Thériault, Georges; Gagnon, Patrick; Corriveau, Julie
2017-05-01
With their application as seed coatings, the use of neonicotinoid insecticides increased dramatically during the last decade. They are now frequently detected in aquatic ecosystems at concentrations susceptible to harm aquatic invertebrates at individual and population levels. This study intent was to document surface runoff and subsurface tile drain losses of two common neonicotinoids (thiamethoxam and clothianidin) compared to those of companion herbicides (atrazine, glyphosate, S-metolachlor and mesotrione) at the edge of a 22.5-ha field under a corn-soybean rotation. A total of 14 surface runoff and tile drain discharge events were sampled over two years. Events and annual unit mass losses were computed using flow-weighted concentrations and total surface runoff and tile drain flow volumes. Detection frequencies close to 100% in edge-of-field surface runoff and tile drain water samples were observed for thiamethoxam and clothianidin even though only thiamethoxam had been applied in the first year. In 2014, thiamethoxam median concentrations in surface runoff and tile drain samples were respectively 0.46 and 0.16 μg/L, while respective maximum concentrations of 2.20 and 0.44 μg/L were measured in surface runoff and tile drain samples during the first post-seeding storm event. For clothianidin, median concentrations in surface runoff and tile drain samples were 0.02 and 0.01, μg/L, and respective maximum concentrations were 0.07 μg/L and 0.05 μg/L. Surface runoff and tile drain discharge were key transport mechanisms with similar contributions of 53 and 47% of measured mass losses, respectively. Even if thiamethoxam was applied at a relatively low rate and had a low mass exportation value (0.3%), the relative toxicity was one to two orders of magnitude higher than those of the other chemicals applied in 2014 and 2015. Companion herbicides, except glyphosate in tile drains, exceeded their water quality guideline during one sampling campaign after application but rapidly resumed below these limits. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Simulation of quantity and quality of storm runoff for urban catchments in Fresno, California
Guay, J.R.; Smith, P.E.
1988-01-01
Rainfall-runoff models were developed for a multiple-dwelling residential catchment (2 applications), a single-dwelling residential catchment, and a commercial catchment in Fresno, California, using the U.S. Geological Survey Distributed Routing Rainfall-Runoff Model (DR3M-II). A runoff-quality model also was developed at the commercial catchment using the Survey 's Multiple-Event Urban Runoff Quality model (DR3M-qual). The purpose of this study was: (1) to demonstrate the capabilites of the two models for use in designing storm drains, estimating the frequency of storm runoff loads, and evaluating the effectiveness of street sweeping on an urban drainage catchment; and (2) to determine the simulation accuracies of these models. Simulation errors of the two models were summarized as the median absolute deviation in percent (mad) between measured and simulated values. Calibration and verification mad errors for runoff volumes and peak discharges ranged from 14 to 20%. The estimated annual storm-runoff loads, in pounds/acre of effective impervious area, that could occur once every hundred years at the commercial catchment was 95 for dissolved solids, 1.6 for the dissolved nitrite plus nitrate, 0.31 for total recoverable lead, and 120 for suspended sediment. Calibration and verification mad errors for the above constituents ranged from 11 to 54%. (USGS)
Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi
2017-11-01
While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.
Effects of storm-water runoff on local ground-water quality, Clarksville, Tennessee
Hoos, Anne B.
1990-01-01
Storm-related water-quality data were collected at a drainage-well site and at a spring site in Clarksville, Tennessee, to define the effects of storm-water runoff on the quality of ground water in the area. A dye-trace test verified the direct hydraulic connection between the drainage well and Mobley Spring. Samples of storm run off and spring flow were collected at these sites for nine storms during the period February to October 1988. Water samples were collected also from Mobley Spring and two other springs and two observation wells in the area during dry-weather conditions to assess the general quality of ground water in an urban karst terrain. Evaluation of the effect of storm-water runoff on the quality of local ground water is complicated by the presence of other sources of contaminants in the area Concentrations and load for most major constituents were much smaller in storm-water runoff at the drainage well than in the discharge of Mobley Spring, indicating that much of the chemical constituent load discharged from the spring comes from sources other than the drainage well. However, for some of the minor constituents associated with roadway runoff (arsenic, copper, lead, organic carbon, and oil and grease), the drainage well contributed relatively large amounts of these constituents to local ground water during storms. The close correlation between concentrations of total organic carbon and concentrations of most trace metals at the drainage-well and Mobley Spring sites indicates that these constituents are transported together. Many trace metals were flushed early during each runoff event. Mean storm loads for copper, lead, zinc, and four nutrient species (total nitrogen, ammonia nitrogen, total phosphorus, and orthophosphorus) in storm-water runoff at the drainage-well site were lower than mean storm load predicted from an existing regression model. The overprediction by the model may be a result of the small size of the drainage area relative to the range of drainage areas used in the development of the models, or to the below-normal amounts of rainfall during the period of sampling for this investigation. Loads& in storm-water runoff for 22 constituents were extrapolated from sampled storms to total loads for the period February to October 1988. Calculated loads for trace metals for the period ranged from 0.030pound.s for cadmium to 12pound.s for strontium. Loads of the primary nutrients ranged from 0.97pounds for nitrite as nitrogen to 34pounds of organic nitrogen. Storm-water quality at the drainage-well and Mobley Spring sites was compared to background water quality of the local aquifer; as characterized by dry-weather samples from three springs and two observation wells in the Clarksville area. Concentrations of total-recoverable cadmium, chromium, copper, lead, and nickel were higher in many stormwater samples from both the drainage-well and Mobley Spring sites than in samples from any other site. In addition, concentrations of total organic carbon, methylene blue active substances, and total-recoverable oil and grease were generally higher in storm-water samples from the drainage-well site than in any ground-water sample. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total recoverable iron, manganese, and methylene blue active substances in storm samples from the drainage-well site exceeded the maximum contaminant levels listed in Tennessee?s drinking-water standards (1988) by as much as 2,500 and 5,500 colonies per 100 milliliters, and 2.7, 0.29, and 0.05 milligrams per liter, respectively. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total-recoverable iron, manganese, and lead in storm samples from Mobley Spring exceeded the maximum contaminant levels by as much as 500 and 4,500 colonies per 100 milliliters, and 18.7,0.65, and 0.02 milligrams per liter, respectively. For iron, manganese, and bacteria, these undesirable
Phosphorus transfer in surface runoff from intensive pasture systems at various scales: a review.
Dougherty, Warwick J; Fleming, Nigel K; Cox, Jim W; Chittleborough, David J
2004-01-01
Phosphorus transfer in runoff from intensive pasture systems has been extensively researched at a range of scales. However, integration of data from the range of scales has been limited. This paper presents a conceptual model of P transfer that incorporates landscape effects and reviews the research relating to P transfer at a range of scales in light of this model. The contribution of inorganic P sources to P transfer is relatively well understood, but the contribution of organic P to P transfer is still relatively poorly defined. Phosphorus transfer has been studied at laboratory, profile, plot, field, and watershed scales. The majority of research investigating the processes of P transfer (as distinct from merely quantifying P transfer) has been undertaken at the plot scale. However, there is a growing need to integrate data gathered at a range of scales so that more effective strategies to reduce P transfer can be identified. This has been hindered by the lack of a clear conceptual framework to describe differences in the processes of P transfer at the various scales. The interaction of hydrological (transport) factors with P source factors, and their relationship to scale, require further examination. Runoff-generating areas are highly variable, both temporally and spatially. Improvement in the understanding and identification of these areas will contribute to increased effectiveness of strategies aimed at reducing P transfers in runoff. A thorough consideration of scale effects using the conceptual model of P transfer outlined in this paper will facilitate the development of improved strategies for reducing P losses in runoff.
PRMS-IV, the precipitation-runoff modeling system, version 4
Markstrom, Steven L.; Regan, R. Steve; Hay, Lauren E.; Viger, Roland J.; Webb, Richard M.; Payn, Robert A.; LaFontaine, Jacob H.
2015-01-01
Computer models that simulate the hydrologic cycle at a watershed scale facilitate assessment of variability in climate, biota, geology, and human activities on water availability and flow. This report describes an updated version of the Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of various combinations of climate and land use on streamflow and general watershed hydrology. Several new model components were developed, and all existing components were updated, to enhance performance and supportability. This report describes the history, application, concepts, organization, and mathematical formulation of the Precipitation-Runoff Modeling System and its model components. This updated version provides improvements in (1) system flexibility for integrated science, (2) verification of conservation of water during simulation, (3) methods for spatial distribution of climate boundary conditions, and (4) methods for simulation of soil-water flow and storage.
Toor, Gurpal S; Occhipinti, Marti L; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence
2017-01-01
Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner's lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L-1, respectively. Of TN, the proportion of nitrate-N was 58% and other-N was 42%, whereas of TP, orthophosphate-P was 75% and other-P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters.
Occhipinti, Marti L.; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence
2017-01-01
Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner’s lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L–1, respectively. Of TN, the proportion of nitrate–N was 58% and other–N was 42%, whereas of TP, orthophosphate–P was 75% and other–P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters. PMID:28604811
Sansalone, John J; Kim, Jong-Yeop
2008-02-01
Source area runoff entrains a hetero-disperse particle size distribution (PSD). When retained for clarification, larger sediment and settleable particles are mainly influenced by gravitational forces, while the suspended particles, in particular the clay-size particles, are subject to coagulation phenomena. Such phenomena occur in untreated runoff as well as runoff treated with a coagulant, albeit to differing rates and extents. Runoff PSDs and water chemistry indices including zeta potential (xi) are potentially modified during inter-event stormwater retention in best management practices (BMPs). This study examined xi of clay-size particles (<2 microm) in retained runoff, captured from an instrumented watershed, subject to batch coagulation and variable redox conditions. Separate parallel tests were also conducted with wastewater. Significant turbidity, particle mass (measured as total suspended solids (TSS)) and volume concentration (as total volume concentration (TVC)) reduction generated by alum and ferric chloride consistently occurred at a xi in the range of -15 to about -10 mV. Alum addition produced a charge reversal at dosing above 60 mg/L (18 x 10(-5)M) while ferric chloride did not reverse charge. With respect to turbidity and TSS reductions, alum outperformed ferric chloride, without the need for pH control. While xi illustrated no clear trend during aerobic retention, anoxic retention resulted in a trend for xi approaching the isoelectric point. The decrease in negative xi towards the isoelectric point appears to be a result of the coupled pH depression under reductive conditions and an increase in conductivity. Results have significant implications for BMPs that retain runoff between events.
Phosphorus runoff losses from subsurface-applied poultry litter on coastal plain soils.
Kibet, Leonard C; Allen, Arthur L; Kleinman, Peter J A; Feyereisen, Gary W; Church, Clinton; Saporito, Lou S; Way, Thomas R
2011-01-01
The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.
ANNUAL WATER BUDGETS FOR A FORESTED SINKHOLE WETLAND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Dr. Andrew Jason; Neary, Vincent S
2012-01-01
Annual water budgets spanning two years, 2004 and 2005, are constructed for a sinkhole wetland in the Tennessee Highland Rim following conversion of 13 % of its watershed to impervious surfaces. The effect of watershed development on the hydrology of the study wetland was significant. Surface runoff was the dominant input, with a contribution of 61.4 % of the total. An average of 18.9 % of gross precipitation was intercepted by the canopy and evaporated. Seepage from the surface water body to the local groundwater system accounted for 83.1 % of the total outflow. Deep recharge varied from 43.2 %more » (2004) to 12.1 % (2005) of total outflow. Overall, evapotranspiration accounted for 72.4 % of the total losses, with an average of 65.7 % lost from soil profile storage. The annual water budgets indicate that deep recharge is a significant hydrologic function performed by isolated sinkhole wetlands, or karst pans, on the Tennessee Highland Rim. Continued hydrologic monitoring of sinkhole wetlands are needed to evaluate hydrologic function and response to anthropogenic impacts. The regression technique developed to estimate surface runoff entering the wetland is shown to provide reasonable annual runoff estimates, but further testing is needed.« less
This presentation will document, benchmark and evalute state-of-the-science research and implementation on BMP performance, monitoring, and integration for green infrastructure applications, to manage wet weather flwo, storm-water-runoff stressor relief and remedial sustainable w...
NASA Astrophysics Data System (ADS)
Huang, Tielan; Wang, Yunpeng; Zhang, Jinlan
2017-07-01
In this study, simulation and evaluation of low impact development in resident district was carried out based on Storm Water Management Model (SWMM) and GIS method. In the evaluation model, we added 3 kinds of low impact development facilities, namely permeable pavement, rainwater garden, and green roof. These facilities are used alone or in combination. The model was run under five different rainfall reappearing periods. The simulation results using low impact development facilities were compared with simulation results under the current situation and undeveloped state. The results show that the total amount of runoff was greatly reduced by using various types of low impact development facilities in the urban residential district. The maximum reduction rate was using permeable pavement, reached 29.9%, followed was using rainwater garden, and the worst was using green roof. The lowest cost of reduction of the total amount of runoff was using permeable pavement, the followed was using rainwater garden, and the highest was using green roof. The combination scheme of various low impact development facilities has the highest efficiency of reducing total amount of runoff, and the lowest cost, which considering of the actual situation of the study area. The study indicated that application of low impact development facilities can reduce surface runoff effectively, which should be a useful way for prevention of urban waterlogging.
Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan
2016-04-01
Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities towards standard and hard-coded parameters in Noah-MP because of their tight coupling via the water balance. It should therefore be comparable to calibrate Noah-MP either against latent heat observations or against river runoff data. Latent heat and total runoff are sensitive to both, plant and soil parameters. Calibrating only a parameter sub-set of only soil parameters, for example, thus limits the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan
2017-07-01
This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.
Towards a delimitation of southwestern Nigeria into hydrological regions
NASA Astrophysics Data System (ADS)
Ogunkoya, O. O.
1988-05-01
Fifteen third-order drainage basins (1:50,000) on the Basement Complex rocks of southwestern Nigeria are classified into hydrological regions using hydrologic response parameters of average daily mean specific discharge ( QA); daily mean specific discharges equalled or exceeded 90% ( Q90), 50% ( Q50) and 10% ( Q10) of the study period; variability index of flow ( VI); recession constant ( K) of flow from peak discharge at the end of the rainy season to minimum discharge in the dry season; total annual runoff ( RO); total runoff within the dry season ( DSRO); dry season runoff as a percentage of total annual runoff (% DSRO); runoff coefficient ( ROC); and, number of days during the study period when there was no flow ( NFD). An ordination technique and a classification algorithm derived from cluster analysis technique and incorporating the analysis of variance (ANOVA) tests to determine the level of significance of the homogeneity of derived classes, were used to classify the fifteen basins into five hydrologically homogeneous regions. The constituent basins of each region were observed to share common basin geology. It was observed that those drainage basins having at least 50% of their basin area underlain by quartzitic rocks form two groups and have the most desirable or optimal hydrologic response patterns, desirability or optimality being in terms of ability to potentially meet water resource development requirements (i.e. high perennial discharge, low variability and large groundwater contribution to stream flow). The basins predominantly underlain by granite-gneisses and amphibolitic rocks have much poorer hydrologic response patterns. Hydrological regionalization in southwestern Nigeria appears to be influenced by drainage basin geology while percentage area of the basin underlain by massive quartzites could be used as an index of occurrence of desirable hydrologic response pattern.
The effect of different surface materials on runoff quality in permeable pavement systems.
Li, Haiyan; Li, Zhifei; Zhang, Xiaoran; Li, Zhuorong; Liu, Dongqing; Li, Tanghu; Zhang, Ziyang
2017-09-01
To investigate the effect of different permeable pavement surface materials on the removal of pollutants from urban storm-runoff, six commonly surface materials (porous asphalt, porous concrete, cement brick, ceramic brick, sand base brick, and shale brick) were selected in this study and the research was carried out by column experiments. Except the concentrations of total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH 4 -N), nitrate nitrogen (NO 3 -N), total nitrogen (TN), and total phosphorus (TP) in the influent and effluent that were measured, the removal mechanism of pollutants was discussed further. The results indicate that the surface materials influence the removal efficiency of pollutants greatly and have different effects on certain pollutant. Furthermore, the physical interception and adsorption would be the main mechanism for the removal of pollutants from runoff. For example, for all surface materials, the average removal efficiency of TSS is nearly about 90.0% because of physical interception. Due to the amount of iron oxide, the removal efficiency of COD, NO 3 -N, and TN of shale brick was 88.2, 35.1, and 17.5%, respectively. NH 4 -N and TN can be easily removed by porous asphalt due to the high content of organic matter. By lacking of useful adsorption sites, all the surface materials had little effect on the removal of TP from runoff. This research could offer useful guidelines for the better design of permeable pavement system and promote the insight into the removal mechanism of pollutants in permeable pavement system. Graphical abstract Different types of materials for the different types of pollutants in the runoff purification capacity were significantly different, overall, shale brick and porous asphalt Shale bricks and porous asphalt have a better purification effect according to the six kinds of materials.
Assessing manure management strategies through small-plot research and whole-farm modeling
Garcia, A.M.; Veith, T.L.; Kleinman, P.J.A.; Rotz, C.A.; Saporito, L.S.
2008-01-01
Plot-scale experimentation can provide valuable insight into the effects of manure management practices on phosphorus (P) runoff, but whole-farm evaluation is needed for complete assessment of potential trade offs. Artificially-applied rainfall experimentation on small field plots and event-based and long-term simulation modeling were used to compare P loss in runoff related to two dairy manure application methods (surface application with and without incorporation by tillage) on contrasting Pennsylvania soils previously under no-till management. Results of single-event rainfall experiments indicated that average dissolved reactive P losses in runoff from manured plots decreased by up to 90% with manure incorporation while total P losses did not change significantly. Longer-term whole farm simulation modeling indicated that average dissolved reactive P losses would decrease by 8% with manure incorporation while total P losses would increase by 77% due to greater erosion from fields previously under no-till. Differences in the two methods of inference point to the need for caution in extrapolating research findings. Single-event rainfall experiments conducted shortly after manure application simulate incidental transfers of dissolved P in manure to runoff, resulting in greater losses of dissolved reactive P. However, the transfer of dissolved P in applied manure diminishes with time. Over the annual time frame simulated by whole farm modeling, erosion processes become more important to runoff P losses. Results of this study highlight the need to consider the potential for increased erosion and total P losses caused by soil disturbance during incorporation. This study emphasizes the ability of modeling to estimate management practice effectiveness at the larger scales when experimental data is not available.
Effect of surface incorporation of broiler litter applied to no-till cotton on runoff quality.
Adeli, A; Shankle, M W; Tewolde, H; Brooks, J P; Sistani, K R; McLaughlin, M R; Rowe, D E
2011-01-01
Surface application of broiler litter to no-till cotton could lead to degradation of water quality. Incorporation of broiler litter into the top surface soil (0.05 m) could alleviate this risk. A 2-yr field study was conducted on a silt loam upland soil to determine the effect of incorporation of broiler litter into the soil surface on nutrient and bacterial transport in runoff. The experimental design was a randomized complete block with four treatments and three replications. Treatments were (i) unfertilized control; (ii) surface-appliedbroiler litter at 7.8 Mg ha(-1) without incorporation; (iii) surface-applied broiler litter at 7.8 Mg ha(-1) with immediate incorporation; and (iv) inorganic fertilizer N (urea ammonium nitrate, 32% N) and inorganic fertilizer P (triple superphosphate) at the recommended rate. Phosphorus was surface appliedat 25 kg ha(-1) and N was injected at 101 kg ha(-1) into the soil using a commercial liquid fertilizer applicator. Runoff was collected from small runoff plots (2.4 m by 1.6 m) established at the bottom side of main plots (13.7 m by 6.0 m). Incorporation of broiler litter reduced total N (TN), NO3-N, water soluble P (WSP), and total P (TP) concentrations in runoffby 35, 25, 61, and 64%, respectively, and litter-associated bacteria by two to three orders of magnitude compared with unincorporated treatment. No significant difference in total suspended solids (TSS) in runoffwas obtained between incorporated and unincorporated treatments. Incorporation of broiler litter into the surface soil in the no-till system immediately after application minimized the potential risk for surface nutrient losses and bacteria transport in runoff.
Helmers, Matthew J.; Liebman, Matt; James, David E.; Kolka, Randall K.; O’Neal, Matthew E.; Tomer, Mark D.; Tyndall, John C.; Asbjornsen, Heidi; Drobney, Pauline; Neal, Jeri; Van Ryswyk, Gary; Witte, Chris
2017-01-01
Loss of biodiversity and degradation of ecosystem services from agricultural lands remain important challenges in the United States despite decades of spending on natural resource management. To date, conservation investment has emphasized engineering practices or vegetative strategies centered on monocultural plantings of nonnative plants, largely excluding native species from cropland. In a catchment-scale experiment, we quantified the multiple effects of integrating strips of native prairie species amid corn and soybean crops, with prairie strips arranged to arrest run-off on slopes. Replacing 10% of cropland with prairie strips increased biodiversity and ecosystem services with minimal impacts on crop production. Compared with catchments containing only crops, integrating prairie strips into cropland led to greater catchment-level insect taxa richness (2.6-fold), pollinator abundance (3.5-fold), native bird species richness (2.1-fold), and abundance of bird species of greatest conservation need (2.1-fold). Use of prairie strips also reduced total water runoff from catchments by 37%, resulting in retention of 20 times more soil and 4.3 times more phosphorus. Corn and soybean yields for catchments with prairie strips decreased only by the amount of the area taken out of crop production. Social survey results indicated demand among both farming and nonfarming populations for the environmental outcomes produced by prairie strips. If federal and state policies were aligned to promote prairie strips, the practice would be applicable to 3.9 million ha of cropland in Iowa alone. PMID:28973922
Modeling of highway stormwater runoff.
Kim, Lee-Hyung; Kayhanian, Masoud; Zoh, Kyung-Duk; Stenstrom, Michael K
2005-09-15
Highways are stormwater intensive landuses since they are impervious and have high pollutant mass emissions from vehicular activity. Vehicle emissions include different pollutants such as heavy metals, oil and grease, particulates from sources such as fuels, brake pad wear and tire wear, and litter. To understand the magnitude and nature of the stormwater emissions, a 3-year study was conducted to quantify stormwater pollutant concentrations, mass emission rates, and the first flush of pollutants. Eight highway sites were monitored over 3 years for a large suite of pollutants. The monitoring protocol emphasized detecting the first flush and quantifying the event mean concentration. Grab and flow-weighted composite samples, rainfall, and runoff data were collected. A new runoff model with four parameters was developed that to describe the first flush of pollutants for a variety of rainfall and runoff conditions. The model was applied to more than 40 events for 8 pollutants, and the parameters were correlated to storm and site conditions, such as total runoff, antecedent dry days, and runoff coefficient. Improved definitions of first flush criteria are also presented.
Estimation of urban runoff and water quality using remote sensing and artificial intelligence.
Ha, S R; Park, S Y; Park, D H
2003-01-01
Water quality and quantity of runoff are strongly dependent on the landuse and landcover (LULC) criteria. In this study, we developed a more improved parameter estimation procedure for the environmental model using remote sensing (RS) and artificial intelligence (AI) techniques. Landsat TM multi-band (7bands) and Korea Multi-Purpose Satellite (KOMPSAT) panchromatic data were selected for input data processing. We employed two kinds of artificial intelligence techniques, RBF-NN (radial-basis-function neural network) and ANN (artificial neural network), to classify LULC of the study area. A bootstrap resampling method, a statistical technique, was employed to generate the confidence intervals and distribution of the unit load. SWMM was used to simulate the urban runoff and water quality and applied to the study watershed. The condition of urban flow and non-point contaminations was simulated with rainfall-runoff and measured water quality data. The estimated total runoff, peak time, and pollutant generation varied considerably according to the classification accuracy and percentile unit load applied. The proposed procedure would efficiently be applied to water quality and runoff simulation in a rapidly changing urban area.
Wang, Qinghai; Li, Cui; Chen, Chao; Chen, Jie; Zheng, Ruilun; Que, Xiaoe
2018-03-01
Atrazine is frequently detected in surface runoff and poses a potential threat to the environment. Grass hedges may minimize runoff loss of atrazine from crop fields. Therefore, the effectiveness of two grass hedges (Melilotus albus and Pennisetum alopecuroides) in controlling atrazine runoff was investigated using simulated rainfall on lands at different slope gradients (15 and 20%) in northern China. Results showed that a storm (40 mm in 1 h), occurring 4 h after atrazine application, caused a loss of 3% of the applied amount. Atrazine loss under 20% slope was significantly greater than that under 15% slope in control plots. Atrazine exports associated with the water fraction accounted for the majority of total loss. Pennisetum hedges were more efficient in controlling atrazine loss with runoff compared to Melilotus hedges. No significant difference in the capacity of grass hedges to reduce atrazine exports was observed between 15 and 20% slopes. These findings suggest grass hedges are effective in minimizing atrazine runoff in northern China, and Pennisetum hedges should be preferentially used on sloping croplands in similar climatic regions.
Oltmann, R.N.; Guay, J.R.; Shay, J.M.
1987-01-01
Data were collected as part of the National Urban Runoff Program to characterize urban runoff in Fresno, California. Rainfall-runoff quantity and quality data are included along with atmospheric dry-deposition and street-surface particulate quality data. The data are presented in figures and tables that reflect four land uses: industrial, single-dwelling residential, multiple-dwelling residential, and commercial. A total of 255 storms were monitored for rainfall and runoff quantity. Runoff samples from 112 of these storms were analyzed for physical, organic, inorganic, and biological constituents. The majority of the remaining storms have pH and specific conductance data only. Ninety-two composite rain samples were collected. Of these, 63 were analyzed for physical, inorganic, and (or) organic constituents. The remaining rainfall samples have pH and specific conductance data only. Nineteen atmospheric deposition and 21 street-particulate samples were collected and analyzed for inorganic and organic constituents. The report also details equipment utilization and operation, and discusses data collection methods. (USGS)
Freezing and drying effects on potential plant contributions to phosphorus in runoff.
Roberson, Tiffany; Bundy, Larry G; Andraski, Todd W
2007-01-01
Phosphorus (P) in runoff from landscapes can promote eutrophication of natural waters. Soluble P released from plant material can contribute significant amounts of P to runoff particularly after plant freezing or drying. This study was conducted to evaluate P losses from alfalfa or grass after freezing or drying as potential contributors to runoff P. Alfalfa (Medicago sativa L.) and grass (principally, Agropyron repens L.) plant samples were subjected to freezing and drying treatments to determine P release. Simulated rainfall runoff and natural runoff from established alfalfa fields and a grass waterway were collected to study P contributions from plant tissue to runoff. The effects of freezing and drying on P released from plant tissue were simulated by a herbicide treatment in selected experiments. Soluble reactive P (SP) extracted from alfalfa and grass samples was markedly increased by freezing or drying. In general, SP extracted from plant samples increased in the order fresh < frozen < frozen/thawed < dried, and averaged 1, 8, 14, and 26% of total P in alfalfa, respectively. Soluble reactive P extracted from alfalfa after freezing or drying increased with increasing soil test P (r(2) = 0.64 to 0.68), suggesting that excessive soil P levels increased the risk of plant P contributions to runoff losses. In simulated rainfall studies, paraquat (1,1'-dimethyl-4, 4''-bipyridinium ion) treatment of alfalfa increased P losses in runoff, and results suggested that this treatment simulated the effects of drying on plant P loss. In contrast to the simulated rainfall results, natural runoff studies over 2 yr did not show higher runoff P losses that could be attributed to P from alfalfa. Actual P losses likely depend on the timing and extent of plant freezing and drying and of precipitation events after freezing.
Potter, Thomas L; Truman, Clint C; Strickland, Timothy C; Bosch, David D; Webster, Theodore M; Franklin, Dorcas H; Bednarz, Craig W
2006-01-01
Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.
Daverede, I C; Kravchenko, A N; Hoeft, R G; Nafziger, E D; Bullock, D G; Warren, J J; Gonzini, L C
2004-01-01
Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.
Characterizing potential water quality impacts from soils treated with dust suppressants.
Beighley, R Edward; He, Yiping; Valdes, Julio R
2009-01-01
Two separate laboratory experiment series, surface runoff and steady-state seepage, were performed to determine if dust suppressant products can be applied to soils with an expected minimal to no negative impact on water quality. The experiments were designed to mimic arid field conditions and used two soils (clayey and sandy) and six different dust suppressants. The two experiments consisted of: (i) simulated rainfall (intensities of 18, 33, or 61 mm h(-1)) and associated runoff from soil trays at a surface slope of 33%; and (ii) steady-state, constant head seepage through soil columns. Both experiment series involved two product application scenarios and three application ages (i.e., to account for degradation effects) for a total of 126 surface runoff and 80 column experiments. One composite effluent sample was collected from each experiment and analyzed for pH, electrical conductivity, total suspended solids (TSS), total dissolved solids, dissolved oxygen, total organic carbon, nitrate, nitrite, and phosphate. Paired t tests at 1 and 5% levels of significance and project specific data quality objectives are used to compare water quality parameters from treated and untreated soils. Overall, the results from this laboratory scale study suggest that the studied dust suppressants have minimal potential for adverse impacts to selected water quality parameters. The primary impacts were increased TSS for two synthetic products from the surface runoff experiments on both soils. The increase in TSS was not expected based on previous studies and may be attributed to this study's focus on simulating real-world soil agitation/movement at an active construction site subjected to rough grading.
Changes in total phosphorus concentration in the Red River of the North Basin, 1970-2012
Ryberg, Karen R.; Akyüz, F. Adnan; Lin, Wei
2015-01-01
The Red River of the North drains much of eastern North Dakota and northwestern Minnesota and flows north into Manitoba, Canada, ultimately into Lake Winnipeg; therefore, water quality is an International concern. With increased runoff in the past few decades, phosphorus flux (the amount of phosphorus transported by the river) has increased. This is a concern, especially with respect to Lake Winnipeg, an important inland fishery and recreational destination. There is pressure at the State and International levels to reduce phosphorus flux, an expensive proposition. Depending on the method (controlling sources, settling ponds, buffer strips), control of phosphorus flux is not always effective during spring runoff. This work represents a first step in developing a causal model for phosphorus flux by examining available data and changes in concentration over time. Total phosphorus concentration data for the Red River at Emerson, Manitoba, and at Fargo, North Dakota-Moorhead, Minnesota, were summarized and then analyzed using WRTDS (Weighted Regressions on Time, Discharge, and Season) to describe total phosphorus changes over time in two analysis periods: 1970-1993 and 1993-2012. Total phosphorus concentration increased in the first period at Emerson, Manitoba, indicating phosphorus was likely being transported to streams during runoff events. A very different pattern occurred at Fargo-Moorhead with declines in concentration, except at high discharge. While concentration continually changes, during the second period it decreased during spring runoff at Emerson and Fargo-Moorhead and during the growing season at Fargo-Moorhead, perhaps because of improved agricultural practices and declines in some uses of phosphorus.
Yu, Jianghua; Yu, Haixia; Huang, Xiaogu
2015-12-01
In this research, the mobilization and distribution of lead originating in roof dust and wet deposition were investigated within a roof dust-rooftop-runoff system. The results indicated that lead from roof dust and wet deposition showed different transport dynamics in runoff system and that this process was significantly influenced by the rainfall intensity. Lead present in the roof dust could be easily washed off into the runoff, and nearly 60 % of the total lead content was present in particulate form. Most of the lead from the roof dust was transported during the late period of rainfall; however, the lead concentration was higher for several minutes at the rainfall beginning. Even though some of the lead from wet deposition, simulated with a standard isotope substance, was adsorbed onto adhered roof dust and/or retained on rooftop in runoff system, most of it (50-82 %) remained as dissolved lead in the runoff for rainfall events of varying intensity. Regarding the distribution of lead in the runoff system, the results indicated that it could be carried in the runoff in dissolved and particulate form, be adsorbed to adhered roof dust, or remain on the rooftop because of adsorption to the roof material. Lead from the different sources showed different distribution patterns that were also related to the rainfall intensity. Higher rainfall intensity resulted in a higher proportion of lead in the runoff and a lower proportion of lead remaining on the rooftop.
Estimation of Surface Runoff in the Jucar River Basin from Rainfall Data and SMOS Soil Moisture
NASA Astrophysics Data System (ADS)
Garcia Leal, Julio A.; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Gonzalez Robles, Maura; Herrera Daza, Eddy; Khodayar, Samiro; Lopez-Baeza, Ernesto
2013-04-01
Surface runoff is the water that flows after soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. When the soil is saturated and the depression storage filled, and rain continues to fall, the rainfall will immediately produce surface runoff. The Soil Conservation Service Curve Number (SCS-CN) method is widely used for determining the approximate direct runoff volume for a given rainfall event in a particular area. The advantage of the method is its simplicity and widespread inclusion in existing computer models. It was originally developed by the US Department of Agriculture, Soil Conservation Service, and documented in detail in the National Engineering Handbook, Sect. 4: Hydrology (NEH-4) (USDA-SCS, 1985). Although the SCS-CN method was originally developed in the United States and mainly for the evaluation of storm runoff in small agricultural watersheds, it soon evolved well beyond its original objective and was adopted for various land uses and became an integral part of more complex, long-term, simulation models. The basic assumption of the SCS-CN method is that, for a single storm, the ratio of actual soil retention after runoff begins to potential maximum retention is equal to the ratio of direct runoff to available rainfall. This relationship, after algebraic manipulation and inclusion of simplifying assumptions, results in the following equation given in USDA-SCS (1985): (P--0,2S)2 Q = (P + 0,8S) where Q is the average runoff (mm), P the effective precipitation (mm) and S is potential maximum retention (mm) after the rainfall event. The study has been applied to the Jucar River Basin area, East of Spain. A selection of recent significant rainfall events has been made corresponding to the periods around 22nd November, 2011 and 28-29 September and 10 October, 2012, from Jucar River Basin Authority rain gauge data. Potential maximum retention values for each point have been assumed as the first SMOS soil moisture values available at the closest DGG node immediately after saturation produced by the rain. The results are shown as maps of precipitation and soil moisture obtained using a V4 integration method between a linear and nearest neighbour methods. Surface runoff maps are consequently obtained using the SCS-CN equation given earlier. These results have also been compared to COSMO-CLM model simulations for the same periods. It is envisaged to obtain precipitation maps from MSG-SEVIRI data.
