NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2016-07-01
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less
Calculations of Total Classical Cross Sections for a Central Field
NASA Astrophysics Data System (ADS)
Tsyganov, D. L.
2018-07-01
In order to find the total collision cross-section a direct method of the effective potential (EPM) in the framework of classical mechanics was proposed. EPM allows to over come both the direct scattering problem (calculation of the total collision cross-section) and the inverse scattering problem (reconstruction of the scattering potential) quickly and effectively. A general analytical expression was proposed for the generalized Lennard-Jones potentials: (6-3), (9-3), (12-3), (6-4), (8-4), (12-4), (8-6), (12-6), (18-6). The values for the scattering potential of the total cross section for pairs such as electron-N2, N-N, and O-O2 were obtained in a good approximation.
Positron scattering from molecular hydrogen
NASA Astrophysics Data System (ADS)
Machacek, J. R.; Anderson, E. K.; Makochekanwa, C.; Buckman, S. J.; Sullivan, J. P.
2013-10-01
We present results for total and partial cross sections for positron scattering from H2. The total scattering and positronium formation cross sections are reported between 0.5 and 200 eV. Total quasielastic and inelastic scattering cross sections are reported for energies between the positronium formation threshold and 50 eV, with quasielastic differential scattering cross sections reported at 1, 3, 5, 7, and 10 eV. Our results are compared with previous work, both experimental and theoretical, with particular attention paid to the region below the positronium formation threshold, where there are apparent discrepancies in previous work. A discussion of possible reasons for discrepancies between this and previous work is presented, including a focus on known systematic effects in the experimental results.
NASA Technical Reports Server (NTRS)
Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.
1990-01-01
An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.
Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)
NASA Astrophysics Data System (ADS)
Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.
2018-05-01
In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.
P(P bar)P elastic scattering and cosmic ray data
NASA Technical Reports Server (NTRS)
FAZAL-E-ALEEM; Saleem, M.
1985-01-01
It is shown that the total cross section for pp elastic scattering at cosmic ray energies, as well as the total cross section, the slope parameter b(s,t) and the differential cross section for small momentum transfer at ISR and collider energies for p(p)p elastic scattering can be simultaneously fitted by using a simple Regge pole model. The results of this theory is discussed in detail.
Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1991-01-01
Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.
Nucleon and deuteron scattering cross sections from 25 MV/Nucleon to 22.5 GeV/Nucleon
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.
1983-01-01
Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of nucleon and deuteron total and absorption cross sections at kinetic energies between 25 MeV/nucleon and 22.5 GeV/nucleon for use in cosmic-ray transport and shielding studies. Comparisons of predictions for nucleon-nucleus and deuteron-nucleus absorption and total cross sections with experimental data are also made.
Total electron scattering cross sections of some important biomolecules at 0.2-6.0 keV energies
NASA Astrophysics Data System (ADS)
Gurung, Meera Devi; Ariyasinghe, W. M.
2017-12-01
The total electron scattering cross sections (TCS) of five nucleic bases (adenine, cytosine, guanine, thymine and uracil), phosphoric acid, three amino acids (glycine, lysine, and L-histidine), D-glucose, alpha-D-glucose, tetrahydropyran (THP), 3-hydroxytetrahydrofuran and furan have been determined in the energy range 0.2-6.0 keV using a simple model based on the effective atomic total electron scattering cross sections (EATCS). The reliability of the model is confirmed by comparing the determined TCS with the predictions of those by existing theoretical models.
Adiabatic-nuclei calculations of positron scattering from molecular hydrogen
Zammit, Mark Christian; Fursa, Dmitry V.; Savage, Jeremy S.; ...
2017-02-06
The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H 2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron- H 2 scattering length is calculated as A = $-$ 2.70 a 0 for the ground state and A = $-$ 3.16 a 0 for the first vibrationally excited state. The present elastic differential cross sections are also used to “correct” the low-energy grand totalmore » cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009)] for the forward-angle-scattering effect. In general, the comparison with experiment is good. In conclusion, by performing convergence studies, we estimate that our R m = 1.448 a 0 fixed-nuclei results are converged to within ± 5 % for the major scattering integrated cross sections.« less
Review of total cross sections and forward scattering parameters at ultra-high energies
NASA Astrophysics Data System (ADS)
Block, M. M.; White, A. R.
1991-10-01
We review the field of the elastic scattering of pp and (bar p)p at the ultra-high energies. The recent total cross section, sigma (sub tot), and rho-value results from the Fermilab Tevatron Collider experiments presented at the 4th 'Blois' Workshop on Elastic and Diffractive Scattering (Elba, Italy, in May, 1991), allow us a comprehensive overview of the field.
Medium modified two-body scattering amplitude from proton-nucleus total cross-sections
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.
2001-01-01
Recently (R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 145 (1998) 277; R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA-TP-1998-208438), we have extracted nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. Here, we investigate the ratio of real to imaginary part of the two-body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate total proton-nucleus cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2001 Elsevier Science B.V. All rights reserved.
Proton-Nucleus Total Cross Sections in Coupled-Channel Approach
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2000-01-01
Recently, nucleon-nucleon (N-N) cross sections in the medium have been extracted directly from experiment. The in-medium N-N cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. In the present study the ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium N-N cross sections to calculate total proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Buck, Warren W.; Maung, Khin M.
1989-01-01
Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Romarly F. da; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo; Oliveira, Eliane M. de
2015-03-14
We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the numbermore » of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].« less
Measurement of the n-p elastic scattering angular distribution at E{sub n}=14.9 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boukharouba, N.; Bateman, F. B.; Carlson, A. D.
2010-07-15
The relative differential cross section for the elastic scattering of neutrons by protons was measured at an incident neutron energy E{sub n}=14.9 MeV and for center-of-mass scattering angles ranging from about 60 deg. to 180 deg. Angular distribution values were obtained from the normalization of the integrated data to the n-p total elastic scattering cross section. Comparisons of the normalized data to the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and with the ENDF/B-VII.0 evaluation are sensitive to the value of the total elastic scattering cross section used to normalize the data. The resultsmore » of a fit to a first-order Legendre polynomial expansion are in good agreement in the backward scattering hemisphere with the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and to a lesser extent, with the ENDF/B-VII.0 evaluation. A fit to a second-order expansion is in better agreement with the ENDF/B-VII.0 evaluation than with the other predictions, in particular when the total elastic scattering cross section given by Arndt et al. and the Nijmegen group is used to normalize the data. A Legendre polynomial fit to the existing n-p scattering data in the 14 MeV energy region, excluding the present measurement, showed that a best fit is obtained for a second-order expansion. Furthermore, the Kolmogorov-Smirnov test confirms the general agreement in the backward scattering hemisphere and shows that significant differences between the database and the predictions occur in the angular range between 60 deg. and 120 deg. and below 20 deg. Although there is good overall agreement in the backward scattering hemisphere, more precision small-angle scattering data and a better definition of the total elastic cross section are needed for an accurate determination of the shape and magnitude of the angular distribution.« less
Cross sections for electron collisions with nitric oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itikawa, Yukikazu, E-mail: yukitikawa@nifty.com
Cross section data are reviewed for electron collisions with nitric oxide. Collision processes considered are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature (up to the end of 2015), recommended values of the cross section are determined, as far as possible.
Nucleon and heavy-ion total and absorption cross section for selected nuclei
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Costner, C. M.
1975-01-01
Approximate solutions of the coupled-channel equations for high-energy composite particle scattering are obtained and are applied to the nuclear scattering problem. Relationships between several approximation procedures are established and discussed. The eikonal formalism is used with a small-angle approximation to calculate the coherent elastic scattered amplitude from which total and absorption cross sections are derived. Detailed comparisons with nucleon-nucleus experiments show agreement within 5 percent except at lower energies where the eikonal approximation is of questionable accuracy. Even at these lower energies, agreement is within 15 percent. Tables of cross sections required for cosmic heavy-ion transport and shielding studies are presented.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.
1989-01-01
The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Ab initio method for calculating total cross sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Schneider, B. I.; Temkin, A.
1993-01-01
A method for calculating total cross sections without formally including nonelastic channels is presented. The idea is to use a one channel T-matrix variational principle with a complex correlation function. The derived T matrix is therefore not unitary. Elastic scattering is calculated from T-parallel-squared, but total scattering is derived from the imaginary part of T using the optical theorem. The method is applied to the spherically symmetric model of electron-hydrogen scattering. No spurious structure arises; results for sigma(el) and sigma(total) are in excellent agreement with calculations of Callaway and Oza (1984). The method has wide potential applicability.
Photoeffect cross sections of some rare-earth elements at 145.4 keV
NASA Astrophysics Data System (ADS)
Umesh, T. K.; Ranganathaiah, C.; Sanjeevaiah, B.
1985-08-01
Total attenuation cross sections in the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er were derived from the measured total cross sections of their simple oxide compounds, by employing the mixture rule at 145.4-keV photon energy. The compound cross sections have been measured by performing transmission experiments in a good geometry setup. From the derived total cross sections of elements, photoeffect cross sections have been obtained by subtracting the theoretical scattering cross sections. A good agreement is observed between the present data of photoeffect cross sections and Scofield's theoretical data.
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby
2018-05-01
This article is focused on the calculation of electron-induced ionisation and total scattering cross sections by Boron, Aluminium and Gallium trihalide molecules in the intermediate energy domain. The computational formalism, spherical complex optical potential has been employed for the study of these two scattering cross sections. The ionisation cross section has been derived from the inelastic cross section using a semi-empirical method called complex scattering potential-ionisation contribution (CSP-ic) method. We have also calculated the ionisation cross section using the BEB theory with Hartree-Fock and density functional theory (DFT- ωB97XD) orbitals so that a comparison can be made with the cross sections predicted by CSP-ic method. For this theoretical study, we have also calculated polarisability and bond length of some targets which were not found in literature using DFT/B3LYP in Gaussian 09 software.
Differential Cross Sections for Proton-Proton Elastic Scattering
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.
2009-01-01
Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.
Total cross sections for positron scattering from benzene, cyclohexane, and aniline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zecca, Antonio; Moser, Norberto; Perazzolli, Chiara
2007-08-15
We use a linear transmission technique to measure total cross sections for positron scattering from benzene, cyclohexane, and aniline. In the case of cyclohexane, the energy range of the present study is 0.1-20 eV, while for benzene and aniline it is 0.2-20 eV. With respect to benzene and cyclohexane, comparison is made to the only other existing results we know of [Makochekanwa and co-workers, Phys. Rev. A 68, 032707 (2003); 72, 042705 (2005)]. Agreement with those data is only marginal, being particularly poor at the overlap lower energies. Unlike Kimura et al. [J. Phys. B 37, 1461 (2004)], we findmore » the low-energy dependence of the positron-benzene total cross sections to be qualitatively similar to those found in the electron channel [Gulley et al., J. Phys. B 31, 2735 (1998)]. We believe that the present positron-aniline total cross sections represent the first time such data have been measured. These cross sections are almost identical to those we found for benzene, suggesting that substitution of hydrogen by the amine group on the aromatic ring is largely irrelevant to the scattering process in the energy regimes considered.« less
Total cross section of furfural by electron impact: Experiment and theory.
Traoré Dubuis, A; Verkhovtsev, A; Ellis-Gibbings, L; Krupa, K; Blanco, F; Jones, D B; Brunger, M J; García, G
2017-08-07
We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.
Total cross section of furfural by electron impact: Experiment and theory
NASA Astrophysics Data System (ADS)
Traoré Dubuis, A.; Verkhovtsev, A.; Ellis-Gibbings, L.; Krupa, K.; Blanco, F.; Jones, D. B.; Brunger, M. J.; García, G.
2017-08-01
We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.
Effect of molecular anisotropy on beam scattering measurements
NASA Technical Reports Server (NTRS)
Goldflam, R.; Green, S.; Kouri, D. J.; Monchick, L.
1978-01-01
Within the energy sudden approximation, the total integral and total differential scattering cross sections are given by the angle average of scattering cross sections computed at fixed rotor orientations. Using this formalism the effect of molecular anisotropy on scattering of He by HCl and by CO is examined. Comparisons with accurate close coupling calculations indicate that this approximation is quite reliable, even at very low collision energies, for both of these systems. Comparisons are also made with predictions based on the spherical average of the interaction. For HCl the anisotropy is rather weak and its main effect is a slight quenching of the oscillations in the differential cross sections relative to predictions of the spherical averaged potential. For CO the anisotropy is much stronger, so that the oscillatory pattern is strongly quenched and somewhat shifted. It appears that the sudden approximation provides a simple yet accurate method for describing the effect of molecular anisotropy on scattering measurements.
Electron scattering by molecules. II - Experimental methods and data
NASA Technical Reports Server (NTRS)
Trajmar, S.; Chutjian, A.; Register, D. F.
1983-01-01
Experimental techniques for measuring electron-molecule collision cross sections are briefly summarized. A survey of the available experimental cross section data is presented. The emphasis here is on elastic scattering, rotational, vibrational and electronic excitations, total electron scattering, and momentum transfer in the few eV to few hundred eV impact energy range. Reference is made to works concerned with high energy electron scattering, innershell and multi-electron excitations, conicidence methods and electron scattering in laser fields.
Positron-alkali atom scattering
NASA Technical Reports Server (NTRS)
Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.
1990-01-01
Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.
Positron total scattering cross-sections for alkali atoms
NASA Astrophysics Data System (ADS)
Sinha, Nidhi; Singh, Suvam; Antony, Bobby
2018-01-01
Positron-impact total scattering cross-sections for Li, Na, K, Rb, Cs and Fr atoms are calculated in the energy range from 5-5000 eV employing modified spherical complex optical potential formalism. The main aim of this work is to apply this formalism to the less studied positron-target collision systems. The results are compared with previous theoretical and experimental data, wherever available. In general, the present data show overall agreement and consistency with other results. Furthermore, we have done a comparative study of the results to investigate the effect of atomic size on the cross-sections as we descend through the group in the periodic table. We have also plotted a correlation graph of the present total cross-sections with polarizability and number of target electrons. The two correlation plots confirm the credibility and consistency of the present results. Besides, this is the first theoretical attempt to report positron-impact total cross-sections of alkali atoms over such a wide energy range.
Photon scattering cross sections of H2 and He measured with synchrotron radiation
NASA Technical Reports Server (NTRS)
Ice, G. E.
1977-01-01
Total (elastic + inelastic) differential photon scattering cross sections have been measured for H2 gas and He, using an X-ray beam. Absolute measured cross sections agree with theory within the probable errors. Relative cross sections (normalized to theory at large S) agree to better than one percent with theoretical values calculated from wave functions that include the effect of electron-electron Coulomb correlation, but the data deviate significantly from theoretical independent-particle (e.g., Hartree-Fock) results. The ratios of measured absolute He cross sections to those of H2, at any given S, also agree to better than one percent with theoretical He-to-H2 cross-section ratios computed from correlated wave functions. It appears that photon scattering constitutes a very promising tool for probing electron correlation in light atoms and molecules.
Measurement of Charged and Neutral Current e-p Deep Inelastic Scattering Cross Sections at High Q2
NASA Astrophysics Data System (ADS)
Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J.; Norman, D. J.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; ZajaÇ, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Grosse-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Hessling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voss, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, J. I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y.; Long, K. R.; Miller, D. B.; Morawitz, P. P.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Schwarzer, O.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.
1995-08-01
Deep inelastic e-p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared Q2 above 400 GeV2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections dσ/dQ2 are presented. From the Q2 dependence of the CC cross section, the mass term in the CC propagator is determined to be MW = 76+/-16+/-13 GeV.
Convergent close-coupling calculations of positron-magnesium scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Jeremy S.; Fursa, Dmitry V.; Bray, Igor
2011-06-15
The single-center convergent close-coupling method has been applied to positron-magnesium scattering at incident energies from 0.01 to 100 eV. Cross sections are presented for elastic scattering and excitation of 3 {sup 1}P, as well as for the total ionization and total scattering processes. We also provide an estimate of the positronium formation cross section. The results agree very well with the measurements of the total cross section by Stein et al. [Nucl. Instrum. Methods Phys. Res. Sect. B 143, 68 (1998)], and consistent with the positronium formation measurements of Surdutovich et al. [Phys. Rev. A 68, 022709 (2003)] for positronmore » energies above the ionization threshold. For energies below the positronium formation threshold (0.8 eV) we find a large P-wave resonance at 0.17 eV. A similar resonance behavior was found by Mitroy and Bromley [Phys. Rev. Lett. 98, 173001 (2007)] at an energy of 0.1 eV.« less
Scattering Properties of Ground-State 23Na Vapor Using Generalized Scattering Theory
NASA Astrophysics Data System (ADS)
Al-Harazneh, A. A.; Sandouqa, A. S.; Joudeh, B. R.; Ghassib, H. B.
2018-04-01
The scattering properties of ground-state 23Na vapor are investigated within the framework of the Galitskii-Migdal-Feynman formalism. Viewed as a generalized scattering theory, this formalism is used to calculate the medium phase shifts. The scattering properties of the system—the total, viscosity, spin-exchange, and average cross sections—are then computed using these phase shifts according to standard recipes. The total cross section is found to exhibit the Ramsauer-Townsend effect as well as resonance peaks. These peaks are caused by the large difference between the potentials for electronic spin-singlet and spin-triplet states. They represent quasi-bound states in the system. The results obtained for the complex spin-exchange cross sections are particularly highlighted because of their importance in the spectroscopy of the Na2 dimer. So are the results for the scattering lengths pertaining to both singlet and triplet states. Wherever possible, comparison is made with other published results.
Total electron scattering cross section from pyridine molecules in the energy range 10-1000 eV
NASA Astrophysics Data System (ADS)
Dubuis, A. Traoré; Costa, F.; da Silva, F. Ferreira; Limão-Vieira, P.; Oller, J. C.; Blanco, F.; García, G.
2018-05-01
We report on experimental total electron scattering cross-section (TCS) from pyridine (C5H5N) for incident electron energies between 10 and 1000 eV, with experimental uncertainties within 5-10%, as measured with a double electrostatic analyser apparatus. The experimental results are compared with our theoretical calculations performed within the independent atom model complemented with a screening corrected additivity rule (IAM-SCAR) procedure which has been updated by including interference effects. A good level of agreement is found between both data sources within the experimental uncertainties. The present TCS results for electron impact energy under study contribute, together with other scattering data available in the literature, to achieve a consistent set of cross section data for modelling purposes.
Convergent close-coupling approach to positron scattering on He+★
NASA Astrophysics Data System (ADS)
Rawlins, Charlie M.; Kadyrov, Alisher S.; Bray, Igor
2018-05-01
A close-coupling method is used to generate electron-loss and total scattering cross sections for the first three partial waves with both a single-centre and two-centre expansion of the scattering wave function for positron scattering on He +. The two expansions are consistent with each other above the ionisation threshold verifying newly-developed positronium-formation matrix elements. Below the positronium-formation threshold both the single- and two-centre results agree with the elastic-scattering cross sections generated from the phase shifts reported in previous calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, G.A.; Pack, R.T
1978-02-15
A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less
NASA Technical Reports Server (NTRS)
Linsker, R.
1972-01-01
Production cross sections for three types of hypothetical particles are calculated in the presented paper. Several (Z, Z') cases were studied corresponding to elastic scattering off protons and neutrons (either free or embedded within a Fermi sea), coherent scattering off a nucleus, and inelastic scattering off a proton (in which case Z' denotes a nucleon resonance or hadronic system in the continuum). Detailed structure-function data are used to improve the accuracy of the inelastic scattering calculation. Results of calculations are given for beam energies between 50 and 10,000 GeV, and masses between 5 and 40 GeV for the massive Lee-Wick spin-1 boson. Cross sections were computed for resonant and semiweak processes. The production cross section of spin-zero weak intermediate bosons was found to be at least one order of magnitude smaller than for spin-1 weak bosons in nearly all regions of interest. The production cross section of spin-zero weak intermediate bosons for inelastic scattering off protons compares with that for elastic scattering in the regions of interest. In the case of massive spin-1 bosons and spin-1 weak intermediates, the main contribution to total production cross section off protons is elastic.
NASA Astrophysics Data System (ADS)
Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.
2016-04-01
We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.
Positron induced scattering cross sections for hydrocarbons relevant to plasma
NASA Astrophysics Data System (ADS)
Singh, Suvam; Antony, Bobby
2018-05-01
This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.
Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector
Gaigalas, A. K.; Wang, Lili; Karpiak, V.; Zhang, Yu-Zhong; Choquette, Steven
2012-01-01
A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm. PMID:26900524
Gaigalas, A K; Wang, Lili; Karpiak, V; Zhang, Yu-Zhong; Choquette, Steven
2012-01-01
A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm.
Nucleon Form Factors above 6 GeV
DOE R&D Accomplishments Database
Taylor, R. E.
1967-09-01
This report describes the results from a preliminary analysis of an elastic electron-proton scattering experiment... . We have measured cross sections for e-p scattering in the range of q{sup 2} from 0.7 to 25.0 (GeV/c){sup 2}, providing a large region of overlap with previous measurements. In this experiment we measure the cross section by observing electrons scattered from a beam passing through a liquid hydrogen target. The scattered particles are momentum analyzed by a magnetic spectrometer and identified as electrons in a total absorption shower counter. Data have been obtained with primary electron energies from 4.0 to 17.9 GeV and at scattering angles from 12.5 to 35.0 degrees. In general, only one measurement of a cross section has been made at each momentum transfer.
Mass spectra and fusion cross sections for /sup 20/Ne+/sup 24/Mg interaction at 55 and 85 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grotowski, K.; Belery, P.; Delbar, T.
1981-06-01
Inclusive ..gamma.. spectra from the /sup 20/Ne+/sup 24/Mg interaction have been measured using 55- and 85-MeV /sup 20/Ne ions. The identification of ..gamma.. lines allows the determination of mass spectra in the region 12< or =A< or =43. Experimental results are compared with statistical model calculations. The total reaction and fusion cross sections are extracted. Cross sections for inelastic scattering, few nucleon transfers, and deep inelastic scattering are estimated.
NASA Technical Reports Server (NTRS)
Green, T. J.
1973-01-01
Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.
Elastic scattering and total reaction cross section of {sup 6}He+{sup 120}Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria, P. N. de; Lichtenthaeler, R.; Pires, K. C. C.
The elastic scattering of {sup 6}He on {sup 120}Sn has been measured at four energies above the Coulomb barrier using the {sup 6}He beam produced at the RIBRAS (Radioactive Ion Beams in Brasil) facility. The elastic angular distributions have been analyzed with the optical model and three- and four-body continuum-discretized coupled-channels calculations. The total reaction cross sections have been derived and compared with other systems of similar masses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza
A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of themore » differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.« less
Electron and positron scattering from CF 3I molecules below 600 eV: a comparison with CF 3H
NASA Astrophysics Data System (ADS)
Kawada, Michihito K.; Sueoka, Osamu; Kimura, Mineo
2000-11-01
The total cross-sections (TCSs) for electron and positron scattering from CF 3I molecules have been studied experimentally. A theoretical analysis based on the continuum multiple-scattering (CMS) method has been performed to understand the origin of resonances and the elastic cross-sections. The present TCS for electron scattering is found to be larger by about 20% than that of T. Underwood-Lemons, D.C. Winkler, J.A. Tossel, J.H. Moore [J. Chem. Phys. 100 (1994) 9117] although the general shape agrees well in the entire energy studied. The difference in the cross-sections for CF 3I and CF 3H is explained by the sizes and the dipole moments of these molecules.
Nonlinear effects in the laser-assisted scattering of a positron by a muon
NASA Astrophysics Data System (ADS)
Du, Wen-Yuan; Wang, Bing-Hong; Li, Shu-Min
2018-02-01
The scattering of a positron by a muon in the presence of a linearly polarized laser field is investigated in the first Born approximation. The theoretical results reveal: (1) At large scattering angle, an amount of multiphoton processes take place in the course of scattering. The photon emission processes predominate the photon absorption ones. (2) Some nonlinear phenomena about oscillations, dark angular windows, and asymmetry can be observed in angular distributions. We analyze the cause giving rise to dark windows and geometric asymmetry initially noted in the potential scattering. (3) We also analyze the total differential cross-section, the result shows that the larger the incident energy is, the smaller the total differential cross-section is. The reasons of these new results are analyzed.
Poster - 18: New features in EGSnrc for photon cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Elsayed; Mainegra-Hing, Ernesto; Rogers, Davi
2016-08-15
Purpose: To implement two new features in the EGSnrc Monte Carlo system. The first is an option to account for photonuclear attenuation, which can contribute a few percent to the total cross section at the higher end of the energy range of interest to medical physics. The second is an option to use exact NIST XCOM photon cross sections. Methods: For the first feature, the photonuclear total cross sections are generated from the IAEA evaluated data. In the current, first-order implementation, after a photonuclear event, there is no energy deposition or secondary particle generation. The implementation is validated against deterministicmore » calculations and experimental measurements of transmission signals. For the second feature, before this work, if the user explicitly requested XCOM photon cross sections, EGSnrc still used its own internal incoherent scattering cross sections. These differ by up to 2% from XCOM data between 30 keV and 40 MeV. After this work, exact XCOM incoherent scattering cross sections are an available option. Minor interpolation artifacts in pair and triplet XCOM cross sections are also addressed. The default for photon cross section in EGSnrc is XCOM except for the new incoherent scattering cross sections, which have to be explicitly requested. The photonuclear, incoherent, pair and triplet data from this work are available for elements and compounds for photon energies from 1 keV to 100 GeV. Results: Both features are implemented and validated in EGSnrc.Conclusions: The two features are part of the standard EGSnrc distribution as of version 4.2.3.2.« less
Acoustical monitoring of fish behavior in a tank
NASA Astrophysics Data System (ADS)
Conti, Stephan G.; Maurer, Benjamin D.; Roux, Philippe; Fauvel, Christian; Demer, David A.; Waters, Kendall R.
2004-10-01
In recent publications, it has been demonstrated that the total scattering cross section of fish moving in a tank can be estimated from ensembles of reverberation time series. However, the reproducibility of these measurements is influenced by parameters such as the motion or the behavior of the fish. In this work, we propose to observe acoustically the behavior of fish in a tank, and to measure their average speed. The total scattering cross section of live fish (sardines, sea bass and bocaccio) in a tank was measured repeatedly over multiple days. The species used in this study have different behaviors, which are reflected in the acoustical measurements. Depending on the behavior of the fish, such as the average displacement between two acoustic pings or the aggregation type, the total scattering cross section is different. Correlation between the acoustical measurements and the day and night behavior of the fish is demonstrated. Interpretation of such measurements can lead to monitoring acoustically and nonintrusively the behavior of fish in tanks.
A New Scaling Law of Resonance in Total Scattering Cross Section in Gases
NASA Astrophysics Data System (ADS)
Raju, Gorur Govinda
2009-10-01
Electrical discharges in gases continue to be an active area of research because of industrial applications such as power systems, environmental clean up, laser technology, semiconductor fabrication etc. A fundamental knowledge of electron-gas neutral interaction is indispensable and, the total scattering cross section is one of the quantities that have been measured extensively. The energy dependence of the total cross sections shows peaks or resonance processes that are operative in the collision process. These peaks and the energies at which they occur are shown to satisfy a broad relationship involving the polarizability and the dipole moment of the target particle. Data on 62 target particles belonging to the following species are analyzed. (Eq 1) Rare gas atoms (Eq 2) Di-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties Poly-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties. Methods of improving the newly identified scaling law and possible application have been identified. 1 INTRODUCTION: Data on electron-neutral interactions are one of the most fundamental in the study of gaseous electronics and an immense literature, both experimental and theoretical, has become available since about the year 1920. [1-5]. In view of the central role which these data play in all facets of gas discharges and plasma science, it is felt that a critical review of available data is timely, mainly for the community of high voltage engineers and industries connected with plasma science in general. The electron-neutral interaction, often referred to as scattering in the scientific literature, is quantified by using the quantity called the total scattering cross section (QT, m^2). In the literature on cross section, total cross section and total scattering cross section are terms used synonymously and we follow the same practice. A definition may be found in reference [1]. This paper concerns scaling of total cross section of gases at resonance energy and the electron energy at which resonance occurs. The meaning of resonance is briefly explained in the following section. Here, we use the term scaling to relate the two quantities mentioned, namely, the resonance energy and the total cross section at that energy. Consistent with the definition of scaling, if the law proposed holds, one of the two quantities mentioned above may be calculated if the other is known. Such a method is very useful in gas discharge modeling and calculation of breakdown voltages, as more fully explained in the later section of the paper. 2 DESCRIPTION OF RESONANCE: A brief description of resonance phenomena in several types of target particles, viz., atomic, poly atomic, polar, non-polar phenomena are presented. 3 PREVIOUS SCALING LAWS: A common representation of a given characteristic with as few adjustable parameters as possible is generally known as the scaling law. The Paschen curve for breakdown voltage is such a familiar scaling law. With reference to cross sections several attempts have been made to obtain a scaling law, with varying degree of success. If the cross section-energy curve is qualitatively similar without having sharp peaks and oscillations, moderately successful scaling laws may be devised. For example, the ionization cross section- energy curves for most gases follow a general pattern. Several published scaling laws are discussed. 4 A NEW SCALING LAW AND DISCUSSION: In this work the author has compiled the resonance details for more than 60 gasest hat include the range from simple atoms to complex molecules that are polyatomic, dipolar, electron-attaching and isomers. The target particles exhibit a number of distinct features, as far as their total cross section variation with electron energy is concerned as already explained.
NASA Astrophysics Data System (ADS)
Kang, K.; Fried, H. M.; Tan, C.-I.
1994-02-01
The Table of Contents for the book is as follows: * Preface * `Overview' on Elastic Scattering and Total Cross-Sections * A Precise Measurement of the Real Part of the Elastic Scattering Amplitude at the {S bar{p}pS} * Luminosity Dependent Measurement of the p bar{p} Total Cross Section at √{s} = 541 GeV * Status of Fermilab E-710 * Luminosity-Independent Measurement of bar{p}p Elastic Scattering, Single Diffraction, Dissociation and Total Cross Section at √{s} = 546 and 1800 GeV * Phase Relations Revisited: A Challenge for SSC and LHC * Status of Near-Forward Elastic Scattering * bar{p}p Collisions at √{s} = 1.8 TeV: p, σt and B * p bar{p} Forward Scattering Parameters Results from Fermilab E760 * Photoproduction Results from H1 at HERA * Total and Jet Photoproduction Cross Sections at HERA and Fermilab * Minijet Model for High Energy γp Cross Sections * The Pomeron as Massive Gluons * Large N Theories with Glueball-like Spectra * Unitarity Relations for Gluonic Pomeron * The Donnachie-Landshoff Pomeron vs. QCD * The Odderon Intercept in Perturbative QCD * Theoret. and Phenomenol. Aspects of the Odderon * First Theorist's Gaze at HERA Data at Low xB * H1 Results for Structure Functions at Small x * Partial Photoproduction Cross Sections at √{s} ≈prox 180 GeV and First Results on F2 of the Proton from the ZEUS Experiment * Observation of a New Class of Events in Deep Inelastic Scattering * Jet Production in Muon-Proton and Muon-Nuclei Scattering at Fermilab-E665 * D0 Studies of Perturbative QCD * Large Rapidity Gaps and Single Diffraction Dissociation in High Energy pp and bar{p}p Collisions * Hadron and Reggeon Structure in High Energy Collisions * Monte Carlo Studies of Diffractive Processes in Deep Inelastic Scattering * Elastic Parton-Parton Amplitudes in Geometrical Models * Non-Perturbative QCD Calculations of High-Energy Observables * Effective Field Theory for Diffractive QCD Processes * High Energy Behavior of σtot, ρ, and B - Asymptotic Amplitude Analysis and a QCD-Inspired Analysis * Rapidity Gaps and Multiplicity Fluctuations * Branching Processes and Multi-Particle Production * High Energy Elastic Scattering and Nucleon as a Topological Soliton * The Behavior of Cross Sections at Very High Energies * The Pomeron and QCD with Many Light Quarks * Heterotic Pomeron: High Energy Hadronic Collisions in QCD * CDF Results on Electroweak Physics * DØ Results on Electroweak Physics * Search for the Top Quark and Other New Particles at DØ * Rapidity Gaps and Forward Physics at DØ * High Energy Asymptotics of Perturbative Multi-Color QCD * Rapidity Gaps in e+e- Collisions * Large Rapidity Gap, Jet Events at HERA: a PQCD Approach * High Energy Parton-Parton Elastic Scattering in QCD * Parton-Parton Elastic Scattering and Rapidity Gaps at Tevatron Energies * Hard Elastic Scattering * Hard Diffractive Processes * Three Successful Tests of Color Transparency and Nuclear Filtering * New KNO in QCD * A Chiral Condensate Search at the Tevatron * Cosmic Ray Evidences for Aligned High Energy Jets at Supertevatron Energy and Hard DDD * "New Hadronic State" Observed in Extremely High Energy Cosmic-Ray Interactions * Meson and Nucleon Form Factors in PQCD * Elastic Charge Form Factors for Pseudoscalar Mesons * The Ultimate Experiment * Search for Coherent Charm Production in 800 GeV/c Proton-Silicon Interactions * Chiral Quark Model and Hadron Scattering * Elastic Spin Experiments at UNK, Fermilab and SSC * Spin-Flip in Elastic and Diffractive Scattering * FNAL Polarized Beams and Spin Dependence at RHIC * Particle Tracking in the Close-to-Forward Region (η > 5.5) * Blois V: Experimental Summary * Blois V: Summary Talk * List of Participants
Study of electron impact inelastic scattering of chlorine molecule (Cl2)
NASA Astrophysics Data System (ADS)
Yadav, Hitesh; Vinodkumar, Minaxi; Limbachiya, Chetan; Vinodkumar, P. C.
2018-02-01
A theoretical study is carried out for electron interactions with the chlorine molecule (Cl2) for incident energies ranging from 0.01 to 5000 eV. This wide range of energy has allowed us to investigate a variety of processes and report data on symmetric excitation energies, dissociative electron attachment (DEA), total excitation cross sections, and ionization cross section (Q ion) along with total inelastic cross sections (Q inel). The present study is important since Cl2 is a prominent gas for plasma etching and its anionic atoms are important in the etching of semiconductor wafers. In order to compute the total inelastic cross sections, we have employed the ab initio R-matrix method (0.01 to 15 eV) together with the spherical complex optical potential method (∼15 to 5000 eV). The R-matrix calculations are performed using a close coupling method, and we have used DEA estimator via Quantemol-N to calculate the DEA fragmentation and cross sections. The present study finds overall good agreement with the available experimental data. Total excitation and inelastic cross sections of e-{{{Cl}}}2 scattering for a wide energy range (0.01 to 5 keV) are reported for the first time, to the best of our knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D. B.; Costa, R. F. da; Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo
We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arisemore » due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.« less
Photoeffect cross sections of several rare-earth elements for 323-keV photons
NASA Astrophysics Data System (ADS)
Umesh, T. K.; Anasuya, S. J.; Shylaja Kumari, J.; Gowda, Channe; Gopinathan Nair, K. P.; Gowda, Ramakrishna
1992-02-01
Total-attenuation cross sections of the oxides of rare-earth elements such as La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er, and also NaNO3 and NaNO2 have been measured in a narrow-beam geometry setup at 323 keV. The total-attenuation cross section for oxygen was obtained as the difference in NaNO3 and NaNO2 cross sections. Using this, the total-attenuation cross sections of the individual lanthanides have been obtained with the aid of the mixture rule. From these, the photoeffect cross sections were derived by subtracting the scattering contribution. These values are found to agree well with Scofield's theoretical data [University of California Report No. UCRL 51326, 1973 (unpublished)].
Partial wave analysis for folded differential cross sections
NASA Astrophysics Data System (ADS)
Machacek, J. R.; McEachran, R. P.
2018-03-01
The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.
Correlation effects in elastic e-N2 scattering
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Lima, Marco A. P.; Gibson, Thomas L.; Mckoy, Vincent
1987-01-01
The Schwinger multichannel formulation has been applied to study the role of electron correlation in low-energy e-N2 scattering. For the five nonresonant partial-wave channels studied here, angular correlation is found to be much more important than radial correlation. The calculated total and differential cross sections agree well with experiment except for the differential cross sections at 1.5 eV.
Total and partial photoneutron cross sections for Pb isotopes
NASA Astrophysics Data System (ADS)
Kondo, T.; Utsunomiya, H.; Goriely, S.; Daoutidis, I.; Iwamoto, C.; Akimune, H.; Okamoto, A.; Yamagata, T.; Kamata, M.; Itoh, O.; Toyokawa, H.; Lui, Y.-W.; Harada, H.; Kitatani, F.; Hilaire, S.; Koning, A. J.
2012-07-01
Using quasimonochromatic laser-Compton scattering γ rays, total photoneutron cross sections were measured for 206,207,208Pb near neutron threshold with a high-efficiency 4π neutron detector. Partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near threshold by measuring anisotropies in photoneutron emission with linearly polarized γ rays. The E1 strength dominates over the M1 strength in the neutron channel where E1 photoneutron cross sections show extra strength of the pygmy dipole resonance in 207,208Pb near the neutron threshold corresponding to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to an M1 cross section less than 10% of the total photoneutron cross section.
XCOM: Photon Cross Sections Database
National Institute of Standards and Technology Data Gateway
SRD 8 XCOM: Photon Cross Sections Database (Web, free access) A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.
Quantum treatment of the capture of an atom by a fast nucleus incident on a molecule
NASA Astrophysics Data System (ADS)
Shakeshaft, Robin; Spruch, Larry
1980-04-01
The classical double-scattering model of Thomas for the capture of electrons from atoms by fast ions yields a cross section σ which dominates over the single scattering contribution for sufficiently fast ions. The magnitude of the classical double-scattering σ differs, however, from its quantum-mechanical (second-Born) analog by an order of magnitude. Further, a "fast ion" means an ion of some MeV, and at those energies the cross sections are very low. On the other hand, as noted by Bates, Cook, and Smith, the double-scattering cross section for the capture of atoms from molecules by fast ions dominates over the single-scattering contribution for incident ions of very much lower energy; roughly, one must have the velocity of the incident projectile much larger than a characteristic internal velocity of the particles in the target. It follows that we are in the asymptotic domain not at about 10 MeV but at about 100 eV. For the reaction H+ + CH4-->H+2 + CH3 with incident proton energies of 70 to 150 eV, the peak in the angular distribution as determined experimentally is at almost precisely the value predicted by the classical model, but the theoretical total cross section is about 30 times too large. Using a quantum version of the classical model, which involves the same kinematics and therefore preserves the agreement with the angular distribution, we obtain somewhat better agreement with the experimental total cross section, by a factor of about 5. (To obtain very good agreement, one may have to perform a really accurate calculation of large-angle elastic scattering of protons and H atoms by CH3, and take into account interference effects.) In the center-of-mass frame, for sufficiently high incident energy, the first of the two scatterings involves the scattering of H+ by H through an angle of very close to 90°, and it follows that the nuclei of the emergent H+2 ion will almost all be in the singlet state. We have also calculated the cross section for the reaction D+ + CH4-->(HD)+ + CH3.
Partial Photoneutron Cross Sections for 207,208Pb
NASA Astrophysics Data System (ADS)
Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.
2014-05-01
Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.
CCC calculated integrated cross sections of electron-H2 scattering
NASA Astrophysics Data System (ADS)
Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor
2016-09-01
Recently we applied the molecular convergent close-coupling (CCC) method to electron scattering from molecular hydrogen H2. Convergence of the major integrated cross sections has been explicitly demonstrated in the fixed-nuclei approximation by increasing the number of H2 target states in the close-coupling expansion from 9 to 491. The calculations have been performed using a projectile partial wave expansion with maximum orbital angular momentum Lmax = 8 and total orbital angular momentum projections | M | <= 8 . Coupling to the ionization continuum is modeled via a large pseudo state expansion, which we found is required to obtain reliable elastic and excitation cross sections. Here we present benchmark elastic, single-ionization, electronic excitation and total integrated cross sections over a broad energy range (0.1 to 300 eV) and compare with available experiment and previous calculations. Los Alamos National Laboratory and Curtin University.
Low-Energy Elastic Electron Scattering by Atomic Oxygen
NASA Technical Reports Server (NTRS)
Zatsarinny O.; Bartschat, K.; Tayal, S. S.
2006-01-01
The B-spline R-matrix method is employed to investigate the low-energy elastic electron scattering by atomic oxygen. Flexible non-orthogonal sets of radial functions are used to construct the target description and to represent the scattering functions. A detailed investigation regarding the dependence of the predicted partial and total cross sections on the scattering model and the accuracy of the target description is presented. The predicted angle-integrated elastic cross sections are in good agreement with experiment, whereas significant discrepancies are found in the angle-differential elastic cross sections near the forward direction. .The near-threshold results are found to strongly depend on the treatment of inner-core short-range correlation effects in the target description, as well as on a proper account of the target polarizability. A sharp increase in the elastic cross sections below 1 eV found in some earlier calculations is judged to be an artifact of an unbalanced description of correlation in the N-electron target structure and the (N+l)-electron-collision problems.
Electron impact ionisation cross section for organoplatinum compounds
NASA Astrophysics Data System (ADS)
Mahato, Dibyendu; Naghma, Rahla; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby
2016-11-01
This article reports electron impact ionisation cross sections for platinum-based drugs viz., cisplatin (H6N2Cl2Pt), carboplatin (C6H12N2O4Pt), oxaliplatin (C8H14N2O4Pt), nedaplatin (C2H8N2O3Pt) and satraplatin (C10H22ClN2O4Pt) complexes used in the cancer chemotherapy. The multi-scattering centre spherical complex optical potential formalism is used to obtain the inelastic cross section for these large molecules upon electron impact. The ionisation cross section is derived from the inelastic cross section employing complex scattering potential-ionisation contribution method. Comparison is made with previous results, where ever available and overall a reasonable agreement is observed. This is the first attempt to report total ionisation cross sections for nedaplatin and satraplatin complexes.
Depolarization and Scattering of Electromagnetic Waves. Appendices.
1986-06-30
for both specular point scattering and Bragg scattering in a self-consistent manner is used to express the total cross section of the flake as a...by Arbitrarily Oriented Composite Rough Surfaces. In this work the full wave approach is used to determine the modu- lations of the like and cross...analyze multiple scattering using the equation of radiative transfer with the general Stokes’ parameters. Our ultimate goal is to develop codes which will
D0 production in deep inelastic muon scattering on hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.
1986-01-01
Inclusive D0(D0) production in deep inelastic scattering of 280 GeV and 240 GeV muons on hydrogen and deuterium targets has been measured; differential cross sections are given and the total cross sections extrapolated to Q2 = 0. They are compared with the results of photoproduction experiments and with measurements of the muoproduction of charm detected indirectly by multimuon events.
Experimental and theoretical electron-scattering cross-section data for dichloromethane
NASA Astrophysics Data System (ADS)
Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.
2018-04-01
We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.
Optical Model and Cross Section Uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman,M.W.; Pigni, M.T.; Dietrich, F.S.
2009-10-05
Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.
Linear attenuation coefficients of tissues from 1 keV to 150 keV
NASA Astrophysics Data System (ADS)
Böke, Aysun
2014-09-01
The linear attenuation coefficients and three interaction processes have been computed for liver, kidney, muscle, fat and for a range of x-ray energies from 1 keV to 150 keV. Molecular photoelectric absorption cross sections were calculated from atomic cross section data. Total coherent (Rayleigh) and incoherent (Compton) scattering cross sections were obtained by numerical integration over combinations of F2m(x) with the Thomson formula and Sm(x) with the Klein-Nishina formula, respectively. For the coherent (Rayleigh) scattering cross section calculations, molecular form factors were obtained from recent experimental data in the literature for values of x<1 Å-1 and from the relativistic modified atomic form factors for values of x≥1 Å-1. With the inclusion of molecular interference effects in the coherent (Rayleigh) scattering, more accurate knowledge of the scatter from these tissues will be provided. The number of elements involved in tissue composition is 5 for liver, 47 for kidney, 44 for muscle and 3 for fat. The results are compared with previously published experimental and theoretical linear attenuation coefficients. In general, good agreement is obtained. The molecular form factors and scattering functions and cross sections are incorporated into a Monte Carlo program. The energy distributions of x-ray photons scattered from tissues have been simulated and the results are presented.
NASA Astrophysics Data System (ADS)
Csörgő, T.; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F. S.; Calicchio, M.; Catanesi, M. G.; Covault, C.; Csanád, M.; Deile, M.; Dimovasili, E.; Doubek, M.; Eggert, K.; Eremin, V.; Ferretti, R.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Intonti, M. R.; Janda, M.; Kašpar, J.; Kopal, J.; Kundrát, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Lucas Rodríguez, F.; Macrí, M.; Magaletti, L.; Magazzù, G.; Mercadante, A.; Meucci, M.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Noschis, E.; Novák, T.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Perrot, A.-L.; Pedreschi, E.; PetäJäjärvi, J.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vítek, M.; Welti, J.; Whitmore, J.; Totem Collaboration
Proton-proton elastic scattering has been measured by the TOTEMexperiment at the CERN Large Hadron Collider at √{s} = 7 TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^{2}. Extending the range of data to low t values from 0.02 to 0.33 GeV^2, and utilizing the luminosity measurements of CMS, the total proton-proton cross section at √{s} = 7 TeV is measured to be (98.3 ± 0.2^{stat} ± 2.8^{syst}) mb.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tice, B. G.; Datta, M.; Mousseau, J.
