NASA Astrophysics Data System (ADS)
Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Takeda, T.; Itai, Y.; Akatsuka, T.
2002-10-01
A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic Kα radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work.
Contact angle of sessile drops in Lennard-Jones systems.
Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans
2014-11-18
Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.
Tang, Hao; Xu, Liuxiong; Hu, Fuxiang
2018-01-01
Nylon (PA) netting is widely used in purse seines and other fishing gears due to its high strength and good sinking performance. However, hydrodynamic properties of nylon netting of different characteristics are poorly understood. This study investigated hydrodynamic characteristics of nylon netting of different knot types and solidity ratios under different attack angles and flow velocities. It was found that the hydrodynamic coefficient of netting panels was related to Reynolds number, solidity ratio, attack angle, knot type and twine construction. The solidity ratio was found to positively correlate with drag coefficient when the netting was normal to the flow (CD90), but not the case when the netting was parallel to the flow (CD0). For netting panels inclined to the flow, the inclined drag coefficient had a negative relationship with the solidity ratio for attack angles between 0° and 50°, but a positive relationship for attack angles between 50° and 90°. The lift coefficient increased with the attack angle, reaching the culminating point at an attack angle of 50°, before subsequent decline. We found that the drag generated by knot accounted for 15–25% of total drag, and the knotted netting with higher solidity ratio exhibited a greater CD0, but it was not the case for the knotless netting. Compared to knotless polyethylene (PE) netting, the drag coefficients of knotless PA netting were dominant at higher Reynolds number (Re>2200). PMID:29420569
Tang, Hao; Xu, Liuxiong; Hu, Fuxiang
2018-01-01
Nylon (PA) netting is widely used in purse seines and other fishing gears due to its high strength and good sinking performance. However, hydrodynamic properties of nylon netting of different characteristics are poorly understood. This study investigated hydrodynamic characteristics of nylon netting of different knot types and solidity ratios under different attack angles and flow velocities. It was found that the hydrodynamic coefficient of netting panels was related to Reynolds number, solidity ratio, attack angle, knot type and twine construction. The solidity ratio was found to positively correlate with drag coefficient when the netting was normal to the flow (CD90), but not the case when the netting was parallel to the flow (CD0). For netting panels inclined to the flow, the inclined drag coefficient had a negative relationship with the solidity ratio for attack angles between 0° and 50°, but a positive relationship for attack angles between 50° and 90°. The lift coefficient increased with the attack angle, reaching the culminating point at an attack angle of 50°, before subsequent decline. We found that the drag generated by knot accounted for 15-25% of total drag, and the knotted netting with higher solidity ratio exhibited a greater CD0, but it was not the case for the knotless netting. Compared to knotless polyethylene (PE) netting, the drag coefficients of knotless PA netting were dominant at higher Reynolds number (Re>2200).
Total Dose Survivability of Hubble Electronic Components
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.
2017-01-01
A total dose analysis for exposure of electronic parts at the box level is presented for the Hubble Space Telescope. This was done using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are discussed in terms of parts that are potential total dose concerns.
NASA Astrophysics Data System (ADS)
Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.
Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.
NASA Astrophysics Data System (ADS)
Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria
2008-08-01
We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.
Interpreting contact angle results under air, water and oil for the same surfaces
NASA Astrophysics Data System (ADS)
Ozkan, Orkun; Yildirim Erbil, H.
2017-06-01
Under-water and under-oil superhydropobicity and superhydrophilicity have gained significant attention over the last few years. In this study, contact angles on five flat surfaces (polypropylene, poly(methyl methacrylate), polycarbonate, TEFLON-FEP and glass slide) were measured in water drop-in-air, air bubble-under-water, oil drop-in-air, air bubble-under-oil, oil drop-under-water and water drop-under-oil conditions. Heptane, octane, nonane, decane, dodecane, and hexadecane hydrocarbons were used as oils. Immiscible water/oil pairs were previously mutually saturated to provide thermodynamical equilibrium conditions and their surface and interfacial tensions were determined experimentally. These pairs were used in the two-liquid contact angle measurements. Surface free energies of the solid surfaces in air were determined independently by using the van Oss-Good method, using the contact angle results of pure water, ethylene glycol, formamide, methylene iodide and α-bromonaphalene. In addition, Zisman’s ‘critical surface tension’ values were also determined for comparison. In theory, the summation of contact angle results in a complementary case would give a total of 180° for ideal surfaces. However, it was determined that there are large deviations from this rule in practical cases and these deviations depend on surface free energies of solids. Three complementary cases of (water-in-air with air bubble-under-water); (oil-in-air with air bubble-under-oil); and (oil-under-water with water-under-oil) were investigated in particular to determine the deviations from ideality. A novel approach, named ‘complementary hysteresis’ [γ WA(cosθ 1 - cosθ 2) and γ OW(cosθ 6 - cosθ 5)] was developed where γ WA and γ OW represent the interfacial tensions of water/air and oil/water, and θ 1, θ 2, θ 5, and θ 6 were the contact angles of water/air, air bubble/water, oil/water and water/oil respectively. It was experimentally determined that complementary hysteresis varies almost linearly with the surface free energy of the flat solid samples. This is the first report showing the relation of the surface free energy of a solid which is determined under-air with the contact angles obtained on the same solid in different three-phase systems.
Aerial photographic water color variations from the James River
NASA Technical Reports Server (NTRS)
Bressette, W. E.
1979-01-01
Photographic flights from 305 meters altitude were made throughout the day of May 17, 1977, over seven water data stations in the James River. The flights resulted in wide-angle, broadband, spectral radiance film exposure data between the wavelengths of 500 to 900 nanometers for sun elevation angles ranging from 37 to 64 deg and variable atmospheric haze conditions. It is shown from densitometer data that: (1) the dominant observed color from James River waters is determined by the optical properties of the total suspended solid load, (2) variability in observed color is produced by a changing solar elevation angle; and (3) the rate at which observed color changes is influenced by both solar elevation angle and atmospheric conditions.
Microscopic description of a drop on a solid surface.
Ruckenstein, Eli; Berim, Gersh O
2010-06-14
Two approaches recently suggested for the treatment of macro- or nanodrops on smooth or rough, planar or curved, solid surfaces, based on fluid-fluid and fluid-solid interaction potentials are reviewed. The first one employs the minimization of the total potential energy of a drop by assuming that the drop has a well defined profile and a constant liquid density in its entire volume with the exception of the monolayer nearest to the surface where the density has a different value. As a result, a differential equation for the drop profile as well as the necessary boundary conditions are derived which involve the parameters of the interaction potentials and do not contain such macroscopic characteristics as the surface tensions. As a consequence, the macroscopic and microscopic contact angles which the drop profile makes with the surface can be calculated. The macroscopic angle is obtained via the extrapolation of the circular part of the drop profile valid at some distance from the surface up to the solid surface. The microscopic angle is formed at the intersection of the real profile (which is not circular near the surface) with the surface. The theory provides a relation between these two angles. The ranges of the microscopic parameters of the interaction potentials for which (i) the drop can have any height (volume), (ii) the drop can have a restricted height but unrestricted volume, and (iii) a drop cannot be formed on the surface were identified. The theory was also extended to the description of a drop on a rough surface. The second approach is based on a nonlocal density functional theory (DFT), which accounts for the inhomogeneity of the liquid density and temperature effects, features which are missing in the first approach. Although the computational difficulties restrict its application to drops of only several nanometers, the theory can be applied indirectly to macrodrops by calculating the surface tensions and using the Young equation to determine the contact angle. Employing the canonical ensemble version of the DFT, nanodrops on smooth and rough solid surfaces could be investigated and their characteristics, such as the drop profile, contact angle, as well as the fluid density distribution inside the drop can be determined as functions of the parameters of the interaction potentials and temperature. It was found that the contact angle of the drop has a simple (quasi)universal dependence on the energy parameter epsilon(fs) of the fluid-solid interaction potential and temperature. The main feature of this dependence is the existence of a fixed value theta(0) of the contact angle theta which separates the solid substrates (characterized by the energy parameter epsilon(fs) of the fluid-solid interaction potential) into two classes with respect to their temperature dependence. For theta>theta(0) the contact angle monotonously increases and for theta
Pyrolysis of blended animal manures to produce combustible gas and value-added charcoal adsorbent
USDA-ARS?s Scientific Manuscript database
Blended swine solids, chicken litter, and rye grass were pyrolyzed using a skid-mounted sytem. Produced gas composition was analyzed for major hydrocarbons and S-containing compounds. Charcoal was analyzed for its surface functional groups, contact angles, HHV, and total element contents. Some of th...
The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture
Favorite, Jeffrey A.
2016-01-13
It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.
The solid angle hidden in polyhedron gravitation formulations
NASA Astrophysics Data System (ADS)
Werner, Robert A.
2017-03-01
Formulas of a homogeneous polyhedron's gravitational potential typically include two arctangent terms for every edge of every face and a special term to eliminate a possible facial singularity. However, the arctangent and singularity terms are equivalent to the face's solid angle viewed from the field point. A face's solid angle can be evaluated with a single arctangent, saving computation.
Parasitic oscillation suppression in solid state lasers using absorbing thin films
Zapata, L.E.
1994-08-02
A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber. 16 figs.
Parasitic oscillation suppression in solid state lasers using absorbing thin films
Zapata, Luis E.
1994-01-01
A thin absorbing film is bonded onto at least certain surfaces of a solid state laser gain medium. An absorbing metal-dielectric multilayer film is optimized for a broad range of incidence angles, and is resistant to the corrosive/erosive effects of a coolant such as water, used in the forced convection cooling of the film. Parasitic oscillations hamper the operation of solid state lasers by causing the decay of stored energy to amplified rays trapped within the gain medium by total and partial internal reflections off the gain medium facets. Zigzag lasers intended for high average power operation require the ASE absorber.
Development of a software package for solid-angle calculations using the Monte Carlo method
NASA Astrophysics Data System (ADS)
Zhang, Jie; Chen, Xiulian; Zhang, Changsheng; Li, Gang; Xu, Jiayun; Sun, Guangai
2014-02-01
Solid-angle calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources, which are often complicated. In the present paper, a software package is developed to provide a convenient tool for solid-angle calculations in nuclear physics. The proposed software calculates solid angles using the Monte Carlo method, in which a new type of variance reduction technique was integrated. The package, developed under the environment of Microsoft Foundation Classes (MFC) in Microsoft Visual C++, has a graphical user interface, in which, the visualization function is integrated in conjunction with OpenGL. One advantage of the proposed software package is that it can calculate the solid angle subtended by a detector with different geometric shapes (e.g., cylinder, square prism, regular triangular prism or regular hexagonal prism) to a point, circular or cylindrical source without any difficulty. The results obtained from the proposed software package were compared with those obtained from previous studies and calculated using Geant4. It shows that the proposed software package can produce accurate solid-angle values with a greater computation speed than Geant4.
Planck 2013 results. VII. HFI time response and beams
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper characterizes the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency Instrument (HFI) detectors. The effective beam is theangular response including the effect of the optics, detectors, data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the cosmic microwave background angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: a) the optical response of the telescope and feeds; b) the processing of the time-ordered data and deconvolution of the bolometric and electronic transfer function; and c) the merging of several surveys to produce maps. The time response transfer functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5°) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total solid angle. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects. The correlation structure of these ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100 GHz up to multipole ℓ ~ 1500, and below 0.5% at 143 and 217 GHz up to ℓ ~ 2000.
Measurement of LYSO Intrinsic Light Yield Using Electron Excitation
NASA Astrophysics Data System (ADS)
Turtos, Rosana Martinez; Gundacker, Stefan; Pizzichemi, Marco; Ghezzi, Alessio; Pauwels, Kristof; Auffray, Etiennette; Lecoq, Paul; Paganoni, Marco
2016-04-01
The determination of the intrinsic light yield (LYint) of scintillating crystals, i.e. number of optical photons created per amount of energy deposited, constitutes a key factor in order to characterize and optimize their energy and time resolution. However, until now measurements of this quantity are affected by large uncertainties and often rely on corrections for bulk absorption and surface/edge state. The novel idea presented in this contribution is based on the confinement of the scintillation emission in the central upper part of a 10 mm cubic crystal using a 1.5 MeV electron beam with diameter of 1 mm. A black non-reflective pinhole aligned with the excitation point is used to fix the light extraction solid angle (narrower than total reflection angle), which then sets a light cone travel path through the crystal. The final number of photoelectrons detected using a Hamamatsu R2059 photomultiplier tube (PMT) was corrected for the extraction solid angle, the Fresnel reflection coefficient and quantum efficiency (QE) of the PMT. The total number of optical photons produced per energy deposited was found to be 40000 ph/MeV ± 9% (syst) ±3% (stat) for LYSO. Simulations using Geant4 were successfully compared to light output measurements of 2 × 2 mm2 section crystals with lengths of 5-30 mm, in order to validate the light transport model and set a limit on Light Transfer Efficiency estimations.
Determination of the Contact Angle Based on the Casimir Effect
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Volz, Martin P.
2015-01-01
On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.
NASA Astrophysics Data System (ADS)
Tang, Hao; Hu, Fuxiang; Xu, Liuxiong; Dong, Shuchuang; Zhou, Cheng; Wang, Xuefang
2017-10-01
Knotless polyethylene (PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity ratios were assessed in a flume tank under various attack angles of netting from 0° (parallel to flow) to 90° (perpendicular to flow) and current speeds from 40 cm s-1 to 130 cm s-1. It was found that the drag coefficient was related to Reynolds number, solidity ratio and attack angle of netting. The solidity ratio was positively related with drag coefficient for netting panel perpendicular to flow, whereas when setting the netting panel parallel to the flow the opposite result was obtained. For netting panels placed at an angle to the flow, the lift coefficient reached the maximum at an attack angle of 50° and then decreased as the attack angle further increased. The solidity ratio had a dual influence on drag coefficient of inclined netting panels. Compared to result in the literature, the normal drag coefficient of knotless PE netting measured in this study is larger than that of nylon netting or Dyneema netting.
A thermodynamic model of contact angle hysteresis.
Makkonen, Lasse
2017-08-14
When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.