NASA Astrophysics Data System (ADS)
Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe
2017-04-01
Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area extent and thereby promoting saturation excess overland flow during rainstorms. Our work shows the potential of using integrated surface-subsurface modelling alongside with rigorous model calibration to better understand and visualise the role of groundwater in runoff generation even with limited datasets.
This poster presentation will document, benchmark and evaluate state-of-the-science research and implementation on BMP performance, monitoring and integration for green infrastructure applications, to manage wet weather flow, storm-water runoff stressor relief and remedial sustai...
Hydrological modelling in sandstone rocks watershed
NASA Astrophysics Data System (ADS)
Ponížilová, Iva; Unucka, Jan
2015-04-01
The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.
Futter, M N; Löfgren, S; Köhler, S J; Lundin, L; Moldan, F; Bringmark, L
2011-12-01
Surface water concentrations of dissolved organic carbon ([DOC]) are changing throughout the northern hemisphere due to changes in climate, land use and acid deposition. However, the relative importance of these drivers is unclear. Here, we use the Integrated Catchments model for Carbon (INCA-C) to simulate long-term (1996-2008) streamwater [DOC] at the four Swedish integrated monitoring (IM) sites. These are unmanaged headwater catchments with old-growth forests and no major changes in land use. Daily, seasonal and long-term variations in streamwater [DOC] driven by runoff, seasonal temperature and atmospheric sulfate (SO₄(2-)) deposition were observed at all sites. Using INCA-C, it was possible to reproduce observed patterns of variability in streamwater [DOC] at the four IM sites. Runoff was found to be the main short-term control on [DOC]. Seasonal patterns in [DOC] were controlled primarily by soil temperature. Measured SO₄(2-) deposition explained some of the long-term [DOC] variability at all sites.
Estimation of particulate nutrient load using turbidity meter.
Yamamoto, K; Suetsugi, T
2006-01-01
The "Nutrient Load Hysteresis Coefficient" was proposed to evaluate the hysteresis of the nutrient loads to flow rate quantitatively. This could classify the runoff patterns of nutrient load into 15 patterns. Linear relationships between the turbidity and the concentrations of particulate nutrients were observed. It was clarified that the linearity was caused by the influence of the particle size on turbidity output and accumulation of nutrients on smaller particles (diameter < 23 microm). The L-Q-Turb method, which is a new method for the estimation of runoff loads of nutrients using a regression curve between the turbidity and the concentrations of particulate nutrients, was developed. This method could raise the precision of the estimation of nutrient loads even if they had strong hysteresis to flow rate. For example, as for the runoff load of total phosphorus load on flood events in a total of eight cases, the averaged error of estimation of total phosphorus load by the L-Q-Turb method was 11%, whereas the averaged estimation error by the regression curve between flow rate and nutrient load was 28%.
NASA Astrophysics Data System (ADS)
Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.
2009-04-01
We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?
Design and Construction of an Urban Runoff Research Facility
Wherley, Benjamin G.; White, Richard H.; McInnes, Kevin J.; Fontanier, Charles H.; Thomas, James C.; Aitkenhead-Peterson, Jacqueline A.; Kelly, Steven T.
2014-01-01
As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems. PMID:25146420
Fan, Jing; Tian, Fei; Yang, Yonghui; Han, Shumin; Qiu, Guoyu
2010-01-01
Runoff in North China has been dramatically declining in recent decades. Although climate change and human activity have been recognized as the primary driving factors, the magnitude of impact of each of the above factors on runoff decline is still not entirely clear. In this study, Mian River Basin (a watershed that is heavily influenced by human activity) was used as a proxy to quantify the contributions of human and climate to runoff decline in North China. SWAT (Soil and Water Assessment Tool) model was used to isolate the possible impacts of man and climate. SWAT simulations suggest that while climate change accounts for only 23.89% of total decline in mean annual runoff, human activity accounts for the larger 76.11% in the basin. The gap between the simulated and measured runoff has been widening since 1978, which can only be explained in terms of increasing human activity in the region. Furthermore, comparisons of similar annual precipitation in 3 dry-years and 3 wet-years representing hydrological processes in the 1970s, 1980s, and 1990s were used to isolate the magnitude of runoff decline under similar annual precipitations. The results clearly show that human activity, rather than climate, is the main driving factor of runoff decline in the basin.
Influences of Hydrological Regime on Runoff Quality and Pollutant Loadings in Tropical Urban Areas
NASA Astrophysics Data System (ADS)
Chow, M.; Yusop, Z.
2011-12-01
Experience in many developed countries suggests that non point source (NPS) pollution is still the main contributor to pollutant loadings into water bodies in urban areas. However, the mechanism of NPS pollutant transport and the influences of hydrologic regime on the pollutant loading are still unclear. Understanding these interactions will be useful for improving design criteria and strategies for controlling NPS pollution in urban areas. This issue is also extremely relevant in tropical environment because its rainfall and the runoff generation processes are so different from the temperate regions where most of the studies on NPS pollutant have been carried out. In this regard, an intensive study to investigate the extent of this pollution was carried out in Skudai, Johor, Malaysia. Three small catchments, each represents commercial, residential and industrial land use were selected. Stormwater samples and flow rate data were collected at these catchments over 52 storm events from year 2008 to 2009. Samples were analyzed for ten water quality constituents including total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, soluble phosphorus, total phosphorus and zinc. Quality of stormwater runoff is estimated using Event Mean Concentration (EMC) value. The storm characteristics analyzed included rainfall depth, rainfall duration, mean intensity, max 5 minutes intensity, antecedent dry day, runoff volume and peak flow. Correlation coefficients were determined between storm parameters and EMCs for the residential, commercial and industrial catchments. Except for the antecedent storm mean intensity and antecedent dry days, the other rainfall and runoff variables were negatively correlated with EMCs of most pollutants. This study reinforced the earlier findings on the importance of antecedent dry days for causing greater EMC values with exceptions for oil and grease, nitrate nitrogen, total phosphorus and zinc. There is no positive correlation between rainfall intensity and EMC of constituents in all the studied catchments. In contrast, the pollutant loadings are influenced primarily by the rainfall and runoff characteristics. Rainfall depth, mean intensity, max 5 minute intensity, runoff volume and peak flow were positively correlated with the loadings of most of the constituents. Antecedent storm mean intensity and antecedent dry days seemed to be less important for estimating the pollutant loadings. Such study should be further conducted for acquiring a long term monitoring data related to storm runoff quality during rainfall, in order to have a better understanding on NPS pollution in urban areas.
Statistical Examination of the Resolution of a Block-Scale Urban Drainage Model
NASA Astrophysics Data System (ADS)
Goldstein, A.; Montalto, F. A.; Digiovanni, K. A.
2009-12-01
Stormwater drainage models are utilized by cities in order to plan retention systems to prevent combined sewage overflows and design for development. These models aggregate subcatchments and ignore small pipelines providing a coarse representation of a sewage network. This study evaluates the importance of resolution by comparing two models developed on a neighborhood scale for predicting the total quantity and peak flow of runoff to observed runoff measured at the site. The low and high resolution models were designed for a 2.6 ha block in Bronx, NYC in EPA Stormwater Management Model (SWMM) using a single catchment and separate subcatchments based on surface cover, respectively. The surface covers represented included sidewalks, street, buildings, and backyards. Characteristics for physical surfaces and the infrastructure in the high resolution mode were determined from site visits, sewer pipe maps, aerial photographs, and GIS data-sets provided by the NYC Department of City Planning. Since the low resolution model was depicted at a coarser scale, generalizations were assumed about the overall average characteristics of the catchment. Rainfall and runoff data were monitored over a four month period during the summer rainy season. A total of 53 rain fall events were recorded but only 29 storms produced significant amount of runoffs to be evaluated in the simulations. To determine which model was more accurate at predicting the observed runoff, three characteristics for each storm were compared: peak runoff, total runoff, and time to peak. Two statistical tests were used to determine the significance of the results: the percent difference for each storm and the overall Chi-squared Goodness of Fit distribution for both the low and high resolution model. These tests will evaluate if there is a statistical difference depending on the resolution of scale of the stormwater model. The scale of representation is being evaluated because it could have a profound impact on how low-impact development strategies are assessed. Rerouting flows to delay the time of entry into the combined sewage is the primary goal of stormwater source controls which may be better differentiated in a high resolution as opposed to low resolution model. The preliminary hypothesis is that the low resolution model simplifies watershed by defining attributes uniformly across the watershed. In the high resolution model, the physical flow can be more accurate depicted by connected the various subcatchments. For example, the runoff from buildings can directly be routed to the backyard. The main drawback to the high resolution model is the risk of adding uncertainty due to the number of parameters.
Integration of Tidal Prism Model and HSPF for simulating indicator bacteria in coastal watersheds
NASA Astrophysics Data System (ADS)
Sobel, Rose S.; Rifai, Hanadi S.; Petersen, Christina M.
2017-09-01
Coastal water quality is strongly influenced by tidal fluctuations and water chemistry. There is a need for rigorous models that are not computationally or economically prohibitive, but still allow simulation of the hydrodynamics and bacteria sources for coastal, tidally influenced streams and bayous. This paper presents a modeling approach that links a Tidal Prism Model (TPM) implemented in an Excel-based modeling environment with a watershed runoff model (Hydrologic Simulation Program FORTRAN, HSPF) for such watersheds. The TPM is a one-dimensional mass balance approach that accounts for loading from tidal exchange, runoff, point sources and bacteria die-off at an hourly time step resolution. The novel use of equal high-resolution time steps in this study allowed seamless integration of the TPM and HSPF. The linked model was calibrated to flow and E. Coli data (for HSPF), and salinity and enterococci data (for the TPM) for a coastal stream in Texas. Sensitivity analyses showed the TPM to be most influenced by changes in net decay rates followed by tidal and runoff loads, respectively. Management scenarios were evaluated with the developed linked models to assess the impact of runoff load reductions and improved wastewater treatment plant quality and to determine the areas of critical need for such reductions. Achieving water quality standards for bacteria required load reductions that ranged from zero to 90% for the modeled coastal stream.
Chen, J.; Wu, Y.
2012-01-01
This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.
Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun
2017-01-01
Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.
NASA Astrophysics Data System (ADS)
Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun
2017-01-01
Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.
Multiobjective optimization of low impact development stormwater controls
NASA Astrophysics Data System (ADS)
Eckart, Kyle; McPhee, Zach; Bolisetti, Tirupati
2018-07-01
Green infrastructure such as Low Impact Development (LID) controls are being employed to manage the urban stormwater and restore the predevelopment hydrological conditions besides improving the stormwater runoff water quality. Since runoff generation and infiltration processes are nonlinear, there is a need for identifying optimal combination of LID controls. A coupled optimization-simulation model was developed by linking the U.S. EPA Stormwater Management Model (SWMM) to the Borg Multiobjective Evolutionary Algorithm (Borg MOEA). The coupled model is capable of performing multiobjective optimization which uses SWMM simulations as a tool to evaluate potential solutions to the optimization problem. The optimization-simulation tool was used to evaluate low impact development (LID) stormwater controls. A SWMM model was developed, calibrated, and validated for a sewershed in Windsor, Ontario and LID stormwater controls were tested for three different return periods. LID implementation strategies were optimized using the optimization-simulation model for five different implementation scenarios for each of the three storm events with the objectives of minimizing peak flow in the stormsewers, reducing total runoff, and minimizing cost. For the sewershed in Windsor, Ontario, the peak run off and total volume of the runoff were found to reduce by 13% and 29%, respectively.
Purification effect of two typical water source vegetation buffer zones on land-sourced pollutants
NASA Astrophysics Data System (ADS)
Li, Gang
2017-03-01
Two vegetation buffer zones (tree-shrub-grass pattern and tree-grass pattern) were selected as test objects around Siming reservoir in Yuyao City of China. The effect of the storm runoff intensity (low and high intensity) and the buffer zone width (1 m, 3 m, 5 m, 7 m, 9 m, 12 m, 16 m) on pollutants (suspended solids, ammonium nitrogen and total phosphorus) was studied by the artificial simulation runoff. The results showed that with the increase of the width of buffer zone, the pollutant concentration was decreased. The purification effect of the two buffer zones on suspended solids and total phosphorus was basically stable at 52-55% and 34-37%, respectively. But the purification effect on ammonium nitrogen was the tree-shrub-grass pattern (69.7%) significantly better than that of tree-grass pattern (52.1%). The purification rate at the low runoff intensity was 1.8-2.0 times that at the high runoff intensity. The relationship between the purification rate and buffer zone width can be expressed by the natural logarithm equation, and the model adjustment coefficient was greater than 0.92.
Tao, Wanghai; Wu, Junhu; Wang, Quanjiu
2017-01-01
Rainfall erosion is a major cause of inducing soil degradation, and rainfall patterns have a significant influence on the process of sediment yield and nutrient loss. The mathematical models developed in this study were used to simulate the sediment and nutrient loss in surface runoff. Four rainfall patterns, each with a different rainfall intensity variation, were applied during the simulated rainfall experiments. These patterns were designated as: uniform-type, increasing-type, increasing- decreasing -type and decreasing-type. The results revealed that changes in the rainfall intensity can have an appreciable impact on the process of runoff generation, but only a slight effect on the total amount of runoff generated. Variations in the rainfall intensity in a rainfall event not only had a significant effect on the process of sediment yield and nutrient loss, but also the total amount of sediment and nutrient produced, and early high rainfall intensity may lead to the most severe erosion and nutrient loss. In this study, the calculated data concur with the measured values. The model can be used to predict the process of surface runoff, sediment transport and nutrient loss associated with different rainfall patterns. PMID:28272431
NASA Astrophysics Data System (ADS)
Ramakrishnan, D.; Bandyopadhyay, A.; Kusuma, K. N.
2009-08-01
The Kali sub-watershed is situated in the semi-arid region of Gujarat, India and forms a part of the Mahi River Watershed. This watershed receives an average annual rainfall of 900mm mainly between July and September. Due to high runoff potential, evapo-transpiration and poor infiltration, drought like situation prevails in this area from December to June almost every year. In this paper, augmentation of water resource is proposed by construction of runoff harvesting structures like check dam, percolation pond, farm pond, well and subsurface dyke. The site suitability for different water harvesting structures is determined by considering spatially varying parameters like runoff potential, slope, fracture pattern and micro-watershed area. GIS is utilised as a tool to store, analyse and integrate spatial and attribute information pertaining to runoff, slope, drainage and fracture. The runoff derived by SCS-CN method is a function of runoff potential which can be expressed in terms of runoff coefficient (ratio between the runoff and rainfall) which can be classified into three classes, viz., high (>40%), moderate (20-40%) and low (<20%). In addition to IMSD, FAO specifications for water harvesting/recharging structures, parameters such as effective storage, rock mass permeability are herein considered to augment effective storage. Using the overlay and decision tree concepts in GIS, potential water harvesting sites are identified. The derived sites are field investigated for suitability and implementation. In all, the accuracy of the site selection at implementation level varies from 80-100%.
A hydrological emulator for global applications – HE v1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yaling; Hejazi, Mohamad; Li, Hongyi
While global hydrological models (GHMs) are very useful in exploring water resources and interactions between the Earth and human systems, their use often requires numerous model inputs, complex model calibration, and high computation costs. To overcome these challenges, we construct an efficient open-source and ready-to-use hydrological emulator (HE) that can mimic complex GHMs at a range of spatial scales (e.g., basin, region, globe). More specifically, we construct both a lumped and a distributed scheme of the HE based on the monthly abcd model to explore the tradeoff between computational cost and model fidelity. Model predictability and computational efficiency are evaluatedmore » in simulating global runoff from 1971 to 2010 with both the lumped and distributed schemes. The results are compared against the runoff product from the widely used Variable Infiltration Capacity (VIC) model. Our evaluation indicates that the lumped and distributed schemes present comparable results regarding annual total quantity, spatial pattern, and temporal variation of the major water fluxes (e.g., total runoff, evapotranspiration) across the global 235 basins (e.g., correlation coefficient r between the annual total runoff from either of these two schemes and the VIC is > 0.96), except for several cold (e.g., Arctic, interior Tibet), dry (e.g., North Africa) and mountainous (e.g., Argentina) regions. Compared against the monthly total runoff product from the VIC (aggregated from daily runoff), the global mean Kling–Gupta efficiencies are 0.75 and 0.79 for the lumped and distributed schemes, respectively, with the distributed scheme better capturing spatial heterogeneity. Notably, the computation efficiency of the lumped scheme is 2 orders of magnitude higher than the distributed one and 7 orders more efficient than the VIC model. A case study of uncertainty analysis for the world's 16 basins with top annual streamflow is conducted using 100 000 model simulations, and it demonstrates the lumped scheme's extraordinary advantage in computational efficiency. Lastly, our results suggest that the revised lumped abcd model can serve as an efficient and reasonable HE for complex GHMs and is suitable for broad practical use, and the distributed scheme is also an efficient alternative if spatial heterogeneity is of more interest.« less
NASA Astrophysics Data System (ADS)
Smiley, Crystal; Kamenos, Nick; Hoey, Trevor; Cottier, Finlo; Ellam, Rob
2015-04-01
Greenland Ice Sheet melt has the potential to affect global sea levels and the strength of the thermohaline circulation (THC). Investigating spatial mixing patterns of seawater in Greenlandic fjords can help reveal characteristics of changes in runoff from the GrIS; for example higher runoff may be associated with lower salinity within GrIS fjords, which can be recorded by palaeoenvironmental proxies (Kamenos et al 2012). The Kangerlussuaq Drainage Basin mirrors melt patterns of the whole GrIS and drains into Søndre Strømfjord, a 170km long fjord on the west coast of Greenland. Temperature and salinity profiles to 40m depth were obtained at 11 stations along Søndre Strømfjord during the 2014 melt season. Each station was sampled twice once at high KDB runoff and once at low KDB runoff. With increasing freshwater runoff, salinity decreased by 1.65 - 2.91 and temperature increased by 0.47oC- 2.34oC at each station over a 7 hour time period. Higher salinities occurred at low run-off. In addition, with increasing run-off, the disparity between surface and deeper water (30m) salinity became greater with a 19.3 difference between the surface and 30m. This information was integrated with oxygen and deuterium isotopic signatures collected at 10 m depth from each station to pinpoint the exact source of the runoff causing salinity reductions. With increasing freshwater runoff, the chemistry of the fjord exhibits an enrichment of the heavier isotope. δ18Ovsmow values enrich by 7.40 permil while δDvsmow enrich 53.26 permil. Our data shows a relationship between KDB runoff, salinity, and oxygen, hydrogen isotopic chemistry of Søndre Strømfjord, data that will enable further calibration of marine proxies of GrIS melt. References Kamenos, N.A, Hoey, T.B, Nienow, P., Fallick, A.E., & Claverie, T., 2012: Reconstructing Greenland Ice Sheet runoff using coralline algae; Geological Society of America, Geology, doi: 10.1130/G33405.1
Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods.
Jokela, William; Sherman, Jessica; Cavadini, Jason
2016-09-01
Manure applied to cropland is a source of phosphorus (P) and nitrogen (N) in surface runoff and can contribute to impairment of surface waters. Tillage immediately after application incorporates manure into the soil, which may reduce nutrient loss in runoff as well as N loss via NH volatilization. However, tillage also incorporates crop residue, which reduces surface cover and may increase erosion potential. We applied liquid dairy manure in a silage corn ( L.)-cereal rye ( L.) cover crop system in late October using methods designed to incorporate manure with minimal soil and residue disturbance. These include strip-till injection and tine aerator-band manure application, which were compared with standard broadcast application, either incorporated with a disk or left on the surface. Runoff was generated with a portable rainfall simulator (42 mm h for 30 min) three separate times: (i) 2 to 5 d after the October manure application, (ii) in early spring, and (iii) after tillage and planting. In the postmanure application runoff, the highest losses of total P and dissolved reactive P were from surface-applied manure. Dissolved P loss was reduced 98% by strip-till injection; this result was not statistically different from the no-manure control. Reductions from the aerator band method and disk incorporation were 53 and 80%, respectively. Total P losses followed a similar pattern, with 87% reduction from injected manure. Runoff losses of N had generally similar patterns to those of P. Losses of P and N were, in most cases, lower in the spring rain simulations with fewer significant treatment effects. Overall, results show that low-disturbance manure application methods can significantly reduce nutrient runoff losses compared with surface application while maintaining residue cover better than incorporation by tillage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate.
Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D
2016-04-15
Sediment and heavy metals in stormwater runoff are key pollutants of urban waterways, and their presence in stormwater is driven by climatic factors such as rainfall intensity. This study describes the total suspended solids (TSS) and heavy metal concentrations found in runoff from four different urban surfaces within a residential/institutional catchment, in a climate where rainfall is typically of low intensity (<5.1mm·h(-1)). The results were compared to untreated runoff quality from a compilation of international studies. The road runoff had the highest TSS concentrations, while copper and galvanized roof runoff had the highest copper and zinc concentrations, respectively. Pollutant concentrations were found to be significantly different between surfaces; quantification and prediction of pollutant contributions from urban surfaces should thus take account of the different surface materials, instead of being aggregated into more generalized categories such as land use. The TSS and heavy metal concentrations were found to be at the low to medium end of ranges observed internationally, except for total copper and zinc concentrations generated by dissolution of copper and galvanized roofing material respectively; these concentrations were at least as high as those reported internationally. TSS wash-off from the roofs was seen to be a source-limited process, where all available TSS is washed off during the rain event despite the low intensity rainfall, whereas both road TSS and heavy metals wash-off from roof and road surfaces appeared to all be transport-limited and therefore some carryover of pollutants occurs between rain events. A first flush effect was seen from most surfaces for TSS, but not for heavy metals. This study demonstrates that in low intensity rainfall climates, quantification of untreated runoff quality from key individual surface types in a catchment are needed to enable development of targeted and appropriately sized stormwater treatment systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of soil management techniques on soil water erosion in apricot orchards.
Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi
2016-05-01
Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide treatment should be avoided. Copyright © 2016 Elsevier B.V. All rights reserved.
Phosphorus mitigation during springtime runoff by amendments applied to grassed soil.
Uusi-Kämppä, J; Turtola, E; Närvänen, A; Jauhiainen, L; Uusitalo, R
2012-01-01
Permanent grass vegetation on sloping soils is an option to protect fields from erosion, but decaying grass may liberate considerable amounts of dissolved reactive P (DRP) in springtime runoff. We studied the effects of freezing and thawing of grassed soil on surface runoff P concentrations by indoor rainfall simulations and tested whether the peak P concentrations could be reduced by amending the soil with P-binding materials containing Ca or Fe. Forty grass-vegetated soil blocks (surface area 0.045 m, depth 0.07 m) were retrieved from two permanent buffer zones on a clay and loam soil in southwest Finland. Four replicates were amended with either: (i) gypsum from phosphoric acid processing (CaSO × 2HO, 6 t ha), (ii) chalk powder (CaCO, 3.3 t ha), (iii) Fe-gypsum (6 t ha) from TiO processing, or (iv) granulated ferric sulfate (Fe[SO], 0.7 t ha), with four replicates serving as untreated controls. Rainfall (3.3 h × 5 mm h) was applied on presaturated samples set at a slope of 5% and the surface runoff was analyzed for DRP, total dissolved P (TDP), total P (TP), and suspended solids. Rainfall simulation was repeated twice after the samples were frozen. Freezing and thawing of the samples increased the surface runoff DRP concentration of the control treatment from 0.19 to 0.46 mg L, up to 2.6-3.7 mg L, with DRP being the main P form in surface runoff. Compared with the controls, surface runoff from soils amended with Fe compounds had 57 to 80% and 47 to 72% lower concentrations of DRP and TP, respectively, but the gypsum and chalk powder did not affect the P concentrations. Thus, amendments containing Fe might be an option to improve DRP retention in, e.g., buffer zones. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Allen, Brett L; Mallarino, Antonio P
2008-01-01
Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time.
INTEGRATING LANDSCAPE ASSESSMENT AND HYDROLOGIC MODELING FOR LAND COVER CHANGE ANALYSIS
This study is based on the assumption that land cover change and rainfall spatial variability affect the r-ainfall-runoff relationships on the watershed. Hydrologic response is an integrated indicator of watershed condition, and changes in land cover may affect the overall health...
Permeable pavement study (Edison)
While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m2, lined sections that direct all infiltrate into 5.7-m3 tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry de
Rainfall-induced nutrient losses from manure-fertilized farmland in an alluvial plain.
Wang, Yiyao; Li, Huaizheng; Xu, Zuxin
2016-01-01
Nutrient transport and loss in farmlands are affected by factors such as land cover, fertilization, soil type, rainfall, and management practices. We investigated the temporal and spatial changes in macronutrient transport and loss after fertilization and precipitation in manure-fertilized eggplant farmland in an alluvial plain. Upon adding topical fertilizer, concentrations of most nutrients in runoff and groundwater increased, and nitrogen runoff increased from 22.11 to 35.81 kg/ha, although eggplant yield did not increase correspondingly. Incorporation of fertilizer by plowing reduced nutrient losses (nitrogen runoff/fertilizer decreased from 18.40 to 12.29 %). Measurements taken along the nutrient transport route (runoff, drainage ditch, groundwater, river water, and finally rainfall) revealed that concentrations of most nutrients declined at each stage. Nutrient characteristics varied by transport, and the forms of nitrogen and phosphorus differed greatly between runoff and groundwater (nitrate/nitrogen in runoff was ~43.49 %, while in groundwater ~5.41 %). Most nutrient concentrations in runoff decreased greatly during the planting season (total nitrogen decreased from 62.25 to 4.17 mg/L), correlated positively with temperature and stage of plant growth, but little temporal change was observed in groundwater. This field investigation during one planting season exemplifies the basic principles of nutrient loss and transport from manure-fertilized farmland in an alluvial plain.
NASA Astrophysics Data System (ADS)
Pfister, L.; McDonnell, J.; Hissler, C.; Martínez-Carreras, N.; Klaus, J.
2015-12-01
With catchment water storage being only rarely determined, storage dynamics remain largely unknown to date. However, storage bears considerable potential for catchment inter-comparison exercises, as well as it is likely to have an important role in regulating catchment functions. Catchment comparisons across a wide range of environments and scales will help to increase our understanding of relationships between storage dynamics and catchment processes. With respect to the potential of catchment storage for bringing new momentum to catchment classification and catchment processes understanding we currently investigate spatial and temporal variability of dynamic storage in a nested catchment set-up (16 catchments) of the Alzette River basin (Luxembourg, Europe), covering a wide range of geological settings, catchment areas, contrasted landuse, and hydro-meteorological and tracer series. We define catchment storage as the total amount of water stored in a control volume, delimited by the catchment's topographical boundaries and depth of saturated and unsaturated zones. Complementary storage assessments (via input-output dynamics of natural tracers, geographical sounding, groundwater level measurements, soil moisture measurements, hydrometry) are carried out for comparison purposes. In our nested catchment set-up we have (1) assessed dependencies between geology, catchment permeability and winter runoff coefficients, (2) calculated water balance derived catchment storage and mixing potential and quantified how dynamic storage differs between catchments and scales, and (3) examined how stream baseflow dD (as a proxy for baseflow transit time) and integrated flow measures (like the flow duration curve) relate to bedrock geology. Catchments with higher bedrock permeability exhibited larger storage capacities and eventually lower average winter runoff coefficients. Over a time-span of 11 years, all catchments re-produced the same winter runoff coefficients year after year, regardless of their bedrock geology, permeability and winter season storage filling ratios. Ultimately, catchment organisation in our area of interest (i.e. geology, permeability, flowpath length) appeared to have a strong control on winter runoff coefficients, catchment storage and subsequently baseflow dD.
Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12
Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald
2015-01-01
Consistent patterns in water quality emerged at each individual farm, but similarities among farms also were observed. Suspended sediment, total phosphorus, and ammonia concentrations generally decreased downstream from feeding areas, and were primarily affected by surface runoff processes such as dilution, settling out of sediment, or vegetative uptake. Because surface runoff affects these constituents, increased annual surface runoff volume tended to result in increased loads and yields. No significant change in nitrate plus nitrite concentration were observed downstream from feeding areas because additional processes such as high solubility, nitrification, denitrification, and surface-groundwater interaction affect nitrate plus nitrite. For nitrate plus nitrite, increases in annual runoff volume did not consistently relate to increases in annual loads and yields. It seems that temporal distribution of precipitation and surface-groundwater interaction affected nitrate plus nitrite loads and yields. For surface drainage sites, the primary form of nitrogen was organic nitrogen whereas for subsurface drainage sites, the primary form of nitrogen was nitrate plus nitrite nitrogen.
Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area.
Zhao, Jian-wei; Shan, Bao-qing; Yin, Cheng-qing
2007-01-01
The pollutant loads of surface runoff in an urban tourist area have been investigated for two years in the Wuhan City Zoo, China. Eight sampling sites, including two woodlands, three animal yards, two roofs and one road, were selected for sampling and study. The results indicate that pollutants ranked in a predictable order of decreasing load (e.g. animal yard > roof > woodland > road), with animal yards acting as the key pollution source in the zoo. Pollutants were transported mainly by particulate form in runoff. Particulate nitrogen and particulate phosphorous accounted on average for 61%, 78% of total pollutant, respectively, over 13 monitored rainfall events. These results indicate the treatment practices should be implemented to improve particulate nutrient removal. Analysis of the M(V) curve indicate that no first flush effect existed in the surface runoff from pervious areas (e.g. woodland, animal ground yard), whereas a first flush effect was evident in runoff from impervious surfaces (e.g. animal cement yard, roof, road).
Is April to July runoff really decreasing in the Western United States?
Wahl, Kenneth L.
1991-01-01
Global warming has been the topic of a great deal of heated discussion and debate in recent years, both in the lay press and in scientific journals. The debate is about whether we are beginning to detect signs of a buildup of greenhouse gases on a global scale. A major part of the debate concerns the possible effects on climate and on the future availability of water resources. The ongoing drought in California has added impetus to the debate, serving notice of the serious consequences of any prolonged decrease in the availability of adequate water supplies. This paper has three primary objectives: (1) To evaluate the ramifications of using fractional runoff rather than total runoff to define trends in runoff; (2) to analyze additional streamflow data for the presence and extent of trends in annual and seasonal runoff volume for the conterminous Western United States; and (3) to examine the influence of the current California drought on indicators of trend.
Bayesian analyses of seasonal runoff forecasts
NASA Astrophysics Data System (ADS)
Krzysztofowicz, R.; Reese, S.
1991-12-01
Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.
An investigation of wash-off controlling parameters at urban and commercial monitoring sites.
Berretta, C; Gnecco, I; Lanza, L G; La Barbera, P
2007-01-01
The relationship between the parameters of the wash-off function and the controlling hydrologic variables are investigated in this paper, assuming that the pollutant generation process basically depends on the watershed rainfall-runoff response characteristics. Data collected during an intense monitoring program carried out by the Department of Environmental Engineering of the University of Genova (Italy) within a residential area, an auto dismantler facility, a tourism terminal and a urban waste truck depot are used to this aim. The observed runoff events are classified into different TSS mass delivery processes and the occurrence of the first flush phenomenon is also investigated. The correlation between the mathematical parameters describing the exponential process and the hydrological parameters of the corresponding rainfall-runoff event is analysed: runoff parameters and in particular the maximum flow discharge over the time of concentration of the drainage network are proposed as the controlling factor for the total mass of pollutant that is made available for wash-off during each runoff event.
Quantifying Impacts of Food Trade on Water Availability Considering Water Sources
NASA Astrophysics Data System (ADS)
Oki, T.; Yano, S.; Hanasaki, N.
2012-12-01
Food production requires a lot of water, and traded food potentially has external impacts on environment through reducing the water availability in the producing region. Water footprint is supposed to be an indicator to reflect the impacts of water use. However, impacts of water use on environment, resource, and sustainability are different in place and time, and according to the sources of water withdrawals. Therefore it is preferable to characterize the water withdrawals or consumptions rather than just accumulate the total amount of water use when estimating water footprint. In this study, a new methodology, global green-water equivalent method, is proposed in which regional characterization factors are determined based on the estimates of natural hydrological cycles, such as precipitation, total runoff, and sub-surface runoff, and applied for green-water, river(+reservoir) water, and non-renewable ground water uses. Water footprint of the world associated with the production of 19 major crops was estimated using an integrated hydrological and water resources modeling system (H08), with atmospheric forcing data for 1991-2000 with spatial resolution of 0.5 by 0.5 longitudinal and latitudinal degrees. The impacts is estimated to be 6 times larger than the simple summation of green and blue water uses, and reflect the climatological water scarcity conditions geographically. The results can be used to compare the possible impacts of food trade associated with various crops from various regions on environment through reducing the availability of water resources in the cropping area.
[Transport and sources of runoff pollution from urban area with combined sewer system].