2014-06-01
We present measurements of ν μ charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies 2 < E ν < 20 GeV , with ( E ν more » ) = 8 GeV , which have a reconstructed μ - scattering angle less than 17° to extract ratios of inclusive total cross sections as a function of neutrino energy E ν and flux-integrated differential cross sections with respect to the Bjorken scaling variable x . These results provide the first high-statistics direct measurements of nuclear effects in neutrino scattering using different targets in the same neutrino beam. Measured cross section ratios exhibit a relative depletion at low x and enhancement at large x . Both become more pronounced as the nucleon number of the target nucleus increases. The data are not reproduced by GENIE, a conventional neutrino-nucleus scattering simulation, or by the alternative models for the nuclear dependence of inelastic scattering that are considered.« less
Comparison of exact solution with Eikonal approximation for elastic heavy ion scattering
NASA Technical Reports Server (NTRS)
Dubey, Rajendra R.; Khandelwal, Govind S.; Cucinotta, Francis A.; Maung, Khin Maung
1995-01-01
A first-order optical potential is used to calculate the total and absorption cross sections for nucleus-nucleus scattering. The differential cross section is calculated by using a partial-wave expansion of the Lippmann-Schwinger equation in momentum space. The results are compared with solutions in the Eikonal approximation for the equivalent potential and with experimental data in the energy range from 25A to 1000A MeV.
Aaboud, M.
2016-08-16
A measurement of the total pp cross section at the LHC at √s = 8 TeV is presented. An integrated luminosity of 500 μb –1 was accumulated in a special run with high-β* beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. Here, the measurement is performed with the ALFA sub-detector of ATLAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.
A measurement of the total pp cross section at the LHC at √s = 8 TeV is presented. An integrated luminosity of 500 μb –1 was accumulated in a special run with high-β* beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. Here, the measurement is performed with the ALFA sub-detector of ATLAS.
NASA Astrophysics Data System (ADS)
Giordano, M.; Meggiolaro, E.; Silva, P. V. R. G.
2017-08-01
In the present investigation we study the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data. The parametrization used for the hadron-hadron total cross sections at high energy is inspired by recent results obtained by Giordano and Meggiolaro [J. High Energy Phys. 03 (2014) 002, 10.1007/JHEP03(2014)002] using a nonperturbative approach in the framework of QCD, and it reads σtot˜B ln2s +C ln s ln ln s . We critically investigate if B and C can be obtained by means of best-fits to data for proton-proton and antiproton-proton scattering, including recent data obtained at the LHC, and also to data for other meson-baryon and baryon-baryon scattering processes. In particular, following the above-mentioned nonperturbative QCD approach, we also consider fits where the parameters B and C are set to B =κ Bth and C =κ Cth, where Bth and Cth are universal quantities related to the QCD stable spectrum, while κ (treated as an extra free parameter) is related to the asymptotic value of the ratio σel/σtot. Different possible scenarios are then considered and compared.
CCKT Calculation of e-H Total Cross Sections
NASA Technical Reports Server (NTRS)
Bhatia, Aaron K.; Schneider, B. I.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2002-01-01
We are in the process of carrying out calculations of e-H total cross sections using the 'complex-correlation Kohn-T' (CCKT) method. In a later paper, we described the methodology more completely, but confined calculations to the elastic scattering region, with definitive, precision results for S-wave phase shifts. Here we extend the calculations to the (low) continuum (1 much less than k(exp 2) much less than 3) using a Green's function formulation. This avoids having to solve integro-differential equations; rather we evaluate indefinite integrals involving appropriate Green's functions and the (complex) optical potential to find the scattering function u(r). From the asymptotic form of u(r) we extract a T(sub L) which is a complex number. From T(sub L), elastic sigma(sub L)(elastic) = 4pi(2L+1)((absolute value of T(sub L))(exp 2)), and total sigma (sub L)(total) = 4pi/k(2L+1)Im(T(sub L)) cross sections follow.
Total Electron-Impact Ionization Cross-Sections of CFx and NFx (x = 1 - 3)
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Tarnovsky, Vladimir; Becker, Kurt H.; Kwak, Dochan (Technical Monitor)
2001-01-01
The discrepancy between experimental and theoretical total electron-impact ionization cross sections for a group of fluorides, CFx, and NFx, (x = 1 - 3), is attributed to the inadequacies in previous theoretical models. Cross-sections calculated using a recently developed siBED (simulation Binary-Encounter-Dipole) model that takes into account the shielding of the long-range dipole potential between the scattering electron and target are in agreement with experimentation. The present study also carefully reanalyzed the previously reported experimental data to account for the possibility of incomplete collection of fragment ions and the presence of ion-pair formation channels. For NF3, our experimental and theoretical cross-sections compare well with the total ionization cross-sections recently reported by Haaland et al. in the region below dication formation.
A method for calculating proton-nucleus elastic cross-sections
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.
2002-01-01
Recently [Nucl. Instr. and Meth. B 145 (1998) 277; Extraction of in-medium nucleon-nucleon amplitude from experiment, NASA-TP, 1998], we developed a method of extracting nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. We investigated [Proton-nucleus total cross-sections in coupled-channel approach, NASA/TP, 2000; Nucl. Instr. and Meth. B 173-174 (2001) 391] the ratio of real to imaginary part of the two body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate proton-nucleus elastic cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2002 Elsevier Science B.V. All rights reserved.
Elastic scattering and soft diffraction with ALFA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puzo, P.
The ALFA detector in ATLAS aims at measuring the absolute luminosity and the total cross-section with 2-3% accuracy. Its uses elastically scattered protons whose impact position on a fiber detector, located 240 m away from the interaction point, allow a measurement of the scattering angle.
Antchev, G.; Aspell, P.; Atanassov, I.; ...
2016-11-30
Here, the TOTEM experiment at the CERN LHC has measured elastic proton–proton scattering at the centre-of-mass energy s√=8TeV and four-momentum transfers squared, |t|, from 6 × 10 –4 to 0.2 GeV 2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purelymore » exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12±0.03. The results for the total hadronic cross-section are σ tot = (102.9±2.3) mb and (103.0±2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements.« less
The interaction of low-energy electrons with fructose molecules
NASA Astrophysics Data System (ADS)
Chernyshova, I. V.; Kontrosh, E. E.; Markush, P. P.; Shpenik, O. B.
2017-11-01
Using a hypocycloidal electronic spectrometer, the interactions of low energy electrons (0-8.50 eV) with fructose molecules, namely, electron scattering and dissociative attachment, are studied. The results of these studies showed that the fragmentation of fructose molecules occurs effectively even at an electron energy close to zero. In the total electron-scattering cross section by molecules, resonance features (at energies 3.10 and 5.00 eV) were first observed near the formation thresholds of light ion fragments OH- and H-. The correlation of the features observed in the cross sections of electron scattering and dissociative attachment is analyzed.
All-Dielectric Multilayer Cylindrical Structures for Invisibility Cloaking
Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2015-01-01
We study optical response of all-dielectric multilayer structures and demonstrate that the total scattering of such structures can be suppressed leading to optimal invisibility cloaking. We use experimental material data and a genetic algorithm to reduce the total scattering by adjusting the material and thickness of various layers for several types of dielectric cores at telecommunication wavelengths. Our approach demonstrates 80-fold suppression of the total scattering cross-section by employing just a few dielectric layers. PMID:25858295
Lorentz violation, gravitoelectromagnetism and Bhabha scattering at finite temperature
NASA Astrophysics Data System (ADS)
Santos, A. F.; Khanna, Faqir C.
2018-04-01
Gravitoelectromagnetism (GEM) is an approach for the gravitation field that is described using the formulation and terminology similar to that of electromagnetism. The Lorentz violation is considered in the formulation of GEM that is covariant in its form. In practice, such a small violation of the Lorentz symmetry may be expected in a unified theory at very high energy. In this paper, a non-minimal coupling term, which exhibits Lorentz violation, is added as a new term in the covariant form. The differential cross-section for Bhabha scattering in the GEM framework at finite temperature is calculated that includes Lorentz violation. The Thermo Field Dynamics (TFD) formalism is used to calculate the total differential cross-section at finite temperature. The contribution due to Lorentz violation is isolated from the total cross-section. It is found to be small in magnitude.
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,
Cross sections for electron scattering from furan molecules: Measurements and calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szmytkowski, Czeslaw; Mozejko, Pawel; Ptasinska-Denga, Elzbieta
Electron-scattering cross sections have been determined for the furan (C{sub 4}H{sub 4}O) molecule, both experimentally and theoretically. An absolute total cross section (TCS) has been measured over energies from 0.6 to 400 eV using a linear electron-transmission method. The TCS energy function is dominated with a very broad enhancement, between 1.2 and 9 eV; on the low-energy side, some resonant structures are visible. Integral elastic (ECS) and ionization (ICS) cross sections have been also calculated up to 4 keV in the additivity rule approximation and the binary-encounter-Bethe approach, respectively. Their sum, ECS+ICS, is in a very good agreement with themore » measured TCS above 70 eV.« less
Simple method for determining fullerene negative ion formation★
NASA Astrophysics Data System (ADS)
Felfli, Zineb; Msezane, Alfred Z.
2018-04-01
A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.
X-Ray Form Factor, Attenuation and Scattering Tables
National Institute of Standards and Technology Data Gateway
SRD 66 X-Ray Form Factor, Attenuation and Scattering Tables (Web, free access) This database collects tables and graphs of the form factors, the photoabsorption cross section, and the total attenuation coefficient for any element (Z <= 92).
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Saatchi, S.
1996-01-01
Several scattering mechanisms contribute to the total radar backscatter cross section measured by the synthetic aperture radar. These are volume scattering, trunk-ground double-bounce scattering, branch-ground double-bounce scattering, and surface scattering. All of these mechanisms are directly related to the dielectric constant of forest components responsible for that mechanism and their moisture.
Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; ...
2015-05-08
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less
Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure
NASA Astrophysics Data System (ADS)
Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo
2017-11-01
Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.
NASA Astrophysics Data System (ADS)
Rahmanian, M.; Fathi, R.; Shojaei, F.
2017-11-01
The single-charge transfer process in collision of protons with helium atoms in their ground states is investigated. The model utilizes the second-order three-body Born distorted-wave approximation (BDW-3B) with correct Coulomb boundary conditions to calculate the differential and total cross sections at intermediate and high energies. The role of the passive electrons and electron-electron correlations are studied by comparing our results and the BDW-4B calculations with the complete perturbation potential. The present results are also compared with other theories, and the Thomas scattering mechanism is investigated. The obtained results are also compared with the recent experimental measurements. For the prior differential cross sections, the comparisons show better agreement with the experiments at smaller scattering angles. The agreement between the total cross sections and the BDW-4B results as well as the experimental data is good at higher impact energies.
Cross sections for electron scattering by carbon disulfide in the low- and intermediate-energy range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brescansin, L. M.; Iga, I.; Lee, M.-T.
2010-01-15
In this work, we report a theoretical study on e{sup -}-CS{sub 2} collisions in the low- and intermediate-energy ranges. Elastic differential, integral, and momentum-transfer cross sections, as well as grand total (elastic + inelastic) and absorption cross sections, are reported in the 1-1000 eV range. A recently proposed complex optical potential composed of static, exchange, and correlation-polarization plus absorption contributions is used to describe the electron-molecule interaction. The Schwinger variational iterative method combined with the distorted-wave approximation is applied to calculate the scattering amplitudes. The comparison between our calculated results and the existing experimental and/or theoretical results is encouraging.
NASA Astrophysics Data System (ADS)
Monfared, Shabnam; Buttler, William; Schauer, Martin; Lalone, Brandon; Pack, Cora; Stevens, Gerald; Stone, Joseph; Special Technologies Laboratory Collaboration; Los Alamos National Laboratory Team
2014-03-01
Los Alamos National Laboratory is actively engaged in the study of material failure physics to support the hydrodynamic models development, where an important failure mechanism of explosively shocked metals causes mass ejection from the backside of a shocked surface with surface perturbations. Ejecta models are in development for this situation. Our past work has clearly shown that the total ejected mass and mass-velocity distribution sensitively link to the wavelength and amplitude of these perturbations. While we have had success developing ejecta mass and mass-velocity models, we need to better understand the size and size-velocity distributions of the ejected mass. To support size measurements we have developed a dynamic Mie scattering diagnostic based on a CW laser that permits measurement of the forward attenuation cross-section combined with a dynamic mass-density and mass-velocity distribution, as well as a measurement of the forward scattering cross-section at 12 angles (5- 32.5 degrees) in increments of 2.5 degrees. We compare size distribution followed from Beers law with attenuation cross-section and mass measurement to the dynamic size distribution determined from scattering cross-section alone. We report results from our first quality experiments.
Total cross sections for ultracold neutrons scattered from gases
Seestrom, Susan Joyce; Adamek, Evan R.; Barlow, Dave; ...
2017-01-30
Here, we have followed up on our previous measurements of upscattering of ultracold neutrons (UCNs) from a series of gases by making measurements of total cross sections on the following gases hydrogen, ethane, methane, isobutene, n-butane, ethylene, water vapor, propane, neopentane, isopropyl alcohol, and 3He. The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are relevant to neutron lifetime measurements using UCNs. The effects of the UCN velocity and path-length distributions were accounted for in the analysis using a Monte Carlo transport code. Results are compared to ourmore » previous measurements and with the known absorption cross section for 3He scaled to our UCN energy. We find that the total cross sections for the hydrocarbon gases are reasonably described by a function linear in the number of hydrogen atoms in the molecule.« less
Study of elastic and inelastic cross sections by positron impact on inert gases
NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2018-04-01
In this article, a modified computational method recently introduced is used for the calculation of total, positronium (Ps) formation and ionization cross sections including direct and total ionization cross sections for positron scattering from noble gases. The incident positron is assumed to have energies over a wide range from 5 eV to 5 keV. The positron-atom interaction potential is developed under an optical potential framework and the computations of cross sections for each process are performed by introducing appropriate absorption thresholds. The calculated results obtained by employing this modified approach are found to be in reasonably good agreement with most of the existing data.
Anomalous Rayleigh scattering with dilute concentrations of elements of biological importance
NASA Astrophysics Data System (ADS)
Hugtenburg, Richard P.; Bradley, David A.
2004-01-01
The anomalous scattering factor (ASF) correction to the relativistic form-factor approximation for Rayleigh scattering is examined in support of its utilization in radiographic imaging. ASF corrected total cross-section data have been generated for a low resolution grid for the Monte Carlo code EGS4 for the biologically important elements, K, Ca, Mn, Fe, Cu and Zn. Points in the fixed energy grid used by EGS4 as well as 8 other points in the vicinity of the K-edge have been chosen to achieve an uncertainty in the ASF component of 20% according to the Thomas-Reiche-Kuhn sum rule and an energy resolution of 20 eV. Such data is useful for analysis of imaging with a quasi-monoenergetic source. Corrections to the sampled distribution of outgoing photons, due to ASF, are given and new total cross-section data including that of the photoelectric effect have been computed using the Slater exchange self-consistent potential with the Latter tail. A measurement of Rayleigh scattering in a dilute aqueous solution of manganese (II) was performed, this system enabling determination of the absolute cross-section, although background subtraction was necessary to remove K β fluorescence and resonant Raman scattering occurring within several 100 eV of the edge. Measurements confirm the presence of below edge bound-bound structure and variation in the structure due to the ionic state that are not currently included in tabulations.
Comparison of local exchange potentials of electron-N2 scattering
NASA Astrophysics Data System (ADS)
Rumble, J. R., Jr.; Truhlar, D. G.
1980-05-01
Vibrationally and electronically elastic electron scattering by N2 at 2-30 eV impact energy is considered. Static, static-exchange, and static-exchange-plus-polarization potentials, Cade-Sales-Wahl and INDO/1s wave functions, and semiclassical exchange and Hara free-electron-gas exchange potentials are examined. It is shown that the semiclassical exchange approximation is too attractive at low energy for N2. It is also shown quantitatively by consideration of partial and total integral cross sections how the effects of approximations to exchange become smaller as the incident energy is increased until the differences are about 8% for the total integral cross section at 30 eV.
NASA Technical Reports Server (NTRS)
Armour, E. A. G.; Baker, D. J.; Plummer, M.
1990-01-01
Above incident energies of about 2 eV, the contribution to the total cross section in positron+H2 scattering from the sigma g+ symmetry is insufficient to account for the experimental value. Calculations carried out of the lowest partial waves of sigma u+ symmetry and Pion u symmetry using the Kohn variational method are described. The contributions to the total cross section from the two equivalent partial waves of Pion u symmetry significantly reduce the discrepancy with experiment up to incident energies of 4 to 5 eV. Comparisons are made with recent R-matrix calculations performed by Danby and Tennyson.
Total cross sections for electron scattering by 1-propanol at impact energies in the range 40-500 eV
NASA Astrophysics Data System (ADS)
da Silva, D. G. M.; Gomes, M.; Ghosh, S.; Silva, I. F. L.; Pires, W. A. D.; Jones, D. B.; Blanco, F.; Garcia, G.; Buckman, S. J.; Brunger, M. J.; Lopes, M. C. A.
2017-11-01
Absolute total cross section (TCS) measurements for electron scattering from 1-propanol molecules are reported for impact energies from 40 to 500 eV. These measurements were obtained using a new apparatus developed at Juiz de Fora Federal University—Brazil, which is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the molecules to be studied at a given pressure. Besides these experimental measurements, we have also calculated TCS using the Independent-Atom Model with Screening Corrected Additivity Rule and Interference (IAM-SCAR+I) approach with the level of agreement between them being typically found to be very good.
Complete solution of electronic excitation and ionization in electron-hydrogen molecule scattering
Zammit, Mark C.; Savage, Jeremy S.; Fursa, Dmitry V.; ...
2016-06-08
The convergent close-coupling method has been used to solve the electron-hydrogen molecule scattering problem in the fixed-nuclei approximation. Excellent agreement with experiment is found for the grand total, elastic, electronic-excitation, and total ionization cross sections from the very low to the very high energies. This shows that for the electronic degrees of freedom the method provides a complete treatment of electron scattering on molecules as it does for atoms.
Electron and positron interaction with pyrimidine: A theoretical investigation
NASA Astrophysics Data System (ADS)
Sinha, Nidhi; Antony, Bobby
2018-03-01
Pyrimidine (C4H4N2) is considered as the building block of nucleobases, viz., cytosine, thymine and uracil. They provide a blueprint for probing the scattering of radiation by DNA and RNA bases. In this article, we report the elastic and total scattering cross-sections for electron and positron scattering from the pyrimidine molecule, employing a spherical complex optical potential (SCOP) formalism for an extensive energy range of 10 eV to 5 keV. In the case of positron scattering, the original SCOP formalism is modified to adequately solve the positron-target dynamics. Moreover, a reasonable agreement is observed between the present results and other available datasets, for both electron and positron scattering. The cross-sections for electron and positron impact scattering by pyrimidine are necessary input data for codes that seek to simulate radiation damage, and hence are useful to model biomolecular systems.
Inclusive neutrino scattering off the deuteron from threshold to GeV energies
NASA Astrophysics Data System (ADS)
Shen, G.; Marcucci, L. E.; Carlson, J.; Gandolfi, S.; Schiavilla, R.
2012-09-01
Background: Neutrino-nucleus quasi-elastic scattering is crucial to interpret the neutrino oscillation results in long baseline neutrino experiments. There are rather large uncertainties in the cross section, due to insufficient knowledge on the role of two-body weak currents.Purpose: Determine the role of two-body weak currents in neutrino-deuteron quasi-elastic scattering up to GeV energies.Methods: Calculate cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents, from threshold up to GeV energies, using the Argonne v18 potential and consistent nuclear electroweak currents with one- and two-body terms.Results: Two-body contributions are found to be small, and increase the cross sections obtained with one-body currents by less than 10% over the whole range of energies. Total cross sections obtained by describing the final two-nucleon states with plane waves differ negligibly, for neutrino energies ≳ MeV, from those in which interaction effects in these states are fully accounted for. The sensitivity of the calculated cross sections to different models for the two-nucleon potential and/or two-body terms in the weak current is found to be weak. Comparing cross sections to those obtained in a naive model in which the deuteron is taken to consist of a free proton and neutron at rest, nuclear structure effects are illustrated to be non-negligible.Conclusion: Contributions of two-body currents in neutrino-deuteron quasi-elastic scattering up to GeV are found to be smaller than 10%. Finally, it should be stressed that the results reported in this work do not include pion production channels.
Measured microwave scattering cross sections of three meteorite specimens
NASA Technical Reports Server (NTRS)
Hughes, W. E.
1972-01-01
Three meteorite specimens were used in a microwave scattering experiment to determine the scattering cross sections of stony meteorites and iron meteorites in the frequency range from 10 to 14 GHz. The results indicate that the stony meteorites have a microwave scattering cross section that is 30 to 50 percent of their projected optical cross section. Measurements of the iron meteorite scattering were inconclusive because of specimen surface irregularities.
Single crystal to polycrystal neutron transmission simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dessieux, Luc Lucius; Stoica, Alexandru Dan; Bingham, Philip R.
A collection of routines for calculation of the total cross section that determines the attenuation of neutrons by crystalline solids is presented. The total cross section is calculated semi-empirically as a function of crystal structure, neutron energy, temperature, and crystal orientation. The semi-empirical formula includes the contribution of parasitic Bragg scattering to the total cross section using both the crystal’s mosaic spread value and its orientation with respect to the neutron beam direction as parameters. These routines allow users to enter a distribution of crystal orientations for calculation of total cross sections of user defined powder or pseudo powder distributions,more » which enables simulation of non-uniformities such as texture and strain. In conclusion, the spectra for neutron transmission simulations in the neutron thermal energy range (2 meV–100 meV) are presented for single crystal and polycrystal samples and compared to measurements.« less
Single crystal to polycrystal neutron transmission simulation
Dessieux, Luc Lucius; Stoica, Alexandru Dan; Bingham, Philip R.
2018-02-02
A collection of routines for calculation of the total cross section that determines the attenuation of neutrons by crystalline solids is presented. The total cross section is calculated semi-empirically as a function of crystal structure, neutron energy, temperature, and crystal orientation. The semi-empirical formula includes the contribution of parasitic Bragg scattering to the total cross section using both the crystal’s mosaic spread value and its orientation with respect to the neutron beam direction as parameters. These routines allow users to enter a distribution of crystal orientations for calculation of total cross sections of user defined powder or pseudo powder distributions,more » which enables simulation of non-uniformities such as texture and strain. In conclusion, the spectra for neutron transmission simulations in the neutron thermal energy range (2 meV–100 meV) are presented for single crystal and polycrystal samples and compared to measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
The production of two prompt J/ψ mesons, each with transverse momenta p T > 8.5 GeV and rapidity |y| < 2.1, is studied using a sample of proton-proton collisions atmore » $$\\sqrt{s} = 8$$ TeV, corresponding to an integrated luminosity of 11.4 fb –1 collected in 2012 with the ATLAS detector at the LHC. The differential cross-section, assuming unpolarised J/ψ production, is measured as a function of the transverse momentum of the lower-p TJ/ψ meson, di-J/ψp T and mass, the difference in rapidity between the two J/ψ mesons, and the azimuthal angle between the two J/ψ mesons. The fraction of prompt pair events due to double parton scattering is determined by studying kinematic correlations between the two J/ψ mesons. The total and double parton scattering cross-sections are compared with predictions. The effective cross-section of double parton scattering is measured to be σ eff = 6.3 ± 1.6(stat)±1.0(syst) mb.« less
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-02-07
The production of two prompt J/ψ mesons, each with transverse momenta p T > 8.5 GeV and rapidity |y| < 2.1, is studied using a sample of proton-proton collisions atmore » $$\\sqrt{s} = 8$$ TeV, corresponding to an integrated luminosity of 11.4 fb –1 collected in 2012 with the ATLAS detector at the LHC. The differential cross-section, assuming unpolarised J/ψ production, is measured as a function of the transverse momentum of the lower-p TJ/ψ meson, di-J/ψp T and mass, the difference in rapidity between the two J/ψ mesons, and the azimuthal angle between the two J/ψ mesons. The fraction of prompt pair events due to double parton scattering is determined by studying kinematic correlations between the two J/ψ mesons. The total and double parton scattering cross-sections are compared with predictions. The effective cross-section of double parton scattering is measured to be σ eff = 6.3 ± 1.6(stat)±1.0(syst) mb.« less
Extrinsic extinction cross-section in the multiple acoustic scattering by fluid particles
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-04-01
Cross-sections (and their related energy efficiency factors) are physical parameters used in the quantitative analysis of different phenomena arising from the interaction of waves with a particle (or multiple particles). Earlier works with the acoustic scattering theory considered such quadratic (i.e., nonlinear) quantities for a single scatterer, although a few extended the formalism for a pair of scatterers but were limited to the scattering cross-section only. Therefore, the standard formalism applied to viscous particles is not suitable for the complete description of the cross-sections and energy balance of the multiple-particle system because both absorption and extinction phenomena arise during the multiple scattering process. Based upon the law of the conservation of energy, this work provides a complete comprehensive analysis for the extrinsic scattering, absorption, and extinction cross-sections (i.e., in the far-field) of a pair of viscous scatterers of arbitrary shape, immersed in a nonviscous isotropic fluid. A law of acoustic extinction taking into consideration interparticle effects in wave propagation is established, which constitutes a generalized form of the optical theorem in multiple scattering. Analytical expressions for the scattering, absorption, and extinction cross-sections are derived for plane progressive waves with arbitrary incidence. The mathematical expressions are formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. The analysis shows that the multiple scattering cross-section depends upon the expansion coefficients of both scatterers in addition to an interference factor that depends on the interparticle distance. However, the extinction cross-section depends on the expansion coefficients of the scatterer located in a particular system of coordinates, in addition to the interference term. Numerical examples illustrate the analysis for two viscous fluid circular cylindrical cross-sections immersed in a non-viscous fluid. Computations for the (non-dimensional) scattering, absorption, and extinction cross-section factors are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes, and the physical properties of the particles. A symmetric behavior is observed for the dimensionless multiple scattering cross-section, while asymmetries arise for both the dimensionless absorption and extinction cross-sections with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of cross-section and energy efficiency factors in multiple acoustic scattering of plane waves of arbitrary incidence by a pair of scatterers. The results can be used as a priori information in the direct or inverse characterization of multiple scattering systems such as acoustically engineered fluid metamaterials with reconfigurable periodicities, cloaking devices, liquid crystals, and other applications.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-05-01
The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.
Low-energy and very-low energy total cross sections for electron collisions with N2
NASA Astrophysics Data System (ADS)
Kitajima, Masashi; Kishino, Takaya; Okumura, Takuma; Kobayashi, Naomasa; Sayama, Atsushi; Mori, Yuma; Hosaka, Kouichi; Odagiri, Takeshi; Hoshino, Masamitsu; Tanaka, Hiroshi
2017-06-01
Absolute grand total cross sections for electron scattering from N2 are obtained in the energy range from 20 eV down to 5 meV with very narrow electron energy width of 9 meV using the threshold-photoelectron source. Total cross sections obtained in the present study are compared with the previous experimentally obtained results. At the very-low energy region below 50 meV, the present total cross sections are somewhat smaller than those reported by the Aarhus group [S.V. Hoffmann et al., Rev. Sci. Instrum. 73, 4157 (2002)], which has been the only experimental work that provided the total cross sections in the very-low energy region. The energy positions of the peaks in the total cross sections due to the 2Πg shape resonance are obtained with higher accuracy, due to the improved uncertainty of the energy position in the present measurement compared to the previous works. The resonance structure in the total cross sections due to the Feshbach resonances of N2 at around 11.5 eV are also observed. Analysis of the resonant structure was carried out in order to determine the values of resonance width of Feshbach resonances of N2. Contribution to the Topical Issue: "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
Problem of the Optical Model for Deuterons; ZAGADNIENIA MODELU OPTYCZNEGO DLA DEUTERONOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grotowski, K.
1963-01-01
Problems concerning parameters of the optical potential for deuterons are presented. Total cross-sections for the interaction of deuterons with nuclei were determined by the evaluation of the cross-sections for the emission of charged particles and neutrons. The angular distributions for the elastic scattering of deuterons were also measured, 47 references. (auth)
THE TOTAL SCATTERING CROSS-SECTION OF SLOW NEUTRONS IN GASEOUS H$sub 2$S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubbs, N.; Sagan, U.; Rzany, H.
1962-07-01
In view of the difference between Heinloth's measured values for the neutron cross-sections of protons in water vapor and those predicted by the Krieger-Nelkin theory, measurements with gaseous H/sub 2/S were made. Results for this similar molecule show a smaller divergence from the theoretical values. (auth)
High-energy pp and pp-bar forward elastic scattering and total cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, M.M.; Cahn, R.N.
1985-04-01
The present status of elastic pp and pp-bar scattering in the high-energy domain is reviewed, with emphasis on the forward and near-forward regions. The experimental techniques for measuring sigma/sub tot/, rho, and B are discussed, emphasizing the importance of the region in which the nuclear and Coulomb scattering interfere. The impact-parameter representation is exploited to give simple didactic demonstrations of important rigorous theorems based on analyticity, and to illuminate the significance of the slope parameter B and the curvature parameter C. Models of elastic scattering are discussed, and a criterion for the onset of ''asymptopia'' is given. A critique ofmore » dispersion relations is presented. Simple analytic functions are used to fit simultaneously the real and imaginary parts of forward scattering amplitudes for both pp and pp-bar, obtained from experimental data for sigma/sub tot/ and rho. It is found that a good fit can be obtained using only five parameters (with a cross section rising as ln/sup 2/s), over the energy range 5 < ..sqrt..s < 62 GeV. The possibilities that (a) the cross section rises only as lns, (b) the cross section rises only locally as ln/sup 2/s, and eventually goes to a constant value, and (c) the cross-section difference between pp and pp-bar does not vanish as s..-->..infinity are examined critically. The nuclear slope parameters B are also fitted in a model-independent fashion. Examination of the fits reveals a new regularity of the pp-bar and the pp systems.« less
NASA Technical Reports Server (NTRS)
Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.
1990-01-01
A 5-state close-coupling calculation (5s-5p-4d-6s-6p) was carried out for positron-Rb scattering in the energy range 3.7 to 28.0 eV. In contrast to the results of similar close-coupling calculations for positron-Na and positron-K scattering the (effective) total integrated cross section has an energy dependence which is contrary to recent experimental measurements.
Complex Correlation Calculation of e-H Total Cross Sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Calculation of e-H total and elastic partial wave cross sections is being carried out using the complex correlation variational T-matrix method. In this preliminary study, elastic partial wave phase shifts are calculated with the correlation functions which are confined to be real. In that case the method reduces to the conventional optical potential approach with projection operators. The number of terms in the Hylleraas-type wave function for the S phase shifts is 95 while for the S it is 56, except for k=0.8 where it is 84. Our results, which are rigorous lower bounds, are given. They are seen to be in general agreement with those of Schwartz, but they are of 0 greater accuracy and outside of his error limits for k=0.3 and 0.4 for S. The main aim of this approach' is the application to higher energy scattering. By virtue of the complex correlation functions, the T matrix is not unitary so that elastic and total scattering cross sections are independent of each other. Our results will be compared specifically with those of Bray and Stelbovics.
Complex Correlation Calculation of e(-) - H Total Cross Sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Calculation of e(-) - H total and elastic partial wave cross sections is being carried out using the complex correlation variational T-matrix method. In this preliminary study, elastic partial wave phase shifts are calculated with the correlation functions which are confined to be real. In that case the method reduces to the conventional optical potential approach with 2 projection operators. The number of terms in the Hylleraas-type wave function for the S-1 phase shifts is 95 while for the S-3 it is 56, except for k = 0.8 where it is 84. Our results, which are rigorous lower bounds, are seen to be in general agreement with those of Schwartz, but they are of greater accuracy and outside of his error limits for k = 0.3 and 0.4 for S-1. The main aim of this approach is the application to higher energy scattering. By virtue of the complex correlation functions, the T-matrix is not unitary so that elastic and total scattering cross sections are independent of each other. Our results will be compared specifically with those of Bray and Stelbovics.
Study of p-4He total reaction cross-section using Glauber and Coulomb-modified Glauber models
NASA Astrophysics Data System (ADS)
Tag El-Din, Ibrahim M. A.; Taha, M. M.; Hassan, Samia S. A.
2014-02-01
The total nuclear reaction cross-section σR for p-4He in the energy range from 25 MeV to 1000 MeV is calculated within Glauber and Coulomb-modified Glauber models. The Coulomb-modified Glauber model (CMGM) is introduced via modification of the Coulomb trajectory of the projectile from a straight line, and calculation of the effective radius of interaction. The effects of in-medium nucleon-nucleon (NN) total cross-section, phase variation, high order momentum transfer component of nucleon-nucleon elastic scattering amplitude and Pauli blocking are studied. It is pointed out that the phase variation of the nucleon-nucleon amplitude plays a significant role in describing σR with γ = -1.6 fm2 at in-medium nuclear density ϱ = 0 and γ = -2 fm2 at ϱ = 0.17 fm-3 in the whole energy range. A remarkable fit to the available experimental data is obtained by invoking Pauli blocking and high order momentum transfer of nucleon-nucleon (NN) elastic scattering amplitude for Ep < 100 MeV.
Elastic scattering and total reaction cross section for the 6He +58Ni system
NASA Astrophysics Data System (ADS)
Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Mendes, D. R., Jr.; Pires, K. C. C.; de Faria, P. N.; Barioni, A.; Gasques, L.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.
2014-11-01
Elastic scattering measurements of 6He + 58Ni system have been performed at the laboratory energy of 21.7 MeV. The 6He secondary beam was produced by a transfer reaction 9Be (7Li , 6He ) and impinged on 58Ni and 197Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.
Positron scattering from carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zecca, Antonio; Perazzolli, Chiara; Moser, Norberto
2006-07-15
We report total cross section measurements for positron scattering from carbon dioxide (CO{sub 2}). The energy range of the present measurements is 0.1-20.0 eV. The present study is undertaken to both try and resolve a discrepancy in the literature between the earlier low-energy works of Hoffman et al. [Phys. Rev. A 25, 1393 (1982)] and Kimura et al. [J. Chem. Phys. 107, 6616 (1997)], and to extend the available data to lower energies. We find generally good agreement with the data of Hoffman et al. over the common experimental energy range. A comparison of the present data with available calculationsmore » is also made, as is a comparison with corresponding electron total cross section data.« less
NASA Astrophysics Data System (ADS)
Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Pires, K. C. C.; Lubian, J.; Mendes Junior, D. R.; de Faria, P. N.; Kolata, J. J.; Becchetti, F. D.; Jiang, H.; Aguilera, E. F.; Lizcano, D.; Martinez-Quiroz, E.; Garcia, H.
2017-01-01
We present 8B 27Al elastic scattering angular distributions for the proton-halo nucleus 8B at two energies above the Coulomb barrier, namely Elab=15.3 and 21.7 MeV. The experiments were performed in the Radioactive Ion Beams in Brasil facility (RIBRAS) in São Paulo, and in the TwinSol facility at the University of Notre Dame, USA. The angular distributions were measured in the angular range of 15-80 degrees. Optical model and continuum discretized coupled channels calculations were performed, and the total reaction cross sections were derived. A comparison of the 8B+27Al total reaction cross sections with similar systems including exotic, weakly bound, and tightly bound projectiles impinging on the same target is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Jung, Young-Dae; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590
2013-06-15
The influence of the electron-exchange and quantum screening on the Thomson scattering process is investigated in degenerate quantum Fermi plasmas. The Thomson scattering cross section in quantum plasmas is obtained by the plasma dielectric function and fluctuation-dissipation theorem as a function of the electron-exchange parameter, Fermi energy, plasmon energy, and wave number. It is shown that the electron-exchange effect enhances the Thomson scattering cross section in quantum plasmas. It is also shown that the differential Thomson scattering cross section has a minimum at the scattering angle Θ=π/2. It is also found that the Thomson scattering cross section increases with anmore » increase of the Fermi energy. In addition, the Thomson scattering cross section is found to be decreased with increasing plasmon energy.« less
NASA Astrophysics Data System (ADS)
Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.
2016-05-01
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.
NASA Astrophysics Data System (ADS)
Block, Martin M.; Durand, Loyal; Ha, Phuoc
2014-05-01
We show that it is possible to fit all of the HERA deep inelastic scattering data on F2γp at small values of Bjorken x, including the data at very low Q2, using a new model for F2γp which both includes an asymptotic (high-energy) part that satisfies a saturated Froissart bound behavior, with a vector-dominance-like mass factor in the parametrization, and extends smoothly to Q2=0. We require that the corresponding part of the virtual γ*p cross section match the known asymptotic part of the real γp cross section at Q2=0, a cross section which is determined by strong interactions and asymptotically satisfies a saturated Froissart bound of the form α+βlns+γln2s. Using this model for the asymptotic part of F2γp plus a known valence contribution, we fit the asymptotic high-energy part of the HERA data with x ≤0.1 and W ≥25 GeV; the fit is excellent. We find that the mass parameter in the fit lies in the region of the light vector mesons, somewhat above the ρ-meson mass, and is compatible with vector dominance. We use this fit to obtain accurate results for the high-energy ep and isoscalar νN total cross sections. Both cross sections obey an analytic expression of the type a+blnE+cln2E+dln3E at large energies E of the incident particle, reflecting the fact that the underlying strong interaction parts of the γ*p, Z*N and W*N cross sections satisfy the saturated Froissart bound. Since approximately 50% of the νN center-of-mass (cms) energy is found in W—the cms energy of the strongly interacting intermediate vector boson-nucleon system—a study of ultra-high-energy neutrino-nucleon cross sections would allow us, for the first time, to explore strong interactions at incredibly high energies.
Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA
NASA Astrophysics Data System (ADS)
Mousseau, J.; Wospakrik, M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Minerν A Collaboration
2016-04-01
The MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5-50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x <0.1 . This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice et al. (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.
Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA
Mousseau, J.
2016-04-19
Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy.more » However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.« less
Mie and debye scattering in dusty plasmas
Guerra; Mendonca
2000-07-01
We calculate the total field scattered by a charged sphere immersed in a plasma using a unified treatment that includes the usual Mie scattering and the scattering by the Debye cloud around the particle. This is accomplished by use of the Dyadic Green function to determine the field radiated by the electrons of the Debye cloud, which is then obtained as a series of spherical vector wave functions similar to that of the Mie field. Thus we treat the Debye-Mie field as a whole and study its properties. The main results of this study are (1) the Mie (Debye) field dominates at small (large) wavelengths and in the Rayleigh limit the Debye field is constant; (2) the total cross section has an interference term between the Debye and Mie fields, important in some regimes; (3) this term is negative for negative charge of the grain, implying a total cross section smaller than previously thought; (4) a method is proposed to determine the charge of the grain (divided by a certain suppression factor) and the Debye length of the plasma; (5) a correction to the dispersion relation of an electromagnetic wave propagating in a plasma is derived.
NASA Astrophysics Data System (ADS)
Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration
2014-12-01
The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ˜1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged νe charged current cross section on carbon is measured to be ⟨σ ⟩ϕ =1.11 ±0.10 (stat)±0.18 (syst)×1 0-38 cm2/nucleon . The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23 ×1 0-38 cm2/nucleon and the GENIE prediction is 1.08 ×1 0-38 cm2/nucleon . The total νe charged current cross-section result is also in agreement with data from the Gargamelle experiment.
NASA Astrophysics Data System (ADS)
Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; De Roeck, A.; De Wolf, E. A.; Dirkmann, M.; Dixon, P.; Di Nezza, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Griffiths, R.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hampel, M.; Hapke, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noves, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; Zuber, K.; ZurNedden, M.; H1 Collaboration
1996-02-01
The Q2 dependence and the total cross sections for charged and neutral current processes are measured in e±p reactions for transverse momenta of the outgoing lepton larger than 25 GeV. Comparable size of cross sections for the neutral current process and for the weak charged current process are observed above Q2 ∥ 5000 GeV 2. Using the shape and magnitude of the charged current cross section we determine a propagator mass of mW = 84 -7+10 GeV.
NASA Technical Reports Server (NTRS)
Labudde, R. A.
1972-01-01
An attempt has been made to keep the programs as subroutine oriented as possible. Usually only the main programs are directly concerned with the problem of total cross sections. In particular the subroutines POLFIT, BILINR, GASS59/MAXLIK, SYMOR, MATIN, STUDNT, DNTERP, DIFTAB, FORDIF, EPSALG, REGFAL and ADSIMP are completely general, and are concerned only with the problems of numerical analysis and statistics. Each subroutine is independently documented.
Theoretical and Experimental K+ + Nucleus Total and Reaction Cross Sections from the KDP-RIA Model
NASA Astrophysics Data System (ADS)
Kerr, L. K.; Clark, B. C.; Hama, S.; Ray, L.; Hoffmann, G. W.
2000-02-01
The 5-dimensional spin-0 form of the Kemmer-Duffin-Petiau (KDP) equation is used to calculate scattering observables [elastic differential cross sections (dσ / dΩ), total cross sections (σ Tot ), and total reaction cross sections (σ Reac )] and to deduce σ Tot and σReac from transmission data for K+ + 6Li, 12C, 28Si and 40Ca at several momenta in the range 488 - 714 MeV / c. Realistic uncertainties are generated for the theoretical predictions. These errors, mainly due to uncertainties associated with the elementary K+ + nucleon amplitudes, are large, which may account for some of the disagreement between experimental and theoretical σTot and σReac. The results suggest that the K+ + nucleon amplitudes need to be much better determined before further improvement in the understanding of these data can occur.
Scattering Cross Section of Sound Waves by the Modal Element Method
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1994-01-01
#he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
The production of two prompt J/ψ mesons, each with transverse momenta p T > 8.5 GeV and rapidity |y| < 2.1, is studied using a sample of proton-proton collisions atmore » $$\\sqrt{s} = 8$$ TeV, corresponding to an integrated luminosity of 11.4 fb –1 collected in 2012 with the ATLAS detector at the LHC. The differential cross-section, assuming unpolarised J/ψ production, is measured as a function of the transverse momentum of the lower-p TJ/ψ meson, di-J/ψp T and mass, the difference in rapidity between the two J/ψ mesons, and the azimuthal angle between the two J/ψ mesons. The fraction of prompt pair events due to double parton scattering is determined by studying kinematic correlations between the two J/ψ mesons. The total and double parton scattering cross-sections are compared with predictions. The effective cross-section of double parton scattering is measured to be σ eff = 6.3 ± 1.6(stat)±1.0(syst) mb.« less
NASA Astrophysics Data System (ADS)
Rudek, Benedikt; Bennett, Daniel; Bug, Marion U.; Wang, Mingjie; Baek, Woon Yong; Buhr, Ticia; Hilgers, Gerhard; Champion, Christophe; Rabus, Hans
2016-09-01
For track structure simulations in the Bragg peak region, measured electron emission cross sections of DNA constituents are required as input for developing parameterized model functions representing the scattering probabilities. In the present work, double differential cross sections were measured for the electron emission from vapor-phase pyrimidine, tetrahydrofuran, and trimethyl phosphate that are structural analogues to the base, the sugar, and the phosphate residue of the DNA, respectively. The range of proton energies was from 75 keV to 135 keV, the angles ranged from 15° to 135°, and the electron energies were measured from 10 eV to 200 eV. Single differential and total electron emission cross sections are derived by integration over angle and electron energy and compared to the semi-empirical Hansen-Kocbach-Stolterfoht (HKS) model and a quantum mechanical calculation employing the first Born approximation with corrected boundary conditions (CB1). The CB1 provides the best prediction of double and single differential cross section, while total cross sections can be fitted with semi-empirical models. The cross sections of the three samples are proportional to their total number of valence electrons.
The Current Status of High Energy Elastic Scattering
NASA Astrophysics Data System (ADS)
Block, Martin M.; Kang, Kyungsik; White, Alan R.
The recent total cross section, σtot, and ρ-value results from the Fermilab Tevatron Collider experiments,1,2 presented at the 4th “Blois” Workshop on Elastic and Diffractive Scattering, held at Elba in May 1991, provide a natural springboard from which to launch a focused review of the field.
A dependence of quasielastic charged-current neutrino-nucleus cross sections
NASA Astrophysics Data System (ADS)
Van Dessel, N.; Jachowicz, N.; González-Jiménez, R.; Pandey, V.; Van Cuyck, T.
2018-04-01
Background: 12C has been and is still widely used in neutrino-nucleus scattering and oscillation experiments. More recently, 40Ar has emerged as an important nuclear target for current and future experiments. Liquid argon time projection chambers (LArTPCs) possess various advantages in measuring electroweak neutrino-nucleus cross sections. Concurrent theoretical research is an evident necessity. Purpose: 40Ar is larger than 12C , and one expects nuclear effects to play a bigger role in reactions. We present inclusive differential and total cross section results for charged-current neutrino scattering on 40Ar and perform a comparison with 12C , 16O , and 56Fe targets, to find out about the A -dependent behavior of model predictions. Method: Our model starts off with a Hartree-Fock description of the nucleus, with the nucleons interacting through a mean field generated by an effective Skyrme force. Long-range correlations are introduced by means of a continuum random phase approximation approach. Further methods to improve the accuracy of model predictions are also incorporated in the calculations. Results: We present calculations for 12C , 16O , 40Ar , and 56Fe , showcasing differential cross sections over a broad range of kinematic values in the quasielastic regime. We furthermore show flux-folded results for 40Ar and we discuss the differences between nuclear responses. Conclusions: At low incoming energies and forward scattering we identify an enhancement in the 40Ar cross section compared to 12C , as well as in the high ω (low Tμ) region across the entire studied Eν range. The contribution to the folded cross section of the reaction strength at values of ω lower than 50 MeV for forward scattering is sizable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, Paul E.