Kuchin, I; Starov, V
2015-05-19
A theory of contact angle hysteresis of liquid droplets on smooth, homogeneous solid substrates is developed in terms of the shape of the disjoining/conjoining pressure isotherm and quasi-equilibrium phenomena. It is shown that all contact angles, θ, in the range θr < θ < θa, which are different from the unique equilibrium contact angle θ ≠ θe, correspond to the state of slow "microscopic" advancing or receding motion of the liquid if θe < θ < θa or θr < θ < θe, respectively. This "microscopic" motion almost abruptly becomes fast "macroscopic" advancing or receding motion after the contact angle reaches the critical values θa or θr, correspondingly. The values of the static receding, θr, and static advancing, θa, contact angles in cylindrical capillaries were calculated earlier, based on the shape of disjoining/conjoining pressure isotherm. It is shown now that (i) both advancing and receding contact angles of a droplet on a on smooth, homogeneous solid substrate can be calculated based on shape of disjoining/conjoining pressure isotherm, and (ii) both advancing and receding contact angles depend on the drop volume and are not unique characteristics of the liquid-solid system. The latter is different from advancing/receding contact angles in thin capillaries. It is shown also that the receding contact angle is much closer to the equilibrium contact angle than the advancing contact angle. The latter conclusion is unexpected and is in a contradiction with the commonly accepted view that the advancing contact angle can be taken as the first approximation for the equilibrium contact angle. The dependency of hysteresis contact angles on the drop volume has a direct experimental confirmation.
Instrumental effects on the temperature and density derived from the light ion mass spectrometer
NASA Technical Reports Server (NTRS)
Craven, P. D.; Reasoner, D. L.
1983-01-01
An expression for the flux into a retarding potential analyzer (RPA) is derived which takes into account the instrumental effect of a dependence on energy of the solid angle of the acceptance cone. A second instrumental effect of a limited bandpass is briefly discussed. Using the (LIMS) instrument on SCATHA, it is shown that temperatures and densities derived without considering the effect of the solid angle dependence on energy will be too low, dramatically so for E(t) E(1), where E(1) is the e folding distance of the solid angle dependence and E(t) is the thermal energy of the plasma. For E(t) E(1), there is effectively no impact on the derived temperatures and densities if the solid angle effect is ignored.
Radiation from long pulse train electron beams in space plasmas
NASA Technical Reports Server (NTRS)
Harker, K. J.; Banks, P. M.
1985-01-01
A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfven waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.
The Orbital Workshop Waste Management Compartment
NASA Technical Reports Server (NTRS)
1972-01-01
This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.
1972-05-01
This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.
Andreozzi, Jacqueline M; Brůža, Petr; Tendler, Irwin I; Mooney, Karen E; Jarvis, Lesley A; Cammin, Jochen; Li, Harold; Pogue, Brian W; Gladstone, David J
2018-06-01
The purpose of this study was to identify the optimal treatment geometry for total skin electron therapy (TSET) using a new optimization metric from Cherenkov image analysis, and to investigate the sensitivity of the Cherenkov imaging method to floor scatter effects in this unique treatment setup. Cherenkov imaging using an intensified charge coupled device (ICCD) was employed to measure the relative surface dose distribution as a 2D image in the total skin electron treatment plane. A 1.2 m × 2.2 m × 1 cm white polyethylene sheet was placed vertically at a source to surface distance (SSD) of 300 cm, and irradiated with 6 MeV high dose rate TSET beams. The linear accelerator coordinate system used stipulates 0° is the bottom of the gantry arc, and progresses counterclockwise so that gantry angle 270° produces a horizontal beam orthogonal to the treatment plane. First, all unique pairs of treatment beams were analyzed to determine the performance of the currently recommended symmetric treatment angles (±20° from the horizontal), compared to treatment geometries unconstrained to upholding gantry angle symmetry. This was performed on two medical linear accelerators (linacs). Second, the extent of the floor scatter contributions to measured surface dose at the extended SSD required for TSET were imaged using three gantry angles of incidence: 270° (horizontal), 253° (-17°), and 240° (-30°). Images of the surface dose profile at each angle were compared to the standard concrete floor when steel plates, polyvinyl chloride (PVC), and solid water were placed on the ground at the base of the treatment plane. Postprocessing of these images allowed for comparison of floor material-based scatter profiles with previously published simulation results. Analysis of the symmetric treatment geometry (270 ± 20°) and the identified optimal treatment geometry (270 + 23° and 270 - 17°) showed a 16% increase in the 90% isodose area for the latter field pair on the first linac. The optimal asymmetric pair for the second linac (270 + 25° and 270 - 17°) provided a 52% increase in the 90% isodose area when compared to the symmetric geometry. Difference images between Cherenkov images captured with test materials (steel, PVC, and solid water) and the control (concrete floor) demonstrated relative changes in the two-dimensional (2D) dose profile over a 1 × 1.9 m region of interest (ROI) that were consistent with published simulation data. Qualitative observation of the residual images demonstrates localized increases and decreases with respect to the change in floor material and gantry angle. The most significant changes occurred when the beam was most directly impinging the floor (gantry angle 240°, horizontal -30°), where the PVC floor material decreased scatter dose by 1-3% in 7.2% of the total ROI area, and the steel plate increased scatter dose by 1-3% in 7.0% of the total ROI area. An updated Cherenkov imaging method identified asymmetric, machine-dependent TSET field angle pairs that provided much larger 90% isodose areas than the commonly adopted symmetric geometry suggested by Task Group 30 Report 23. A novel demonstration of scatter dose Cherenkov imaging in the TSET field was established. © 2018 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Braddock, W. F.
1975-01-01
A test of a model of the Space Shuttle Solid Rocket Boosters (SRB's) was performed in a 14 x 14 inch Trisonic Wind Tunnel to determine the aerodynamic forces and moments imposed on the nozzle of the SRB during reentry. The model, with scale dimensions equal to 0.5479 of the actual SRB dimensions, was instrumented with a six-component force balance attached to the model nozzle so that only forces and moments acting on the nozzle were measured. A total of 137 runs (20 deg pitch polars) were performed during this test. The angle of attack ranged from 60 to 185 deg, the Reynolds number from 5.2 million to 7.6 million. The Mach numbers investigated were 1.96, 2.74, and 3.48. Five external protuberances were simulated. The effective roll angle simulated was 180 deg. The effects of three different heat shield configurations were investigated.
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Radford, W. D.; Rampy, J. M.
1973-01-01
Tests conducted at NASA-Langley have shown that a small flap or strake can generate a significant amount of lift on a circular cylinder with large cross flow. If strakes are placed on the opposite sides and ends on a circular body, a moment will be produced about the center of mass of the body. The purpose of this test was to determine the static-aerodynamic forces and moments of a 162-inch diameter SRB (PRR) with and without strakes. The total angle-of-attack range of the SRB test was from -10 to 190 degrees. Model roll angles were 0, 45, 90, and 135 degrees with some intermediate angles. The Mach range was from 0.6 to 3.48. The 0.00494 scale model was designated as MSFC No. 449.
Deformation of a free interface pierced by a tilted cylinder
NASA Astrophysics Data System (ADS)
Raufaste, C.; Kirstetter, G.; Celestini, F.; Cox, S. J.
2012-07-01
We investigate the interaction between an infinite cylinder and a free fluid-fluid interface governed only by its surface tension. We study the deformation of an initially flat interface when it is deformed by the presence of a cylindrical object, tilted at an arbitrary angle, that the interface “totally wets”. Our simulations predict all significant quantities such as the interface shape, the position of the contact line, and the force exerted by the interface on the cylinder. These results are compared with an experimental study of the penetration of a soap film by a cylindrical liquid jet. This dynamic situation exhibits all the characteristics of a totally wetting interface. We show that whatever the inclination, the force is always perpendicular to the plane of the interface, and its amplitude diverges as the inclination angle increases. Such results should bring new insights in both fluid and solid mechanics, from animal locomotion to surface micro-processing.
Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.
Janeček, V; Nikolayev, V S
2013-01-01
This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20° larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.
Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces
NASA Astrophysics Data System (ADS)
Janeček, V.; Nikolayev, V. S.
2013-01-01
This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20∘ larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.
A rocket-borne energy spectrometer using multiple solid-state detectors for particle identification
NASA Technical Reports Server (NTRS)
Fries, K. L.; Smith, L. G.; Voss, H. D.
1979-01-01
A rocket-borne experiment using energy spectrometers that allows particle identification by the use of multiple solid-state detectors is described. The instrumentation provides information regarding the energy spectrum, pitch-angle distribution, and the type of energetic particles present in the ionosphere. Particle identification was accomplished by considering detector loss mechanisms and their effects on various types of particles. Solid state detectors with gold and aluminum surfaces of several thicknesses were used. The ratios of measured energies for the various detectors were compared against known relationships during ground-based analysis. Pitch-angle information was obtained by using detectors with small geometrical factors mounted with several look angles. Particle flux was recorded as a function of rocket azimuth angle. By considering the rocket azimuth, the rocket precession, and the location of the detectors on the rocket, the pitched angle of the incident particles was derived.
Measurement of Surface Tension of Solid Cu by Improved Multiphase Equilibrium
NASA Astrophysics Data System (ADS)
Nakamoto, Masashi; Liukkonen, Matti; Friman, Michael; Heikinheimo, Erkki; Hämäläinen, Marko; Holappa, Lauri
2008-08-01
The surface tension of solid Cu was measured with the multiphase equilibrium (MPE) method in a Pb-Cu system at 700 °C, 800 °C, and 900 °C. A special focus was on the measurement of angles involved in MPE. First, the effect of reading error in each angle measurement on the final result of surface tension of solid was simulated. It was found that the two groove measurements under atmosphere conditions are the primary sources of error in the surface tension of solid in the present system. Atomic force microscopy (AFM) was applied to these angle measurements as a new method with high accuracy. The obtained surface-tension values of solid Cu in the present work were 1587, 1610, and 1521 mN/m at 700 °C, 800 °C, and 900 °C, respectively, representing reasonable temperature dependence.
NASA Technical Reports Server (NTRS)
Marroquin, J.; Lemoine, P.
1992-01-01
An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.
NASA Technical Reports Server (NTRS)
Marroquin, J.; Lemoine, P.
1992-01-01
An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.
Experimental evaluation of a cooled radial-inflow turbine
NASA Technical Reports Server (NTRS)
Tirres, Lizet; Dicicco, L. D.; Nowlin, Brent C.
1993-01-01
Two 14.4 inch tip diameter rotors were installed and tested in the Small Engines Component Turbine Facility (SECTF) at NASA Lewis Research Center. The rotors, a solid and a cooled version of a radial-inflow turbine, were tested with a 15 vane stat or over a set of rotational speeds ranging from 80 to 120 percent design speed (17,500 to 21,500 rpm). The total-to-total stage pressure ratios ranged from 2.5 to 5.5. The data obtained at the equivalent conditions using the solid version of the rotor are presented with the cooled rotor data. A Reynolds number of 381,000 was maintained for both rotors, whose stages had a design mass flow of 4.0 lbm/sec, a design work level of 59.61 Btu/lbm, and a design efficiency of 87 percent. The results include mass flow data, turbine torque, turbine exit flow angles, stage efficiency, and rotor inlet and exit surveys.
Experimental Evaluation of a Cooled Radial-inflow Turbine
NASA Technical Reports Server (NTRS)
Tirres, Lizet; Dicicco, L. Danielle; Nowlin, Brent C.
1993-01-01
Two 14.4 inch tip diameter rotors were installed and tested in the Small Engines Component Turbine Facility (SECTF) at NASA Lewis Research Center. The rotors, a solid and a cooled version of a radial-inflow turbine, were tested with a 15 vane stat or over a set of rotational speeds ranging from 80 to 120 percent design speed (17,500 to 21,500 rpm). The total-to-total stage pressure ratios ranged from 2.5 to 5.5. The data obtained at the equivalent conditions using the solid version of the rotor are presented with the cooled rotor data. A Reynolds number of 381,000 was maintained for both rotors, whose stages had a design mass flow of 4.0 Ibm/sec, a design work level of 59.61 Btu/lbm, and a design efficiency of 87 percent. The results include mass flow data, turbine torque, turbine exit flow angles, stage efficiency, and rotor inlet and exit surveys.
Yonemoto, Yukihiro; Kunugi, Tomoaki
2014-01-01
The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.
NASA Technical Reports Server (NTRS)
Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.
1975-01-01
The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.E.; Spencer, R.B.; Burger, V.T.
1984-01-01
Solid-state cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectra have been recorded on chlorophyll a-water aggregates, methyl pyrochlorophyllide a, and methyl pyropheophorbide a. Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid-state spectra. 18 references, 2 figures, 1 table.
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Braddock, W. F.
1974-01-01
Force tests of a 0.563 percent scale space shuttle solid rocket booster (SRB) model, MSFC Model 449, were conducted at the Marshall Space Flight Center 14 x 14 inch Trisonic Wind Tunnel. There were a total of 134 runs (pitch polars) made. Test Mach numbers were 0.6, 0.9, 1.2, 1.96, 2.74, 3.48, 4.00, 4.45, and 4.96; test angles of attack ranged from minus 10 degrees to 190 degrees; test Reynolds numbers ranged from 4.9 million per foot to 7.1 million per foot; and test roll angles were 0, 45, 90, and 135 degrees. The model was tested with three different engine nozzle/skirts. Two of these engine configurations differed from each other in the magnitude of the volume inside the nozzle and skirt. The third engine configuration had part of the nozzle removed. The model was tested with an electrical tunnel in combination with separation rockets of two different heights.
Hydrodynamic boundary condition of water on hydrophobic surfaces.
Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian
2013-05-01
By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.
NASA Astrophysics Data System (ADS)
Yang, Bo; Wang, Dehui; Zhou, Lin; Wu, Shuang; Xiang, Rong; Zhang, Wenhua; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqing; Lu, Liang; Yu, Benli
2017-06-01
The self-mixing technique based on the traditional reflecting mirror has been demonstrated with great merit for angle sensing applications. Here we demonstrate a modified self-reflection-mixing angle measurement system by combine a right-angle prism to self-mixing angle measurement. In our system, the wavelength is crucial to the angle measurement resolution. For a microchip solid-state laser, the measurement resolution can reach 0.49 mrad, while the resolution for the He-Ne laser is 0.53 mrad. In addition, the ranges in the system with the microchip solid-state laser and He-Ne laser are up to 22 mrad and 24.9 mrad respectively. This modified angle measurement system effectively combines the advantage of self-mixing measurement system with a compact structure, providing interesting features such as of high requisition of resolution and precision.
Impact of drainage on wettability of fen peat-moorsh soils
NASA Astrophysics Data System (ADS)
Szajdak, L.; Szatyłowicz, J.; Brandyk, T.