Li, Li-Qing; Yin, Cheng-Qing
2009-02-15
Sampling and monitoring of runoff and sewage water in Wuhan urban area with combined sewer system were carried out during the period from 2003 to 2006, to study the transport and sources of runoff pollution at the catchment scale coupled with environmental geochemistry method. The results showed a change in quality between the runoff entering the sewer network and the combined storm water flow at the sewer's outlet. A significant increase was observed in the concentrations of total suspended solids (TSS), volatile suspended solids (VSS), COD, TN, and TP, and in the proportion of COD linked to particles. During the runoff production and transport, the concentrations of TSS and COD increased from 18.7 mg/L and 37.0 mg/L in roof runoff, to 225.3 mg/L and 176.5 mg/L in street runoff, and to 449.7 mg/L and 359.9 mg/L in combined storm water flow, respectively. The proportion of COD linked to particles was increased by 18%. In addition, the total phosphorus (P) and iron (Fe) contents in urban ground dust, storm drain sediment, sewage sewer sediment and combined sewer sediment were measured to identify the potential sources of suspended solids in the combined flow. The urban ground dust andstorm drain sediment wererich in Fe, whereas the sewage sewer sediment was rich in P. The P/Fe ratios in these groups were significantly distinct and able to differentiate them. A calculation of the two storm events based on the P/Fe rations showed that 56% +/- 26% of suspended solids in combined flow came from urban ground and storm drain. The rest wer e originated from the sewage sewer sediments which deposited in combined sewer on the dry weather days and were eroded on the wet weather days. The combined sewer network not only acts as a transport system, but also constitutes a physicochemical reactor that degrades the quality of urban water. Reducing the in-sewer pollution stocks would effectively control urban runoff pollution.
Ji, Xiong-Hui; Zheng, Sheng-Xian; Lu, Yan-Hong; Liao, Yu-Lin
2007-07-01
By using leakage pond to simulate the double cropping paddy fields in Dongtinghu Lake area, this paper studied the effects of urea (CF) and controlled release nitrogen fertilizer (CRNF) on the dynamics of surface water pH, electrical conductivity (EC), total nitrogen (TN), ammonia nitrogen (NH4(+)-N) and nitrate nitrogen (NO3(-)-N) and the runoff loss of TN in alluvial sandy loamy paddy soil and purple calcareous clayed paddy soil, the two main paddy soils in this area. The results showed that after applying urea, the surface water TN and NH4(+)-N concentrations reached the peak at the 1st and 3rd day, respectively, and decreased rapidly then. Surface water NO3(-)-N concentration was very low, though it showed a little raise at the 3rd to 7th day after applying urea in purple calcareous clayed paddy soil. In early rice field, surface water pH rose gradually within 15 days after applying urea, while in late rice field, it did within 3 days. EC kept consistent with the dynamics of NH4(+)-N. CRNF, especially 70% N CRNF, gave rise to distinctly lower surface water pH, EC, and TN and NH4(+)-N concentrations within 15 days after application, but NO3- concentration rose slightly at late growth stages, compared with urea application. The monitoring of TN runoff loss indicated that during double cropping rice growth season, the loss amount of TN under urea application was 7.70 kg x hm(-2), accounting for 2.57% of applied urea-N. The two runoff events occurred within 20 days after urea application contributed significantly to the TN runoff loss. CRNF application resulted in a significantly lower TN concentration in runoff water from the 1st runoff event occurred within 10 days of its application, and thereafter, the total TN runoff loss for CRNF and 70% N CRNF application was decreased by 24.5% and 27.2%, respectively, compared with urea application.
A watershed scale assessment of the impacts of suburban turf management on runoff water quality
NASA Astrophysics Data System (ADS)
Bachman, M.; Inamdar, S. P.; Barton, S.; Duke, J.; Tallamy, D.; Bruck, J.
2014-12-01
Steadily increasing rates of urbanization have raised concerns about the negative impacts of urban runoff on receiving surface water quality. These concerns have been further amplified by landscaping paradigms that encourage high-input, intensively-managed and mono-culture turf and lawn landscapes. We conducted a watershed-scale assessment of turf management practices on water quality vis-à-vis less-intensive management practices that preserve and enhance more diverse and native vegetation. The study treatments with existing/established vegetation and landscaping practices included turf, urban, forest, meadow, and a mixed site with a professional golf course. Stream water sampling was performed during baseflow and storm events. Highest nutrient (nitrate and total nitrogen) concentrations in runoff were observed for the mixed watershed draining the golf course. In contrast, nutrient concentrations in baseflow from the turf watershed were lower than expected and were comparable to those measured in the surrounding meadow and forest sites. Runoff losses from the turf site may have been minimal due to the optimal quality of management implemented. Total nitrogen concentrations from the turf site increased sharply during the first storms following fertilization, suggesting that despite optimal management there exists a risk for nutrient runoff following fertilization. Dissolved organic carbon (DOC) concentrations from the turf site were elevated and aromatic in content while the mixed watershed site yielded more labile DOM. Overall, this study suggests that turf lawns, when managed properly, pose minimal environmental risk to surrounding surface waters. Based on the results of this study, providing homeowners with increased information regarding best management practices for lawn maintenance may serve as a cost-efficient method for reducing suburban runoff pollution.
Wilson, Doyle C
2018-04-15
Heavy metal, nutrient, and hydrocarbon levels in and adjacent to Lake Havasu, a regionally significant water supply reservoir with a highly controlled, dynamic flow regime, are assessed in relation to possible stormwater runoff impacts from an arid urban center. Shallow groundwater and sediment analyses from ephemeral drainage (wash) mouths that convey stormwater runoff from Lake Havasu City, Arizona to the reservoir, provided contaminant control points and correlation ties with the reservoir environment. Fine-grain sediments tend to contain higher heavy metal concentrations whereas nutrients are more evenly distributed, except low total organic carbon levels from young wash mouth surfaces devoid of vegetation. Heavy metal and total phosphate sediment concentrations in transects from wash mouths into the reservoir have mixed and decreasing trends, respectively. Both series may indicate chemical depositional influences from urban runoff, yet no statistically significant concentration differences occur between specific wash mouths and corresponding offshore transects. Heavy metal pollution indices of all sediments indicate no discernible to minor contamination, indicating that runoff impacts are minimal. Nevertheless, several heavy metal concentrations from mid-reservoir sediment sites increase southward through the length of the reservoir. Continual significant water flow through the reservoir may help to disperse locally derived runoff particulates, which could mix and settle down gradient with chemical loads from upriver sources and local atmospheric deposition. Incorporating the shoreline environment with the reservoir investigation provides spatial continuity in assessing contaminant sources and distribution patterns. This is particularly acute in the investigation of energetic, flow-through reservoirs in which sources may be overlooked if solely analyzing the reservoir environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Warrick, J.A.; Washburn, L.; Brzezinski, Mark A.; Siegel, D.A.
2005-01-01
The Santa Clara River delivers nutrient rich runoff to the eastern Santa Barbara Channel during brief (???1-3 day) episodic events. Using both river and oceanographic measurements, we evaluate river loading and dispersal of dissolved macronutrients (silicate, inorganic N and P) and comment on the biological implications of these nutrient contributions. Both river and ocean observations suggest that river nutrient concentrations are inversely related to river flow rates. Land use is suggested to influence these concentrations, since runoff from a subwatershed with substantial agriculture and urban areas had much higher nitrate than runoff from a wooded subwatershed. During runoff events, river nutrients were observed to conservatively mix into the buoyant, surface plume immediately seaward of the Santa Clara River mouth. Dispersal of these river nutrients extended 10s of km into the channel. Growth of phytoplankton and nutrient uptake was low during our observations (1-3 days following runoff), presumably due to the very low light levels resulting from high turbidity. However, nutrient quality of runoff (Si:N:P = 16:5:1) was found to be significantly different than upwelling inputs (13:10:1), which may influence different algal responses once sediments settle. Evaluation of total river nitrate loads suggests that most of the annual river nutrient fluxes to the ocean occur during the brief winter flooding events. Wet winters (such as El Nin??o) contribute nutrients at rates approximately an order-of-magnitude greater than "average" winters. Although total river nitrate delivery is considerably less than that supplied by upwelling, the timing and location of these types of events are very different, with river discharge (upwelling) occurring predominantly in the winter (summer) and in the eastern (western) channel. ?? 2004 Elsevier Ltd. All rights reserved.
Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang
2016-03-01
Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion.
Transport mechanisms of Silver Nanoparticles by runoff - A Flume Experiment
NASA Astrophysics Data System (ADS)
Mahdi Mahdi, Karrar NM; Commelin, Meindert; Peters, Ruud J. B.; Baartman, Jantiene E. M.; Ritsema, Coen; Geissen, Violette
2017-04-01
Silver Nanoparticles (AgNPs) are being used in many products as it has unique antimicrobial-biocidal properties. Through leaching, these particles will reach the soil environment which may affect soil organisms and disrupt plants. This work aims to study the potential transport of AgNPs with water and sediment over the soil surface due to soil erosion by water. This was done in a laboratory setting, using a rainfall simulator and flume. Low AgNPs concentration (50 μg.kg-1) was applied to two soil-flumes with slopes of 20% and 10%. The rainfall was applied in four events of 15 min each with the total amount of rainfall was 15mm in each event. After applying the rainfall, different samples were collected; soil clusters, background (BS) and surface sediments (Sf), from the flume surface, and, Runoff sediments (RS) and water (RW) was collected from the outlet. The results showed that AgNPs were detected in all samples collected, however, AgNPs concentration varied according samples type (soil or water), time of collection (for runoff water and sediment) and the slope of the soil flume. Further, the higher AgNPs concentrations were detected in the background soil (BS); as the BS samples have more finer parts (silt and clay). The AgNPs concentration in the runoff sediments increased with subsequent applied rain events. In addition to that, increasing the slope of the flume from 10% to 20% increased the total AgNPs transported with the runoff sediments by a factor 1.5. The study confirms that AgNPs can be transported over the soil surface by both runoff water and sediments due to erosion.
Juracek, Kyle E.
2000-01-01
Digital topographic, soil, and land-use information was used to estimate potential runoff-contributing areas in Kansas. The results were used to compare 91 selected subbasins representing slope, soil, land-use, and runoff variability across the State. Potential runoff-contributing areas were estimated collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented, in relative terms, very high, high, moderate, low, very low, and extremely low potential for runoff. Various rainfall-intensity and soil-permeability values were used to represent the threshold conditions at which infiltration-excess overland flow may occur. Antecedent soil-moisture conditions and a topographic wetness index (TWI) were used to represent the threshold conditions at which saturation-excess overland flow may occur. Land-use patterns were superimposed over the potential runoff-contributing areas for each set of environmental conditions. Results indicated that the very low potential-runoff conditions (soil permeability less than or equal to 1.14 inches per hour and TWI greater than or equal to 14.4) provided the best statewide ability to quantitatively distinguish subbasins as having relatively high, moderate, or low potential for runoff on the basis of the percentage of potential runoff-contributing areas within each subbasin. The very low and (or) extremely low potential-runoff conditions (soil permeability less than or equal to 0.57 inch per hour and TWI greater than or equal to 16.3) provided the best ability to qualitatively compare potential for runoff among areas within individual subbasins. The majority of subbasins with relatively high potential for runoff are located in the eastern half of the State where soil permeability is generally less and precipitation is typically greater. The ability to distinguish subbasins as having relatively high, moderate, or low potential for runoff was possible mostly due to the variability of soil permeability across the State. The spatial distribution of potential contributing areas, in combination with the superimposed land-use patterns, may be used to help identify and prioritize subbasin areas for the implementation of best-management practices to manage runoff and meet Federally mandated total maximum daily load requirements.
Esralew, Rachel A.; Tortorelli, Robert L.
2010-01-01
The city of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw Basin in northwestern Arkansas and northeastern Oklahoma for public water supply. The city has spent millions of dollars over the last decade to eliminate taste and odor problems in the drinking water from the Eucha-Spavinaw system, which may be attributable to blue-green algae. Increases in the algal biomass in the lakes may be attributable to increases in nutrient concentrations in the lakes and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, investigated and summarized total nitrogen and total phosphorus concentrations in water samples and provided estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations during base flow and runoff for two streams discharging to Lake Eucha for the period January 2002 through December 2009. This report updates a previous report that used data from water-quality samples collected from January 2002 through December 2006. Based on the results from the Mann-Whitney statistical test, unfiltered total nitrogen concentrations were significantly greater in runoff water samples than in base-flow water samples collected from Spavinaw Creek near Maysville and near Cherokee City, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Nitrogen concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Nitrogen concentrations in base-flow and runoff water samples collected in Spavinaw Creek significantly increased from the station furthest upstream (near Maysville) to the Sycamore station and then significantly decreased from the Sycamore station to the station furthest downstream (near Colcord). Nitrogen concentrations in base-flow and runoff water samples collected from Beaty Creek were significantly less than base-flow and runoff water samples collected from Spavinaw Creek. Based on the results from the Mann-Whitney statistical test, unfiltered total phosphorus concentrations were significantly greater in runoff water samples than in base-flow water samples for the entire period for most stations, except in water samples collected from Spavinaw Creek near Cherokee City, in which no significant difference was detected for the entire period nor for any season. Phosphorus concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Based on results from a multi-stage Kruskal-Wallis statistical test, phosphorus concentrations in base-flow water samples collected from Spavinaw Creek significantly increased from the Maysville station to the Cherokee City station, probably because of discharge from a municipal wastewater-treatment plant between those stations. Phosphorus concentrations significantly decreased downstream from the Cherokee City station to the Colcord station. Phosphorus concentrations in base-flow water samples collected from Beaty Creek were significantly less than phosphorus in base-flow water samples collected from Spavinaw Creek downstream from the Maysville station. View report for unabridged abstract.
Integrated urban water management in commercial buildings.
Trowsdale, S; Gabe, J; Vale, R
2011-01-01
Monitoring results are presented as an annual water balance from the pioneering Landcare Research green building containing commercial laboratory and office space. The building makes use of harvested roof runoff to flush toilets and urinals and irrigate glasshouse experiments, reducing the demand for city-supplied water and stormwater runoff. Stormwater treatment devices also manage the runoff from the carpark, helping curb stream degradation. Composting toilets and low-flow tap fittings further reduce the water demand. Despite research activities requiring the use of large volumes of water, the demand for city-supplied water is less than has been measured in many other green buildings. In line with the principles of sustainability, the composting toilets produce a useable product from wastes and internalise the wastewater treatment process.
Runoff and solute mobilization processes in a semiarid headwater catchment
NASA Astrophysics Data System (ADS)
Hughes, Justin D.; Khan, Shahbaz; Crosbie, Russell S.; Helliwell, Stuart; Michalk, David L.
2007-09-01
Runoff and solute transport processes contributing to streamflow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Streamflow and electrical conductivity were monitored from two gauges draining a portion of the upper catchment area (UCA) and a saline scalded area, respectively. Runoff in the UCA was related to the formation of a seasonally perched aquifer in the near-surface zone (0-0.4 m). A similar process was responsible for runoff generation in the saline scalded area. However, saturation in the scald area was related to the proximity of groundwater rather than low subsurface hydraulic conductivity. Because of higher antecedent water content, runoff commenced earlier in winter from the scald than did the UCA. Additionally, areal runoff from the scald was far greater than from the UCA. Total runoff from the UCA was higher than the scald (15.7 versus 3.5 mL), but salt export was far lower (0.6 and 5.4 t for the UCA and scald area, respectively) since salinity of the scald runoff was far higher than that from the UCA, indicating the potential impact of saline scalded areas at the catchment scale. End-member mixing analysis modeling using six solutes indicated that most runoff produced from the scald was "new" (40-71%) despite the proximity of the groundwater surface and the high antecedent moisture levels. This is a reflection of the very low hydraulic conductivity of soils in the study area. Nearly all chloride exported to the stream from the scald emanated from the near-surface zone (77-87%). Runoff and solute mobilization processes depend upon seasonal saturation occurring in the near-surface zone during periods of low evaporative demand and generation of saturated overland flow.
NASA Astrophysics Data System (ADS)
Ying, G.; Sansalone, J.
2010-03-01
SummaryWith respect to hydrologic processes, the impervious pavement interface significantly alters relationships between rainfall and runoff. Commensurate with alteration of hydrologic processes the pavement also facilitates transport and solubility of dry deposition particulate matter (PM) in runoff. This study examines dry depositional flux rates, granulometric modification by runoff transport, as well as generation of total dissolved solids (TDS), alkalinity and conductivity in source area runoff resulting from PM solubility. PM is collected from a paved source area transportation corridor (I-10) in Baton Rouge, Louisiana encompassing 17 dry deposition and 8 runoff events. The mass-based granulometric particle size distribution (PSD) is measured and modeled through a cumulative gamma function, while PM surface area distributions across the PSD follow a log-normal distribution. Dry deposition flux rates are modeled as separate first-order exponential functions of previous dry hours (PDH) for PM and suspended, settleable and sediment fractions. When trans-located from dry deposition into runoff, PSDs are modified, with a d50m decreasing from 331 to 14 μm after transport and 60 min of settling. Solubility experiments as a function of pH, contact time and particle size using source area rainfall generate constitutive models to reproduce pH, alkalinity, TDS and alkalinity for historical events. Equilibrium pH, alkalinity and TDS are strongly influenced by particle size and contact times. The constitutive leaching models are combined with measured PSDs from a series of rainfall-runoff events to demonstrate that the model results replicate alkalinity and TDS in runoff from the subject watershed. Results illustrate the granulometry of dry deposition PM, modification of PSDs along the drainage pathway, and the role of PM solubility for generation of TDS, alkalinity and conductivity in urban source area rainfall-runoff.
Dairy diet phosphorus and rainfall timing effects on runoff phosphorus from land-applied manure.
Hanrahan, Laura P; Jokela, William E; Knapp, Joanne R
2009-01-01
Surface-applied dairy manure can increase P concentrations in runoff, which may contribute to eutrophication of lakes and streams. The amount of dietary P fed to dairy cows (Bos taurus) and the timing of a rain event after manure application may further affect runoff P losses. The objective of this study was to examine dietary P supplementation effects on manure and runoff P concentrations from rain events occurring at different time intervals after manure application. Manure from dairy cows fed an unsupplemented low P diet (LP; 3.6 g P kg(-1)) or a diet supplemented with either an inorganic (HIP; 4.4 g P kg(-1)) or an organic (HOP; 4.6 g P kg(-1)) source was hand-applied onto soil-packed pans at 56 wet Mg ha(-1). Thirty min of runoff was collected from simulated rain events (30 mm h(-1)) 2, 5, or 9 d after manure application. Total P (TP) concentrations in runoff from HIP and HOP diet manure from the 2-d rain were 46 and 31% greater than that of the LP diet. Runoff P concentrations from high P diets were numerically higher than that of the LP diet at 5 and 9 d after application, but differences were significant only for dissolved reactive P (DRP) at 5 d. Large decreases in runoff TP (89%) and DRP (65%) concentrations occurred with delay of rainfall from 2 d until 5 d. The proportion of TP as DRP increased as the time between manure application and runoff increased. Results showed that reducing dietary P and extending the time between manure application and a rain event can significantly reduce concentrations of TP and DRP in runoff.
Potter, Thomas L; Bosch, David D; Strickland, Timothy C
2014-08-15
Peanut (Arachis hypogaea) is produced intensively in the southern Atlantic Coastal Plain of the eastern USA. To effectively protect the region's water quality data are needed which quantify runoff of pesticides used to protect these crops. Fungicides are used intensively yet there is little published data which describe their potential for loss in surface runoff. This study compared runoff of a fungicide, tebuconazole (α-[2-(4-chlorophenyl)ethyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), and an herbicide, metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) from 0.2 ha fields in strip (ST), a commonly used conservation-tillage practice, and conventional tillage (CT) near Tifton, GA (USA). Following their first application, metolachlor and tebuconazole were detected at high frequency in runoff. Concentrations and their annual losses increased with application frequency and runoff event timing and frequency with respect to applications, and when fields were positioned at the top of the slope and CT was practiced. Runoff one day after treatment (DAT) contributed to high tebuconazole runoff loss, up to 9.8% of the amount applied on an annual basis. In all cases, metolachlor loss was more than 10 times less even though total application was 45% higher. This was linked to the fact that the one metolachlor application to each crop was in May, one of the region's driest months. In sum, studies showed that fungicide runoff rates may be relatively high and emphasize the need to focus on these products in future studies on peanut and other crops. The study also showed that peanut farmers should be encouraged to use conservation tillage practices like ST which can substantially reduce pesticide runoff. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.
2009-01-01
The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.
2009-05-01
The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the direct runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.
Tai, Chao; Zhang, Kun-Feng; Zhou, Tian-Jian; Zhao, Tong-Qian; Wang, Qing-Qing; He, Xiao-Qi
2011-07-01
The distribution characteristics of polycyclic aromatic hydrocarbons in runoff from the middle line source area of south-to-north water diversion project were studied. Five groups of artificial runoff fields were established to collect runoff based on the different types of land-use, the contents of 16 USEPA priority PAHs in the runoff were determined using GC/MS method. The results showed that the average concentrations of PAHs of the aqueous phase in the collected runoff samples of different land-use types decreased in the order:cultivated land (26.53 ng x L(-1)) > oak forest (20.91 ng x L(-1)) > orchard (17.59 ng x L(-1)), and the average concentrations of PAHs of the particle phase were cultivated land (1 073.72 ng x g(-1)) > orchard (652.29 ng x g(-1)) > oak forest (385.46 ng x g(-1)). The high carcinogenic components Bap were detected in both run off of cultivated land and orchard with a detected rate of 30%. According to National Recommended Water Quality Standards of priority toxic pollutants (2006 USEPA), it was found that Chr exceed standard 40%, with a detected rate of 100%. It was also found that the runoff volume and the total PAHs content in runoff increase with the slope, and PAHs loss and slope were closely related in same land-use types. Based on the Molecular Markers Indicative Law, it can be concluded that the dominant source of PAHs in runoff of study area was combustion of coal, and a small amount came from vehicle exhaust emissions. There is a certain degree of ecological risk about runoff PAHs pollution in the study area, which is worth further attention.
Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments
NASA Astrophysics Data System (ADS)
Liu, Xi; Mijic, Ana; Maksimovic, Cedo
2014-05-01
As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a layered soil profile covered with vegetation which can be used to simulate the physical behaviour of different green roof systems in response to rainfall under various climatic conditions. Because it is a physically based model, this model could be generalised to other atmosphere-plant-soil systems. The validity of this mass and energy balance approach will be demonstrated by comparing its outcomes with observations from a green roof experimental site in London, UK.
NASA Astrophysics Data System (ADS)
Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui
2013-04-01
Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.
Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui
2013-04-01
Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.
This page contains resources that communities can use to integrate green infrastructure into streets and neighborhoods to reduce stormwater runoff, use water more efficiently, and protect water from pollution.
A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset
NASA Astrophysics Data System (ADS)
Schellekens, Jaap; Dutra, Emanuel; Martínez-de la Torre, Alberto; Balsamo, Gianpaolo; van Dijk, Albert; Sperna Weiland, Frederiek; Minvielle, Marie; Calvet, Jean-Christophe; Decharme, Bertrand; Eisner, Stephanie; Fink, Gabriel; Flörke, Martina; Peßenteiner, Stefanie; van Beek, Rens; Polcher, Jan; Beck, Hylke; Orth, René; Calton, Ben; Burke, Sophia; Dorigo, Wouter; Weedon, Graham P.
2017-07-01
The dataset presented here consists of an ensemble of 10 global hydrological and land surface models for the period 1979-2012 using a reanalysis-based meteorological forcing dataset (0.5° resolution). The current dataset serves as a state of the art in current global hydrological modelling and as a benchmark for further improvements in the coming years. A signal-to-noise ratio analysis revealed low inter-model agreement over (i) snow-dominated regions and (ii) tropical rainforest and monsoon areas. The large uncertainty of precipitation in the tropics is not reflected in the ensemble runoff. Verification of the results against benchmark datasets for evapotranspiration, snow cover, snow water equivalent, soil moisture anomaly and total water storage anomaly using the tools from The International Land Model Benchmarking Project (ILAMB) showed overall useful model performance, while the ensemble mean generally outperformed the single model estimates. The results also show that there is currently no single best model for all variables and that model performance is spatially variable. In our unconstrained model runs the ensemble mean of total runoff into the ocean was 46 268 km3 yr-1 (334 kg m-2 yr-1), while the ensemble mean of total evaporation was 537 kg m-2 yr-1. All data are made available openly through a Water Cycle Integrator portal (WCI, wci.earth2observe.eu), and via a direct http and ftp download. The portal follows the protocols of the open geospatial consortium such as OPeNDAP, WCS and WMS. The DOI for the data is https://doi.org/10.1016/10.5281/zenodo.167070.
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei
2016-12-01
Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and provide a scientific support for the diffuse pollution control and management in China.
The impact of runoff generation mechanisms on the location of critical source areas
Lyon, S.W.; McHale, M.R.; Walter, M.T.; Steenhuis, T.S.
2006-01-01
Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes - saturation excess and infiltration excess - on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service-Curve Number (SCS-CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.
Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge.
Withers, P J; Clay, S D; Breeze, V G
2001-01-01
Phosphorus (P) transfer in surface runoff from field plots receiving either no P, triplesuperphoshate (TSP), liquid cattle manure (LCS), liquid anaerobically digested sludge (LDS), or dewatered sludge cake (DSC) was compared over a 2-yr period. Dissolved inorganic P concentrations in runoff increased from 0.1 to 0.2 mg L(-1) on control and sludge-treated plots to 3.8 and 6.5 mg L(-1) following application of LCS and TSP, respectively, to a cereal crop in spring. When incorporated into the soil in autumn, runoff dissolved P concentrations were typically < 0.5 mg L(-1) across all plots, and particulate P remained the dominant P form. When surface-applied in autumn to a consolidated seedbed, direct loss of LCS and LDS increased both runoff volume and P transfers, but release of dissolved P occurred only from LCS. The largest P concentrations (>70 mg L(-1)) were recorded following TSP application without any increase in runoff volume, while application of bulky DSC significantly reduced total P transfers by 70% compared with the control due to a reduced runoff volume. Treatment effects in each monitoring period were most pronounced in the first runoff event. Differences in the release of P from the different P sources were related to the amounts of P extracted by either water or sodium bicarbonate in the order TSP > LCS > LDS > DSC. The results suggest there is a lower risk of P transfer in land runoff following application of sludge compared with other agricultural P amendments at similar P rates.
a Empirical Modelation of Runoff in Small Watersheds Using LIDAR Data
NASA Astrophysics Data System (ADS)
Lopatin, J.; Hernández, J.; Galleguillos, M.; Mancilla, G.
2013-12-01
Hydrological models allow the simulation of water natural processes and also the quantification and prediction of the effects of human impacts in runoff behavior. However, obtaining the information that is need for applying these models can be costly in both time and resources, especially in large and difficult to access areas. The objective of this research was to integrate LiDAR data in the hydrological modeling of runoff in small watersheds, using derivated hydrologic, vegetation and topography variables. The study area includes 10 small head watersheds cover bay forest, between 2 and 16 ha, which are located in the south-central coastal range of Chile. In each of the former instantaneous rainfall and runoff flow of a total of 15 rainfall events were measured, between August 2012 and July 2013, yielding a total of 79 observations. In March 2011 a Harrier 54/G4 Dual System was used to obtain a LiDAR point cloud of discrete pulse with an average of 4.64 points per square meter. A Digital Terrain Model (DTM) of 1 meter resolution was obtained from the point cloud, and subsequently 55 topographic variables were derived, such as physical watershed parameters and morphometric features. At the same time, 30 vegetation descriptive variables were obtained directly from the point cloud and from a Digital Canopy Model (DCM). The classification and regression "Random Forest" (RF) algorithm was used to select the most important variables in predicting water height (liters), and the "Partial Least Squares Path Modeling" (PLS-PM) algorithm was used to fit a model using the selected set of variables. Four Latent variables were selected (outer model) related to: climate, topography, vegetation and runoff, where in each one was designated a group of the predictor variables selected by RF (inner model). The coefficient of determination (R2) and Goodnes-of-Fit (GoF) of the final model were obtained. The best results were found when modeling using only the upper 50th percentile of rainfall events. The best variables selected by the RF algorithm were three topographic variables and three vegetation related ones. We obtained an R2 of 0.82 and a GoF of 0.87 with a 95% of confidence interval. This study shows that it is possible to predict the water harvesting collected during a rainstorm event in forest environment using only LiDAR data. However, this type of methodology does not have good result in flow produced by low magnitude rainfall events, as these are more influenced by initial conditions of soil, vegetation and climate, which make their behavior slower and erratic.
Stormwater quality processes for three land-use areas in Broward County, Florida
Mattraw, H.C.; Miller, Robert A.
1981-01-01
Systematic collection and chemical analysis of stormwater runoff samples from three small urban areas in Broward County, Florida, were obtained between 1974 and 1977. Thirty or more runoff-constituent loads were computed for each of the homogeneous land-use areas. The areas sampled were single family residential, highway, and a commercial shopping center. Rainfall , runoff, and nutrient and metal analyses were stored in a data-management system. The data-management system permitted computation of loads, publication of basic-data reports and the interface of environmental and load information with a comprehensive statistical analysis system. Seven regression models relating water quality loads to characteristics of peak discharge, antecedent conditions, season, storm duration and rainfall intensity were constructed for each of the three sites. Total water-quality loads were computed for the collection period by summing loads for individual storms. Loads for unsampled storms were estimated by using regression models and records of storm precipitation. Loadings, pounds per day per acre of hydraulically effective impervious area, were computed for the three land-use types. Total nitrogen, total phosphorus, and total residue loadings were highest in the residential area. Chemical oxygen demand and total lead loadings were highest in the commercial area. Loadings of atmospheric fallout on each watershed were estimated by bulk precipitation samples collected at the highway and commercial site. (USGS)
USDA-ARS?s Scientific Manuscript database
Agroecosystems provide multiple benefits including food, fiber, fuel, clean water and air, habitat, carbon sequestration, recreation, and aesthetics. But most agricultural landscapes are managed for only a few of these benefits. This project aimed to evaluate how the integration of diverse perennial...
Stormwater-runoff data for a multifamily residential area, Dade County, Florida
Hardee, Jack; Mattraw, H.C.; Miller, Robert A.
1979-01-01
Rainfall, stormwater discharge, and water-quality data for a multifamily residential area in Dade County, Florida, are summarized. Loads for 19 water-quality constituents were computed for runoff from 16 storms from May 1977 through June 1978. The 14.7 acre basin contains apartment buildings with adjacent parking lots. The total surface area consists of 70.7 percent impervious material. (Kosco-USGS)
Young, Stacie T.M.; Jamison, Marcael T.J.
2007-01-01
Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous streamflow data at three stations, and water-quality data at five stations, which include the two continuous streamflow stations. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2006 and June 30, 2007. A total of 13 samples was collected over two storms during July 1, 2006 to June 30, 2007. The goal was to collect grab samples nearly simultaneously at all five stations and flow-weighted time-composite samples at the three stations equipped with automatic samplers. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.
Eklöf, Karin; Schelker, Jakob; Sørensen, Rasmus; Meili, Markus; Laudon, Hjalmar; von Brömssen, Claudia; Bishop, Kevin
2014-05-06
Forestry operations can increase the export of mercury (both total and methyl) to surface waters. However, little is known about the relative contribution of different forestry practices. We address this question using a paired-catchment study that distinguishes the effects of site preparation from the antecedent logging. Runoff water from three catchments, two harvested and one untreated control, was sampled biweekly during one year prior to logging, two years after logging, and three years after site preparation. The logging alone did not significantly increase the concentrations of either total or methyl-mercury in runoff, but export increased by 50-70% in one of the harvested catchments as a consequence of increased runoff volume. The combined effects of logging and site preparation increased total and methyl-mercury concentrations by 30-50% relative to preharvest conditions in both treated catchments. The more pronounced concentration effect after site preparation compared to logging could be related to site preparation being conducted during summer. This caused more soil disturbance than logging, which was done during winter with snow covering the ground. The results suggest that the cumulative impact of forest harvest on catchment mercury outputs depends on when and how forestry operations are implemented.
Assessment of suspended solids concentration in highway runoff and its treatment implication.
Hallberg, M; Renman, G
2006-09-01
It is understood that the major pollution from storm water is related to the content of particulate matter. One treatment practice is based on the first flush, i.e. detention of the initial part of the runoff that is considered to contain the highest concentrations of pollutants. This study has evaluated the concentration of total suspended solids in 30 consecutive runoff events during the winter season for an area of 6.7 hectares. A six-lane highway (E4) that has an annual average daily traffic load of 120,000 dominates the area and road de-icing salt (NaCl) and studded tires were in regular use during the studied period. The effluent standard for wastewater of 60 mg TSS per litre applied in EU was used to assess the treatment requirement of storm water. In only two of the events the event mean concentration was below 60 mg 1(-1). In four runoff events a partial event mean concentration below 60 mg 1(-1) was found, in 26 %, 12 %, 11 %, and 2 % respectively of the runoff volume. This would suggest that a capture of the initial part of the runoff for subsequent treatment is less applicable in this type of urban watershed.
A new installation for treatment of road runoff: up-flow filtration by porous polypropylene media.
Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T; Tanaka, Y
2005-01-01
We installed a new device on a paved road to treat runoff from a roadway surface. All the stormwater runoff was transferred into the device and the runoff equivalent to 10 mm/hr or less was treated. The treatment method consists of sedimentation and up-flow filtration with porous polypropylene (PPL) processes. The treated runoff was discharged into the existing storm drainage pipe. The average removal efficiency of the initial runoff at the beginning of rainfall which has high pollution intensity was about 90% for SS, about 70% for COD, about 40% for total phosphorus (T-P), about 80% for Pb and Cd, about 70% for Zn, Cu, Mn and Cr, and about 60% for polycyclic aromatic hydrocarbons (PAHs). The overall removal efficiencies of the experiment that ran for four months remained > 60% of SS, > 40% of COD, > 60% of heavy metals, and > 40% of PAHs. The PPL is excellent for removing smaller size particulates of suspended solids, which originate basically from diesel exhaust, as well as larger size particulates from automobile tires, asphalt roads, and other accumulated source(s) of clay and sand, etc.
Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.
Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H
2014-01-01
Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.
Off-site movement of endosulfan from irrigated cotton in New South Wales.
Kennedy, I R; Sánchez-Bayo, F; Kimber, S W; Hugo, L; Ahmad, N
2001-01-01
The fate and transport of endosulfan (6,7,8,9,10,10-hexachloro-1,5, 5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) applied to cotton (Gossypium hirsutum L.) fields were studied throughout three consecutive years on two selected locations in New South Wales (Australia). Rates of dissipation from foliage and soil, volatilization from the field, and transport of residues in irrigation and/or storm runoff waters were measured in order to estimate a total field balance. Dissipation of endosulfan from both foliage and soil is best explained by a two-phase process rather than by a first-order decay. Half-lives of total endosulfan toxic residues (alpha- and beta-endosulfan and the sulfate product) in the first phase were 1.6 d in foliage and 7.1 d in soil, and could be explained by the rapid volatilization of the parent isomers in the first 5 d (up to 70% of endosulfan volatilizes). In the second phase, half-lives were 9.5 d in foliage and 82 d in soil, mostly due to the persistence of the sulfate product. Concentration of endosulfan residues in runoff water varied from 45 to 2.5 microg L(-1) depending on the residue levels present on field soil at the time of the irrigation or storm events. These in turn are related to the total amounts applied, the cotton canopy cover at application, and the time since last spraying. Most of the endosulfan in runoff was found in the water phase (80%), suggesting it was bound to colloidal matter. Total endosulfan residues in runoff for a whole season accounted for no more than 2% of the pesticide applied on-field.
Water-quality data of stormwater runoff from Davenport, Iowa, 1992 and 1994
Schaap, B.D.; Einhellig, R.F.
1996-01-01
During 1992 and 1994, stormwater runoff in Davenport, Iowa, was sampled from the following land use types: agricultural and vacant, residential, commercial, parks and wooded areas, and industrial. Grab samples collected within the first hour of the runoff event were analyzed for many constituents including volatile organic compounds. Flow-weighted composite samples, composed from discrete samples collected at 15-minute intervals during the first three hours of the event or until discharge returned to pre-event levels, also were analyzed for many constituents including major ions, nitrogen, phosphorus, metals, total organic carbon, acid/base-neutral organics, organochlorine pesticides, and polycyclic aromatic hydrocarbons.
Historical Changes in Precipitation and Streamflow in the U.S. Great Lakes Basin, 1915-2004
Hodgkins, Glenn A.; Dudley, Robert W.; Aichele, Stephen S.
2007-01-01
The total amount of water in the Great Lakes Basin is important in the long-term allocation of water to human use and to riparian and aquatic ecosystems. The water available during low-flow periods is particularly important because the short-term demands for the water can exceed the supply. Precipitation increased over the last 90 years in the U.S. Great Lakes Basin. Total annual precipitation increased by 4.5 inches from 1915 to 2004 (based on the average of 34 U.S. Historical Climatology Network stations), 3.5 inches from 1935 to 2004 (average of 34 stations), and 4.2 inches from 1955 to 2004 (average of 37 stations). Variability in precipitation from year to year was large, but there were numerous years with relatively low precipitation in the 1930s and 1960s and many years with relatively high precipitation after about 1970. Annual runoff increased over the last 50 years in the U.S. Great Lakes Basin. Mean annual runoff increased by 2.6 inches, based on the average of 43 U.S. Geological Survey streamflow-gaging stations from 1955 to 2004 on streams that were relatively free of human influences. Variability in runoff from year to year was large, but on average runoff was relatively low from 1955 to about 1970 and relatively high from about 1970 to 1995. Runoff increased at all stations in the basin except in and near the Upper Peninsula of Michigan, where relatively small runoff decreases occurred. Changes in annual runoff for the 16 stations with data from 1935 to 2004 were similar to the changes from 1955 to 2004. The mean annual 7-day low runoff (the lowest annual average of 7 consecutive days of runoff) increased from 1955 to 2004 by 0.048 cubic feet per second per square mile based on the average of 27 stations. Runoff in the U.S. Great Lakes Basin from 1955 to 2004 increased for all months except April. November through January and July precipitation and runoff increased by similar amounts. There were differences between precipitation and runoff changes for February, March, and April, which were likely due to lower ratios of snowfall to rain and earlier snowmelt runoff in recent years. Increases in precipitation were larger than increases in runoff for May, June, August, September, and October. Some of this difference could be due to the different locations of the precipitation and streamflow stations in the basin. Part of the difference may be explained by changes in evapotranspiration. Some of the few highly urbanized and highly regulated stations analyzed in this report had larger increases in annual 7-day low-runoff from 1955 to 2004 than any of the stations in the U.S. Great Lakes Basin that are on streams relatively free of human influences. This demonstrates the human influence over time on very low streamflows. Changes-even over periods as long as 90 years-can be part of longer cycles. Previous studies of Great Lakes Basin precipitation and St. Lawrence River streamflow, using data from the mid-1800s to the late-1900s, showed low precipitation and streamflow in the late 1800s and early 1900s relative to earlier and later periods.
Dickenson, Joshua A; Sansalone, John J
2012-12-15
Urban runoff is a resource for reuse water. However, runoff transports indicator and pathogenic organisms which are mobilized from sources of fecal contamination. These organisms are entrained with particulate matter (PM) that can serve as a mobile substrate for these organisms. Within a framework of additional treatment for reuse of treated runoff which requires the management of PM inventories in unit operations and drainage systems there is a need to characterize organism distributions on PM and the disinfection potential thereof. This study quantifies total coliform, Escherichia coli, fecal streptococcus, and enterococcus generated from 25 runoff events. With the ubiquity and hetero-dispersivity of PM in urban runoff this study examines organism distributions for suspended, settleable and sediment PM fractions differentiated based on PM size and transport functionality. Hypochlorite is applied in batch to elaborate inactivation of PM-associated organisms for each PM fraction. Results indicate that urban runoff bacterial loadings of indicator organisms exceed U.S. wastewater reuse, recreational contact, and Australian runoff reuse criteria as comparative metrics. All monitored events exceeded the Australian runoff reuse criteria for E. coli in non-potable residential and unrestricted access systems. In PM-differentiated events, bacteriological mobilization primarily occurred in the suspended PM fraction. However, sediment PM shielded PM-associated coliforms at all hypochlorite doses, whereas suspended and settleable PM fractions provide less shielding resulting in higher inactivation by hypochlorite. Copyright © 2011 Elsevier Ltd. All rights reserved.
Duncker, James J.; Melching, Charles S.
1998-01-01
Rainfall and streamflow data collected from July 1986 through September 1993 were utilized to calibrate and verify a continuous-simulation rainfall-runoff model for three watersheds (11.8--18.0 square miles in area) in Du Page County. Classification of land cover into three categories of pervious (grassland, forest/wetland, and agricultural land) and one category of impervious subareas was sufficient to accurately simulate the rainfall-runoff relations for the three watersheds. Regional parameter sets were obtained by calibrating jointly all parameters except fraction of ground-water inflow that goes to inactive ground water (DEEPFR), interflow recession constant (IRC), and infiltration (INFILT) for runoff from all three watersheds. DEEPFR and IRC varied among the watersheds because of physical differences among the watersheds. Two values of INFILT were obtained: one representing the rainfall-runoff process on the silty and clayey soils on the uplands and lake plains that characterize Sawmill Creek, St. Joseph Creek, and eastern Du Page County; and one representing the rainfall-runoff process on the silty soils on uplands that characterize Kress Creek and parts of western Du Page County. Regional rainfall-runoff relations, defined through joint calibration of the rainfall-runoff model and verified for independent periods, presented in this report, allow estimation of runoff for watersheds in Du Page County with an error in the total water balance less than 4.0 percent; an average absolute error in the annual-flow estimates of 17.1 percent with the error rarely exceeding 25 percent for annual flows; and correlation coefficients and coefficients of model-fit efficiency for monthly flows of at least 87 and 76 percent, respectively. Close reproduction of the runoff-volume duration curves was obtained. A frequency analysis of storm-runoff volume indicates a tendency of the model to undersimulate large storms, which may result from underestimation of the amount of impervious land cover in the watershed and errors in measuring rainfall for convective storms. Overall, the results of regional calibration and verification of the rainfall-runoff model indicate the simulated rainfall-runoff relations are adequate for stormwater-management planning and design for watersheds in Du Page County.
NASA Astrophysics Data System (ADS)
Ramos-Scharron, C. E.; LaFevor, M. C.; Roy, J.
2017-12-01
Developing a conceptually sound yet practical understanding of runoff and sediment delivery from human occupied lands to tropical ocean waters still represents a pivotal need of coral reef management worldwide. In the dry tropical and ephemeral streamflow setting that typifies the small watersheds ( 1s km2) draining the US Virgin Islands, changes in hydrologic and sediment delivery dynamics provoked by unsurfaced road networks represent a major threat to coral reefs and other sensitive marine ecosystems. Through a combined empirical and modeling approach, this study evaluates how road building and associated stormflow restoration strategies affect rainfall thresholds for runoff generation at varying spatial scales and their impact on land-to-sea connectivity. Rainfall thresholds and runoff coefficients for precipitation excess on unpaved roads are 2-3 mm and 22-30% (respectively) or a full order of magnitude different from those for undisturbed hillslopes and watersheds. Here we discuss the use of a `volume-to-breakthrough' inspired index to predict the potential of road runoff to reach downslope portions of the watershed and the coastline as runon. The index integrates the effects of storm-by-storm runoff accumulation for every road drainage point with its flow distance to specific locations along the stream network. While large runoff volumes and short flow distances imply a relatively high connectivity potential, small volumes and long distances are associated to low delivery potential. The index has proven able to discern observed runoff responses under a variety of road-stream network scenarios and rainfall conditions. These results enhance our understanding of ephemeral stream hydrology and are serving to improve coral reef management strategies throughout the Northeastern Caribbean.
Prediction of Estrogen Runoff and Transport Driven by Rainfalls from Swine Spray Fields
NASA Astrophysics Data System (ADS)
Lee, B.; Reckhow, K. H.; Kullman, S. W.
2010-12-01
Animal waste-borne steroidal hormones, which are referred to as natural steroidal estrogens, are recognized pollutants to surface water systems. Steroidal estrogens exhibit strong potency, even at very low concentrations, as endocrine disrupting chemicals on aquatic organisms. In North Carolina, the swine concentrated animal feeding operations (CAFOs) have been a major source for the release of estrogens to watersheds. Release is a direct result of the land application of the generated waste as an organic fertilizer. However, data regarding the estrogen loss and transport through the surface runoff and soil erosion to the water bodies after the spray-fields application has been up till now very limited. We have developed a decision support tool that can help predict and ultimately manage the potential mobilization and transport of estrogens from CAFOs, through the processes of surface runoff transport and sediment loss, into adjacent water bodies. Our decision support tool was built using a dynamic Bayesian Network (DBN) framework. The developed DBN model integrates the processes of a sediment loss and a surface runoff by using the modified universal soil loss equation (MUSLE) and the SCS-CN curve runoff models. Estrogen mobility is assessed as a function of rainfall intensity and land use management with consideration to the temporal distribution of both. The DBN is used to model the estrogen concentration in the runoff process, to determine the degree of off-site movement of estrogens, and to verify the potential environmental significance of the estrogen inputs into the stream. We believe that our modeling framework is particularly useful for use in field situations where estrogen runoff data are not available or are scarce. The DBN model also provides a means to handle the uncertainties of mathematical sediment and runoff models as a dynamic probability model.
Galeone, Daniel G.
1996-01-01
The U.S. Geological Survey and the Bureau of Land and Water Conservation of the Pennsylvania Department of Environmental Protection conducted a cooperative study to determine the effects of manure application and antecedent soil-phosphorus concentrations on the transport of phosphorus from the soil of a typical farm site in Lancaster County, Pa., from September 1992 to March 1995. The relation between concentrations of soil phosphorus and phosphorus transport needs to be identified because excessive phosphorus concentrations in surface-water bodies promote eutrophication.The objective of the study was to quantify and determine the significance of chemical, physical, and hydrologic factors that affected phosphorus transport. Three study plots less than 1 acre in size were tilled and planted in silage corn. Phosphorus in the form of liquid swine and dairy manure was injected to a depth of 6-8 inches on two of the three study plots in May 1993 and May 1994. Plot 1 received no inputs of phosphorus from manure while plots 2 and 3 received an average of 56 and 126 kilograms of phosphorus per acre, respectively, from the two manure applications. No other fertilizer was applied to any of the study plots. From March 30, 1993, through December 31, 1993, and March 10, 1994, through August 31, 1994 (the study period), phosphorus and selected cations were measured in precipitation, manure, soil, surface runoff, subsurface flow (at 18 inches below land surface), and corn plants before harvest. All storm events that yielded surface runoff and subsurface flow were sampled. Surface runoff was analyzed for dissolved (filtered through a 0.45-micron filter) and total concentrations. Subsurface flow was only analyzed for dissolved constituents. Laboratory soil-flask experiments and geochemical modeling were conducted to determine the maximum phosphate retention capacity of sampled soils after manure applications and primary mineralogic controls in the soils that affect phosphate equilibrium processes.Physical characteristics, such as particle-size distributions in soil, the suspended sediment and particle-size distribution in surface runoff, and surface topography, were quantified. Hydrologic characteristics, such as precipitation intensity and duration, volumes of surface runoff, and infiltration rates of soil, were also monitored during the study period. Volumes of surface runoff differed by plot.Volumes of surface runoff measured during the study period from plots 1 (0.43 acres), 2 (0.23 acres), and 3 (0.28 acres) were 350,000, 350,000, and 750,000 liters per acre, respectively. About 90 percent of the volume of surface runoff occurred after October 1993 because of the lack of intense precipitation from March 30, 1993, through November 30, 1993. For any one precipitation amount, volumes of surface runoff increased with an increase in the maximum intensity of precipitation and decreased with an increase in storm duration. The significantly higher volume of surface runoff for plot 3 relative to plots 1 and 2 was probably caused by lower infiltration rates on plot 3.Soil concentrations of plant-available phosphorus (PAP) for each study plot were high (31-60 parts per million) to excessive (greater than 60 parts per million) for each depth interval (0-6, 6-12, and 12- 24 inches) and sampling period except for some samples collected at depths of 12-24 inches. The high levels of PAP before manure applications made it difficult to detect any changes in the concentration of soil PAP caused by manure applications. Manure applications to the study area prior to this study resulted in relatively high concentrations of soil PAP; however, the manure applications to plot 3 during the study period did cause an increase in the soil concentration of PAP after the second manure application. The percentages of total phosphorus in plant-available and inorganic forms were about 5 and 80 percent, respectively, in the 0-24--inch depth interval of soil on the study plots. Concentrations of total phosphorus on sand, silt, and clay particles from soil were 700, 1,000, and 3,400 parts per million, respectively. About 70 percent of the total mass of phosphorus in soil to a depth of 24 inches was associated with silt and clay particles.Soil-flask experiments indicated that soils from the study plots were not saturated with respect to phosphorus. Soils had the capacity to retain 694 to 1,160 milligrams of phosphorus per kilogram of soil. The measured retention capacity probably exceeded the actual retention capacity of soil because laboratory conditions optimized the contact time between soil and test solutions.Geochemical modeling indicated that the primary mineralogical controls on the concentration of dissolved phosphorus in surface runoff and subsurface flow were aluminum and iron oxides and strengite (if it exists). Aluminum and iron oxides bind phosphate in solution and strengite is an iron-phosphate mineral. The mineralization of organic phosphorus into dissolved inorganic forms could also supply phosphorus to surface runoff and subsurface flow.Phosphorus inputs to the plots during the study period were from precipitation and manure. Phosphorus inputs from precipitation were negligible. The loads of phosphorus to the plots from manure applications in May 1993 and May 1994 were 112 and 251 kilograms per acre for plots 2 and 3, respectively; about 60 percent of the load occurred in 1994.Phosphorus outputs in surface runoff differed between study plots. The cumulative yields of total phosphorus during the study period for plots 1, 2, and 3 were 1.12, 1.24, and 1.69 kilograms per acre, respectively. Differences between plots were primarily evident for dissolved yields of phosphorus. The percentage of the total phosphorus output in surface runoff that was in the dissolved phase varied from 6 percent for plot 1 to 26 percent for plot 3.The cumulative yields of dissolved phosphorus from plots 2 and 3 were 135 and 500 percent greater, respectively, than the dissolved yield from plot 1. Even though volumes of surface runoff were different on the plots, the primary cause of the difference between plots in the yield of dissolved phosphorus in surface runoff was differences in the concentration of dissolved phosphorus. After the second manure application, concentrations of dissolved phosphorus in surface runoff on plots 2 and 3 were significantly higher than the concentration for plot 1.An increase in the concentration of dissolved phosphorus in subsurface flow from plots 2 and 3 was measured after manure applications. The mean concentrations of dissolved phosphorus in subsurface flow after the first manure application were 0.29, 0.57, and 1.45 milligrams per liter of phosphorus for plots 1, 2, and 3, respectively.The loss of dissolved phosphorus in surface runoff was related to the soil concentration of PAP. The model relating dissolved phosphorus in surface runoff to soil PAP indicated that concentrations of dissolved phosphorus in surface runoff would exceed 0.1 milligram per liter if soil concentrations of PAP exceeded 9 parts per million; this PAP concentration was exceeded by each study plot. Over 50 percent of the variation of dissolved phosphorus in surface runoff was explained by soil concentrations of PAP in the 0-6-inch depth interval.The loss of suspended phosphorus in surface runoff was primarily affected by the particle-size distribution of suspended sediment in surface runoff. Surface runoff was enriched with fines relative to the soil matrix. Generally, over 90 percent of sediment in runoff was comprised of silt and clay particles; only 50-60 percent of particle sizes from the intact soil matrix were in the silt- to clay-size range. Concentrations of suspended phosphorus in surface runoff were not significantly related to soil concentrations of total phosphorus in the 0-6-inch depth interval.Concentrations of dissolved phosphorus in subsurface flow were also related to soil concentrations of PAP. The relation indicated that dissolved concentrations of phosphorus in subsurface flow would exceed 0.1 milligram per liter if soil concentrations of PAP in the 0-6-inch depth interval of soil were greater than 49 parts per million; this PAP concentration was exceeded by each study plot.The significant relation of high concentrations of dissolved phosphorus in water to soil concentrations of PAP indicated that soils with comparable concentrations of soil PAP would be potential sources of dissolved phosphorus to surface water and subsurface water tables. The percentage of the total phosphorus lost from a system in the dissolved form increased as soil concentrations of PAP increased. This indicates that best-management practices to reduce phosphorus losses from this system not only need to target suspended forms of phosphorus but also dissolved forms. Practices aimed at reducing the loss of dissolved phosphorus from the system increase in importance with an increase in soil concentrations of PAP.
Sylvester, Marc A.; Brown, William M.
1978-01-01
Two basins (Castro Valley Creek, in Alameda County, and Strong Ranch Slough, in Sacramento County) in the San Francisco Bay and Sacramento-San Joaquin Delta region (Bay-Delta region) were sampled intensively (3-15 minute intervals) during three storms between October 1974 and April 1975. Both basins are primarily residential, but the Strong Ranch Slough basin is almost entirely urbanized and nearly flat, while the Castro Valley Creek basin possesses some rural areas and slopes greater than 70 percent in the headwaters. Water discharge and concentrations of suspended solids, chemical oxygen demand, 5-day biochemical oxygen demand, nitrite and nitrate, total Kjeldahl nitrogen, total orthophosphorus, and settleable matter were usually greater at the Castro Valley Creek basin than at the Strong Ranch Slough basin. Concentrations of these constituents and water discharge changed more rapidly at the Castro Valley Creek basin than at the Strong Ranch Slough basin. Of the four subbasins sampled (two in each basin), constituent concentrations in runoff from a residential subbasin were usually greatest. Quantity and quality of runoff were related to environmental characteristics such as slope, perviousness, residential development and maintenance, and channel conditions. Greater water discharge and concentrations of constituents in the Castro Valley Creek basin seem to be partly due to steeper slopes, less perviousness, and smaller residential lot sizes than are in the Strong Ranch Slough basin. Erosion of steep slopes disturbed by grazing and residential development, poorly maintained dwellings and lots, and a mostly earthen drainage channel in the Castro Valley Creek basin are probably responsible for the greater concentrations of suspended solids and settleable matter in runoff from this basin. In both basins, the highest observed concentrations of suspended solids, chemical oxygen demand, 5-day biochemical oxygen demand, settleable matter, total Kjeldahl nitrogen, and total orthophosphorus were observed at or near peak water discharges. Flow-weighted and arithmetic-mean concentrations of suspended solids in Castro Valley Creek exceed the arithmetic-mean concentration of suspended solids in medium-strength untreated sewage. These results indicate that control of urban storm runoff in the Bay-Delta region may be desirable to protect receiving water.
Quality of stormwater runoff discharged from Massachusetts highways, 2005-07
Smith, Kirk P.; Granato, Gregory E.
2010-01-01
The U.S. Geological Survey (USGS), in cooperation with U.S. Department of Transportation Federal Highway Administration and the Massachusetts Department of Transportation, conducted a field study from September 2005 through September 2007 to characterize the quality of highway runoff for a wide range of constituents. The highways studied had annual average daily traffic (AADT) volumes from about 3,000 to more than 190,000 vehicles per day. Highway-monitoring stations were installed at 12 locations in Massachusetts on 8 highways. The 12 monitoring stations were subdivided into 4 primary, 4 secondary, and 4 test stations. Each site contained a 100-percent impervious drainage area that included two or more catch basins sharing a common outflow pipe. Paired primary and secondary stations were located within a few miles of each other on a limited-access section of the same highway. Most of the data were collected at the primary and secondary stations, which were located on four principal highways (Route 119, Route 2, Interstate 495, and Interstate 95). The secondary stations were operated simultaneously with the primary stations for at least a year. Data from the four test stations (Route 8, Interstate 195, Interstate 190, and Interstate 93) were used to determine the transferability of the data collected from the principal highways to other highways characterized by different construction techniques, land use, and geography. Automatic-monitoring techniques were used to collect composite samples of highway runoff and make continuous measurements of several physical characteristics. Flowweighted samples of highway runoff were collected automatically during approximately 140 rain and mixed rain, sleet, and snowstorms. These samples were analyzed for physical characteristics and concentrations of 6 dissolved major ions, total nutrients, 8 total-recoverable metals, suspended sediment, and 85 semivolatile organic compounds (SVOCs), which include priority polyaromatic hydrocarbons (PAHs), phthalate esters, and other anthropogenic or naturally occurring organic compounds. The distribution of particle size of suspended sediment also was determined for composite samples of highway runoff. Samples of highway runoff were collected year round and under various dry antecedent conditions throughout the 2-year sampling period. In addition to samples of highway runoff, supplemental samples also were collected of sediment in highway runoff, background soils, berm materials, maintenance sands, deicing compounds, and vegetation matter. These additional samples were collected near or on the highways to support data analysis. There were few statistically significant differences between populations of constituent concentrations in samples from the primary and secondary stations on the same principal highways (Mann-Whitney test, 95-percent confidence level). Similarly, there were few statistically significant differences between populations of constituent concentrations for the four principal highways (data from the paired primary and secondary stations for each principal highway) and populations for test stations with similar AADT volumes. Exceptions to this include several total-recoverable metals for stations on Route 2 and Interstate 195 (highways with moderate AADT volumes), and for stations on Interstate 95 and Interstate 93 (highways with high AADT volumes). Supplemental data collected during this study indicate that many of these differences may be explained by the quantity, as well as the quality, of the sediment in samples of highway runoff. Nonparametric statistical methods also were used to test for differences between populations of sample constituent concentrations among the four principal highways that differed mainly in traffic volume. These results indicate that there were few statistically significant differences (Mann-Whitney test, 95-percent confidence level) for populations of concentrations of most total-recoverable metals
Investigation on the effectiveness of pretreatment in stormwater management technologies.
Maniquiz-Redillas, Marla C; Geronimo, Franz Kevin F; Kim, Lee-Hyung
2014-09-01
The effectiveness of presettling basins as component of stormwater best management practice (BMP) technologies was investigated. Storm event monitoring and sediment collection were conducted from May 2009 to November 2012 on the presettling basins of the three BMP technologies designed to capture and treat stormwater runoff from highly impervious roads and parking lots. Data on captured runoff and sediment, total suspended solids (TSS) loadings, rainfall and runoff rate, sediment accumulation rate, as well as particle distribution and pollutant concentrations of sediment were gathered and analyzed along with the physical design characteristics of the presettling basins such as surface area and storage volume. Regression models were generated to determine significant relationships between design parameters. Results revealed that the storage volume ratio (ratio of storage volume of presettling basin to BMP) was an important parameter in designing the presettling basin of the BMP. For practicality, optimizing the design of the presettling basin means that the storage volume ratio should be determined based on the desired captured amount of runoff and sediment from runoff to limit the frequency of maintenance caused by the accumulation of sediment. It was recommended that pretreatment of runoff should be employed when the site in which the BMP is to be sited has high TSS loading and runoff rate, and is subjected to high intensity rainfall. Copyright © 2014. Published by Elsevier B.V.
Hines, Walter G.
1973-01-01
The San Francisco Bay region has suffered adverse environmental effects related to the discharge of municipal-, industrial-, and agricultural- wastewater and storm-water runoff. Specific pollutional properties of theses discharges are not well understood in all cases although the toxic materials and aquatic-plant nutrients (biostimulants) found in municipal and industrial waterwater are considered to be a major cause of regional water-quality problems. Other water-quality problems in the region are commonly attributed to pesticides found in agricultural wastewater and potentially pathogenic bacteria in municipal-wastewater discharges and in storm-water runoff. The geographical distribution and magnitude of wastewater discharges in the bay region, particularly those from municipalities and industries, is largely a function of population, economic growth, and urban development. As might be expected, the total volume of wastewater has increased in a trend paralleling this growth and development. More significant, perhaps, is the fact that the total volume parameters such as BOD (biochemical oxygen demand), biostimulant concentrations, and toxicity, has increased despite large expenditures on new and improved municipal- and industrial-wastewater-treatment plants. Also, pollutant loadings from other major source, such as agriculture and storm-water runoff, have increased. At the time of writing (1972), many Federal, State, regional, and local agencies are engaged in a comprehensive wastewater-management-planning effort for the entire bay region. Initial objectives of this planning effort are: (1) the consolidation and coordination of loosely integrated wastewater-management facilities and (2) the elimination of wastewater discharges to ecologically sensitive areas, such as fresh-water streams and shallow extremities of San Francisco Bay. There has been some investigation of potential long-range wastewater-management alternatives based upon disposal in deep water in the bay, in the Pacific Ocean, or on land. Also, wastewater-reclamation and water-reuse concepts seem to be growing in favor with the public and should become and important part of future wastewater-management plans. Because most wastewater-reclamation and water-reuse systems would involve the use of land (that is agricultural irrigation, ground-water recharge, recreational reservoirs) local and regional lang-use planners can ass much to wastewater-management planning by identifying local and subregional waterwater-reclamation and water-reuse possibilities within their jurisdictions and integrating them with future land-use plans. The timely participation of planner is essential because Federal and State planning and funding deadlines for a regional wastewater-management system become effective in July 1973 and 1974, respectively.
NASA Astrophysics Data System (ADS)
Devi, Upama; Bhattacharyya, Krishna G.
2018-03-01
The sediments in stormwater runoff are recognised as the major sink of the heavy metals and affect the soil quality in the catchment. The runoff sediments are also important in the management of contaminant transport to receiving water bodies. In the present work, stormwater during several major rain events was collected from nine principal locations of Guwahati, India. The solid phase was separated from the liquid phase and was investigated for the total contents of Cd, Co, Cr, Cu, Mn and Zn as well as their distribution among the prominent chemical phases. Sequential extraction procedure was used for the chemical fractionation of the metals that contains five steps. The total metal concentration showed the trend, Cd < Co < Cu < Cr < Zn < Mn. The relative distribution of the metals showed that Cd was available mostly in the exchangeable and the carbonate bound fractions, which were the most mobile and high-risk fractions. Co with medium mobility was also found to be in the high-risk category. On the other hand, the mobilities of Cu and Zn were relatively low and these were, therefore, the least bioavailable metals in the runoff sediments falling in medium-risk category.
Changes in Central Asia’s Water Tower: Past, Present and Future
Chen, Yaning; Li, Weihong; Deng, Haijun; Fang, Gonghuan; Li, Zhi
2016-01-01
The Tienshan Mountains, with its status as “water tower”, is the main water source and ecological barrier in Central Asia. The rapid warming affected precipitation amounts and fraction as well as the original glacier/snowmelt water processes, thereby affecting the runoff and water storage. The ratio of snowfall to precipitation (S/P) experienced a downward trend, along with a shift from snow to rain. Spatially, the snow cover area in Middle Tienshan Mountains decreased significantly, while that in West Tienshan Mountains increased slightly. Approximately 97.52% of glaciers in the Tienshan Mountains showed a retreating trend, which was especially obvious in the North and East Tienshan Mountains. River runoff responds in a complex way to changes in climate and cryosphere. It appears that catchments with a higher fraction of glacierized area showed mainly increasing runoff trends, while river basins with less or no glacierization exhibited large variations in the observed runoff changes. The total water storage in the Tienshan Mountains also experienced a significant decreasing trend in Middle and East Tienshan Mountains, but a slight decreasing trend in West Tienshan Mountains, totally at an average rate of −3.72 mm/a. In future, water storage levels are expected to show deficits for the next half-century. PMID:27762285
Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin
2015-09-02
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.
Adeli, Ardeshir; Read, John J; Brooks, John P; Miles, Dana; Feng, Gary; Jenkins, Johnie N
2017-03-01
The inability to incorporate broiler litter (BL) into permanent hayfields and pastures leads to nutrient accumulation near the soil surface and increases the potential transport of nutrients in runoff. This study was conducted on Marietta silt loam soil to determine the effect of flue gas desulfurization (FGD) gypsum and lignite on P, N, C, and microbial concentrations in runoff. Treatments were (i) control (unfertilized) and (ii) BL at 13.4 Mg ha alone or (iii) treated with either FGD gypsum or lignite applied at 20% (w/w) (2.68 Mg ha). Rainfall simulators were used to produce a 5.6 cm h storm event sufficient in duration to cause 15 min of continuous runoff. Repeated rains were applied at 3-d intervals to determine how long FGD gypsum and lignite are effective in reducing loss of litter-derived N, P, and C from soil. Application of BL increased N, P, and C concentrations in runoff as compared to the control. Addition of FGD gypsum reduced ( < 0.05) water-soluble P and dissolved organic C concentrations in runoff by 39 and 16%, respectively, as compared to BL alone. Lignite reduced runoff total N and NH-N concentrations by 38 and 70%, respectively, as compared to BL alone. Addition of FGD gypsum or lignite failed to significantly reduce microbial loads in runoff, although both treatments reduced microbial concentration by >20%. Thus, BL treated with FGD and lignite can be considered as cost-effective management practices in the mitigation of P, N, and C and possibly microbial concentration in runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Runoff quality from no-till cotton fertilized with broiler litter in subsurface bands.
Adeli, A; Tewolde, H; Shankle, M W; Way, T R; Brooks, J P; McLaughlin, M R
2013-01-01
Surface broadcast of broiler litter to no-till row crops exposes the litter and its nutrients to risks of loss in runoff water and volatilization and may limit the potential benefit of litter to the crops. Subsurface banding of litter could alleviate these risks. A field study was conducted in 2008 and 2009 on an upland Falkner silt loam soil to determine the effect of broiler litter placement on runoff nutrient losses from no-till cotton ( L.). Treatments included surface broadcast broiler litter applied manually, subsurface-banded litter applied by tractor-drawn equipment, and no broiler litter, all in combination with or without winter wheat ( L.) cover crop residue. Broiler litter rate was 5.6 Mg ha. The experimental design was a randomized complete block with a split-plot arrangement of treatments replicated three times. In 2008, simulated rainfall was used to generate runoff 27 d after litter application. Subsurface-banded litter reduced runoff total C, N, P, NH, NO, Cu, Zn and water-soluble P (WP) concentrations by 72, 64, 51, 49, 70, 36, 65, and 77%, respectively, compared with surface broadcast. The reductions were greater in 2009 where runoff occurred 1 d after litter application. Bacterial runoff was decreased by one log with subsurface-banded litter compared to surface broadcast. Except for C, NH, N, and WP, the presence of winter cover crop residue did not affect the load or runoff nutrient concentrations in either year. The results indicate that subsurface banding litter to no-till cotton substantially reduces nutrient and bacterial losses in runoff compared with surface broadcasting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Tarkalson, David D; Mikkelsen, Robert L
2004-01-01
Land application of animal manures and fertilizers has resulted in an increased potential for excessive P losses in runoff to nutrient-sensitive surface waters. The purpose of this research was to measure P losses in runoff from a bare Piedmont soil in the southeastern United States receiving broiler litter or inorganic P fertilizer either incorporated or surface-applied at varying P application rates (inorganic P, 0-110 kg P ha(-1); broiler litter, 0-82 kg P ha(-1)). Rainfall simulation was applied at a rate of 76 mm h(-1). Runoff samples were collected at 5-min intervals for 30 min and analyzed for reactive phosphorus (RP), algal-available phosphorus (AAP), and total phosphorus (TP). Incorporation of both P sources resulted in P losses not significantly different than the unfertilized control at all application rates. Incorporation of broiler litter decreased flow-weighted concentration of RP in runoff by 97% and mass loss of TP in runoff by 88% compared with surface application. Surface application of broiler litter resulted in runoff containing between 2.3 and 21.8 mg RP L(-1) for application rates of 8 to 82 kg P ha(-1), respectively. Mass loss of TP in runoff from surface-applied broiler litter ranged from 1.3 to 8.5 kg P ha(-1) over the same application rates. Flow-weighted concentrations of RP and mass losses of TP in runoff were not related to application rate when inorganic P fertilizer was applied to the soil surface. Results for this study can be used by P loss assessment tools to fine-tune P source, application rate, and application method site factors, and to estimate extreme-case P loss from cropland receiving broiler litter and inorganic P fertilizers.