2014-03-05
There are many (n,γ) cross sections of great interest to radiochemical diagnostics and to nuclear astrophysics which are beyond the reach of current measurement techniques, and likely to remain so for the foreseeable future. In contrast, total neutron cross sections currently are feasible for many of these nuclides and provide almost all the information needed to accurately calculate the (n,γ) cross sections via the nuclear statistical model (NSM). I demonstrate this for the case of 151Sm; NSM calculations constrained using average resonance parameters obtained from total cross section measurements made in 1975, are in excellent agreement with recent 151Sm (n,γ)more » measurements across a wide range of energy. Furthermore, I demonstrate through simulations that total cross section measurements can be made at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center for samples as small as 10μg. Samples of this size should be attainable for many nuclides of interest. Finally, I estimate that over half of the radionuclides identified ~20 years ago as having (n,γ) cross sections of importance to s-process nucleosynthesis studies (24/43) and radiochemical diagnostics (11/19), almost none of which have been measured, can be constrained using this technique.« less
Wave multiple scattering by a finite number of unclosed circular cylinders
NASA Technical Reports Server (NTRS)
Veliyev, E. I.; Veremey, V. V.
1984-01-01
The boundary value problem of plane H-polarized electromagnetic wave multiple scattering by a finite number of unclosed circular cylinders is solved. The solution is obtained by two different methods: the method of successive scattering and the method of partial matrix inversion for simultaneous dual equations. The advantages of the successive scattering method are shown. Computer calculations of the suface currents and the total cross section are presented for the structure of two screens.
Martinez, G T; van den Bos, K H W; Alania, M; Nellist, P D; Van Aert, S
2018-04-01
In quantitative scanning transmission electron microscopy (STEM), scattering cross-sections have been shown to be very sensitive to the number of atoms in a column and its composition. They correspond to the integrated intensity over the atomic column and they outperform other measures. As compared to atomic column peak intensities, which saturate at a given thickness, scattering cross-sections increase monotonically. A study of the electron wave propagation is presented to explain the sensitivity of the scattering cross-sections. Based on the multislice algorithm, we analyse the wave propagation inside the crystal and its link to the scattered signal for the different probe positions contained in the scattering cross-section for detector collection in the low-, middle- and high-angle regimes. The influence to the signal from scattering of neighbouring columns is also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Triple-parton scatterings in proton-nucleus collisions at high energies
NASA Astrophysics Data System (ADS)
d'Enterria, David; Snigirev, Alexander M.
2018-05-01
A generic expression to compute triple-parton scattering (TPS) cross sections in high-energy proton-nucleus (pA) collisions is derived as a function of the corresponding single-parton cross sections and an effective parameter encoding the transverse parton profile of the proton. The TPS cross sections are enhanced by a factor of about 9 A˜eq 2000 in pPb as compared to those in proton-nucleon collisions at the same center-of-mass energy. Estimates for triple charm (c\\overline{c}) and bottom (b\\overline{b}) production in pPb collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order calculations for c\\overline{c} and b\\overline{b} single-parton cross sections. At √{s_{_{sc {nn}}}}= 8.8 TeV, about 10% of the pPb events have three c\\overline{c} pairs produced in separate partonic interactions. At √{s_{_{sc {nn}}}}= 63 TeV, the pPb cross sections for triple-J/ψ and triple-b\\overline{b} are O(1-10 mb). In the most energetic collisions of cosmic rays in the upper atmosphere, equivalent to √{s_{_{sc {nn}}}}≈ 400 TeV, the TPS c\\overline{c} cross section equals the total p-Air inelastic cross section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirk, P.N.
1992-12-15
Activities included contributions to the AMY Collaboration, the transverse energy detector, the Di-Lepton Spectrometer, with emphasis on the single-lepton experiment. Elastic and inelastic scattering differential cross sections and total cross sections are shown for [pi][sup +] and [pi][sup [minus
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-08-01
The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the direct or inverse characterization of multiple scattering systems in acoustically-engineered metamaterials, cloaking devices, particle dynamics, levitation, manipulation and handling, and other areas.
Examination of the 22C radius determination with interaction cross sections
NASA Astrophysics Data System (ADS)
Nagahisa, T.; Horiuchi, W.
2018-05-01
A nuclear radius of 22C is investigated with the total reaction cross sections at medium- to high-incident energies in order to resolve the radius puzzle in which two recent interaction cross-section measurements using 1H and 12C targets show the quite different radii. The cross sections of 22C are calculated consistently for these target nuclei within a reliable microscopic framework, the Glauber theory. To describe appropriately such a reaction involving a spatially extended nucleus, the multiple scattering processes within the Glauber theory are fully taken into account, that is, the multidimensional integration in the Glauber amplitude is evaluated using a Monte Carlo technique without recourse to the optical-limit approximation. We discuss the sensitivity of the spatially extended halo tail to the total reaction cross sections. The root-mean-square matter radius obtained in this study is consistent with that extracted from the recent cross-section measurement on 12C target. We show that the simultaneous reproduction of the two recent measured cross sections is not feasible within this framework.
Electron scattering by highly polar molecules. III - CsCl
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Srivastava, S. K.
1981-01-01
Utilizing a crossed electron-beam-molecular-beam scattering geometry, relative values of differential electron scattering cross sections for cesium chloride at 5 and 20 eV electron impact energies and at scattering angles between 10 and 120 deg have been measured. These relative cross sections have been normalized to the cross section at 15 deg scattering angle calculated by the hybrid S-matrix technique. In the angular range between 0 and 10 deg and between 120 and 180 deg extrapolations have been made to obtain integral and momentum transfer cross sections. An energy-loss spectrum is also presented which gives various spectral features lying between the 4 and 10 eV regions in CsCl.
Measure of Backscatter for small particles of atmosphere by lasers
NASA Astrophysics Data System (ADS)
Abud, Mariam M.
2018-05-01
It developed a program for the atmosphere to study the backscattering for contents gas and molecules, aerosol, fog, clouds and rain droplets. By using Rayleigh, Mie and geometric scattering. The aim of research, using different types of lasers from various optical region, is to calculate differential cross scatter section and backscatter of atmosphere component in one layer from height 10-2000m. 180° is backscattering angle using ISA standard sea level condition P=1013.25 (kpa) at t0=15 ° C.and then calculated the density of molecules and water vapor molecules represented D in kg/m3. Results reflected index consist of the large value of the real part and imaginary m=1.463-0.028i.this research diff. scatter cross section of different component of atmosphere layer decreased vs. wavelengths. The purpose of lider research to find backscatter from UV to IR laser within the optical range in the atmosphere and measurement of excitation and analysis of backscatter signals. Recently, the atmosphere of Iraq has become full of dust and pollution, so by knowing the differential cross scatter section and backscatter of atmosphere. Relation between total Rayleigh scatter coefficient & type of particles include fog and clouds, aerosols and water droplets (-0.01, 0.025,- 0.005) m-1/sr-1.
A new detector for low Pt physics
NASA Astrophysics Data System (ADS)
Da Via, C.; DeSalvo, R.; Lundin, M.; Mondardini, M. R.; Orear, J.; Shimizu, T.; Shinji, O.
1992-12-01
Elastic pp (or poverlinep) scattering at microradian angles provides a measurement of the total pp (or poverlinep) cross sectio elastic scattering cross section with t (the square of the momentum transfer) and the ratio of real to imaginary scattering amplitudes, as well as an absolute luminosity calibration. A detector is proposed which can measure elastic scattering and small angle processes which are usually missed by a typical 4π detector. The detector consists of a bundle of scintillating fibers. Images from these fibers are transported via glass fiber optics and intensified with two proximity focused image intensifiers. Images are then reduced via an image taper and read out with a charge coupled device (CCD).
Neutron scattering measurements in {sup 197}Au from 850 keV to 2.0 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Connor, M.; Chen, J.; Egan, J.J.
1995-10-01
Differential elastic and inelastic neutron scattering cross-sections for low lying levels in {sup 197}Au have been measured for incident neutron energies of 1.0 MeV, 1.5 MeV and 2.0 MeV. In addition, the total neutron cross sections in {sup 197}Au was measured from 850 keV to 1.5 MeV. For both experiments the UML 5.5 MV Van-de-Graaff accelerator with a Mobley post acceleration compression system, produced subnanosecond proton pulses which generated neutrons via the {sup 7}Li(p,n) {sup 7}Be reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markovic, M.I.
1982-10-01
A critical analysis of the Koppel-Young model is presented and compared with Nelkin's model and their equivalence is asserted. It is shown that the only distinction between the two models is in the orientational averaging of the rotational-vibrational intermedial scattering function. Based on total cross sections, the Krieger-Nelkin orientation averaging has been confirmed to give excellent agreement with the Koppel-Young orientation averaging. However, significant quasi-periodical differences are observed when calculating differential cross sections. As a result of these insights, a new unified model is proposed for microdynamics of water molecules.
Ionizing Collisions of Electrons with Radical Species OH, H2 O2 and HO2; Theoretical Calculations
NASA Astrophysics Data System (ADS)
Joshipura, K. N.; Pandya, S. H.; Vaishnav, B. G.; Patel, U. R.
2016-05-01
In this paper we present our calculated total ionization cross sections (TICS) of electron impact on radical targets OH, H2 O2 and HO2 at energies from threshold to 2000 eV. Reactive species such as these pose difficulties in measurements of electron scattering cross sections. No measured data have been reported in this regard except an isolated TICS measurement on OH radical, and hence the present work on the title radicals hold significance. These radical species are present in an environment in which water molecules undergo dissociation (neutral or ionic) in interactions with photons or electrons. The embedding environments could be quite diverse, ranging from our atmosphere to membranes of living cells. Ionization of OH, H2 O2 or HO2 can give rise to further chemistry in the relevant bulk medium. Therefore, it is appropriate and meaningful to examine electron impact ionization of these radicals in comparison with that of water molecules, for which accurate da are available. For the OH target single-centre scattering calculations are performed by starting with a 4-term complex potential, that describes simultaneous elastic plus inelastic scattering. TICS are obtained from the total inelastic cross sections in the complex scattering potential - ionization contribution formalism , a well established method. For H2 O2 and HO2 targets, we employ the additivity rule with overlap or screening corrections. Detailed results will be presented in the Conference.
2005-10-01
section of the coiled arm. Right: measured realized total gain for a square spiral in free space with inductive treatment. . . . . . . . 154 8.5 Initial...appreciable velocities can often be easily separated from clutter returns, slow moving targets of more moderate cross sections can be very difficult to detect...electromagnetic radiation and measuring the energy scattered back. The data obtained as a result of this process is a finite-extent, noisy set of
Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air
NASA Astrophysics Data System (ADS)
Thalman, Ryan; Zarzana, Kyle J.; Tolbert, Margaret A.; Volkamer, Rainer
2014-11-01
Knowledge about Rayleigh scattering cross sections is relevant to predictions about radiative transfer in the atmosphere, and needed to calibrate the reflectivity of mirrors that are used in high-finesse optical cavities to measure atmospheric trace gases and aerosols. In this work we have measured the absolute Rayleigh scattering cross-section of nitrogen at 405.8 and 532.2 nm using cavity ring-down spectroscopy (CRDS). Further, multi-spectral measurements of the scattering cross-sections of argon, oxygen and air are presented relative to that of nitrogen from 350 to 660 nm using Broadband Cavity Enhanced Spectroscopy (BBCES). The reported measurements agree with refractive index based theory within 0.2±0.4%, and have an absolute accuracy of better than 1.3%. Our measurements expand the spectral range over which Rayleigh scattering cross section measurements of argon, oxygen and air are available at near-ultraviolet wavelengths. The expressions used to represent the Rayleigh scattering cross-section in the literature are evaluated to assess how uncertainties affect quantities measured by cavity enhanced absorption spectroscopic (CEAS) techniques. We conclude that Rayleigh scattering cross sections calculated from theory provide accurate data within very low error bounds, and are suited well to calibrate CEAS measurements of atmospheric trace gases and aerosols.
NASA Astrophysics Data System (ADS)
Carey, Ralph; Lucchese, Robert R.; Gianturco, F. A.
2013-05-01
We present scattering calculations of electron collisions with the platinum-containing compound cis-diamminedichloroplatinum (CDDP), commonly known as cisplatin, between 0.5 eV and 6 eV, and the corresponding isolated Pt atom from 0.1 eV to 10 eV. We find evidence of resonances in e--CDDP scattering, using an ab initio description of the target. We computed scattering matrix elements from equations incorporating exchange and polarization effects through the use of the static-exchange plus density functional correlation potential. Additionally, we made use of a purely local adiabatic model potential that allows Siegert eigenstates to be calculated, thereby allowing inspection of the possible resonant scattering wave functions. The total cross section for electron scattering from (5d10) 1S Pt displays a large magnitude, monotonic decay from the initial collision energies, with no apparent resonance scattering features in any scattering symmetry. By contrast, the e--CDDP scattering cross section shows a small feature near 3.8 eV, which results from a narrow, well localized resonance of b2 symmetry. These findings are then related to the possible electron-mediated mechanism of the action of CDDP on DNA replication as suggested by recent experiments.
Sutton, Jeffrey A; Driscoll, James F
2004-11-15
Rayleigh scattering cross sections are measured for nine combustion species (Ar, N2, O2, CO2, CO, H2, H2O, CH4, and C3H8) at wavelengths of 266, 355, and 532 nm and at temperatures ranging from 295 to 1525 K. Experimental results show that, as laser wavelengths become shorter, polarization effects become important and the depolarization ratio of the combustion species must be accounted for in the calculation of the Rayleigh scattering cross section. Temperature effects on the scattering cross section are also measured. Only a small temperature dependence is measured for cross sections at 355 nm, resulting in a 2-8% increase in cross section at temperatures of 1500 K. This temperature dependence increases slightly for measurements at 266 nm, resulting in a 5-11% increase in cross sections at temperatures of 1450 K.
Eikonal solutions to optical model coupled-channel equations
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.
1988-01-01
Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.
Distance within colloidal dimers probed by rotation-induced oscillations of scattered light.
van Vliembergen, Roland W L; van IJzendoorn, Leo J; Prins, Menno W J
2016-01-25
Aggregation processes of colloidal particles are of broad scientific and technological relevance. The earliest stage of aggregation, when dimers appear in an ensemble of single particles, is very important to characterize because it opens routes for further aggregation processes. Furthermore, it represents the most sensitive phase of diagnostic aggregation assays. Here, we characterize dimers by rotating them in a magnetic field and by recording the angle dependence of light scattering. At small scattering angles, the scattering cross section can be approximated by the total cross-sectional area of the dimer. In contrast, at scattering angles around 90 degrees, we reveal that the dependence of the scattering cross section on the dimer angle shows a series of peaks per single 2π rotation of the dimers. These characteristics originate from optical interactions between the two particles, as we have verified with two-particle Mie scattering simulations. We have studied in detail the angular positions of the peaks. It appears from simulations that the influence of particle size polydispersity, Brownian rotation and refractive index on the angular positions of the peaks is relatively small. However, the angular positions of the peaks strongly depend on the distance between the particles. We find a good correspondence between measured data and calculations for a gap of 180 nm between particles having a diameter of 1 micrometer. The experiment and simulations pave the way for extracting distance-specific data from ensembles of dimerizing colloidal particles, with application for sensitive diagnostic aggregation assays.
Elastic scattering and total reaction cross section for the {sup 6}He+{sup 58}Ni system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.
2014-11-11
Elastic scattering measurements of {sup 6}He + {sup 58}Ni system have been performed at the laboratory energy of 21.7 MeV. The {sup 6}He secondary beam was produced by a transfer reaction {sup 9}Be ({sup 7}Li, {sup 6}He) and impinged on {sup 58}Ni and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybridmore » potential to fit the experimental data. The total reaction cross section was derived.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grotowski, K.
1963-01-01
An experiment for determination of the parameters of the optical potential for deuterons is presented. Total reaction cross sections for the interaction of deuterons with nuclei were determined by evaluating the cross sections for the emission of charged particles and neutrons. The angular distributions for the elastic scattering of deuterons were also measured. (auth)
Introduction to the physics of the total cross section at LHC. A review of data and models
NASA Astrophysics Data System (ADS)
Pancheri, Giulia; Srivastava, Yogendra N.
2017-03-01
This review describes the development of the physics of hadronic cross sections up to recent LHC results and cosmic ray experiments. We present here a comprehensive review - written with a historical perspective - about total cross sections from medium to the highest energies explored experimentally and studied through a variety of methods and theoretical models for over 60 years. We begin by recalling the analytic properties of the elastic amplitude and the theorems about the asymptotic behavior of the total cross section. A discussion of how proton-proton cross sections are extracted from cosmic rays at higher than accelerator energies and help the study of these asymptotic limits, is presented. This is followed by a description of the advent of particle colliders, through which high energies and unmatched experimental precisions have been attained. Thus the measured hadronic elastic and total cross sections have become crucial instruments to probe the so called soft part of QCD physics, where quarks and gluons are confined, and have led to test and refine Regge behavior and a number of diffractive models. As the c.m. energy increases, the total cross section also probes the transition into hard scattering describable with perturbative QCD, the so-called mini-jet region. Further tests are provided by cross section measurements of γ p, γ ^* p and γ ^* γ ^* for models based on vector meson dominance, scaling limits of virtual photons at high Q^2 and the BFKL formalism. Models interpolating from virtual to real photons are also tested.
Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2001-01-01
Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
Cross sections for elastic scattering of electrons by CF3Cl, CF2Cl2, and CFCl3
NASA Astrophysics Data System (ADS)
Hoshino, M.; Horie, M.; Kato, H.; Blanco, F.; García, G.; Limão-Vieira, P.; Sullivan, J. P.; Brunger, M. J.; Tanaka, H.
2013-06-01
Differential, integral, and momentum transfer cross sections have been determined for the elastic scattering of electrons from the molecules CF3Cl, CF2Cl2, and CFCl3.With the help of a crossed electron beam-molecular beam apparatus using the relative flow technique, the ratios of the elastic differential cross sections (DCSs) of CF3Cl, CF2Cl2, and CFCl3 to those of He were measured in the energy region from 1.5 to 100 eV and at scattering angles in the range 15° to 130°. From those ratios, the absolute DCSs were determined by utilizing the known DCS of He. For CF3Cl and CF2Cl2, at the common energies of measurement, we find generally good agreement with the results from the independent experiments of Mann and Linder [J. Phys. B 25, 1621 (1992), 10.1088/0953-4075/25/7/030; Mann and Linder J. Phys. B 25, 1633 (1992), 10.1088/0953-4075/25/7/031]. In addition, as a result of progressively substituting a Cl-atom, undulations in the angular distributions have been found to vary in a largely systematic manner in going from CF4 to CF3Cl to CF2Cl2 to CFCl3 and to CCl4. These observed features suggest that the elastic scattering process is, in an independently additive manner, dominated by the atomic-Cl atoms of the molecules. The present independent atom method calculation typically supports the experimental evidence, within the screened additivity rule formulation, for each species and for energies greater than about 10-20 eV. Integral elastic and momentum transfer cross sections were also derived from the measured DCSs, and are compared to the other available theoretical and experimental results. The elastic integral cross sections are also evaluated as a part of their contribution to the total cross section.
Polarization resolved angular optical scattering of aerosol particles
NASA Astrophysics Data System (ADS)
Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui
2014-05-01
Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.
Inelastic scattering of electrons at real metal surfaces
NASA Astrophysics Data System (ADS)
Ding, Z.-J.
1997-04-01
A theory is presented to calculate the electron inelastic scattering cross section for a moving electron near the surface region at an arbitrary takeoff angle. The theory is based on using a bulk plasmon-pole approximation to derive the numerically computable expression of the electron self-energy in the random-phase approximation for a surface system, through the use of experimental optical constants. It is shown that the wave-vector-dependent surface dielectric function satisfies the surface sum rules in this scheme. The theory provides a detailed knowledge of electron self-energy depending on the kinetic energy, distance from surface, and velocity vector of an electron moving in any metal of a known dielectric constant, accommodating the formulation to practical situation in surface electron spectroscopies. Numerical computations of the energy-loss cross section have been made for Si and Au. The contribution to the total differential scattering cross section from each component is analyzed. The depth dependence informs us in detail how the bulk excitation mode changes to a surface excitation mode with an electron approaching the surface from the interior of a medium.
Low-energy positron scattering by pyrimidine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbosa, Alessandra Souza; Pastega, Diego F.; Bettega, Márcio H. F., E-mail: bettega@fisica.ufpr.br
2015-12-28
This work reports elastic integral and differential cross sections for positron collisions with pyrimidine, for energies up to 20 eV. The cross sections were computed with the Schwinger multichannel method in the static plus polarization approximation. We also employed the Born closure procedure to account for the long range potential due to the permanent dipole moment of the molecule. Our results are compared with the experimental total cross section of Zecca et al. [J. Phys. B 43, 215204 (2010)], the experimental grand-total, quasi-elastic integral and differential cross section of Palihawadana et al. [Phys. Rev. A 88, 12717 (2013)]. We alsomore » compare our results with theoretical integral and differential cross sections obtained by Sanz et al. [Phys. Rev. A 88, 62704 (2013)] with the R-matrix and the independent atom model with screening-corrected additivity rule methods, and with the results computed by Franz and Gianturco [Phys. Rev. A 88, 042711 (2013)] using model correlation-polarization potentials. The agreement between the theory and the experiment is encouraging.« less
54Fe neutron elastic and inelastic scattering differential cross sections from 2-6 MeV
NASA Astrophysics Data System (ADS)
Vanhoy, J. R.; Liu, S. H.; Hicks, S. F.; Combs, B. M.; Crider, B. P.; French, A. J.; Garza, E. A.; Harrison, T.; Henderson, S. L.; Howard, T. J.; McEllistrem, M. T.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; Ramirez, A. P. D.; Rice, B. G.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Thompson, B. K.; Yates, S. W.
2018-04-01
Measurements of neutron elastic and inelastic scattering cross sections from 54Fe were performed for nine incident neutron energies between 2 and 6 MeV. Measured differential scattering cross sections are compared to those from previous measurements and the ENDF, JENDL, and JEFF data evaluations. TALYS calculations were performed and modifications of the default parameters are found to better describe the experimental cross sections. A spherical optical model treatment is generally adequate to describe the cross sections in this energy region; however, in 54Fe the direct coupling is found to increase suddenly above 4 MeV and requires an increase in the DWBA deformation parameter by approximately 25%. This has little effect on the elastic scattering differential cross sections but makes a significant improvement in both the strength and shape of the inelastic scattering angular distribution, which are found to be very sensitive to the size and extent of the surface absorption region.
NEUTRON PHYSICS DIVISION ANNUAL PROGRESS REPORT. Period Ending September 1, 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-01-11
A total of 74 subsections are included in the report. The information in 4 subsections was previously abstracted in NSA. Separate abstracts were prepared for 38 of the subsections. Those sections for which no abstracts were prepared contain information on prompt neutron lifetime, Rover critical experiments, Pu/sup 239/ fission, neutron decay, the O5R code, alpha scattering, 8 and P wavelengths, proton scattering, deuteron scattering, local optical potentials, N. S. Savamah radiation leakage, reactor shielding, cross section data analysis, gamma transport, gamma energy deposition, gaussian integration, data interpolation, neutron scattering, neutron energy deposition, space vehicles, computer analyses, shielding, positron sources, andmore » secondary particles. (J.R.D.)« less
Power corrections to the universal heavy WIMP-nucleon cross section
NASA Astrophysics Data System (ADS)
Chen, Chien-Yi; Hill, Richard J.; Solon, Mikhail P.; Wijangco, Alexander M.
2018-06-01
WIMP-nucleon scattering is analyzed at order 1 / M in Heavy WIMP Effective Theory. The 1 / M power corrections, where M ≫mW is the WIMP mass, distinguish between different underlying UV models with the same universal limit and their impact on direct detection rates can be enhanced relative to naive expectations due to generic amplitude-level cancellations at leading order. The necessary one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits and projected future sensitivities. Our results provide the most robust prediction for electroweak triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two sources of power corrections yields a small total 1 / M correction, and a total cross section close to the universal limit for M ≳ few × 100GeV. For the SU(2) composite scalar, the 1 / M corrections introduce dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total 1 / M correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further suppresses the total cross section. These examples provide definite targets for future direct detection experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV mass regime.
Release of Continuous Representation for S(α,β) ACE Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlin, Jeremy Lloyd; Parsons, Donald Kent
2014-03-20
For low energy neutrons, the default free gas model for scattering cross sections is not always appropriate. Molecular effects or crystalline structure effects can affect the neutron scattering cross sections. These effects are included in the S(α; β) thermal neutron scattering data and are tabulated in file 7 of the ENDF6 format files. S stands for scattering. α is a momentum transfer variable and is an energy transfer variable. The S(α; β) cross sections can include coherent elastic scattering (no E change for the neutron, but specific scattering angles), incoherent elastic scattering (no E change for the neutron, but continuousmore » scattering angles), and inelastic scattering (E change for the neutron, and change in angle as well). Every S(α; β) material will have inelastic scattering and may have either coherent or incoherent elastic scattering (but not both). Coherent elastic scattering cross sections have distinctive jagged-looking Bragg edges, whereas the other cross sections are much smoother. The evaluated files from the NNDC are processed locally in the THERMR module of NJOY. Data can be produced either for continuous energy Monte Carlo codes (using ACER) or embedded in multi-group cross sections for deterministic (or even multi-group Monte Carlo) codes (using GROUPR). Currently, the S(α; β) files available for MCNP use discrete energy changes for inelastic scattering. That is, the scattered neutrons can only be emitted at specific energies— rather than across a continuous spectrum of energies. The discrete energies are chosen to preserve the average secondary neutron energy, i.e., in an integral sense, but the discrete treatment does not preserve any differential quantities in energy or angle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, Paul E.; Hayes-Sterbenz, Anna C.; Bredeweg, Todd Allen
Total-cross-section measurements are feasible on a much wider range of radioactive samples than (n,γ) cross-section measurements, and information extracted from the former can be used to set tight constraints on the latter. There are many (n,γ) cross sections of great interest to radiochemical diagnostics, nuclear forensics, and nuclear astrophysics which are beyond the reach of current direct measurement, that could be obtained in this way. Our simulations indicate that measurements can be made at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center for samples as small as 10μg. There are at least 40 high-interestmore » nuclides which should be measurable, including 88Y, 167,168,170,171Tm, 173,174Lu, and 189,190,192Ir.« less
Electromagnetic scattering laws in Weyl systems.
Zhou, Ming; Ying, Lei; Lu, Ling; Shi, Lei; Zi, Jian; Yu, Zongfu
2017-11-09
Wavelength determines the length scale of the cross section when electromagnetic waves are scattered by an electrically small object. The cross section diverges for resonant scattering, and diminishes for non-resonant scattering, when wavelength approaches infinity. This scattering law explains the colour of the sky as well as the strength of a mobile phone signal. We show that such wavelength scaling comes from the conical dispersion of free space at zero frequency. Emerging Weyl systems, offering similar dispersion at non-zero frequencies, lead to new laws of electromagnetic scattering that allow cross sections to be decoupled from the wavelength limit. Diverging and diminishing cross sections can be realized at any target wavelength in a Weyl system, providing the ability to tailor the strength of wave-matter interactions for radiofrequency and optical applications.
NASA Astrophysics Data System (ADS)
Lozano, A. I.; Oller, J. C.; Krupa, K.; Ferreira da Silva, F.; Limão-Vieira, P.; Blanco, F.; Muñoz, A.; Colmenares, R.; García, G.
2018-06-01
A novel experimental setup has been implemented to provide accurate electron scattering cross sections from molecules at low and intermediate impact energies (1-300 eV) by measuring the attenuation of a magnetically confined linear electron beam from a molecular target. High-resolution electron energy is achieved through confinement in a magnetic gas trap where electrons are cooled by successive collisions with N2. Additionally, we developed and present a method to correct systematic errors arising from energy and angular resolution limitations. The accuracy of the entire measurement procedure is validated by comparing the N2 total scattering cross section in the considered energy range with benchmark values available in the literature.
The chaotic set and the cross section for chaotic scattering in three degrees of freedom
NASA Astrophysics Data System (ADS)
Jung, C.; Merlo, O.; Seligman, T. H.; Zapfe, W. P. K.
2010-10-01
This article treats chaotic scattering with three degrees of freedom, where one of them is open and the other two are closed, as a first step towards a more general understanding of chaotic scattering in higher dimensions. Despite the strong restrictions, it breaks the essential simplicity implicit in any two-dimensional time-independent scattering problem. Introducing the third degree of freedom by breaking a continuous symmetry, we first explore the topological structure of the homoclinic/heteroclinic tangle and the structures in the scattering functions. Then we work out the implications of these structures for the doubly differential cross section. The most prominent structures in the cross section are rainbow singularities. They form a fractal pattern that reflects the fractal structure of the chaotic invariant set. This allows us to determine structures in the cross section from the invariant set and, conversely, to obtain information about the topology of the invariant set from the cross section. The latter is a contribution to the inverse scattering problem for chaotic systems.
NASA Technical Reports Server (NTRS)
Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered. Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index junction for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.
NASA Technical Reports Server (NTRS)
Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index function for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.
Effect of nuclear shielding in collision of positive charged helium ions with helium atoms
NASA Astrophysics Data System (ADS)
Ghavaminia, Hoda; Ghavaminia, Shirin
2018-03-01
Differential in angle and absolute cross sections in energy of the scattered particles are obtained for single charge exchange in ^3He^+-^4He collisions by means of the four body boundary-corrected first Born approximation (CB1-4B). The quantum-mechanical post and prior transition amplitudes are derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The effect of the dynamic electron correlation through the complete perturbation potential and the nuclear-screening influence of the passive electrons on the electron capture process is investigated. The results obtained in the CB1-4B method are compared with the available experimental data. For differential cross sections, the present results are in better agreement with experimental data than other theoretical data at extreme forward scattering angles. The integral cross sections are in excellent agreement with the experiment. Also, total cross sections for single electron capture, has been investigated using the classical trajectory Monte Carlo method. The present calculated results are found to be in an excellent agreement with the experimental data.
Electron scattering by highly polar molecules. II - LiF
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Srivastavas, S. K.; Trajmar, S.
1978-01-01
The crossed electron-beam - molecular-beam scattering technique has been used to measure relative values of differential 'elastic' scattering cross sections at electron impact energies of 5.4 and 20 eV for the angular range from 20 to 130 deg. The absolute values of these cross sections have been obtained by normalization to the classical perturbation theory of Dickinson (1977) at a scattering angle of 40 deg. These differential cross sections have then been used to calculate the integral and momentum-transfer cross sections. An energy-loss spectrum at 100 eV electron impact energy and 15 deg scattering angle has also been obtained. Two weak features at the energy losses of 6.74 and 8.82 eV appear. Their energy positions are compared with the recent calculations of Kahn et al. (1974).
Final-state interactions in semi-inclusive deep inelastic scattering off the Deuteron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wim Cosyn, Misak Sargsian
2011-07-01
Semi-inclusive deep inelastic scattering off the Deuteron with production of a slow nucleon in recoil kinematics is studied in the virtual nucleon approximation, in which the final state interaction (FSI) is calculated within general eikonal approximation. The cross section is derived in a factorized approach, with a factor describing the virtual photon interaction with the off-shell nucleon and a distorted spectral function accounting for the final-state interactions. One of the main goals of the study is to understand how much the general features of the diffractive high energy soft rescattering accounts for the observed features of FSI in deep inelasticmore » scattering (DIS). Comparison with the Jefferson Lab data shows good agreement in the covered range of kinematics. Most importantly, our calculation correctly reproduces the rise of the FSI in the forward direction of the slow nucleon production angle. By fitting our calculation to the data we extracted the W and Q{sup 2} dependences of the total cross section and slope factor of the interaction of DIS products, X, off the spectator nucleon. This analysis shows the XN scattering cross section rising with W and decreasing with an increase of Q{sup 2}. Finally, our analysis points at a largely suppressed off-shell part of the rescattering amplitude.« less
Kotlarchyk, Michael; Thurston, George M
2016-12-28
In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.
NASA Astrophysics Data System (ADS)
Albrow, M. G.
1993-09-01
The author gives a summary talk of the best experimental data given at the 5th Blois Workshop on Elastic and Diffractive Scattering. He addresses the following eight areas in his talk: total and elastic cross sections; single diffractive excitation; electron-proton scattering; di-jets and rapidity gaps; areas of future study; spins and asymmetries; high-transverse momentum and masses at the Tevatron; and disoriented chiral condensates and cosmic radiation.
Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.
2015-05-15
The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Duncan, A. K.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A. Lopez; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Haddad, E. Sideras; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Cakir, I. Turk; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zwalinski, L.
2017-08-01
Detailed measurements of t-channel single top-quark production are presented. They use 20.2 fb^{-1} of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be σ _{ {tot}} (tq) = 56.7^{+4.3}_{-3.8}pb for top-quark production and σ _{ {tot}} (\\bar{t} q) = 32.9^{+3.0}_{-2.7}pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be R_t=1.72 ± 0.09. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.
Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Bianchi, R M; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Lopez, S Calvente; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Cornell, S Díez; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Duncan, A K; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Flierl, B M; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Han, S; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hladik, O; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyton, M; Li, B; Li, C; Li, H; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Loebinger, F K; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A Lopez; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Outschoorn, V I Martinez; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paganini, M; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Martinez, V Sanchez; Pineda, A Sanchez; Sandaker, H; Sandbach, R L; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shirabe, S; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Haddad, E Sideras; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Cakir, I Turk; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, W; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zwalinski, L
2017-01-01
Detailed measurements of t -channel single top-quark production are presented. They use 20.2 fb[Formula: see text] of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be [Formula: see text] for top-quark production and [Formula: see text] for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be [Formula: see text]. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t -channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.
Absorption effects in electron-sulfur-dioxide collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machado, L. E.; Sugohara, R. T.; Santos, A. S. dos
2011-09-15
A joint experimental-theoretical study on electron-SO{sub 2} collisions in the low and intermediate energy range is reported. More specifically, experimental elastic differential, integral, and momentum transfer cross sections in absolute scale are measured in the 100-1000 eV energy range using the relative-flow technique. Calculated elastic differential, integral, and momentum transfer cross sections as well as grand-total and total absorption cross sections are also presented in the 1-1000 eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics, whereas the Schwinger variational iterative method combined with the distorted-wave approximation is used to solve the scattering equations.more » Comparison of the present results is made with the theoretical and experimental results available in the literature.« less
Search for weak M 1 transitions in 48Ca with inelastic proton scattering
NASA Astrophysics Data System (ADS)
Mathy, M.; Birkhan, J.; Matsubara, H.; von Neumann-Cosel, P.; Pietralla, N.; Ponomarev, V. Yu.; Richter, A.; Tamii, A.
2017-05-01
Background: The quenching of spin-isospin modes in nuclei is an important field of research in nuclear structure. It has an impact on astrophysical reaction rates and on fundamental processes like neutrinoless double-β decay. Gamow-Teller (GT) and spin-flip M 1 strengths are quenched. Concerning the latter, the Jπ=1+ resonance in the doubly magic nucleus 48Ca, dominated by a single transition, serves as a reference case. Purpose: The aim of the present work is to search for weak M 1 transitions in 48Ca with a high-resolution (p ,p') experiment at 295 MeV and forward angles including 0∘ and a comparison with results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B (M 1 ) strength in 48Ca. Methods: The spin-M 1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis (MDA) and converted to reduced spin-M 1 transition strengths by using the unit cross-section method. For a comparison with electron-scattering results, corresponding reduced B (M 1 ) transition strengths are extracted following the approach outlined in Birkhan et al. [Phys. Rev. C 93, 041302(R) (2016), 10.1103/PhysRevC.93.041302]. Results: In total, 30 peaks containing a M 1 contribution are found in the excitation energy region 7-13 MeV. The resulting B (M 1 ) strength distribution compares well to the electron-scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.14(7) μN2 deduced assuming a nonquenched isoscalar part of the (p ,p') cross sections agrees with the (e ,e') result of 1.21(13) μN2. A bin-wise analysis above 10 MeV provides an upper limit of 1.51(17) μN2. Conclusions: The present results confirm the previous electron-scattering work that weak transitions contribute about 25% to the total B (M 1 ) strength in 48Ca and the quenching factors of GT and spin-M 1 strength are then comparable in f p -shell nuclei. Thus, the role of meson-exchange currents seems to be negligible in 48Ca, in contrast to s d -shell nuclei.
Cross sections for electron collision with difluoroacetylene
NASA Astrophysics Data System (ADS)
Gupta, Dhanoj; Choi, Heechol; Kwon, Deuk-Chul; Yoon, Jung-Sik; Antony, Bobby; Song, Mi-Young
2017-04-01
We report a detailed calculation of total elastic, differential elastic, momentum transfer and electronic excitation for electron impact on difluoroacetylene (C2F2) molecules using the R-matrix method at low energies. After testing many target models, the final results are reported for the target model that gave the best target properties and predicted the lowest value of the shape resonance. The shape resonance is detected at 5.86 eV and 6.49 eV with the close-coupling and static exchange models due to 2Πg (2B2g, 2B3g) states. We observed that the effect of polarization becomes prominent at low energies below 4 eV, decreasing the magnitude of the elastic cross section systematically as it increases for C2F2. We have also computed elastic cross sections for C2H2, C2F4 and C2H4 with a similar model and compared with the experimental data for these molecules along with C2F2. General agreement is found in terms of the shape and nature of the cross section. Such a comparison shows the reliability of the present method for obtaining the cross section for C2F2. The calculation of elastic scattering cross section is extended to higher energies up to 5 keV using the spherical complex optical potential method. The two methods are found to be consistent, merging at around 12 eV for the elastic scattering cross section. Finally we report the total ionization cross section using the binary encounter Bethe method for C2F2. The perfluorination effect in the shape and magnitude of the elastic, momentum transfer and ionization cross sections when compared with C2H2 showed a similar trend to that in the C2H4-C2F4 and C6H6-C6F6 systems. The cross-section data reported in this article could be an important input for the development of a C2F2 plasma model for selective etching of Si/SiO2 in the semiconductor industry.
NASA Astrophysics Data System (ADS)
Tran, D. T.; Ong, H. J.; Nguyen, T. T.; Tanihata, I.; Aoi, N.; Ayyad, Y.; Chan, P. Y.; Fukuda, M.; Hashimoto, T.; Hoang, T. H.; Ideguchi, E.; Inoue, A.; Kawabata, T.; Khiem, L. H.; Lin, W. P.; Matsuta, K.; Mihara, M.; Momota, S.; Nagae, D.; Nguyen, N. D.; Nishimura, D.; Ozawa, A.; Ren, P. P.; Sakaguchi, H.; Tanaka, J.; Takechi, M.; Terashima, S.; Wada, R.; Yamamoto, T.; RCNP-E372 Collaboration
2016-12-01
We have measured for the first time the charge-changing cross sections (σCC) of C-1612 on a 12C target at energies below 100 A MeV. To analyze these low-energy data, we have developed a finite-range Glauber model with a global parameter set within the optical-limit approximation which is applicable to reaction cross section (σR) and σCC measurements at incident energies from 10 A to 2100 A MeV. Adopting the proton-density distribution of 12C known from the electron-scattering data, as well as the bare total nucleon-nucleon cross sections and the real-to-imaginary-part ratios of the forward proton-proton elastic scattering amplitude available in the literatures, we determine the energy-dependent slope parameter βp n of the proton-neutron elastic differential cross section so as to reproduce the existing σR and interaction cross-section data for 12C+12C over a wide range of incident energies. The Glauber model thus formulated is applied to calculate the σR's of 12C on a 9Be and 27Al targets at various incident energies. Our calculations show excellent agreement with the experimental data. Applying our model to the σR and σCC for the so-called neutron-skin 16C nucleus, we reconfirm the importance of measurements at incident energies below 100 A MeV. The proton root-mean-square radii of C-1612 are extracted using the measured σCC's and the existing σR data. The results for C-1412 are consistent with the values from the electron scatterings, demonstrating the feasibility, usefulness of the σCC measurement, and the present Glauber model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakotondravohitra, Laza
2015-08-18
Neutrino physics is one of the most active fields in the domaine of high energy physics during the last century. The need of precise measurement of neutrino-nucleus interactions required by the neutrino oscillation experiments is a an exiting step. These measurements of cross-section are more than essential for neutrino oscillation experiment. Over the year, many measurements from varieties of experiments have been presented. MINERνA is one of the world leaders in measuring cross-section of neutrino and antineutrino -nucleus interactions. MINERνA is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. In order to study nuclear dependence,more » MINERνA is endowed with different types of solid nuclear targets as well are liquid targets such as helium and water. This thesis presents measurements of cross-section of antineutrino scattering off nucleons using a variety of solid nuclear targets, carbon, iron, lead and also polystyrene scintillator (CH). The data set of antineutrino used for this analysis was taken between March and July 2010 with a total of 1.60X10 20 protons on target. Charged current inclusive interactions were selected by requiring a positive muon and kinematics limitation of acceptance of the muon spectrometer are applied. The analysis requires neutrino energy between 2GeV et 20GeV and the angle of muon θ mu < 17degree . The absolute cross-section # as function of neutrino energy and the differential cross-section dσ/ dx bj measured and shown the corresponding systematics for each nuclear targets. Data results are compared with prediction of the models implemented in the neutrino events generators GENIE 2.6.2 used by the experiment.« less
ASYMMETRIC ABSORPTION PROFILES OF Ly{alpha} AND Ly{beta} IN DAMPED Ly{alpha} SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hee-Won, E-mail: hwlee@sejong.ac.kr
2013-08-01
Damped Ly{alpha} systems observed in the quasar spectra are characterized by a high neutral hydrogen column density, N{sub HI} > 2 x 10{sup 20} cm{sup -2}. The absorption wing profiles are often fitted using the Voigt function due to the fact that the scattering cross section near the resonant line center is approximately described by the Lorentzian function. Since a hydrogen atom has infinitely many p states that participate in the electric dipole interaction, the cross section starts to deviate from the Lorentzian in an asymmetric way in the line wing regions. We investigate this asymmetry in the absorption linemore » profiles around Ly{alpha} and Ly{beta} as a function of the neutral hydrogen column density N{sub HI}. In terms of {Delta}{lambda} {identical_to} {lambda} - {lambda}{sub {alpha}}, we expand the Kramers-Heisenberg formula around Ly{alpha} to find {sigma}({lambda}) {approx_equal} (0.5f{sub 12}){sup 2}{sigma}{sub T}({Delta}{lambda}/{lambda}{sub {alpha}}){sup -2}[1 + 3.792({Delta}{lambda}/{lambda}{sub {alpha}})], where f{sub 12} and {sigma}{sub T} are the oscillator strength of Ly{alpha} and the Thomson scattering cross section, respectively. In terms of {Delta}{lambda}{sub 2} {identical_to} {lambda} - {lambda}{sub {beta}} in the vicinity of Ly{beta}, the total scattering cross section, given as the sum of cross sections for Rayleigh and Raman scattering, is shown to be {sigma}({lambda}) {approx_equal} {sigma}{sub T}(0.5f{sub 13}){sup 2}(1 + R{sub 0})({Delta}{lambda}{sub 2}/{lambda}{sub {beta}}){sup -2}[1 - 24.68({Delta}{lambda}{sub 2}/{lambda}{sub {beta}})] with f{sub 13} and the factor R{sub 0} = 0.1342 being the oscillator strength for Ly{beta} and the ratio of the Raman cross section to Rayleigh cross section, respectively. A redward asymmetry develops around Ly{alpha}, whereas a blue asymmetry is obtained for Ly{beta}. The absorption center shifts are found to be almost proportional to the neutral hydrogen column density.« less
New measurement of inclusive deep inelastic scattering cross sections at HERA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picuric, Ivana
2016-03-25
A combined measurement is presented of all inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised e{sup ±}p scattering at HERA. The H1 and ZEUS collaborations collected total integrated luminosities of approximately 500 pb{sup −1} each, divided about equally between e{sup +}p and e{sup −}p scattering. They include data taken at electron (positron) beam energy of 27.5 GeV and proton beam energies of 920, 820, 575 and 460 GeV corresponding to centre-of-mass energy of 320, 300, 251 and 225 GeV respectively. This enabled the two collaborations to explore a large phasemore » space in Bjorken x and negative four-momentum-transfer squared, Q{sup 2}. The combination method takes the correlations of the systematic uncertainties into account, resulting in improved accuracy.« less
Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Foram M., E-mail: foram29@gmail.com; Joshipura, K. N., E-mail: knjoshipura22@gmail.com; Chaudhari, Asha S., E-mail: ashaschaudhari@gmail.com
2016-05-06
Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Q{sub ion} and the summed-electronic excitation cross section ΣQ{sub exc} in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incidentmore » electron energy along with available comparisons.« less
NASA Astrophysics Data System (ADS)
Wang, Chao; Xiao, Jun; Luo, Xiaobing
2016-10-01
The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.
NASA Astrophysics Data System (ADS)
Kostensalo, Joel; Suhonen, Jouni; Zuber, K.
2018-03-01
Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hui; Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw
The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. Inmore » the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.« less
NASA Astrophysics Data System (ADS)
Brunger, M. J.; Campbell, L.; Cartwright, D. C.; Middleton, A. G.; Mojarrabi, B.; Teubner, P. J. O.
2000-02-01
Integral cross sections (ICSs) for the excitation of 18 excited electronic states, and four composite excited electronic states, in nitric oxide (NO) have been determined for incident electron energies of 15, 20, 30, 40 and 50 eV. These ICSs were derived by extrapolating the respective measured differential cross sections (M J Brunger et al 2000 J. Phys. B: At. Mol. Opt. Phys. 33 783) to 0° and 180° and by performing the appropriate integration. Comparison of the present ICSs with the results of those determined in earlier optical emission measurements, and from theoretical calculations is made. At each incident energy considered, the current ICSs are also summed along with the corresponding elastic and rovibrational excitation ICSs from B Mojarrabi et al (1995 J. Phys. B: At. Mol. Opt. Phys. 28 487) and the ionization cross sections from Rapp and Englander-Golden (1965 J. Chem. Phys. 43 1464), to derive an estimate of the grand total cross sections (GTSs) for e- + NO scattering. The GTSs derived in this manner are compared with the results from independent linear transmission experiments and are found to be entirely consistent with them. The present excited electronic state ICS, and those for elastic and rovibrational excitation from Mojarrabi et al , appear to represent the first set of self-consistent cross sections for electron impact scattering from NO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshino, M., E-mail: masami-h@sophia.ac.jp; Suga, A.; Kato, H.