2009-04-01
High water retention in peat is attributed to structural voids (macro-pores) due to the partial degradation of the structure of peat-forming plants, and molecular absorption sites (micro-pores) associated with the formation of humic substances. Water retention by the heterogeneously-structured system in peat organic matter depends on the chemical structure of solid surfaces. These naturally wet solids, if dried sufficiently, lose the ability to rewet quickly when immersed in water. The ability of peat surfaces to attract and hold water is attributed to hydrophilic functional groups which characterize the organic substances of peat. The investigations of chemical and physical properties were performed for three different peat-moorsh soils located in the Biebrza River Valley in Poland. All examined soils were used as meadow. Soil samples were taken from two depths: 5-10 cm (moorsh) and 50-80 cm (peat). Total organic carbon (TOC), dissolved organic carbon (DOC) and humic acids (HA) extracted from these samples were analysed. Also basic physical properties such as ash content and bulk density were measured. Wetting behavior of soils was quantified using water drop penetration time test (WDPT) and measured values of the soil-water contact angle using sessile drop method. The measurements were conducted on air-dry soil samples which volumetric moisture content was not exceeding 7%. The significant differences in the concentrations of TOC, DOC and properties of HA between two investigated depth of among peat and moorsh samples were observed. The measured concentrations of total organic carbon in the considered soils ranged from 37.2 to 45.6%. Generally, the decrease of total organic carbon concentration with depth of profiles was observed. The contents of dissolved organic carbon in the soils ranged from 5.3 to 19.4%. The quantities of dissolved organic carbon decreased simultaneously with E4/E6 values and with the depth of the soil profiles. For the investigated peat's, an increase of the depth is accompanied by the decrease in the degree of humification or an increase in chemical maturity of HA. The measured values of the contact angle for investigated soils were in the range from 81.4˚ to 114.3˚ what indicates their high water repellency. The WDPT was positively correlated with total organic carbon, organic matter and humic acids content while ash content, soil bulk density, pH and absorbance were correlated negatively. The highest value of correlation coefficient (statistically significant) was obtained for relation between WDPT and ash content. The soil water contact angle was less correlated with peat-moorsh soil properties in comparison with WDPT with one exception pH. The pH against the contact angle indicates tendency of increasing the contact angle with decreasing pH.
Spontaneous Spreading of a Droplet: The Role of Solid Continuity and Advancing Contact Angle.
Jiang, Youhua; Sun, Yujin; Drelich, Jaroslaw W; Choi, Chang-Hwan
2018-05-01
Spontaneous spreading of a droplet on a solid surface is poorly understood from a macroscopic level down to a molecular level. Here, we investigate the effect of surface topography and wettability on spontaneous spreading of a water droplet. Spreading force is measured for a suspended droplet that minimizes interference of kinetic energy in the spontaneous spreading during its contact with solid surfaces of discontinuous (pillar) and continuous (pore) patterns with various shapes and dimensions. Results show that a droplet cannot spread spontaneously on pillared surfaces regardless of their shapes or dimensions because of the solid discontinuity. On the contrary, a droplet on pored surfaces can undergo spontaneous spreading whose force increases with a decrease in the advancing contact angle. Theoretical models based on both the system free energy and capillary force along the contact line validate the direct and universal dependency of the spontaneous spreading force on the advancing contact angle.
DUST AROUND R CORONAE BOREALIS STARS. I. SPITZER/INFRARED SPECTROGRAPH OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anibal Garcia-Hernandez, D.; Kameswara Rao, N.; Lambert, David L., E-mail: agarcia@iac.es, E-mail: nkrao@iiap.res.in, E-mail: dll@astro.as.utexas.edu
2011-09-20
Spitzer/infrared spectrograph (IRS) spectra from 5 to 37 {mu}m for a complete sample of 31 R Coronae Borealis stars (RCBs) are presented. These spectra are combined with optical and near-infrared photometry of each RCB at maximum light to compile a spectral energy distribution (SED). The SEDs are fitted with blackbody flux distributions and estimates are made of the ratio of the infrared flux from circumstellar dust to the flux emitted by the star. Comparisons for 29 of the 31 stars are made with the Infrared Astronomical Satellite (IRAS) fluxes from three decades earlier: Spitzer and IRAS fluxes at 12 {mu}mmore » and 25 {mu}m are essentially equal for all but a minority of the sample. For this minority, the IRAS to Spitzer flux ratio exceeds a factor of three. The outliers are suggested to be stars where formation of a dust cloud or dust puff is a rare event. A single puff ejected prior to the IRAS observations may have been reobserved by Spitzer as a cooler puff at a greater distance from the RCB. RCBs which experience more frequent optical declines have, in general, a circumstellar environment containing puffs subtending a larger solid angle at the star and a quasi-constant infrared flux. Yet, the estimated subtended solid angles and the blackbody temperatures of the dust show a systematic evolution to lower solid angles and cooler temperatures in the interval between IRAS and Spitzer. Dust emission by these RCBs and those in the LMC is similar in terms of total 24 {mu}m luminosity and [8.0]-[24.0] color index.« less
NASA Technical Reports Server (NTRS)
1982-01-01
A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.
NASA Astrophysics Data System (ADS)
Badawi, Mohamed S.; Jovanovic, Slobodan I.; Thabet, Abouzeid A.; El-Khatib, Ahmed M.; Dlabac, Aleksandar D.; Salem, Bohaysa A.; Gouda, Mona M.; Mihaljevic, Nikola N.; Almugren, Kholud S.; Abbas, Mahmoud I.
2017-03-01
The 4π NaI(Tl) γ-ray detectors are consisted of the well cavity with cylindrical cross section, and the enclosing geometry of measurements with large detection angle. This leads to exceptionally high efficiency level and a significant coincidence summing effect, much more than a single cylindrical or coaxial detector especially in very low activity measurements. In the present work, the detection effective solid angle in addition to both full-energy peak and total efficiencies of well-type detectors, were mainly calculated by the new numerical simulation method (NSM) and ANGLE4 software. To obtain the coincidence summing correction factors through the previously mentioned methods, the simulation of the coincident emission of photons was modeled mathematically, based on the analytical equations and complex integrations over the radioactive volumetric sources including the self-attenuation factor. The measured full-energy peak efficiencies and correction factors were done by using 152Eu, where an exact adjustment is required for the detector efficiency curve, because neglecting the coincidence summing effect can make the results inconsistent with the whole. These phenomena, in general due to the efficiency calibration process and the coincidence summing corrections, appear jointly. The full-energy peak and the total efficiencies from the two methods typically agree with discrepancy 10%. The discrepancy between the simulation, ANGLE4 and measured full-energy peak after corrections for the coincidence summing effect was on the average, while not exceeding 14%. Therefore, this technique can be easily applied in establishing the efficiency calibration curves of well-type detectors.
Drop rebound after impact: the role of the receding contact angle.
Antonini, C; Villa, F; Bernagozzi, I; Amirfazli, A; Marengo, M
2013-12-31
Data from the literature suggest that the rebound of a drop from a surface can be achieved when the wettability is low, i.e., when contact angles, measured at the triple line (solid-liquid-air), are high. However, no clear criterion exists to predict when a drop will rebound from a surface and which is the key wetting parameter to govern drop rebound (e.g., the "equilibrium" contact angle, θeq, the advancing and the receding contact angles, θA and θR, respectively, the contact angle hysteresis, Δθ, or any combination of these parameters). To clarify the conditions for drop rebound, we conducted experimental tests on different dry solid surfaces with variable wettability, from hydrophobic to superhydrophobic surfaces, with advancing contact angles 108° < θA < 169° and receding contact angles 89° < θR < 161°. It was found that the receding contact angle is the key wetting parameter that influences drop rebound, along with surface hydrophobicity: for the investigated impact conditions (drop diameter 2.4 < D0 < 2.6 mm, impact speed 0.8 < V < 4.1 m/s, Weber number 25 < We < 585), rebound was observed only on surfaces with receding contact angles higher than 100°. Also, the drop rebound time decreased by increasing the receding contact angle. It was also shown that in general care must be taken when using statically defined wetting parameters (such as advancing and receding contact angles) to predict the dynamic behavior of a liquid on a solid surface because the dynamics of the phenomenon may affect surface wetting close to the impact point (e.g., as a result of the transition from the Cassie-Baxter to Wenzel state in the case of the so-called superhydrophobic surfaces) and thus affect the drop rebound.
Emoto, T; Akimoto, K; Ichimiya, A
1998-05-01
A new X-ray diffraction technique has been developed in order to measure the strain field near a solid surface under ultrahigh vacuum (UHV) conditions. The X-ray optics use an extremely asymmetric Bragg-case bulk reflection. The glancing angle of the X-rays can be set near the critical angle of total reflection by tuning the X-ray energy. Using this technique, rocking curves for Si surfaces with different surface structures, i.e. a native oxide surface, a slightly oxide surface and an Si(111) 7 x 7 surface, were measured. It was found that the widths of the rocking curves depend on the surface structures. This technique is efficient in distinguishing the strain field corresponding to each surface structure.
Determination of contact angle from the maximum height of enlarged drops on solid surfaces
NASA Astrophysics Data System (ADS)
Behroozi, F.
2012-04-01
Measurement of the liquid/solid contact angle provides useful information on the wetting properties of fluids. In 1870, the German physicist Georg Hermann Quincke (1834-1924) published the functional relation between the maximum height of an enlarged drop and its contact angle. Quincke's relation offered an alternative to the direct measurement of contact angle, which in practice suffers from several experimental uncertainties. In this paper, we review Quincke's original derivation and show that it is based on a hidden assumption. We then present a new derivation that exposes this assumption and clarifies the conditions under which Quincke's relation is valid. To explore Quincke's relation experimentally, we measure the maximum height of enlarged water drops on several substrates and calculate the contact angle in each case. Our results are in good agreement with contact angles measured directly from droplet images.
Automated contact angle estimation for three-dimensional X-ray microtomography data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu
2015-11-10
Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less
NASA Astrophysics Data System (ADS)
Zhang, Sai; Xu, Bai-qiang; Cao, Wenwu
2018-03-01
We have investigated low-frequency forbidden transmission (LFT) of acoustic waves with frequency lower than the first Bragg bandgap in a solid-fluid superlattice (SFSL). LFT is formed when the acoustic planar wave impinges on the interface of a SFSL within a certain angle range. However, for the SFSL comprised of metallic material and water, the angle range of LFT is extremely narrow, which restricts its practical applications. The variation characteristics of the angle range have been comprehensively studied here by the control variable method. The results suggest that the filling ratio, layer number, wave velocity, and mass density of the constituent materials have a significant impact on the angle range. Based on our results, an effective strategy for obtaining LFT with a broad angle range is provided, which will be useful for potential applications of LFT in various devices, such as low frequency filters and subwavelength one-way diodes.
Determination of the Contact Angle Based on the Casimir Effect
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.
2015-01-01
In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.
Contact Angle of Drops Measured on Nontransparent Surfaces and Capillary Flow Visualized
NASA Technical Reports Server (NTRS)
Chao, David F.; Zhang, Nengli
2003-01-01
The spreading of a liquid on a solid surface is important for various practical processes, and contact-angle measurements provide an elegant method to characterize the interfacial properties of the liquid with the solid substrates. The complex physical processes occurring when a liquid contacts a solid play an important role in determining the performance of chemical processes and materials. Applications for these processes are in printing, coating, gluing, textile dyeing, and adhesives and in the pharmaceutical industry, biomedical research, adhesives, flat panel display manufacturing, surfactant chemistry, and thermal engineering.
How Long Can the Hubble Space Telescope Operate Reliably? A Total Dose Perspective
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.
2014-01-01
The Hubble Space Telescope has been at the forefront of discoveries in the field of astronomy for more than 20 years. It was the first telescope designed to be serviced in space and the last such servicing mission occurred in May 2009. The question of how much longer this valuable resource can continue to return science data remains. In this paper a detailed analysis of the total dose exposure of electronic parts at the box level is performed using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are related to parts that have been proposed as possible total dose concerns. The spacecraft subsystem that appears to be at the greatest risk for total dose failure is identified. This is discussed with perspective on the overall lifetime of the spacecraft.
Li, Jing; Fan, Na; Wang, Xin; Li, Chang; Sun, Mengchi; Wang, Jian; Fu, Qiang; He, Zhonggui
2017-08-30
The present work studied interfacial interactions of amorphous solid dispersions matrix of indometacin (IMC) that established using PVP K30 (PVP) and PEG 6000 (PEG) by focusing on their interaction forces and wetting process. Infrared spectroscopy (IR), raman spectroscopy, X-ray photoelectron spectra and contact angle instrument were used throughout the study. Hydrogen bond energy formed between PEG and IMC were stronger than that of PVP and IMC evidenced by molecular modeling measurement. The blue shift of raman spectroscopy confirmed that hydrogen bonding forces were formed between IMC and two polymers. The contact angle study can be used as an easy method to determine the dissolution mechanism of amorphous solid dispersions through fitting the profile of contact angle of water on a series of tablets. It is believed that the track of interfacial interactions will certainly become powerful tools to for designing and evaluating amorphous solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter
2013-06-01
Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.
Singh, Abhishek; Bharati, Avanish; Frederiks, Pauline; Verkinderen, Olivier; Goderis, Bart; Cardinaels, Ruth; Moldenaers, Paula; Van Humbeeck, Jan; Van den Mooter, Guy
2016-06-06
Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.
Reducing Bolt Preload Variation with Angle-of-Twist Bolt Loading
NASA Technical Reports Server (NTRS)
Thompson, Bryce; Nayate, Pramod; Smith, Doug; McCool, Alex (Technical Monitor)
2001-01-01
Critical high-pressure sealing joints on the Space Shuttle reusable solid rocket motor require precise control of bolt preload to ensure proper joint function. As the reusable solid rocket motor experiences rapid internal pressurization, correct bolt preloads maintain the sealing capability and structural integrity of the hardware. The angle-of-twist process provides the right combination of preload accuracy, reliability, process control, and assembly-friendly design. It improves significantly over previous methods. The sophisticated angle-of-twist process controls have yielded answers to all discrepancies encountered while the simplicity of the root process has assured joint preload reliability.
Schanda, Paul; Ernst, Matthias
2016-01-01
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043
Elasto-capillary torsion at a liquid interface
NASA Astrophysics Data System (ADS)
Oratis, Alexandros; Farmer, Timothy; Bird, James
2016-11-01
When a liquid drop wets a solid, the droplet typically spreads over the solid. By contrast, for sufficiently compliant solids, the solid can instead spread around the drop. This wrapping phenomenon has been exploited to assemble 3-dimensional structures from 2-dimensional sheets, a process often referred to as capillary origami. Although existing studies of this self-assembly have demonstrated bending and folding, methods of inducing spontaneous twisting by means of capillarity are less clear. Here we demonstrate that spontaneous twist can be initiated in a compliant solid through a combination of surface chemistry and capillarity. Experimentally, we measure the angle of twist on a surface with binary patterns of surface wettability as we vary the solid's geometric and material properties. We develop a scaling law to relate this angle of twist to the elastic and interfacial properties, which compares well with our experimental results.