Water quality of an urban wet detention pond in Madison, Wisconsin, 1987-88
House, L.B.; Waschbusch, R.J.; Hughes, P.E.
1993-01-01
A 5,670-sq m wet detention pond was monitored by the U.S. Geological Survey to determine its effect on the water quality of urban runoff. The pond has a drainage area of 0.96-sq km, composed primarily of single-family residential land use. Event-mean concentrations (EMC) were determined from samples collected for sediment, nutrients, and selected metals at the pond's inflow and outflow sites. EMC samples were collected for 64 runoff events during the study period from February 1987 to April 1988. Storm precipitation ranged from 1 to 51 mm during these events. Inflow and outflow EMC and constituent loads were compared to determine the trap efficiency of the pond. Trap efficiency varied considerably among water-quality constituents. In general, the detention pond decreased the EMC of sampled constituents at the outlet compared to the inlet. The median decrease in EMC for suspended solids was 88 percent, 60 percent for total chemical oxygen demand (COD), 43 percent for total phosphorus, 38 percent for total Kjeldahl nitrogen, 65 percent for total nitrite plus nitrate, and 71 percent for total lead. A notable exception to the general decrease in EMC is for chloride. The EMC for chloride was generally higher in outflow from the pond than in the inflow. This is attributed to an unmonitored influx of chloride to the pond during the winter that subsequently was flushed out during monitored runoff events. The total study-period loads of most constituents were less leaving the pond than the loads entering it. This decrease is attributed to the constituents transported on suspended sediment being deposited in the pond. The decrease in total load of suspended solids was 88 percent, 62 percent for total COD, 58 percent for total phosphorus, 46 percent for total Kjeldahl nitrogen, 62 percent for total nitrite plus nitrate, 97 percent for total copper, and 93 percent for total lead. (USGS)
NASA Technical Reports Server (NTRS)
Sivapalan, Murugesu; Wood, Eric F.; Beven, Keith J.
1993-01-01
One of the shortcomings of the original theory of the geomorphologic unit hydrograph (GUH) is that it assumes that runoff is generated uniformly from the entire catchment area. It is now recognized that in many catchments much of the runoff during storm events is produced on partial areas which usually form on narrow bands along the stream network. A storm response model that includes runoff generation on partial areas by both Hortonian and Dunne mechanisms was recently developed by the authors. In this paper a methodology for integrating this partial area runoff generation model with the GUH-based runoff routing model is presented; this leads to a generalized GUH. The generalized GUH and the storm response model are then used to estimate physically based flood frequency distributions. In most previous work the initial moisture state of the catchment had been assumed to be constant for all the storms. In this paper we relax this assumption and allow the initial moisture conditions to vary between storms. The resulting flood frequency distributions are cast in a scaled dimensionless framework where issues such as catchment scale and similarity can be conveniently addressed. A number of experiments are performed to study the sensitivity of the flood frequency response to some of the 'similarity' parameters identified in this formulation. The results indicate that one of the most important components of the derived flood frequency model relates to the specification of processes within the runoff generation model; specifically the inclusion of both saturation excess and Horton infiltration excess runoff production mechanisms. The dominance of these mechanisms over different return periods of the flood frequency distribution can significantly affect the distributional shape and confidence limits about the distribution. Comparisons with observed flood distributions seem to indicate that such mixed runoff production mechanisms influence flood distribution shape. The sensitivity analysis also indicated that the incorporation of basin and rainfall storm scale also greatly influences the distributional shape of the flood frequency curve.
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Branch, Oliver; Attinger, Sabine; Thober, Stephan
2016-09-01
Land surface models incorporate a large number of process descriptions, containing a multitude of parameters. These parameters are typically read from tabulated input files. Some of these parameters might be fixed numbers in the computer code though, which hinder model agility during calibration. Here we identified 139 hard-coded parameters in the model code of the Noah land surface model with multiple process options (Noah-MP). We performed a Sobol' global sensitivity analysis of Noah-MP for a specific set of process options, which includes 42 out of the 71 standard parameters and 75 out of the 139 hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated at 12 catchments within the United States with very different hydrometeorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its applicable standard parameters (i.e., Sobol' indexes above 1%). The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for direct evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities because of their tight coupling via the water balance. A calibration of Noah-MP against either of these fluxes should therefore give comparable results. Moreover, these fluxes are sensitive to both plant and soil parameters. Calibrating, for example, only soil parameters hence limit the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Maoyi; Hou, Zhangshuan; Leung, Lai-Yung R.
2013-12-01
With the emergence of earth system models as important tools for understanding and predicting climate change and implications to mitigation and adaptation, it has become increasingly important to assess the fidelity of the land component within earth system models to capture realistic hydrological processes and their response to the changing climate and quantify the associated uncertainties. This study investigates the sensitivity of runoff simulations to major hydrologic parameters in version 4 of the Community Land Model (CLM4) by integrating CLM4 with a stochastic exploratory sensitivity analysis framework at 20 selected watersheds from the Model Parameter Estimation Experiment (MOPEX) spanning amore » wide range of climate and site conditions. We found that for runoff simulations, the most significant parameters are those related to the subsurface runoff parameterizations. Soil texture related parameters and surface runoff parameters are of secondary significance. Moreover, climate and soil conditions play important roles in the parameter sensitivity. In general, site conditions within water-limited hydrologic regimes and with finer soil texture result in stronger sensitivity of output variables, such as runoff and its surface and subsurface components, to the input parameters in CLM4. This study demonstrated the feasibility of parameter inversion for CLM4 using streamflow observations to improve runoff simulations. By ranking the significance of the input parameters, we showed that the parameter set dimensionality could be reduced for CLM4 parameter calibration under different hydrologic and climatic regimes so that the inverse problem is less ill posed.« less
GIS/RS-based Integrated Eco-hydrologic Modeling in the East River Basin, South China
NASA Astrophysics Data System (ADS)
Wang, Kai
Land use/cover change (LUCC) has significantly altered the hydrologic system in the East River (Dongjiang) Basin. Quantitative modeling of hydrologic impacts of LUCC is of great importance for water supply, drought monitoring and integrated water resources management. An integrated eco-hydrologic modeling system of Distributed Monthly Water Balance Model (DMWBM), Surface Energy Balance System (SEBS) was developed with aid of GIS/RS to quantify LUCC, to conduct physically-based ET (evapotranspiration) mapping and to predict hydrologic impacts of LUCC. To begin with, in order to evaluate LUCC, understand implications of LUCC and provide boundary condition for the integrated eco-hydrologic modeling, firstly the long-term vegetation dynamics was investigated based on Normalized Difference Vegetation Index (NDVI) data, and then LUCC was analyzed with post-classification methods and finally LUCC prediction was conducted based on Markov chain model. The results demonstrate that the vegetation activities decreased significantly in summer over the years. Moreover, there were significant changes in land use/cover over the past two decades. Particularly there was a sharp increase of urban and built-up area and a significant decrease of grassland and cropland. All these indicate that human activities are intensive in the East River Basin and provide valuable information for constructing scenarios for studying hydrologic impacts of LUCC. The physically-remote-sensing-based Surface Energy Balance System (SEBS) was employed to estimate areal actual ET for a large area rather than traditional point measurements . The SEBS was enhanced for application in complex vegetated area. Then the inter-comparison with complimentary ET model and distributed monthly water balance model was made to validate the enhanced SEBS (ESEBS). The application and test of ESEBS show that it has a good accuracy both monthly and annually and can be effectively applied in the East River Basin. The results of ET mapping based on ESEBS demonstrate that actual ET in the East River Basin decreases significantly in the last two decades, which is probably caused by decrease of sunshine duration. In order to effectively simulate hydrologic impact of LUCC, an integrated model of ESEBS and distributed monthly water balance model has been developed in this study. The model is capable of considering basin terrain and the spatial distribution of precipitation and soil moisture. Particularly, the model is unique in accounting for spatial and temporal variations of vegetation cover and ET, which provides a powerful tool for studying the hydrologic impacts of LUCC. The model was applied to simulate the monthly runoff for the period of 1980-1994 for model calibration and for the period of 1995-2000 for validation. The calibration and validation results show that the newly integrated model is suitable for simulating monthly runoff and studying hydrologic impacts ofLUCC in the East River Basin. Finally, the newly integrated model was firstly applied to analyze the relationship of land use and hydrologic regimes based on the land use maps in 1980 and 2000. Then the newly integrated model was applied to simulate the potential impacts of land use change on hydrologic regimes in the East River Basin under a series of hypothetical scenarios. The results show that ET has a positive relationship with Leaf Area Index (LAI) while runoff has a negative relationship with LAI in the same climatic zone, which can be elaborated by surface energy balance and water balance equation. Specifically, on an annual basis, ET of forest scenarios is larger than that of grassland or cropland scenarios. On the contrary, runoff of forest scenarios is less than that of grassland or cropland scenarios. On a monthly basis, for most of the scenarios, particularly the grassland and cropland scenarios, the most significant changes occurred in the rainy season. The results indicate that deforestation would cause increase of runoff and decrease of ET on an annual basis in the East River Basin. On a monthly basis, deforestation would cause significant decrease of ET and increase of runoff in the rainy season in the East River Basin. These results are not definitive statements as to what will happen to runoff, ET and soil moisture regimes in the East River Basin, but rather offer an insight into the plausible changes in basin hydrology due to land use change. The integrated model developed in this study and these results have significant implications for integrated water resources management and sustainable development in the East River Basin.
Wang, Lingqing; Liang, Tao; Chong, Zhongyi; Zhang, Chaosheng
2011-01-01
Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h⁻¹) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.
Zhao, Longshan; Wu, Faqi
2015-01-01
In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (v m) and ponding time of depression (t p), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (l i) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (v i) was derived from the upstream flow accumulation area using v m. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of l i/v i) and t p. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635
Zhao, Longshan; Wu, Faqi
2015-01-01
In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs.
A two-stage storage routing model for green roof runoff detention.
Vesuviano, Gianni; Sonnenwald, Fred; Stovin, Virginia
2014-01-01
Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric flow rate of runoff. Modern green roof designs are multi-layered, their main components being vegetation, substrate and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine the modelling of the separate layers into a single process; these models have limited predictive capability for roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a granular substrate over a hard plastic 'egg box'-style drainage layer and fibrous protection mat is presented. The substrate and drainage layer/protection mat are modelled separately by previously verified sub-models. Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled runoff is compared to the monitored runoff for each storm event. The modelled runoff profiles are accurate (mean Rt(2) = 0.971), but further characterization of the substrate component is required for the model to be generically applicable to other roof configurations with different substrate.
Rankl, James G.
1990-01-01
A physically based point-infiltration model was developed for computing infiltration of rainfall into soils and the resulting runoff from small basins in Wyoming. The user describes a 'design storm' in terms of average rainfall intensity and storm duration. Information required to compute runoff for the design storm by using the model include (1) soil type and description, and (2) two infiltration parameters and a surface-retention storage parameter. Parameter values are tabulated in the report. Rainfall and runoff data for three ephemeral-stream basins that contain only one type of soil were used to develop the model. Two assumptions were necessary: antecedent soil moisture is some long-term average, and storm rainfall is uniform in both time and space. The infiltration and surface-retention storage parameters were determined for the soil of each basin. Observed rainstorm and runoff data were used to develop a separation curve, or incipient-runoff curve, which distinguishes between runoff and nonrunoff rainfall data. The position of this curve defines the infiltration and surface-retention storage parameters. A procedure for applying the model to basins that contain more than one type of soil was developed using data from 7 of the 10 study basins. For these multiple-soil basins, the incipient-runoff curve defines the infiltration and retention-storage parameters for the soil having the highest runoff potential. Parameters were defined by ranking the soils according to their relative permeabilities and optimizing the position of the incipient-runoff curve by using measured runoff as a control for the fit. Analyses of runoff from multiple-soil basins indicate that the effective contributing area of runoff is less than the drainage area of the basin. In this study, the effective drainage area ranged from 41.6 to 71.1 percent of the total drainage area. Information on effective drainage area is useful in evaluating drainage area as an independent variable in statistical analyses of hydrologic data, such as annual peak frequency distributions and sediment yield.A comparison was made of the sum of the simulated runoff and the sum of the measured runoff for all available records of runoff-producing storms in the 10 study basins. The sums of the simulated runoff ranged from 12.0 percent less than to 23.4 percent more than the sums of the measured runoff. A measure of the standard error of estimate was computed for each data set. These values ranged from 20 to 70 percent of the mean value of the measured runoff. Rainfall-simulator infiltrometer tests were made in two small basins. The amount of water uptake measured by the test in Dugout Creek tributary basin averaged about three times greater than the amount of water uptake computed from rainfall and runoff data. Therefore, infiltrometer data were not used to determine infiltration rates for this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.
2014-09-01
The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically,more » differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.« less
Tabbara, Hadi
2003-01-01
Phosphorus (P) added to soil from fertilizer or manure application could pose a threat to water quality due to its role in eutrophication of fresh water resources. Incorporating such amendments into the soil is an established best management practice (BMP) for reducing soluble P losses in runoff water, but could also lead to higher erosion. The objective of this study was to test whether incorporation of manure or fertilizer 24 h before an intense rain could also reduce sediment-bound and total phosphorus (TP) losses in runoff. A rainfall simulation study was conducted on field plots (sandy loam with 6-7% slope, little surface residue, recently cultivated) that received two application rates of liquid swine manure or liquid ammonium polyphosphate fertilizer, using either surface-broadcast or incorporated methods of application. Incorporation increased the total suspended solids (TSS) concentrations in runoff but mass losses were not affected. Incorporation also reduced flow-weighted concentrations and losses of dissolved reactive phosphorus (DRP) and TP by as much as 30 to 60% depending on source (fertilizer vs. manure) and application rate. Phosphorus is moved below the mixing zone of interaction on incorporation, and thus the effect of the amount and availability of P in this zone is more important than cultivation on subsequent P losses in runoff. Incorporating manure or fertilizer in areas of intense erosive rain, recent extensive tillage, and with little or no surface residue is therefore a best management practice that should be adhered to in order to minimize contamination of surface water. Results also show comparatively lower P losses from manure than fertilizer.
Glaciers and ice caps outside Greenland
Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.
2015-01-01
Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).
Ramirez-Avila, John J; Radcliffe, David E; Osmond, Deanna; Bolster, Carl; Sharpley, Andrew; Ortega-Achury, Sandra L; Forsberg, Adam; Oldham, J Larry
2017-11-01
The Agricultural Policy Environmental eXtender (APEX) model has been widely applied to assess phosphorus (P) loss in runoff water and has been proposed as a model to support practical decisions regarding agricultural P management, as well as a model to evaluate tools such as the P Index. The aim of this study is to evaluate the performance of APEX to simulate P losses from agricultural systems to determine its potential use for refinement or replacement of the P Index in the southern region of the United States. Uncalibrated and calibrated APEX model predictions were compared against measured water quality data from row crop fields in North Carolina and Mississippi and pasture fields in Arkansas and Georgia. Calibrated models satisfactorily predicted event-based surface runoff volumes at all sites (Nash-Sutcliffe efficiency [NSE] > 0.47, |percent bias [PBIAS]| < 34) except Arkansas (NSE < 0.11, |PBIAS| < 50) but did not satisfactory simulate sediment, dissolved P, or total P losses in runoff water. The APEX model tended to underestimate dissolved and total P losses from fields where manure was surface applied. The model also overestimated sediments and total P loads during irrigation events. We conclude that the capability of APEX to predict sediment and P losses is limited, and consequently so is the potential for using APEX to make P management recommendations to improve P Indices in the southern United States. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Highway runoff quality in Ireland.
Berhanu Desta, Mesfin; Bruen, Michael; Higgins, Neil; Johnston, Paul
2007-04-01
Highway runoff has been identified as a significant source of contaminants that impact on the receiving aquatic environment. Several studies have been completed documenting the characteristics of highway runoff and its implication to the receiving water in the UK and elsewhere. However, very little information is available for Ireland. The objective of this study was to determine the quality of highway runoff from major Irish roads under the current road drainage design and maintenance practice. Four sites were selected from the M4 and the M7 motorways outside Dublin. Automatic samplers and continuous monitoring devices were deployed to sample and monitor the runoff quality and quantity. More than 42 storm events were sampled and analysed for the heavy metals Cd, Cu, Pb, and Zn, 16 US EPA specified PAHs, volatile organic compounds including MTBE, and a number of conventional pollutants. All samples were analysed based on the Standard Methods. Significant quantities of solids and heavy metals were detected at all sites. PAHs were not detected very often, but when detected the values were different from quantities observed in UK highways. The heavy metal concentrations were strongly related to the total suspended solids concentrations, which has a useful implication for runoff management strategies. No strong relationship was discovered between pollutant concentrations and event characteristics such as rainfall intensity, antecedent dry days (ADD), or rainfall depth (volume). This study has demonstrated that runoff from Irish motorways was not any cleaner than in the UK although the traffic volume at the monitored sites was relatively smaller. This calls for a site specific investigation of highway runoff quality before adopting a given management strategy.
Kim, D G; Jeong, K; Ko, S O
2014-01-01
Highway runoff is known to be an important non-point source (NPS), increasing the load of pollutants in receiving water. For reducing NPS pollutants in runoff, removal of road deposited sediment (RDS) by sweeping is considered effective. However, the contribution of sweeping to the improvement of runoff quality has not been clearly and quantitatively demonstrated so far. In this study, a field test was carried out on a section of operating highway in Korea to investigate the effectiveness of sweeping on improving the quality of highway runoff. Results showed that the average reduction in the load of RDS by sweeping was 61.10% with a standard deviation of 1.74%. RDS removal efficiency decreased when the sweeping speed increased from 4-8 to 20 km h(-1), the load decreased from 12.5 to 1.25 g m(-2) and particle size decreased from sand to silt/clay size ranges. Runoff was induced by applying a 15 mm h(-1) artificial rainfall to both swept and non-swept sections. Analysis of runoff quality showed that the event mean concentrations of total suspended solid, biological oxygen demand, chemical oxygen demand, nutrients and most of the heavy metals were reduced by 31-87% after sweeping. In addition, field tests for RDS build-up indicated a sweeping frequency of once every four or five days to prevent re-suspension of RDS. The results of this study suggest that sweeping can be the best management practice for effectively reducing RDS on highways and improving the quality of highway runoff.
Topp, Edward; Monteiro, Sara C; Beck, Andrew; Coelho, Bonnie Ball; Boxall, Alistair B A; Duenk, Peter W; Kleywegt, Sonya; Lapen, David R; Payne, Michael; Sabourin, Lyne; Li, Hongxia; Metcalfe, Chris D
2008-06-15
Municipal biosolids are a source of nutrients for crop production. Beneficial Management Practices (BMPs) can be used to minimize the risk of contamination of adjacent water resources with chemical or microbial agents that are of public or environmental health concern. In this field study, we applied biosolids slurry at a commercial rate using either subsurface injection or broadcast application followed by incorporation. Precipitation was simulated at 1, 3, 7, 22, 36 and 266 days post-application on 2 m(2) microplots to evaluate surface runoff of 9 model pharmaceuticals and personal care products (PPCPs), atenolol, carbamazepine, cotinine, gemfibrozil, naproxen, ibuprofen, acetaminophen, sulfamethoxazole and triclosan. In runoff from the injected plots, concentrations of the model PPCPs were generally below the limits of quantitation. In contrast, in the broadcast application treatment, the concentrations of atenolol, carbamazepine, cotinine, gemfibrozil, naproxen, sulfamethoxazole and triclosan on the day following application ranged from 70-1477 ng L(-1) in runoff and generally declined thereafter with first order kinetics. The total mass of PPCPs mobilized in surface runoff per m(2) of the field ranged from 0.63 microg for atenolol to 21.1 microg for ibuprofen. For ibuprofen and acetaminophen, concentrations in runoff first decreased and then increased, suggesting that these drugs were initially chemically or physically sequestered in the biosolids slurry, and subsequently released in the soil. Carbamazepine and triclosan were detected at low concentrations in a runoff event 266 days after broadcast application. Overall, this study showed that injection of biosolids slurry below the soil surface could effectively eliminate surface runoff of PPCPs.
Antibiotic losses in leaching and surface runoff from manure-amended agricultural land.
Dolliver, Holly; Gupta, Satish
2008-01-01
A 3-yr field study quantified leaching and runoff losses of antibiotics from land application of liquid hog (chlortetracycline and tylosin) and solid beef (chlortetracycline, monensin, and tylosin) manures under chisel plowing and no-tillage systems. The study was conducted in southwestern Wisconsin, a karst area with steep, shallow, macroporous soils. Relative mass losses of chlortetracycline, monensin, and tylosin were <5% of the total amount applied with manure. Chlortetracycline was only detected in runoff, whereas monensin and tylosin were detected in leachate and runoff. Highest concentrations of monensin and tylosin in the leachate were 40.9 and 1.2 microg L(-1), respectively. Highest chlortetracycline, monensin, and tylosin concentrations in runoff were 0.5, 57.5, and 6.0 microg L(-1), respectively. For all three antibiotics, >90% of detections and 99% of losses occurred during the non-growing season due to fall manure application and slow degradation of antibiotics at cold temperatures. During years of high snowmelt, runoff accounted for nearly 100% of antibiotic losses, whereas during years of minimal snowmelt, runoff accounted for approximately 40% of antibiotic losses. Antibiotic losses were generally higher from the no-tillage compared with chisel plow treatment due to greater water percolation as a result of macroporosity and greater runoff due to lack of surface roughness in the no-tillage plots during the non-growing season. The results from this study suggest that small quantities of dissolved antibiotics could potentially reach surface and ground waters in the Upper Midwestern USA from manure-amended shallow macroporous soils underlain with fractured bedrock.
Land application of sugar beet by-products: effects on runoff and percolating water quality.
Kumar, Kuldip; Rosen, Carl J; Gupta, Satish C; McNearney, Matthew
2009-01-01
Water quality concerns, including greater potential for nutrient transport to surface waters resulting in eutrophication and nutrient leaching to ground water, exist when agricultural or food processing industry wastes and by-products are land applied. Plot- and field-scale studies were conducted to evaluate the effects of sugar beet by-products on NO3-N and P losses and biochemical oxygen demand (BOD) in runoff and NO3-N concentrations in percolating waters. In the runoff plot study, treatments in the first year included two rates (224 and 448 Mg ha(-1) fresh weight) of pulp and spoiled beets and a nonfertilized control. In the second year, no by-products were applied on the treated plots, the control treatment was fertilized with N fertilizer, and an additional treatment was added as a nonfertilized control in buffer areas. Wheat (Triticum aestivum L.) was grown in the year of by-product application and sugar beet (Beta vulgaris L.) in the following year. In the percolation field study, the treatments were the control, pulp (224 Mg ha(-)(1)), and spoiled beets (224 Mg ha(-1)). Results from the runoff plot showed that both by-products caused immobilization of soil inorganic N and thus reduced NO3-N losses in runoff and soil waters during the first growing season. There was some risk of NO3-N exceeding the drinking water limit of 10 mg L(-1), especially between the period of wheat harvest and soil freezing in fall when pulp was applied at 448 Mg ha(-1). The field-scale study showed that by-product application at 224 Mg ha(-1) did not result in increased ground water NO3-N concentrations. Application of spoiled beets at both rates caused significantly higher BODs in runoff in the first year of application. The concentrations of total and soluble reactive P (SRP) were also higher from both rates of spoiled beet application and from the higher application rate of pulp during the 2-yr study period. These high BODs and total P and SRP concentrations in runoff waters from land application of sugar beet by-product suggest that application rates should not be higher than 224 Mg ha(-1). Best management practices that prevent runoff from entering surface waters directly from these fields are warranted.
Runoff projection under climate change over Yarlung Zangbo River, Southwest China
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Xu, Yue-Ping
2017-04-01
The Yarlung Zangbo River is located in southwest of China, one of the major source of "Asian water tower". The river has great hydropower potential and provides vital water resource for local and downstream agricultural production and livestock husbandry. Compared to its drainage area, gauge observation is sometimes not enough for good hydrological modeling in order to project future runoff. In this study, we employ a semi-distributed hydrologic model SWAT to simulate hydrological process of the river with rainfall observation and TRMM 3B4V7 respectively and the hydrological model performance is evaluated based on not only total runoff but snowmelt, precipitation and groundwater components. Firstly, calibration and validation of the hydrological model are executed to find behavioral parameter sets for both gauge observation and TRMM data respectively. Then, behavioral parameter sets with diverse efficiency coefficient (NS) values are selected and corresponding runoff components are analyzed. Robust parameter sets are further employed in SWAT coupled with CMIP5 GCMs to project future runoff. The final results show that precipitation is the dominating contributor nearly all year around, while snowmelt and groundwater are important in the summer and winter alternatively. Also sufficient robust parameter sets help reduce uncertainty in hydrological modeling. Finally, future possible runoff changes will have major consequences for water and flood security.
Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model
Granato, Gregory; Jones, Susan Cheung
2017-01-01
The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.
Young, Stacie T.M.; Ball, Marcael T.J.
2004-01-01
Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two sites, continuous streamflow data at three sites, and water-quality data at five sites, which include the three streamflow sites. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2003 and June 30, 2004. A total of 30 samples was collected over four storms during July 1, 2003 to June 30, 2004. In general, an attempt was made to collect grab samples nearly simultaneously at all five sites, and flow-weighted time-composite samples were collected at the three sites equipped with automatic samplers. However, all four storms were partially sampled because either not all stations were sampled or only grab samples were collected. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, copper, lead, and zinc). Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples, collected during storms and during routine maintenance, were also collected to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.
NASA Astrophysics Data System (ADS)
Bitew, M. M.; Goodrich, D. C.; Demaria, E.; Heilman, P.; Kautz, M. A.
2017-12-01
Walnut Gulch is a semi-arid environment experimental watershed and Long Term Agro-ecosystem Research (LTAR) site managed by USDA-ARS Southwest Watershed Research Center for which high-resolution long-term hydro-climatic data are available across its 150 km2 drainage area. In this study, we present the analysis of 50 years of continuous hourly rainfall data to evaluate runoff control and generation processes for improving the QA-QC plans of Walnut Gulch to create high-quality data set that is critical for reducing water balance uncertainties. Multiple linear regression models were developed to relate rainfall properties, runoff characteristics and watershed properties. The rainfall properties were summarized to event based total depth, maximum intensity, duration, the location of the storm center with respect to the outlet, and storm size normalized to watershed area. We evaluated the interaction between the runoff and rainfall and runoff as antecedent moisture condition (AMC), antecedent runoff condition (ARC) and, runoff depth and duration for each rainfall events. We summarized each of the watershed properties such as contributing area, slope, shape, channel length, stream density, channel flow area, and percent of the area of retention stock ponds for each of the nested catchments in Walnut Gulch. The evaluation of the model using basic and categorical statistics showed good predictive skill throughout the watersheds. The model produced correlation coefficients ranging from 0.4-0.94, Nash efficiency coefficients up to 0.77, and Kling-Gupta coefficients ranging from 0.4 to 0.98. The model predicted 92% of all runoff generations and 98% of no-runoff across all sub-watersheds in Walnut Gulch. The regression model also indicated good potential to complement the QA-QC procedures in place for Walnut Gulch dataset publications developed over the years since the 1960s through identification of inconsistencies in rainfall and runoff relations.
Kanematsu, Masakazu; Shimizu, Yoshihisa; Sato, Keisuke; Kim, Suejin; Suzuki, Tasuma; Park, Baeksoo; Saino, Reiko; Nakamura, Masafumi
2009-08-01
Lack of understanding of dioxins mass loading into the aquatic environment motivated the quantitative investigation of dioxins runoff from paddy fields during one entire irrigation period in the Minakuchi region, Japan. Combination use of the chemically activated luciferase gene expression (CALUX) bioassay together with high resolution gas chromatography and high resolution mass spectrometry (HRGC/HRMS) enabled efficient investigation of dioxins contamination. The result shows that the congener profile in irrigation runoff is quite similar to those in paddy soil samples and that 1,3,6,8-/1,3,7,9-TeCDD and OCDD derived from pesticides (i.e., pentachlorophenol (PCP) and chloronitrophen (CNP)) are predominant congeners in irrigation runoff. Although it is not surprising that dioxins concentration was strongly dependent on the suspended solids (SS) and the particulate organic carbon (POC) concentration, the dioxins toxic equivalency (TEQ) concentration was extremely high in irrigation runoff (max: 16,380 pg/L, corresponding to 12 pg WHO-TEQ/L) due to runoff of highly contaminated paddy soils. The results imply that dioxins concentration in a river must be monitored considering soil contamination level, land use, and soil runoff events. Using experimental data and a theoretical model, the mass loading of dioxins from the paddy fields by irrigation runoff was estimated to be 1.50 x 10(-2)% of total amount of dioxins accumulated in the paddy fields. Given the results of other researches, it is implied the following: 1) large portion of paddy soils released into the river appear to be settled on the riverbed due to small water flux, and, then, washed out and transported by rainfall runoff after irrigation period, 2) rainfall runoff itself also wash out paddy soils directly from paddy fields. Combination use of the CALUX bioassay with HRGC/HRMS is demonstrated as an alternative strategy to assess dioxins contamination in the environment.
Phosphorus in waters from sewage sludge amended lysimeters.
Hinesly, T D; Jones, R L
1990-01-01
In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.
Simulating hydrologic and hydraulic processes throughout the Amazon River Basin
Beighley, R.E.; Eggert, K.G.; Dunne, T.; He, Y.; Gummadi, V.; Verdin, K.L.
2009-01-01
Presented here is a model framework based on a land surface topography that can be represented with various degrees of resolution and capable of providing representative channel/floodplain hydraulic characteristics on a daily to hourly scale. The framework integrates two models: (1) a water balance model (WBM) for the vertical fluxes and stores of water in and through the canopy and soil layers based on the conservation of mass and energy, and (2) a routing model for the horizontal routing of surface and subsurface runoff and channel and floodplain waters based on kinematic and diffusion wave methodologies. The WBM is driven by satellite-derived precipitation (TRMM_3B42) and air temperature (MOD08_M3). The model's use of an irregular computational grid is intended to facilitate parallel processing for applications to continental and global scales. Results are presented for the Amazon Basin over the period Jan 2001 through Dec 2005. The model is shown to capture annual runoff totals, annual peaks, seasonal patterns, and daily fluctuations over a range of spatial scales (>1, 000 to < 4·7M km2). For the period of study, results suggest basin-wide total water storage changes in the Amazon vary by approximately + /− 5 to 10 cm, and the fractional components accounting for these changes are: root zone soil moisture (20%), subsurface water being routed laterally to channels (40%) and channel/floodplain discharge (40%). Annual variability in monthly water storage changes by + /− 2·5 cm is likely due to 0·5 to 1 month variability in the arrival of significant rainfall periods throughout the basin.
Open Source Tools for Assessment of Global Water Availability, Demands, and Scarcity
NASA Astrophysics Data System (ADS)
Li, X.; Vernon, C. R.; Hejazi, M. I.; Link, R. P.; Liu, Y.; Feng, L.; Huang, Z.; Liu, L.
2017-12-01
Water availability and water demands are essential factors for estimating water scarcity conditions. To reproduce historical observations and to quantify future changes in water availability and water demand, two open source tools have been developed by the JGCRI (Joint Global Change Research Institute): Xanthos and GCAM-STWD. Xanthos is a gridded global hydrologic model, designed to quantify and analyze water availability in 235 river basins. Xanthos uses a runoff generation and a river routing modules to simulate both historical and future estimates of total runoff and streamflows on a monthly time step at a spatial resolution of 0.5 degrees. GCAM-STWD is a spatiotemporal water disaggregation model used with the Global Change Assessment Model (GCAM) to spatially downscale global water demands for six major enduse sectors (irrigation, domestic, electricity generation, mining, and manufacturing) from the region scale to the scale of 0.5 degrees. GCAM-STWD then temporally downscales the gridded annual global water demands to monthly results. These two tools, written in Python, can be integrated to assess global, regional or basin-scale water scarcity or water stress. Both of the tools are extensible to ensure flexibility and promote contribution from researchers that utilize GCAM and study global water use and supply.
Promoting nitrate removal in rain gardens | Science Inventory ...
Rain gardens are vegetated surface depressions, often located at low points in landscapes, designed to receive stormwater runoff from roads, roofs, and parking lots. The gardens’ sandy soils allow stormwater to drain quickly to the native soils below and eventually to groundwater. The rain garden vegetation and soils remove pollutants and nutrients from stormwater runoff through biological and physical processes such as plant uptake and sorption to soil particles. In comparison with stormwater release to receiving waters through conventional storm drain systems, infiltrating stormwater through rain gardens reduces peak flows and loadings of both pollutants and nutrients. This reduction improves the physical and biological integrity of receiving streams by reducing stream bank erosion and negative effects on stream communities. While local governments and individual homeowners are building these systems, relatively few scientific studies have documented the ability of rain gardens to remove pollutants and nutrients. This U.S. EPA long-term research project investigates: 1) the performance of rain gardens in removing pollutants, and 2) whether currently-accepted design standards can be adjusted to improve nitrate removal capabilities. Typical rain garden designs provide large removals of pollutants of concern, including heavy metals, phosphorus, total nitrogen, and ammonium. The gardens have been less successful in removing nitrate, an importan
Lee, Kathy E.; Lorenz, David L.; Petersen, James C.; Greene, John B.