2015-07-14
Absolute differential cross sections (DCSs) for electron interaction with BF{sub 3} molecules have been measured in the impact energy range of 1.5–200 eV and recorded over a scattering angle range of 15°–150°. These angular distributions have been normalized by reference to the elastic DCSs of the He atom and integrated by employing a modified phase shift analysis procedure to generate integral cross sections (ICSs) and momentum transfer cross sections (MTCSs). The calculations of DCSs and ICSs have been carried out using an independent atom model under the screening corrected additivity rule (IAM-SCAR). The present elastic DCSs have been found tomore » agree well with the results of IAM-SCAR calculation above 20 eV, and also with a recent Schwinger multichannel calculation below 30 eV. Furthermore, in the comparison with the XF{sub 3} (X = B, C, N, and CH) molecules, the elastic DCSs reveal a similar angular distribution which are approximately equal in magnitude from 30 to 200 eV. This feature suggests that the elastic scattering is dominated virtually by the 3-outer fluorine atoms surrounding the XF{sub 3} molecules. The vibrational DCSs have also been obtained in the energy range of 1.5–15 eV and vibrational analysis based on the angular correlation theory has been carried out to explain the nature of the shape resonances. Limited experiments on vibrational inelastic scattering confirmed the existence of a shape resonance with a peak at 3.8 eV, which is also observed in the vibrational ICS. Finally, the estimated elastic ICSs, MTCSs, as well as total cross sections are compared with the previous cross section data available.« less
NASA Astrophysics Data System (ADS)
Soltanmoradi, Elmira; Shokri, Babak
2017-05-01
In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milford, S.N.; Morrissey, J.J.; Scanlon, J.H.
1960-12-01
Born total cross sections were computed for the strong optically allowed transitions from n = 5 to n' = 6, at incident energies between 0.2 and 1361 ev. Thirty energy values were considered for the 5s to 6p and 5g to 6h cases, and nine for the other transitions. The cross sections obtained were larger than those of comparable transitions for lower n. The Bethe (dipole) approximation was also used, and was found to give good agreement with the Born results down to relatively low energies ( approx equal 3 ev). (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyuboshitz, V. L., E-mail: Valery.Lyuboshitz@jinr.ru; Lyuboshitz, V. V.
2011-02-15
The structure of the nucleon charge-exchange process n + p {yields} p + n is investigated basing on the isotopic invariance of the nucleon-nucleon scattering. Using the operator of permutation of the spin projections of the neutron and proton, the connection between the spin matrices, describing the amplitude of the nucleon charge-exchange process at zero angle and the amplitude of the elastic scattering of the neutron on the proton in the 'backward' direction, has been considered. Due to the optical theorem, the spin-independent part of the differential cross section of the process n + p {yields} p + n atmore » zero angle for unpolarized particles is expressed through the difference of total cross sections of unpolarized proton-proton and neutron-proton scattering. Meantime, the spin-dependent part of this cross section is proportional to the differential cross section of the deuteron charge-exchange breakup d + p {yields} (pp) + n at zero angle at the deuteron momentum k{sub d} = 2 k{sub n} (k{sub n} is the initial neutron momentum). Analysis shows that, assuming the real part of the spin-independent term of the 'forward' amplitude of the process n + p {yields} p + n to be smaller or of the same order as compared with the imaginary part, in the wide range of neutron laboratory momenta k{sub n} > 700 MeV/c the main contribution into the differential cross section of the process n + p {yields} p + n at zero angle is provided namely by the spin-dependent term.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
A measurement of the total ppcross section at the LHC at √s=8TeV is presented. An integrated luminosity of 500 μb-1 was accumulated in a special run with high-β beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the -t range from 0.014GeV2 to 0.1GeV2 to extrapolate t→0, the total cross section, σtot(pp →X), is measured via the optical theorem to be σtot(pp→ X) = 96.07±0.18 (stat.)±0.85 (exp.)± 0.31 (extr.) mb,more » where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation t→0. In addition, the slope of the exponential function describing the elastic cross section at small t is determined to be B =19.74 ±0.05 (stat.) ±0.23 (syst.) GeV-2.« less
Electron-impact excitation of the low-lying electronic states of HCN
NASA Technical Reports Server (NTRS)
Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.
1977-01-01
The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.
Nonideal ultrathin mantle cloak for electrically large conducting cylinders.
Liu, Shuo; Zhang, Hao Chi; Xu, He-Xiu; Cui, Tie Jun
2014-09-01
Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.T.; Tang, F.; Brown, W.D.
1998-12-20
The authors present a theoretical model for calculating the spin-dependent cross section of the scattering of electrons by a magnetic layer system. The model demonstrates that the cross sections of the scattering are different for spin up and spin down electrons. The model assumes that the electrical resistivity in a conductor is proportional to the scattering cross section of the electron in it. It is believed to support the two channel mechanism in interpreting magneto-resistance (MR). Based on the model without considering the scattering due to the interfacial roughness and the spin flipping scattering, the authors have established a relationshipmore » between MR and the square of the magnetic moment in the bulk sample without considering the scattering due to the interfacial roughness and the spin flipping scattering. It can also qualitatively explain the MR difference between the current in plane (CIP) and current perpendicular to the plane (CPP) configurations. The predictions by the model agree well with the experimental findings.« less
NASA Astrophysics Data System (ADS)
Shi, D. H.; Sun, J. F.; Zhu, Z. L.; Liu, Y. F.
2010-04-01
Total cross sections of electron scattering by eight molecules NF3, PF3, N(CH3)3, P(CH3)3, NH(CH3)2, PH(CH3)2, NH2CH3 and PH2CH3, which have some structural similarities, are calculated at the Hartree-Fork level by the modified additivity rule approach [D.H. Shi, J.F. Sun, Z.L. Zhu, H. Ma, Y.F. Liu, Eur. Phys. J. D 45, 253 (2007); D.H. Shi, J.F. Sun, Y.F. Liu, Z.L. Zhu, X.D. Yang, Chin. Opt. Lett. 4, 192 (2006)]. The modified additivity rule approach takes into considerations that the contributions of the geometric shielding effect vary as the energy of incident electrons, the dimension of target molecule, the number of electrons in the molecule and the number of atoms constituting the molecule. The present investigations cover the impact energy range from 30 to 5000 eV. The quantitative total cross sections are compared with those obtained by experiments and other theories. Excellent agreement is observed even at energies of several tens of eV. It shows that the modified additivity rule approach is applicable to carry out the total cross section calculations of electron scattering by these molecules at intermediate and high energies, in particular over the energy range above 80 eV or so. It proves that the microscopic molecular properties, such as the geometrical size of the target and the number of atoms constituting the molecule, are of crucial importance in the TCS calculations. The new results for PH(CH3)2 and PH2CH3 are also presented at energies from 30 to 5000 eV, although no experimental and theoretical data are available for comparison. In the present calculations, the atoms are still represented by the spherical complex optical potential, which is composed of static, exchange, polarization and absorption terms.
Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study
NASA Astrophysics Data System (ADS)
Amaran, Saieswari; Kumar, Sanjay
2007-12-01
State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.
NASA Technical Reports Server (NTRS)
Bernstein, R. B.; Labudde, R. A.
1972-01-01
The problem of inversion is considered in relation to absolute total cross sections Q(v) for atom-atom collisions and their velocity dependence, and the glory undulations and the transition to high velocity behavior. There is a limit to the amount of information available from Q(v) even when observations of good accuracy (e.g., + or - 0.25%) are in hand over an extended energy range (from thermal energies upward by a factor of greater than 1000 in relative kinetic energy). Methods were developed for data utilization, which take full advantage of the accuracy of the experimental Q(v) measurements.
Akande, W
1993-03-01
Stopping powers of low-energy (< 10 keV) electrons in aluminum, copper, cesium, barium, lead, lithium, and uranium were calculated using an analytic method. The interaction of the electrons with the materials were characterized in terms of three cross sections for total ionization and total scattering. Experimental cross section data were collated, where available, for the materials. The expressions were then fitted to the data to obtain the values of the relevant constants in the expressions. This enabled the basic equation of stopping powers of electrons to be evaluated for the materials. Comparison of the results obtained with those of other workers was affected.
NASA Astrophysics Data System (ADS)
Wright, T.; Guerrero, C.; Billowes, J.; Cano-Ott, D.; Mendoza, E.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Durán, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Furman, V.; Gómez-Hornillos, M. B.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González-Romero, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Gurusamy, P.; Heftrich, T.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Koehler, P.; Kokkoris, M.; Kroll, J.; Krtička, M.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Lerendegui-Marco, J.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Paradela, C.; Pavlik, A.; Perkowski, J.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Roman, F.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Žugec, P.; n TOF Collaboration
2017-12-01
The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5)×10-4 atoms/barn areal density 238U sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 eV and 80 keV, with an accuracy that varies with neutron energy, being better than 4% below 25 keV and reaching at most 6% at higher energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chien-Yi; Hill, Richard J.; Solon, Mikhail P.
WIMP-nucleon scattering is analyzed at ordermore » $1/M$ in Heavy WIMP Effective Theory. The $1/M$ power corrections, where $$M\\gg m_W$$ is the WIMP mass, distinguish between different underlying UV models with the same universal limit and their impact on direct detection rates can be enhanced relative to naive expectations due to generic amplitude-level cancellations at leading order. The necessary one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits and projected future sensitivities. Our results provide the most robust prediction for electroweak triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two sources of power corrections yields a small total $1/M$ correction, and a total cross section close to the universal limit for $$M \\gtrsim {\\rm few} \\times 100\\,{\\rm GeV}$$. For the SU(2) composite scalar, the $1/M$ corrections introduce dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total $1/M$ correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further suppresses the total cross section. These examples provide definite targets for future direct detection experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV mass regime.« less
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-08-09
Detailed measurements of t-channel single top-quark production are presented. They use 20.2 fb -1 of data collected by the ATLAS experiment in proton–proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be σ tot(tq) = 56.7more » $$+4.3\\atop{-3.8}$$ pb for top-quark production and σ tot($$\\bar{t}q$$) = 32.9$$+3.0\\atop{-2.7}$$ pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be R t = 1.72 ± 0.09 . The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t-channel scattering are measured at particle level. In conclusion, all measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
Detailed measurements of t-channel single top-quark production are presented. They use 20.2 fb -1 of data collected by the ATLAS experiment in proton–proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be σ tot(tq) = 56.7more » $$+4.3\\atop{-3.8}$$ pb for top-quark production and σ tot($$\\bar{t}q$$) = 32.9$$+3.0\\atop{-2.7}$$ pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be R t = 1.72 ± 0.09 . The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t-channel scattering are measured at particle level. In conclusion, all measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.« less
Measurements of Positronium Formation Cross Sections for Positron-Kr, Xe Scattering
NASA Astrophysics Data System (ADS)
Kauppila, W. E.; Kwan, C. K.; Li, H.; Stein, T. S.; Zhou, S.
1997-04-01
Our experimental approach(S. Zhou et al., Phys. Rev. Lett. 73, 236 (1994).) for measuring Ps formation cross sections (Q_Ps) involves passing a variable energy positron beam through a gas scattering cell and detecting the 511 keV annihilation gamma rays resulting from the decay of para-Ps and from the interaction of ortho-Ps with the walls of the scattering cell. It is found that the Q_Ps curves for both Kr and Xe rise rapidly from their formation threshold energies of 7.2 and 5.3 eV, reach maxima within about 10 eV of their thresholds and then decrease to become rather small (less than 10% of the peak heights) above 100 eV. At the maxima Q_Ps accounts for more than 50% of the total scattering cross sections. There is some evidence of possible small scale structure in the Q_Ps curves between 10 and 100 eV. The present results are consistent with the prior measurements of Diana et al.( L.M. Diana et al., in "Atomic Physics with Positrons", edited by J.W. Humberston and E.A.G. Armour (Plenum, New York and London, 1987), p. 55; and in "Positron Annihilation", edited by L. Dorikens-Vanpraet et al. (World Scientific, Singapore, 1989), p. 311.) from near threshold to 70 eV for Kr and from 15 to 100 eV for Xe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, G. G.; Fueloep, Zs.; Gyuerky, Gy.
2011-06-15
The elastic scattering cross sections for the reactions {sup 110,116}Cd({alpha},{alpha}){sup 110,116}Cd at energies above and below the Coulomb barrier are presented to provide a sensitive test for the {alpha}-nucleus optical potential parameter sets. Additional constraints for the optical potential are taken from the analysis of elastic scattering excitation functions at backward angles which are available in literature. Moreover, the variation of the elastic {alpha} scattering cross sections along the Z=48 isotopic and N=62 isotonic chain is investigated by the study of the ratios of the {sup 106,110,116}Cd({alpha},{alpha}){sup 106,110,116}Cd scattering cross sections at E{sub cm{approx_equal}}15.6and18.8 MeV and the ratio of themore » {sup 110}Cd({alpha},{alpha}){sup 110}Cd and {sup 112}Sn({alpha},{alpha}){sup 112}Sn reaction cross sections at E{sub cm{approx_equal}}18.8 MeV, respectively. These ratios are sensitive probes for the {alpha}-nucleus optical potential parametrizations. The potentials under study are a basic prerequisite for the prediction of {alpha}-induced reaction cross sections (e.g., for the calculation of stellar reaction rates in the astrophysical p or {gamma} process).« less
Elastic scattering of X-rays and gamma rays by 2S electrons in ions and neutral atoms
NASA Astrophysics Data System (ADS)
Costescu, A.; Spânulescu, S.; Stoica, C.
2012-08-01
The nonrelativistic limit of Rayleigh scattering amplitude on 2s electrons of neutral and partially ionized atoms is obtained by making use of the Green Function method. The result takes into consideration the retardation, relativistic kinematics and screening effects. The spurious singularities introduced by the retardation in a nonrelativistic approach are cancelled by the relativistic kinematics. For neutral and partially ionized atoms, a screening model is considered with an effective charge obtained by fitting the Hartree-Fock charge distribution with pure Coulombian wave functions corresponding to a central potential of a nucleus with Zeff as the atomic number. The total cross section of the photoeffect on the 2s electrons is also calculated from the imaginary part of the forward scattering amplitude by means of the optical theorem. The numerical results obtained are in a good agreement (10%) with the ones obtained by Kissell for the Rayleigh amplitude and by Scofield for the Photoeffect total cross section on the 2s electrons, for atoms with atomic number 18 ≤ Z ≤ 92 and photon energies ω≤αZm. (α=1/137,... is the fine structure constant, m is the electron mass).
NASA Astrophysics Data System (ADS)
Al-Rawashdeh, S. M.; Jaghoub, M. I.
2018-04-01
In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.
NASA Astrophysics Data System (ADS)
Lizzit, D.; Badami, O.; Specogna, R.; Esseni, D.
2017-06-01
We present a new model for surface roughness (SR) scattering in n-type multi-gate FETs (MuGFETs) and gate-all-around nanowire FETs with fairly arbitrary cross-sections, its implementation in a complete device simulator, and the validation against experimental electron mobility data. The model describes the SR scattering matrix elements as non-linear transformations of interface fluctuations, which strongly influences the root mean square value of the roughness required to reproduce experimental mobility data. Mobility simulations are performed via the deterministic solution of the Boltzmann transport equation for a 1D-electron gas and including the most relevant scattering mechanisms for electronic transport, such as acoustic, polar, and non-polar optical phonon scattering, Coulomb scattering, and SR scattering. Simulation results show the importance of accounting for arbitrary cross-sections and biasing conditions when compared to experimental data. We also discuss how mobility is affected by the shape of the cross-section as well as by its area in gate-all-around and tri-gate MuGFETs.
Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)
NASA Technical Reports Server (NTRS)
Chandra, N.; Temkin, A.
1975-01-01
A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.
NASA Astrophysics Data System (ADS)
Fatima, A.; Sajjad Athar, M.; Singh, S. K.
2018-06-01
In this work, we have studied the total scattering cross section (σ, differential scattering cross section ( dσ/d Q2) as well as the longitudinal ( P_L(Ee,Q2)), perpendicular ( PP(Ee,Q2)), and transverse ( PT(Ee,Q2)) components of the polarization of the final hadron ( n, Λ and Σ0) produced in the electron proton scattering induced by the weak charged current. We have not assumed T-invariance which allows the transverse component of the hadron polarization perpendicular to the production plane to be non-zero. The numerical results are presented for all the above observables and their dependence on the axial vector form factor and the weak electric form factor are discussed. The present study enables the determination of the axial vector nucleon-hyperon transition form factors at high Q2 in the strangeness sector which can provide a test of the symmetries of the weak hadronic currents like T-invariance and SU(3) symmetry while assuming the hypothesis of conserved vector current and partial conservation of axial vector current.
Studies of electron-molecule collisions - Applications to e-H2O
NASA Technical Reports Server (NTRS)
Brescansin, L. M.; Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.
1986-01-01
Elastic differential and momentum transfer cross sections for the elastic scattering of electrons by H2O are reported for collision energies from 2 to 20 eV. These fixed-nuclei static-exchange cross sections were obtained using the Schwinger variational approach. In these studies the exchange potential is directly evaluated and not approximated by local models. The calculated differential cross sections, obtained with a basis set expansion of the scattering wave function, agree well with available experimental data at intermediate and larger angles. As used here, the results cannot adequately describe the divergent cross sections at small angles. An interesting feature of the calculated cross sections, particularly at 15 and 20 eV, is their significant backward peaking. This peaking occurs in the experimentally inaccessible region beyond a scattering angle of 120 deg. The implication of this feature for the determination of momentum transfer cross sections is described.
Possible violation of the optical theorem in LHC experiments
NASA Astrophysics Data System (ADS)
Kupczynski, M.
2014-12-01
The optical theorem (OT), allowing the determination of the total cross section for a hadron-hadron scattering from the imaginary part of the forward elastic scattering amplitude, is believed to be an unavoidable consequence of the conservation of probability and of the unitary S matrix. This is a fundamental theorem which contains an imaginary part of the forward elastic scattering amplitude that is not directly measurable. The impossibility of scattering phenomena without the elastic channel is considered to be a part of the quantum magic. However, if one takes seriously the idea that the hadrons are extended particles, one may define a unitary S matrix such that one cannot prove the OT. Moreover, data violating the OT do exist, but they are not conclusive due to the uncertainties related to the extrapolation of the differential elastic cross-section to the forward direction. These results were published several years ago, but they were forgotten. In this paper we will recall these results in an understandable way, and we will give the additional arguments why the OT can be violated in high energy strong interaction scattering and why it should be tested and not simply used as a tool in LHC experiments.
Cathodoluminescence Characterization of Ion Implanted GaAs.
1981-04-01
Born approxima- tion to calculate the differential scattering cross section. Everhart (Reference 30) used the single scattering assumption to develop a...pp (1 V + gn - nn = 6n/6t (11) with 4..4 Jp = -DpVp + p1pE (12) 3 -D Vn -n n1E (13) n n 30 AFWAL-TR-80-l 184 the subscripts p and n refer to holes and...described by differential cross sections. The differential scattering cross sections are determined by the potential between the ion and the
Semiempirical potentials for positron scattering by atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assafrao, Denise; Walters, H. R. J.; Arretche, Felipe
2011-08-15
We report calculations of differential and integral cross sections for positron scattering by noble gas and alkaline-earth atoms within the same methodology. The scattering potentials are constructed by scaling adiabatic potentials so that their minima coincide with the covalent radii of the target atoms. Elastic differential and integral cross sections are calculated for Ne, Ar, Be, and Mg, and the results are very close to experimental and best theoretical data. Particularly, elastic differential cross sections for Be and Mg at low energies are reported.
Ion charge state distribution effects on elastic X-ray Thomson scattering
NASA Astrophysics Data System (ADS)
Iglesias, Carlos A.
2018-03-01
Analytic models commonly applied in elastic X-ray Thomson scattering cross-section calculations are used to generate results from a discrete ion charge distribution and an average charge description. Comparisons show that interchanging the order of the averaging procedure can appreciably alter the cross-section, especially for plasmas with partially filled K-shell bound electrons. In addition, two common approximations to describe the free electron density around an ion are shown to yield significantly different elastic X-ray Thomson scattering cross-sections.
Defurne, M.; Amaryan, M.; Aniol, K. A.; ...
2015-11-03
We present final results on the photon electroproduction (more » $$\\vec{e}p\\rightarrow ep\\gamma$$) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Results of the $Q^2$- and $$x_B$$-dependences of both the helicity-dependent and helicity-independent cross sections are discussed. The $Q^2$-dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-2 DVCS$^2$ term to the photon electroproduction cross section. The necessity to include higher-twist corrections in order to fully reproduce the shape of the data is also discussed. The DVCS cross sections in this study represent the final set of experimental results from E00-110, superseding the previous publication.« less
Rayleigh, Compton and K-shell radiative resonant Raman scattering in 83Bi for 88.034 keV γ-rays
NASA Astrophysics Data System (ADS)
Kumar, Sanjeev; Sharma, Veena; Mehta, D.; Singh, Nirmal
2007-11-01
The Rayleigh, Compton and K-shell radiative resonant Raman scattering cross-sections for the 88.034 keV γ-rays have been measured in the 83Bi (K-shell binding energy = 90.526 keV) element. The measurements have been performed at 130° scattering angle using reflection-mode geometrical arrangement involving the 109Cd radioisotope as photon source and an LEGe detector. Computer simulations were exercised to determine distributions of the incident and emission angles, which were further used in evaluation of the absorption corrections for the incident and emitted photons in the target. The measured cross-sections for the Rayleigh scattering are compared with the modified form-factors (MFs) corrected for the anomalous-scattering factors (ASFs) and the S-matrix calculations; and those for the Compton scattering are compared with the Klein-Nishina cross-sections corrected for the non-relativistic Hartree-Fock incoherent scattering function S(x, Z). The ratios of the measured KL2, KL3, KM and KN2,3 radiative resonant Raman scattering cross-sections are found to be in general agreement with those of the corresponding measured fluorescence transition probabilities.
Measurements of Rayleigh, Compton and resonant Raman scattering cross-sections for 59.536 keV γ-rays
NASA Astrophysics Data System (ADS)
Singh, Prem; Mehta, D.; Singh, N.; Puri, S.; Shahi, J. S.
2004-09-01
The K-L and K-M resonant Raman scattering (RRS) cross-sections have been measured for the first time at the 59.536 keV photon energy in the 70Yb ( BK=61.332 keV), 71Lu ( BK=63.316 keV) and 72Hf ( BK=65.345 keV) elements; BK being the K-shell binding energy. The K-L and K-M RRS measurements have been performed at the 59° and 133° angles, respectively, to avoid interference of the Compton-scatter peak. The Rayleigh and Compton scattering cross-sections for the 59.536 keV γ-rays have also been measured at both the angles in the atomic region 1⩽ Z⩽92. Measurements were performed using the reflection-mode geometrical arrangements involving the 241Am radioisotope as photon source and planar Si(Li) and HPGe detectors. Ratios of the K-M and K-L RRS cross-sections in Yb, Lu and Hf are in general lower than that of the fluorescent Kβ 1,3,5 (K-M) and Kα (K-L) X-ray transition probabilities. Theoretical Rayleigh scattering cross-sections based on the modified form-factors (MFs) corrected for the anomalous scattering factors (ASFs) and the S-matrix calculations are on an average ˜15% and ˜6% higher, respectively, at the 133° angle and exhibit good agreement with the measured data at the 59° angle. Larger deviations ˜30% and ˜20%, respectively, are observed at the 133° angle for the 64Gd, 66Dy, 67Ho and 70Yb elements having the K-shell binding energy in vicinity of the incident photon energy. The measured Compton scattering cross-sections are in general agreement with those calculated using the Klein-Nishina cross-sections and the incoherent scattering function.
Behavior of very high energy hadronic cross-sections
NASA Astrophysics Data System (ADS)
Stodolsky, L.
2017-10-01
Analysis of the data for proton and antiproton scattering leads to a simple picture for very high energy hadronic cross-sections. There is, asymptotically, a simple “black disc” with a smooth “edge”. The radius of the “disc” is expanding logarithmically with energy, while the “edge” is constant. These conclusions follow from extensive fits to accelerator and cosmic ray data, combined with the observation that a certain combination of elastic and total cross-sections allows extraction of the “edge”. An interesting feature of the results is that the “edge” is rather large compared to the “disc”. This explains the slow approach to “asymptopia” where the “disc” finally dominates.
NASA Technical Reports Server (NTRS)
Fahr, A.; Braun, W.; Kurylo, M. J.
1993-01-01
Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.
NASA Astrophysics Data System (ADS)
Gruy, Frédéric
2014-02-01
Depending on the range of size and the refractive index value, an optically soft particle follows Rayleigh-Debye-Gans or RDG approximation or Van de Hulst approximation. Practically the first one is valid for small particles whereas the second one works for large particles. Klett and Sutherland (Klett JD, Sutherland RA. App. Opt. 1992;31:373) proved that the Wentzel-Kramers-Brillouin or WKB approximation leads to accurate values of the differential scattering cross section of sphere and cylinder over a wide range of size. In this paper we extend the work of Klett and Sutherland by proposing a method allowing a fast calculation of the differential scattering cross section for any shape of particle with a given orientation and illuminated by unpolarized light. Our method is based on a geometrical approximation of the particle by replacing each geometrical cross section by an ellipse and then by exactly evaluating the differential scattering cross section of the newly generated body. The latter one contains only two single integrals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of s=7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb -1 , collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum p T ≥ 20 GeV and pseudorapidity |η| ≤ 4.4, and at leastmore » one having p T ≥ 42.5 GeV, the contribution of hard double-parton scattering is estimated to be f DPS = 0.092 - 0.011 + 0.005 (stat.) - 0.037 + 0.033 (syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σ eff , was determined to be σ eff = 14. 9 - 1.0 + 1.2 (stat.) - 3.8 + 5.1 (syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σ eff , performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21 - 6 + 7 % of the total inelastic cross-section measured at s=7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.« less
Aaboud, M.; Aad, G.; Abbott, B.; ...
2016-11-01
Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of s=7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb -1 , collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum p T ≥ 20 GeV and pseudorapidity |η| ≤ 4.4, and at leastmore » one having p T ≥ 42.5 GeV, the contribution of hard double-parton scattering is estimated to be f DPS = 0.092 - 0.011 + 0.005 (stat.) - 0.037 + 0.033 (syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σ eff , was determined to be σ eff = 14. 9 - 1.0 + 1.2 (stat.) - 3.8 + 5.1 (syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σ eff , performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21 - 6 + 7 % of the total inelastic cross-section measured at s=7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.« less
NASA Astrophysics Data System (ADS)
Difilippo, Felix C.
2012-09-01
Within the context of general relativity theory we calculate, analytically, scattering signatures around a gravitational singularity: angular and time distributions of scattered massive objects and photons and the time and space modulation of Doppler effects. Additionally, the scattering and absorption cross sections for the gravitational interactions are calculated. The results of numerical simulations of the trajectories are compared with the analytical results.
Fusion and elastic scattering of 6Li + 58Ni at low energies
NASA Astrophysics Data System (ADS)
Aguilera, Elí F.; Amador-Valenzuela, Paulina; Martinez-Quiroz, Enrique; Lizcano, David; Garcia-Flores, Araceli; Kolata, James J.
2017-11-01
Sub-barrier fusion cross sections (σfus) for the 6Li + 58Ni system, obtained from the respective evaporation protons, are examined in the present work. With respect to expectations of a simple one-dimensional barrier penetration model, a large enhancement of the data is observed. Good consistency with equivalent data reported previously for similar systems is found. A comparison with total reaction cross sections (σR), deduced from elastic scattering measurements reported previously, indicates that σfus is close to σR within the measured energy range. To estimate the contribution of complete fusion (CF), an optical model analysis of the elastic scattering data is performed where CF is identified with the absorption in a short range volume potential. A surface polarization potential is added to the bare nuclear potential to simulate the effect of peripheral reactions. The results obtained indicate that other mechanisms different from CF may be dominant, especially in the lower energy region.
Long-range dynamic polarization potentials for 11Be projectiles on 64Zn
NASA Astrophysics Data System (ADS)
So, W. Y.; Kim, K. S.; Choi, K. S.; Cheoun, Myung-Ki
2015-07-01
We investigate the effects of the long-range dynamic polarization (LRDP) potential, which consists of the Coulomb dipole excitation (CDE) potential and the long-range nuclear (LRN) potential, for the 11Be projectile on 64Zn. To study these effects, we perform a χ2 analysis of an optical model including the LRDP potential as well as a conventional short-range nuclear (SRN) potential. To take these effects into account, we argue that both the CDE and LRN potentials are essential to explaining the experimental values of PE, which is the ratio of the elastic scattering cross section to the Rutherford cross section. The Coulomb and nuclear parts of the LRDP potential are found to contribute to a strong absorption effect. Strong absorption occurs because the real part of the CDE and LRN potentials lowers the barrier, and the imaginary part of the CDE and LRN potentials removes the flux from the elastic channel in the 11Be+64Zn system. Finally, we extract the total reaction cross section σR including the inelastic, breakup, and fusion cross sections. The contribution of the inelastic scattering by the first excited state at ɛx1 st=0.32 MeV (1 /2-) is found to be relatively large and cannot be ignored. In addition, our results are shown to agree quite well with the experimental breakup reaction cross section by using a fairly large radius parameter.
Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao
2016-03-01
Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, A.; Norcross, D.W.
1992-02-01
We report low-energy (0.001--10-eV) electron-CO scattering cross sections obtained using an exact-exchange (via a separable-exchange formulation) plus a parameter-free correlation-polarization model in the fixed-nuclei approximation (FNA). The differential, total, and momentum-transfer cross sections are reported for rotationally elastic, inelastic, and summed processes. To remove the limitations of the FNA with respect to the convergence of total and differential cross sections, the multipole-extracted-adiabatic-nuclei approximation is used. The position and width of the well-known {sup 2}{Pi} shape-resonance structure in the cross section around 2 eV are reproduced quite well; however, some discrepancy between theory and experiment in the magnitude of the totalmore » cross section in the resonance region exists. We also present results for {sup 2}{Pi} shape-resonance parameters as a function of internuclear separation. Differential-cross-section results agree well with the measurements of Tanaka, Srivastava, and Chutjian (J. Chem. Phys. 69, 5329 (1978)) but are about a factor of 2 larger than the results obtained by Jung {ital et} {ital al}. (J. Phys. B 15, 3535 (1982)) in the vicinity of the {sup 2}{Pi} resonance.« less
Aad, G.; Abbott, B.; Abdallah, J.; ...
2014-10-28
In this study, a measurement of the totalmore » $pp$ cross section at the LHC at $$\\sqrt{s}=7$$ TeV is presented. In a special run with high-$$\\beta^{\\star}$$ beam optics, an integrated luminosity of 80 µb -1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t| range from 0.01 GeV 2 to 0.1 GeV 2 to extrapolate to |t| → 0, the total cross section, σ tot($pp$ → X), is measured via the optical theorem to be: σ tot($pp$ → X) = 95.35 ± 0.38 (stat.) ± 1.25 (exp.) ± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t| → 0. In addition, the slope of the elastic cross section at small |t| is determined to be B = 19.73 ± 0.14 (stat.) ± 0.26 (syst.) GeV -2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aad, G.; Abbott, B.; Abdallah, J.
In this study, a measurement of the totalmore » $pp$ cross section at the LHC at $$\\sqrt{s}=7$$ TeV is presented. In a special run with high-$$\\beta^{\\star}$$ beam optics, an integrated luminosity of 80 µb -1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t| range from 0.01 GeV 2 to 0.1 GeV 2 to extrapolate to |t| → 0, the total cross section, σ tot($pp$ → X), is measured via the optical theorem to be: σ tot($pp$ → X) = 95.35 ± 0.38 (stat.) ± 1.25 (exp.) ± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t| → 0. In addition, the slope of the elastic cross section at small |t| is determined to be B = 19.73 ± 0.14 (stat.) ± 0.26 (syst.) GeV -2.« less
The extinction properties of forest components
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Blanchard, A. J.; Nance, C. E.
1988-01-01
The effect of each forest component on the extinction of electromagnetic waves is investigated by modeling the branches with finite cylinders, deciduous leaves with elliptic disks, and coniferous leaves with needles. The inner field is estimated by the field inside an infinitely long cylinder of similar properties for the branches, and by the Shifrin approximation for the leaves. For each forest component analytic expressions were derived for the extinction cross section via the forward scattering theorem and for ohmic and scattered losses. For branches, the variation of the extinction cross section obtained via the forward scattering theorem is illustrated numerically as a function of the branch radius and the imaginery part of its dielectric constant. It is compared with the measurements from a single branch. For the leaves, the forward scattering theorem gives value for the extinction cross section equal to the ohmic cross section.
Anomalous decay and scattering processes of the meson
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Plenter, Judith
2015-06-01
We amend a recent dispersive analysis of the anomalous decay process by the effects of the tensor meson, the lowest-lying resonance that can contribute in the system. While the net effects on the measured decay spectrum are small, they may be more pronounced for the analogous decay. There are nonnegligible consequences for the transition form factor, which is an important quantity for the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment. We predict total and differential cross sections, as well as a marked forward-backward asymmetry, for the crossed process , which could be measured in Primakoff reactions in the future.
NASA Astrophysics Data System (ADS)
Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor
2016-09-01
Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering have been calculated using the single-centre molecular convergent close-coupling (CCC) method. The adiabatic-nuclei approximation was utilized to model the above scattering processes and obtain the vibrationally resolved positron-H2 scattering length. As previously demonstrated, the CCC results are converged and accurately account for virtual and physical positronium formation by coupling basis functions with large orbital angular momentum. Here vibrationally resolved integrated and differential cross sections are presented over a wide energy range and compared with previous calculations and available experiments. Los Alamos National Laboratory and Curtin University.
Nuclear effects in (anti)neutrino charge-current quasielastic scattering at MINER νA kinematics
NASA Astrophysics Data System (ADS)
Ivanov, M. V.; Antonov, A. N.; Megias, G. D.; González-Jiménez, R.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udías, J. M.
2018-05-01
We compare the characteristics of the charged-current quasielastic (anti)neutrino scattering obtained in two different nuclear models, the phenomenological SuperScaling Approximation and the model using a realistic spectral function S(p, ɛ) that gives a scaling function in accordance with the (e, e‧ ) scattering data, with the recent data published by the MiniBooNE, MINER νA, and NOMAD collaborations. The spectral function accounts for the nucleon-nucleon (NN) correlations by using natural orbitals from the Jastrow correlation method and has a realistic energy dependence. Both models provide a good description of the MINER νA and NOMAD data without the need of an ad hoc increase of the value of the mass parameter in the axial-vector dipole form factor. The models considered in this work, based on the the impulse approximation (IA), underpredict the MiniBooNE data for the flux-averaged charged-current quasielastic {ν }μ ({\\bar{ν }}μ ){+}12\\text{C} differential cross section per nucleon and the total cross sections, although the shape of the cross sections is represented by the approaches. The discrepancy is most likely due to missing of the effects beyond the IA, e.g., those of the 2p–2h meson exchange currents that have contribution in the transverse responses.
Axial mass in quasielastic antineutrino-nucleon scattering accompanied by strange-hyperon production
NASA Astrophysics Data System (ADS)
Kuzmin, K. S.; Naumov, V. A.
2009-09-01
Reactions of quasielastic Λ-, Σ--, and Σ0-hyperon production in antineutrino-nucleon interactions are studied. An axial-mass ( M A ) value that agrees with a fit to all accelerator data on exclusive and inclusive νN and νN reactions was extracted from a global statistical analysis of experimental data on differential and total cross sections for Δ Y = 0 and 1 quasielastic reactions of neutrino and antineutrino scattering on various nuclear targets.
Attenuation of thermal neutrons by an imperfect single crystal
NASA Astrophysics Data System (ADS)
Naguib, K.; Adib, M.
1996-06-01
A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.
NASA Astrophysics Data System (ADS)
Gurbich, A. F.; Bokhovko, M. V.
2018-04-01
The alpha elastic scattering cross-sections for Ni, Cu, and Y were measured at the energies above the onset of the non-Rutherford scattering. The obtained experimental data along with data from literature were incorporated into the theoretical analysis in the framework of the optical model. The optimization of the model parameters provided a basis for the calculations of the differential cross-sections for Z = 28-38 elements in the energy range up to 10 MeV. The obtained cross sections were made available for common use through the SigmaCalc web site at http://sigmacalc.iate.obninsk.ru/.
Integral cross section measurement of the U 235 ( n , n ' ) U 235 m reaction in a pulsed reactor
Bélier, G.; Bond, E. M.; Vieira, D. J.; ...
2015-04-08
The integral measurement of the neutron inelastic cross section leading to the 26-minute half-life 235mU isomer in a fission-like neutron spectrum is presented. The experiment has been performed at a pulsed reactor, where the internal conversion decay of the isomer was measured using a dedicated electron detector after activation. The sample preparation, efficiency measurement, irradiation, radiochemistry purification, and isomer decay measurement will be presented. We determined the integral cross section for the ²³⁵U(n,n') 235mU reaction to be 1.00±0.13b. This result supports an evaluation performed with TALYS-1.4 code with respect to the isomer excitation as well as the total neutron inelasticmore » scattering cross section.« less
Low-energy electron collisions with C{sub 4}H{sub 6} isomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopes, A.R.; Bettega, M.H.F.; Lima, M.A.P.
2004-01-01
We report integral, differential, and momentum-transfer cross sections for elastic scattering of low-energy electrons by C{sub 4}H{sub 6} isomers, namely, 1,3-butadiene, 2-butyne, and cyclobutene. We use the Schwinger multichannel method with pseudopotentials [M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993)] at the static-exchange approximation to compute the cross sections for energies from 10 to 60 eV. In particular, we discuss the isomer effect, reported by experimental studies for isomers of C{sub 3}H{sub 4} and C{sub 4}H{sub 6}. We also calculate the total ionization cross section using the binary-encounter-Bethe model formore » 2-butyne and 1,3-butadiene, and estimate the inelastic cross section for these two isomers.« less
Positronium collisions with atoms and molecules
NASA Astrophysics Data System (ADS)
Fabrikant, I. I.; Gribakin, G. F.; Wilde, R. S.
2017-11-01
We review recent theoretical efforts to explain observed similarities between electron-atom and positronium(Ps)-atom scattering which also extends to molecular targets. In the range of the projectile velocities above the threshold for Ps ionization (break-up) this similarity can be explained in terms of quasi-free electron scattering and impulse approximation. However, for lower Ps velocities more sophisticated methods should be developed. Our calculations of Ps scattering by heavy noble-gas atoms agree well with experiments at Ps velocities above the Ps ionization threshold. However, in contrast to electron scattering cross sections, at lower velocities they exhibit maxima whereas the experimental cross sections tend to decrease toward lower velocities indicating the same similarity with electron scattering cross section observed above the threshold. Our preliminary results for Ps-N2 scattering confirm experimental observation of a resonance similar to the ∏ g resonance in electron-N2 scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukyanov, V. K., E-mail: lukyanov@theor.jinr.ru; Zemlyanaya, E. V.; Lukyanov, K. V.
The folding-model optical potential is generalized in such a way as to apply it to calculating the cross sections for inelastic scattering of π{sup ±}-mesons on {sup 28}Si, {sup 40}Ca, {sup 58}Ni, and {sup 208}Pb nuclei at the energies of 162, 180, 226, and 291 MeV leading to the excitation of the 2{sup +} and 3{sup −} collective states. In doing this, use is made of known nucleon-density distributions in nuclei and the pion–nucleon scattering amplitude whose parameters were obtained previously by fitting the elastic scattering cross sections for the same nuclei. Thus, the values of quadrupole (β{sub 2}) andmore » octupole (β{sub 3}) deformations of nuclei appear here as the only adjustable parameters. The scattering cross section is calculated by solving the relativistic wave equation, whereby effects of relativization and distortion in the entrance and exit scattering channels are taken exactly into account. The cross sections calculated in this way for inelastic scattering are in good agreement with respective experimental data. The importance of the inclusion of in-medium effects in choosing parameters of the pion–nucleon amplitude is emphasized.« less
Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu
NASA Astrophysics Data System (ADS)
Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia
2017-09-01
The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.
Electron-impact excitation cross sections for the b /sup 3/. sigma. /sub u//sup +/ state of H/sub 2/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M.A.; Trajmar, S.; McAdams, R.
1987-04-01
Differential and integral cross sections for electron-impact excitation of the b /sup 3/..sigma../sub u//sup +/ state of H/sub 2/ have been determined in the 20--100-eV impact energy region. The calibration of the cross sections was achieved through the H/sub 2/ elastic scattering cross sections, which in turn were normalized to absolute He elastic scattering cross sections. Comparison is made with available experimental data and with theoretical results applying Born-Ochkur-Rudge, distorted-wave, and close-coupling approximations.
Measurement of the antineutrino neutral-current elastic differential cross section
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2015-01-01
We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (d σν ¯N →ν ¯N/d Q2) on CH2 by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasielastic cross sections are also presented.
Measurement of the antineutrino neutral-current elastic differential cross section
Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; ...
2015-01-08
We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (dσ ν-barN→ν-barN/dQ 2) on CH 2 by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasi elastic cross sections are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A.L.; Pearlstein, S.
1992-05-01
It is proposed to establish a Photon Data Section (PDS) of the BNL National Nuclear Data Center (NNDC). This would be a total program encompassing both photon-atom and photon-nucleus interactions. By utilizing the existing NNDC data base management expertise and on-line access capabilities, the implementation of photon interaction data activities within the existing NNDC nuclear structure and nuclear-reaction activities can reestablish a viable photon interaction data program at minimum cost. By taking advantage of the on-line capabilities, the x-ray users' community will have access to a dynamic, state-of-the-art data base of interaction information. The proposed information base would include datamore » that presently are scattered throughout the literature usually in tabulated form. It is expected that the data bases would include at least the most precise data available in photoelectric cross sections, atomic form factors and incoherent scattering functions, anomalous scattering factors, oscillator strengths and oscillator densities, fluorescence yields, Auger electron yields, etc. It could also include information not presently available in tabulations or in existing data bases such as EXAFS (extended x-ray absorption fine structure) reference spectra, chemical bonding induced shifts in the photoelectric absorption edge, matrix corrections, x-ray Raman, and x-ray resonant Raman cross sections. The data base will also include the best estimates of the accuracy of the interaction data as it exists in the data base. It is proposed that the PDS would support computer programs written for calculating scattering cross sections for given solid angles, sample geometries, and polarization of incident x-rays, for calculating Compton profiles, and for analyzing data as in EXAFS and x-ray fluorescence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A.L.; Pearlstein, S.
1992-05-01
It is proposed to establish a Photon Data Section (PDS) of the BNL National Nuclear Data Center (NNDC). This would be a total program encompassing both photon-atom and photon-nucleus interactions. By utilizing the existing NNDC data base management expertise and on-line access capabilities, the implementation of photon interaction data activities within the existing NNDC nuclear structure and nuclear-reaction activities can reestablish a viable photon interaction data program at minimum cost. By taking advantage of the on-line capabilities, the x-ray users` community will have access to a dynamic, state-of-the-art data base of interaction information. The proposed information base would include datamore » that presently are scattered throughout the literature usually in tabulated form. It is expected that the data bases would include at least the most precise data available in photoelectric cross sections, atomic form factors and incoherent scattering functions, anomalous scattering factors, oscillator strengths and oscillator densities, fluorescence yields, Auger electron yields, etc. It could also include information not presently available in tabulations or in existing data bases such as EXAFS (extended x-ray absorption fine structure) reference spectra, chemical bonding induced shifts in the photoelectric absorption edge, matrix corrections, x-ray Raman, and x-ray resonant Raman cross sections. The data base will also include the best estimates of the accuracy of the interaction data as it exists in the data base. It is proposed that the PDS would support computer programs written for calculating scattering cross sections for given solid angles, sample geometries, and polarization of incident x-rays, for calculating Compton profiles, and for analyzing data as in EXAFS and x-ray fluorescence.« less
Seeing the order in a mess: optical signature of periodicity in a cloud of plasmonic nanowires.
Natarov, Denys M; Marciniak, Marian; Sauleau, Ronan; Nosich, Alexander I
2014-11-17
We consider the two-dimensional (2-D) problem of the H-polarized plane wave scattering by a linear chain of silver nanowires in a cloud of similar pseudo-randomly located wires, in the visible range. Numerical solution uses the field expansions in local coordinates and addition theorems for cylindrical functions and has a guaranteed convergence. The total scattering cross-sections and near- and far-zone field patterns are presented. The observed resonance effects are studied and compared with their counterparts in the scattering by the same linear chain of wires in free space.
Magnetically controlled multifrequency invisibility cloak with a single shell of ferrite material
NASA Astrophysics Data System (ADS)
Wang, Xiaohua; Liu, Youwen
2015-02-01
A magnetically controlled multifrequency invisibility cloak with a single shell of the isotropic and homogeneous ferrite material has been investigated based on the scattering cancellation method from the Mie scattering theory. The analytical and simulated results have demonstrated that such this shell can drastically reduce the total scattering cross-section of this cloaking system at multiple frequencies. These multiple cloaking frequencies of this shell can be externally controlled since the magnetic permeability of ferrites is well tuned by the applied magnetic field. This may provide a potential way to design a tunable multifrequency invisibility cloak with considerable flexibility.
Mixed Legendre moments and discrete scattering cross sections for anisotropy representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calloo, A.; Vidal, J. F.; Le Tellier, R.
2012-07-01
This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less
Elastic electron scattering from formamide
NASA Astrophysics Data System (ADS)
Buk, M. V.; Bardela, F. P.; da Silva, L. A.; Iga, I.; Homem, M. G. P.