Geotechnical properties of municipal solid waste at different phases of biodegradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Krishna R., E-mail: kreddy@uic.edu; Hettiarachchi, Hiroshan, E-mail: hiroshan@ltu.edu; Gangathulasi, Janardhanan, E-mail: jganga2@uic.edu
Highlights: > Degraded synthetic municipal solid waste (MSW) anaerobically in controlled bench-scale reactors. > Performed laboratory tests to determine geotechnical properties of MSW at different phases of degradation. > Hydraulic conductivity decreased by two orders of magnitude due to degradation. > Compression ratio reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. > Friction angle reduced, but cohesion increased with degradation. - Abstract: This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were preparedmore » based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16-40 kPa for degraded MSW and the friction angle decreased from 35{sup o} for fresh MSW to 28{sup o} for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1{sup o} to 9{sup o}, respectively, while the effective strength parameters, cohesion and friction angle varied from 18 to 56 kPa and from 1{sup o} to 11{sup o}, respectively. Similar to direct shear test results, as the waste degrades an increase in cohesion and slight decrease in friction angle was observed. Decreased friction angle and increased cohesion with increased degradation is believed to be due to the highly cohesive nature of the synthetic MSW. Variation of synthetic MSW properties from this study also suggests that significant changes in geotechnical properties of MSW can occur due to enhanced degradation induced by leachate recirculation.« less
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1976-01-01
Effective tidal Love numbers and phase angles for the O sub one, K sub one, M sub two, K sub two, P sub one, and S sub two, tides are recovered. The effective tidal phase angles tend to be on the order of a few degrees. The effective tidal Love numbers are generally less than the solid earth Love number K sub two, of about 0.30. This supports the contention that the ocean tides give an apparent depression of the solid earth Love number. Ocean tide amplitudes and phases are calculated for the above tides assuming K sub two = 0.30 and the solid earth lag angle O sub two = 0. The results show good agreement on GEOS-1 but not on GEOS-II.
Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
Zhao, Hong; Park, Kyoo-Chul; Law, Kock-Yee
2012-10-23
Previously, we reported the creation of a fluorosilane (FOTS) modified pillar array silicon surface comprising ~3-μm-diameter pillars (6 μm pitch with ~7 μm height) that is both superhydrophobic and superoleophobic, with water and hexadecane contact angles exceeding 150° and sliding angles at ~10° owing to the surface fluorination and the re-entrant structure in the side wall of the pillar. In this work, the effects of surface texturing (pillar size, spacing, and height) on wettability, contact angle hysteresis, and "robustness" are investigated. We study the static, advancing, and receding contact angles, as well as the sliding angles as a function of the solid area fraction. The results reveal that pillar size and pillar spacing have very little effect on the static and advancing contact angles, as they are found to be insensitive to the solid area fraction from 0.04 to ~0.4 as the pillar diameter varies from 1 to 5 μm and the center-to-center spacing varies from 4.5 to 12 μm. On the other hand, sliding angle, receding contact angle, and contact angle hysteresis are found to be dependent on the solid area fraction. Specifically, receding contact angle decreases and sliding angle and hysteresis increase as the solid area fraction increases. This effect can be attributable to the increase in pinning as the solid area fraction increases. Surface Evolver modeling shows that water wets and pins the pillar surface whereas hexadecane wets the pillar surface and then penetrates into the side wall of the pillar with the contact line pinning underneath the re-entrant structure. Due to the penetration of the hexadecane drop into the pillar structure, the effect on the receding contact angle and hysteresis is larger relative to that of water. This interpretation is supported by studying a series of FOTS pillar array surfaces with varying overhang thickness. With the water drop, the contact line is pinned on the pillar surface and very little overhang thickness effect was observed. On the other hand, the hexadecane drop is shown to wet the pillar surface and the side wall of the overhang. It then pins at the lower edge of the overhang structure. A plot of the thickness of the overhang as a function of the static, advancing, and receding contact angles and sliding angle of hexadecane reveals that static, advancing, and receding contact angles decrease and sliding angle increases as the thickness of the overhang increases. A larger overhang effect is observed with octane due to its lower surface tension. The robustness of the pillar array surface against external pressure induced wetting and abrasion was modeled. Surface Evolver simulation (with the hexadecane drop) indicates that wetting breakthrough pressure as high as ~70 kPa is achievable with 0.5-μm-diameter pillar array FOTS surfaces. Mechanical modeling shows that bending of the pillars is the key failure by abrasion, which can be avoided with a short pillar structure. The path to fabricate a superoleophobic surface that can withstand the external force equivalent of a gentle cleaning blade (up to ~30 kPa) without wetting and abrasion failure is discussed.
NASA Technical Reports Server (NTRS)
Schwartz, Leonard W.
1999-01-01
A method of calculation is presented that allows the simulation of the time-dependent three-dimensional motion of thin liquid layers on solid substrates for systems with finite equilibrium contact angles. The contact angle is a prescribed function of position on the substrate. Similar mathematical models are constructed for substrates with a pattern of roughness. Evolution equations are given, using the lubrication approximation, that include viscous, capillary and disjoining forces. Motion to and from dry substrate regions is made possible by use of a thin energetically-stable wetting layer. We simulate motion on heterogeneous substrates with periodic arrays of high contact-angle patches. Two different problems are treated for heterogenous substrates. The first is spontaneous motion driven only by wetting forces. If the contact-angle difference is sufficiently high, the droplet can find several different stable positions, depending on the previous history of the motion. A second simulation treats a forced cyclical motion. Energy dissipation per cycle for a heterogeneous substrate is found to be larger than for a uniform substrate with the same total energy. The Landau-Levich solution for plate removal from a liquid bath is extended to account for a pattern of roughness on the plate.
Surface Properties of PEMFC Gas Diffusion Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
WoodIII, David L; Rulison, Christopher; Borup, Rodney
2010-01-01
The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 highermore » than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.« less
Contact angle hysteresis on superhydrophobic stripes.
Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I
2014-08-21
We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.
Growth and analysis of gallium arsenide-gallium antimonide single and two-phase nanoparticles
NASA Astrophysics Data System (ADS)
Schamp, Crispin T.
When evaluating the path of phase transformations in systems with nanoscopic dimensions one often relies on bulk phase diagrams for guidance because of the lack of phase diagrams that show the effect of particle size. The GaAs-GaSb pseudo-binary alloy is chosen for study to gain insight into the size dependence of solid-solubility in a two-phase system. To this end, a study is performed using independent laser ablation of high purity targets of GaAs and GaSb. The resultant samples are analyzed by transmission electron microscopy. Experimental results indicate that GaAs-GaSb nanoparticles have been formed with compositions that lie within the miscibility gap of bulk GaAs-GaSb. An unusual nanoparticle morpohology resembling the appearance of ice cream cones has been observed in single component experiments. These particles are composed of a spherical cap of Ga in contact with a crystalline cone of either GaAs or GaSb. The cones take the projected 2-D shape of a triangle or a faceted gem. The liquid Ga is found to consistently be of spherical shape and wets to the widest corners of the cone, suggesting an energy minimum exists at that wetting condition. To explore this observation a liquid sphere is modeled as being penetrated by a solid gem. The surface energies of the solid and liquid, and interfacial energy are summed as a function of penetration depth, with the sum showing a cusped minimum at the penetration depth corresponding to the waist of the gem. The angle of contact of the liquid wetting the cone is also calculated, and Young's contact angle is found to occur when the derivative of the total energy with respect to penetration depth is zero, which can be a maximum or a minimum depending on the geometrical details. The spill-over of the meniscus across the gem corners is found to be energetically favorable when the contact angle achieves the value of the equilibrium angle; otherwise the meniscus is pinned at the corners.
NASA Astrophysics Data System (ADS)
Hosseini, Somaye; Savaloni, Hadi; Gholipour-Shahraki, Mehran
2017-03-01
The wettability of solid surfaces is important from the aspects of both science and technology. The Mn nano-sculptured thin films were designed and fabricated by oblique angle deposition of Mn on glass substrates at room temperature. The obtained structure was characterized by field emission scanning electron microscopy and atomic force microscopy. The wettability of thin films samples was investigated by water contact angle (WCA). The 4-pointed helical star-shaped structure exhibits hydrophobicity with static WCAs of more than 133° for a 10-mg distilled water droplet. This sample also shows the rose petal effect with the additional property of high adhesion. The Mn nano-sculptured thin films also act as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. Physicochemical property of liquid phase could effectively change the contact angle, and polar solvents in contact with hydrophobic solid surfaces do not necessarily show high contact angle value.
Kuchin, Igor V; Starov, Victor M
2016-05-31
A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiaojun; Hasegawa, Yosuke; CREST, JST
2014-10-15
A level set method is applied to characterize the three dimensional structures of nickel, yttria stabilized zirconia and pore phases in solid oxide fuel cell anode reconstructed by focused ion beam-scanning electron microscope. A numerical algorithm is developed to evaluate the contact angles at the triple phase boundary based on interfacial normal vectors which can be calculated from the signed distance functions defined for each of the three phases. Furthermore, surface tension force is estimated from the contact angles by assuming the interfacial force balance at the triple phase boundary. The average contact angle values of nickel, yttria stabilized zirconiamore » and pore are found to be 143°–156°, 83°–138° and 82°–123°, respectively. The mean contact angles remained nearly unchanged after 100 hour operation. However, the contact angles just after reduction are different for the cells with different sintering temperatures. In addition, standard deviations of the contact angles are very large especially for yttria stabilized zirconia and pore phases. The calculated surface tension forces from mean contact angles were close to the experimental values found in the literature. Slight increase of surface tensions of nickel/pore and nickel/yttria stabilized zirconia were observed after operation. Present data are expected to be used not only for the understanding of the degradation mechanism, but also for the quantitative prediction of the microstructural temporal evolution of solid oxide fuel cell anode. - Highlights: • A level set method is applied to characterize the 3D structures of SOFC anode. • A numerical algorithm is developed to evaluate the contact angles at the TPB. • Surface tension force is estimated from the contact angles. • The average contact angle values are found to be 143o-156o, 83o-138o and 82o-123o. • Present data are expected to understand degradation and predict evolution of SOFC.« less
Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure
NASA Astrophysics Data System (ADS)
Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo
2017-11-01
Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.
Subashchandrabose, S; Saleem, H; Erdogdu, Y; Rajarajan, G; Thanikachalam, V
2011-11-01
FT-Raman and FT-IR spectra were recorded for 3-pentyl-2,6-diphenylpiperidin-4-one (PDPO) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and the Raman scattering intensities were computed using DFT/6-31G(d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the total energy distribution (TED) of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated and compared with X-ray diffraction data. This comparison was good agreement. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π-π* transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of the carbon, nitrogen and oxygen were calculated using same level of calculation. Copyright © 2011 Elsevier B.V. All rights reserved.
The Influence of Dynamic Contact Angle on Wetting Dynamics
NASA Technical Reports Server (NTRS)
Rame, Enrique; Garoff, Steven
2005-01-01
When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.
NASA Astrophysics Data System (ADS)
Powell, C. J.; Werner, W. S. M.; Smekal, W.
2007-09-01
We report on the use of the NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to determine N 1s, O 1s, and Si 2p3/2 photoelectron intensities for a 25 Å SiON film on a Si substrate with different distributions of N in the film. These simulations were made to assess the distinguishability of angle-resolved x-ray photoelectron spectroscopy (ARXPS) signals for each N distribution. Our approach differs from conventional simulations of ARXPS data in that we do not neglect elastic scattering of the photoelectrons and the finite solid angle of the analyzer. Appreciable dispersion of the photoelectron intensities was found only for the N 1s intensities at an emission angle of 75° (with respect to the surface normal). Conventional analyses of ARXPS data that include such large emission angles are unlikely to be valid due to angle-dependent changes of the attenuation length. We demonstrate the magnitude of elastic-scattering and analyzer solid-angle effects on the calculated angular distributions.
NASA Astrophysics Data System (ADS)
Zheng, J.; Wang, B. S.; Chen, W. Q.; Han, X. Y.; Li, C. F.; Zhang, J. Z.; Yu, K. P.
2017-02-01
It is known that contact lines keep relatively still on solids until static contact angles exceed an interval of hysteresis of static contact angle (HSCA), and contact angles keep changing as contact lines relatively slide on the solid. Here, the effects of HSCA and boundary slip were first distinguished on the micro-curvature force (MCF) on the seta. Hence, the total MCF is partitioned into static and dynamic MCFs correspondingly. The static MCF was found proportional to the HSCA and related with the asymmetry of the micro-meniscus near the seta. The dynamic MCF, exerting on the relatively sliding contact line, is aroused by the boundary slip. Based on the Blake-Haynes mechanism, the dynamic MCF was proved important for water walking insects with legs slower than the minimum wave speed 23 cm\\cdot s^{-1}. As insects brush the water by laterally swinging legs backwards, setae on the front side of the leg are pulled and the ones on the back side are pushed to cooperatively propel bodies forward. If they pierce the water surface by vertically swinging legs downwards, setae on the upside of the legs are pulled, and the ones on the downside are pushed to cooperatively obtain a jumping force. Based on the dependency between the slip length and shear rate, the dynamic MCF was found correlated with the leg speed U, as F˜ C1U+C2 U^{2+ɛ}, where C1 and C2 are determined by the dimple depth. Discrete points on this curve could give fitted relations as F˜ Ub (Suter et al., J. Exp. Biol. 200, 2523-2538, 1997). Finally, the axial torque on the inclined and partially submerged seta was found determined by the surface tension, contact angle, HSCA, seta width, and tilt angle. The torque direction coincides with the orientation of the spiral grooves of the seta, which encourages us to surmise it is a mechanical incentive for the formation of the spiral morphology of the setae of water striders.
Droplets move over viscoelastic substrates by surfing a ridge
Karpitschka, S.; Das, S.; van Gorcum, M.; Perrin, H.; Andreotti, B.; Snoeijer, J. H.
2015-01-01
Liquid drops on soft solids generate strong deformations below the contact line, resulting from a balance of capillary and elastic forces. The movement of these drops may cause strong, potentially singular dissipation in the soft solid. Here we show that a drop on a soft substrate moves by surfing a ridge: the initially flat solid surface is deformed into a sharp ridge whose orientation angle depends on the contact line velocity. We measure this angle for water on a silicone gel and develop a theory based on the substrate rheology. We quantitatively recover the dynamic contact angle and provide a mechanism for stick–slip motion when a drop is forced strongly: the contact line depins and slides down the wetting ridge, forming a new one after a transient. We anticipate that our theory will have implications in problems such as self-organization of cell tissues or the design of capillarity-based microrheometers. PMID:26238436
NASA Astrophysics Data System (ADS)
Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka
2016-11-01
Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chi-Ho; Krolik, Julian H.