2012-01-01
The U.S. Geological Survey determined seasonal variability in nutrients, carbon, and algal biomass in 22 wadeable streams over a 1-year period during 2007 or 2008 within three geographically distinct areas in the United States. The three areas are the Upper Mississippi River Basin (UMIS) in Minnesota, the Ozark Plateaus (ORZK) in southern Missouri and northern Arkansas, and the Upper Snake River Basin (USNK) in southern Idaho. Seasonal patterns in some constituent concentrations and algal responses were distinct. Nitrate concentrations were greatest during the winter in all study areas potentially because of a reduction in denitrification rates and algal uptake during the winter, along with reduced surface runoff. Decreases in nitrate concentrations during the spring and summer at most stream sites coincided with increased streamflow during the snowmelt runoff or spring storms indicating dilution. The continued decrease in nitrate concentrations during summer potentially is because of a reduction in nitrate inputs (from decreased surface runoff) or increases in biological uptake. In contrast to nitrate concentrations, ammonia concentrations varied among study areas. Ammonia concentration trends were similar at UMIS and USNK sampling sites with winter peak concentrations and rapid decreases in ammonia concentrations by spring or early summer. In contrast, ammonia concentrations at OZRK sampling sites were more variable with peak concentrations later in the year. Ammonia may accumulate in stream water in the winter under ice and snow cover at the UMIS and USNK sites because of limited algal metabolism and increased mineralization of decaying organic matter under reducing conditions within stream bottom sediments. Phosphorus concentration patterns and the type of phosphorus present changes with changing hydrologic conditions and seasons and varied among study areas. Orthophosphate concentrations tended to be greater in the summer at UMIS sites, whereas total phosphorus concentrations at most UMIS and USNK sites peaked in the spring during runoff and then decreased through the remainder of the sampling period. Total phosphorus and orthophosphate concentrations in OZRK streams peaked during summer indicating a runoff-based source of both nutrients. Orthophosphate concentrations may increase in streams in the late summer when surface runoff composes less of total streamflow, and when groundwater containing orthophosphate becomes a more dominant source in streams during lower flows. Seston chlorophyll a concentrations were greatest early in the growing season (spring), whereas the spring runoff events coincided with reductions in benthic algal chlorophyll a biomass likely because of scour of benthic algae from the channel bottom that are entrained in the water column during that period. Nitrate, ammonia, and orthophosphate concentrations also decreased during that same period, indicating dilution in the spring during runoff events. The data from this study indicate that the source of water (surface runoff or groundwater) to a stream and the intensity of major runoff events are important factors controlling instream concentrations. Biological processes appear to affect nutrient concentrations during more stable lower flow periods in later summer, fall, and winter when residence time of water in a channel is longer, which allows more time for biological uptake and transformations. Management of nutrient conditions in streams is challenging and requires an understanding of multiple factors that affect in-stream nutrient concentrations and biological uptake and growth.
Ecohydrology of a resource-conserving semiarid woodland: Effects of scale and disturbance
Wilcox, B.P.; Breshears, D.D.; Allen, Craig D.
2003-01-01
In semiarid landscapes, the linkage between runoff and vegetation is a particularly close one. In this paper we report on the results of a long-term and multiple-scale study of interactions between runoff, erosion, and vegetation in a piñon–juniper woodland in New Mexico. We use our results to address three knowledge gaps: (1) the temporal scaling relationships between precipitation and runoff; (2) the effects of spatial scale on runoff and erosion, as influenced by vegetation; and (3) the influence of disturbance on these relationships. On the basis of our results, we tested three assumptions that represent current thinking in these areas (as evidenced, for example, by explicit or implicit assumptions embedded in commonly used models). The first assumption, that aggregated precipitation can be used as a surrogate for total runoff in semiarid environments, was not verified by our findings. We found that when runoff is generated mainly by overland flow in these systems, aggregated precipitation amounts alone (by year, season, or individual event) are a poor predictor of runoff amounts. The second assumption, that at the hillslope and smaller scales runoff and erosion are independent of spatial scale, was likewise not verified. We found that the redistribution of water and sediment within the hillslope was substantial and that there was a strong and nonlinear reduction in unit-area runoff and erosion with increasing scale (our scales were slope lengths ranging from 1 m to 105 m). The third assumption, that disturbance-related increases in runoff and erosion remain constant with time, was partially verified. We found that for low-slope-gradient sites, disturbance led to accelerated runoff and erosion, and these conditions may persist for a decade or longer. On the basis of our findings, we further suggest that (a) disturbance alters the effects of scale on runoff and erosion in a predictable way—scale relationships in degraded areas will be fundamentally different from those in nondegraded areas because more runoff will escape off site and erosion rates will be much higher; and (b) there exists a slope threshold, below which semiarid landscapes will eventually recover following disturbance and above which there will be no recovery without mitigation or remediation.
Lu, Hai-Ming; Yin, Cheng-Qing; Wang, Xia-Hui; Zou, Ying
2008-10-01
Nitrogen loss characteristics via surface runoff from two typical agricultural catchments into Yuqiao Reservoir--the important drinking water source area for Tianjin city in semi-arid North China were investigated through two-year in-situ monitoring and indoor chemical analysis. The results showed that annual nitrogen export mainly concentrated in the rainy period between June to September. About 41% of the annual water output and 52% of the annual total nitrogen output took place in two rainfall events with rainfall> 60 mm in Taohuasi catchment (T catchment), while the distribution of water and nitrogen export among various rainfalls in Caogezhuang catchment (C catchment) was smooth. The rainfall thresholds for the appearance of water and nitrogen export from the outlet of T catchment and C catchment were 20 mm and 10 mm. The mean annual runoff coefficients of C and T catchments were 0.013 2 and 0.001 6, respectively. The mean annual total nitrogen exports from C catchment and T catchment were 1.048 kg x (hm2 x a)(-1) and 0.158 kg x (hm2 x a)(-1) respectively. The difference of micro-topography, landscape pattern and hydrological pathway between two catchments could explain the nitrogen export gap. Micro-topographical features created by long-term anthropological disturbance decrease the runoff generation ability. The distance between nitrogen source area and the outlet in T catchment was around 1 500 m, while such distance in C catchment was just around 200 m. The short distance added the nitrogen export risk via surface runoff. Road-type hydrological pathway in C catchment could transfer nitrogen into the receiving water via surface runoff directly, while nitrogen could be detained within the pathway by many sink structures such as small stones, vegetated buffer strip and dry ponds in T catchment.
Environmental urban runoff monitoring
NASA Astrophysics Data System (ADS)
Yu, Byunggu; Behera, Pradeep K.; Kim, Seon Ho; Ramirez Rochac, Juan F.; Branham, Travis
2010-04-01
Urban stormwater runoff has been a critical and chronic problem in the quantity and quality of receiving waters, resulting in a major environmental concern. To address this problem engineers and professionals have developed a number of solutions which include various monitoring and modeling techniques. The most fundamental issue in these solutions is accurate monitoring of the quantity and quality of the runoff from both combined and separated sewer systems. This study proposes a new water quantity monitoring system, based on recent developments in sensor technology. Rather than using a single independent sensor, we harness an intelligent sensor platform that integrates various sensors, a wireless communication module, data storage, a battery, and processing power such that more comprehensive, efficient, and scalable data acquisition becomes possible. Our experimental results show the feasibility and applicability of such a sensor platform in the laboratory test setting.
Contribution of environmental forcings to US runoff changes for the period 1950–2010
Forbes, Whitney L.; Mao, Jiafu; Jin, Mingzhou; ...
2018-05-04
Runoff in the United States is changing, and this study finds that the measured change is dependent on the geographic region and varies seasonally. Specifically, observed annual total runoff had an insignificant increasing trend in the US between 1950 and 2010, but this insignificance was due to regional heterogeneity with both significant and insignificant increases in the eastern, northern, and southern US, and a greater significant decrease in the western US. Trends for seasonal mean runoff also differed across regions. By region, the season with the largest observed trend was autumn for the east (positive), spring for the north (positive),more » winter for the south (positive), winter for the west (negative), and autumn for the US as a whole (positive). Based on the detection and attribution analysis using gridded WaterWatch runoff observations along with semi-factorial land surface model simulations from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we found that while the roles of CO 2 concentration, nitrogen deposition, and land use and land cover were inconsistent regionally and seasonally, the effect of climatic variations was detected for all regions and seasons, and the change in runoff could be attributed to climate change in summer and autumn in the south and in autumn in the west. It was also found that the climate-only and historical transient simulations consistently underestimated the runoff trends, possibly due to precipitation bias in the MsTMIP driver or within the models themselves.« less
NASA Astrophysics Data System (ADS)
Donker, N. H. W.
2001-01-01
A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall-runoff relationship of the 202 km2 Teba river catchment, located in semi-arid south-eastern Spain. The period of available data (1976-1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years.The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes.The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum.Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level.
Contribution of environmental forcings to US runoff changes for the period 1950–2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, Whitney L.; Mao, Jiafu; Jin, Mingzhou
Runoff in the United States is changing, and this study finds that the measured change is dependent on the geographic region and varies seasonally. Specifically, observed annual total runoff had an insignificant increasing trend in the US between 1950 and 2010, but this insignificance was due to regional heterogeneity with both significant and insignificant increases in the eastern, northern, and southern US, and a greater significant decrease in the western US. Trends for seasonal mean runoff also differed across regions. By region, the season with the largest observed trend was autumn for the east (positive), spring for the north (positive),more » winter for the south (positive), winter for the west (negative), and autumn for the US as a whole (positive). Based on the detection and attribution analysis using gridded WaterWatch runoff observations along with semi-factorial land surface model simulations from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we found that while the roles of CO 2 concentration, nitrogen deposition, and land use and land cover were inconsistent regionally and seasonally, the effect of climatic variations was detected for all regions and seasons, and the change in runoff could be attributed to climate change in summer and autumn in the south and in autumn in the west. It was also found that the climate-only and historical transient simulations consistently underestimated the runoff trends, possibly due to precipitation bias in the MsTMIP driver or within the models themselves.« less
Han, Jin Feng; Liu, Shuo; Dai, Jun; Qiu, Hao
2018-02-01
With the aim to control and reduce rainfall and snowmelt runoff in northern cities in China, the summer runoff and spring snowmelt runoff in the studied area were simulated with the establishment of storm water management model (SWMM). According to the climate characteristics and the situation of the studied area, the low impact development (LID) green ecological strategies suitable for the studied area were established. There were three kinds of management strategies being used, including extended green roof, snow and rainwater harvesting devices, and grass-swales or trenches. We examined the impacts of those integrated green ecological measures on the summer rainfall and spring snowmelt runoff and their mitigation effects on the drainage network pressure. The results showed that the maximum flow rates of the measured rainfall in May 24th, June 10th and July 18th 2016 were 2.7, 6.2 and 7.4 m 3 ·s -1 respectively. The peak flow rates at different return periods of 1, 2, 5, 10 years were 2.39, 3.91, 6.24 and 7.85 m 3 ·s -1 , respectively. In the snowmelt period, the peak flow appeared at the beginning of March. The LID measures had positive effect on peak flow reduction, and thus delayed peak time and relieved drainage pressure. The flow reduction rate was as high as 70%. Moreover, the snow harvesting devices played a positive role in controlling snowmelt runoff in spring.
Global Water Resources Under Future Changes: Toward an Improved Estimation
NASA Astrophysics Data System (ADS)
Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.
2005-05-01
Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From the estimation of present stress level (withdrawal to resource ratio), the months between January to May was found to have the highest number of population above water stress level, while the months between June to August having lower population in stress. The regions suffering from high seasonal variability are those of Asian monsoon zone, south-central Africa and central-east part of South America. Inter-annual variability, on the other hand, is dominant mostly along the Middle-east or Sahara regions and the western part of South America and Latin America. Virtual water trading among countries was estimated on per capita basis. It shows that many Middle east countries are able to compensate their water stress significantly through virtual water trading. The overall effect of climate change on lowering of river runoff mostly affected Europe, southern part of China and Latin America. India or Central Africa have better runoff availability under changing climate, but still subject to a higher water stress because of socio-economic factors like high population growth and expected increase in rate of water uses. Decrease in population as well as saturation level of maximum water uses along most European countries, on the contrary, relaxed the pressure of lowering river runoff, causing no significant change in future stress.
Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California
Kratzer, C.R.
1999-01-01
Suspended sediment samples were collected in westside tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochlorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochlorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chlordane. Dissolved samples were analyzed for three organochlorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p'-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamflow were greater during the winter storm runoff median concentration of 3,590 mg/L versus 489 mg/and median streamflow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p'-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion is tentative primarily because of insufficient information on long-term seasonal variations in suspended sediment and organochlorine concentrations. Nevertheless, runoff from infrequent winter storms will continue to deliver a significant load of sediment-bound organochlorine pesticides to the San Joaquin River even if irrigation-induced sediment transport is reduced. As a result, concentrations of organochlorine pesticides in San Joaquin River biota will continue to be relatively high compared to other regions of the United States.
Predicting nonpoint stormwater runoff quality from land use
2018-01-01
Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters. PMID:29742172
Predicting nonpoint stormwater runoff quality from land use.
Zivkovich, Brik R; Mays, David C
2018-01-01
Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters.
NASA Astrophysics Data System (ADS)
Steenhuis, T. S.; Mendoza, G.; Lyon, S. W.; Gerard Marchant, P.; Walter, M. T.; Schneiderman, E.
2003-04-01
Because the traditional Soil Conservation Service Curve Number (SCS-CN) approach continues to be ubiquitously used in GIS-BASED water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed within an integrated GIS modeling environment a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Spatial representation of hydrologic processes is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point source pollution. The methodology presented here uses the traditional SCS-CN method to predict runoff volume and spatial extent of saturated areas and uses a topographic index to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was incorporated in an existing GWLF water quality model and applied to sub-watersheds of the Delaware basin in the Catskill Mountains region of New York State. We found that the distributed CN-VSA approach provided a physically-based method that gives realistic results for watersheds with VSA hydrology.
Presley, Todd K.
2001-01-01
The State of Hawaii Department of Transportation Stormwater Monitoring Program was implemented on January 1, 2001. The program includes the collection of rainfall, streamflow, and water-quality data at selected sites in the Halawa Stream drainage basin. Rainfall and streamflow data were collected from July 1, 2000 to June 30, 2001. Few storms during the year met criteria for antecedent dry conditions or provided enough runoff to sample. The storm of June 5, 2001 was sufficiently large to cause runoff. On June 5, 2001, grab samples were collected at five sites along North Halawa and Halawa Streams. The five samples were later analyzed for nutrients, trace metals, oil and grease, total petroleum hydrocarbons, fecal coliform, biological and chemical oxygen demands, total suspended solids, and total dissolved solids.
NASA Astrophysics Data System (ADS)
Zaherpour, Jamal; Gosling, Simon N.; Mount, Nick; Müller Schmied, Hannes; Veldkamp, Ted I. E.; Dankers, Rutger; Eisner, Stephanie; Gerten, Dieter; Gudmundsson, Lukas; Haddeland, Ingjerd; Hanasaki, Naota; Kim, Hyungjun; Leng, Guoyong; Liu, Junguo; Masaki, Yoshimitsu; Oki, Taikan; Pokhrel, Yadu; Satoh, Yusuke; Schewe, Jacob; Wada, Yoshihide
2018-06-01
Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models’ ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output.
NASA Astrophysics Data System (ADS)
Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Brenning, Alexander
2018-01-01
Understanding the water balance, especially as it relates to the distribution of runoff components, is crucial for water resource management and coping with the impacts of climate change. However, hydrological processes are poorly known in mountainous regions due to data scarcity and the complex dynamics of snow and glaciers. This study aims to provide a quantitative comparison of gridded precipitation products in the Tianshan Mountains, located in Central Asia and in order to further understand the mountain hydrology and distribution of runoff components in the glacierized Kaidu Basin. We found that gridded precipitation products are affected by inconsistent biases based on a spatiotemporal comparison with the nearest weather stations and should be evaluated with caution before using them as boundary conditions in hydrological modeling. Although uncertainties remain in this data-scarce basin, driven by field survey data and bias-corrected gridded data sets (ERA-Interim and APHRODITE), the water balance and distribution of runoff components can be plausibly quantified based on the distributed hydrological model (J2000). We further examined parameter sensitivity and uncertainty with respect to both simulated streamflow and different runoff components based on an ensemble of simulations. This study demonstrated the possibility of integrating gridded products in hydrological modeling. The methodology used can be important for model applications and design in other data-scarce mountainous regions. The model-based simulation quantified the water balance and how the water resources are partitioned throughout the year in Tianshan Mountain basins, although the uncertainties present in this study result in important limitations.
NASA Astrophysics Data System (ADS)
Braga, Ana Cláudia F. Medeiros; Silva, Richarde Marques da; Santos, Celso Augusto Guimarães; Galvão, Carlos de Oliveira; Nobre, Paulo
2013-08-01
The coastal zone of northeastern Brazil is characterized by intense human activities and by large settlements and also experiences high soil losses that can contribute to environmental damage. Therefore, it is necessary to build an integrated modeling-forecasting system for rainfall-runoff erosion that assesses plans for water availability and sediment yield that can be conceived and implemented. In this work, we present an evaluation of an integrated modeling system for a basin located in this region with a relatively low predictability of seasonal rainfall and a small area (600 km2). The National Center for Environmental Predictions - NCEP’s Regional Spectral Model (RSM) nested within the Center for Weather Forecasting and Climate Studies - CPTEC’s Atmospheric General Circulation Model (AGCM) were investigated in this study, and both are addressed in the simulation work. The rainfall analysis shows that: (1) the dynamic downscaling carried out by the regional RSM model approximates the frequency distribution of the daily observed data set although errors were detected in the magnitude and timing (anticipation of peaks, for example) at the daily scale, (2) an unbiased precipitation forecast seemed to be essential for use of the results in hydrological models, and (3) the information directly extracted from the global model may also be useful. The simulated runoff and reservoir-stored volumes are strongly linked to rainfall, and their estimation accuracy was significantly improved at the monthly scale, thus rendering the results useful for management purposes. The runoff-erosion forecasting displayed a large sediment yield that was consistent with the predicted rainfall.
NASA Astrophysics Data System (ADS)
Versteeg, R.; Heath, G.; Richardson, A.; Paul, D.; Wangerud, K.
2003-12-01
At a cyanide heap-leach open-pit mine, 15-million cubic yards of acid-generating sulfides were dumped at the head of a steep-walled mountain valley, with 30 inches/year precipitation generating 60- gallons/minute ARD leachate. Remediation has reshaped the dump to a 70-acre, 3.5:1-sloped geometry, installed drainage benches and runoff diversions, and capped the repository and lined diversions with a polyethylene geomembrane and cover system. Monitoring was needed to evaluate (a) long-term geomembrane integrity, (b) diversion liner integrity and long-term effectiveness, (c) ARD geochemistry, kinetics and pore-gas dynamics within the repository mass, and (d) groundwater interactions. Observation wells were paired with a 600-electrode resistivity survey system. Using near-surface and down-hole electrodes and automated data collection and post-processing, periodic two- and three-dimensional resistivity images are developed to reflect current and changed-conditions in moisture, temperature, geochemical components, and flow-direction analysis. Examination of total resistivity values and time variances between images allows direct observation of liner and cap integrity with precise identification and location of leaks; likewise, if runoff migrates from degraded diversion ditches into the repository zone, there is an accompanying and noticeable change in resistivity values. Used in combination with monitoring wells containing borehole resistivity electrodes (calibrated with direct sampling of dump water/moisture, temperature and pore-gas composition), the resistivity arrays allow at-depth imaging of geochemical conditions within the repository mass. The information provides early indications of progress or deficiencies in de-watering and ARD- mitigation that is the remedy intent. If emerging technologies present opportunities for secondary treatment, deep resistivity images may assist in developing application methods and evaluating the effectiveness of any reagents introduced into the repository mass to further effect changes in oxidation/reduction reactions.
Zhao, Hongtao; Li, Xuyong; Wang, Xiaomei; Tian, Di
2010-11-15
Pollutant washoff from road-deposited sediment (RDS) is an increasing problem associated with the rapid urbanization of China that results in urban non-point source pollution. Here, we analyzed the RDS grain size distribution and its potential impact on heavy metal pollution in urban runoff from impervious surfaces of urban villages, colleges and residences, and main traffic roads in the Haidian District, Beijing, China. RDS with smaller grain size had a higher metal concentration. Specifically, particles with the smallest grain size (<44 μm) had the highest metal concentration in most areas (unit: mg/kg): Cd 0.28-1.31, Cr 57.9-154, Cu 68.1-142, Ni 25.8-78.0, Pb 73.1-222 and Zn 264-664. Particles with smaller grain size (<250 μm) contributed more than 80% of the total metal loads in RDS washoff, while suspended solids with a grain size <44 μm in runoff water accounted for greater than 70% of the metal mass in the total suspended solids (TSS). The heavy metal content in the TSS was 2.21-6.52% of that in the RDS. These findings will facilitate our understanding of the importance of RDS grain size distribution in heavy metal pollution caused by urban storm runoff. Copyright © 2010 Elsevier B.V. All rights reserved.
Contribution of different sources to the pollution of wet weather flows in combined sewers.
Gromaire, M C; Garnaud, S; Saad, M; Chebbo, G
2001-02-01
Experiments performed on "Marais" catchment, in central Paris, aimed to follow up the quality of wet weather flows from the entry to the exit of a combined sewer network. SS, VSS, COD, BOD5, Cd, Cu, Pb, Zn concentrations were measured for an important number of rain events in roof, yard, street runoff, as well as in dry and wet weather flows at the catchment outlet. Mass entry-exit totals, at the scale of the catchment, were calculated over 31 rain events in order to evaluate the contribution of different types of runoff, of sanitary sewage and of sewer sediments to the total wet weather pollutant loads at the catchment outlet. The erosion of in-sewer pollutant stocks was found to be the main source of particles and of organic matter in wet weather flows, whereas heavy metal loads mainly originated from roof runoff, due to the corrosion of metallic roofs. Particles eroded inside the sewer during rain events were found to be quite different from the particles constituting the main part of sewer sediments: they are organic and biodegradable, with rather important settling velocities and seem to accumulate during dry weather periods. A change of the chemical form of heavy metals was noticed during the transport in the sewer and it is suspected that a fraction of the dissolved metals from the runoff is adsorbed on sewer sediments.
Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin
2015-01-01
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds. PMID:26364642
Characterization and source identification of stormwater runoff in tropical urban catchments.
Chow, M F; Yusop, Z
2014-01-01
The characteristics of urban stormwater pollution in the tropics are still poorly understood. This issue is crucial to the tropical environment because its rainfall and runoff generation processes are so different from temperate regions. In this regard, a stormwater monitoring program was carried out at three urban catchments (e.g. residential, commercial and industrial) in the southern part of Peninsular Malaysia. A total of 51 storm events were collected at these three catchments. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand (COD), oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen (NH3-N), soluble reactive phosphorus and total phosphorus. Principal component analysis (PCA) and hierarchical cluster analysis were used to interpret the stormwater quality data for pattern recognition and identification of possible sources. The most likely sources of stormwater pollutants at the residential catchment were from surface soil and leachate of fertilizer from domestic lawns and gardens, whereas the most likely sources for the commercial catchment were from discharges of food waste and washing detergent. In the industrial catchment, the major sources of pollutants were discharges from workshops and factories. The PCA factors further revealed that COD and NH3-N were the major pollutants influencing the runoff quality in all three catchments.
A simple metric to predict stream water quality from storm runoff in an urban watershed.
Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S
2010-01-01
The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.
Reiter, Mark S; Daniel, Tommy C; DeLaune, Paul B; Sharpley, Andrew N; Lory, John A
2013-11-01
Continuous application of poultry litter (PL) significantly changes many soil properties, including soil test P (STP); Al, Fe, and Ca concentrations; and pH, which can affect the potential for P transport in surface runoff water. We conducted rainfall simulations on three historically acidic silt loam soils in Arkansas, Missouri, and Virginia to establish if long-term PL applications would affect soil inorganic P fractions and the resulting dissolved reactive P (DRP) in runoff water. Soil samples (0-5 cm depth) were taken to find sites ranging in Mehlich-3 STP from 20 to 1154 mg P kg. Simulated rainfall events were conducted on 3-m plots at 6.7 cm h, and runoff was collected for 30 min. Correlation between Mehlich-3 and runoff DRP indicated a linear relationship to 833 mg Mehlich-3 P kg. As Mehlich-3 STP increased, a concomitant increase in soil pH and Ca occurred on all soils. Soil P fractionation demonstrated that, as Mehlich-3 STP generally increased above 450 mg P kg (from high to very high), the easily soluble and loosely bound P fractions decreased by 3 to 10%. Water-insoluble complexes of P bound to Al and Ca were the main drivers in the reduction of DRP in runoff, accounting for up to 43 and 38% of total P, respectively. Basing runoff DRP concentration projections solely on Mehlich-3 STP may overestimate runoff P losses from soils receiving long-term PL applications due to dissolution of water-insoluble Ca-P compounds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Huntington, Thomas G.; Billmire, M.
2014-01-01
Climate warming is projected to result in increases in total annual precipitation in northeastern North America. The response of runoff to increases in precipitation is likely to be more complex because increasing evapotranspiration (ET) could counteract increasing precipitation. This study was conducted to examine these competing trends in the historical record for 22 rivers having >70 yr of runoff data. Annual (water year) average precipitation increased in all basins, with increases ranging from 0.9 to 3.12 mm yr−1. Runoff increased in all basins with increases ranging from 0.67 to 2.58 mm yr−1. The ET was calculated by using a water balance approach in which changes in terrestrial water storage were considered negligible. ET increased in 16 basins and decreased in 6 basins. Temporal trends in temperature, precipitation, runoff, and ET were also calculated for each basin over their respective periods of record for runoff and for the consistent period (1927–2011) for the area-weighted average of the nine largest non-nested basins. From 1927 through 2011, precipitation and runoff increased at average rates of 1.6 and 1.7 mm yr−1, respectively, and ET increased slightly at a rate of 0.18 mm yr−1. For the more recent period (1970–2011), there was a positive trend in ET of 1.9 mm yr−1. The lack of a more consistent increase in ET, compared with the increases in precipitation and runoff, for the full periods of record, was unexpected, but may be explained by various factors including decreasing wind speed, increasing cloudiness, decreasing vapor pressure deficit, and patterns of forest growth.
Testing the Wisconsin Phosphorus Index with year-round, field-scale runoff monitoring.
Good, Laura W; Vadas, Peter; Panuska, John C; Bonilla, Carlos A; Jokela, William E
2012-01-01
The Wisconsin Phosphorus Index (WPI) is one of several P indices in the United States that use equations to describe actual P loss processes. Although for nutrient management planning the WPI is reported as a dimensionless whole number, it is calculated as average annual dissolved P (DP) and particulate P (PP) mass delivered per unit area. The WPI calculations use soil P concentration, applied manure and fertilizer P, and estimates of average annual erosion and average annual runoff. We compared WPI estimated P losses to annual P loads measured in surface runoff from 86 field-years on crop fields and pastures. As the erosion and runoff generated by the weather in the monitoring years varied substantially from the average annual estimates used in the WPI, the WPI and measured loads were not well correlated. However, when measured runoff and erosion were used in the WPI field loss calculations, the WPI accurately estimated annual total P loads with a Nash-Sutcliffe Model Efficiency (NSE) of 0.87. The DP loss estimates were not as close to measured values (NSE = 0.40) as the PP loss estimates (NSE = 0.89). Some errors in estimating DP losses may be unavoidable due to uncertainties in estimating on-farm manure P application rates. The WPI is sensitive to field management that affects its erosion and runoff estimates. Provided that the WPI methods for estimating average annual erosion and runoff are accurately reflecting the effects of management, the WPI is an accurate field-level assessment tool for managing runoff P losses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Runoff and soil erosion for an undisturbed tropical woodland in the Brazilian Cerrado
NASA Astrophysics Data System (ADS)
Oliveira, Paulo Tarso S.; Nearing, Mark; Wendland, Edson
2015-04-01
The Brazilian Cerrado is a large and important economic and environmental region that is experiencing major loss of its natural landscapes due to pressures of food and energy production, which has caused large increases in soil erosion. However the magnitude of the soil erosion increases in this region is not well understood, in part because scientific studies of surface runoff and soil erosion are scarce or nonexistent in undisturbed Cerrado vegetation. In this study we measured natural rainfall-driven rates of runoff and soil erosion for an undisturbed tropical woodland classified as "cerrado sensu stricto denso" and bare soil to compute the Universal Soil Loss Equation (USLE) cover and management factor (C-factor) to help evaluate the likely effects of land use change on soil erosion rates. Replicated data on precipitation, runoff, and soil loss on plots (5 x 20 m) under bare soil and cerrado were collected for 55 erosive storms occurring in 2012 and 2013. The measured annual precipitation was 1247.4 mm and 1113.0 mm for 2012 and 2013, resulting in a rainfall erosivity index of 4337.1 MJ mm ha-1 h-1 and 3546.2 MJ mm ha-1 h-1, for each year respectively. The erosive rainfall represented 80concentrated in the wet season, which generally runs from October through March. In the plots on bare soil, the runoff coefficient for individual rainfall events (total runoff divided by total rainfall) ranged from 0.003 to 0.860 with an average value and standard deviation of 0.212 ± 0.187. Moreover, the runoff coefficient found for the bare soil plots (~20infiltration capacity. In forest areas the leaf litter and the more porous soil tend to promote the increase of infiltration and water storage, rather than rapid overland flow. Indeed, runoff coefficients ranged from 0.001 to 0.030 with an average of less than 1under undisturbed cerrado. The soil losses measured under bare soil and cerrado were 15.68 t ha-1yr-1 and 0.24 t ha-1 yr-1 in 2012, and 14.82 t ha-1 yr-1, 0.11 t ha-1 yr-1 in 2013, respectively, with means of total soil loss during the study period of 15.25 t ha-1 yr-1 and 0.17 t ha-1 yr-1. The erosivity-weighted C-factor for the undisturbed cerrado vegetation was 0.013. Previous studies have shown that, in general, the C-factors for Brazilian crops cover an approximate 10-fold range, from 2 to 39-times greater than the C-factor for undisturbed cerrado. Our results suggest that though soil erosion under undisturbed Cerrado is important, shifts in land use from the native to cultivated vegetation may result in orders of magnitude increases in soil loss rates. These results provide benchmark values that will be useful to evaluate past and future land use changes using soil erosion models and measurements.
Impact of land cover and land use change on runoff characteristics.
Sajikumar, N; Remya, R S
2015-09-15
Change in Land Cover and Land Use (LCLU) influences the runoff characteristics of a drainage basin to a large extent, which in turn, affects the surface and groundwater availability of the area, and hence leads to further change in LCLU. This forms a vicious circle. Hence it becomes essential to assess the effect of change in LCLU on the runoff characteristics of a region in general and of small watershed levels (sub-basin levels) in particular. Such an analysis can effectively be carried out by using watershed simulation models with integrated GIS frame work. SWAT (Soil and Water Analysis Tool) model, being one of the versatile watershed simulation models, is found to be suitable for this purpose as many GIS integration modules are available for this model (e.g. ArcSWAT, MWSWAT). Watershed simulation using SWAT requires the land use and land cover data, soil data and many other features. With the availability of repository of satellite imageries, both from Indian and foreign sources, it becomes possible to use the concurrent local land use and land cover data, thereby enabling more accurate modelling of small watersheds. Such availability will also enable us to assess the effect of LCLU on runoff characteristics and their reverse impact. The current study assesses the effect of land use and land cover on the runoff characteristics of two watersheds in Kerala, India. It also assesses how the change in land use and land cover in the last few decades affected the runoff characteristics of these watersheds. It is seen that the reduction in the forest area amounts to 60% and 32% in the analysed watersheds. However, the changes in the surface runoff for these watersheds are not comparable with the changes in the forest area but are within 20%. Similarly the maximum (peak) value of runoff has increased by an amount of 15% only. The lesser (aforementioned) effect than expected might be due to the fact that forest has been converted to agricultural purpose with major portion as plantations which have comparatively similar characteristics of the forest except for evapo-transpiration. The double sided action (increase in evapo-transpiration owing to species like rubber and increase percolation due to its plantation method by using terracing) might be the reason for relatively smaller effect of the land use change, not commensurate with the changes in the forest area amounting to 60% and 32% for Manali and Kurumali watersheds respectively. Water harvesting methods like rain harvesting ditches can be made mandatory where species with high evapo-transpiration are grown. This action shall enhance the groundwater percolation and shall counter act the effect due to high evapo-transpiration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Feasibility of integrating natural and constructed wetlands in roadway drainage system design.
DOT National Transportation Integrated Search
2012-04-30
"Stormwater from roadways could have negative effects on the environment and aquatic ecosystems. Typical highway : runoff pollutants include solids; heavy metals, particularly cadmium, copper, and zinc; petroleum hydrocarbons; gasoline : constituents...
Illuminating the hydrology of a high-elevation tropical ecosystem: Runoff generation in the páramo
NASA Astrophysics Data System (ADS)
Mosquera, G.; Lazo, P. X.; Célleri, R.; Vache, K. B.; Segura, C.; Crespo, P.