2018-05-01
Differential cross sections for elastic electron scattering by formamide (NH2CHO) were measured in the 30–800 eV and 10°–120° ranges. The angular distribution of scattered electrons was obtained using a crossed electron beam-molecular beam geometry. The relative flow technique was applied to normalize our data. Integral and momentum-transfer cross sections were derived from the measured differential cross sections. Theoretical results in the framework of the independent-atom model at the static-exchange-polarization plus absorption level of approximation are also given. The present measured and calculated results are compared with those available in the literature showing a generally good agreement.
Triple Parton Scatterings in High-Energy Proton-Proton Collisions
NASA Astrophysics Data System (ADS)
d'Enterria, David; Snigirev, Alexander M.
2017-03-01
A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (p p ) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS . The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5 ±4.5 mb . Estimates for triple charm (c c ¯) and bottom (b b ¯) production in p p collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single c c ¯ , b b ¯ cross sections. At √{s }≈100 TeV , about 15% of the p p collisions produce three c c ¯ pairs from three different parton-parton scatterings.
Triple Parton Scatterings in High-Energy Proton-Proton Collisions.
d'Enterria, David; Snigirev, Alexander M
2017-03-24
A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (pp) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σ_{eff,TPS}. The value of σ_{eff,TPS} is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σ_{eff,TPS}=12.5±4.5 mb. Estimates for triple charm (cc[over ¯]) and bottom (bb[over ¯]) production in pp collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single cc[over ¯], bb[over ¯] cross sections. At sqrt[s]≈100 TeV, about 15% of the pp collisions produce three cc[over ¯] pairs from three different parton-parton scatterings.
Covariance Matrix of a Double-Differential Doppler-Broadened Elastic Scattering Cross Section
NASA Astrophysics Data System (ADS)
Arbanas, G.; Becker, B.; Dagan, R.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Williams, M. L.
2012-05-01
Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on 238U are computed near the 6.67 eV resonance at temperature T = 103 K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
NASA Technical Reports Server (NTRS)
SHARDANAND; Rao, A. D. P.
1977-01-01
The laboratory measurements of absolute Rayleigh scattering cross sections as a function wavelength are reported for gas molecules He, Ne, Ar, N2, H2, O2, CO2, CH4 and for vapors of most commonly used freons CCl2F2, CBrF3, CF4, and CHClf2. These cross sections are determined from the measurements of photon scattering at an angle of 54 deg 44 min which yield the absolute values independent of the value of normal depolarization ratios. The present results show that in the spectral range 6943-3638A deg, the values of the Rayleigh scattering cross section can be extrapolated from one wavelength to the other using 1/lambda (4) law without knowing the values of the polarizabilities. However, such an extrapolation can not be done in the region of shorter wavelengths.
Parity-Dependent Rotational Energy Transfer in CN(A2Π, ν = 4, jF1ε) + N2, O2, and CO2 Collisions
2015-01-01
We report state-resolved total removal cross sections and state-to-state rotational energy transfer (RET) cross sections for collisions of CN(A2Π, ν = 4, jF1ε) with N2, O2, and CO2. CN(X2Σ+) was produced by 266 nm photolysis of ICN in a thermal bath (296 K) of the collider gas. A circularly polarized pulse from a dye laser prepared CN(A2Π, ν = 4) in a range of F1e rotational states, j = 2.5, 3.5, 6.5, 11.5, 13.5, and 18.5. These prepared states were monitored using the circularly polarized output of an external cavity diode laser by frequency-modulated (FM) spectroscopy on the CN(A–X)(4,2) band. The FM Doppler profiles were analyzed as a function of pump–probe delay to determine the time dependence of the population of the initially prepared states. Kinetic analysis of the resulting time dependences was used to determine total removal cross sections from the initially prepared levels. In addition, a range of j′ F1e and j′ F2f product states resulting from rotational energy transfer out of the j = 6.5 F1e initial state were probed, from which state-to-state RET cross sections were measured. The total removal cross sections lie in the order CO2 > N2 > O2, with evidence for substantial cross sections for electronic and/or reactive quenching of CN(A, ν = 4) to unobserved products with CO2 and O2. This is supported by the magnitude of the state-to-state RET cross sections, where a deficit of transferred population is apparent for CO2 and O2. A strong propensity for conservation of rotational parity in RET is observed for all three colliders. Spin–orbit-changing cross sections are approximately half of those of the respective conserving cross sections. These results are in marked disagreement with previous experimental observations with N2 as a collider but are in good agreement with quantum scattering calculations from the same study (Khachatrian et al. J. Phys. Chem. A2009, 113, 392219215110). Our results with CO2 as a collider are similarly in strong disagreement with a related experimental study (Khachatrian et al. J. Phys. Chem. A2009, 113, 1339019405498). We therefore propose that the previous experiments substantially underestimated the spin–orbit-changing cross sections for collisions with both N2 and CO2, suggesting that even approximate quantum scattering calculations may be more successful for such molecule–molecule systems than was previously concluded. PMID:24552624
Electron impact ionization of cycloalkanes, aldehydes, and ketones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com
The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Achasov, M. N.; Ahmed, S.
To investigate the nature of the (3770) resonance and to measure the cross section for e +e -→Dmore » $$\\bar{D}$$, a cross-section scan data sample, distributed among 41 center-of-mass energy points from 3.73 to 3.89 GeV, was taken with the BESIII detector operated at the BEPCII collider in the year 2010. By analyzing the large angle Bhabha scattering events, we measure the integrated luminosity of the data sample at each center-of-mass energy point. The total integrated luminosity of the data sample is 76.16±0.04±0.61 pb -1, where the first uncertainty is statistical and the second systematic.« less
Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...
2018-05-01
To investigate the nature of the (3770) resonance and to measure the cross section for e +e -→Dmore » $$\\bar{D}$$, a cross-section scan data sample, distributed among 41 center-of-mass energy points from 3.73 to 3.89 GeV, was taken with the BESIII detector operated at the BEPCII collider in the year 2010. By analyzing the large angle Bhabha scattering events, we measure the integrated luminosity of the data sample at each center-of-mass energy point. The total integrated luminosity of the data sample is 76.16±0.04±0.61 pb -1, where the first uncertainty is statistical and the second systematic.« less
Neutron scattering cross section measurements for Fe 56
Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.; ...
2017-06-09
Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C 6D 6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the TALYS and EMPIRE nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimentalmore » (n,n 0) and (n,n 1) cross sections well.« less
Neutron scattering cross section measurements for 56Fe
NASA Astrophysics Data System (ADS)
Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.; McEllistrem, M. T.; Peters, E. E.; Mukhopadhyay, S.; Harrison, T. D.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.; Rice, B. G.; Thompson, B. K.; Yates, S. W.
2017-06-01
Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C6D6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the talys and empire nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimental (n ,n0 ) and (n ,n1 ) cross sections well.
NASA Technical Reports Server (NTRS)
Torr, Douglas G.
1991-01-01
A summary of the status of the Cross-section Facility at MSFC is presented. A facility was designed, fabricated, assembled, tested, and operated for measurement of differential scattering cross sections important to understand the induced environment for a vehicle (e.g., Space Station) in low earth orbit. A user's manual for the facility is also presented. The performance of the facility was evaluated and found to be satisfactory in all the essential areas. Differential scattering cross sections were measured and results for the scattering measurements are included. Input to the development of the Ultraviolet Imager Optical System is also discussed. Design, fabrication, and evaluation of UV filters using a four-layer aluminum base are reported.
SLOW-NEUTRON SCATTERING BY MOLECULES OF LIQUID METHANE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogalska, Z.
1962-10-01
The total slow neutron scattering cross section of liquid methane molecules as a function of neutron energy was measured. Agreement between experimental results and the theoretical curve, calculated on the basis of the Krieger and Nelkin theory for gaseous methane, was found. The most reasonable interpretation of this agreement was attributed to the fact that there exists a free rotation of molecules in liquid methane. It might be concluded that a free rotation is maintained at the transition from gas to liquid. (auth)
NASA Astrophysics Data System (ADS)
Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya
2016-05-01
Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.
Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation
NASA Astrophysics Data System (ADS)
Apostol, M.
2017-11-01
The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.
NASA Technical Reports Server (NTRS)
Chutjian, A.; Newell, W. R.
1982-01-01
Electron energy-loss spectra and differential cross sections are reported for inelastic scattering from Zn II. Measurements were carried out in a crossed electron beam-ion beam apparatus, at incident electron energies of 30, 40, 50, 60, 75, 85, and 100 eV, and at a scattering angle of 14 deg. The present results are the first reported measurements of inelastic electron scattering from an ion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meftah, B.
1982-01-01
Present methods used in reactor analysis do not include adequately the effect of anisotropic scattering in the calculation of resonance effective cross sections. Also the assumption that the streaming term ..cap omega...del Phi is conserved when the total, absorption and transfer cross sections are conserved, is bad because the leakage from a heterogeneous cell will not be conserved and is strongly anisotropic. A third major consideration is the coupling between different regions in a multiregion reactor; currently this effect is being completely ignored. To assess the magnitude of these effects, a code based on integral transport formalism with linear anisotropicmore » scattering was developed. Also, a more adequate formulation of the diffusion coefficient in a heterogeneous cell was derived. Two reactors, one fast, ZPR-6/5, and one thermal, TRX-3, were selected for the study. The study showed that, in general, the inclusion of linear scattering anisotropy increases the cell effective capture cross section of U-238. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% ..delta..k/k for ZPR-6/5 and -0.05% ..delta..k/k for TRX-3. For the case of the diffusion coefficient, the combined effect of heterogeneity and linear anisotropy gave an increase of up to 29% in the parallel diffusion coefficient of TRX-3 and 5% in the parallel diffusion coefficient of ZPR-6/5. In contrast, the change in the perpendicular diffusion coefficient did not exceed 2% in both systems.« less
Electron collisions with ethylene
NASA Astrophysics Data System (ADS)
Panajotovic, R.; Kitajima, M.; Tanaka, H.; Jelisavcic, M.; Lower, J.; Campbell, L.; Brunger, M. J.; Buckman, S. J.
2003-04-01
We have measured absolute elastic scattering and vibrational excitation cross sections for electron impact on ethylene. The experimental data have been obtained on two different crossed-beam electron spectrometers and they cover the energy range from 1 to 100 eV and scattering angles between 10° and 130°. Both differential (in angle) and energy-dependent cross sections have been measured. The differential cross sections have also been analysed using a molecular phase shift analysis technique in order to derive the integral elastic and elastic momentum transfer cross sections. Comparison is made with earlier data, where available, and also with a number of recent theoretical calculations.
Study of BenW (n = 1-12) clusters: An electron collision perspective
NASA Astrophysics Data System (ADS)
Modak, Paresh; Kaur, Jaspreet; Antony, Bobby
2017-08-01
This article explores electron scattering cross sections by Beryllium-Tungsten clusters (BenW). Beryllium and tungsten are important elements for plasma facing wall components, especially for the deuterium/tritium phase of ITER and in the recently installed JET. The present study focuses on different electron impact interactions in terms of elastic cross section (Qel), inelastic cross section (Qinel), ionization cross section (Qion), and momentum transfer cross section (Qmtcs) for the first twelve clusters belonging to the BenW family. It also predicts the evolution of the cross section with the size of the cluster. These cross sections are used as an input to model processes in plasma. The ionization cross section presented here is compared with the available reported data. This is the first comprehensive report on cross section data for all the above-mentioned scattering channels, to the best of our knowledge. Such broad analysis of cross section data gives vital insight into the study of local chemistry of electron interactions with BenW (n = 1-12) clusters in plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Brent R.; Khakoo, Murtadha A.
2011-04-15
We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states ofmore » the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].« less
NASA Technical Reports Server (NTRS)
Rule, D. W.
1977-01-01
The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.
New Neutron Cross-Section Measurements at ORELA for Improved Nuclear Data Calculations
NASA Astrophysics Data System (ADS)
Guber, K. H.; Leal, L. C.; Sayer, R. O.; Koehler, P. E.; Valentine, T. E.; Derrien, H.; Harvey, J. A.
2005-05-01
Many older neutron cross-section evaluations from libraries such as ENDF/B-VI or JENDL-3.2 exhibit deficiencies or do not cover energy ranges that are important for criticality safety applications. These deficiencies may occur in the resolved and unresolved-resonance regions. Consequently, these evaluated data may not be adequate for nuclear criticality calculations where effects such as self-shielding, multiple scattering, or Doppler broadening are important. To support the Nuclear Criticality Predictability Program, neutron cross-section measurements have been initiated at the Oak Ridge Electron Linear Accelerator (ORELA). ORELA is the only high-power white neutron source with excellent time resolution still operating in the United States. It is ideally suited to measure fission, neutron total, and capture cross sections in the energy range from 1 eV to ˜600 keV, which is important for many nuclear criticality safety applications.
Neutrino-nucleus interactions at the LBNF near detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosel, Ulrich
2015-10-15
The reaction mechanisms for neutrino interactions with an {sup 40}Ar nucleus with the LBNF flux are calculated with the Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) transport-theoretical implementation of these interactions. Quasielastic scattering, many-body effects, pion production and absorption and Deep Inelastic Scattering are discussed; they all play a role at the LBNF energies and are experimentally entangled with each other. Quasielastic scattering makes up for only about 1/3 of the total cross section whereas pion production channels make up about 2/3 of the total. This underlines the need for a consistent description of the neutrino-nucleus reaction that treats all channels on an equal, consistentmore » footing. The results discussed here can also serve as useful guideposts for the Intermediate Neutrino Program.« less
On the Relation Between Spherical Harmonics and Simplified Spherical Harmonics Methods
NASA Astrophysics Data System (ADS)
Coppa, G. G. M.; Giusti, V.; Montagnini, B.; Ravetto, P.
2010-03-01
The purpose of the paper is, first, to recall the proof that the AN method and, therefore, the SP2N-1 method (of which AN was shown to be a variant) are equivalent to the odd order P2N-1, at least for a particular class of multi-region problems; namely the problems for which the total cross section has the same value for all the regions and the scattering is supposed to be isotropic. By virtue of the introduction of quadrature formulas representing first collision probabilities, this class is then enlarged in order to encompass the systems in which the regions may have different total cross sections. Some examples are reported to numerically validate the procedure.
Cross-section fluctuations in chaotic scattering systems.
Ericson, Torleif E O; Dietz, Barbara; Richter, Achim
2016-10-01
Exact analytical expressions for the cross-section correlation functions of chaotic scattering systems have hitherto been derived only under special conditions. The objective of the present article is to provide expressions that are applicable beyond these restrictions. The derivation is based on a statistical model of Breit-Wigner type for chaotic scattering amplitudes which has been shown to describe the exact analytical results for the scattering (S)-matrix correlation functions accurately. Our results are given in the energy and in the time representations and apply in the whole range from isolated to overlapping resonances. The S-matrix contributions to the cross-section correlations are obtained in terms of explicit irreducible and reducible correlation functions. Consequently, the model can be used for a detailed exploration of the key features of the cross-section correlations and the underlying physical mechanisms. In the region of isolated resonances, the cross-section correlations contain a dominant contribution from the self-correlation term. For narrow states the self-correlations originate predominantly from widely spaced states with exceptionally large partial width. In the asymptotic region of well-overlapping resonances, the cross-section autocorrelation functions are given in terms of the S-matrix autocorrelation functions. For inelastic correlations, in particular, the Ericson fluctuations rapidly dominate in that region. Agreement with known analytical and experimental results is excellent.
Sarma, Manabendra; Adhikari, S; Mishra, Manoj K
2007-01-28
Vibrational excitation (nu(f)<--nu(i)) cross-sections sigma(nu(f)<--nu(i) )(E) in resonant e-N(2) and e-H(2) scattering are calculated from transition matrix elements T(nu(f),nu(i) )(E) obtained using Fourier transform of the cross correlation function
Elastic and inelastic neutron scattering cross sections for fission reactor applications
NASA Astrophysics Data System (ADS)
Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.
2013-04-01
Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.
Partial-wave analysis for positronium-xenon collisions in the ultralow-energy region
NASA Astrophysics Data System (ADS)
Shibuya, Kengo; Saito, Haruo
2018-05-01
We propose a method to convert measured positronium annihilation rates in gaseous xenon into total and differential cross sections of positronium-xenon collisions in an ultralow-energy region of less than 80 meV where their experimental determinations as functions of the positronium kinetic energy are extremely difficult. This method makes it possible to determine not only the s -wave collisional parameters but also the p -wave and d -wave parameters. We have found a small positive value of the scattering length, A0=2.06 ±0.10 a0 , which indicates that the positronium-xenon interaction in this energy region is repulsive and suggests that it is dominated by the scattering amplitude of the positron rather than that of the electron. An extrapolation of the analytical result into the experimentally inaccessible energy regions from 80 meV to 1.0 eV indicates that there should not be a Ramsauer-Townsend minimum but rather a peak in the total cross section at an energy of approximately 0.4 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hui; Yao, Cui-Xia; He, Xiao-Hu
State-to-state quantum dynamic calculations for the proton transfer reaction Ne + H{sub 2}{sup +} (v = 0–2, j = 0) are performed on the most accurate LZHH potential energy surface, with the product Jacobi coordinate based time-dependent wave packet method including the Coriolis coupling. The J = 0 reaction probabilities for the title reaction agree well with previous results in a wide range of collision energy of 0.2-1.2 eV. Total integral cross sections are in reasonable agreement with the available experiment data. Vibrational excitation of the reactant is much more efficient in enhancing the reaction cross sections than translational andmore » rotational excitation. Total differential cross sections are found to be forward-backward peaked with strong oscillations, which is the indication of the complex-forming mechanism. As the collision energy increases, state-resolved differential cross section changes from forward-backward symmetric peaked to forward scattering biased. This forward bias can be attributed to the larger J partial waves, which makes the reaction like an abstraction process. Differential cross sections summed over two different sets of J partial waves for the v = 0 reaction at the collision energy of 1.2 eV are plotted to illustrate the importance of large J partial waves in the forward bias of the differential cross sections.« less
NASA Astrophysics Data System (ADS)
Eremin, Yu. A.; Sveshnikov, A. G.
2017-07-01
The optical theorem is generalized to the case of excitation of a local inhomogeneity introduced in a transparent substrate by a multipole of arbitrary order. It is shown that, to calculate the generalized extinction cross section, it is sufficient to calculate the derivatives of the scattered field at a single point by adding a constant and a definite integral. Apart from general scientific interest, the proposed generalization makes it possible to calculate the absorption cross section by subtracting the scattering cross section from the extinction cross section. The latter fact is important, because the scattered field in the far zone contains no Sommerfeld integrals. In addition, the proposed generalization allows one to test computer modules for the case where a lossless inhomogeneity is considered.
Research at the University of Kentucky Accelerator Laboratory
NASA Astrophysics Data System (ADS)
Hicks, S. F.; Kovash, M. A.
The Department of Physics and Astronomy at the University of Kentucky operates a 7-MV CN Van de Graaff accelerator that produces primary beams of protons, deuterons, and helium ions. An in-terminal pulsing and bunching system operates at 1.875 MHz and is capable of providing 1 ns beam bunches at an average current of several microamperes. Nearly all ongoing research programs involve secondary pulsed neutrons produced with gas cells containing deuterium or tritium, as well as with a variety of solid targets. Most experiments are performed at a target station positioned over a deep pit, so as to reduce the background created by backscattered neutrons. Recent experiments will be described; these include: measurements of n-p scattering total cross sections from En= 90 to 1800 keV to determine the n-p effective range parameter; the response of the plastic scintillator BC-418 below 1 MeV to low-energy recoil protons; n-p radiative capture cross sections important for our understanding of nucleosynthesis approximately 2 minutes after the occurrence of the Big Bang; γ-ray spectroscopy following inelastic neutron scattering to study nuclear structure relevant to double-β decay and to understand the role of phonon-coupled excitations in weakly deformed nuclei; and measurements of neutron elastic and inelastic scattering cross sections for nuclei that are important for energy production and for our global understanding of the interaction of neutrons with matter.
Hard breakup of two nucleons from the He3 nucleus
NASA Astrophysics Data System (ADS)
Sargsian, Misak M.; Granados, Carlos
2009-07-01
We investigate a large angle photodisintegration of two nucleons from the He3 nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic He3 wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s-11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of He3. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2)/(3).
NASA Astrophysics Data System (ADS)
Perestoronin, A. V.
2017-03-01
An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.
Electron impact ionization of plasma important SiClX (X = 1-4) molecules: theoretical cross sections
NASA Astrophysics Data System (ADS)
Kothari, Harshit N.; Pandya, Siddharth H.; Joshipura, K. N.
2011-06-01
Electron impact ionization of SiClX (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl3 radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl4/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiClX (X = 1-3) and on SiCl4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, J.
1963-01-01
The FORTRAN program 5PM 037 calculates the effective elastic scattering cross section, polarizations, the effective total reaction cross section, and the polarization transfer coefficients for spin-1 particles of low charge and mass incident on a low charge and mass target at medium energy. The number of partial waves can not exceed 38, and calculations for different values of parameters for the optical model used can be made. The effect of tensorial potentials constructed from the distance of the deuteron from the target, and its angular momentum with respect to it, can also be studied. The optical model, necessary data, numericalmore » methods, and description of the problem are discussed. The program is described, and tables of equivalent statements necessary for modifying it are included. (auth)« less
Proton-Proton Scattering at 105 Mev and 75 Mev
DOE R&D Accomplishments Database
Birge, R. W.; Kruse, U. E.; Ramsey, N. F.
1951-01-31
The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golak, J.; Skibinski, R.; Topolnicki, K.
Here, we solve three-nucleon Faddeev equations with nucleon-nucleon and three-nucleon forces derived consistently in the framework of chiral perturbation theory at next-to-next-to-next-to-leading order in the chiral expansion. In this first investigation we include only matrix elements of the three-nucleon force for partial waves with the total two-nucleon (three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron elastic scattering and deuteron breakup reaction are studied. Emphasis is put on A y puzzle in elastic scattering and cross sections in symmetric-space-star and neutron-neutron quasi-free-scattering breakup configurations, for which large discrepancies between data and theory have been reported.
NASA Astrophysics Data System (ADS)
Tkáč, Ondřej; Saha, Ashim K.; Loreau, Jérôme; Ma, Qianli; Dagdigian, Paul J.; Parker, David H.; van der Avoird, Ad; Orr-Ewing, Andrew J.
2015-12-01
Differential cross sections (DCSs) are reported for rotationally inelastic scattering of ND3 with H2, measured using a crossed molecular beam apparatus with velocity map imaging (VMI). ND3 molecules were quantum-state selected in the ground electronic and vibrational levels and, optionally, in the j±k = 11- rotation-inversion level prior to collisions. Inelastic scattering of state-selected ND3 with H2 was measured at the mean collision energy of 580 cm-1 by resonance-enhanced multiphoton ionisation spectroscopy and VMI of ND3 in selected single final j'±k' levels. Comparison of experimental DCSs with close-coupling quantum-mechanical scattering calculations serves as a test of a recently reported ab initio potential energy surface. Calculated integral cross sections reveal the propensities for scattering into various final j'±k' levels of ND3 and differences between scattering by ortho and para H2. Integral and differential cross sections are also computed at a mean collision energy of 430 cm-1 and compared to our recent results for inelastic scattering of state-selected ND3 with He.
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Mahmoud, M. A.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Benettoni, M.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Baginyan, A.; Golunov, A.; Golutvin, I.; Karjavin, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Voytishin, N.; Yuldashev, B. S.; Zarubin, A.; Zhiltsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2018-02-01
A first search for same-sign WW production via double-parton scattering is performed based on proton-proton collision data at a center-of-mass energy of 8 TeV using dimuon and electron-muon final states. The search is based on the analysis of data corresponding to an integrated luminosity of 19.7 fb-1. No significant excess of events is observed above the expected single-parton scattering yields. A 95% confidence level upper limit of 0.32 pb is set on the inclusive cross section for same-sign WW production via the double-parton scattering process. This upper limit is used to place a 95% confidence level lower limit of 12.2 mb on the effective double-parton cross section parameter, closely related to the transverse distribution of partons in the proton. This limit on the effective cross section is consistent with previous measurements as well as with Monte Carlo event generator predictions.
Electron Scattering from MERCURY-198 and Mercury -204.
NASA Astrophysics Data System (ADS)
Laksanaboonsong, Jarungsaeng
This experiment is the first electron scattering study on mercury isotopes. Electron scattering from ^{198}Hg and ^{204 }Hg has been performed at the NIKHEF-K Medium Energy Accelerator. Measured cross sections cover an effective momentum transfer range from 0.4 to 2.9 fm^ {-1}. Elastic cross sections were determined for scattering from both isotopes. Cross section for inelastic excitations in ^{198}Hg below 3 MeV were also determined. Measured cross sections were fit using DWBA phase shift codes to determine coefficients for Fourier-Bessel expansions of ground state and transition charge densities. Differences between the ground state charge densities of the two isotopes reveal the effect of the polarization of the proton core in response to the addition of neutrons. Spin and parity of several excited states of ^{198}Hg were determined. Extracted transition densities of these states show their predominantly collective nature. Charge densities for members of the ground state rotational band were compared with axially symmetric Hartree-Fock and geometrical model predictions.
Electron impact excitation of molecular hydrogen
Zammit, Mark Christian; Savage, Jeremy S.; Fursa, Dmitry V.; ...
2017-02-06
Here, we report the electron impact integrated and differential cross sections for excitation to the b 3Σmore » $$+\\atop{u}$$, a 3Σ$$+\\atop{g}$$, c 3Π u, B 1Σ$$+\\atop{u}$$, E, F 1Σ$$+\\atop{g}$$, C 1Π u, e 3Σ$$+\\atop{u}$$, h 3Σ $$+\\atop{g}$$, d 3Π u, B'' 1Σ$$+\\atop{u}$$ , D 1Π u, B'' 1Σ$$+\\atop{u}$$, and D' 1Π u states of molecular hydrogen in the energy range from 10 to 300 eV. Total scattering and total ionization cross sections are also presented. The calculations have been performed by using the convergent close-coupling method within the fixed-nuclei approximation. Detailed convergence studies have been performed with respect to the size of the close-coupling expansion and a set of recommended cross sections has been produced. Significant differences with previous calculations are found. Agreement with experiment is mixed, ranging from excellent to poor depending on the transition and incident energies.« less
Some Notes on Neutron Up-Scattering and the Doppler-Broadening of High-Z Scattering Resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Donald Kent
When neutrons are scattered by target nuclei at elevated temperatures, it is entirely possible that the neutron will actually gain energy (i.e., up-scatter) from the interaction. This phenomenon is in addition to the more usual case of the neutron losing energy (i.e., down-scatter). Furthermore, the motion of the target nuclei can also cause extended neutron down-scattering, i.e., the neutrons can and do scatter to energies lower than predicted by the simple asymptotic models. In recent years, more attention has been given to temperature-dependent scattering cross sections for materials in neutron multiplying systems. This has led to the inclusion of neutronmore » up-scatter in deterministic codes like Partisn and to free gas scattering models for material temperature effects in Monte Carlo codes like MCNP and cross section processing codes like NJOY. The free gas scattering models have the effect of Doppler Broadening the scattering cross section output spectra in energy and angle. The current state of Doppler-Broadening numerical techniques used at Los Alamos for scattering resonances will be reviewed, and suggestions will be made for further developments. The focus will be on the free gas scattering models currently in use and the development of new models to include high-Z resonance scattering effects. These models change the neutron up-scattering behavior.« less
NASA Technical Reports Server (NTRS)
Fu, L. S. W.
1982-01-01
The scattering of a single ellipsoidal inhomogeneity is studied via an eigenstrain approach. The displacement field is given in terms of volume integrals that involve eigenstrains that are related to mismatch in mass density and that in elastic moduli. The governing equations for these unknown eigenstrains are derived. Agreement with other approaches for the scattering problem is shown. The formulation is general and both the inhomogeneity and the host medium can be anisotrophic. The axisymmetric scattering of an ellipsoidal inhomogeneity in a linear elastic isotropic medium is given as an example. The angular and frequency dependence of the scattered displacement field, the differential and total cross sections are formally given in series expansions for the case of uniformly distributed eigenstrains.
Positronium collisions with molecular nitrogen
NASA Astrophysics Data System (ADS)
Wilde, R. S.; Fabrikant, I. I.
2018-05-01
For many atomic and molecular targets positronium (Ps) scattering looks very similar to electron scattering if total scattering cross sections are plotted as functions of the projectile velocity. Recently this similarity was observed for the resonant scattering by the N2 molecule. For correct treatment of Ps-molecule scattering incorporation of the exchange interaction and short-range correlations is of paramount importance. In the present work we have used a free-electron-gas model to describe these interactions in collisions of Ps with the N2 molecule. The results agree reasonably well with the experiment, but the position of the resonance is somewhat shifted towards lower energies, probably due to the fixed-nuclei approximation employed in the calculations. The partial-wave analysis of the resonant peak shows that its composition is more complex than in the case of e -N2 scattering.
Compton-Scattering Cross Section on the Proton at High Momentum Transfer
NASA Astrophysics Data System (ADS)
Danagoulian, A.; Mamyan, V. H.; Roedelbronn, M.; Aniol, K. A.; Annand, J. R. M.; Bertin, P. Y.; Bimbot, L.; Bosted, P.; Calarco, J. R.; Camsonne, A.; Chang, C. C.; Chang, T.-H.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Degtyarenko, P.; de Jager, C. W.; Deur, A.; Dutta, D.; Egiyan, K.; Gao, H.; Garibaldi, F.; Gayou, O.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Hamilton, D. J.; Hansen, J.-O.; Hayes, D.; Higinbotham, D. W.; Hinton, W.; Horn, T.; Howell, C.; Hunyady, T.; Hyde, C. E.; Jiang, X.; Jones, M. K.; Khandaker, M.; Ketikyan, A.; Kubarovsky, V.; Kramer, K.; Kumbartzki, G.; Laveissière, G.; Lerose, J.; Lindgren, R. A.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; Meekins, D. G.; Meziani, Z.-E.; Michaels, R.; Moussiegt, P.; Nanda, S.; Nathan, A. M.; Nikolenko, D. M.; Nelyubin, V.; Norum, B. E.; Paschke, K.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Pomatsalyuk, R.; Punjabi, V. A.; Rachek, I.; Radyushkin, A.; Reitz, B.; Roche, R.; Ron, G.; Sabatié, F.; Saha, A.; Savvinov, N.; Shahinyan, A.; Shestakov, Y.; Širca, S.; Slifer, K.; Solvignon, P.; Stoler, P.; Tajima, S.; Sulkosky, V.; Todor, L.; Vlahovic, B.; Weinstein, L. B.; Wang, K.; Wojtsekhowski, B.; Voskanyan, H.; Xiang, H.; Zheng, X.; Zhu, L.
2007-04-01
Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s=5 11 and -t=2 7GeV2 with a statistical accuracy of a few percent. The scaling power for the s dependence of the cross section at fixed center-of-mass angle was found to be 8.0±0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.
Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim
2017-12-15
The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim
2017-12-01
The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.
Offshell quantum electrodynamics
NASA Astrophysics Data System (ADS)
Land, Martin; Horwitz, Lawrence P.
2013-04-01
In this paper, we develop the quantum field theory of off-shell electromagnetism, and use it to calculate the Møller scattering cross-section. This calculation leads to qualitative deviations from the usual scattering cross-sections, which are, however, small effects, but may be visible at small angles near the forward direction.
Elastic/Inelastic Measurement Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Steven; Hicks, Sally; Vanhoy, Jeffrey
2016-03-01
The work scope involves the measurement of neutron scattering from natural sodium ( 23Na) and two isotopes of iron, 56Fe and 54Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on 23Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-energy (few MeV) fast-neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficultmore » in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., β 2 must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MIchael A. Pope
Six early cores of the MASURCA R-Z program were modeled using ERANOS 2.1. These cores were designed such that their neutron spectra would be similar to that of an oxide-fueled sodium-cooled fast reactor, some containing enriched uranium and others containing depleted uranium and plutonium. Effects of modeling assumptions and solution methods both in ECCO lattice calculations and in BISTRO Sn flux solutions were evaluated using JEFF-3.1 cross-section libraries. Reactivity effects of differences between JEFF-3.1 and ENDF/B-VI.8 were also quantified using perturbation theory analysis. The most important nuclide with respect to reactivity differences between cross-section libraries was 23Na, primarily a resultmore » of differences in the angular dependence of elastic scattering which is more forward-peaked in ENDF/B-VI.8 than in JEFF-3.1. Differences in 23Na inelastic scattering cross-sections between libraries also generated significant differences in reactivity, more due to the differences in magnitude of the cross-sections than the angular dependence. The nuclide 238U was also found to be important with regard to reactivity differences between the two libraries mostly due to a large effect of inelastic scattering differences and two smaller effects of elastic scattering and fission cross-sections. In the cores which contained plutonium, 239Pu fission cross-section differences contributed significantly to the reactivity differences between libraries.« less
The Antiproton-Nucleon Annihilation Process (Antiproton Collaboration Experiment)
DOE R&D Accomplishments Database
Barkas, W. H.; Birge, R. W.; Chupp, W. W.; Ekspong, A. G.; Goldhaber, G.; Goldhaber, S.; Heckman, H. H.; Perkins, D. H.; Sandweiss, J.; Segre, E.; Smith, F. M.; Stork, D. H.; Rossum, L. Van; Amaldi, E.; Baroni, G.; Castagnoli, C.; Franzinetti, C.; Manfredini, A.
1956-09-10
In the exposure to a 700-MeV/c negative particle beam, 35 antiproton stars have been found. Of these antiprotons, 21 annihilate in flight and three give large-angle scatters ({Theta} > 15 , T{sub P-} > 50 Mev), while 14 annihilate at rest. From the interactions in flight we obtain the total cross section for antiproton interaction.
Cross section measurements for neutron inelastic scattering and the ( n , 2 n γ ) reaction on Pb 206
Negret, A.; Mihailescu, L. C.; Borcea, C.; ...
2015-06-30
We measured excitation functions for γ production associated with the neutron inelastic scattering and the (n, 2n) reactions on 206Pb from threshold up to 18 MeV for about 40 transitions. Two independent measurements were performed using different samples and acquisition systems to check consistency of the results. Moreover, the neutron flux was determined with a 235U fission chamber and a procedure that were validated against a fluence standard. For incident energy higher than the threshold for the first excited level and up to 3.5 MeV, estimates are provided for the total inelastic and level cross sections by combining the presentmore » γ production cross sections with the level and decay data of 206Pb reported in the literature. The uncertainty common to all incident energies is 3.0% allowing overall uncertainties from 3.3% to 30% depending on transition and neutron energy. Finally, the present data agree well with earlier work, but significantly expand the experimental database while comparisons with model calculations using the talys reaction code show good agreement over the full energy range.« less
Investigations of electromagnetic scattering by columnar ice crystals
NASA Technical Reports Server (NTRS)
Weil, H.; Senior, T. B. A.
1976-01-01
An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.
Is localized infrared spectroscopy now possible in the electron microscope?
Rez, Peter
2014-06-01
The recently developed in-column monochromators make it possible to record energy-c spectra with resolutions better than 30 meV from nanometer-sized regions. It should therefore in principle be possible to detect localized vibrational excitations. The scattering geometry in the electron microscope means that bond stretching in the specimen plane or longitudinal optic phonons dominate the scattering. Most promising for initial studies are vibrations with energies between 300 and 400 meV from hydrogen bonded to other atoms. Estimates of the scattering cross-sections on the basis of a simple model show that they are about the same as inner shell scattering cross-sections. Cross-sections also increase with charge transfer between the atoms, and theory incorporating realistic charge distributions shows that signal/noise is the only limitation to high-resolution imaging. Given the magnitude of the scattering cross-sections, minimizing the tail of the zero-loss peak is just as important as achieving a small-width at half-maximum. Improvements in both resolution and controlling the zero-loss tail will be necessary before it is practical to detect optic phonons in solids between 40 and 60 meV.
NASA Technical Reports Server (NTRS)
Simsic, P. L.
1974-01-01
Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Eva E.; Martin, William R.
Current Monte Carlo codes use one of three models: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S(α,β) model, depending on the neutron energy and the specific Monte Carlo code. This thesis addresses the consequences of using the free gas scattering model, which assumes that the neutron interacts with atoms in thermal motion in a monatomic gas in thermal equilibrium at material temperature, T. Most importantly, the free gas model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not formore » heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that the exact resonance scattering model is temperaturedependent, and neglecting the resonances in the lower epithermal range can under-predict resonance absorption due to the upscattering phenomenon mentioned above, leading to an over-prediction of keff by several hundred pcm. Existing methods to address this issue involve changing the neutron weights or implementing an extra rejection scheme in the free gas sampling scheme, and these all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame to continue the random walk of the neutron. The goal of this paper was to develop a sampling methodology that (1) accounted for the energydependent scattering cross sections in the collision analysis and (2) was performed in the laboratory frame,avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials (2nd and 4th order) to approximate the scattering cross section in Blackshaw’s equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using methods developed in this dissertation showed very close comparison to results using the reference Dopplerbroadened rejection correction (DBRC) scheme.« less
Davidson, Eva E.; Martin, William R.
2017-05-26
Current Monte Carlo codes use one of three models: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S(α,β) model, depending on the neutron energy and the specific Monte Carlo code. This thesis addresses the consequences of using the free gas scattering model, which assumes that the neutron interacts with atoms in thermal motion in a monatomic gas in thermal equilibrium at material temperature, T. Most importantly, the free gas model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not formore » heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that the exact resonance scattering model is temperaturedependent, and neglecting the resonances in the lower epithermal range can under-predict resonance absorption due to the upscattering phenomenon mentioned above, leading to an over-prediction of keff by several hundred pcm. Existing methods to address this issue involve changing the neutron weights or implementing an extra rejection scheme in the free gas sampling scheme, and these all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame to continue the random walk of the neutron. The goal of this paper was to develop a sampling methodology that (1) accounted for the energydependent scattering cross sections in the collision analysis and (2) was performed in the laboratory frame,avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials (2nd and 4th order) to approximate the scattering cross section in Blackshaw’s equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using methods developed in this dissertation showed very close comparison to results using the reference Dopplerbroadened rejection correction (DBRC) scheme.« less
Analytical modeling of light transport in scattering materials with strong absorption.
Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L
2017-10-02
We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.
Computer program for thin-wire structures in a homogeneous conducting medium
NASA Technical Reports Server (NTRS)
Richmond, J. H.
1974-01-01
A computer program is presented for thin-wire antennas and scatters in a homogeneous conducting medium. The anaylsis is performed in the real or complex frequency domain. The program handles insulated and bare wires with finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, gain, absorption cross section, scattering cross section, echo area and the polarization scattering matrix. The program uses sinusoidal bases and Galerkin's method.
Energy conservation - A test for scattering approximations
NASA Technical Reports Server (NTRS)
Acquista, C.; Holland, A. C.
1980-01-01
The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miklukho, O. V., E-mail: miklukho-ov@pnpi.rncki.ru; Kisselev, A. Yu., E-mail: kisselev@mail.desy.de; Amalsky, G. M.
2017-03-15
The polarization of secondary protons in the (p, p’) inelastic reactions on {sup 40}Ca and {sup 12}C nuclei at the initial proton energy of 1 GeV was measured over a wide range of scattered-proton momenta at a laboratory angle of Θ = 21°. The reaction cross sections were also measured. Scattered protons were detected by means of magnetic spectrometer equipped with a polarimeter based on multiwire-proportional chambers. A structure in the polarization and cross-section data, which is probably related to scattering off nucleon correlations in the nuclei involved, was observed.
NASA Astrophysics Data System (ADS)
Ren, L.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Han, J. Y.; Harris, D. A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; MinerνA Collaboration
2017-04-01
We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a subsample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, RCC , which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of ˜5 % at low energy. Our results for the antineutrino-nucleus scattering cross section and for RCC are the most precise to date in the energy range Eν<6 GeV .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, L.; Aliaga, L.; Altinok, O.
Here, we present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, Rcc, which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of 5% at low energy. Our results for the antineutrino-nucleus scattering cross section and for Rcc are the most precise to date in the energy rangemore » $$E_{\
Ren, L.; Aliaga, L.; Altinok, O.; ...
2017-04-14
Here, we present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. We also report on the antineutrino-neutrino cross section ratio, Rcc, which does not rely on external normalization information. Our ratio measurement, obtained within the same experiment using the same technique, benefits from the cancellation of common sample systematic uncertainties and reaches a precision of 5% at low energy. Our results for the antineutrino-nucleus scattering cross section and for Rcc are the most precise to date in the energy rangemore » $$E_{\
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2010-05-01
A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ((d2σ)/(dTμdcosθμ)) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy (σ[Eν]) and the single differential cross section ((dσ)/(dQ2)) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.
Cross Sections and Transport Properties of BR- Ions in AR
NASA Astrophysics Data System (ADS)
Jovanovic, Jasmina; Stojanovic, Vladimir; Raspopovic, Zoran; Petrovic, Zoran
2014-10-01
We have used a combination of a simple semi-analytic theory - Momentum Transfer Theory (MTT) and exact Monte Carlo (MC) simulations to develop Br- in Ar momentum transfer cross section based on the available data for reduced mobility at the temperature T = 300 K over the range 10 Td <= E / N <= 300 Td. At very low energies, we have extrapolated obtained cross sections towards Langevin's cross section. Also, we have extrapolated data to somewhat higher energies based on behavior of similar ions in similar gases and by the addition of the total detachment cross section that was used from the threshold around 7.7 eV. Relatively complete set was derived which can be used in modeling of plasmas by both hybrid, particle in cell (PIC) and fluid codes. A good agreement between calculated and measured ion mobilities and longitudinal diffusion coefficients is an independent proof of the validity of the cross sections that were derived for the negative ion mobility data. In addition to transport coefficients we have also calculated the net rate coefficients of elastic scattering and detachment. Author acknowledge Ministry of Education, Science and Technology, Proj. Nos. 171037 and 410011.
RAMAN SCATTERED He II {lambda}4332 IN THE SYMBIOTIC STAR V1016 CYGNI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hee-Won
Raman scattering of He II line photons with atomic hydrogen is important in studying the mass loss processes in many symbiotic stars and a number of young planetary nebulae. We calculate the scattering cross sections and branching ratios associated with the Raman scattered He II {lambda}4332 feature formed through inelastic scattering of He II {lambda}949 with a hydrogen atom. At the line center of He II {lambda}949, the total scattering cross section is computed to be {sigma}{sub tot} = 2.5 Multiplication-Sign 10{sup -22} cm{sup 2}, and the branching ratio into the level 2s is 0.12. We also present a high-resolutionmore » spectrum of the symbiotic star V1016 Cygni obtained with the 1.8 m telescope at Mt. Bohyun to investigate the Raman scattering origin of the broad feature blueward of He II {lambda}4338. Based on the atomic calculation, we perform Monte Carlo calculations for the line formation. The scattering region is assumed to be a part of a uniform spherical shell that subtends a solid angle {Delta}{Omega} = {pi} steradian with a neutral column density N{sub HI} = 1.0 x 10{sup 21} cm{sup -2}. By adding a far-UV continuum around He II {lambda}949 normalized by the equivalent width of He II {lambda}949 to be 2.3 Angstrom-Sign , we obtain a good fit for both the Raman scattered He II {lambda}4332 and the broad wings around H{gamma}. Our analysis of the Raman feature blueward of H{gamma} in V1016 Cyg is consistent with the previous study of the Raman features blueward of H{alpha} and H{beta} by Jung and Lee.« less
The stationary points and structure of high-energy scattering amplitude
NASA Astrophysics Data System (ADS)
Samokhin, A. P.; Petrov, V. A.
2018-06-01
The ISR and the 7 TeV LHC data indicate that the differential cross-section of elastic proton-proton scattering remains almost energy-independent at the transferred momentum t ≈ - 0.21GeV2 at the level of ≈ 7.5 mb /GeV2. This property of dσ / dt (the "first" stationary point) appears due to the correlated growth of the total cross-section and the local slope parameter and can be expressed as a relation between the latter quantities. We anticipate that this property will be true up to 13 TeV. This enables us to normalize the preliminary TOTEM data for dσ / dt at 13 TeV and 0.05 < | t | < 3.4GeV2 and predict the values of dσ / dt at this energy. These data give an evidence of the second stationary point at t ≈ - 2.3GeV2 at the level of ≈ 33 nb /GeV2. The energy evolution of dσ / dt looks as if the high energy elastic scattering amplitude is a sum of two similar terms. We argue that the existence of the two stationary points and the two-component structure of the high energy elastic scattering amplitude are general properties for all elastic processes.
Importance of geometric phase effects in ultracold chemistry
Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, Naduvalath
2015-08-28
Here, it is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. The effect arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. It is magnified when the two scattering amplitudes have comparable magnitude and they scatter into the same angular region which occurs in the isotropic scatteringmore » characteristic of the ultracold regime (s-wave scattering). Results are presented for the O + OH → H + O 2 reaction for total angular momentum quantum number J = 0–5. Large geometric phase effects occur for collision energies below 0.1 K, but the effect vanishes at higher energies when contributions from different partial waves are included. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. In this case, the geometric phase plays the role of a “quantum switch” which can turn the reaction “on” or “off”.« less
NASA Technical Reports Server (NTRS)
Gao, R. S.; Dutta, C. M.; Lane, N. F.; Smith, K. A.; Stebbings, R. F.; Kimura, M.
1992-01-01
Measurements and calculations of differential cross sections for direct scattering, single-charge transfer, and double-charge transfer in collisions of 1.5-, 2.0-, 6.0-, and 10.0-keV (He-3)2+ with an He-4 target are reported. The measurements cover laboratory scattering angles below 1.5 deg with an angular resolution of about 0.03 deg. A quantum-mechanical molecular-state representation is employed in the calculations; in the case of single-charge transfer a two-state close-coupling calculation is carried out taking into account electron-translation effects. The theoretical calculations agree well with the experimental results for direct scattering and double-charge transfer. The present calculation identifies the origins of oscillatory structures observed in the differential cross sections.