2017-07-01
Near-Eddington radiation from active galactic nuclei (AGNs) has significant dynamical influence on the surrounding dusty gas, plausibly furnishing AGNs with geometrically thick obscuration. We investigate this paradigm with radiative magnetohydrodynamics simulations. The simulations solve the magnetohydrodynamics equations simultaneously with the infrared (IR) and ultraviolet (UV) radiative transfer (RT) equations; no approximate closure is used for RT. We find that our torus, when given a suitable sub-Keplerian angular momentum profile, spontaneously evolves toward a state in which its opening angle, density distribution, and flow pattern change only slowly. This “steady” state lasts for as long as there is gas resupply towardmore » the inner edge. The torus is best described as a midplane inflow and a high-latitude outflow. The outflow is launched from the torus inner edge by UV radiation and expands in solid angle as it ascends; IR radiation continues to drive the wide-angle outflow outside the central hole. The dusty outflow obscures the central source in soft X-rays, the IR, and the UV over three-quarters of solid angle, and each decade in column density covers roughly equal solid angle around the central source; these obscuration properties are similar to what observations imply.« less
NASA Astrophysics Data System (ADS)
Rios, Pablo Fabian
Self-cleaning surfaces have received a great deal of attention, both in research and commercial applications. Transparent and non-transparent self-cleaning surfaces are highly desired. The Lotus flower is a symbol of purity in Asian cultures, even when rising from muddy waters it stays clean and untouched by dirt. The Lotus leaf "self-cleaning" surface is hydrophobic and rough, showing a two-layer morphology. While hydrophobicity produces a high contact angle, surface morphology reduces the adhesion of dirt and water to the surface, thus water drops slide easily across the leaf carrying the dirt particles with them. Nature example in the Lotus-effect and extensive scientific research on related fields have rooted wide acceptance that high hydrophobicity can be obtained only by a proper combination of surface chemistry and roughness. Most researchers relate hydrophobicity to a high contact angle. However, the contact angle is not the only parameter that defines liquid-solid interactions. An additional parameter, the sliding angle, related to the adhesion between the liquid drop and the solid surface is also important in cases where liquid sliding is involved, such as self-cleaning applications. In this work, it is postulated that wetting which is related to the contact angle, and interfacial adhesion, which is related to the sliding angle, are interdependent phenomena and have to be considered simultaneously. A variety of models that relate the sliding angle to forces developed along the contact line between a liquid drop and a solid surface have been proposed in the literature. A new model is proposed here that quantifies the drop sliding phenomenon, based also on the interfacial adhesion across the contact area of the liquid/solid interface. The effects of roughness and chemical composition on the contact and sliding angles of hydrophobic smooth and rough surfaces were studied theoretically and experimentally. The validity of the proposed model was investigated and compared with the existing models. Ultra-hydrophobic non-transparent and transparent coatings for potential self-cleaning applications were produced using hydrophobic chemistry and different configurations of roughening micro and nano-particles, however they present low adhesion and durability. Durability and stability enhancement of such coatings was attempted and improved by different methods.
Body composition in remission of childhood cancer
NASA Astrophysics Data System (ADS)
Tseytlin, G. Ja; Anisimova, A. V.; Godina, E. Z.; Khomyakova, I. A.; Konovalova, M. V.; Nikolaev, D. V.; Rudnev, S. G.; Starunova, O. A.; Vashura, A. Yu
2012-12-01
Here, we describe the results of a cross-sectional bioimpedance study of body composition in 552 Russian children and adolescents aged 7-17 years in remission of various types of cancer (remission time 0-15 years, median 4 years). A sample of 1500 apparently healthy individuals of the same age interval was used for comparison. Our data show high frequency of malnutrition in total cancer patients group depending on type of cancer. 52.7% of patients were malnourished according to phase angle and percentage fat mass z-score with the range between 42.2% in children with solid tumors located outside CNS and 76.8% in children with CNS tumors. The body mass index failed to identify the proportion of patients with malnutrition and showed diagnostic sensitivity 50.6% for obesity on the basis of high percentage body fat and even much less so for undernutrition - 13.4% as judged by low phase angle. Our results suggest an advantage of using phase angle as the most sensitive bioimpedance indicator for the assessment of metabolic alterations, associated risks, and the effectiveness of rehabilitation strategies in childhood cancer patients.
NASA Astrophysics Data System (ADS)
Amini, Amirhossein; Homsy, G. M.
2017-04-01
We study the evolution of the profile of a two-dimensional volatile liquid droplet that is evaporating on a flat heated substrate. We adopt a one-sided model with thermal control that, together with the lubrication approximation, results in an evolution equation for the local height of the droplet. Without requiring any presumption for the shape of the drop, the problem is formulated for the two modes of evaporation: a pinned contact line and a moving contact line with fixed contact angle. Numerical solutions are provided for each case. For the pinned contact line case, we observe that after a time interval the contact angle dynamics become nonlinear and, interestingly, the local contact angle goes to zero in advance of total evaporation of the drop. For the case of a moving contact line, in which the singularity at the contact line is treated by a numerical slip model, we find that the droplet nearly keeps its initial circular shape and that the contact line recedes with constant speed.
Fast Acting Optical Beam Detection and Deflection System.
1987-12-07
should be as low as possible for the same reason. Liquids generally have lower densities and lower acoustic velocities than crystals and glasses . It may...deflection angle. Liquids, with their low sound velocities have higher M values than solids and the best solids are those ( glasses and crystals) which...small glass windows on either side and a thick angled acoustic absorber placed at the back of the cell to absorb most of the forward wave (figure 18
Meena, Rajesh Kumar; Dhandapani, Sivashanmugam; Gupta, Vivek; Anirudh, Srinivasan; Chatterjee, Debajyoti
2016-01-01
Hemangioblastoma (HBL) is rare in the cerebellopontine angle (CPA) with questionable origin and limited access for circumferential dissection and "en-bloc" excision. We report a case of surgical removal of large solid CPA-HBL and discuss the pattern of blood supply suggesting its origin and indicating preoperative embolization. The solid and highly vascular CPA-HBL had feeders mainly from neuromeningeal division of ascending pharyngeal branch of external carotid artery, suggesting true extra-axial origin. We could achieve "en-bloc" excision without significant blood loss or morbidity using preoperative embolization. Large solid HBL is rare in CPA necessitating arduous "en-bloc" excision. The pattern of blood supply probably indicates the site of origin and safety of preoperative embolization.
A microstructure-based model for shape distortion during liquid phase sintering
NASA Astrophysics Data System (ADS)
Upadhyaya, Anish
Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.
Preston, C M; Forrester, P D
2004-01-01
Phasing out beehive burners and rising costs for landfilling have increased the need to widen options for utilization of the smaller size fractions of woody wastes generated during log handling and sawmilling in British Columbia. We characterized several size classes of logyard fines up to 16 mm sampled from coastal and interior operations. Total C, total N, ash, and condensed tannin concentrations were consistent with properties derived largely from wood, with varying proportions of bark and mixing with mineral soil. Especially for < 3-mm fractions, the latter resulted in high ash contents that would make them unsuitable for fuel. Solid-state 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectra were consistent with the chemical data, with high O-alkyl intensity and similarity to naturally occurring woody forest floor; no samples were high in aromatic or phenolic C. Aqueous extracts of two < 16-mm fines, which accounted for only a small proportion of the total C, were enriched in alkyl C and had low or undetectable tannins. Application to forest sites might cause short-term immobilization of N, but also might include possible longer-term benefits from reduction of N loss after harvesting and restoration of soil organic matter in degraded sites.
NASA Astrophysics Data System (ADS)
Adhikari, S.; Moulick, R.; Goswami, K. S.
2018-02-01
The effect of grazing angle on a solid surface (divertor) erosion due to ion sputtering is studied by 1D-3V fluid approach. For an oblique magnetic field, there exists a region in front of the solid surface called Chodura sheath (CS). It is assumed that the CS is additive to the Debye sheath (DS). For a certain value of the grazing angle, it has been observed that the DS vanishes and the entire potential drop occurs across the CS. This new analysis of the event provides some facts of pragmatic importance in improving the solutions of edge impurity codes. Important factors, such as ion energy, impact angle for physical sputtering are highlighted. The dependence of these two parameters on the grazing angle is also investigated in detail.
NASA Technical Reports Server (NTRS)
Borst, H. V.
1978-01-01
A method is presented to design and predict the performance of axial flow rotors operating in a duct. The same method is suitable for the design of ducted fans and open propellers. The unified method is based on the blade element approach and the vortex theory for determining the three dimensional effects, so that two dimensional airfoil data can be used for determining the resultant force on each blade element. Resolution of this force in the thrust and torque planes and integration allows the total performance of the rotor, fan or propeller to be predicted. Three different methods of analysis, one based on a momentum flow theory; another on the vortex theory of propellers; and a third based on the theory of ducted fans, agree and reduce cascade airfoil data to single line as a function of the loading and induced angle of attack at values of constant inflow angle. The theory applies for any solidity from .01 to over 1 and any blade section camber. The effects of the duct and blade number can be determined so that the procedure applies over the entire range from two blade open propellers, to ducted helicopter tail rotors, to axial flow compressors with or without guide vanes, and to wind tunnel drive fans.
Contact angle of a nanodrop on a nanorough solid surface.
Berim, Gersh O; Ruckenstein, Eli
2015-02-21
The contact angle of a cylindrical nanodrop on a nanorough solid surface is calculated, for both hydrophobic and hydrophilic surfaces, using the density functional theory. The emphasis of the paper is on the dependence of the contact angle on roughness. The roughness is modeled by rectangular pillars of infinite length located on the smooth surface of a substrate, with fluid-pillar interactions different in strength from the fluid-substrate ones. It is shown that for hydrophobic substrates the trend of the contact angle to increase with increasing roughness, which was noted in all previous studies, is not universally valid, but depends on the fluid-pillar interactions, pillar height, interpillar distance, as well as on the size of the drop. For hydrophilic substrate, an unusual kink-like dependence of the contact angle on the nanodrop size is found which is caused by the change in the location of the leading edges of the nanodrop on the surface. It is also shown that the Wenzel and Cassie-Baxter equations can not explain all the peculiarities of the contact angle of a nanodrop on a nanorough surface.
Gravitational field of global monopole within the Eddington-inspired Born-Infeld theory of gravity
NASA Astrophysics Data System (ADS)
Lambaga, Reyhan D.; Ramadhan, Handhika S.
2018-06-01
Within the framework of the recent Eddington-inspired Born-Infeld (EiBI) theory we study gravitational field around an SO(3) global monopole. The solution also suffers from the deficit solid angle as in the Barriola-Vilenkin metric but shows a distinct feature that cannot be transformed away unless in the vanishing EiBI coupling constant, κ . When seen as a black hole eating up a global monopole, the corresponding Schwarzschild horizon is shrunk by κ . The deficit solid angle makes the space is globally not Euclidean, and to first order in κ (weak-field limit) the deflection angle of light is smaller than its Barriola-Vilenkin counterpart.
Drop dynamics on a thin film: Thin film rupture
NASA Astrophysics Data System (ADS)
Carlson, Andreas; Kim, Pilnam; Stone, Howard A.
2011-11-01
The spreading of a water drop on an oil film that covers a solid substrate is a common event in many industrial processes. We study in experiments the dynamics of a water drop on a thin silicone oil film and quantify its interaction with the solid substrate that supports the film. The oil film becomes unstable and ruptures for solids that are hydrophilic. We determine the ``waiting time,'' the time it takes the water drop to drain the silicone film. This timescale is found to highly depend on how well water wets the solid, illustrating the interplay between intermolecular and hydrodynamic forces in the phenomenon. A phase diagram for the thin film stability is extracted based on waters equilibrium contact angle on the solid, which shows that we can either promote or inhibit de-wetting. As water comes in direct contact with the solid, it spreads and peels off the silicone film. We show the influence of viscosity, equilibrium contact angle and film height on the opening radius of the hole formed as the solid de-wets.
NASA Technical Reports Server (NTRS)
Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)
1993-01-01
A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.
Spreading dynamics of 2D dipolar Langmuir monolayer phases.
Heinig, P; Wurlitzer, S; Fischer, Th M
2004-07-01
We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.
NASA Astrophysics Data System (ADS)
Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.
2007-11-01
We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.
Wetting Hysteresis at the Molecular Scale
NASA Technical Reports Server (NTRS)
Jin, Wei; Koplik, Joel; Banavar, Jayanth R.
1996-01-01
The motion of a fluid-fluid-solid contact line on a rough surface is well known to display hysteresis in the contact angle vs. velocity relationship. In order to understand the phenomenon at a fundamental microscopic level, we have conducted molecular dynamics computer simulations of a Wilhelmy plate experiment in which a solid surface is dipped into a liquid bath, and the force-velocity characteristics are measured. We directly observe a systematic variation of force and contact angle with velocity, which is single-valued for the case of an atomically smooth solid surface. In the microscopically rough case, however, we find (as intuitively expected) an open hysteresis loop. Further characterization of the interface dynamics is in progress.
Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.
Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan
2013-05-21
Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.
Growth Angle - a Microscopic View
NASA Technical Reports Server (NTRS)
Mazurak, K.; Volz, M. P.; Croll, A.
2017-01-01
The growth angle that is formed between the side of the growing crystal and the melt meniscus is an important parameter in the detached Bridgman crystal growth method, where it determines the extent of the crystal-crucible wall gap, and in the Czochralski and float zone methods, where it influences the size and stability of the crystals. The growth angle is a non-equilibrium parameter, defined for the crystal growth process only. For a melt-crystal interface translating towards the crystal (melting), there is no specific angle defined between the melt and the sidewall of the solid. In this case, the corner at the triple line becomes rounded, and the angle between the sidewall and the incipience of meniscus can take a number of values, depending on the position of the triple line. In this work, a microscopic model is developed in which the fluid interacts with the solid surface through long range van der Waals or Casimir dispersive forces. This growth angle model is applied to Si and Ge and compared with the macroscopic approach of Herring. In the limit of a rounded corner with a large radius of curvature, the wetting of the melt on the crystal is defined by the contact angle. The proposed microscopic approach addresses the interesting issue of the transition from a contact angle to a growth angle as the radius of curvature decreases.
NASA Astrophysics Data System (ADS)
Mansouri, Amir
The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in gas-sand, water-sand and viscous liquid-sand flows with high accuracy. Furthermore, in order to gain a better understanding of the erosion mechanism, a comprehensive experimental study was conducted to investigate the important factors influencing the erosion rate in gas-sand and slurry flows. The wear pattern and total erosion ratio were measured in a direct impingement jet geometry (for both dry impact and submerged impingement jets). The effects of fluid viscosity, abrasive particle size, particle impact speed, jet inclination angle, standoff distance, sand concentration, and exposure time were investigated. Also, the eroded samples were studied with Scanning Electron Microscopy (SEM) to understand the erosion micro-structure. Also, the sand particle impact speed and angle were measured using a Particle Image Velocimetry (PIV) system. The measurements were conducted in two types of erosion testers (gas-solid and liquid-solid impinging jets). The Particle Tracking Velocimetry (PTV) technique was utilized which is capable of tracking individual small particles. Moreover, CFD modeling was performed to predict the particle impact data. Very good agreement between the CFD results and PTV measurements was observed.