2016-12-01
A high-elevation tropical ecosystem that develops above the three line, the páramo, is known as the "water tower" of South America. However, rainfall-runoff processes and the influence of landscape structure in the hydrologic behavior of this ecosystem remain unknown. Here, we provide a process-based interpretation of runoff generation and insights into the landscape features controlling the hydrology in the páramo of the Zhurucay River Ecohydrological Observatory located in south Ecuador between 3400-3900 m a.s.l. A nested monitoring system of seven catchments (0.20-7.53 km2) was used to measure hydrometric data since December 2010. Biweekly samples of rainfall, streamflow, and soil water were collected for 3 years (May 2011-May2014) and analyzed for water stable isotopes. A combined assessment of hydrometric and isotopic data was used to investigate runoff generation. Mean transit times (MTTs) of baseflow were estimated by integrating the isotopic data into a lumped model. Isotope signals evidenced that water stored in the shallow organic horizon of the páramo soils located at the bottom of the valley near the streams (Histosols) is the major contributor to runoff generation year-round, whereas water draining through the hillslope soils (Andosols) regulates discharge by recharging the Histosols at the valley bottoms. The MTT evaluation showed relatively short MTTs (6.1±2.0 months) linked to short subsurface flow paths of water towards the stream network. We also found evidence of vegetation cover controls on water yield and runoff generation and topographic controls on baseflow MTT variability. These results reveal that 1) the runoff generation mechanisms of this ecosystem are dominated by shallow subsurface flow in the organic horizon of the soils and 2) the combination of the high storage capacity of the Histosols and the slope of the catchments controls runoff generation and the high water regulation capacity of the ecosystem.
Ping, Jianhua; Yan, Shiyan; Gu, Pan; Wu, Zening; Hu, Caihong
2017-01-01
Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced. PMID:29267313
Influence of land development on stormwater runoff from a mixed land use and land cover catchment.
Paule-Mercado, M A; Lee, B Y; Memon, S A; Umer, S R; Salim, I; Lee, C-H
2017-12-01
Mitigating for the negative impacts of stormwater runoff is becoming a concern due to increased land development. Understanding how land development influences stormwater runoff is essential for sustainably managing water resources. In recent years, aggregate low impact development-best management practices (LID-BMPs) have been implemented to reduce the negative impacts of stormwater runoff on receiving water bodies. This study used an integrated approach to determine the influence of land development and assess the ecological benefits of four aggregate LID-BMPs in stormwater runoff from a mixed land use and land cover (LULC) catchment with ongoing land development. It used data from 2011 to 2015 that monitored 41 storm events and monthly LULC, and a Personalized Computer Storm Water Management Model (PCSWMM). The four aggregate LID-BMPs are: ecological (S1), utilizing pervious covers (S2), and multi-control (S3) and (S4). These LID-BMPs were designed and distributed in the study area based on catchment characteristics, cost, and effectiveness. PCSWMM was used to simulate the monitored storm events from 2014 (calibration: R 2 and NSE>0.5; RMSE <11) and 2015 (validation: R 2 and NSE>0.5; RMSE <12). For continuous simulation and analyzing LID-BMPs scenarios, the five-year (2011 to 2015) stormwater runoff data and LULC change patterns (only 2015 for LID-BMPs) were used. Results show that the expansion of bare land and impervious cover, soil alteration, and high amount of precipitation influenced the stormwater runoff variability during different phases of land development. The four aggregate LID-BMPs reduced runoff volume (34%-61%), peak flow (6%-19%), and pollutant concentrations (53%-83%). The results of this study, in addition to supporting local LULC planning and land development activities, also could be applied to input data for empirical modeling, and designing sustainable stormwater management guidelines and monitoring strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Ping, Jianhua; Yan, Shiyan; Gu, Pan; Wu, Zening; Hu, Caihong
2017-01-01
Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced.
Weiskel, Peter K.; Wolock, David M.; Zarriello, Phillip J.; Vogel, Richard M.; Levin, Sara B.; Lent, Robert M.
2014-01-01
Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-subhumid, semiarid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA) using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term-average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and reinterprets the green- and blue-water perspective now gaining international acceptance. Implications of the new framework for several areas of contemporary hydrology are explored, and the data requirements of the approach are discussed in relation to the increasing availability of gridded global climate, land-surface, and hydrologic data sets.
Effect of Check Dams on Erosion and Flow Dynamics on Small Semi-Arid Watersheds
NASA Astrophysics Data System (ADS)
Polyakov, V.; Nearing, M.; Nichols, M.; McClaran, M. P.
2012-12-01
Erosion dynamics in semi-arid environments is defined by high magnitude, low frequency rainfalls that produce runoff with high sediment concentration. Check dams were shown to be an effective sedimentation mitigation technique on small watersheds. Constructed of rocks, or other materials placed across the flow and anchored into the bottom and sides of the channel, these barriers produce upstream and downstream effects. By impounding runoff they reduce flow velocity, increase infiltration and allow sediment settling thus decreasing channel slope. Decreased sediment load downstream of the dam may result in accelerated channel scouring. While the effect of check dams on channel stability has been studied extensively their impact on overall watershed sediment balance is not well known. In 2008 a total of 37 loose rock semi permeable check dams were installed on two small (4.0 and 3.1 ha) watersheds located on the alluvial fan of the Santa Rita Mountains in southern Arizona, USA. Each watershed was equipped with high resolution weighing type rain gauge a supercritical flow flume and sediment sampler. Hyetographs, hydrographs, and sediment load data for the watersheds were collected since 1975. The erosion dynamics and flow characteristics following the check dam installation were compared with historical records. The volume of the sediment retained upstream of each dam was calculated through survey. After 4 years the check dams were filled to over 80% of their capacity and no significant increase in downstream scouring has been observed. Maximum 30-min intensity (I30) was overall best predictor variable for total runoff. After check dam installation the number ratio of runoff to rainfall events has been reduced by half. However, runoff peak rates were not significantly effected.
Chemical application strategies to protect water quality.
Rice, Pamela J; Horgan, Brian P; Barber, Brian L; Koskinen, William C
2018-07-30
Management of turfgrass on golf courses and athletic fields often involves application of plant protection products to maintain or enhance turfgrass health and performance. However, the transport of fertilizer and pesticides with runoff to adjacent surface waters can enhance algal blooms, promote eutrophication and may have negative impacts on sensitive aquatic organisms and ecosystems. Thus, we evaluated the effectiveness of chemical application setbacks to reduce the off-site transport of chemicals with storm runoff. Experiments with water soluble tracer compounds confirmed an increase in application setback distance resulted in a significant increase in the volume of runoff measured before first off-site chemical detection, as well as a significant reduction in the total percentage of applied chemical transported with the storm runoff. For example, implementation of a 6.1 m application setback reduced the total percentage of an applied water soluble tracer by 43%, from 18.5% of applied to 10.5% of applied. Evaluation of chemographs revealed the efficacy of application setbacks could be observed with storms resulting in lesser (e.g. 100 L) and greater (e.g. > 300 L) quantities of runoff. Application setbacks offer turfgrass managers a mitigation approach that requires no additional resources or time inputs and may serve as an alternative practice when buffers are less appropriate for land management objectives or site conditions. Characterizing potential contamination of surface waters and developing strategies to safeguard water quality will help protect the environment and improve water resource security. This information is useful to grounds superintendents for designing chemical application strategies to maximize environmental stewardship. The data will also be useful to scientists and regulators working with chemical transport and risk models. Copyright © 2018. Published by Elsevier Inc.
Effects of near-surface hydraulic gradients on nitrate and phosphorus losses in surface runoff.
Zheng, Fen-Li; Huang, Chi-Hua; Norton, L Darrell
2004-01-01
Phosphorous (P) and nitrogen (N) in runoff from agricultural fields are key components of nonpoint-source pollution and can accelerate eutrophication of surface waters. A laboratory study was designed to evaluate effects of near-surface hydraulic gradients on P and N losses in surface runoff from soil pans at 5% slope under simulated rainfall. Experimental treatments included three rates of fertilizer input (control [no fertilizer input], low [40 kg P ha(-1), 100 kg N ha(-1)], and high [80 kg P ha(-1), 200 kg N ha(-1)]) and four near-surface hydraulic gradients (free drainage [FD], saturation [Sa], artesian seepage without rain [Sp], and artesian seepage with rain [Sp + R]). Simulated rainfall of 50 mm h(-1) was applied for 90 min. The results showed that near-surface hydraulic gradients have dramatic effects on NO(3)-N and PO(4)-P losses and runoff water quality. Under the low fertilizer treatment, the average concentrations in surface runoff from FD, Sa, Sp, and Sp + R were 0.08, 2.20, 529.5, and 71.8 mg L(-1) for NO(3)-N and 0.11, 0.54, 0.91, and 0.72 mg L(-1) for PO(4)-P, respectively. Similar trends were observed for the concentrations of NO(3)-N and PO(4)-P under the high fertilizer treatment. The total NO(3)-N loss under the FD treatment was only 0.01% of the applied nitrogen, while under the Sp and Sp + R treatments, the total NO(3)-N loss was 11 to 16% of the applied nitrogen. These results show that artesian seepage could make a significant contribution to water quality problems.
Phosphorus and nitrate nitrogen in runoff following fertilizer application to turfgrass.
Shuman, L M
2002-01-01
Intensively managed golf courses are perceived by the public as possibly adding nutrients to surface waters via surface transport. An experiment was designed to determine the transport of nitrate N and phosphate P from simulated golf course fairways of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.]. Fertilizer treatments were 10-10-10 granular at three rates and rainfall events were simulated at four intervals after treatment (hours after treatment, HAT). Runoff volume was directly related to simulated rainfall amounts and soil moisture at the time of the event and varied from 24.3 to 43.5% of that added for the 50-mm events and 3.1 to 27.4% for the 25-mm events. The highest concentration and mass of phosphorus in runoff was during the first simulated rainfall event at 4 HAT with a dramatic decrease at 24 HAT and subsequent events. Nitrate N concentrations were low in the runoff water (approximately 0.5 mg L-1) for the first three runoff events and highest (approximately 1-1.5 mg L-1) at 168 HAT due to the time elapsed for conversion of ammonia to nitrate. Nitrate N mass was highest at the 4 and 24 HAT events and stepwise increases with rate were evident at 24 HAT. Total P transported for all events was 15.6 and 13.8% of that added for the two non-zero rates, respectively. Total nitrate N transported was 1.5 and 0.9% of that added for the two rates, respectively. Results indicate that turfgrass management should include applying minimum amounts of irrigation after fertilizer application and avoiding application before intense rain or when soil is very moist.
NASA Astrophysics Data System (ADS)
Gooré Bi, Eustache; Monette, Frédéric; Gasperi, Johnny
2015-04-01
Urban rainfall runoff has been a topic of increasing importance over the past years, a result of both the increase in impervious land area arising from constant urban growth and the effects of climate change on urban drainage. The main goal of the present study is to assess and analyze the correlations between rainfall variables and common indicators of urban water quality, namely event mean concentrations (EMCs) and event fluxes (EFs), in order to identify and explain the impacts of each of the main rainfall variables on the generation process of urban pollutants during wet periods. To perform this analysis, runoff from eight summer rainfall events that resulted in combined sewer overflow (CSO) was sampled simultaneously from two distinct catchment areas in order to quantify discharges at the respective outfalls. Pearson statistical analysis of total suspended solids (TSS), chemical oxygen demand (COD), carbonaceous biochemical oxygen demand at 5 days (CBOD5), total phosphorus (Ptot) and total kedjal nitrogen (N-TKN) showed significant correlations (ρ = 0.05) between dry antecedent time (DAT) and EMCs on one hand, and between total rainfall (TR) and the volume discharged (VD) during EFs, on the other. These results show that individual rainfall variables strongly affect either EMCs or EFs and are good predictors to consider when selecting variables for statistical modeling of urban runoff quality. The results also show that in a combined sewer network, there is a linear relationship between TSS event fluxes and COD, CBOD5, Ptot, and N-TKN event fluxes; this explains 97% of the variability of these pollutants which adsorb onto TSS during wet weather, which therefore act as tracers. Consequently, the technological solution selected for TSS removal will also lead to a reduction of these pollutants. Given the huge volumes involved, urban runoffs contribute substantially to pollutant levels in receiving water bodies, a situation which, in a climate change context, may get much worse as a result of more frequent, shorter, but more intense rainfall events.
Nagle, Doug D.; Guimaraes, Wladmir B.
2012-01-01
An assessment of the quantity and quality of stormwater runoff associated with industrial activities at Fort Gordon was conducted from January through December 2011. The assessment was provided to satisfy the requirements from a general permit that authorizes the discharge of stormwater under the National Pollutant Discharge Elimination System from a site associated with industrial activities. The stormwater quantity refers to the runoff discharge at the point and time of the runoff sampling. The study was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon. The initial scope of this study was to sample stormwater runoff from five stations at four industrial sites (two landfills and two heating and cooling sites). As a consequence of inadequate hydrologic conditions during 2011, no samples were collected at the two landfills; however, three samples were collected from the heating and cooling sites. The assessment included the collection of physical properties, such as water temperature, specific conductance, dissolved oxygen, and pH; the detection of suspended materials (total suspended solids, total fixed solids, total volatile solids), nutrients and organic compounds, and major and trace inorganic compounds (metals); and the detection of volatile and semivolatile organic compounds. Nutrients and organic compounds, major and trace inorganic compounds, and volatile and semivolatile organic compounds were detected above the laboratory reporting levels in all samples collected from the three stations. The detection of volatile and semivolatile organic compounds included anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene, cis,1, 2-dichloroethene, dimethyl phthalate, fluoranthene, naphthalene, pyrene, acenaphthylene (station SWR11-3), and di-n-butyl phthalate (station SWR11-4).
Bhandari, Ammar B; Nelson, Nathan O; Sweeney, Daniel W; Baffaut, Claire; Lory, John A; Senaviratne, Anomaa; Pierzynski, Gary M; Janssen, Keith A; Barnes, Philip L
2017-11-01
Process-based computer models have been proposed as a tool to generate data for Phosphorus (P) Index assessment and development. Although models are commonly used to simulate P loss from agriculture using managements that are different from the calibration data, this use of models has not been fully tested. The objective of this study is to determine if the Agricultural Policy Environmental eXtender (APEX) model can accurately simulate runoff, sediment, total P, and dissolved P loss from 0.4 to 1.5 ha of agricultural fields with managements that are different from the calibration data. The APEX model was calibrated with field-scale data from eight different managements at two locations (management-specific models). The calibrated models were then validated, either with the same management used for calibration or with different managements. Location models were also developed by calibrating APEX with data from all managements. The management-specific models resulted in satisfactory performance when used to simulate runoff, total P, and dissolved P within their respective systems, with > 0.50, Nash-Sutcliffe efficiency > 0.30, and percent bias within ±35% for runoff and ±70% for total and dissolved P. When applied outside the calibration management, the management-specific models only met the minimum performance criteria in one-third of the tests. The location models had better model performance when applied across all managements compared with management-specific models. Our results suggest that models only be applied within the managements used for calibration and that data be included from multiple management systems for calibration when using models to assess management effects on P loss or evaluate P Indices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Carbon and nitrogen loss during initial erosion processes under litter cover
NASA Astrophysics Data System (ADS)
Seitz, Steffen; Goebes, Philipp; Kühn, Peter; Scholten, Thomas
2013-04-01
Soil erosion translocates carbon (C) and nitrogen (N) from the soil pool. In natural or near-natural ecosystems like forests the soil is usually covered by litter. It can be assumed that litter decomposition and dust particles adhered on the surface of the leaves contribute to C and N fluxes during erosion processes as well. To our knowledge, the contribution of these compartments to the C and N balance of soil erosion is not yet known. As part of the "New Integrated Litter Experiment" within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" we conducted a rainfall simulation experiment to quantify the role of litter cover for C and N fluxes during soil erosion in subtropical China. 96 mini runoff plots (40cm x 40cm) were established and divided into four blocks, two of them replicates. Seven different domestic litter species were used in this study combined to 1-species, 2-species and 4-species mixtures and complemented by none species plots (bare ground). Erosion processes were initiated by artificial rainfall using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Sediment discharge and runoff volume were measured every 5 minutes for 20 minutes of rainfall duration and filtrated in the laboratory. Two time steps of rainfall simulation were carried out (summer 2012 and autumn 2012). Total C and N content were quantified from the solid sediment and the liquid runoff volume. Leaf decomposition rates were calculated based on the mass, leaf litter coverage was measured and loss of C and N contents from the decomposing leaves were provided by other project members. Additionally, C and N content of corresponding soils were designated. Lab work and statistical analysis are still ongoing. First results show that C and N concentrations of runoff and sediment are slightly higher for plots covered by litter than bare plots during the first run in summer 2012. It seems that 4-species plots have the highest C and N flux during rainfall simulation. Further analysis will focus on the role of litter diversity on C and N concentration and fluxes during initial erosion processes.
Distributed modelling of hydrologic regime at three subcatchments of Kopaninský tok catchment
NASA Astrophysics Data System (ADS)
Žlábek, Pavel; Tachecí, Pavel; Kaplická, Markéta; Bystřický, Václav
2010-05-01
Kopaninský tok catchment is situated in crystalline area of Bohemo-Moravian highland hilly region, with cambisol cover and prevailing agricultural land use. It is a subject of long term (since 1980's) observation. Time series (discharge, precipitation, climatic parameters...) are nowadays available in 10 min. time step, water quality average daily composit samples plus samples during events are available. Soil survey resulting in reference soil hydraulic properties for horizons and vegetation cover survey incl. LAI measurement has been done. All parameters were analysed and used for establishing of distributed mathematical models of P6, P52 and P53 subcatchments, using MIKE SHE 2009 WM deterministic hydrologic modelling system. The aim is to simulate long-term hydrologic regime as well as rainfall-runoff events, serving the base for modelling of nitrate regime and agricultural management influence in the next step. Mentioned subcatchments differs in ratio of artificial drainage area, soil types, land use and slope angle. The models are set-up in a regular computational grid of 2 m size. Basic time step was set to 2 hrs, total simulated period covers 3 years. Runoff response and moisture regime is compared using spatially distributed simulation results. Sensitivity analysis revealed most important parameters influencing model response. Importance of spatial distribution of initial conditions was underlined. Further on, different runoff components in terms of their origin, flow paths and travel time were separated using a combination of two runoff separation techniques (a digital filter and a simple conceptual model GROUND) in 12 subcatchments of Kopaninský tok catchment. These two methods were chosen based on a number of methods testing. Ordinations diagrams performed with Canoco software were used to evaluate influence of different catchment parameters on different runoff components. A canonical ordination method analyses (RDA) was used to explain one data set (runoff components - either volumes of each runoff component or occurence of baseflow) with another data set (catchment parameters - proportion of arable land, proportion of forest, proportion of vulnerable zones with high infiltration capacity, average slope, topographic index and runoff coefficient). The influence was analysed both for long-term runoff balance and selected rainfall-runoff events. Keywords: small catchment, water balance modelling, rainfall-runoff modelling, distributed deterministic model, runoff separation, sensitivity analysis
Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran
2011-07-01
Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kim, J; Nagano, Y; Furumai, H
2012-01-01
Easy-to-measure surrogate parameters for water quality indicators are needed for real time monitoring as well as for generating data for model calibration and validation. In this study, a novel linear regression model for estimating total nitrogen (TN) based on two surrogate parameters is proposed based on evaluation of pollutant loads flowing into a eutrophic lake. Based on their runoff characteristics during wet weather, electric conductivity (EC) and turbidity were selected as surrogates for particulate nitrogen (PN) and dissolved nitrogen (DN), respectively. Strong linear relationships were established between PN and turbidity and DN and EC, and both models subsequently combined for estimation of TN. This model was evaluated by comparison of estimated and observed TN runoff loads during rainfall events. This analysis showed that turbidity and EC are viable surrogates for PN and DN, respectively, and that the linear regression model for TN concentration was successful in estimating TN runoff loads during rainfall events and also under dry weather conditions.
Zeng, Shu-Cai; Chen, Bei-Guang; Jiang, Cheng-Ai; Wu, Qi-Tang
2007-01-01
Growing fruit trees on the slopes of rolling hills in South China was causing serious environmental problems because of heavy application of chemical fertilizers and soil erosion. Suitable sources of fertilizers and proper rates of applications were of key importance to both crop yields and environmental protection. In this article, the impact of four fertilizers, i.e., inorganic compound fertilizer, organic compound fertilizer, pig manure compost, and peanut cake (peanut oil pressing residue), on chestnut (Castanea mollissima Blume) growth on a slope in South China, and on the total N and total P concentrations in runoff waters have been investigated during two years of study, with an orthogonal experimental design. Results show that the organic compound fertilizer and peanut cake promote the heights of young chestnut trees compared to the control. In addition, peanut cake increases single-fruit weights and organic compound fertilizer raises single-seed weights. All the fertilizers increased the concentrations of total N and total P in runoff waters, except for organic compound fertilizer, in the first year experiment. The observed mean concentrations of total N varied from 1.6 mg/L to 3.2 mg/L and P from 0.12 mg/L to 0.22 mg/L, which were increased with the amount of fertilizer applications, with no pattern of direct proportion. On the basis of these experiment results, organic compound fertilizer at 2 kg/tree and peanut cake at 1 kg/tree are recommended to maximize chestnut growth and minimize water pollution.
Lourenzi, Cledimar Rogério; Ceretta, Carlos Alberto; Tiecher, Tadeu Luis; Lorensini, Felipe; Cancian, Adriana; Stefanello, Lincon; Girotto, Eduardo; Vieira, Renan Costa Beber; Ferreira, Paulo Ademar Avelar; Brunetto, Gustavo
2015-04-01
Successive swine effluent applications can substantially increase the transfer of phosphorus (P) forms in runoff. The aim of this study was to evaluate P accumulation in the soil and transfer of P forms in surface runoff from a Hapludalf soil under no-tillage subjected to successive swine effluent applications. This research was carried out in the Agricultural Engineering Department of the Federal University of Santa Maria, Brazil, from 2004 to 2007, on a Typic Hapludalf soil. Swine effluent rates of 0, 20, 40, and 80 m3 ha(-1) were broadcast over the soil surface prior to sowing of different species in a crop rotation. Soil samples were collected in stratified layers, and the levels of available P were determined. Samples of water runoff from the soil surface were collected throughout the period, and the available, soluble, particulate, and total P were measured. Successive swine effluent applications led to increases in P availability, especially in the soil surface, and P migration through the soil profile. Transfer of P forms was closely associated with runoff, which is directly related to rainfall volume. Swine effluent applications also reduced surface runoff. These results show that in areas with successive swine effluent applications, practices that promote higher water infiltration into the soil are required, e.g., crop rotation and no-tillage system.
Sensitivity of Regional Hydropower Generation to the Projected Changes in Future Watershed Hydrology
NASA Astrophysics Data System (ADS)
Kao, S. C.; Naz, B. S.; Gangrade, S.
2015-12-01
Hydropower is a key contributor to the renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power systems. With the projected change in the future watershed hydrology, including shift of snowmelt timing, increasing occurrence of extreme precipitation, and change in drought frequencies, there is a need to investigate how the regional hydropower generation may change correspondingly. To evaluate the sensitivity of watershed storage and hydropower generation to future climate change, a lumped Watershed Runoff-Energy Storage (WRES) model is developed to simulate the annual and seasonal hydropower generation at various hydropower areas in the United States. For each hydropower study area, the WRES model use the monthly precipitation and naturalized (unregulated) runoff as inputs to perform a runoff mass balance calculation for the total monthly runoff storage in all reservoirs and retention facilities in the watershed, and simulate the monthly regulated runoff release and hydropower generation through the system. The WRES model is developed and calibrated using the historic (1980-2009) monthly precipitation, runoff, and generation data, and then driven by a large set of dynamically- and statistically-downscaled Coupled Model Intercomparison Project Phase 5 climate projections to simulate the change of watershed storage and hydropower generation under different future climate scenarios. The results among different hydropower regions, storage capacities, emission scenarios, and timescales are compared and discussed in this study.
The effect of water harvesting techniques on runoff, sedimentation, and soil properties.
Al-Seekh, Saleh H; Mohammad, Ayed G
2009-07-01
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.
NASA Astrophysics Data System (ADS)
Tong, Xiao Xia; Lai Cui, Yuan; Chen, Man Yu; Hu, Bo; Xu, Wen Sheng
2018-05-01
The Er yuan watershed of Er hai district is chosen as the research area, the law of runoff and sediment and non-point source nitrogen and phosphorus discharges under different land uses during 2001 to 2014 are simulated based on SWAT model. Results of simulation indicate that the order of total runoff yield of different land use type from high to low is grassland, paddy fields, dry land. Specifically, the order of surface runoff yield from high to low is paddy fields, dry land, grassland, the order of lateral runoff yield from high to low is paddy fields, dry land, grassland, the order of groundwater runoff yield from high to low is grassland, paddy fields, dry land. The orders of sediment and nitrogen and phosphorus yield per unit area of different land use type are the same, grassland> paddy fields> dry land. It can be seen, nitrogen and phosphorus discharges from paddy fields and dry land are the main sources of agricultural non-point pollution of the irrigated area. Therefore, reasonable field management measures which can decrease the discharge of nitrogen and phosphorus of paddy fields and dry land are the key to agricultural non-point source pollution prevention and control.
Continental-Scale Estimates of Runoff Using Future Climate ...
Recent runoff events have had serious repercussions to both natural ecosystems and human infrastructure. Understanding how shifts in storm event intensities are expected to change runoff responses are valuable for local, regional, and landscape planning. To address this challenge, relative changes in runoff using predicted future climate conditions were estimated over different biophysical areas for the CONterminous U.S. (CONUS). Runoff was estimated using the Curve Number (CN) developed by the USDA Soil Conservation Service (USDA, 1986). A seamless gridded dataset representing a CN for existing land use/land cover (LULC) across the CONUS was used along with two different storm event grids created specifically for this effort. The two storm event grids represent a 2- and a 100-year, 24-hour storm event under current climate conditions. The storm event grids were generated using a compilation of county-scale Texas USGS Intensity-Duration-Frequency (IDF) data (provided by William Asquith, USGS, Lubbock, Texas), and NOAA Atlas-2 and NOAA Atlas-14 gridded data sets. Future CN runoff was predicted using extreme storm events grids created using a method based on Kao and Ganguly (2011) where precipitation extremes reflect changes in saturated water vapor pressure of the atmosphere in response to temperature changes. The Clausius-Clapeyron relationship establishes that the total water vapor mass of fully saturated air increases with increasing temperature, leading to
Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon
2018-01-01
This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas. PMID:29547567
Evaluation of Rainfall-Runoff Models for Mediterranean Subcatchments
NASA Astrophysics Data System (ADS)
Cilek, A.; Berberoglu, S.; Donmez, C.
2016-06-01
The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA), a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.
Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon
2018-03-16
This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas.
The Effect of Water Harvesting Techniques on Runoff, Sedimentation, and Soil Properties
NASA Astrophysics Data System (ADS)
Al-Seekh, Saleh H.; Mohammad, Ayed G.
2009-07-01
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.
Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff.
McCarthy, D T; Hathaway, J M; Hunt, W F; Deletic, A
2012-12-15
Sediment levels are important for environmental health risk assessments of surface water bodies, while faecal pollution can introduce significant public health risks for users of these systems. Urban stormwater is one of the largest sources of contaminants to surface waters, yet the fate and transport of these contaminants (especially those microbiological) have received little attention in the literature. Stormwater runoff from five urbanized catchments were monitored for pathogen indicator bacteria and total suspended solids in two developed countries. Multiple discrete samples were collected during each storm event, allowing an analysis of intra-event characteristics such as initial concentration, peak concentration, maximum rate of change, and relative confidence interval. The data suggest that a catchment's area influences pollutant characteristics, as larger catchments have more complex stormwater infrastructure and more variable pollutant sources. The variability of total suspended solids for many characteristics was similar to Escherichia coli, indicating that the variability of E. coli may not be substantially higher than that of other pollutants as initially speculated. Further, variations in E. coli appeared to be more commonly correlated to antecedent climate, while total suspended solids were more highly correlated to rainfall/runoff characteristics. This emphasizes the importance of climate on microbial persistence and die off in urban systems. Discrete intra-event concentrations of total suspended solids and, to a lesser extent E. coli, were correlated to flow, velocity, and rainfall intensity (adjusted by time of concentrations). Concentration changes were found to be best described by adjusted rainfall intensity, as shown by other researchers. This study has resulted in an increased understanding of the magnitude of intra-event variations of total suspended solids and E. coli and what physical and climatic parameters influence these variations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Adjustment of regional regression equations for urban storm-runoff quality using at-site data
Barks, C.S.
1996-01-01
Regional regression equations have been developed to estimate urban storm-runoff loads and mean concentrations using a national data base. Four statistical methods using at-site data to adjust the regional equation predictions were developed to provide better local estimates. The four adjustment procedures are a single-factor adjustment, a regression of the observed data against the predicted values, a regression of the observed values against the predicted values and additional local independent variables, and a weighted combination of a local regression with the regional prediction. Data collected at five representative storm-runoff sites during 22 storms in Little Rock, Arkansas, were used to verify, and, when appropriate, adjust the regional regression equation predictions. Comparison of observed values of stormrunoff loads and mean concentrations to the predicted values from the regional regression equations for nine constituents (chemical oxygen demand, suspended solids, total nitrogen as N, total ammonia plus organic nitrogen as N, total phosphorus as P, dissolved phosphorus as P, total recoverable copper, total recoverable lead, and total recoverable zinc) showed large prediction errors ranging from 63 percent to more than several thousand percent. Prediction errors for 6 of the 18 regional regression equations were less than 100 percent and could be considered reasonable for water-quality prediction equations. The regression adjustment procedure was used to adjust five of the regional equation predictions to improve the predictive accuracy. For seven of the regional equations the observed and the predicted values are not significantly correlated. Thus neither the unadjusted regional equations nor any of the adjustments were appropriate. The mean of the observed values was used as a simple estimator when the regional equation predictions and adjusted predictions were not appropriate.
Lewis, M; Chancy, C
2008-02-01
Total mercury concentrations are summarized for environmental media and biota collected from near-coastal areas, several impacted by contaminant sources common to the Gulf of Mexico. Water, sediment, fish, blue crabs, oysters, clams, mussels, periphyton and seagrasses were collected during 1993-2002 from targeted areas affected by point and non-point source contaminants. Mean concentrations in water and sediment were 0.02 (+/-1 standard deviation=0.06) microg l(-1) and 96.3 (230.8) ng g(-1) dry wt, respectively. Mean total mercury concentrations in fish, blue crabs, brackish clams and mussels were significantly greater than those in sediment, seagrass, colonized periphyton and oysters. Concentrations (ng g(-1) dry wt) averaged 23.1 (two seagrass species), 220.1 (oysters), 287.8 (colonized periphyton), 604.0 (four species of freshwater mussels), 772.4 (brackish clam), 857.9 (blue crabs) and 933.1 (nine fish species). Spatial, intraspecific and interspecific variability in results limited most generalizations concerning the relative mercury contributions of different stressor types. However, concentrations were significantly greater for some biota collected from areas receiving wastewater discharges and golf course runoff (fish), agricultural runoff (oysters) and urban stormwater runoff (colonized periphyton and sediment). Marine water quality criteria and proposed sediment quality guidelines were exceeded in 1-12% of total samples. At least one seafood consumption guideline, criteria or screening value were exceeded in edible tissues of blue crabs (6% total samples) and nine fish species (8-33% total samples) but all residues were less than the US Federal Drug Administration action limit of 1.0 ppm and the few reported toxic effect concentrations available for the targeted biota.
NASA Astrophysics Data System (ADS)
Skøien, J. O.; Gottschalk, L.; Leblois, E.
2009-04-01
Whereas geostatistical and objective methods mostly have been developed for observations with point support or a regular support, e.g. runoff related data can be assumed to have an irregular support in space, and sometimes also a temporal support. The correlations between observations and between observations and the prediction location are found through an integration of a point variogram or point correlation function, a method known as regularisation. Being a relatively simple method for observations with equal and regular support, it can be computationally demanding if the observations have irregular support. With improved speed of computers, solving such integrations has become easier, but there can still be numerical problems that are not easily solved even with high-resolution computations. This can particularly be a problem in hydrological sciences where catchments are overlapping, the correlations are high, and small numerical errors can give ill-posed covariance matrices. The problem increases with increasing number of spatial and/or temporal dimensions. Gottschalk [1993a; 1993b] suggested to replace the integration by a Taylor expansion, hence reducing the computation time considerably, and also expecting less numerical problems with the covariance matrices. In practice, the integrated correlation/semivariance between observations are replaced by correlations/semivariances using the so called Ghosh-distance. Although Gottschalk and collaborators have used the Ghosh-distance also in other papers [Sauquet, et al., 2000a; Sauquet, et al., 2000b], the properties of the simplification have not been examined in detail. Hence, we will here analyse the replacement of the integration by the use of Ghosh-distances, both in sense of the ability to reproduce regularised semivariogram and correlation values, and the influence on the final interpolated maps. Comparisons will be performed both for real observations with a support (hydrological data) and for more hypothetical observations with regular supports where analytical expressions for the regularised semivariances/correlations in some cases can be derived. The results indicate that the simplification is useful for spatial interpolation when the support of the observations has to be taken into account. The difference in semivariogram value or correlation value between the simplified method and the full integration is limited on short distances, increasing for larger distances. However, this is to some degree taken into account while fitting a model for the point process, so that the results after interpolation are less affected by the simplification. The method is of particular use if computation time is of importance, e.g. in the case of real-time mapping procedures. Gottschalk, L. (1993a) Correlation and covariance of runoff, Stochastic Hydrology and Hydraulics, 7, 85-101. Gottschalk, L. (1993b) Interpolation of runoff applying objective methods, Stochastic Hydrology and Hydraulics, 7, 269-281. Sauquet, E., L. Gottschalk, and E. Leblois (2000a) Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation scheme, Hydrological Sciences Journal, 45, 799-815. Sauquet, E., I. Krasovskaia, and E. Leblois (2000b) Mapping mean monthly runoff pattern using EOF analysis, Hydrology and Earth System Sciences, 4, 79-93.