Importance of Thomas single-electron transfer in fast p-He collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.; Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1 D-69126; Gudmundsson, M.
We report experimental angular differential cross sections for nonradiative single-electron capture in p-He collisions (p+ He -> H + He{sup +}) with a separate peak at the 0.47 mrad Thomas scattering angle for energies in the 1.3-12.5 MeV range. We find that the intensity of this peak scales with the projectile velocity as v{sub P}{sup -11}. This constitutes the first experimental test of the prediction from 1927 by L. H. Thomas [Proc. R. Soc. 114, 561 (1927)]. At our highest energy, the peak at the Thomas angle contributes with 13.5% to the total integrated nonradiative single-electron capture cross section.
Detection of New Dissociative Electron Attachment Channels in NO
NASA Technical Reports Server (NTRS)
Orient, O. J.; Chutjian, A.
1995-01-01
Three dissociative electron attachment channels have been detected and identified in NO via measurement of the O minus (exp 2)P fragment energy. In addition to the known N((exp 2 D(exp 0)) + O minus (exp 2)P channel, two new channels N((exp 1 S(exp 0)) + 0 (2 P) and N(exp 2)P(exp 0) + O(exp 2)P were detected. Cross sections for each of the channels are reported by normalizing the scattering intensities to previously measured total cross sections. The experimental approach uses solenoidal magnetic confinement of the electrons and ions, and trochoidal energy analysis of the low-energy ions.
QCD-motivated description of very high energy particle interactions
NASA Technical Reports Server (NTRS)
Gaisser, T. K.; Halzen, F.
1985-01-01
Cross sections for the production of secondaries with large transverse momentum can become comparable to the total cross section in the TeV energy range. It is argued that the onset of this effect is observed at sub TeV energies via an increase of the rapidity distribution near y = 0, an increase of p sub T with energy and, most directly, via a correlation between p sub T and multiplicity. If indeed scaling violations are associated with the hard scattering of partons, then scaling violations are largely confined to the central region and have little effect on cosmic ray data which are sensitive to the forward fragmentation region.
Use of the Wigner representation in scattering problems
NASA Technical Reports Server (NTRS)
Bemler, E. A.
1975-01-01
The basic equations of quantum scattering were translated into the Wigner representation, putting quantum mechanics in the form of a stochastic process in phase space, with real valued probability distributions and source functions. The interpretative picture associated with this representation is developed and stressed and results used in applications published elsewhere are derived. The form of the integral equation for scattering as well as its multiple scattering expansion in this representation are derived. Quantum corrections to classical propagators are briefly discussed. The basic approximation used in the Monte-Carlo method is derived in a fashion which allows for future refinement and which includes bound state production. Finally, as a simple illustration of some of the formalism, scattering is treated by a bound two body problem. Simple expressions for single and double scattering contributions to total and differential cross-sections as well as for all necessary shadow corrections are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parlinski, K.
1962-06-01
A classical selfcorrelation function is found for an atom in the molecule by considering the translation of the free molecule, its rotation and oscillation. The Krieger-Nelkin formula for the differential cross section of incoherent neutron scattering by molecules is derived from the correlation. (auth)
2002-07-01
Date Kirk A. Mathews (Advisor) James T. Moore (Dean’s Representative) Charles J. Bridgman (Member...Adler-Adler, and Kalbach -Mann representations of the scatter cross sections that are used for some isotopes in ENDF/B-VI are not included. They are not
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
A first search for same-sign WW production via double-parton scattering is performed based on proton-proton collision data at a center-of-mass energy of 8 TeV using dimuon and electron-muon final states. The search is based on the analysis of data corresponding to an integrated luminosity of 19.7 fb –1. No significant excess of events is observed above the expected single-parton scattering yields. A 95% confidence level upper limit of 0.32 pb is set on the inclusive cross section for same-sign WW production via the double-parton scattering process. This upper limit is used to place a 95% confidence level lower limit ofmore » 12.2 mb on the effective double-parton cross section parameter, closely related to the transverse distribution of partons in the proton. As a result, this limit on the effective cross section is consistent with previous measurements as well as with Monte Carlo event generator predictions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gran, Richard
2016-06-02
The MINERvA experiment is designed to measure neutrino cross sections for different nuclei using substantially similar fiducial and tracking environments. This allows for reduced systematics in the ratio to better see the evolution of the cross section with the size of the nucleus. The first such result is an inclusive charged current cross section ratio as a function of energy from and the kinematic quantity Bjorken x for nuclei Pb, Fe, and C relative to plastic scintillator CH. The measurement is made for neutrino energies from 2 to 20 GeV. In the past, charged lepton scattering ratios of heavier nucleimore » to deuterium have revealed interesting structure such as the EMC effect. These ratios were restricted to purely deep inelastic scattering data whereas these ratios to different nuclei in MINERvA are sensitive to the elastic scattering as well as resonance production regions. Significant deviations from the baseline scattering model are observed, and suggest new theory work to investigate these ratios.« less
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2018-02-06
A first search for same-sign WW production via double-parton scattering is performed based on proton-proton collision data at a center-of-mass energy of 8 TeV using dimuon and electron-muon final states. The search is based on the analysis of data corresponding to an integrated luminosity of 19.7 fb –1. No significant excess of events is observed above the expected single-parton scattering yields. A 95% confidence level upper limit of 0.32 pb is set on the inclusive cross section for same-sign WW production via the double-parton scattering process. This upper limit is used to place a 95% confidence level lower limit ofmore » 12.2 mb on the effective double-parton cross section parameter, closely related to the transverse distribution of partons in the proton. As a result, this limit on the effective cross section is consistent with previous measurements as well as with Monte Carlo event generator predictions.« less
Low-energy neutron-deuteron reactions with N 3LO chiral forces
Golak, J.; Skibinski, R.; Topolnicki, K.; ...
2014-11-27
Here, we solve three-nucleon Faddeev equations with nucleon-nucleon and three-nucleon forces derived consistently in the framework of chiral perturbation theory at next-to-next-to-next-to-leading order in the chiral expansion. In this first investigation we include only matrix elements of the three-nucleon force for partial waves with the total two-nucleon (three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron elastic scattering and deuteron breakup reaction are studied. Emphasis is put on A y puzzle in elastic scattering and cross sections in symmetric-space-star and neutron-neutron quasi-free-scattering breakup configurations, for which large discrepancies between data and theory have been reported.
NASA Astrophysics Data System (ADS)
Cai, Li; Wen, Ji-Hong; Yu, Dian-Long; Lu, Zhi-Miao; Wen, Xi-Sen
2014-09-01
Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential applications such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transformation function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.
MINERνA neutrino detector calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, Cheryl
MINERνA is a neutrino scattering experiment that uses Fermilab’s NuMI beamline. Its goal is to measure cross-sections for neutrino scattering from different nuclei. Precise knowledge of these cross-sections is vital for current and future neutrino oscillation experiments. In order to measure these values to a high degree of accuracy, it is essential that the detector be carefully calibrated. Here, we describe in-situ calibration and cross-checks.
Electron Collision Processes with Carbon Dioxide: Resolving Long-Standing Paradoxes
NASA Astrophysics Data System (ADS)
Rescigno, T. N.; Haxton, D. J.; McCurdy, C. W.
2012-10-01
The principal features of low-energy electron-CO2 collisions have been known and studied for over forty years. The scattering is characterized by a rapid rise in the total cross section below 1 eV, anomalous threshold behavior for excitation of symmetric stretch and bending vibrational modes, resonant vibrational excitation near 4 eV with weak ``boomerang'' structure in the excitation cross sections and dissociative electron attachment cross sections leading to CO + O^- which peak near 4 eV and 8 eV and have angular distributions which show large deviations from axial recoil. The nuclear dynamics associated with all these features is intrinsically polyatomic in nature and cannot be described with one-dimensional models. The present study provides a consistent description of all these phenomena and resolves a number long-standing paradoxes and misconceptions found in the extant literature.
Relativistic three-dimensional Lippmann-Schwinger cross sections for space radiation applications
NASA Astrophysics Data System (ADS)
Werneth, C. M.; Xu, X.; Norman, R. B.; Maung, K. M.
2017-12-01
Radiation transport codes require accurate nuclear cross sections to compute particle fluences inside shielding materials. The Tripathi semi-empirical reaction cross section, which includes over 60 parameters tuned to nucleon-nucleus (NA) and nucleus-nucleus (AA) data, has been used in many of the world's best-known transport codes. Although this parameterization fits well to reaction cross section data, the predictive capability of any parameterization is questionable when it is used beyond the range of the data to which it was tuned. Using uncertainty analysis, it is shown that a relativistic three-dimensional Lippmann-Schwinger (LS3D) equation model based on Multiple Scattering Theory (MST) that uses 5 parameterizations-3 fundamental parameterizations to nucleon-nucleon (NN) data and 2 nuclear charge density parameterizations-predicts NA and AA reaction cross sections as well as the Tripathi cross section parameterization for reactions in which the kinetic energy of the projectile in the laboratory frame (TLab) is greater than 220 MeV/n. The relativistic LS3D model has the additional advantage of being able to predict highly accurate total and elastic cross sections. Consequently, it is recommended that the relativistic LS3D model be used for space radiation applications in which TLab > 220MeV /n .
Research at the University of Kentucky Accelerator Laboratory
Hicks, S. F.; Kovash, M. A.
2017-10-26
The Department of Physics and Astronomy at the University of Kentucky operates a 7-MV CN Van de Graaff accelerator that produces primary beams of protons, deuterons, and helium ions. An in-terminal pulsing and bunching system operates at 1.875 MHz and is capable of providing 1 ns beam bunches at an average current of several microamperes. Nearly all ongoing research programs involve secondary pulsed neutrons produced with gas cells containing deuterium or tritium, as well as with a variety of solid targets. Most experiments are performed at a target station positioned over a deep pit, so as to reduce the backgroundmore » created by backscattered neutrons. Here, recent experiments will be described; these include: measurements of n-p scattering total cross sections from E n = 90 to 1800 keV to determine the n-p effective range parameter; the response of the plastic scintillator BC-418 below 1 MeV to low-energy recoil protons; n-p radiative capture cross sections important for our understanding of nucleosynthesis approximately 2 minutes after the occurrence of the Big Bang; γ-ray spectroscopy following inelastic neutron scattering to study nuclear structure relevant to double-β decay and to understand the role of phonon-coupled excitations in weakly deformed nuclei; and measurements of neutron elastic and inelastic scattering cross sections for nuclei that are important for energy production and for our global understanding of the interaction of neutrons with matter.« less
Research at the University of Kentucky Accelerator Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, S. F.; Kovash, M. A.
The Department of Physics and Astronomy at the University of Kentucky operates a 7-MV CN Van de Graaff accelerator that produces primary beams of protons, deuterons, and helium ions. An in-terminal pulsing and bunching system operates at 1.875 MHz and is capable of providing 1 ns beam bunches at an average current of several microamperes. Nearly all ongoing research programs involve secondary pulsed neutrons produced with gas cells containing deuterium or tritium, as well as with a variety of solid targets. Most experiments are performed at a target station positioned over a deep pit, so as to reduce the backgroundmore » created by backscattered neutrons. Here, recent experiments will be described; these include: measurements of n-p scattering total cross sections from E n = 90 to 1800 keV to determine the n-p effective range parameter; the response of the plastic scintillator BC-418 below 1 MeV to low-energy recoil protons; n-p radiative capture cross sections important for our understanding of nucleosynthesis approximately 2 minutes after the occurrence of the Big Bang; γ-ray spectroscopy following inelastic neutron scattering to study nuclear structure relevant to double-β decay and to understand the role of phonon-coupled excitations in weakly deformed nuclei; and measurements of neutron elastic and inelastic scattering cross sections for nuclei that are important for energy production and for our global understanding of the interaction of neutrons with matter.« less
NASA Astrophysics Data System (ADS)
Ernest, Alllan David; Collins, Matthew P.
2015-08-01
Analysis of astrophysical phenomena relies on knowledge of cross sections. These cross sections are measured in scattering experiments, or calculated using theoretical techniques such as partial wave analysis. It has been recently shown [1,2,3] however that photon scattering cross sections depend also on the degree of localization of the target particle, and that particles in large-scale, deep-gravity wells can exhibit lower cross sections than those measured in lab-based experiments where particles are implicitly localized. This purely quantum effect arises as a consequence of differences in the gravitational eigenspectral distribution of a particle’s wavefunction in different situations, and is in addition to the obvious notion that delocalized particle scattering is less likely simply because the target particles are ‘in a bigger box’.In this presentation we consider the quantum equilibrium statistics of particles in gravitational potentials corresponding to dark matter density profiles. We show that as galactic halos approach equilibrium, the dark eigenstates of the eigenspectral ensemble are favoured and baryons exhibit lower photon scattering cross sections, rendering halos less visible than expected from currently accepted cross sections. Traditional quantum theory thus predicts that baryons that have not coalesced into self-bound macroscopic structures such as stars, can essentially behave as dark matter simply by equilibrating within a deep gravity well. We will discuss this effect and the consequences for microwave anisotropy analysis and primordial nucleosynthesis.[1] Ernest, A. D., and Collins, M. P., 2014, Australian Institute of Physics, AIP Congress, Canberra, December, 2014.[2] Ernest, A. D., 2009, J. Phys. A: Math. Theor., 42, 115207, 115208.[3] Ernest, A. D., 2012, In Prof. Ion Cotaescu (Ed) Advances in Quantum Theory (pp 221-248). Rijeka: InTech. ISBN 978-953-51-0087-4
Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications
NASA Astrophysics Data System (ADS)
Ickes, Jesse; Gonthier, Peter L.; Eiles, Matthew; Baring, Matthew G.; Wadiasingh, Zorawar
2014-08-01
Various telescopes including RXTE, INTEGRAL, Suzaku and Fermi have detected steady non-thermal X-ray emission in the 10 ~ 200 keV band from strongly magnetic neutron stars known as magnetars. Magnetic inverse Compton scattering is believed to be a leading candidate for the production of this intense X-ray radiation. Generated by electrons possessing ultra-relativistic energies, this leads to attractive simplifications of the magnetic Compton cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths acquired through the implementation of Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. Such scattering in magnetar magnetospheres can cool electrons down to mildly-relativistic energies. Moreover, soft gamma-ray flaring in magnetars may well involve strong Comptonization in expanding clouds of mildly-relativistic pairs. These situations necessitate the development of more general magnetic scattering cross sections, where the incoming photons acquire substantial incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. Here, we highlight results from such a generalization using ST formalism. The cross sections treat the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Polarization dependence of the cross section for the four scattering modes is illustrated and compared with the non-relativistic Thompson cross section with classical widths. Results will find application to various neutron star problems, including computation of Eddington luminosities and polarization mode-switching rates in transient magnetar fireballs.We express our gratitude for the generous support of Michigan Space Grant Consortium, the National Science Foundation (grants AST-0607651, AST-1009725, AST-1009731 and PHY/DMR-1004811), and the NASA Astrophysics Theory Program through grants NNX06AI32G, NNX09AQ71G and NNX10AC59A.
The hydrogen anomaly problem in neutron Compton scattering
NASA Astrophysics Data System (ADS)
Karlsson, Erik B.
2018-03-01
Neutron Compton scattering (also called ‘deep inelastic scattering of neutrons’, DINS) is a method used to study momentum distributions of light atoms in solids and liquids. It has been employed extensively since the start-up of intense pulsed neutron sources about 25 years ago. The information lies primarily in the width and shape of the Compton profile and not in the absolute intensity of the Compton peaks. It was therefore not immediately recognized that the relative intensities of Compton peaks arising from scattering on different isotopes did not always agree with values expected from standard neutron cross-section tables. The discrepancies were particularly large for scattering on protons, a phenomenon that became known as ‘the hydrogen anomaly problem’. The present paper is a review of the discovery, experimental tests to prove or disprove the existence of the hydrogen anomaly and discussions concerning its origin. It covers a twenty-year-long history of experimentation, theoretical treatments and discussions. The problem is of fundamental interest, since it involves quantum phenomena on the subfemtosecond time scale, which are not visible in conventional thermal neutron scattering but are important in Compton scattering where neutrons have two orders of magnitude times higher energy. Different H-containing systems show different cross-section deficiencies and when the scattering processes are followed on the femtosecond time scale the cross-section losses disappear on different characteristic time scales for each H-environment. The last section of this review reproduces results from published papers based on quantum interference in scattering on identical particles (proton or deuteron pairs or clusters), which have given a quantitative theoretical explanation both regarding the H-cross-section reduction and its time dependence. Some new explanations are added and the concluding chapter summarizes the conditions for observing the specific quantum phenomena observed in neutron Compton scattering on protons and deuterons in condensed systems.
NASA Technical Reports Server (NTRS)
Richmond, J. H.
1974-01-01
Piecewise-sinusoidal expansion functions and Galerkin's method are employed to formulate a solution for an arbitrary thin-wire configuration in a homogeneous conducting medium. The analysis is performed in the real or complex frequency domain. In antenna problems, the solution determines the current distribution, impedance, radiation efficiency, gain and far-field patterns. In scattering problems, the solution determines the absorption cross section, scattering cross section and the polarization scattering matrix. The electromagnetic theory is presented for thin wires and the forward-scattering theorem is developed for an arbitrary target in a homogeneous conducting medium.
NASA Astrophysics Data System (ADS)
Hall, Gregory; Xu, Hong; Forthomme, Damien; Dagdigian, Paul; Sears, Trevor
2017-06-01
We have combined experimental and theoretical approaches to the competition between elastic and inelastic collisions of CN radicals with Ar, and how this competition influences time-resolved saturation spectra. Experimentally, we have measured transient, two-color sub-Doppler saturation spectra of CN radicals with an amplitude chopped saturation laser tuned to selected Doppler offsets within rotational lines of the A-X (2-0) band, while scanning a frequency modulated probe laser across the hyperfine-resolved saturation features of corresponding rotational lines of the A-X (1-0) band. A steady-state depletion spectrum includes off-resonant contributions ascribed to velocity diffusion, and the saturation recovery rates depend on the sub-Doppler detuning. The experimental results are compared with Monte Carlo solutions to the Boltzmann equation for the collisional evolution of the velocity distributions of CN radicals, combined with a pressure-dependent and speed-dependent lifetime broadening. Velocity changing collisions are included by appropriately sampling the energy resolved differential cross sections for elastic scattering of selected rotational states of CN (X). The velocity space diffusion of Doppler tagged molecules proceeds through a series of small-angle scattering events, eventually terminating in an inelastic collision that removes the molecule from the coherently driven ensemble of interest. Collision energy-dependent total cross sections and differential cross sections for elastic scattering of selected CN rotational states with Ar were computed with Hibridon quantum scattering calculations, and used for sampling in the Monte Carlo modeling. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences.
Sum rules for quasifree scattering of hadrons
NASA Astrophysics Data System (ADS)
Peterson, R. J.
2018-02-01
The areas d σ /d Ω of fitted quasifree scattering peaks from bound nucleons for continuum hadron-nucleus spectra measuring d2σ /d Ω d ω are converted to sum rules akin to the Coulomb sums familiar from continuum electron scattering spectra from nuclear charge. Hadronic spectra with or without charge exchange of the beam are considered. These sums are compared to the simple expectations of a nonrelativistic Fermi gas, including a Pauli blocking factor. For scattering without charge exchange, the hadronic sums are below this expectation, as also observed with Coulomb sums. For charge exchange spectra, the sums are near or above the simple expectation, with larger uncertainties. The strong role of hadron-nucleon in-medium total cross sections is noted from use of the Glauber model.
Microwave signatures of snow, ice and soil at several wavelengths
NASA Technical Reports Server (NTRS)
Gloersen, P.; Schmugge, T. J.; Chang, T. C.
1974-01-01
Analyses of data obtained from aircraft-borne radiometers have shown that the microwave signatures of various parts of the terrain depend on both the volume scattering cross-section and the dielectric loss in the medium. In soil, it has been found that experimental data fit a model in which the scattering cross section is negligible compared to the dielectric loss. On the other hand, the volume scattering cross-section in snow and continental ice was found, from analyzing data obtained with aircraft- and spacecraft-borne radiometers, to be more important than the dielectric loss or surface reflectivity in determining the observed microwave emissivity. A model which assumes Mie scattering of ice particles of various sizes was found to be the dominant volume scattering mechanism in these media. Both spectral variation in the microwave signatures of snow and ice fields, as well as the variation in the emissivity of continental ice sheets such as those covering Greenland and Antarctica appear to be consistent with this model.
Theory of scattering of electromagnetic waves of the microwave range in a turbid medium
NASA Astrophysics Data System (ADS)
Konstantinov, O. V.; Matveentsev, A. V.
2013-02-01
The coefficient of extinction of electromagnetic waves of the microwave range due to their scattering from clusters suspended in an amorphous medium and responsible for turbidity is calculated. Turbidity resembles the case when butter clusters transform water into milk. In the case under investigation, the clusters are conductors (metallic or semiconducting). The extinction coefficient is connected in a familiar way with the cross section of light scattering from an individual cluster. A new formula is derived for the light scattering cross section in the case when damping of oscillations of an electron is due only to spontaneous emission of light quanta. In this case, the resonant scattering cross section for light can be very large. It is shown that this can be observed only in a whisker nanocluster. In addition, the phonon energy on a whisker segment must be higher than the photon energy, which is close to the spacing between the electron energy levels in the cluster.
NASA Astrophysics Data System (ADS)
MacMullin, Sean Patrick
In underground physics experiments, such as neutrinoless double-beta decay and dark matter searches, fast neutrons may be the dominant and potentially irreducible source of background. Experimental data for the elastic and inelastic scattering cross sections of neutrons from argon and neon, which are target and shielding materials of interest to the dark matter and neutrinoless double-beta decay communities, were previously unavailable. Unmeasured neutron scattering cross sections are often accounted for incorrectly in Monte-Carlo simulations. Elastic scattering cross sections were measured at the Triangle Universities Nuclear Laboratory (TUNL) using the neutron time-of-flight technique. Angular distributions for neon were measured at 5.0 and 8.0 MeV. One full angular distribution was measured for argon at 6.0 MeV. The cross-section data were compared to calculations using a global optical model. Data were also fit using the spherical optical model. These model fits were used to predict the elastic scattering cross section at unmeasured energies and also provide a benchmark where the global optical models are not well constrained. Partial gamma-ray production cross sections for (n,xngamma ) reactions in natural argon and neon were measured using the broad spectrum neutron beam at the Los Alamos Neutron Science Center (LANSCE). Neutron energies were determined using time of flight and resulting gamma rays from neutron-induced reactions were detected using the GErmanium Array for Neutron Induced Excitations (GEANIE). Partial gamma-ray production cross sections for six transitions in 40Ar, two transitions in 39Ar and the first excited state transitions is 20Ne and 22Ne were measured from threshold to a neutron energy where the gamma-ray yield dropped below the detection sensitivity. Measured (n,xngamma) cross sections were compared with calculations using the TALYS and CoH3 nuclear reaction codes. These new measurements will help to identify potential backgrounds in neutrinoless double-beta decay and dark matter experiments that use argon or neon. The measurements will also aid in the identification of neutron interactions in these experiments through the detection of gamma rays produced by ( n,xngamma) reactions.
NASA Astrophysics Data System (ADS)
Qattan, I. A.
2017-06-01
I present a prediction of the e± elastic scattering cross-section ratio, Re+e-, as determined using a new parametrization of the two-photon exchange (TPE) corrections to electron-proton elastic scattering cross section σR. The extracted ratio is compared to several previous phenomenological extractions, TPE hadronic calculations, and direct measurements from the comparison of electron and positron scattering. The TPE corrections and the ratio Re+e- show a clear change of sign at low Q2, which is necessary to explain the high-Q2 form factors discrepancy while being consistent with the known Q2→0 limit. While my predictions are in generally good agreement with previous extractions, TPE hadronic calculations, and existing world data including the recent two measurements from the CLAS and VEPP-3 Novosibirsk experiments, they are larger than the new OLYMPUS measurements at larger Q2 values.
Elastic electron scattering by ethyl vinyl ether
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M. A.; Hong, L.; Kim, B.
2010-02-15
We report measured and calculated results for elastic scattering of low-energy electrons by ethyl vinyl ether (ethoxyethene), a prototype system for studying indirect dissociative attachment processes that may play a role in DNA damage. The integral cross section displays the expected {pi}{sup *} shape resonance. The agreement between the calculated and measured cross sections is generally good.
NASA Astrophysics Data System (ADS)
Drótos, G.; Jung, C.
2016-06-01
The topic of this paper is hyperbolic chaotic scattering in a three degrees of freedom system. We generalize how shadows in the domain of the doubly differential cross-section are found: they are traced out by the appropriately filtered unstable manifolds of the periodic trajectories in the chaotic saddle. These shadows are related to the rainbow singularities in the doubly differential cross-section. As a result of this relation, we discover a method of how to recognize in the cross section a smoothly deformed image of the chaotic saddle, allowing the reconstruction of the symbolic dynamics of the chaotic saddle, its topology and its scaling factors.
Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals.
Demos, Stavros G; Raman, Rajesh N; Yang, Steven T; Negres, Raluca A; Schaffers, Kathleen I; Henesian, Mark A
2011-10-10
The spontaneous Raman scattering cross sections of the main peaks (related to the A1 vibrational mode) in rapid and conventional grown potassium dihydrogen phosphate and deuterated crystals are measured at 532 nm, 355 nm, and 266 nm. The measurement involves the use of the Raman line of water centered at 3400 cm-1 as a reference to obtain relative values of the cross sections which are subsequently normalized against the known absolute value for water as a function of excitation wavelength. This measurement enables the estimation of the transverse stimulated Raman scattering gain of these nonlinear optical materials in various configurations suitable for frequency conversion and beam control in high-power, large-aperture laser systems.
Acoustical scattering by multilayer spherical elastic scatterer containing electrorheological layer.
Cai, Liang-Wu; Dacol, Dacio K; Orris, Gregory J; Calvo, David C; Nicholas, Michael
2011-01-01
A computational procedure for analyzing acoustical scattering by multilayer concentric spherical scatterers having an arbitrary mixture of acoustic and elastic materials is proposed. The procedure is then used to analyze the scattering by a spherical scatterer consisting of a solid shell and a solid core encasing an electrorheological (ER) fluid layer, and the tunability in the scattering characteristics afforded by the ER layer is explored numerically. Tunable scatterers with two different ER fluids are analyzed. One, corn starch in peanut oil, shows that a significant increase in scattering cross-section is possible in moderate frequencies. Another, fine poly-methyl methacrylate (PMMA) beads in dodecane, shows only slight change in scattering cross-sections overall. But, when the shell is thin, a noticeable local resonance peak can appear near ka=1, and this resonance can be turned on or off by the external electric field.
Feasibility of in Vivo SAXS Imaging for Detection of Alzheiemer's Disease
NASA Astrophysics Data System (ADS)
Choi, Mina
Small-angle x-ray scattering (SAXS) imaging has been proposed as a technique to characterize and selectively image structures based on electron density structure which allows for discriminating materials based on their scatter cross sections. This dissertation explores the feasibility of SAXS imaging for the detection of Alzheimer's disease (AD) amyloid plaques. The inherent scatter cross sections of amyloid plaque serve as biomarkers in vivo without the need of injected molecular tags. SAXS imaging can also assist in a better understanding of how these biomarkers play a role in Alzheimer's disease which in turn can lead to the development of more effective disease-modifying therapies. I implement simulations of x-ray transport using Monte Carlo methods for SAXS imaging enabling accurate calculation of radiation dose and image quality in SAXS-computed tomography (CT). I describe SAXS imaging phantoms with tissue-mimicking material and embedded scatter targets as a way of demonstrating the characteristics of SAXS imaging. I also performed a comprehensive study of scattering cross sections of brain tissue from measurements of ex-vivo sections of a wild-type mouse brain and reported generalized cross sections of gray matter, white matter, and corpus callosum obtained and registered by planar SAXS imaging. Finally, I demonstrate the ability of SAXS imaging to locate an amyloid fibril pellet within a brain section. This work contributes to novel application of SAXS imaging for Alzheimer's disease detection and studies its feasibility as an imaging tool for AD biomarkers.
Particle scattering by harmonically trapped Bose and Fermi gases
NASA Astrophysics Data System (ADS)
Bhattacharya, Ankita; Das, Samir; Biswas, Shyamal
2018-04-01
We have analytically explored the quantum phenomenon of particle scattering by harmonically trapped Bose and Fermi gases with the short ranged Fermi–Huang {δ }p3 interactions (Fermi 1936 Ric. Sci. 7 13; Huang and Yang 1957 Phys. Rev. 105 767) interactions among the incident particle and the scatterers. We have predicted differential scattering cross-sections and their temperature dependence in this regard. Coherent scattering even by a single boson or fermion in the finite geometry gives rise to new tool of determining energy eigenstate of the scatterer. Our predictions on the differential scattering cross-sections can be tested within the present day experimental setups, specially, for (i) 3D harmonically trapped interacting Bose–Einstein condensate (BEC), (ii) BECs in a double well, and (iii) BECs in an optical lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.
2013-03-25
In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons.more » As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Grotowski, K.
1962-10-15
Recentiy optical model analysis has been applied to fit the experimental angular distribution data of the elastic scattering of deuterons by nuclei. In view of a considerable dependence of sigma /sub R/ on the shape of the real and imaginary part of the potential at the nuclear surface, it was thought worthwhile to measure both sigma /sub el/ ( theta ) and sigma /sub R/ for 12.8 Mev deuterons on targets of separated Ni/sup 58/ and Ni/sup 60/ isotopes. (W.D.M.)
NASA Astrophysics Data System (ADS)
Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.
1982-05-01
Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.
NASA Astrophysics Data System (ADS)
Terekhov, Pavel D.; Baryshnikova, Kseniia V.; Artemyev, Yuriy A.; Karabchevsky, Alina; Shalin, Alexander S.; Evlyukhin, Andrey B.
2017-07-01
Spectral multipole resonances of parallelepiped-, pyramid-, and cone-like shaped silicon nanoparticles excited by linearly polarized light waves are theoretically investigated. The numerical finite element method is applied for the calculations of the scattering cross sections as a function of the nanoparticles geometrical parameters. The roles of multipole moments (up to the third order) in the scattering process are analyzed using the semianalytical multipole decomposition approach. The possibility of scattering pattern configuration due to the tuning of the multipole contributions to the total scattered waves is discussed and demonstrated. It is shown that cubic nanoparticles can provide a strong isotropic side scattering with minimization of the scattering in forward and backward directions. In the case of the pyramidal and conical nanoparticles the total suppression of the side scattering can be obtained. It was found that due to the shape factor of the pyramidal and conical nanoparticles their electric toroidal dipole resonance can be excited in the spectral region of the first electric and magnetic dipole resonances. The influence of the incident light directions on the optical response of the pyramidal and conical nanoparticles is discussed. The obtained results provide important information that can be used for the development of nanoantennas with improved functionality due to the directional scattering effects.
NASA Astrophysics Data System (ADS)
Aumann, T.; Bertulani, C. A.; Schindler, F.; Typel, S.
2017-12-01
An experimentally constrained equation of state of neutron-rich matter is fundamental for the physics of nuclei and the astrophysics of neutron stars, mergers, core-collapse supernova explosions, and the synthesis of heavy elements. To this end, we investigate the potential of constraining the density dependence of the symmetry energy close to saturation density through measurements of neutron-removal cross sections in high-energy nuclear collisions of 0.4 to 1 GeV /nucleon . We show that the sensitivity of the total neutron-removal cross section is high enough so that the required accuracy can be reached experimentally with the recent developments of new detection techniques. We quantify two crucial points to minimize the model dependence of the approach and to reach the required accuracy: the contribution to the cross section from inelastic scattering has to be measured separately in order to allow a direct comparison of experimental cross sections to theoretical cross sections based on density functional theory and eikonal theory. The accuracy of the reaction model should be investigated and quantified by the energy and target dependence of various nucleon-removal cross sections. Our calculations explore the dependence of neutron-removal cross sections on the neutron skin of medium-heavy neutron-rich nuclei, and we demonstrate that the slope parameter L of the symmetry energy could be constrained down to ±10 MeV by such a measurement, with a 2% accuracy of the measured and calculated cross sections.
Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao
2018-05-25
Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamba, Irene M.; ICES, The University of Texas at Austin, 201 E. 24th St., Stop C0200, Austin, TX 78712; Haack, Jeffrey R.
2014-08-01
We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit tomore » the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation.« less
Neutron elastic and inelastic cross section measurements for 28Si
NASA Astrophysics Data System (ADS)
Derdeyn, E. C.; Lyons, E. M.; Morin, T.; Hicks, S. F.; Vanhoy, J. R.; Peters, E. E.; Ramirez, A. P. D.; McEllistrem, M. T.; Mukhopadhyay, S.; Yates, S. W.
2017-09-01
Neutron elastic and inelastic cross sections are critical for design and implementation of nuclear reactors and reactor equipment. Silicon, an element used abundantly in fuel pellets as well as building materials, has little to no experimental cross sections in the fast neutron region to support current theoretical evaluations, and thus would benefit from any contribution. Measurements of neutron elastic and inelastic differential scattering cross sections for 28Si were performed at the University of Kentucky Accelerator Laboratory for incident neutron energies of 6.1 MeV and 7.0 MeV. Neutrons were produced by accelerated deuterons incident on a deuterium gas cell. These nearly mono-energetic neutrons then scattered off a natural Si sample and were detected using liquid deuterated benzene scintillation detectors. Scattered neutron energy was deduced using time-of-flight techniques in tandem with kinematic calculations for an angular distribution. The relative detector efficiency was experimentally determined over a neutron energy range from approximately 0.5 to 7.75 MeV prior to the experiment. Yields were corrected for multiple scattering and neutron attenuation in the sample using the forced-collision Monte Carlo correction code MULCAT. Resulting cross sections will be presented along with comparisons to various data evaluations. Research is supported by USDOE-NNSA-SSAP: NA0002931, NSF: PHY-1606890, and the Donald A. Cowan Physics Institute at the University of Dallas.
NASA Astrophysics Data System (ADS)
Hishiyama, N.; Hoshino, M.; Blanco, F.; García, G.; Tanaka, H.
2017-12-01
We report absolute elastic differential cross sections (DCSs) for electron collisions with phosphorus trifluoride, PF3, molecules (e- + PF3) in the impact energy range of 2.0-200 eV and over a scattering angle range of 10°-150°. Measured angular distributions of scattered electron intensities were normalized by reference to the elastic DCSs of He. Corresponding integral and momentum-transfer cross sections were derived by extrapolating the angular range from 0° to 180° with the help of a modified phase-shift analysis. In addition, due to the large dipole moment of the considered molecule, the dipole-Born correction for the forward scattering angles has also been applied. As a part of this study, independent atom model calculations in combination with screening corrected additivity rule were also performed for elastic and inelastic (electronic excitation plus ionization) scattering using a complex optical potential method. Rotational excitation cross sections have been estimated with a dipole-Born approximation procedure. Vibrational excitations are not considered in this calculation. Theoretical data, at the differential and integral levels, were found to reasonably agree with the present experimental results. Furthermore, we explore the systematics of the elastic DCSs for the four-atomic trifluoride molecules of XF3 (X = B, N, and P) and central P-atom in PF3, showing that, owing to the comparatively small effect of the F-atoms, the present angular distributions of elastic DCSs are essentially dominated by the characteristic of the central P-atom at lower impact energies. Finally, these quantitative results for e- - PF3 collisions were compiled together with the previous data available in the literature in order to obtain a cross section dataset for modeling purposes. To comprehensively describe such a considerable amount of data, we proceed by first discussing, in this paper, the vibrationally elastic scattering processes whereas vibrational and electronic excitation shall be the subject of our following paper devoted to inelastic collisions.
NASA Astrophysics Data System (ADS)
Pronyaev, Vladimir G.; Capote, Roberto; Trkov, Andrej; Noguere, Gilles; Wallner, Anton
2017-09-01
An IAEA project to update the Neutron Standards is near completion. Traditionally, the Thermal Neutron Constants (TNC) evaluated data by Axton for thermal-neutron scattering, capture and fission on four fissile nuclei and the total nu-bar of 252Cf(sf) are used as input in the combined least-square fit with neutron cross section standards. The evaluation by Axton (1986) was based on a least-square fit of both thermal-spectrum averaged cross sections (Maxwellian data) and microscopic cross sections at 2200 m/s. There is a second Axton evaluation based exclusively on measured microscopic cross sections at 2200 m/s (excluding Maxwellian data). Both evaluations disagree within quoted uncertainties for fission and capture cross sections and total multiplicities of uranium isotopes. There are two factors, which may lead to such difference: Westcott g-factors with estimated 0.2% uncertainties used in the Axton's fit, and deviation of the thermal spectra from Maxwellian shape. To exclude or mitigate the impact of these factors, a new combined GMA fit of standards was undertaken with Axton's TNC evaluation based on 2200 m/s data used as a prior. New microscopic data at the thermal point, available since 1986, were added to the combined fit. Additionally, an independent evaluation of TNC was undertaken using CONRAD code. Both GMA and CONRAD results are consistent within quoted uncertainties. New evaluation shows a small increase of fission and capture thermal cross sections, and a corresponding decrease in evaluated thermal nubar for uranium isotopes and 239Pu.
NASA Astrophysics Data System (ADS)
Tornow, W.; Howell, C. R.; Crowell, A. S.
2013-12-01
In order to confirm or refute the present discrepancy between data and calculation for the neutron-neutron quasi-free scattering cross section in the neutron-deuteron breakup reaction, we describe a new experimental approach currently being pursued at TUNL.
Low-energy electron-impact ionization of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schow, E.; Hazlett, K.; Childers, J. G.
2005-12-15
Normalized doubly differential cross sections for the electron-impact ionization of helium at low energies are presented. The data are taken at the incident electron energies of 26.3, 28.3, 30.3, 32.5, 34.3, 36.5, and 40.7 eV and for scattering angles of 10 deg. -130 deg. The measurements involve the use of the moveable target method developed at California State University Fullerton to accurately determine the continuum background in the energy-loss spectra. Normalization of experimental data is made on a relative scale to well-established experimental differential cross sections for excitation of the n=2 manifold of helium and then on an absolute scalemore » to the well-established total ionization cross sections of Shah et al. [J. Phys. B 21, 2751 (1988)]. Comparisons are made with available experimental data and the results of the convergent close-coupling theory.« less
NASA Technical Reports Server (NTRS)
Schwenke, David W.
1993-01-01
We report the results of a series of calculations of state-to-state integral cross sections for collisions between O and nonvibrating H2O in the gas phase on a model nonreactive potential energy surface. The dynamical methods used include converged quantum mechanical scattering calculations, the j(z) conserving centrifugal sudden (j(z)-CCS) approximation, and quasi-classical trajectory (QCT) calculations. We consider three total energies 0.001, 0.002, and 0.005 E(h) and the nine initial states with rotational angular momentum less than or equal to 2 (h/2 pi). The j(z)-CCS approximation gives good results, while the QCT method can be quite unreliable for transitions to specific rotational sublevels. However, the QCT cross sections summed over final sublevels and averaged over initial sublevels are in better agreement with the quantum results.
Laser Assisted Free-Free Transition in Electron - Atom Collision
NASA Technical Reports Server (NTRS)
Sinha, C.; Bhatia, A. K.
2011-01-01
Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.
56Fe capture cross section experiments at the RPI LINAC Center
NASA Astrophysics Data System (ADS)
McDermott, Brian; Blain, Ezekiel; Thompson, Nicholas; Weltz, Adam; Youmans, Amanda; Danon, Yaron; Barry, Devin; Block, Robert; Daskalakis, Adam; Epping, Brian; Leinweber, Gregory; Rapp, Michael
2017-09-01
A new array of C6D6 detectors installed at the RPI LINAC Center has enabled the capability to measure neutron capture cross sections above the 847 keV inelastic scattering threshold of 56Fe through the use of digital post-processing filters and pulse-integral discriminators, without sacrificing the statistical quality of data at lower incident neutron energies where such filtering is unnecessary. The C6D6 detectors were used to perform time-of-flight capture cross section measurements on a sample 99.87% enriched iron-56. The total-energy method, combined with the pulse height weighting technique, were then applied to the raw data to determine the energy-dependent capture yield. Above the inelastic threshold, the data were analyzed with a pulse-integral filter to reveal the capture signal, extending the the full data set to 2 MeV.
Observation of correlated excitations in bimolecular collisions
NASA Astrophysics Data System (ADS)
Gao, Zhi; Karman, Tijs; Vogels, Sjoerd N.; Besemer, Matthieu; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.
2018-02-01
Although collisions between atoms and molecules are largely understood, collisions between two molecules have proven much harder to study. In both experiment and theory, our ability to determine quantum-state-resolved bimolecular cross-sections lags behind their atom-molecule counterparts by decades. For many bimolecular systems, even rules of thumb—much less intuitive understanding—of scattering cross sections are lacking. Here, we report the measurement of state-to-state differential cross sections on the collision of state-selected and velocity-controlled nitric oxide (NO) radicals and oxygen (O2) molecules. Using velocity map imaging of the scattered NO radicals, the full product-pair correlations of rotational excitation that occurs in both collision partners from individual encounters are revealed. The correlated cross sections show surprisingly good agreement with quantum scattering calculations using ab initio NO-O2 potential energy surfaces. The observations show that the well-known energy-gap law that governs atom-molecule collisions does not generally apply to bimolecular excitation processes, and reveal a propensity rule for the vector correlation of product angular momenta.
Elastic and inelastic scattering of neutrons from 56Fe
NASA Astrophysics Data System (ADS)
Ramirez, Anthony Paul; McEllistrem, M. T.; Liu, S. H.; Mukhopadhyay, S.; Peters, E. E.; Yates, S. W.; Vanhoy, J. R.; Harrison, T. D.; Rice, B. G.; Thompson, B. K.; Hicks, S. F.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.
2015-10-01
The differential cross sections for elastic and inelastic scattered neutrons from 56Fe have been measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator) for incident neutron energies between 2.0 and 8.0 MeV and for the angular range 30° to 150°. Time-of-flight techniques and pulse-shape discrimination were employed for enhancing the neutron energy spectra and for reducing background. An overview of the experimental procedures and data analysis for the conversion of neutron yields to differential cross sections will be presented. These include the determination of the energy-dependent detection efficiencies, the normalization of the measured differential cross sections, and the attenuation and multiple scattering corrections. Our results will also be compared to evaluated cross section databases and reaction model calculations using the TALYS code. This work is supported by grants from the U.S. Department of Energy-Nuclear Energy Universities Program: NU-12-KY-UK-0201-05, and the Donald A. Cowan Physics Institute at the University of Dallas.
Off-energy-shell p-p scattering at sub-Coulomb energies via the Trojan horse method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumino, A.; Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Universita di Catania, Catania; Universita Kore di Enna, Enna
2008-12-15
Two-proton scattering at sub-Coulomb energies has been measured indirectly via the Trojan horse method applied to the p + d{yields}p + p + n reaction to investigate off-energy shell effects for scattering processes. The three-body experiment was performed at 5 and 4.7 MeV corresponding to a p-p relative energy ranging from 80 to 670 keV. The free p-p cross section exhibits a deep minimum right within this relative energy region due to Coulomb plus nuclear destructive interference. No minimum occurs instead in the Trojan horse p-p cross section, which was extracted by employing a simple plane-wave impulse approximation. A detailedmore » formalism was developed to build up the expression of the theoretical half-off-shell p-p cross section. Its behavior agrees with the Trojan horse data and in turn formally fits the n-n, n-p, and nuclear p-p cross sections given the fact that in its expression the Coulomb amplitude is negligible with respect to the nuclear one. These results confirm the Trojan horse suppression of the Coulomb amplitude for scattering due to the off-shell character of the process.« less
Contribution of three nucleon force investigated in deuteron-proton breakup reaction
NASA Astrophysics Data System (ADS)
Parol, W.; Kozela, A.; Ciepał, I.; Bodek, K.; Jamroz, B.; Kalantar-Nayestanaki, N.; Khatri, G.; Kistryn, St.; Kłos, B.; Kuboś, J.; Kulessa, P.; Magiera, A.; Mazumdar, I.; Messchendorp, J. G.; Rozpędzik, D.; Rusnok, A.; Skwira-Chalot, I.; Stephan, E.; Wilczek, A.; Włoch, B.; Wrońska, A.; Zejma, J.
2016-11-01
The elastic scattering and deuteron breakup data were collected in the experiment performed at KVI (Groningen) with use of unpolarized deuteron beam with energy of 80 MeV per nucleon, impinging on hydrogen target. The procedure applied to determine total integrated luminosity is presented. The result will be used for normalization of the differential cross section for the deuteron-proton breakup reaction.
Parity Violation in Proton-Proton Scattering at Intermediate Energies
DOE R&D Accomplishments Database
Yuan, V.; Frauenfelder, H.; Harper, R. W.; Bowman, J. D.; Carlini, R.; MacArthur, D. W.; Mischke, R. E.; Nagle, D. E.; Talaga, R. L.; McDonald, A. B.
1986-05-01
Results of a measurement of parity nonconservation in the anti p-p total cross sections at 800-MeV are presented. The dependence of transmission on beam properties and correction for systematic errors are discussed. The measured longitudinal asymmetry is A{sub L} = (+2.4 +- 1.1(statistical) +- 0.1(systematic)) x 10{sup -7}. A proposed experiment at 230 MeV is discussed.
Shear viscosity of an ultrarelativistic Boltzmann gas with isotropic inelastic scattering processes
NASA Astrophysics Data System (ADS)
El, A.; Lauciello, F.; Wesp, C.; Bouras, I.; Xu, Z.; Greiner, C.