Rolling dry-coupled transducers for ultrasonic inspections of aging aircraft structures
NASA Astrophysics Data System (ADS)
Komsky, Igor N.
2004-07-01
Some advanced aircraft materials or coatings are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, dry-coupled rolling modules were developed at Northwestern University for the transmission of both longitudinal and transverse ultrasonic waves at frequencies up to 10 MHz. Dry-coupled ultrasonic modules contain solid core internal stators and solid or flexible external rotors with the flexible polymer substrates. Two types of the dry-coupled modules are under development. Cylindrical base transducer modules include solid core cylindrical rotors with flexible polymer substrates that rotate around the stators with ultrasonic elements. Dry-coupled modules with elongated bases contain solid core stators and flexible track-like polymer substrates that rotate around the stators as rotors of the modules. The elongated base modules have larger contact interfaces with the inspection surface in comparison with the cylindrical base modules. Some designs of the dry-coupled rolling modules contain several ultrasonic elements with different incident angles or a variable angle unit for rapid adjustments of incident angles. The prototype dry-coupled rolling modules were integrated with the portable ultrasonic inspection systems and tested on a number of Boeing aircraft structures.
Gamble, G R; Akin, D E; Makkar, H P; Becker, K
1996-01-01
Leaves of sericea lespedeza exhibit a high proportion of condensed tannin, resulting in poor forage quality. The white rot fungi Ceriporiopsis subvermispora and Cyathus sterocoreus are known to preferentially degrade lignin in a variety of plants and were evaluated for their ability to degrade condensed tannin from sericea leaves with the aim of improving digestibility. Relative levels of condensed tannin, cutin, pectin, and cellulose were monitored as a function of fungal treatment by solid-state cross-polarization and magic angle spinning 13C nuclear magnetic resonance spectroscopy. Total soluble phenolics, soluble tannins, and soluble and insoluble proanthocyanidin levels in fungus-treated and control samples were measured by established chemical techniques. Results indicate that both species of fungus preferentially degrade condensed tannin and that C. subvermispora is markedly superior to C. stercoreus in this capacity. PMID:8837414
NASA Astrophysics Data System (ADS)
Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2018-05-01
In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).
NASA Astrophysics Data System (ADS)
Pogorzelski, Stanisław J.; Rochowski, Pawel; Szurkowski, Janusz
2014-02-01
An investigation of water contact angles (CAs), contact angle hysteresis (CAH) was carried out for 1-year to 4-year old needles (Pinus sylvestris) collected in urban (Gdansk) and rural (Karsin) locations using an original measuring technique based on the geometry of the drop on a vertical filament. Concentrations of air pollutants (SO2, NOx, C6H6, and suspended particular matter - SPM) currently considered to be most important in causing direct damage to vegetation were simultaneously monitored. A set of the surface wettability parameters: the apparent surface free energy γSV, adhesive film tension Π, work of adhesion WA, and spreading WS, were determined from CAH data using the approach developed by Chibowski (2003) to quantify the surface energetics of the needle substrata affected by aging and pollution impacts. This formalism relates the total apparent surface free energy of the solid γSV with only three measurable quantities: the surface tension of the probe liquid γLV and its advancing θA and receding θR contact angle hysteresis. Since CAH depends on the outermost wax layer surface roughness and spatial physicochemical heterogeneity of a solid surface, CA data were corrected using surface architecture profiles registered with confocal scanning laser microscopy. It was found that the roughness parameter r is significantly negatively correlated (R = -0.74) with the needle age (collected at Karsin). The needle surface aging process resulted in its surface hydrophilization (CA↓ and CAH↓ with γSV↑ and WA↑). A temporal evolution of the needles wettability was traced with the data point distribution in the 2D space of CAH plotted versus WS. The wettability parameters were closely correlated to pollutant concentrations as evidenced from Spearman's rank correlation procedure (R = 0.63-0.91; p < 0.05). The aim of the study was to validate the established CA methodology to create a new non-invasive, low-cost technique suitable for monitoring of structural changes at interfaces of biological systems.
On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.
Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo
2018-04-28
We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.
On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo
2018-04-01
We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.
Bacterial migration along solid surfaces.
Harkes, G; Dankert, J; Feijen, J
1992-01-01
An in vitro system was developed to study the migration of uropathogenic Escherichia coli strains. In this system an aqueous agar gel is placed against a solid surface, allowing the bacteria to migrate along the gel/solid surface interface. Bacterial strains as well as solid surfaces were characterized by means of water contact angle and zeta potential measurements. When glass was used as the solid surface, significantly different migration times for the strains investigated were observed. Relationships among the observed migration times of six strains, their contact angles, and their zeta potentials were found. Relatively hydrophobic strains exhibited migration times shorter than those of hydrophilic strains. For highly negatively charged strains shorter migration times were found than were found for less negatively charged strains. When the fastest-migrating strain with respect to glass was allowed to migrate along solid surfaces differing in hydrophobicity and charge, no differences in migration times were found. Our findings indicate that strategies to prevent catheter-associated bacteriuria should be based on inhibition of bacterial growth rather than on modifying the physicochemical character of the catheter surface. PMID:1622217
NASA Technical Reports Server (NTRS)
Lamb, M.; Stallings, R. L., Jr.
1976-01-01
An experimental investigation was conducted in the Langley Unitary Plan wind tunnel to estimate the peak aerodynamic heating on the space shuttle solid rocket booster during the descent phase of its flight. Heat transfer measurements were obtained using 0.013 scale models instrumented with thermocouples at a Mach number of 3.70, Reynolds number per meter of 11.48 million, and angles of attack from 0 to 180 deg. At angles of attack of 0 and 180 deg, heat transfer measurements on the cylindrical section of the model between the conical nose and ring interaction region were in good agreement with flat plate strip theory for laminar and turbulent flow. At angles of attack up to 30 deg, measurements on this section of the model were in good agreement with laminar swept-cylinder theory, whereas at angles of attack from 120 to 180 deg, the measurements were in good agreement with turbulent swept-cylinder theory. The good agreement with turbulent theory indicated that large flow disturbances created by the nozzle and afterbody flare at these large angles of attack influenced the downstream heating primarily by promoting boundary layer transition. Measurements obtained at 90 deg angle of attack were indicative of laminar flow.
Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena
NASA Astrophysics Data System (ADS)
Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory
2012-02-01
Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.
Vacuum-polarization effects in global monopole space-times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzitelli, F.D.; Lousto, C.O.
1991-01-15
The gravitational effect produced by a global monopole may be approximated by a solid deficit angle. As a consequence, the energy-momentum tensor of a quantum field will have a nonzero vacuum expectation value. Here we study this vacuum-polarization effect'' around the monopole. We find explicit expressions for both {l angle}{phi}{sup 2}{r angle}{sub ren} and {l angle}{ital T}{sub {mu}{nu}}{r angle}{sub ren} for a massless scalar field. The back reaction of the quantum field on the monopole metric is also investigated.
Energy spectra and pitch angle distributions of storm-time and substorm injected protons.
NASA Technical Reports Server (NTRS)
Konradi, A.; Williams, D. J.; Fritz, T. A.
1973-01-01
Discussion of the energy spectra and pitch angle distributions of ring current protons observed with the solid-state proton detector of Explorer 45 during the main and fast recovery phases of a storm on Dec. 17, 1971. Appearances of characteristic changes in the pitch angle distributions of roughly 100-eV protons are interpreted as pitch angle dispersion of rapidly injected protons during their azimuthal drift at L values above 5.
Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.
Hung, Ivan; Gan, Zhehong
2015-07-01
Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended. Copyright © 2015 Elsevier Inc. All rights reserved.
How pinning and contact angle hysteresis govern quasi-static liquid drop transfer.
Chen, H; Tang, T; Zhao, H; Law, K-Y; Amirfazli, A
2016-02-21
This paper presents both experimental and numerical simulations of liquid transfer between two solid surfaces with contact angle hysteresis (CAH). Systematic studies on the role of the advancing contact angle (θa), receding contact angle (θr) and CAH in determining the transfer ratio (volume of the liquid transferred onto the acceptor surface over the total liquid volume) and the maximum adhesion force (Fmax) were performed. The transfer ratio was found to be governed by contact line pinning at the end of the transfer process caused by CAH of surfaces. A map based on θr of the two surfaces was generated to identify the three regimes for liquid transfer: (I) contact line pinning occurs only on the donor surface, (II) contact line pinning occurs on both surfaces, and (III) contact line pinning occurs only on the acceptor surface. With this map, an empirical equation is provided which is able to estimate the transfer ratio by only knowing θr of the two surfaces. The value of Fmax is found to be strongly influenced by the contact line pinning in the early stretching stage. For symmetric liquid bridges between two identical surfaces, Fmax may be determined only by θa, only by θr, or by both θa and θr, depending on the magnitude of the contact angles. For asymmetric bridges, Fmax is found to be affected by the period when contact lines are pinned on both surfaces.
Dependency of the apparent contact angle on nonisothermal conditions
NASA Astrophysics Data System (ADS)
Krahl, Rolf; Gerstmann, Jens; Behruzi, Philipp; Bänsch, Eberhard; Dreyer, Michael E.
2008-04-01
The dynamic behavior of liquids in partly filled containers is influenced to a large extend by the angle between the gas-liquid phase boundary and the solid container wall at the contact line. This contact angle in turn is influenced by nonisothermal conditions. In the case of a cold liquid meniscus spreading over a hot solid wall, the contact angle apparently becomes significantly larger. In this paper we want to establish a quantitative equation for this enlargement, both from experimental and numerical data. Our findings can be used to build a subgrid model for computations, where the resolution is not sufficient to resolve the boundary layers. This might be the case for large containers which are exposed to low accelerations and where the contact angle boundary condition determines the position of the free surface. These types of computation are performed, for example, to solve propellant management problems in launcher and satellite tanks. In this application, the knowledge of the position of the free surface is very important for the withdrawal of liquid and the calculation of heat and mass transfer.
Food waste impact on municipal solid waste angle of internal friction.
Cho, Young Min; Ko, Jae Hac; Chi, Liqun; Townsend, Timothy G
2011-01-01
The impact of food waste content on the municipal solid waste (MSW) friction angle was studied. Using reconstituted fresh MSW specimens with different food waste content (0%, 40%, 58%, and 80%), 48 small-scale (100-mm-diameter) direct shear tests and 12 large-scale (430 mm × 430 mm) direct shear tests were performed. A stress-controlled large-scale direct shear test device allowing approximately 170-mm sample horizontal displacement was designed and used. At both testing scales, the mobilized internal friction angle of MSW decreased considerably as food waste content increased. As food waste content increased from 0% to 40% and from 40% to 80%, the mobilized internal friction angles (estimated using the mobilized peak (ultimate) shear strengths of the small-scale direct shear tests) decreased from 39° to 31° and from 31° to 7°, respectively, while those of large-scale tests decreased from 36° to 26° and from 26° to 15°, respectively. Most friction angle measurements produced in this study fell within the range of those previously reported for MSW. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokaras, D.; Nordlund, D.; Weng, T.-C.
2012-04-15
We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4{pi} sr solid angle of detection. When operated in the (440) order in combination with themore » Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4{pi} sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.« less
Effect of reflection losses on stationary dielectric-filled nonimaging concentrators
NASA Astrophysics Data System (ADS)
Madala, Srikanth; Boehm, Robert F.
2016-10-01
The effect of Fresnel reflection and total internal reflection (TIR) losses on the performance parameters in refractive solar concentrators has often been downplayed because most refractive solar concentrators are traditionally the imaging type, yielding a line or point image on the absorber surface when solely interacted with paraxial etendue ensured by solar tracking. Whereas, with refractive-type nonimaging solar concentrators that achieve two-dimensional (rectangular strip) focus or three-dimensional (circular or elliptical) focus through interaction with both paraxial and nonparaxial etendue within the acceptance angle, the Fresnel reflection and TIR losses are significant as they will affect the performance parameters and, thereby, energy collection. A raytracing analysis has been carried out to illustrate the effects of Fresnel reflection and TIR losses on four different types of stationary dielectric-filled nonimaging concentrators, namely V-trough, compound parabolic concentrator, compound elliptical concentrator, and compound hyperbolic concentrator. The refractive index (RI) of a dielectric fill material determines the acceptance angle of a solid nonimaging collector. Larger refractive indices yield larger acceptance angles and, thereby, larger energy collection. However, they also increase the Fresnel reflection losses. This paper also assesses the relative benefit of increasing RI from an energy collection standpoint.
Erosion of a grooved surface caused by impact of particle-laden flow
NASA Astrophysics Data System (ADS)
Jung, Sohyun; Yang, Eunjin; Kim, Ho-Young
2016-11-01
Solid erosion can be a life-limiting process for mechanical elements in erosive environments, thus it is of practical importance in many industries such as construction, mining, and coal conversion. Erosion caused by particle-laden flow occurs through diverse mechanisms, such as cutting, plastic deformation, brittle fracture, fatigue and melting, depending on particle velocity, total particle mass and impingement angle. Among a variety of attempts to lessen erosion, here we investigate the effectiveness of millimeter-sized grooves on the surface. By experimentally measuring the erosion rates of smooth and triangular-grooved surfaces under various impingement angles, we find that erosion can be significantly reduced within a finite range of impingement angles. We show that such erosion resistance is attributed to the swirls of air within grooves and the differences in erosive strength of normal and slanted impact. In particular, erosion is mitigated when we increase the effective area under normal impact causing plastic deformation and fracture while decreasing the area under slanted impact that cuts the surface to a large degree. Our quantitative model for the erosion rate of grooved surfaces considering the foregoing effects agrees with the measurement results.
NASA Astrophysics Data System (ADS)
Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian
2018-04-01
We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.
Optical inverse-square displacement sensor
Howe, Robert D.; Kychakoff, George
1989-01-01
This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##
Wetting of flat gradient surfaces.
Bormashenko, Edward
2018-04-01
Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Usry, J. W.; Whitlock, C. H.; Poole, L. R.; Witte, W. G., Jr.
1981-01-01
Total suspended solids concentrations ranged from 6.1 ppm to 24.3 ppm and sizes ranged between 1.5 micrometers and 10 micrometers with the most frequently occurring size less than 2 micrometers. Iron concentration was less than 1 percent of the total suspended solids. Nonfluorescing dye concentrations of the two mixtures were 20 ppm and 40 ppm. Attenuation coefficient for the five mixtures ranged from 4.8/m to 21.3/m. Variations in volume scattering function with phase angle were typical. Variations in attenuation and absorption coefficient with wavelength were similar for the mixtures without the dye. Attenuation coefficient of the mixtures with the dye increased for wavelengths less than 600 nm due to the dye's strong absorption peak near 500 nm. Reflectance increased as the concentration of Calvert clay increased and peaked near 600 nm. The nonfluorescent dye decreased the magnitude of the peak, but had practically no effect on the variation for wavelengths greater than 640 nm. At wavelengths less than 600 nm, the spectral variations of the mixtures with the dye were significantly different from those mixtures without the dye.