Zheng, Mingguo; Chen, Xiaoan
2015-01-01
Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng’s tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I 30 (the maximum 30-minute rainfall intensity) has been suggested for use as the rainfall erosivity index, although I 30 is equally correlated with soil loss as factors of I 20, EI 10 (the product of the rainfall kinetic energy, E, and I 10), EI 20 and EI 30 are. Runoff depth (total runoff volume normalized to drainage area) is more correlated with soil loss than all other examined rainfall-runoff factors, including I 30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations. PMID:25781173
Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong
2015-01-01
The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.
Effects of Soil Moisture Thresholds in Runoff Generation in two nested gauged basins
NASA Astrophysics Data System (ADS)
Fiorentino, M.; Gioia, A.; Iacobellis, V.; Manfreda, S.; Margiotta, M. R.; Onorati, B.; Rivelli, A. R.; Sole, A.
2009-04-01
Regarding catchment response to intense storm events, while the relevance of antecedent soil moisture conditions is generally recognized, the role and the quantification of runoff thresholds is still uncertain. Among others, Grayson et al. (1997) argue that above a wetness threshold a substantial portion of a small basin acts in unison and contributes to the runoff production. Investigations were conducted through an experimental approach and in particular exploiting the hydrological data monitored on "Fiumarella of Corleto" catchment (Southern Italy). The field instrumentation ensures continuous monitoring of all fundamental hydrological variables: climate forcing, streamflow and soil moisture. The experimental basin is equipped with two water level installations used to measure the hydrological response of the entire basin (with an area of 32 km2) and of a subcatchment of 0.65 km2. The aim of the present research is to better understand the dynamics of soil moisture and the runoff generation during flood events, comparing the data recorded in the transect and the runoff at the two different scales. Particular attention was paid to the influence of the soil moisture content on runoff activation mechanisms. We found that, the threshold value, responsible of runoff activation, is equal or almost to field capacity. In fact, we observed a rapid change in the subcatchment response when the mean soil moisture reaches a value close to the range of variability of the field capacity measured along a monitored transect of the small subcatchment. During dry periods the runoff coefficient is almost zero for each of the events recorded. During wet periods, however, it is rather variable and depends almost only on the total rainfall. Changing from the small scale (0.65 km2) up to the medium scale (represented by the basin of 32 km2) the threshold mechanism in runoff production is less detectable because masked by the increased spatial heterogeneity of the vegetation cover and soil texture.
NASA Astrophysics Data System (ADS)
Sultana, R.; Mroczek, M.; Dallman, S.; Sengupta, A.; Stein, E. D.
2016-12-01
The portion of the Total Impervious Area (TIA) that is hydraulically connected to the storm drainage network is called the Effective Impervious Area (EIA). The remaining fraction of impervious area, called the non-effective impervious area, drains onto pervious surfaces which do not contribute to runoff for smaller events. Using the TIA instead of EIA in models and calculations can lead to overestimates of runoff volumes peak discharges and oversizing of drainage system since it is assumed all impervious areas produce urban runoff that is directly connected to storm drains. This makes EIA a better predictor of actual runoff from urban catchments for hydraulic design of storm drain systems and modeling non-point source pollution. Compared to TIA, determining the EIA is considerably more difficult to calculate since it cannot be found by using remote sensing techniques, readily available EIA datasets, or aerial imagery interpretation alone. For this study, EIA percentages were calculated by two successive regression methods for five watersheds (with areas of 8.38 - 158mi2) located in Southern California using rainfall-runoff event data for the years 2004 - 2007. Runoff generated from the smaller storm events are considered to be emanating only from the effective impervious areas. Therefore, larger events that were considered to have runoff from both impervious and pervious surfaces were successively removed in the regression methods using a criterion of (1) 1mm and (2) a max (2 , 1mm) above the regression line. MSE is calculated from actual runoff and runoff predicted by the regression. Analysis of standard deviations showed that criterion of max (2 , 1mm) better fit the regression line and is the preferred method in predicting the EIA percentage. The estimated EIAs have shown to be approximately 78% to 43% of the TIA which shows use of EIA instead of TIA can have significant impact on the cost building urban hydraulic systems and stormwater capture devices.
Zheng, Mingguo; Chen, Xiaoan
2015-01-01
Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng's tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I30 (the maximum 30-minute rainfall intensity) has been suggested for use as the rainfall erosivity index, although I30 is equally correlated with soil loss as factors of I20, EI10 (the product of the rainfall kinetic energy, E, and I10), EI20 and EI30 are. Runoff depth (total runoff volume normalized to drainage area) is more correlated with soil loss than all other examined rainfall-runoff factors, including I30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations.
The geomicrobiology of the Greenland Ice Sheet: impact on DOC export (Invited)
NASA Astrophysics Data System (ADS)
Wadham, J. L.; Stibal, M.; Lawson, E. C.; Barnett, M. J.; Hasan, F.; Telling, J.; Anesio, A.; Lis, G.; Cullen, D.; Butler, C.; Tranter, M.; Nienow, P. W.
2010-12-01
The Greenland Ice Sheet (GrIS) is the largest mass of ice in the northern hemisphere, and contributes ~370 km3 in runoff annually to the Arctic Ocean. While recent work has highlighted runoff increases of up to 100% from the GrIS over the next century, very little is known about the associated impacts upon rates of sediment-bound and dissolved organic carbon export from the ice sheet to the coastal ocean. This is relevant given recent work that has suggested that the high proportion of labile dissolved organic carbon (DOC) present in glacial runoff may be important in sustaining the productivity of ecosystems downstream. Here we report the phylogenetic and functional diversity of micro-organisms inhabiting the surface and basal regions of the Greenland Ice Sheet (at Leverett Glacier, SW Greenland), and whose activity influences the biogeochemical composition of runoff. Real time PCR data on runoff, together with 16S-rRNA bacterial clone libraries on sediments, demonstrate a subglacial microbial community that contrasts phylogenetically and functionally with the ice sheet surface ecosystem. We envisage that large sectors of the subglacial environment are microbially active, with overridden paleosols and in-washed surface organic matter providing a carbon substrate for a range of metabolic pathways. This includes methanogenesis which proceeds at rates similar to deep ocean sediments and via a CO2/H2 pathway. These subglacial microbial communities serve to chemically modify the DOC composition of meltwater inputs from the ice sheet surface and modulate the reactivity of bulk DOC exported in runoff. Evidence for subglacial microbial influences on DOC in runoff includes elevated concentrations of dissolved carbohydrates (e.g. glucose and fructose of up to 1 μmol/L), which are preferentially exported during subglacial outburst events. We examine the temporal changes in DOC export in runoff from the ice sheet over a full melt season, and consider how changes in total runoff over the coming century may perturb this contribution.
Nitrogen Runoff Losses during Warm-Season Turfgrass Sod Establishment.
Wherley, Benjamin G; Aitkenhead-Peterson, Jacqueline A; Stanley, Nina C; Thomas, James C; Fontanier, Charles H; White, Richard H; Dwyer, Phil
2015-07-01
Concern exists over the potential loss of nitrogen (N) and phosphorus (P) in runoff from newly established and fertilized lawns. Nutrient losses can be higher from turf when shoot density and surface cover are low and root systems are not fully developed. This study was conducted to evaluate fertilizer source and timing effects on nutrient losses from newly sodded lawns of St. Augustinegrass [ (Walt.) Kuntze]. For each study, 12 33.6-m plots were established on an undisturbed Alfisol having a 3.7% slope. Each plot was equipped with a runoff collection system, instrumentation for runoff flow rate measurement, and automated samplers. A 28-d establishment study was initiated on 8 Aug. 2012 and repeated on 9 Sept. 2012. Treatments included unfertilized plots, fertilized plots receiving 4.88 g N m as urea 6 d after planting, fertilized plots receiving 4.88 g N m as sulfur-coated urea 6 d after planting, and fertilized plots receiving 4.88 g N m as urea 19 d after planting. Runoff events were created by irrigating with 17 mm of water over 27 min. Runoff water samples were collected after every 37.8 L and analyzed for NO-N, NH-N, dissolved organic N (DON), and PO-P. Increases of approximately 2 to 4 mg L NO-N and 8 to 12 mg L PO-P occurred in runoff 1 d after fertilization, which returned to background levels within 7 d. Total fertilizer N lost to runoff was 0.6 to 4.2% of that applied. Delaying fertilizer application until 19 d after planting provided no reduction in nutrient loss compared with a similar application 6 d after planting. Approximately 33% of the N lost in runoff was as DON. This large amount of DON suggests significant N loss from decomposing organic matter may occur during sod establishment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Chelinho, Sónia; Lopes, Isabel; Natal-da-Luz, Tiago; Domene, Xaxier; Nunes, Maria Edna Tenorio; Espíndola, Evaldo L G; Ribeiro, Rui; Sousa, Jose P
2012-02-01
The aim of the present study is to contribute an ecologically relevant assessment of the ecotoxicological effects of pesticide applications in agricultural areas in the tropics, using an integrated approach with information gathered from soil and aquatic compartments. Carbofuran, an insecticide/nematicide used widely on sugarcane crops, was selected as a model substance. To evaluate the toxic effects of pesticide spraying for soil biota, as well as the potential indirect effects on aquatic biota resulting from surface runoff and/or leaching, field and laboratory (using a cost-effective simulator of pesticide applications) trials were performed. Standard ecotoxicological tests were performed with soil (Eisenia andrei, Folsomia candida, and Enchytraeus crypticus) and aquatic (Ceriodaphnia silvestrii) organisms, using serial dilutions of soil, eluate, leachate, and runoff samples. Among soil organisms, sensitivity was found to be E. crypticus < E. andrei < F. candida. Among the aqueous extracts, mortality of C. silvestrii was extreme in runoff samples, whereas eluates were by far the least toxic samples. A generally higher toxicity was found in the bioassays performed with samples from the field trial, indicating the need for improvements in the laboratory simulator. However, the tool developed proved to be valuable in evaluating the toxic effects of pesticide spraying in soils and the potential risks for aquatic compartments. Copyright © 2011 SETAC.
NASA Astrophysics Data System (ADS)
England, John F.; Julien, Pierre Y.; Velleux, Mark L.
2014-03-01
Traditionally, deterministic flood procedures such as the Probable Maximum Flood have been used for critical infrastructure design. Some Federal agencies now use hydrologic risk analysis to assess potential impacts of extreme events on existing structures such as large dams. Extreme flood hazard estimates and distributions are needed for these efforts, with very low annual exceedance probabilities (⩽10-4) (return periods >10,000 years). An integrated data-modeling hydrologic hazard framework for physically-based extreme flood hazard estimation is presented. Key elements include: (1) a physically-based runoff model (TREX) coupled with a stochastic storm transposition technique; (2) hydrometeorological information from radar and an extreme storm catalog; and (3) streamflow and paleoflood data for independently testing and refining runoff model predictions at internal locations. This new approach requires full integration of collaborative work in hydrometeorology, flood hydrology and paleoflood hydrology. An application on the 12,000 km2 Arkansas River watershed in Colorado demonstrates that the size and location of extreme storms are critical factors in the analysis of basin-average rainfall frequency and flood peak distributions. Runoff model results are substantially improved by the availability and use of paleoflood nonexceedance data spanning the past 1000 years at critical watershed locations.
Toxicity and chemical analyses of airport runoff waters in Poland.
Sulej, Anna Maria; Polkowska, Zaneta; Wolska, Lidia; Cieszynska, Monika; Namieśnik, Jacek
2014-05-01
The aim of this study was to assess the ecotoxicological effects of various compounds in complex airport effluents using a chemical and ecotoxicological integrated strategy. The present work deals with the determination of sum of PCBs, PAHs, pesticides, cations, anions, phenols, anionic, cationic, non-ionic detergents, formaldehyde and metals--as well as TOC and conductivity--in runoff water samples collected from 2009 to 2011 at several locations on two Polish international airports. Two microbiotests (Vibrio fischeri bacteria and the crustacean Thamnocephalus platyurus) have been used to determine the ecotoxicity of airport runoff waters. The levels of many compounds exceeded several or even several tens of times the maximum permissible levels. Analysis of the obtained data shows that samples that displayed maximum toxicity towards the bioindicators Vibrio fischeri were not toxic towards Thamnocephalus platyurus. Levels of toxicity towards T. platyurus are strongly correlated with pollutants that originate from the technological operations related to the maintenance of airport infrastructure. The integrated (chemical-ecotoxicological) approach to environmental contamination assessment in and around airports yields extensive information on the quality of the environment. These methodologies can be then used as tools for tracking the environmental fate of these compounds and for assessing the environmental effect of airports. Subsequently, these data will provide a basis for airport infrastructure management.
System analysis to estimate subsurface flow: from global level to the State of Minnesota
NASA Astrophysics Data System (ADS)
Shmagin, Boris A.; Kanivetsky, Roman
2002-06-01
Stream runoff data globally and in the state of Minnesota were used to estimate subsurface water flow. This system approach is based, in principal, on unity of groundwater and surface water systems, and it is in stark contrast to the traditional deterministic approach based on modeling. In coordination with methodology of system analysis, two levels of study were used to estimate subsurface flow. First, the global stream runoff data were assessed to estimate the temporal-spatial variability of surface water runoff. Factor analysis was used to study the temporal-spatial variability of global runoff for the period from 1918 to 1967. Results of these analysis demonstrate that the variability of global runoff could be represented by seven major components (factor scores) that could be grouped into seven distinct independent grouping from the total of 18 continental slopes on the Earth. Computed variance value in this analysis is 76% and supports such analysis. The global stream runoff for this period is stationary, and is more closely connected with the stream flow of Asia to the Pacific Ocean as well as with the stream runoff of North America towards the Arctic and Pacific Oceans. The second level examines the distribution of river runoff (annual and for February) for various landscapes and the hydrogeological conditions in the State of Minnesota (218,000 km2). The annual and minimal monthly rate of stream runoff for 115 gauging stations with a period of observation of 47 years (1935-1981) were used to characterize the spatio-temporal distribution of stream runoff in Minnesota. Results of this analysis demonstrate that the annual stream runoff rate changes from 6.3, towards 3.95, and then to 2.09 l s-1 km-2 (the difference is significant based on Student's criteria). These values in Minnesota correspond to ecological provinces from a mixed forest province towards the broadleaf forest and to prairie province, respectively. The distribution of minimal monthly stream runoff rate (February runoff) is controlled by hydrogeological systems in Minnesota. The difference between the two hydrogeological regions, Precambrian crystalline basement and Paleozoic artesian basin of 0.83 and 2.09 l/s/km2, is statistically significant. Within these regions, the monthly minimal runoff (0.5 and 1.68, and 0.87 and 3.11 l s-1 km-2 for February, respectively) is also distinctly different for delineated subregions, depending on whether or not the Quaternary cover is present. The spatio-temporal structure that emerges could thus be used to generate river runoff and subsurface flow maps at any scale - from the global level to local detail. Such analysis was carried out in Minnesota with the detailed mapping of the subsurface flow for the Twin Cities Metropolitan area.
System analysis to estimate subsurface flow: From global level to the State of Minnesota
Shmagin, B.A.; Kanivetsky, R.
2002-01-01
Stream runoff data globally and in the state of Minnesota were used to estimate subsurface water flow. This system approach is based, in principal, on unity of groundwater and surface water systems, and it is in stark contrast to the traditional deterministic approach based on modeling. In coordination with methodology of system analysis, two levels of study were used to estimate subsurface flow. First, the global stream runoff data were assessed to estimate the temporal-spatial variability of surface water runoff. Factor analysis was used to study the temporal-spatial variability of global runoff for the period from 1918 to 1967. Results of these analysis demonstrate that the variability of global runoff could be represented by seven major components (factor scores) that could be grouped into seven distinct independent grouping from the total of 18 continental slopes on the Earth. Computed variance value in this analysis is 76% and supports such analysis. The global stream runoff for this period is stationary, and is more closely connected with the stream flow of Asia to the Pacific Ocean as well as with the stream runoff of North America towards the Arctic and Pacific Oceans. The second level examines the distribution of river runoff (annual and for February) for various landscapes and the hydrogeological conditions in the State of Minnesota (218,000 km2). The annual and minimal monthly rate of stream runoff for 115 gauging stations with a period of observation of 47 years (1935-1981) were used to characterize the spatio-temporal distribution of stream runoff in Minnesota. Results of this analysis demonstrate that the annual stream runoff rate changes from 6.3, towards 3.95, and then to 2.09 1 s-1 km-2 (the difference is significant based on Student's criteria). These values in Minnesota correspond to ecological provinces from a mixed forest province towards the broadleaf forest and to prairie province, respectively. The distribution of minimal monthly stream runoff rate (February runoff) is controlled by hydrogeological systems in Minnesota. The difference between the two hydrogeological regions, Precambrian crystalline basement and Paleozoic artesian basin of 0.83 and 2.09 1/s/km2, is statistically significant. Within these regions, the monthly minimal runoff (0.5 and 1.68, and 0.87 and 3.11 1 s-1 km-2 for February, respectively) is also distinctly different for delineated subregions, depending on whether or not the Quaternary cover is present. The spatio-temporal structure that emerges could thus be used to generate river runoff and subsurface flow maps at any scale - from the global level to local detail. Such analysis was carried out in Minnesota with the detailed mapping of the subsurface flow for the Twin Cities Metropolitan area.
NASA Astrophysics Data System (ADS)
López-Vicente, Manuel, , Dr.; Palazón, M. Sc. Leticia; Quijano, M. Sc. Laura; Gaspar, Leticia, , Dr.; Navas, Ana, , Dr.
2015-04-01
Hydrological and soil erosion models allow mapping and quantifying spatially distributed rates of runoff depth and soil redistribution for different land uses, management and tillage practices and climatic scenarios. The different temporal and spatial [very small (< 1 km2), small (1-5 km2), medium (5-50 km2) and large catchments (50-1000 km2) or river basins (>1000 km2)] scales of numerical simulations make model selection specific to each range of scales. Additionally, the spatial resolution of the inputs is in agreement with the size of the study area. In this study, we run the GIS-based water balance DR2-2013© SAGA v1.1 model (freely downloaded as executable file at http://digital.csic.es/handle/10261/93543), in the Vandunchil stream catchment (23 km2; Ebro river basin, NE Spain). All input maps are generated at 5 x 5 m of cell size (924,573 pixels per map) allowing sound parameterization. Simulation is run at monthly scale with average climatic values. This catchment is an open hydrological system and it has a long history of human occupation, agricultural practices and water management. Numerous manmade infrastructures or landscape linear elements (LLEs: paved and unpaved trails, rock mounds in non-cultivated areas, disperse and small settlements, shallow and long drainage ditches, stone walls, small rock dams, fences and vegetation strips) appear throughout the hillslopes and streams and modify the natural runoff pathways and thus the hydrological and sediment connectivity. Rain-fed cereal fields occupy one third of the catchment area, 1% corresponds to sealed soils, and the remaining area is covered with Mediterranean forest, scrubland, pine afforestation and meadow. The parent material corresponds to Miocene sandstones and lutites and Holocene colluvial and alluvial deposits. The climate is continental Mediterranean with two humid periods, one in spring and a second in autumn that summarizes 63% of the total annual precipitation. We created a synthetic weather station (WS) from the Caseda and Uncastillo WS. The effective rainfall that reaches the soils (after canopy interception and slope correction) was 85% on average from the total rainfall depth (556 mm yr-1) and the average initial runoff, before overland flow processes, was 320 mm yr-1. The simulated effective runoff (CQeff) ranged from 0 until 29,960 mm yr-1 and the corresponding map showed the typical spatial pattern of overland flow pathways though numerous disruptions appeared along the hillslopes and the main streams due to the presence of LLEs. The total depth of annual runoff corresponds to 37.8% of the total effective rainfall (TER) and 32.0% of the total rainfall depth (TR). The remaining volume of water, the soil water content (Waa) associated with the runoff and rainfall events, meant 62.2% and 52.7% of the TER and TR, respectively. The map of the Waa presented a different spatial pattern where the land uses play a more important role than the processes of cumulative overland flow. Significant variations in the monthly values of CQeff and Waa were described. This study proves the ability of the DR2-2013© SAGA v1.1 model to simulate the hydrological response of the soils at catchment scale.
Modification of a rainfall-runoff model for distributed modeling in a GIS and its validation
NASA Astrophysics Data System (ADS)
Nyabeze, W. R.
A rainfall-runoff model, which can be inter-faced with a Geographical Information System (GIS) to integrate definition, measurement, calculating parameter values for spatial features, presents considerable advantages. The modification of the GWBasic Wits Rainfall-Runoff Erosion Model (GWBRafler) to enable parameter value estimation in a GIS (GISRafler) is presented in this paper. Algorithms are applied to estimate parameter values reducing the number of input parameters and the effort to populate them. The use of a GIS makes the relationship between parameter estimates and cover characteristics more evident. This paper has been produced as part of research to generalize the GWBRafler on a spatially distributed basis. Modular data structures are assumed and parameter values are weighted relative to the module area and centroid properties. Modifications to the GWBRafler enable better estimation of low flows, which are typical in drought conditions.
NASA Astrophysics Data System (ADS)
Bach, Heike; Appel, Florian; Rust, Felix; Mauser, Wolfram
2010-12-01
Information on snow cover and snow properties are important for hydrology and runoff modelling. Frequent updates of snow cover observation, especially for areas characterized by short-term snow dynamics, can help to improve water balance and discharge calculations. Within the GMES service element Polar View, VISTA offers a snow mapping service for Central Europe since several years [1, 2]. We outline the use of this near-real- time product for hydrological applications in Alpine environment. In particular we discuss the integration of the Polar View product into a physically based hydrological model (PROMET). This allows not only the provision of snow equivalent values, but also enhances river runoff modelling and its use in hydropower energy yield prediction. The GMES snow products of Polar View are thus used in a downstream service for water resources management, providing information services for renewable energy suppliers and energy traders.
Wu, Dong; Huang, Zhi-lin; Xiao, Wen-fa; Zeng, Li-xiong
2015-10-01
Annual soil nutrient loss characteristics on typical reforestation patterns in watershed along the Three Gorges Reservoir Area were studied based on runoff plot experiment. Runoff and sediment nutrition content from May to October 2014 of typical reforestation patterns including garden plot (tea garden), forest land (Chinese chestnut) and the original slope farmland were determined and then analyzed. The results showed that: (1) After the Returning Farmland to Forest Project the quantity of annual soil nutrient (nitrogen and phosphorus, the sum of them in sediment and runoff) loss decreased. The output of total nitrogen (TN) was in the order of slope farmland (2 444.27 g x hm(-2)) > tea garden (998.70 g x hm(-2)) > Chinese chestnut forest (532.61 g x hm(-2)), and for total phosphorus (TP) loss was slope farmland (1 690.48 g x hm(-2)) > tea garden (488.06 g x hm(-2)) > Chinese chestnut forest (129.00 g x hm(-2)) . Compared with slope farmland, the load of TN and TP output of reforestation patterns decreased 68.68% and 81.75%, respectively. (2) Compared with slope farmland, available nitrogen loss decreased in reforestation patterns. Total nitrate nitrogen (NO3(-)-N) loss ranked in the order of slope farmland (113.79 g x hm(-2)) > tea garden (73.75 g x hm(-2)) > Chinese chestnut forest (56.06 g x hm(-2)) The largest amount of ammonium nitrogen (NH4(+)-N) was found in tea garden (69.34 g x hm(-2)), then in farmland (52.45 g x hm(-2)), and the least in Chinese chestnut forest (47.23 g x hm(-2)). (3) The main route of NO3(-)-N and NH4(+)-N loss was both through runoff, the quantity of NO3(-)-N and NH4(+)-N output in which accounted for 91.4% and 92.2% of the total, respectively. The quantity of TN and TP in sediment accounted for 86.6% and 98.4% of the total. TN and TP loss showed an extremely significant correlation with sediments, which showed that sediment output was the main approach of TN and TP loss.
Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher; Glibert, Patricia; Sturtevant, Luke
2014-01-01
The U.S. Geological Survey and Acadia National Park (ANP) collaborated on a study of nutrient inputs into Bass Harbor Marsh Estuary on Mount Desert Island, Maine, to better understand ongoing eutrophication, oceanic nutrient inputs, and potential management solutions. This report includes the estimation of loads of nitrate, ammonia, total dissolved nitrogen, and total dissolved phosphorus to the estuary derived from runoff within the watershed and oceanic inputs during summers 2011 and 2012. Nutrient outputs from the estuary were also monitored, and nutrient inputs in direct precipitation to the estuary were calculated. Specific conductance, water temperature, and turbidity were monitored at the estuary outlet. This report presents a first-order analysis of the potential effects of projected sea-level rise on the inundated area and estuary volume. Historical aerial photographs were used to investigate the possibility of widening of the estuary channel over time. The scope of this report also includes analysis of sediment cores collected from the estuary and fringing marsh surfaces to assess the sediment mass accumulation rate. Median concentrations of nitrate, ammonium, and total dissolved phosphorus on the flood tide were approximately 25 percent higher than on the ebb tide during the 2011 and 2012 summer seasons. Higher concentrations on the flood tide suggest net assimilation of these nutrients in biota within the estuary. The dissolved organic nitrogen fraction dominated the dissolved nitrogen fraction in all tributaries. The median concentration of dissolved organic nitrogen was about twice as high on the on the ebb tide than the flood tide, indicating net export of dissolved organic nitrogen from the estuary. The weekly total oceanic inputs of nitrate, ammonium, and total dissolved phosphorus to the estuary were usually much larger than inputs from runoff or direct precipitation. The estuary was a net sink for nitrate and ammonium in most weeks during both years. Oceanic inputs of nitrate and ammonium were an important source of inorganic nitrogen to the estuary in both years. In both years, the total seasonal inputs of ammonium to the estuary in flood tides were much larger than the inputs from watershed runoff or direct precipitation. In 2011, the total seasonal input of nitrate from flood tides to the estuary was more than twice as large the inputs from watershed runoff and precipitation, but in 2012, the inputs from flood tides were only marginally larger than the inputs from watershed runoff and precipitation. Turbidity was measured intermittently in 2012, and the pattern that emerged from the measurements indicated that the estuary was a source of particulate matter to the ocean rather than the ocean being a source to the estuary. From the nutrient budgets determined for the estuary it is evident that oceanic sources of nitrate and ammonium are an important part of the supply of nutrients that are contributing to the growth of macroalgae in the estuary. The relative importance of these oceanic nutrients compared with sources within the watershed typically increases as the summer progresses and runoff decreases. It is likely that rising sea levels, estimated by the National Oceanic and Atmospheric Administration to be 11 centimeters from 1950 through 2006 in nearby Bar Harbor, have resulted in an increase in oceanic inputs (tidal volume and nutrients derived from oceanic sources).
Rainfall-runoff data from small watersheds in Colorado, October 1974 through September 1977
Cochran, Betty J.; Hodges, H.E.; Livingston, R.K.; Jarret, R.D.
1979-01-01
Rainfall-runoff data from small watersheds in Colorado are being collected and analyzed for the purpose of defining the flood characteristics of these and other similar areas. Data collected from October 1974 through September 1977 at a total of 18 urban stations, 10 Denver Federal Center stations, and 48 rural (or highway) stations are tabulated at 5-minute time intervals. Additional information presented includes station descriptions and methods of data collection and analysis. (Kosco-USGS)
Young, Stacie T.M.; Ball, Marcael T.J.
2003-01-01
Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data was collected at two sites, continuous streamflow data at three sites, and water-quality data at five sites, which include the three streamflow sites. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2002 to June 30, 2003. A total of 28 samples were collected over five storms during July 1, 2002 to June 30, 2003. For two of the five storms, five grab samples and three flow-weighted timecomposite samples were collected. Grab samples were collected nearly simultaneously at all five sites, and flow-weighted timecomposite samples were collected at the three sites equipped with automatic samplers. The other three storms were partially sampled, where only flow-weighted time-composite samples were collected and/or not all stations were sampled. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, copper, lead, and zinc). Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/qualitycontrol samples, collected during storms and during routine maintenance, were also collected to verify analytical procedures and insure proper cleaning of equipment.
Young, Stacie T.M.; Ball, Marcael T.J.
2005-01-01
Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. This program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream. For this program, rainfall data were collected at two stations, continuous streamflow data at two stations, and water-quality data at five stations, which include the two continuous streamflow stations. This report summarizes rainfall, streamflow, and water-quality data collected between July 1, 2004 and June 30, 2005. A total of 15 samples was collected over three storms during July 1, 2004 to June 30, 2005. In general, an attempt was made to collect grab samples nearly simultaneously at all five stations and flow-weighted time-composite samples at the three stations equipped with automatic samplers. However, all three storms were partially sampled because either not all stations were sampled or not all composite samples were collected. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc). Chromium and nickel were added to the analysis starting October 1, 2004. Grab samples were additionally analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Quality-assurance/quality-control samples were also collected during storms and during routine maintenance to verify analytical procedures and check the effectiveness of equipment-cleaning procedures.
Controls on the quality of harvested rainwater in residential systems
NASA Astrophysics Data System (ADS)
Sojka, S. L.; Phung, D.; Hollingsworth, C.
2014-12-01
Rainwater harvesting systems, in which runoff from roofs is collected and used for irrigation, toilets and other purposes, present a viable solution to limited freshwater supplies and excess stormwater runoff. However, a lack of data on the quality of harvested rainwater hinders adoption of rainwater harvesting systems and makes development of rainwater harvesting regulations difficult. We conducted monthly surveys of 6 existing residential rainwater harvesting systems ranging in age from 1 to 11 years measuring pH, temperature, dissolved oxygen, total suspended solids, dissolved organic carbon, and coliform bacteria. We also examined a subset of the samples for iron, lead, mercury and arsenic. Many of the systems routinely met the water quality requirements for non-potable use without additional treatment, which is often required by regulations. In addition, while previous studies have shown that roof runoff contains heavy metals, the water in all systems showed very low or undetectable levels of metal contamination. Coliform bacteria concentration ranged from 20 to greater than 1400 CFU's per 100 mL and correlated with total suspended solids, which ranged from 2 - 7 mg l-1. The relationship between suspended solids and bacteria population was confirmed in a controlled experiment on the impact of filtering the rainwater before storage. Filtration decreased total suspended solids and total coliforms and increased dissolved oxygen concentration. This project provides insight into the effects of system design and a baseline assessment of the quality of harvested rainwater in existing systems.
A protocol for conducting rainfall simulation to study soil runoff.
Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B
2014-04-03
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.
A Protocol for Conducting Rainfall Simulation to Study Soil Runoff
Kibet, Leonard C.; Saporito, Louis S.; Allen, Arthur L.; May, Eric B.; Kleinman, Peter J. A.; Hashem, Fawzy M.; Bryant, Ray B.
2014-01-01
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff. PMID:24748061
NASA Astrophysics Data System (ADS)
Lyon, Steve W.; Walter, M. Todd; Gérard-Marchant, Pierre; Steenhuis, Tammo S.
2004-10-01
Because the traditional Soil Conservation Service curve-number (SCS-CN) approach continues to be used ubiquitously in water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed and tested a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Predicting the location of source areas is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point-source pollution. The method presented here used the traditional SCS-CN approach to predict runoff volume and spatial extent of saturated areas and a topographic index, like that used in TOPMODEL, to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was applied to two subwatersheds of the Delaware basin in the Catskill Mountains region of New York State and one watershed in south-eastern Australia to produce runoff-probability maps. Observed saturated area locations in the watersheds agreed with the distributed CN-VSA method. Results showed good agreement with those obtained from the previously validated soil moisture routing (SMR) model. When compared with the traditional SCS-CN method, the distributed CN-VSA method predicted a similar total volume of runoff, but vastly different locations of runoff generation. Thus, the distributed CN-VSA approach provides a physically based method that is simple enough to be incorporated into water quality models, and other tools that currently use the traditional SCS-CN method, while still adhering to the principles of VSA hydrology.
Vadas, P A; Good, L W; Moore, P A; Widman, N
2009-01-01
Nonpoint-source pollution of fresh waters by P is a concern because it contributes to accelerated eutrophication. Given the state of the science concerning agricultural P transport, a simple tool to quantify annual, field-scale P loss is a realistic goal. We developed new methods to predict annual dissolved P loss in runoff from surface-applied manures and fertilizers and validated the methods with data from 21 published field studies. We incorporated these manure and fertilizer P runoff loss methods into an annual, field-scale P loss quantification tool that estimates dissolved and particulate P loss in runoff from soil, manure, fertilizer, and eroded sediment. We validated the P loss tool using independent data from 28 studies that monitored P loss in runoff from a variety of agricultural land uses for at least 1 yr. Results demonstrated (i) that our new methods to estimate P loss from surface manure and fertilizer are an improvement over methods used in existing Indexes, and (ii) that it was possible to reliably quantify annual dissolved, sediment, and total P loss in runoff using relatively simple methods and readily available inputs. Thus, a P loss quantification tool that does not require greater degrees of complexity or input data than existing P Indexes could accurately predict P loss across a variety of management and fertilization practices, soil types, climates, and geographic locations. However, estimates of runoff and erosion are still needed that are accurate to a level appropriate for the intended use of the quantification tool.