2014-05-01
We derive an analytic expression for the shear viscosity of an ultra-relativistic gas in presence of both elastic 2→2 and inelastic 2↔3 processes with isotropic differential cross sections. The derivation is based on the entropy principle and Grad's approximation for the off-equilibrium distribution function. The obtained formula relates the shear viscosity coefficient η to the total cross sections σ22 and σ23 of the elastic resp. inelastic processes. The values of shear viscosity extracted using the Green-Kubo formula from kinetic transport calculations are shown to be in excellent agreement with the analytic results which demonstrates the validity of the derived formula.
Novel Role of Superfluidity in Low-Energy Nuclear Reactions.
Magierski, Piotr; Sekizawa, Kazuyuki; Wlazłowski, Gabriel
2017-07-28
We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses the fusion cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in noncentral collisions are significantly affected. The modification of the fusion cross section and possibilities for its experimental detection are discussed.
Neutron Transmission of Single-crystal Sapphire Filters
NASA Astrophysics Data System (ADS)
Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.
2005-05-01
An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.
Quantum Theory of (H,H{Sub 2}) Scattering: Approximate Treatments of Reactive Scattering
DOE R&D Accomplishments Database
Tang, K. T.; Karplus, M.
1970-10-01
A quantum mechanical study is made of reactive scattering in the (H, H{sub 2}) system. The problem is formulated in terms of a form of the distorted-wave Born approximation (DWBA) suitable for collisions in which all particles have finite mass. For certain incident energies, differential and total cross sections, as well as other attributes of the reactive collisions, (e.g. reaction configuration), are determined. Two limiting models in the DWBA formulation are compared; in one, the molecule is unperturbed by the incoming atom and in the other, the molecule adiabatically follows the incoming atom. For thermal incident energies and semi-empirical interaction potential employed, the adiabatic model seems to be more appropriate. Since the DWBA method is too complicated for a general study of the (H, H{sub 2}) reaction, a much simpler approximation method, the ?linear model? is developed. This model is very different in concept from treatments in which the three atoms are constrained to move on a line throughout the collision. The present model includes the full three-dimensional aspect of the collision and it is only the evaluation of the transition matrix element itself that is simplified. It is found that the linear model, when appropriately normalized, gives results in good agreement with that of the DWBA method. By application of this model, the energy dependence, rotational state of dependence and other properties of the total and differential reactions cross sections are determined. These results of the quantum mechanical treatment are compared with the classical calculation for the same potential surface. The most important result is that, in agreement with the classical treatment, the differential cross sections are strongly backward peaked at low energies and shifts in the forward direction as the energy increases. Finally, the implications of the present calculations for a theory of chemical kinetics are discussed.
AdS Black Disk Model for Small-x Deep Inelastic Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornalba, Lorenzo; Costa, Miguel S.; Penedones, Joao
2010-08-13
Using the approximate conformal invariance of QCD at high energies we consider a simple anti-de Sitter black disk model to describe saturation in deep inelastic scattering. Deep inside saturation the structure functions have the same power law scaling, F{sub T}{approx}F{sub L}{approx}x{sup -{omega}}, where {omega} is related to the expansion rate of the black disk with energy. Furthermore, the ratio F{sub L}/F{sub T} is given by the universal value (1+{omega}/3+{omega}), independently of the target. For {gamma}*-{gamma}* scattering at high energies we obtain explicit expressions and ratios for the total cross sections of transverse and longitudinal photons in terms of the singlemore » parameter {omega}.« less
Neutron Scattering Differential Cross Sections for 12C
NASA Astrophysics Data System (ADS)
Byrd, Stephen T.; Hicks, S. F.; Nickel, M. T.; Block, S. G.; Peters, E. E.; Ramirez, A. P. D.; Mukhopadhyay, S.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.
2016-09-01
Because of the prevalence of its use in the nuclear energy industry and for our overall understanding of the interactions of neutrons with matter, accurately determining the effects of fast neutrons scattering from 12C is important. Previously measured 12C inelastic neutron scattering differential cross sections found in the National Nuclear Data Center (NNDC) show significant discrepancies (>30%). Seeking to resolve these discrepancies, neutron inelastic and elastic scattering differential cross sections for 12C were measured at the University of Kentucky Acceleratory Laboratory for incident neutron energies of 5.58, 5.83, and 6.04 MeV. Quasi mono-energetic neutrons were scattered off an enriched 12C target (>99.99%) and detected by a C6D6 liquid scintillation detector. Time-of-flight (TOF) techniques were used to determine scattered neutron energies and allowed for elastic/inelastic scattering distinction. Relative detector efficiencies were determined through direct measurements of neutrons produced by the 2H(d,n) and 3H(p,n) source reactions, and absolute normalization factors were found by comparing 1H scattering measurements to accepted NNDC values. This experimental procedure has been successfully used for prior neutron scattering measurements and seems well-suited to our current objective. Significant challenges were encountered, however, with measuring the neutron detector efficiency over the broad incident neutron energy range required for these measurements. Funding for this research was provided by the National Nuclear Security Administration (NNSA).
Shankar, P Mohana
2003-03-01
A compound probability density function (pdf) is presented to describe the envelope of the backscattered echo from tissue. This pdf allows local and global variation in scattering cross sections in tissue. The ultrasonic backscattering cross sections are assumed to be gamma distributed. The gamma distribution also is used to model the randomness in the average cross sections. This gamma-gamma model results in the compound scattering pdf for the envelope. The relationship of this compound pdf to the Rayleigh, K, and Nakagami distributions is explored through an analysis of the signal-to-noise ratio of the envelopes and random number simulations. The three parameter compound pdf appears to be flexible enough to represent envelope statistics giving rise to Rayleigh, K, and Nakagami distributions.
Double parton scattering in $$p\\bar p$$ interactions at $$\\sqrt{s} = 1.96$$ TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogota, O.
2016-12-28
We present the observation of doubly producedmore » $$J / \\psi$$ mesons as an example of processes containing a substantial fraction of double parton scattering. Measurements of the production cross sections for singly and doubly-produced $$J/\\psi$$ mesons were done with the D0 detector at Fermilab in $$p\\bar{p}$$ collisions at $$\\sqrt{s}$$ = 1.96 TeV with an integrated luminosity of 8.1 fb$$^{-1}$$. For the first time, the double $$J / \\psi$$ production cross section is separated into two parts: contributions from both single and double parton scattering. Lastly, this separation allowed us to determine the effective cross section σ eff, a parameter related to the parton spatial density inside the hadron.« less
NASA Astrophysics Data System (ADS)
Samartzis, Peter C.; Smith, Derek J.; Rakitzis, T. Peter; Kitsopoulos, Theofanis N.
2000-07-01
The bimolecular reaction of atomic chlorine with ethane at a collision energy of 0.36 eV is studied in a single-beam experiment, using velocity mapping of a state-selected reaction product. The differential cross-section for HCl( v=0, J=1) product is directly determined from its Abel-inverted velocity map image. Our results are similar to previous measurements of the differential cross-section and suggest that the HCl( v=0, J=1) scattering is broad with a side-scattered peak. This Letter demonstrates the power of velocity mapping for measuring differential cross-sections for reactions for which one of the reactants is produced photolytically.
Elastic and transport cross sections for inert gases in a hydrogen plasma
NASA Astrophysics Data System (ADS)
Krstic, Predrag
2005-05-01
Accurate elastic differential and integral scattering and transport cross sections have been computed using a fully quantum-mechanical approach for hydrogen ions (H^+, D^+ and T^+) colliding with Neon, Krypton and Xenon, in the center of mass energy range 0.1 to 200 eV. The momentum transfer and viscosity cross sections have been extended to higher keV collision energies using a classical, three-body scattering method. The results were compared with previously calculated values for Argon and Helium, as well as with simple analytical models. The cross sections, tabulated and available through the world wide web (www-cfadc.phy.ornl.gov) are of significance in fusion plasma modeling, gaseous electronics and other plasma applications.
The evaluation of experimental data in fast range for n + 56Fe(n,inl)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Jing; Herman, M.; Ge, Zhigang
Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less
The evaluation of experimental data in fast range for n + 56Fe(n,inl)
Qian, Jing; Herman, M.; Ge, Zhigang; ...
2017-09-13
Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less
NASA Astrophysics Data System (ADS)
Kunieda, Satoshi
2017-09-01
We report the status of the R-matrix code AMUR toward consistent cross-section evaluation and covariance analysis for the light-mass nuclei. The applicable limit of the code is extended by including computational capability for the charged-particle elastic scattering cross-sections and the neutron capture cross-sections as example results are shown in the main texts. A simultaneous analysis is performed on the 17O compound system including the 16O(n,tot) and 13C(α,n)16O reactions together with the 16O(n,n) and 13C(α,α) scattering cross-sections. It is found that a large theoretical background is required for each reaction process to obtain a simultaneous fit with all the experimental cross-sections we analyzed. Also, the hard-sphere radii should be assumed to be different from the channel radii. Although these are technical approaches, we could learn roles and sources of the theoretical background in the standard R-matrix.
Pion Elastic Scattering and the (pion Pion' Proton) Reaction on HELIUM-4 in the DELTA(3,3) Region
NASA Astrophysics Data System (ADS)
Jones, Mark Kevin
This dissertation presents measurements and analyses of pi^+ and pi ^{-} elastic scattering, and ( pi^{+}, pi^ {+^'}p) and ( pi^{-},pi^{-^ '}p) reactions on ^4 He. Both experiments were done at the Los Alamos Meson Physics Facility using the Energetic Pion Channel and Spectrometer. The ^4He( pi,pi) elastic scattering cross sections were measured for pi^{+} scattering at scattering angles theta _{lab} = 110^circ -170^circ and five incident energies between T_{pi } = 90 and 180 MeV. Elastic pi ^{-} cross sections were measured only at T_{pi} = 180 MeV. The ^4He(pi, pi' p) angular correlation functions were measured for pi^{+} and pi^{-} at T_{pi} = 180 and theta_{pi^' } = 30^circ, 40 ^circ, 60^circ , 80^circ and at T _pi = 140 MeV and theta_{pi^'} = 40^circ. Using scintillators at eight angles the protons were detected in coincidence with the inelastically scattered pions. In the ^4He(pi, pi^' p) experiment unexpectedly large ratios R_{pi p} = {sigma(pi^{+}, pi^{+} p)}over{sigma( pi^{-},pi^{-} p)} of up to 50 were observed near the quasi -free angle in the angular correlation functions summed over 30.5 to 39.5 MeV in ^4He excitation energy. The (pi,pi' p) data were analyzed by a distorted wave impulse approximation code 3DEE (Ch 82), (Re 82). 3DEE models the ( pi,pi' p) reaction as a pion -induced proton knock-out and includes distortions in the incident pion, the outgoing pion, and the emitted proton waves. The calculations give R_{pi p} between 6 and 9 at all proton and pion angles. The pi^{+} calculations reproduce the absolute pi^ {+} cross sections fairly well. The pi^{-} calculations have a peak in the angular correlation function near the quasi-free angle, in contrast to the pi^ {-} data which displays a flat distribution. At proton angles near 180^circ in the center of mass of the struck mass 4 system, the measured pi^{-} cross sections are larger than the pi^ {+} cross section which is the reverse of the ratio at 0^circ. These features of the measured pi^- cross sections indicate that interference between a quasi -free process and another process is important in the ( pi,pi^' p) reaction. The measurement of ^4He( pi,pi) elastic scattering data at theta_pi = 110 ^circ-170^circ extends the angular range of previous ^4He(pi,pi) data measured at EPICS. The experiment provides high quality elastic scattering data at backward angles. The pi^{-} elastic cross section at T_pi = 180 MeV measured for this dissertation when extrapolated to theta _{cm} = 180^circ is about a factor of two smaller than the cross section measured previously at CERN (Ref. (Bi 78)). The data were analyzed using a microscopic optical model and by a phase shift fit.
Experimental and computational studies of electromagnetic cloaking at microwaves
NASA Astrophysics Data System (ADS)
Wang, Xiaohui
An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (epsilon r>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can be easily scaled to various operating frequencies. The simulation results show that the multi-layer cylindrical cloak essentially outperforms the similarly sized metamaterials-based cloak designed by using the transformation optics-based reduced parameters. For the designed spherical cloak, the simulated scattering pattern shows that the total scattering cross section is greatly reduced. In addition, the scattering in specific directions could be significantly reduced. It is shown that the cloaking efficiency for larger targets could be improved by employing lossy materials in the shell. At last, we propose to hide a target inside a waveguide structure filled with only epsilon near zero materials, which are easy to implement in practice. The cloaking efficiency of this method, which was found to increase for large targets, has been confirmed both theoretically and by simulations.
NASA Technical Reports Server (NTRS)
Klann, P. G.; Lantz, E.; Mayo, W. T.
1973-01-01
A series of central core and core-reflector interface sample replacement experiments for 16 materials performed in the NASA heavy-metal-reflected, fast spectrum critical assembly (NCA) were analyzed in four and 13 groups using the GAM 2 cross-section set. The individual worths obtained by TDSN and DOT multidimensional transport theory calculations showed significant differences from the experimental results. These were attributed to cross-section uncertainties in the GAM 2 cross sections. Simultaneous analysis of the measured and calculated sample worths permitted separation of the worths into capture and scattering components which systematically provided fast spectrum averaged correction factors to the magnitudes of the GAM 2 absorption and scattering cross sections. Several Los Alamos clean critical assemblies containing Oy, Ta, and Mo as well as one of the NCA compositions were reanalyzed using the corrected cross sections. In all cases the eigenvalues were significantly improved and were recomputed to within 1 percent of the experimental eigenvalue. A comparable procedure may be used for ENDF cross sections when these are available.
Accessing the real part of the forward elastic J/Psi-p and Phi-p threshold scattering amplitudes
NASA Astrophysics Data System (ADS)
Gryniuk, Oleksii; Vanderhaeghen, Marc
2017-09-01
We provide an updated analysis of the forward J / ψ -p scattering amplitude, relating its imaginary part to γp -> J / ψp and γp -> c c X cross section data, and calculating its real part through a once-subtracted dispersion relation. From a global fit to both differential and total cross section data, we extract a value for the spin-averaged J / ψ -p s-wave scattering length aψp = 0.046 +/- 0.005 fm, which can be translated into a J / ψ binding energy in nuclear matter Bψ = 2.7 +/- 0.3 MeV. We estimate the forward-backward asymmetry to the γp ->e-e+ p process around the J / ψ resonance, which results from interchanging the leptons in the interference between the J / ψ production and the Bethe-Heitler mechanisms. We show that this asymmetry can reach values around -25%. Its measurement can thus provide a very sensitive observable for a refined extraction of aψp. A preliminary analysis of the ϕ-p forward scattering led to the estimated forward-backward asymmetry reaching values of about -20% for the beam energies E = 2.2 , 4.4 GeV. The suitable kinematics were investigated for the specific setup of HMS and SHMS detectors of Hall C at JLab. Studies for the other JLab experiments (e.g. GlueX, SOLID) are ongoing.
Elastic and inelastic neutron scattering cross sections for 12C at En = 5.9, 6.1, and 7.0 MeV
NASA Astrophysics Data System (ADS)
Lyons, Elizabeth; Hicks, Sally; Morin, Theodore; Derdeyn, Elizabeth; Peters, Erin
2017-09-01
Measurements of neutron elastic and inelastic scattering differential cross sections from 12C have been performed at incident neutron energies of 5.9, 6.1, and 7.0 MeV. Comparisons of existing experimental cross sections (NNDC) at these incident neutron energies reveal large discrepancies. Accurate measurements of 12C cross sections are vital to facilitate precise calculations regarding criticality conditions for nuclear reactors, advances in security screening methods, and better understanding astrophysical and nuclear phenomenon. During preliminary measurements of 12C cross sections at the University of Kentucky Accelerator Laboratory (UKAL), we realized the relative efficiency of the deuterated benzene (main) detector was needed over an unusually large range of neutron energies due to the high Q value of the first excited state of 12C. Those experiments were repeated during the summer of 2017 to measure in situ the relative detector efficiency with better beam conditions and a better understanding of background observed from the 2H(d, n)3He source reaction. The resulting improved detector efficiency was used in determining the neutron elastic and inelastic scattering cross sections. While the former were found to be in excellent agreement with evaluated cross sections from ENDF, the latter show some discrepancies, especially at 6.1 MeV. Our results will be presented. Research is supported by USDOE-NNSA-SSAP: NA0002931, NSF: PHY-1606890, and the Donald A. Cowan Physics Institute at the University of Dallas.
Energy transfer of highly vibrationally excited biphenyl.
Hsu, Hsu Chen; Dyakov, Yuri; Ni, Chi-Kung
2010-11-07
The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold biphenyl in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer of naphthalene, energy transfer of biphenyl shows more forward scattering, less complex formation, larger cross section for vibrational to translational (V→T) energy transfer, smaller cross section for translational to vibrational and rotational (T→VR) energy transfer, larger total collisional cross section, and more energy transferred from vibration to translation. Significant increase in the large V→T energy transfer probabilities, termed supercollisions, was observed. The difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally cold biphenyl is very similar to the difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally hot naphthalene. The low-frequency vibrational modes with out-of-plane motion and rotationlike wide-angle motion are attributed to make the energy transfer of biphenyl different from that of naphthalene.
NASA Technical Reports Server (NTRS)
Starr, W. L.
1976-01-01
Absorption cross sections for O2, N2, CO2, CH4, N2O, and CO have been measured at each of the lines of the atomic oxygen triplet at 1302, 1305, and 1306 A. Radiation resonantly scattered from oxygen atoms at a temperature of about 300 K was used for the line source. Absorber temperatures were also near 300 K. Direct application of the Lambert-Beer absorption equation yielded pressure-dependent cross sections for carbon monoxide at each line of the O I triplet. Reasons for this apparent dependence are presented and discussed.
John A. Schneeloch; Xu, Zhijun; Winn, B.; ...
2015-12-28
We report neutron inelastic scattering experiments on single-crystal PbMg 1/3Nb 2/3O 3 doped with 32% PbTiO 3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E showmore » no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less
Elastic electron scattering from the DNA bases cytosine and thymine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colyer, C. J.; Bellm, S. M.; Lohmann, B.
2011-10-15
Cross-section data for electron scattering from biologically relevant molecules are important for the modeling of energy deposition in living tissue. Relative elastic differential cross sections have been measured for cytosine and thymine using the crossed-beam method. These measurements have been performed for six discrete electron energies between 60 and 500 eV and for detection angles between 15 deg. and 130 deg. Calculations have been performed via the screen-corrected additivity rule method and are in good agreement with the present experiment.
Scaling Deviations for Neutrino Reactions in Aysmptotically Free Field Theories
DOE R&D Accomplishments Database
Wilczek, F. A.; Zee, A.; Treiman, S. B.
1974-11-01
Several aspects of deep inelastic neutrino scattering are discussed in the framework of asymptotically free field theories. We first consider the growth behavior of the total cross sections at large energies. Because of the deviations from strict scaling which are characteristic of such theories the growth need not be linear. However, upper and lower bounds are established which rather closely bracket a linear growth. We next consider in more detail the expected pattern of scaling deviation for the structure functions and, correspondingly, for the differential cross sections. The analysis here is based on certain speculative assumptions. The focus is on qualitative effects of scaling breakdown as they may show up in the X and y distributions. The last section of the paper deals with deviations from the Callan-Gross relation.
Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe
2017-03-01
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
Mitri, F G
2015-09-01
The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. Copyright © 2015 Elsevier B.V. All rights reserved.
Optical-model abrasion cross sections for high-energy heavy ions
NASA Technical Reports Server (NTRS)
Townsend, L. W.
1981-01-01
Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.
Vibrational excitation of water by electron impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M. A.; Winstead, C.; McKoy, V.
2009-05-15
Experimental and calculated differential cross sections (DCSs) for electron-impact excitation of the (010) bending mode and unresolved (100) symmetric and (001) antisymmetric stretching modes of water are presented. Measurements are reported at incident energies of 1-100 eV and scattering angles of 10 deg. - 130 deg. and are normalized to the elastic-scattering DCSs for water determined earlier by our group. The calculated cross sections are obtained in the adiabatic approximation from fixed-nuclei, electronically elastic scattering calculations using the Schwinger multichannel method. The present results are compared to available experimental and theoretical data.
Microwave and video sensor fusion for the shape extraction of 3D space objects
NASA Technical Reports Server (NTRS)
Shaw, Scott W.; Defigueiredo, Rui J. P.; Krishen, Kumar
1987-01-01
A new system for the fusion of optical image data and polarized radar scattering cross-sections is presented. By considering the scattering data in conjunction with image data, the problem of ambiguity can be reduced. Only a small part of the surface needs to be reconstructed from the radar cross-sections; the remaining portion is constrained by the optical image.
Constraints for proton structure fluctuations from exclusive scattering
NASA Astrophysics Data System (ADS)
Mäntysaari, H.; Schenke, B.
2017-08-01
We constrain the average density profile of the proton and the amount of event-by-event fluctuations by simultaneously calculating the coherent and incoherent exclusive diffractive vector meson production cross section in deep inelastic scattering. Working within the Color Glass Condensate picture, we find that the gluonic density of the proton must have large geometric fluctuations in order to describe the experimentally measured large incoherent cross section.
Low-Energy Electron Interactions with CF_4
NASA Astrophysics Data System (ADS)
Christophorou, Loucas G.; Olthoff, James K.; Rao, M. V. V. S.
1996-10-01
Carbon tetrafluoride is one of the most widely used components of feed gas mixtures employed for a variety of plasma assisted materials processing applications. In this presentation, we synthesize and assess the available information on the cross sections and rate coefficients of collisional interations of CF4 with electrons.(L. G. Christophorou, J. K. Olthoff, and M.V. V. S. Rao, J. Phys. Chem. Ref. Data, submitted (May 1996)) A ``recommended'' data set is presented, based upon available data for: (i) cross sections for electron scattering (total, elastic, momentum, differential, inelastic), electron impact ionization (total and partial), electron impact dissociation, and electron attachment; and (ii) coefficients for electron transport, electron attachment, and electron impact ionization. -Research sponsored in part by the U.S. Air Force Wright Laboratory under contract F33615-96-C-2600 with the University of Tennessee. Also, Department of Physics, The University of Tennessee, Knoxville, TN.
NASA Technical Reports Server (NTRS)
James, G. K.; Ajello, J. M.; Kanik, I.; Slevin, J.; Franklin, B.; Shemansky, D.
1993-01-01
The electron-atomic hydrogen scattering system is an important testing ground for theoretical models and has received a great deal of attention from experimentalists and theoreticians alike over the years. A complete description of the excitation process requires a knowledge of many different parameters, and experimental measurements of these parameters have been performed in various laboratories around the world. As far as total cross section data are concerned it has been noted that the discrepancy between the data of Long et al. and Williams for n = 2 excitations needs to be resolved in the interests of any further refinement of theory. We report new measurements of total cross sections and atomic line polarizations for both n=2 and n=3 excitations at energies from threshold to 2000 eV...
Collisions of low-energy electrons with isopropanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettega, M. H. F.; Winstead, C.; McKoy, V.
2011-10-15
We report measured and calculated cross sections for elastic scattering of low-energy electrons by isopropanol (propan-2-ol). The experimental data were obtained using the relative flow technique with helium as the standard gas and a thin aperture as the collimating target gas source, which permits use of this method without the restrictions imposed by the relative flow pressure conditions on helium and the unknown gas. The differential cross sections were measured at energies of 1.5, 2, 3, 5, 6, 8, 10, 15, 20, and 30 eV and for scattering angles from 10 deg. to 130 deg. The cross sections were computedmore » over the same energy range employing the Schwinger multichannel method in the static-exchange plus polarization approximation. Agreement between theory and experiment is very good. The present data are compared with previously calculated and measured results for n-propanol, the other isomer of C{sub 3}H{sub 7}OH. Although the integral and momentum transfer cross sections for the isomers are very similar, the differential cross sections show a strong isomeric effect: In contrast to the f-wave behavior seen in scattering by n-propanol, d-wave behavior is observed in the cross sections of isopropanol. These results corroborate our previous observations in electron collisions with isomers of C{sub 4}H{sub 9}OH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, M.A.
1976-08-01
A theory of electron-molecule scattering based on the fixed-nuclei approximation in a body-fixed reference frame is formulated and applied to e-CO/sub 2/ collisions in the energy range from 0.07 to 10.0 eV. The procedure used is a single-center coupled-channel method which incorporates a highly accurate static interaction potential, an approximate local exchange potential, and an induced polarization potential. Coupled equations are solved by a modification of the integral equations algorithm; several partial waves are required in the region of space near the nuclei, and a transformation procedure is developed to handle the consequent numerical problems. The potential energy is convergedmore » by separating electronic and nuclear contributions in a Legendre-polynomial expansion and including a large number of the latter. Formulas are derived for total elastic, differential, momentum transfer, and rotational excitation cross sections. The Born and asymptotic decoupling approximations are derived and discussed in the context of comparison with the coupled-channel cross sections. Both are found to be unsatisfactory in the energy range under consideration. An extensive discussion of the technical aspects of calculations for electron collisions with highly nonspherical targets is presented, including detailed convergence studies and a discussion of various numerical difficulties. The application to e-CO/sub 2/ scattering produces converged results in good agreement with observed cross sections. Various aspects of the physics of this collision are discussed, including the 3.8 eV shape resonance, which is found to possess both p and f character, and the anomalously large low-energy momentum transfer cross sections, which are found to be due to ..sigma../sub g/ symmetry. Comparison with static and static-exchange approximations are made.« less
Berlin, Asher; Hooper, Dan; McDermott, Samuel D.
2015-12-28
We consider a complete list of simplifieed models in which Majorana dark matter particles annihilate at tree level to hh or hZ finnal states, and calculate the loop-induced elastic scattering cross section with nuclei in each case. Expressions for these annihilation and elastic scattering cross sections are provided, and can be easily applied to a variety of UV complete models. We identify several phenomenologically viable scenarios, including dark matter that annihilates through the s-channel exchange of a spin-zero mediator or through the t-channel exchange of a fermion. Although the elastic scattering cross sections predicted in this class of models aremore » generally quite small, XENON1Tand LZ should be sensitive to significant regions of this parameter space. Models in which the dark matter annihilates to hh or hZ can also generate a gamma-ray signal that is compatible with the excess observed from the Galactic Center.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlin, Asher; Hooper, Dan; McDermott, Samuel D.
We consider a complete list of simplifieed models in which Majorana dark matter particles annihilate at tree level to hh or hZ finnal states, and calculate the loop-induced elastic scattering cross section with nuclei in each case. Expressions for these annihilation and elastic scattering cross sections are provided, and can be easily applied to a variety of UV complete models. We identify several phenomenologically viable scenarios, including dark matter that annihilates through the s-channel exchange of a spin-zero mediator or through the t-channel exchange of a fermion. Although the elastic scattering cross sections predicted in this class of models aremore » generally quite small, XENON1Tand LZ should be sensitive to significant regions of this parameter space. Models in which the dark matter annihilates to hh or hZ can also generate a gamma-ray signal that is compatible with the excess observed from the Galactic Center.« less
Delta-Isobar Production in the Hard Photodisintegration of a Deuteron
NASA Astrophysics Data System (ADS)
Granados, Carlos; Sargsian, Misak
2010-02-01
Hard photodisintegration of the deuteron in delta-isobar production channels is proposed as a useful process in identifying the quark structure of hadrons and of hadronic interactions at large momentum and energy transfer. The reactions are modeled using the hard re scattering model, HRM, following previous works on hard breakup of a nucleon nucleon (NN) system in light nuclei. Here,quantitative predictions through the HRM require the numerical input of fits of experimental NN hard elastic scattering cross sections. Because of the lack of data in hard NN scattering into δ-isobar channels, the cross section of the corresponding photodisintegration processes cannot be predicted in the same way. Instead, the corresponding NN scattering process is modeled through the quark interchange mechanism, QIM, leaving an unknown normalization parameter. The observables of interest are ratios of differential cross sections of δ-isobar production channels to NN breakup in deuteron photodisintegration. Both entries in these ratios are derived through the HRM and QIM so that normalization parameters cancel out and numerical predictions can be obtained. )
Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications
NASA Astrophysics Data System (ADS)
Eiles, Matthew; Gonthier, P. L.; Baring, M. G.; Wadiasingh, Z.
2013-04-01
Various telescopes including RXTE, INTEGRAL and Suzaku have detected non-thermal X-ray emission in the 10 - 200 keV band from strongly magnetic neutron stars. Inverse Compton scattering, a quantum-electrodynamical process, is believed to be a leading candidate for the production of this intense X-ray radiation. Magnetospheric conditions are such that electrons may well possess ultra-relativistic energies, which lead to attractive simplifications of the cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths and Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. However, inverse Compton scattering can cool electrons down to mildly-relativistic energies, necessitating the development of a more general case where the incoming photons acquire nonzero incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. In this paper, we develop results pertaining to this general case using ST formalism, and treating the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Four possible scattering modes (parallel-parallel, perpendicular-perpendicular, parallel-perpendicular, and perpendicular-parallel) encapsulate the polarization dependence of the cross section. We present preliminary analytic and numerical investigations of the magnitude of the extra Landau state contributions to obtain the full cross section, and compare these new analytic developments with the spin-averaged cross sections, which we develop in parallel. Results will find application to various neutron star problems, including computation of Eddington luminosities in the magnetospheres of magnetars. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), and the NASA Astrophysics Theory and Fundamental Program.
Measuring and modeling the backscattering cross section of a leaf
NASA Technical Reports Server (NTRS)
Senior, T. B. A.; Sarabandi, K.; Ulaby, F. T.
1987-01-01
Leaves are a significant feature of any vegetation canopy, and for remote sensing purposes it is important to develop an effective model for predicting the scattering from a leaf. From measurements of the X band backscattering cross section of a coleus leaf in varying stages of dryness, it is shown that a uniform resistive sheet constitutes such a model for a planar leaf. The scattering is determined by the (complex) resistivity which is, in turn, entirely specified by the gravimetric moisture content of the leaf. Using an available asymptotic expression for the scattering from a rectangular resistive plate which includes, as a special case, a metallic plate whose resistivity is zero, the computed backscattering cross sections for both principal polarizations are found to be in excellent agreement with data measured for rectangular sections of leaves with different moisture contents. If the resistivity is sufficiently large, the asymptotic expressions do not differ significantly from the physical optics ones, and for naturally shaped leaves as well as rectangular sections, the physical optics approximation in conjunction with the resistive sheet model faithfully reproduces the dominant feataures of the scattering patterns under all moisture conditions.
Scaled plane-wave Born cross sections for atoms and molecules
NASA Astrophysics Data System (ADS)
Tanaka, H.; Brunger, M. J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A. R. P.
2016-04-01
Integral cross sections for optically allowed electronic-state excitations of atoms and molecules by electron impact, by applying scaled plane-wave Born models, are reviewed. Over 40 years ago, Inokuti presented an influential review of charged-particle scattering, based on the theory pioneered by Bethe forty years earlier, which emphasized the importance of reliable cross-section data from low eV energies to high keV energies that are needed in many areas of radiation science with applications to astronomy, plasmas, and medicine. Yet, with a couple of possible exceptions, most computational methods in electron-atom scattering do not, in general, overlap each other's validity range in the region from threshold up to 300 eV and, in particular, in the intermediate region from 30 to 300 eV. This is even more so for electron-molecule scattering. In fact this entire energy range is of great importance and, to bridge the gap between the two regions of low and high energy, scaled plane-wave Born models were developed to provide reliable, comprehensive, and absolute integral cross sections, first for ionization by Kim and Rudd and then extended to optically allowed electronic-state excitation by Kim. These and other scaling models in a broad, general application to electron scattering from atoms and molecules, their theoretical basis, and their results for cross sections along with comparison to experimental measurements are reviewed. Where possible, these data are also compared to results from other computational approaches.
NASA Astrophysics Data System (ADS)
Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.
2005-01-01
The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1-103) obtained from multiconfiguration Dirac-Fock self-consistent calculations. For comparison purposes, three simple analytical approximations to the electron density of neutral atoms (corresponding to the Thomas-Fermi, the Thomas-Fermi-Dirac and the Dirac-Hartree-Fock-Slater models) are also included. For calculations of elastic scattering by ions, the electron density should be provided by the user. The exchange potential for electron scattering can be selected among three different analytical approximations (Thomas-Fermi, Furness-McCarthy, Riley-Truhlar). The offered options for the correlation-polarization potential are based on the empirical Buckingham potential. The imaginary absorption potential is calculated from the local-density approximation proposed by Salvat [Phys. Rev. A 68 (2003) 012708]. Program summaryTitle of program:ELSEPA Catalogue identifier: ADUS Program summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADUS Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland License provisions: none Computer for which the program is designed and others in which it is operable: Any computer with a FORTRAN 77 compiler Operating systems under which the program has been tested: Windows XP, Windows 2000, Debian GNU/Linux 3.0r0 (sarge) Compilers:Compaq Visual Fortran v6.5 (Windows); GNU FORTRAN, g77 (Windows and Linux) Programming language used: FORTRAN 77 No. of bits in a word: 32 Memory required to execute with typical data: 0.6 Mb No. of lines in distributed program, including test data, etc.:135 489 No. of bytes in distributed program, including test data, etc.: 1 280 006 Distribution format: tar.gz Keywords: Dirac partial-wave analysis, electron elastic scattering, positron elastic scattering, differential cross sections, momentum transfer cross sections, transport cross sections, scattering amplitudes, spin polarization, scattering by complex potentials, high-energy atomic screening functions Nature of the physical problem: The code calculates differential cross sections, total cross sections and transport cross sections for single elastic scattering of electrons and positrons by neutral atoms, positive ions and randomly oriented molecules. For projectiles with kinetic energies less than about 5 MeV, the programs can also compute scattering amplitudes and spin polarization functions. Method of solution: The effective interaction between the projectile and a target atom is represented by a local central potential that can optionally include an imaginary (absorptive) part to account approximately for the coupling with inelastic channels. For projectiles with kinetic energy less that about 5 MeV, the code performs a conventional relativistic Dirac partial-wave analysis. For higher kinetic energies, where the convergence of the partial-wave series is too slow, approximate factorization methods are used. Restrictions on the complexity of the program: The calculations are based on the static-field approximation. The optional correlation-polarization and inelastic absorption corrections are obtained from approximate, semiempirical models. Calculations for molecules are based on a single-scattering independent-atom approximation. To ensure accuracy of the results for scattering by ions, the electron density of the ion must be supplied by the user. Typical running time: on a 2.8 GHz Pentium 4, the calculation of elastic scattering by atoms and ions takes between a few seconds and about two minutes, depending on the atomic number of the target, the adopted potential model and the kinetic energy of the projectile. Unusual features of the program: The program calculates elastic cross sections for electrons and positrons with kinetic energies in a wide range, from a few tens of eV up to about 1 GeV. Calculations can be performed for neutral atoms of all elements, from hydrogen to lawrencium ( Z=1-103), ions and simple molecules. Commercial products are identified to specify the calculational procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, the University of Barcelona or the Polish Academy of Sciences, nor does it imply that the products are necessarily the best available for the purpose.
Ξ-P Scattering and STOPPED-Ξ-12C Reaction
NASA Astrophysics Data System (ADS)
Ahn, J. K.; Aoki, S.; Chung, K. S.; Chung, M. S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Goto, Y.; Higashi, A.; Ieiri, M.; Iijima, T.; Iinuma, M.; Imai, K.; Itow, Y.; Lee, J. M.; Makino, S.; Masaike, A.; Matsuda, Y.; Matsuyama, Y.; Mihara, S.; Nagoshi, C.; Nomura, I.; Park, I. S.; Saito, N.; Sekimoto, M.; Shin, Y. M.; Sim, K. S.; Susukita, R.; Takashima, R.; Takeutchi, F.; Tlustý, P.; Weibe, S.; Yokkaichi, S.; Yoshida, K.; Yoshida, M.; Yoshida, T.; Yamashita, S.
2000-09-01
We report upper limits on the cross sections for the Ξ-p elastic and conversion processes based on the observation of one Ξ-p elastic scattering events with an invisible Λ decay. The cross section for the Ξ-p elastic scattering is, for simplicity, assumming an isotropic angular distribution, found to be 40 mb at 90% confidence level, whereas that for the Ξ-p → ΛΛ reaction is 11 mb at 90% confidence level. While the results on the elastic cross section give no stringent constraint on theoretical estimates, the upper limit on the conversion process suggests that the estimate of the RGM-F model prediction could be ruled out. We also report some preliminary results on the obervation of the stopped-Ξ- hyperon-nucleus interaction with respect to hypernuclear production and existence of doubly-strange H-dibaryon.
Electron scattering by the hydrocarbons C4H6,C5H8 , and C6H10
NASA Astrophysics Data System (ADS)
Kiataki, Matheus B.; Pastega, Diego F.; Bettega, Márcio H. F.
2017-10-01
We report calculated elastic integral and differential cross sections for electron collisions with the hydrocarbons 1,3-butadiene (C4H6 ), 2-methyl-1,3-butadiene (C5H8 ), and 2,3-dimethyl-1,3-butadiene (C6H10 ) for impact energies up to 15 eV. Our calculations were performed with the Schwinger Multichannel Method with pseudopotentials, in the static-exchange and static-exchange plus polarization approximations. These molecules differ for the presence of one methyl group, in the case of C5H8 , and two methyl groups, in the case of C6H10 in substitution of one and two hydrogen atoms in C4H6 , respectively (methylation effect). For the polar molecule 2-methyl-1,3-butadiene, we included the Born closure procedure in order to account for the long-range potential. We found two π* shape resonances in the integral cross section of each one of the molecules studied. The present results are also compared with the experimental values for the resonances positions and with total cross sections available in the literature. In particular, we show that the minimum in the total cross section of C5H8 located at around 1.6 eV and assigned by the authors as a Ramsauer-Townsend minimum is, actually, a valley between the two π* shape resonances. Also for the C5H8 molecule, the enhancement in the total cross section below 1.6 eV is the tail of the low-lying shape resonance and not an effect due to its permanent dipole moment, as suggested by the authors. We discuss the influence of the methylation effect in the shape and magnitude of the elastic cross sections and also in the location of the π* shape resonances of these hydrocarbons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, T.; Amerio, S.; Amidei, D.
We report on a measurement of the D +-meson production cross section as a function of transverse momentum (p T) in proton-antiproton (pmore » $$\\bar{p}$$) collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the Collider Detector at Fermilab in Tevatron Run II and corresponding to 10 fb -1 of integrated luminosity. We use D +→K -π +π + decays fully reconstructed in the central rapidity region |y|<1 with transverse momentum down to 1.5 GeV/c, a range previously unexplored in p$$\\bar{p}$$ collisions. Inelastic p$$\\bar{p}$$ scattering events are selected online using minimally biasing requirements followed by an optimized offline selection. The K -π +π + mass distribution is used to identify the D + signal, and the D + transverse impact-parameter distribution is used to separate prompt production, occurring directly in the hard-scattering process, from secondary production from b-hadron decays. We obtain a prompt D + signal of 2950 candidates corresponding to a total cross section σ(D +,1.5T<14.5 GeV/c,|y|<1)=71.9±6.8(stat)±9.3(syst) μb. While the measured cross sections are consistent with theoretical estimates in each p T bin, the shape of the observed p T spectrum is softer than the expectation from quantum chromodynamics. The results are unique in p$$\\bar{p}$$ collisions and can improve the shape and uncertainties of future predictions.« less
Aaltonen, T.; Amerio, S.; Amidei, D.; ...
2017-05-30
We report on a measurement of the D +-meson production cross section as a function of transverse momentum (p T) in proton-antiproton (pmore » $$\\bar{p}$$) collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the Collider Detector at Fermilab in Tevatron Run II and corresponding to 10 fb -1 of integrated luminosity. We use D +→K -π +π + decays fully reconstructed in the central rapidity region |y|<1 with transverse momentum down to 1.5 GeV/c, a range previously unexplored in p$$\\bar{p}$$ collisions. Inelastic p$$\\bar{p}$$ scattering events are selected online using minimally biasing requirements followed by an optimized offline selection. The K -π +π + mass distribution is used to identify the D + signal, and the D + transverse impact-parameter distribution is used to separate prompt production, occurring directly in the hard-scattering process, from secondary production from b-hadron decays. We obtain a prompt D + signal of 2950 candidates corresponding to a total cross section σ(D +,1.5T<14.5 GeV/c,|y|<1)=71.9±6.8(stat)±9.3(syst) μb. While the measured cross sections are consistent with theoretical estimates in each p T bin, the shape of the observed p T spectrum is softer than the expectation from quantum chromodynamics. The results are unique in p$$\\bar{p}$$ collisions and can improve the shape and uncertainties of future predictions.« less
NASA Astrophysics Data System (ADS)
Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration
2017-05-01
We report on a measurement of the D+-meson production cross section as a function of transverse momentum (pT) in proton-antiproton (p p ¯) collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the Collider Detector at Fermilab in Tevatron Run II and corresponding to 10 fb-1 of integrated luminosity. We use D+→K-π+π+ decays fully reconstructed in the central rapidity region |y |<1 with transverse momentum down to 1.5 GeV /c , a range previously unexplored in p p ¯ collisions. Inelastic p p ¯-scattering events are selected online using minimally biasing requirements followed by an optimized offline selection. The K-π+π+ mass distribution is used to identify the D+ signal, and the D+ transverse impact-parameter distribution is used to separate prompt production, occurring directly in the hard-scattering process, from secondary production from b -hadron decays. We obtain a prompt D+ signal of 2950 candidates corresponding to a total cross section σ (D+,1.5
Elastically Decoupling Dark Matter.
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2016-06-03
We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1 fb range.
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Green, Sheldon; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Rotationally inelastic transitions of N2 have been studied in the coupled state (CS) and infinite-order-sudden (IOS) approximations, using the N2-N2 rigidrotor potential of van der Avoird et al. For benchmarking purposes, close coupling (CC) calculations have also been carried out over a limited energy range. The CC and CS cross sections have been obtained both with and without identical molecule exchange symmetry, whereas exchange was neglected in the IOS calculations. The CS results track the CC cross sections rather well; between 113 - 219 cm(exp -1) the average deviation is 14%. Comparison between the CS and IOS cross sections at the high energy end of the CS calculation, 500 - 680 cm(exp -1), shows that IOS is sensitive to the amount of inelasticity and the results for large DELTA J transitions are subject to larger errors. It is found that the state-to-state cross sections with even and odd exchange symmetry agree to better than 2% and are well represented as a sum of direct and exchange cross sections for distinguishable molecules, an indication of the applicability of a classical treatment for this system. This result, however, does not apply to partial cross sections for given total J, but arises from a near cancellation in summing over partial waves. In order to use rigid-rotor results for the calculation of effective rotational excitation rates of N2 in the v=1 vibrational level colliding with bath N2 molecules in the v=0 level, it is assumed that exchange scattering between molecules in different vibrational levels is negligible and direct scattering is independent of Y. Good agreement with room temperature experimental data is obtained. The effective rates determined using the IOS and energy corrected sudden (ECS) approximations are also in reasonable agreement with experiment, with the ECS results being somewhat better. The problem with a degeneracy factor in earlier cross section expressions for collisions between identical molecules is pointed out and corrected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, Cheryl
Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic crossmore » sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.« less
Low-energy electron scattering from atomic hydrogen. II. Elastic and inelastic scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, K.E. Jr.; Childers, J.G.; Khakoo, M.A.
2004-02-01
We present measurements of differential cross sections for elastic electron scattering from atomic hydrogen at 20 eV and 40 eV incident electron energies and ratios of differential cross sections for electron-impact excitation of atomic hydrogen to the n=2, 3, and 4 levels at incident electron energies of 14.6 eV, 15.6 eV, 17.6 eV, 20 eV, 25 eV, and 40 eV with scattering angles ranging from 10 deg. to 130 deg. We compare our results to available experimental measurements and recent convergent close-coupling calculations. Our results resolve significant discrepancies that existed between theory and past experiments.
Deuterium target data for precision neutrino-nucleus cross sections
Meyer, Aaron S.; Betancourt, Minerba; Gran, Richard; ...
2016-06-23
Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, F A(q 2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of F A from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of F A. A complete error budget for the nucleon isovector axial radius leads to r A 2 = 0.46(22)fm 2, withmore » a much larger uncertainty than determined in the original analyses. The quasielastic neutrino-neutron cross section is determined as σ(ν μn → μ -p)| Ev=1 GeV = 10.1(0.9)×10 -39cm 2. The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. Furthermore, these techniques can be readily extended to other amplitudes and processes.« less
NASA Technical Reports Server (NTRS)
Gibson, Thomas L.; Lima, Marco A. P.; Mckoy, Vincent; Huo, Winifred M.
1987-01-01
The paper reports cross sections for electron-impact excitation of the X 1Sigma(+)g - BISigma(+)u transition in H2 for collision energies of 15, 20, and 30 eV. For this dipole-allowed transition with its associated long-range potential, the contributions of the more strongly scattered low-angular-momentum partial waves to the cross section were obtained from a two-state Schwinger multichannel calculation, and a modified Born-closure scheme was used to include the contributions from the remaining weakly scattered partial waves. Agreement between the calculated differential cross sections and available experimental data is encouraging.
NASA Astrophysics Data System (ADS)
Ayala, Alejandro; Hentschinski, Martin; Jalilian-Marian, Jamal; Tejeda-Yeomans, Maria Elena
2017-07-01
We use the spinor helicity formalism to calculate the cross section for production of three partons of a given polarization in Deep Inelastic Scattering (DIS) off proton and nucleus targets at small Bjorken x. The target proton or nucleus is treated as a classical color field (shock wave) from which the produced partons scatter multiple times. We reported our result for the final expression for the production cross section and studied the azimuthal angular correlations of the produced partons in [1]. Here we provide the full details of the calculation of the production cross section using the spinor helicity methods.
Neutron observables from inclusive lepton scattering on nuclei
NASA Astrophysics Data System (ADS)
Rinat, A. S.; Taragin, M. F.