Toburen, L. H.; McLawhorn, S. L.; McLawhorn, R. A.; Carnes, K. D.; Dingfelder, M.; Shinpaugh, J. L.
2013-01-01
Absolute doubly differential electron emission yields were measured from thin films of amorphous solid water (ASW) after the transmission of 6 MeV protons and 19 MeV (1 MeV/nucleon) fluorine ions. The ASW films were frozen on thin (1-μm) copper foils cooled to approximately 50 K. Electrons emitted from the films were detected as a function of angle in both the forward and backward direction and as a function of the film thickness. Electron energies were determined by measuring the ejected electron time of flight, a technique that optimizes the accuracy of measuring low-energy electron yields, where the effects of molecular environment on electron transport are expected to be most evident. Relative electron emission yields were normalized to an absolute scale by comparison of the integrated total yields for proton-induced electron emission from the copper substrate to values published previously. The absolute doubly differential yields from ASW are presented along with integrated values, providing single differential and total electron emission yields. These data may provide benchmark tests of Monte Carlo track structure codes commonly used for assessing the effects of radiation quality on biological effectiveness. PMID:20681805
Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity.
Perrin, Lionel; Pajor-Swierzy, Anna; Magdassi, Shlomo; Kamyshny, Alexander; Ortega, Francisco; Rubio, Ramón G
2018-01-24
Liquid drop evaporation on surfaces is present in many industrial and medical applications, e.g., printed electronics, spraying of pesticides, DNA mapping, etc. Despite this strong interest, a theoretical description of the dynamic of the evaporation of complex liquid mixtures and nanosuspensions is still lacking. Indeed, one of the aspects that have not been included in the current theoretical descriptions is the competition between the kinetics of evaporation and the adsorption of surfactants and/or particles at the liquid/vapor and liquid/solid interfaces. Materials formed by an electrically isolating solid on which a patterned conducting layer was formed by the deposits left after drop evaporation have been considered as very promising for building electrical circuits on flexible plastic substrates. In this work, we have done an exhaustive study of the evaporation of nanosuspensions of latex and hydrophobized silver nanoparticles on four substrates of different hydrophobicity. The advancing and receding contact angles as well as the time dependence of the volume of the droplets have been measured over a broad range of particle concentrations. Also, mixtures of silver particles and a surfactant, commonly used in industrial printing, have been examined. Furthermore, the adsorption kinetics at both the air/liquid and solid/liquid interfaces have been measured. Whereas the latex particles do not adsorb at the solid/liquid and only slightly reduce the surface tension, the silver particles strongly adsorb at both interfaces. The experimental results of the evaporation process were compared with the predictions of the theory of Semenov et al. (Evaporation of Sessile Water Droplets: Universal Behavior in the Presence of Contact Angle Hysteresis. Colloids Surf. Physicochem. Eng. Asp. 2011, 391 (1-3), 135-144) and showed surprisingly good agreement despite that the theory was developed for pure liquids. The morphology of the deposits left by the droplets after total evaporation was studied by scanning electronic microscopy, and the effects of the substrate, the particle nature, and their concentrations on these patterns are discussed.
Adsorption energy as a metric for wettability at the nanoscale
Giro, Ronaldo; Bryant, Peter W.; Engel, Michael; Neumann, Rodrigo F.; Steiner, Mathias B.
2017-01-01
Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet’s adsorption energy density as a new metric for a liquid’s affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included. PMID:28397869
Manufacturing Technology Development of Advanced Components for High Power Solid State Lasers
2010-07-19
commercially available that can support an intra-cavity wavelength of 1030 nm. Losses were reduced by ensuring that the apex angle provided a Brewster ...in Figure 2.2), one can map the optical path distance distribution near the interface region. An oblique angle may be used to resolve the order of...U:YAG) composite of a 62° incident angle in (A), and a .5% Er:YAG// U:YAG composite of a 20° incident angle in (B) The refractive index difference
New Method Developed to Measure Contact Angles of a Sessile Drop
NASA Technical Reports Server (NTRS)
Chao, David F.; Zhang, Nengli
2002-01-01
The spreading of an evaporating liquid on a solid surface occurs in many practical processes and is of importance in a number of practical situations such as painting, textile dyeing, coating, gluing, and thermal engineering. Typical processes involving heat transfer where the contact angle plays an important role are film cooling, boiling, and the heat transfer through heat pipes. The biological phenomenon of cell spreading also is analogous to a drop spreading (ref. 1). In the study of spreading, the dynamic contact angle describes the interfacial properties on solid substrates and, therefore, has been studied by physicists and fluid mechanics investigators. The dynamic contact angle of a spreading nonvolatile liquid drop provides a simple tool in the study of the free-boundary problem, but the study of the spreading of a volatile liquid drop is of more practical interest because the evaporation of common liquids is inevitable in practical processes. The most common method to measure the contact angle, the contact radius, and the height of a sessile drop on a solid surface is to view the drop from its edge through an optical microscope. However, this method gives only local information in the view direction. Zhang and Yang (ref. 2) developed a laser shadowgraphy method to investigate the evaporation of sessile drop on a glass plate. As described here, Zhang and Chao (refs. 3 and 4) improved the method and suggested a new optical arrangement to measure the dynamic contact angle and the instant evaporation rate of a sessile drop with much higher accuracy (less than 1 percent). With this method, any fluid motion in the evaporating drop can be visualized through shadowgraphy without using a tracer, which often affects the field under investigation.
Sun, Jie; Wang, Hua Sheng
2016-10-10
We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.
Sun, Jie; Wang, Hua Sheng
2016-01-01
We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases. PMID:27721397
Ion adsorption-induced wetting transition in oil-water-mineral systems.
Mugele, Frieder; Bera, Bijoyendra; Cavalli, Andrea; Siretanu, Igor; Maestro, Armando; Duits, Michel; Cohen-Stuart, Martien; van den Ende, Dirk; Stocker, Isabella; Collins, Ian
2015-05-27
The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zero contact angles without divalent cations. We developed a quantitative model based on DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, but not on silica surfaces nor for monovalent K(+) and Na(+) cations is driven by charge reversal of the solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence of Ca(2+). Our results imply that it is the removal of divalent cations that makes reservoir rocks more hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the success of so-called low salinity water flooding, a recent enhanced oil recovery technology.
Wide-Angle, Flat-Field Telescope
NASA Technical Reports Server (NTRS)
Hallam, K. L.; Howell, B. J.; Wilson, M. E.
1987-01-01
All-reflective system unvignetted. Wide-angle telescope uses unobstructed reflecting elements to produce flat image. No refracting elements, no chromatic aberration, and telescope operates over spectral range from infrared to far ultraviolet. Telescope used with such image detectors as photographic firm, vidicons, and solid-state image arrays.
Investigation of the unsteady pressure distribution on the blades of an axial flow fan
NASA Technical Reports Server (NTRS)
Henderson, R. E.; Franke, G. F.
1978-01-01
The unsteady response of a stator blade caused by the interaction of the stator with the wakes of an upstream rotor was investigated. Unsteady pressure distributions were measured using a blade instrumented with a series miniature pressure transducers. The influence of several geometrical and flow parameters - rotor/stator spacing, stator solidity and stator incidence angle - were studied to determine the unsteady response of the stator to these parameters. A major influence on the stator unsteady response is due to the stator solidity. At high solidities the blade-to-blade interference has a larger contribution. While the range of rotor/stator spacings investigated had a minor influence, the effect of stator incidence angle is significant. The data indicate the existence of an optimum positive incidence which minimizes the unsteady response.
Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Arscott, Steve
2013-06-01
Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.
Solid motor aft closure insulation erosion. [heat flux correlation for rate analysis
NASA Technical Reports Server (NTRS)
Stampfl, E.; Landsbaum, E. M.
1973-01-01
The erosion rate of aft closure insulation in a number of large solid propellant motors was empirically analyzed by correlating the average ablation rate with a number of variables that had previously been demonstrated to affect heat flux. The main correlating parameter was a heat flux based on the simplified Bartz heat transfer coefficient corrected for two-dimensional effects. A multiplying group contained terms related to port-to-throat ratio, local wall angle, grain geometry and nozzle cant angle. The resulting equation gave a good correlation and is a useful design tool.
Sacci, Robert L.; Banuelos, Jose Leobardo; Veith, Gabriel M.; ...
2015-03-25
We report the first small-angle neutron scattering of a chemically formed solid-electrolyte interphase from LixC6 reacting with ethylene carbonate/dimethyl carbon solvent. This provides a different and perhaps simpler view of SEI formation than the usual electrochemically-driven reaction. We show that an organic layer coats the graphite particles filling in micro-pores and is polymeric in nature being 1-3 nm thick. We used inelastic neutron scattering to probe the chemistry, and we found that the SEI showed similar inelastic scattering to polyethylene oxide.
Scattering of fast electrons by vapour-atoms and by solid-atoms - A comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshipura, K.N.; Mohanan, S.
1988-08-01
A comparative theoretical study has been done on the scattering of fast electrons by free (vapour) atoms and bound (solid) atoms, in particular, the alkali atoms, Al and Cu. The Born differential cross-sections (DCS), calculated with the static plus polarization electron-atom potential, are found in general, to be larger for free atoms that for bound atoms, at least at small angles of scattering. For Rb and Cs the two DCS tend to merge at very large angles only. The sample incident energies chosen are 400 eV and above.
NASA Technical Reports Server (NTRS)
Ko, H. C.
1973-01-01
The wave-normal emissivity and the ray emissivity formulas for an electron moving along a helical path in a magnetoactive medium are presented. Simplified formulas for the case of an isotropic plasma are also given. Because of the helical motion of the electron, a difference exists between the radiated power per unit solid angle and the received power per unit solid angle. The relation between these two quantities in a magnetoactive medium is shown. Results are compared with those obtained by others, and the sources of discrepancies are pointed out.
NASA Astrophysics Data System (ADS)
Schmitt, W.; Drotbohm, P.; Rothe, J.; Hormes, J.; Ottermann, C. R.; Bange, K.
1995-05-01
Thickness measurements by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out on thin solid films using monochromatized synchrotron radiation at the Bonn storage ring ELSA. Synchrotron radiation was monochromatized by means of a double-crystal monochromator and fluorescence radiation was detected by a Si(Li) semiconductor detector. The results for sample systems consisting of Au on Si, Cr on SiO2 and TiO2 on alkali-free glass are very satisfactory and agree well with results obtained by other methods.
Wu, Chin H; Das, Bibhuti B; Opella, Stanley J
2010-02-01
(13)C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure (1)H-(13)C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the (1)H-(13)C hetero-nuclear dipolar interactions of (13)C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of (13)C(3) labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. Copyright 2009 Elsevier Inc. All rights reserved.
Optical inverse-square displacement sensor
Howe, R.D.; Kychakoff, G.
1989-09-12
This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, C.G.; De Geronimo, G.; Kirkham, R.
2009-11-13
The fundamental parameter method for quantitative SXRF and PIXE analysis and imaging using the dynamic analysis method is extended to model the changing X-ray yields and detector sensitivity with angle across large detector arrays. The method is implemented in the GeoPIXE software and applied to cope with the large solid-angle of the new Maia 384 detector array and its 96 detector prototype developed by CSIRO and BNL for SXRF imaging applications at the Australian and NSLS synchrotrons. Peak-to-background is controlled by mitigating charge-sharing between detectors through careful optimization of a patterned molybdenum absorber mask. A geological application demonstrates the capabilitymore » of the method to produce high definition elemental images up to {approx}100 M pixels in size.« less
Solid-State Division progress report for period ending March 31, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Watson, D.M.
1983-09-01
Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials). (DLC)
Non-destructive Techniques for Classifying Aircraft Coating Degradation
2015-03-26
model is bidirectional reflectance distribution func- tions ( BRDF ) which describes how much radiation is reflected for each solid angle and each...incident angle. An intermediate model between ideal reflectors and BRDF is to assume all reflectance is a combination of diffuse and specular reflectance...19 K-Fold Cross Validation
Contact angle determination procedure and detection of an invisible surface film
NASA Technical Reports Server (NTRS)
Meyer, G.; Grat, R.
1990-01-01
The contact angle value, i.e., the tangent angle of liquid resting on a planar solid surface, is a basic parameter which can be applied to a wide range of applications. The goal is to provide a basic understanding of the contact angle measurement technique and to present a simple illustration that can be applied as a quality control method; namely, detection of a surface contaminant which exists on a surface that appears clean to the unaided eye. The equipment and experimental procedures are detailed.
Bates, S; Jonaitis, D; Nail, S
2013-10-01
Total X-ray Powder Diffraction Analysis (TXRPD) using transmission geometry was able to observe significant variance in measured powder patterns for sucrose lyophilizates with differing residual water contents. Integrated diffraction intensity corresponding to the observed variances was found to be linearly correlated to residual water content as measured by an independent technique. The observed variance was concentrated in two distinct regions of the lyophilizate powder pattern, corresponding to the characteristic sucrose matrix double halo and the high angle diffuse region normally associated with free-water. Full pattern fitting of the lyophilizate powder patterns suggested that the high angle variance was better described by the characteristic diffraction profile of a concentrated sucrose/water system rather than by the free-water diffraction profile. This suggests that the residual water in the sucrose lyophilizates is intimately mixed at the molecular level with sucrose molecules forming a liquid/solid solution. The bound nature of the residual water and its impact on the sucrose matrix gives an enhanced diffraction response between 3.0 and 3.5 beyond that expected for free-water. The enhanced diffraction response allows semi-quantitative analysis of residual water contents within the studied sucrose lyophilizates to levels below 1% by weight. Copyright © 2013 Elsevier B.V. All rights reserved.
Ruiz, David; Egea, José; Tomás-Barberán, Francisco A; Gil, María I
2005-08-10
Thirty-seven apricot varieties, including four new releases (Rojo Pasión, Murciana, Selene, and Dorada) obtained from different crosses between apricot varieties and three traditional Spanish cultivars (Currot, Mauricio, and Búlida), were separated according to flesh color into four groups. The L*, a*, b*, hue angle, and chroma color measurements on the skin and flesh as well as other quality indices including flesh firmness, soluble solids, titratable acidity, and pH were plotted against the total carotenoid content measured by HPLC. Among the 37 apricot varieties, the total carotenoid content ranged from 1,512 to 16,500 microg 100 g(-1) of edible portion, with beta-carotene as the main pigment followed by beta-cryptoxanthin and gamma-carotene. The wide range of variability in the provitamin A content in the apricot varieties encouraged these studies in order to select the breeding types with enhanced carotenoid levels as the varieties with a higher potential health benefit. The carotenoid content was correlated with the color measurements, and the hue angle in both flesh and peel was the parameter with the best correlation (R = 0.92 and 0.84, respectively). An estimation of the carotenoid content in apricots could be achieved by using a portable colorimeter, as a simple and easy method for field usage applications.