2010-07-01
We analyze new data from Thomas Jefferson National Accelerator Facility (JLab) for inclusive electron scattering on various targets. Computed and measured total inclusive cross sections in the range 0.3≲x≲0.95 show reasonable agreement on a logarithmic scale for all targets. However, closer inspection of the quasielastic components reveals serious discrepancies. European Muon Collaboration (EMC) ratios with conceivably smaller systematic errors fare the same. As a consequence, the new data do not enable the extraction of the magnetic form factor GMn and the structure function F2n of the neutron, although the application of exactly the same analysis to older data had been successful. We incorporate in the above analysis older CLAS Collaboration data on F22H. Removal of some scattered points from those makes it appear possible to obtain the desired neutron information. We compare our results with others from alternative sources. Special attention is paid to the A=3 isodoublet cross sections and EMC ratios. Present data exist only for He3, but the available input in combination with charge symmetry enables computations for H3. Their average is the computed isoscalar part and is compared with the empirical modification of He3 EMC ratios toward a fictitious A=3 isosinglet.
THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Randall K.; Valencic, Lynne A.; Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov
Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model asmore » a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, S. P., E-mail: denisov@ihep.ru; Kozelov, A. V.; Petrov, V. A.
Elastic-scattering data were analyzed, and it was concluded on the basis of this analysis that precisionmeasurements of differential cross sections for elastic proton–proton scattering at the accelerator of the Institute for High Energy Physics (IHEP, Protvino, Russia) over a broad momentum-transfer range are of importance and topical interest. The layout of the respective experimental facility detecting the scattered particle and recoil proton and possessing a high momentum-transfer resolution was examined along with the equipment constituting this facility. The facility in question is able to record up to a billion events of elastic proton–proton scattering per IHEP accelerator run (20 days).more » Other lines of physics research with this facility are briefly discussed.« less
Huygens-Fresnel picture for electron-molecule elastic scattering★
NASA Astrophysics Data System (ADS)
Baltenkov, Arkadiy S.; Msezane, Alfred Z.
2017-11-01
The elastic scattering cross sections for a slow electron by C2 and H2 molecules have been calculated within the framework of the non-overlapping atomic potential model. For the amplitudes of the multiple electron scattering by a target the wave function of the molecular continuum is represented as a combination of a plane wave and two spherical waves generated by the centers of atomic spheres. This wave function obeys the Huygens-Fresnel principle according to which the electron wave scattering by a system of two centers is accompanied by generation of two spherical waves; their interaction creates a diffraction pattern far from the target. Each of the Huygens waves, in turn, is a superposition of the partial spherical waves with different orbital angular momenta l and their projections m. The amplitudes of these partial waves are defined by the corresponding phases of electron elastic scattering by an isolated atomic potential. In numerical calculations the s- and p-phase shifts are taken into account. So the number of interfering electron waves is equal to eight: two of which are the s-type waves and the remaining six waves are of the p-type with different m values. The calculation of the scattering amplitudes in closed form (rather than in the form of S-matrix expansion) is reduced to solving a system of eight inhomogeneous algebraic equations. The differential and total cross sections of electron scattering by fixed-in-space molecules and randomly oriented ones have been calculated as well. We conclude by discussing the special features of the S-matrix method for the case of arbitrary non-spherical potentials. Contribution to the Topical Issue "Low energy positron and electron interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.
Planar small-angle x-ray scattering imaging of phantoms and biological samples
NASA Astrophysics Data System (ADS)
Choi, M.; Badano, A.
2017-04-01
Coherent small-angle x-ray scattering (SAXS) provides molecular and nanometer-scale structural information. By capturing SAXS data at multiple locations across a sample, we obtained planar images and observed improved contrast given by the difference in the material scattering cross sections. We use phantoms made with 3D printing techniques, with tissue-mimicking plastic (PMMA), and with a highly scattering reference material (AgBe), which were chosen because of their well characterized scattering cross section to demonstrate and characterize the planar imaging of a laboratory SAXS system. We measure 1.07 and 2.14 nm-1 angular intensity maps for AgBe, 9.5 nm-1 for PMMA, and 12.3 nm-1 for Veroclear. The planar SAXS images show material discrimination based on their cross sectional features. The image signal-to-noise ratio (SNR) of each q image was dependent on exposure time and x-ray flux. We observed a lower SNR (91 ± 48) at q angles where no characteristic peaks for either material exist. To improve the visualization of the acquired data by utilizing all q-binned data, we describe a weighted-sum presentation method with a priori knowledge of relevant cross sections to improve the SNR (10 000 ± 6400) over the SNR from a single q-image at 1.07 nm-1 (1100 ± 620). In addition, we describe planar SAXS imaging of a mouse brain slice showing differentiation of tissue types as compared to a conventional absorption-based x-ray imaging technique.
Dispersive effects from a comparison of electron and positron scattering from
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul Gueye; M. Bernheim; J. F. Danel
1998-05-01
Dispersive effects have been investigated by comparing elastic scattering of electrons and positrons from {sup 12}C at the Saclay Linear Accelerator. The results demonstrate that dispersive effects at energies of 262 MeV and 450 MeV are less than 2% below the first diffraction minimum [0.95 < q{sub eff} (fm{sup -1}) < 1.66] in agreement with the prediction of Friar and Rosen. At the position of this minimum (q{sub eff} = 1.84 fm{sup -1}), the deviation between the positron scattering cross section and the cross section derived from the electron results is -44% {+-} 30%.
Inelastic neutron scattering from {sup 238}U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moxon, M.C.; Wartena, J.A.; Weigmann, H.
1994-12-31
A measurement of the neutron inelastic scattering cross-section of {sup 238}U at 4 distant neutron energies in the low keV region has been undertaken using a 30m flight path on the pulsed neutron source GELINA. The scattered neutrons are detected in a plastic scintillator after passing through a 270 mm iron filter. The values obtained for the cross-section to the first excited 2{sup +} state in {sup 238}U are 293{+-}31, 660{+-}296, 978{+-}73 and 1176{+-}95 mb at neutron energies of 68.2, 126.6, 182.4 and 213.6 keV respectively.
Raman scattering studies of pollutant systems.
NASA Technical Reports Server (NTRS)
Schwiesow, R. L.
1971-01-01
Results and techniques for laboratory measurements of Raman scattering cross sections and depolarization ratios of atmospheric gases as a function of the incident photon energy are discussed. Referred to N2, the cross section of H2O changes by a factor of 2 as the incident photon energy is changed by 5%. Less striking results are obtained for SO2, NO and other atmospheric gases. Tentative results are given for spectral features of scattering from polluted air-water interfaces. Raman lidar is assessed as a potentially useful aid in remote sensing of atmospheric and water-borne pollution distributions at least in near-source concentrations.
Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering
NASA Astrophysics Data System (ADS)
Budd, H.; Bodek, A.; Arrington, J.
2005-02-01
We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of F(q). We show the that F(q) has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check F(q) extracted from neutrino scattering. (Presented by Howard Budd at NuInt04, Mar. 2004, Laboratori Nazionali del Gran Sasso - INFN - Assergi, Italy [ http://nuint04.lngs.infn.it/])
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, C.F.; Gauster, W.B.; Ray, J.A.
A graphical compilation is presented of atomic and molecular cross sections of interest to controlled thermonuclear research. The cross sections are shown, as a function of energy, for collision processes involving molecular ion dissociation, charge exchange, excitation, ionization, photoionization, scattering, energy loss, and recombination. Pertinent nuclear cross sections are also included. A bibliography is given covering the literature since 1950. (auth)
NASA Astrophysics Data System (ADS)
Gonzales, Matthew Alejandro
The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research version of MCNP6. Temperature feedback results from the cross sections themselves, changes in the probability density functions, as well as changes in the density of the materials. The focus of this work is specific to the Doppler temperature feedback which result from Doppler broadening of cross sections as well as changes in the probability density function within the scattering kernel. This method is compared against published results using Mosteller's numerical benchmark to show accurate evaluations of the Doppler temperature coefficient, fuel assembly calculations, and a benchmark solution based on the heavy gas model for free-gas elastic scattering. An infinite medium benchmark for neutron free gas elastic scattering for large scattering ratios and constant absorption cross section has been developed using the heavy gas model. An exact closed form solution for the neutron energy spectrum is obtained in terms of the confluent hypergeometric function and compared against spectra for the free gas scattering model in MCNP6. Results show a quick increase in convergence of the analytic energy spectrum to the MCNP6 code with increasing target size, showing absolute relative differences of less than 5% for neutrons scattering with carbon. The analytic solution has been generalized to accommodate piecewise constant in energy absorption cross section to produce temperature feedback. Results reinforce the constraints in which heavy gas theory may be applied resulting in a significant target size to accommodate increasing cross section structure. The energy dependent piecewise constant cross section heavy gas model was used to produce a benchmark calculation of the Doppler temperature coefficient to show accurate calculations when using the adjoint-weighted method. Results show the Doppler temperature coefficient using adjoint weighting and cross section derivatives accurately obtains the correct solution within statistics as well as reduce computer runtimes by a factor of 50.
NASA Technical Reports Server (NTRS)
Beck, S. M.; Powell, C. A.
1976-01-01
The double differential cross sections for the production of protons and deuterons from targets of Be, C, Al, Fe, Cu, Ge, W, and Pb were obtained at laboratory angles of scatter of 10, 20, 30, 40, 50, and 60 degrees for 558-MeV incident protons. The position of the quasi-elastic peak, discernible in the cross sections up to approximately 40 degrees, corresponded closely to the theoretical predictions for proton-proton elastic scattering at 558 MeV. The mean ratio of deuteron to proton energy-integrated cross sections was 0.056 + or - 0.008. The dependence of energy-integrated cross sections for both protons and deuterons on target mass number A varied from A to the 1/3 power at 10 degrees to A to the 2/3 power above approximately 30 degrees. The ratio of energy-integrated deuteron cross sections for quasielastic processes to that for reactions yielding a deuteron-pi-meson pair was approximately 10 percent.
Positron elastic scattering from alkaline earth targets
NASA Astrophysics Data System (ADS)
Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.
2016-07-01
A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y
NASA Astrophysics Data System (ADS)
Márquez Damián, J. I.; Granada, J. R.; Malaspina, D. C.
2014-04-01
In this work we present an evaluation in ENDF-6 format of the scattering law for light and heavy water computed using the LEAPR module of NJOY99. The models used in this evaluation are based on experimental data on light water dynamics measured by Novikov, partial structure factors obtained by Soper, and molecular dynamics calculations performed with GROMACS using a reparameterized version of the flexible SPC model by Toukan and Rahman. The models use the Egelstaff-Schofield diffusion equation for translational motion, and a continuous spectrum calculated from the velocity autocorrelation function computed with GROMACS. The scattering law for H in H2O is computed using the incoherent approximation, and the scattering law D and O in D2O are computed using the Sköld approximation for coherent scattering. The calculations show significant improvement over ENDF/B-VI and ENDF/B-VII when compared with measurements of the total cross section, differential scattering experiments and quasi-elastic neutron scattering experiments (QENS).
PHD TUTORIAL: A complete numerical approach to electron hydrogen collisions
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.
2006-11-01
This tutorial presents an extensive computational study of electron-impact scattering and ionization of atomic hydrogen and hydrogenic ions, through the solution of the non-relativistic Schrödinger equation in coordinate space using propagating exterior complex scaling (PECS). It details the complete numerical and computational development of the PECS method, which enables highly computationally-efficient solution of these collision systems. Benchmark results are presented for a complete range of electron-hydrogen collisions, including discrete elastic and inelastic scattering both below and above the ionization threshold energy, very low-energy ionizing collisions through to moderately high-energy ionizing collisions, ground-state and excited-state targets and charged hydrogenic targets with Z <= 4. Total ionization cross sections through to fully differential cross sections, both in-plane and out-of-plane, are given and are found to be in excellent accord with other state-of-the-art methods and measurements, where available. We also review our recent confirmation (Bartlett and Stelbovics 2004 Phys. Rev. Lett. 93 233201) of the Wannier and related threshold laws for e-H collisions.
Cross-Section Measurements in the Fast Neutron Energy Range
NASA Astrophysics Data System (ADS)
Plompen, Arjan
2006-04-01
Generation IV focuses research for advanced nuclear reactors on six concepts. Three of these concepts, the lead, gas and sodium fast reactors (LFR, GFR and SFR) have fast neutron spectra, whereas a fourth, the super-critical water reactor (SCWR), can be configured to have a fast spectrum. Such fast neutron spectra are essential to meet the sustainability objective of GenIV. Nuclear data requirements for GenIV concepts will therefore emphasize the energy region from about 1 keV to 10 MeV. Here, the potential is illustrated of the GELINA neutron time-of-flight facility and the Van de Graaff laboratory at IRMM to measure the relevant nuclear data in this energy range: the total, capture, fission and inelastic-scattering cross sections. In particular, measurement results will be shown for lead and bismuth inelastic scattering for which the need was recently expressed in a quantitative way by Aliberti et al. for Accelerator Driven Systems. Even without completion of the quantitative assessment of the data needs for GenIV concepts at ANL it is clear that this particular effort is of relevance to LFR system studies.
EXCITATION OF LEVELS IN Li$sup 7$ BY INELASTIC ELECTRON SCATTERING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernheim, M; Bishop, G R
1963-07-15
Cross sections for the excitation of some levels in Li/sup 7/ up to 8- Mev excitation energy were measured by the iiielastic scattering of electrons for a variety of incident electron energies and scatiering angles. The cross section calculated in first Dorn approximation is expected to be valid for this nucleus. The calculated angular distribution is given for different spin and parity and for different levels of excitation. (R.E.U.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791
2015-01-15
The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, Claudia R.C. de; Varella, Marcio T. do N; Lima, Marco A.P.
2003-12-01
We present calculated elastic differential cross sections for positron-acetylene scattering, obtained by using the Schwinger multichannel method. Our results are in very good agreement with quasielastic experimental data of Kauppila et al. [Nucl. Instrum. Meth. Phys. Res. B 192, 162 (2002)]. We also discuss the existence of a virtual state (zero-energy resonance) in e{sup +}-C{sub 2}H{sub 2} collisions, based on the behavior of the integral cross section and of the s-wave phase shift. As expected the fixed-nuclei cross section and annihilation parameter (Z{sub eff}) present the same energy dependence at very low impact energies. As the virtual state energy approachesmore » zero, the magnitude of both cross section and Z{sub eff} are extremely enhanced (at zero impact energy). The possibility of shifting from a low-lying virtual state to a shallow bound state is not expected to significantly affect room-temperature annihilation rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, X.; Allada, K.; Aniol, K.
2017-03-24
Here, the unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in 3He(e,e'π ±)X have been measured for the first time in Jefferson Lab experiment E06-010 with a 5.9 GeV e – beam on a 3He gas target. The experiment focuses on the valence quark region, covering a kinematic range 0.12 < x bj < 0.45,1 < Q 2 < 4(GeV/c) 2,0.45 < z h < 0.65, and 0.05 < P t < 0.55GeV/c. The extracted SIDIS differential cross sections of π± production are compared with existing phenomenological models while the 3He nucleus approximated as two protons and one neutron inmore » a plane-wave picture, in multidimensional bins. Within the experimental uncertainties, the azimuthal modulations of the cross sections are found to be consistent with zero.« less
Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.
Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O
2015-10-23
We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2017-06-14
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2016-05-10
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases
NASA Astrophysics Data System (ADS)
Lampel, J.; Frieß, U.; Platt, U.
2015-09-01
In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it reduces the measurement error significantly and can cause apparent differential optical depth of up to 3 ×10-4. Its influence on the spectral retrieval of IO, glyoxal, water vapour and NO2 in the blue wavelength range is evaluated for M91. For measurements with a large Ring signal a significant and systematic bias of NO2 dSCDs (differential slant column densities) up to (-3.8 ± 0.4) × 1014 molec cm-2 is observed if this effect is not considered. The effect is typically negligible for DOAS fits with an RMS (root mean square) larger than 4 × 10-4.
Bend-imitating models of abruptly bent electron waveguides
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2011-07-01
The fundamentals of bend-imitating approach regarding the one-electron quantum mechanics in abruptly bent ideal electron waveguides are given. In general, the theory allows to model each particular circularlike bend of a continuous quantum wire as some effective multichannel scatterer being pointlike in longitudinal direction. Its scattering ability is determined by the bending angle, mean bending radius, lateral coordinate (or coordinates) in wire cross section, time (or electronic energy), and possibly by the applied magnetic field. In an equivalent formulation, the theory gives rise to rather simple matching rules for the electron wave function and its longitudinal derivative affecting only the straight parts of a wire and thereby permitting to bypass a detailed quantum mechanical consideration of elbow domains. The proposed technique is applicable for the analytical investigation of spectral and transport electronic properties related to the ideal abruptly bent 3D wirelike structures of fixed cross section and is adaptable to the 2D wirelike structures as well as to the wirelike structures subjected to the magnetic field perpendicular to the plane of wire bending. In the framework of bend-imitating approach, the investigation of electron scattering in a singly bent 2D quantum wire and a doubly bent 2D quantum wire with S-like bend has been made and the explicit dependences of transmission and reflection coefficients on geometrical parameters of respective structure as well as on electron energy have been obtained. The total suppression of mixing between the scattering channels of S-like bent quantum wire is predicted.
Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco
2014-01-01
The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1−xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge. PMID:28788537
Parente, Vincenzo; Campagnano, Gabriele; Giuliano, Domenico; Tagliacozzo, Arturo; Guinea, Francisco
2014-03-04
The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi 1-x Sb x , and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge.
Positron scattering from pyridine
NASA Astrophysics Data System (ADS)
Stevens, D.; Babij, T. J.; Machacek, J. R.; Buckman, S. J.; Brunger, M. J.; White, R. D.; García, G.; Blanco, F.; Ellis-Gibbings, L.; Sullivan, J. P.
2018-04-01
We present a range of cross section measurements for the low-energy scattering of positrons from pyridine, for incident positron energies of less than 20 eV, as well as the independent atom model with the screening corrected additivity rule including interference effects calculation, of positron scattering from pyridine, with dipole rotational excitations accounted for using the Born approximation. Comparisons are made between the experimental measurements and theoretical calculations. For the positronium formation cross section, we also compare with results from a recent empirical model. In general, quite good agreement is seen between the calculations and measurements although some discrepancies remain which may require further investigation. It is hoped that the present study will stimulate development of ab initio level theoretical methods to be applied to this important scattering system.
Towards a Resolution of the Proton Form Factor Problem: New Electron and Positron Scattering Data
NASA Astrophysics Data System (ADS)
Adikaram, D.; Rimal, D.; Weinstein, L. B.; Raue, B.; Khetarpal, P.; Bennett, R. P.; Arrington, J.; Brooks, W. K.; Adhikari, K. P.; Afanasev, A. V.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Careccia, S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Kalantarians, N.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peña, C.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-02-01
There is a significant discrepancy between the values of the proton electric form factor, GEp, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEp from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ɛ ) and momentum transfer (Q2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ɛ at Q2=1.45 GeV2 . This measurement is consistent with the size of the form factor discrepancy at Q2≈1.75 GeV2 and with hadronic calculations including nucleon and Δ intermediate states, which have been shown to resolve the discrepancy up to 2 - 3 GeV2 .
NASA Astrophysics Data System (ADS)
Sanna, N.; Baccarelli, I.; Morelli, G.
2009-12-01
VOLSCAT is a computer program which implements the Single Center Expansion (SCE) method to solve the scattering equation for the elastic collision of electrons/positrons off molecular targets. The scattering potential needed is calculated by on-the-fly calls to the external SCELib library for molecular properties, recently ported to GPU computing environment and ClearSpeed platforms, and made available by means of an Application Program Interface (SCELib-API) which is also provided with the VOLSCAT package in a beta version. The result is a high throughput approach to the solution of the complex e/e-molecule scattering problem, with allows for intensive calculations both for the number of systems which can be studied and for their size. Accurate partial and total elastic cross sections are produced in output together with the associated eigenphase sums. Indirect scattering processes arising from the formation of temporary negative ions can also be analyzed through the computation of the resonances' parameters. Program summaryProgram title: VOLSCAT V1.0 Catalogue identifier: AEEW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4 618 353 No. of bytes in distributed program, including test data, etc.: 120 307 536 Distribution format: tar.gz Programming language: Fortran90 Computer: All SMP platforms based on AIX, Linux and SUNOS operating systems over SPARC, POWER, Intel Itanium2, X86, em64t and Opteron processors Operating system: SUNOS, IBM AIX, Linux RedHat (Enterprise), Linux SuSE (SLES) Has the code been vectorized or parallelized?: Yes. The parallel version in the present release of the code is limited to the OpenMP calculation of the exchange potential V or V. The number of OpenMP threads can then be set in the input script. RAM: For a typical (isolated) biomolecule (e.g. Cytosine or Ribose) a converged calculation would require from 320 MB up to 2.5 GB. Word size: 64 bits Classification: 16.5 External routines: LAPACK (dsyev, dgetri, dgetrf) ( http://www.netlib.org/lapack/) Nature of problem: In this set of codes an efficient procedure is implemented to calculate partial cross section for the scattering between an electron/positron and a molecular target as a function of the collision energies. Solution method: The scattering equations are derived in the framework of the Single Center Expansion (SCE) procedure which allows the reduction of the original three-dimensional problem to a radial (one-dimensional) equation through the expansion of the scattering potential and the system wavefunction in a set of symmetry-adapted (real) spherical harmonics. The local part of the electrostatic interaction between the charged projectile (electron/positron) and the molecular target is provided in input by the SCELib library, which also provides the correlation and polarization corrections for the short-range and long-range part, respectively, of the interaction. A proper Application Programming Interface (API) is used by VOLSCAT to load the energy-independent part of the potential while the non-local exchange contribution is approximated by a local form and calculated on the fly in the VOLSCAT run for each desired collision energy. The resulting SCE one-dimensional homogeneous scattering equation is rewritten in an integral form by means of the standard Green's function technique resulting in a set of Volterra coupled equations which are solved to give the phase shifts and cross sections for any desired impact energy in terms of the partial components defined by the irreducible representations of the symmetry point group to which the target molecule belongs. The total cross section can then be straightforwardly calculated by summing over all the partial cross sections produced in the output. By the Breit-Wigner analysis of the eigenphase sum produced as a function of the energy one can also get information on the location of possible resonance states arising in the collision process. Restrictions: Depending on the molecular system under study and on the operating conditions the program may or may not fit into available RAM memory. Additional comments: A beta version of SCELib-API is included in the distribution package. Running time: The execution time strongly depends on the molecular target description and on the hardware/OS chosen, it is directly proportional to the (r,θ,φ) grid size and to the number of angular basis functions used.
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1993-01-01
Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.
Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components
NASA Astrophysics Data System (ADS)
Champion, Christophe
2013-05-01
Ionization of biomolecules remains still today rarely investigated on both the experimental and the theoretical sides. In this context, the present work appears as one of the first quantum mechanical approaches providing a multi-differential description of the electron-induced ionization process of the main DNA components for impact energies ranging from the target ionization threshold up to about 10 keV. The cross section calculations are here performed within the 1st Born approximation framework in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered electrons are both described by a plane wave. The biological targets of interest, namely, the DNA nucleobases and the sugar-phosphate backbone, are here described by means of the GAUSSIAN 09 system using the restricted Hartree-Fock method with geometry optimization. The theoretical predictions also obtained have shown a reasonable agreement with the experimental total ionization cross sections while huge discrepancies have been pointed out with existing theoretical models, mainly developed within a semi-classical framework.
Deep-inelastic multinucleon transfer processes in the 16O+27Al reaction
NASA Astrophysics Data System (ADS)
Roy, B. J.; Sawant, Y.; Patwari, P.; Santra, S.; Pal, A.; Kundu, A.; Chattopadhyay, D.; Jha, V.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Mahata, K.; Nayak, B. K.; Saxena, A.; Kailas, S.; Nag, T. N.; Sahoo, R. N.; Singh, P. P.; Sekizawa, K.
2018-03-01
The reaction mechanism of deep-inelastic multinucleon transfer processes in the 16O+27Al reaction at an incident 16O energy (Elab=134 MeV) substantially above the Coulomb barrier has been studied both experimentally and theoretically. Elastic-scattering angular distribution, total kinetic energy loss spectra, and angular distributions for various transfer channels have been measured. The Q -value- and angle-integrated isotope production cross sections have been deduced. To obtain deeper insight into the underlying reaction mechanism, we have carried out a detailed analysis based on the time-dependent Hartree-Fock (TDHF) theory. A recently developed method, TDHF+GEMINI, has been applied to evaluate production cross sections for secondary products. From a comparison between the experimental and theoretical cross sections, we find that the theory qualitatively reproduces the experimental data. Significant effects of secondary light-particle emissions are demonstrated. Possible interplay among fusion-fission, deep-inelastic, multinucleon transfer, and particle evaporation processes is discussed.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version C is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version C code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONC.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version D is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version D code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMOND.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The Penn State Finite Difference Time Domain (FDTD) Electromagnetic Scattering Code Version A is a three dimensional numerical electromagnetic scattering code based on the Finite Difference Time Domain technique. The supplied version of the code is one version of our current three dimensional FDTD code set. The manual provides a description of the code and the corresponding results for the default scattering problem. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version A code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONA.FOR), a section briefly discussing radar cross section (RCS) computations, a section discussing the scattering results, a sample problem setup section, a new problem checklist, references, and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONB.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
Inclusive neutrino scattering off the deuteron at low energies in chiral effective field theory
Baroni, A.; Schiavilla, R.
2017-07-19
Cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents are calculated from threshold up to 150 MeV energies in a chiral effective field theory including high orders in the power counting. The contributions beyond leading order (LO) in the weak current are found to be small, and increase the cross sections obtained with the LO transition operators by a couple of percent over the whole energy range (0--150) MeV. Furthermore, the cutoff dependence is negligible, and the predicted cross sections are within ~2% of, albeit consistently larger than, corresponding predictions obtained in conventional meson-exchangemore » frameworks.« less
NASA Astrophysics Data System (ADS)
Ellis-Gibbings, L.; Krupa, K.; Colmenares, R.; Blanco, F.; Muńoz, A.; Mendes, M.; Ferreira da Silva, F.; Limá Vieira, P.; Jones, D. B.; Brunger, M. J.; García, G.
2016-09-01
Recent theoretical and experimental studies have provided a complete set of differential and integral electron scattering cross section data from furfural over a broad energy range. The energy loss distribution functions have been determined in this study by averaging electron energy loss spectra for different incident energies and scattering angles. All these data have been used as input parameters for an event by event Monte Carlo simulation procedure to obtain the electron energy deposition patterns and electron ranges in liquid furfural. The dependence of these results on the input cross sections is then analysed to determine the uncertainty of the simulated values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.
Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C 6D 6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the TALYS and EMPIRE nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimentalmore » (n,n 0) and (n,n 1) cross sections well.« less
CCC calculated differential cross sections of electron-H2 scattering
NASA Astrophysics Data System (ADS)
Fursa, Dmitry; Zammit, Mark; Savage, Jeremy; Bray, Igor
2016-09-01
Recently we applied the molecular convergent close-coupling (CCC) method to electron scattering from molecular hydrogen H2. Convergence of the major differential cross sections has been explicitly demonstrated in the fixed-nuclei approximation. A large close-coupling expansion that coupled highly excited states and ionization channels proved to be important to obtain convergent results. Here we present benchmark elastic and electronic excitation differential cross sections for b3Σu+ , a3Σg+ , c3Πu , B1Σu+ , EF1Σg+ , C1Πu , and e3Σu+ states and compare with available experiment and previous calculations. Work supported by Los Alamos National Laboratory and Curtin University.
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.
Johnson, W R; Nilsen, J
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter
Johnson, W. R.; Nilsen, J.
2016-03-14
Here, the influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity andmore » also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.« less
Adhesion of Mineral and Soot Aerosols can Strongly Affect their Scattering and Absorption Properties
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Jana M.
2012-01-01
We use the numerically exact superposition T-matrix method to compute the optical cross sections and the Stokes scattering matrix for polydisperse mineral aerosols (modeled as homogeneous spheres) covered with a large number of much smaller soot particles. These results are compared with the Lorenz-Mie results for a uniform external mixture of mineral and soot aerosols. We show that the effect of soot particles adhering to large mineral particles can be to change the extinction and scattering cross sections and the asymmetry parameter quite substantially. The effect on the phase function and degree of linear polarization can be equally significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xin -Hu; Ye, Yun -Xiu; Chen, Jian -Ping
2015-07-17
The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab. Radiation and ionization energy loss are discussed formore » $$^{12}C$$ elastic scattering simulation. The relative momentum ratio $$\\frac{\\Delta p}{p}$$ and $$^{12}C$$ elastic cross section are compared without and with radiation energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for $$^{12}C$$ elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment.« less
A phenomenological study of photon production in low energy neutrino nucleon scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, James P; Goldman, Terry J
2009-01-01
Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting inmore » Detroit MI.« less
MsSpec-1.0: A multiple scattering package for electron spectroscopies in material science
NASA Astrophysics Data System (ADS)
Sébilleau, Didier; Natoli, Calogero; Gavaza, George M.; Zhao, Haifeng; Da Pieve, Fabiana; Hatada, Keisuke
2011-12-01
We present a multiple scattering package to calculate the cross-section of various spectroscopies namely photoelectron diffraction (PED), Auger electron diffraction (AED), X-ray absorption (XAS), low-energy electron diffraction (LEED) and Auger photoelectron coincidence spectroscopy (APECS). This package is composed of three main codes, computing respectively the cluster, the potential and the cross-section. In the latter case, in order to cover a range of energies as wide as possible, three different algorithms are provided to perform the multiple scattering calculation: full matrix inversion, series expansion or correlation expansion of the multiple scattering matrix. Numerous other small Fortran codes or bash/csh shell scripts are also provided to perform specific tasks. The cross-section code is built by the user from a library of subroutines using a makefile. Program summaryProgram title: MsSpec-1.0 Catalogue identifier: AEJT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 504 438 No. of bytes in distributed program, including test data, etc.: 14 448 180 Distribution format: tar.gz Programming language: Fortran 77 Computer: Any Operating system: Linux, MacOs RAM: Bytes Classification: 7.2 External routines: Lapack ( http://www.netlib.org/lapack/) Nature of problem: Calculation of the cross-section of various spectroscopies. Solution method: Multiple scattering. Running time: The test runs provided only take a few seconds to run.
Exclusive ϱ0 production in deep inelastic electron-proton scattering at HERA
NASA Astrophysics Data System (ADS)
Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mengel, S.; Mollen, J.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Monteiro, T.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zeuner, W.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M. C. K.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, J. I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Bruemmer, N.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kurzhavina, V. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Veeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.; ZEUS Collaboration
1995-02-01
The exclusive production of ϱ0 mesons in deep inelastic electron-proton scattering has been studied using the ZEUS detector. Cross sections have been measured in the range 7 < Q2 < 25 GeV 2 for λ ∗p centre of mass (c.m.) energies 40 to 130 GeV. The λ ∗p → ϱ 0p cross section exhibits a Q-(4.2±0.8 -0.5+1.4) dependence and both longitudinally and transversely polarised ϱ0's are observed. The λ ∗p → ϱ 0p cross section rises strongly with increasing c.m. energy, when compared with NMC data at lower energy, which cannot be explained by production through soft pomeron exchange. The data are compared with perturbative QCD calculations where the rise in the cross section reflects the increase in the gluon density at low x.
NASA Astrophysics Data System (ADS)
Almosly, W.; Carlsson, B. G.; Suhonen, J.; Toivanen, J.; Ydrefors, E.
2016-10-01
A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes A =204 , 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed cross sections are compared with earlier calculations and the analyses are extended to take into account the effects coming from the neutrino oscillations.
NASA Technical Reports Server (NTRS)
Smith, Steven J.; Chutjian, A.; Mitroy, J.; Tayal, S. S.; Henry, Ronald J. W.; Man, K.-F.; Mawhorter, R. J.; Williams, I. D.
1993-01-01
Electron-excitation cross sections are reported for the 3s 2S yields 3p 2P(h, k) resonance transition in Mg(+) at energies from threshold (4.43 eV) to approximately 9 times threshold (40.0 eV). The electron-energy-loss merged-beams technique used in these measurements is described in detail. In addition, the method of separating contributions of the elastically scattered (Coulomb) and the inelastically scattered electrons in the present Mg(+) case and previously reported Zn(+) results is described. Comparisons in the experimental energy range are made for Mg(+) with the two five-state close-coupling theoretical calculations carried out herein, and with other published close-coupling, distorted-wave, and semiempirical calculations. The present Mg(+) cross sections and Zn(+) cross sections from earlier measurements are tabulated.
NASA Technical Reports Server (NTRS)
Bartschat, K.; Mceachran, R. P.; Stauffer, A. D.
1990-01-01
An optical potential method was applied to the calculation of positron scattering from the noble gases in order to determine the effect of open excitation channels on the shape of differential scattering cross sections.
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
Born Hartree Bethe approximation in the theory of inelastic electron molecule scattering
NASA Astrophysics Data System (ADS)
Kretinin, I. Yu; Krisilov, A. V.; Zon, B. A.
2008-11-01
We propose a new approximation in the theory of inelastic electron atom and electron molecule scattering. Taking into account the completeness property of atomic and molecular wavefunctions, considered in the Hartree approximation, and using Bethe's parametrization for electronic excitations during inelastic collisions via the mean excitation energy, we show that the calculation of the inelastic total integral cross-sections (TICS), in the framework of the first Born approximation, involves only the ground-state wavefunction. The final analytical formula obtained for the TICS, i.e. for the sum of elastic and inelastic ones, contains no adjusting parameters. Calculated TICS for electron scattering by light atoms and molecules (He, Ne, and H2) are in good agreement within the experimental data; results show asymptotic coincidence for heavier ones (Ar, Kr, Xe and N2).
NASA Astrophysics Data System (ADS)
Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Andreev, V.; Antonelli, S.; Aushev, V.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrens, U.; Belousov, A.; Bertolin, A.; Bloch, I.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P. J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Avila, K. B. Cantun; Capua, M.; Catterall, C. D.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J. G.; Cooper-Sarkar, A. M.; Corradi, M.; Cvach, J.; Dainton, J. B.; Daum, K.; Dementiev, R. K.; Devenish, R. C. E.; Diaconu, C.; Dobre, M.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haidt, D.; Henderson, R. C. W.; Hladkỳ, J.; Hlushchenko, O.; Hochman, D.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Jacquet, M.; Janssen, X.; Jomhari, N. Z.; Jung, A. W.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Katzy, J.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinski, B.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lukina, O. Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.-U.; Masciocchi, S.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Idris, F. Mohamad; Mohammad Nasir, N.; Morozov, A.; Müller, K.; Myronenko, V.; Nagano, K.; Nam, J. D.; Naumann, Th.; Newman, P. R.; Nicassio, M.; Niebuhr, C.; Nowak, G.; Olsson, J. E.; Onderwaater, J.; Onishchuk, Yu.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Paul, E.; Perez, E.; Perlański, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Przybycień, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruspa, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Saxon, D. H.; Schioppa, M.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schöning, A.; Schörner-Sadenius, T.; Sefkow, F.; Selyuzhenkov, I.; Shcheglova, L. M.; Shushkevich, S.; Shyrma, Yu.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stopa, P.; Straumann, U.; Surrow, B.; Sykora, T.; Sztuk-Dambietz, J.; Tassi, E.; Thompson, P. D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Abdullah, W. A. T. Wan; Wegener, D.; Wichmann, K.; Wing, M.; Wünsch, E.; Yamada, S.; Yamazaki, Y.; Žáček, J.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B. O.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.
2018-06-01
Measurements of open charm and beauty production cross sections in deep inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections are obtained in the kinematic range of negative four-momentum transfer squared of the photon 2.5 GeV^2≤Q^2 ≤2000 GeV^2 and Bjorken scaling variable 3 \\cdot 10^{-5} ≤ x_Bj ≤ 5 \\cdot 10^{-2}. The combination method accounts for the correlations of the statistical and systematic uncertainties among the different datasets. Perturbative QCD calculations are compared to the combined data. A next-to-leading order QCD analysis is performed using these data together with the combined inclusive deep inelastic scattering cross sections from HERA. The running charm- and beauty-quark masses are determined as m_c(m_c) = 1.290^{+0.046}_{-0.041} (exp/fit) {}^{+0.062}_{-0.014} (model) {}^{+0.003}_{-0.031} (parameterisation) GeV and m_b(m_b) = 4.049^{+0.104}_{-0.109} (exp/fit) {}^{+0.090}_{-0.032} (model) {}^{+0.001}_{-0.031} (parameterisation) GeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devan, Joshua D.
2015-01-01
Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low-more » $$\
NASA Astrophysics Data System (ADS)
Campbell, L.; Green, M. A.; Brunger, M. J.; Teubner, P. J.; Cartwright, D. C.
2000-02-01
The development and initial results of a method for the determination of differential cross sections for electron scattering by molecular oxygen are described. The method has been incorporated into an existing package of computer programs which, given spectroscopic factors, dissociation energies and an energy-loss spectrum for electron-impact excitation, determine the differential cross sections for each electronic state relative to that of the elastic peak. Enhancements of the original code were made to deal with particular aspects of electron scattering from O2, such as the overlap of vibrational levels of the ground state with transitions to excited states, and transitions to levels close to and above the dissocation energy in the Herzberg and Schumann-Runge continua. The utility of the code is specifically demonstrated for the ``6-eV states'' of O2, where we report absolute differential cross sections for their excitation by 15-eV electrons. In addition an integral cross section, derived from the differential cross section measurements, is also reported for this excitation process and compared against available theoretical results. The present differential and integral cross sections for excitation of the ``6-eV states'' of O2 are the first to be reported in the literature for electron-impact energies below 20 eV.
NASA Astrophysics Data System (ADS)
Bordage, M. C.; Hagelaar, G. J. M.; Pitchford, L. C.; Biagi, S. F.; Puech, V.
2011-10-01
Xenon is used in a number of application areas ranging from light sources to x-ray detectors for imaging in medicine, border security and high-energy particle physics. There is a correspondingly large body of data available for electron scattering cross sections and swarm parameters in Xe, whereas data for Kr are more limited. In this communication we show intercomparisons of the cross section sets in Xe and Kr presently available on the LXCat site. Swarm parameters calculated using these cross sections sets are compared with experimental data, also available on the LXCat site. As was found for Ar, diffusion coefficients calculated using these cross section data in a 2-term Boltzmann solver are higher than Monte Carlo results by about 30% over a range of E/N from 1 to 100 Td. We find otherwise good agreement in Xe between 2-term and Monte Carlo results and between measured and calculated values of electron mobility, ionization rates and light emission (dimer) at atmospheric pressure. The available cross section data in Kr yield swarm parameters in agreement with the limited experimental data. The cross section compilations and measured swarm parameters used in this work are available on-line at www.lxcat.laplace. univ-tlse.fr.
Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D. B.; Ellis-Gibbings, L.; García, G.
2015-09-07
We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energymore » condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.« less
Electron- and proton-induced ionization of pyrimidine
Champion, Christophe; Quinto, Michele; Weck, Philippe F
2015-03-27
This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolutemore » total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.« less
Cross section of resonant Raman scattering of light by polyenes
NASA Astrophysics Data System (ADS)
Verdyugin, V. V.; Burshteyn, K. Ya.; Shorygin, P. P.
1987-03-01
An experimental study is presented of the resonant Raman spectra of beta carotene. Absolute differential cross sections are obtained for the most intensive Raman spectral lines with excitation at the absorption maximum. A theoretical analysis is presented of the variation in absolute differential cross section as a function of a number of conjunct double bonds in the polyenes.
1975-09-01
In the Visible and Near Ultraviolet CHEMICAL FORMULA WAVE LENGTH (A) N02 3000-6000 NITROGEN DIOXIDE N20 2800-3065 NITROUS OXIDE CH3CHO 2500-3500...Electronic Transitions In the Visible and Near Ultraviolet (Cont.) i i i CHEMICAL FORMULA WAVE LENGTH (Ä) PrF 5172 Br20 3330.4011 ci2 4796 AND AN...of characteristic frequency v . The total elastic scattering cross section is given by the classical formula [3-1] : o = —*- r* ; r = • (3-1
New prospects of VESUVIO applied to measurements in water mixtures
NASA Astrophysics Data System (ADS)
Rodríguez Palomino, L. A.; Dawidowski, J.; Blostein, J. J.; Cuello, G. J.
2014-12-01
We present new measurements on mixtures of light and heavy water in the spectrometer VESUVIO (Rutherford Appleton Laboratory, UK), and analyze them from the perspective of different kind of applications. We perform a single detector analysis and show the multiple scattering and attenuation corrections with the aim to employ them in mass- spectrometry. We also show the capabilities to perform transmission measurements to determine total cross sections of an acceptable quality by means of its transmission monitor.
Work on power-plant (air) plumes involving remote sensing of SO2
NASA Technical Reports Server (NTRS)
White, C. L., Jr.
1978-01-01
Acquisition of air quality and concurrent meteorological data was used for dispersion model development and plant siting needs of the Maryland power plants. One of the major instruments in these studies was the Barringer correlation spectrometer, a remote sensor, using atmospherically scattered sunlight that was used to measure the total amount of SO2 in a cross section of the plume. Correlation spectrometer and its role in this measurement program are described.
NASA Astrophysics Data System (ADS)
Sarma, Manabendra; Singh, Raman K.; Mishra, Manoj K.
2007-12-01
Vibrational excitation cross-sections σn←m(E) in resonant e-N2, e-CO and e-H2 scattering are calculated from transition matrix elements Tn←m(E) obtained using Fourier transform of the cross correlation function <φn(R)|ψm(R,t)> where ψm(R,t); e-iHA-(R)t/ℏφm(R). Time evolution under the influence of the resonance anionic Hamiltonian HA-(A- = N2-/CO/H2-) is effected using Lanczos and fast Fourier transforms and the target (A) vibrational eigenfunctions φm(R) and φn(R) are calculated using Fourier grid Hamiltonian method applied to PE curve of the neutral target. The resulting vibrational excitation cross-section profiles provide reasonable agreement with experimental results and the cross correlation functions offer an unequivocal differentiation between the boomerang and impulse models.
The TOTEM DAQ based on the Scalable Readout System (SRS)
NASA Astrophysics Data System (ADS)
Quinto, Michele; Cafagna, Francesco S.; Fiergolski, Adrian; Radicioni, Emilio
2018-02-01
The TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC) experiment at LHC, has been designed to measure the total proton-proton cross-section and study the elastic and diffractive scattering at the LHC energies. In order to cope with the increased machine luminosity and the higher statistic required by the extension of the TOTEM physics program, approved for the LHC's Run Two phase, the previous VME based data acquisition system has been replaced with a new one based on the Scalable Readout System. The system features an aggregated data throughput of 2GB / s towards the online storage system. This makes it possible to sustain a maximum trigger rate of ˜ 24kHz, to be compared with the 1KHz rate of the previous system. The trigger rate is further improved by implementing zero-suppression and second-level hardware algorithms in the Scalable Readout System. The new system fulfils the requirements for an increased efficiency, providing higher bandwidth, and increasing the purity of the data recorded. Moreover full compatibility has been guaranteed with the legacy front-end hardware, as well as with the DAQ interface of the CMS experiment and with the LHC's Timing, Trigger and Control distribution system. In this contribution we describe in detail the architecture of full system and its performance measured during the commissioning phase at the LHC Interaction Point.
Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability
Appelquist, T.; Berkowitz, E.; Brower, R. C.; ...
2015-10-23
We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from a dark SU(4) confining gauge theory—“stealth dark matter.” In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using themore » background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be possibly detectable in the dark matter mass range of about 200–700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m 6 B, suggests the observable dark matter mass range is not appreciably modified. We highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.« less
Recent measurements concerning uranium hexafluoride-electron collision processes
NASA Technical Reports Server (NTRS)
Trajmar, S.; Chutjian, A.; Srivastava, S.; Williams, W.; Cartwright, D. C.
1976-01-01
Scattering of electrons by UF6 molecules was studied at impact energies ranging from 5 to 100 eV and momentum transfer, elastic and inelastic scattering cross sections were determined. The measurements also yielded spectroscopic information which made possible to extend the optical absorption cross sections from 2000 angstroms to 435 angstroms. It was found that UF6 is a very strong absorber in the vacuum UV region. No transitions were found to lie below the onset of the optically detected 3.0 eV feature.
The effect of kinematic parameters on inelastic scattering of glyoxal.
Duca, Mariana D
2004-10-08
The effect of kinematic parameters (relative velocity v(rel), relative momentum p(rel), and relative energy E(rel)) on the rotational and rovibrational inelastic scatterings of 0(0)K(0)S(1) trans-glyoxal has been investigated by colliding glyoxal seeded in He or Ar with target gases D2, He, or Ne at different scattering angles in crossed supersonic beams. The inelastic spectra for target gases He and D2 acquired with two different sets of kinematic parameters revealed no significant differences. This result shows that kinematic factors have the major influence in the inelastic scattering channel competition whereas the intermolecular potential energy surface plays only a secondary role. The well-defined exponential dependence of relative cross sections on exchanged angular momentum identifies angular momentum as the dominant kinematic factor in collision-induced rotationally and rovibrationally inelastic scatterings. This is supported by the behavior of the relative inelastic cross sections data in a "slope-p(rel)" representation. In this form, the data show a trend nearly independent of the target gas identity. Representations involving E(rel) and v(rel) show trends specific to the target gas.
Spectral peculiarities of electromagnetic wave scattering by Veselago's cylinders
NASA Astrophysics Data System (ADS)
Sukhov, S. V.; Shevyakhov, N. S.
2006-03-01
The results are presented of spectral calculations of extinction cross-section for scattering of E- and H-polarized electromagnetic waves by cylinders made of Veselago material. The insolvency of previously developed models of scattering is demonstrated. It is shown that correct description of scattering requires separate consideration of both electric and magnetic subsystems.