NASA Astrophysics Data System (ADS)
Rao, Jionghui; Yao, Wenming; Wen, Linqiang
2015-10-01
Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.
Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal
2017-08-01
The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.
Optical fingerprints of solid-liquid interfaces: a joint ATR-IR and first principles investigation
NASA Astrophysics Data System (ADS)
Yang, L.; Niu, F.; Tecklenburg, S.; Pander, M.; Nayak, S.; Erbe, A.; Wippermann, S.; Gygi, F.; Galli, G.
Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. To develop robust strategies to interpret experiments and validate theory, we carried out attenuated total internal reflection (ATR-IR) spectroscopy measurements and ab initio molecular dynamics (AIMD) simulations of the vibrational properties of interfaces between liquid water and well-controlled prototypical semiconductor substrates. We show the Ge(100)/H2O interface to feature a reversible potential-dependent surface phase transition between Ge-H and Ge-OH termination. The Si(100)/H2O interface is proposed as a model system for corrosion and oxidation processes. We performed AIMD calculations under finite electric fields, revealing different pathways for initial oxidation. These pathways are predicted to exhibit unique spectral signatures. A significant increase in surface specificity can be achieved utilizing an angle-dependent ATR-IR experiment, which allows to detect such signatures at the interfacial layer and consequently changes in the hydrogen bond network. Funding from DOE-BES Grant No. DE-SS0008939 and the Deutsche Forschungsgemeinschaft (RESOLV, EXC 1069) are gratefully acknowledged.
Measurement method for the refractive index of thick solid and liquid layers.
Santić, Branko; Gracin, Davor; Juraić, Krunoslav
2009-08-01
A simple method is proposed for the refractive index measurement of thick solid and liquid layers. In contrast to interferometric methods, no mirrors are used, and the experimental setup is undemanding and simple. The method is based on the variation of transmission caused by optical interference within the layer as a function of incidence angle. A new equation is derived for the positions of the interference extrema versus incidence angle. Scattering at the surfaces and within the sample, as well as weak absorption, do not play important roles. The method is illustrated by the refractive index measurements of sapphire, window glass, and water.
Optimizing a tandem disk model
NASA Astrophysics Data System (ADS)
Healey, J. V.
1983-08-01
The optimum values of the solidity ratio, tip speed ratio (TSR), and the preset angle of attack, the corresponding distribution, and the breakdown mechanism for a tandem disk model for a crosswind machine such as a Darrieus are examined analytically. Equations are formulated for thin blades with zero drag in consideration of two plane rectangular disks, both perpendicular to the wind flow. Power coefficients are obtained for both disks and comparisons are made between a single-disk system and a two-disk system. The power coefficient for the tandem disk model is shown to be a sum of the coefficients of the individual disks, with a maximum value of twice the Betz limit at an angle of attack of -1 deg and the TSR between 4-7. The model, applied to the NACA 0012 profile, gives a maximum power coefficient of 0.967 with a solidity ratio of 0.275 and highly limited ranges for the angle of attack and TSR.
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Braddock, W. F.
1974-01-01
A test of a 0.563 percent scale space shuttle Solid Rocket Booster (SRB) model, MSFC Model 449, was conducted in a trisonic wind tunnel. Test Mach numbers were 0.4, 0.6, 0.9, 1.2, 1.96, 3.48, 4.0, 4.45, and 4.96. Test angles-of-attack ranged from minus 10 degrees to 190 degrees. Test Reynolds numbers ranged from 3.0 million per foot to 8.6 million per foot. Test roll angles were 0, 11.25, 22.5, 45, and 90 degrees. In addition to the static stability evaluation of the primary SRB configuration, five parametric investigations were made: (1) effect of Reynolds number, (2) effect of engine shroud flare angle, (3) effect of engine shroud length, (4) effect of engine shroud strakes, and (5) effect of engine shroud strakes and trust vector control bottles.
Miniaturized haploscope for testing binocular vision
NASA Technical Reports Server (NTRS)
Decker, T. A.
1973-01-01
Device can reproduce virtually all binocular stimulus conditions (target configuration, vergence angle, and accommodative distance) used to test binocular performance. All subsystems of electronic controls are open-loop and solid-state-controlled and, with the exception of vergence angle drive, utilize dc stepping motors as prime movers. Arrangement is also made for readouts of each variable.
Aeroballistics of Corkscrew Projectiles
1978-06-01
obtained by cutting a solid cylinder with a series of six skewed planes to obtain the con- figuration shown in Figure 1. Three skewed planes form the...respect to the cylinder centerline can be varied; however, the angles of the three. nose planes must be the same as well as the angles of the three...b) At low angles of attack, the Magnus forces and moments are small at all spin rates near the configuration twist. This is due to the zero spin
Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces
NASA Technical Reports Server (NTRS)
Kumar, Nitin; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)
2000-01-01
Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid/surfaces. At a hydrophobic surface, the air/hydrophobic solid tension is low, and the solid/aqueous tension is high. A large contact angle forms as the aqueous/air tension acts together with the solid/air tension to balance the large solid/aqueous tension. The aqueous phase, instead of spreading, is held in a meniscus by the large angle. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants (i.e. amphiphiles with a hydrophobic chain of methylene groups attached to a large polar group to give aqueous solubility) do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm or polyethylene. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3)) and an extended ethoxylate (-(OCH2CH2)n-) polar group in the form of a chain with seven or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (lermed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread and can be used in microgravity. We propose that the trisiloxane surfactants superspread when the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space filling mat on the surface which removes a significant amount of the surface water. The water adjacent to the hydrophobic solid surface is of high energy due to incomplete hydrogen bonding; its removal significantly lowers the tension and reduces the contact angle. Hydrocarbon surfactants cannot remove as much surface water because their large polar groups prevent the chains from cohering lengthwise. In our report last year we presented a poster describing the preparation of model very hydrophobic surfaces which are homogeneous and atomically smooth using self assembled monolayers of octadecyl trichlorosilane (OTS). In this poster we will use these surfaces as test substrates in developing hydrocarbon based surfactant systems which superspread. We studied a binary hydrocarbon surfactant systems consisting of a very soluble large polar group polyethylene oxide surfactant (C12E6 (CH3(CH2)11(OCH2CH2)6OH) and a long chain alcohol dodecanol. By mixing the alcohol with this soluble surfactant we have found that the contact angle of the mixed system on our test hydrophobic surfaces is very low. We hypothesize that the alcohol fills in the gaps between adjacent adsorbed chains of the large polar group surfactant. This filling in removes the surface water and effects the decrease in contact angle. We confirm this hypothesis by demonstrating that at the air/water interface the mixed layer forms condensed phases while the soluble large polar group surfactant by itself does not. We present drop impact experiments which demonstrate that the dodecanol/C12E6 mixture is effective in causing impacting drops to spread on the very hydrophobic model OTS surfaces.
Comparison of sound power radiation from isolated airfoils and cascades in a turbulent flow.
Blandeau, Vincent P; Joseph, Phillip F; Jenkins, Gareth; Powles, Christopher J
2011-06-01
An analytical model of the sound power radiated from a flat plate airfoil of infinite span in a 2D turbulent flow is presented. The effects of stagger angle on the radiated sound power are included so that the sound power radiated upstream and downstream relative to the fan axis can be predicted. Closed-form asymptotic expressions, valid at low and high frequencies, are provided for the upstream, downstream, and total sound power. A study of the effects of chord length on the total sound power at all reduced frequencies is presented. Excellent agreement for frequencies above a critical frequency is shown between the fast analytical isolated airfoil model presented in this paper and an existing, computationally demanding, cascade model, in which the unsteady loading of the cascade is computed numerically. Reasonable agreement is also observed at low frequencies for low solidity cascade configurations. © 2011 Acoustical Society of America
Hasa, Dritan; Giacobbe, Carlotta; Perissutti, Beatrice; Voinovich, Dario; Grassi, Mario; Cervellino, Antonio; Masciocchi, Norberto; Guagliardi, Antonietta
2016-09-06
Microcrystalline vinpocetine, coground with cross-linked polyvinylpyrrolidone, affords hybrids containing nanosized drug nanocrystals, the size and size distributions of which depend on milling times and drug-to-polymer weight ratios. Using an innovative approach to microstructural characterization, we analyzed wide-angle X-ray total scattering data by the Debye function analysis and demonstrated the possibility to characterize pharmaceutical solid dispersions obtaining a reliable quantitative view of the physicochemical status of the drug dispersed in an amorphous carrier. The microstructural properties derived therefrom have been successfully employed in reconciling the enigmatic difference in behavior between in vitro and in vivo solubility tests performed on nanosized vinpocetine embedded in a polymeric matrix.
Mueller, Julia S.; Grabowski, Timothy B.; Brewer, Shannon K.; Worthington, Thomas A.
2017-01-01
Decreases in the abundance and diversity of stream fishes in the North American Great Plains have been attributed to habitat fragmentation, altered hydrological and temperature regimes, and elevated levels of total dissolved solids and total suspended solids. Pelagic-broadcast spawning cyprinids, such as the Arkansas River Shiner Notropis girardi, may be particularly vulnerable to these changing conditions because of their reproductive strategy. Our objectives were to assess the effects of temperature, total dissolved solids, and total suspended solids on the developmental and survival rates of Arkansas River Shiner larvae. Results suggest temperature had the greatest influence on the developmental rate of Arkansas River Shiner larvae. However, embryos exposed to the higher levels of total dissolved solids and total suspended solids reached developmental stages earlier than counterparts at equivalent temperatures. Although this rapid development may be beneficial in fragmented waters, our data suggest it may be associated with lower survival rates. Furthermore, those embryos incubating at high temperatures, or in high levels of total dissolved solids and total suspended solids resulted in less viable embryos and larvae than those incubating in all other temperature, total dissolved solid, and total suspended solid treatment groups. As the Great Plains ecoregion continues to change, these results may assist in understanding reasons for past extirpations and future extirpation threats as well as predict stream reaches capable of sustaining Arkansas River Shiners and other species with similar early life-history strategies.
NASA Astrophysics Data System (ADS)
Sohrabi, M.; Soltani, Z.; Sarlak, Z.
2018-03-01
Forward wide-angle neon ion emissions in a 3.5 kJ plasma focus device (PFD) were studied using 5 different anode top geometries; hollow-end cylinder, solid triangle, solid hemisphere, hollow-end cone and flat-end cone. Position-sensitive mega-size panorama polycarbonate ion image detectors (MS-PCID) developed by dual-cell circular mega-size electrochemical etching (MS-ECE) systems were applied for processesing wide-angle neon ion images on MS-PCIDs exposed on the PFD cylinder top base under a single pinch shot. The images can be simply observed, analyzed and relatively quantified in terms of ion emission angular distributions even by the unaided eyes. By analysis of the forward neon ion emission images, the ion emission yields, ion emission angular distributions, iso-fluence ion contours and solid angles of ion emissions in 4π PFD space were determined. The neon ion emission yields on the PFD cylinder top base are in an increasing order ~2.1×109, ~2.2 ×109, ~2.8×109, ~2.9×109, and ~3.5×109 neon ions/shot for the 5 stated anode top geometries respectively. The panorama neon ion images as diagnosed even by the unaided eyes demonstrate the lowest and highest ion yields from the hollow-end cylinder and flat-end cone anode tops respectively. Relative dynamic qualitative neon ion spectrometry was made by the unaided eyes demonstrating relative neon ion energy as they appear. The study also demonstrates the unique power of the MS-PCID/MS-ECE imaging system as an advanced state-of-the-art ion imaging method for wide-angle dynamic parametric studies in PFD space and other ion study applications.
NASA Technical Reports Server (NTRS)
Radford, W. D.; Johnson, J. D.
1974-01-01
Tests of a 2.112 percent scale model of the space shuttle solid rocket booster model were conducted in a transonic pressure tunnel. Tests were conducted at Mach numbers ranging from 0.4 to 1.2, angles of attack from minus one degree to plus 181 degrees, and Reynolds numbers from 0.6 million to 6.1 million per foot. The model configurations investigated were as follows: (1) solid rocket booster without external protuberances, (2) solid rocket booster with an electrical tunnel and a solid rocket booster/external tank thrust attachment structure, and (3) solid rocket booster with two body strakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayler, E; Charpentier, P; Micaily, B
2015-06-15
Purpose The purpose of this work is to publish beam data from Elekta Synergy(R) linear accelerators with Agility(TM) MLC for total skin electron beam (TSEB) therapy using the HDRE1 (High Dose Rate Electron 6MeV) energy. Method & Materials The optimal gantry angles for TSEB were determined using ion chamber measurements along a vertical profile at 450cm SSD. After gantry angles were chosen, field uniformity was measured over the entire treatment area. Uniformity was measured with and without the patient support device, allowing the dosimetric effect of the support device to be determined. Beam output and PDD were measured at themore » calibration point (450cm SSD) for a dual beam using a parallel plate chamber in solid water. These measurements were repeated with the chamber and phantom rotated about the patient isocenter at various angles, in order to measure the contribution from oblique beams. This technique provides a precise measurement of the treatment skin dose (TSD). Lastly, ion chamber measurements were verified by film and diodes. Results The optimal gantry angle for 450 cm SSD was determined to be 90±16°. This achieved uniformity better than 96% on the vertical axis, and 92% along the horizontal axis. HDRE1 was calibrated to deliver 10 cGy/MU at standard geometry (100 cm SSD, 1.2 cm depth). Thus at TSEB geometry (450 cm SSD, 0.1 cm depth) the output of the AP dual field was measured to be 0.35 cGy/MU. The TSD of a 20 cm radius cylinder for six (equally, 60° spaced) dual fields was measured to be 1.19 cGy/MU. Percent Depth Dose data for the AP dual field and TSD are shown in Figure 2. Conclusion This paper provides a modern procedure for commissioning TSEB therapy on a linear accelerator, and clinical beam data for the Elekta Synergy(R) with Agility(TM) MLC.« less
Nanoscale View of Dewetting and Coating on Partially Wetted Solids.
Deng, Yajun; Chen, Lei; Liu, Qiao; Yu, Jiapeng; Wang, Hao
2016-05-19
There remain significant gaps in our ability to predict dewetting and wetting despite the extensive study over the past century. An important reason is the absence of nanoscopic knowledge about the processes near the moving contact line. This experimental study for the first time obtained the liquid morphology within 10 nm of the contact line, which was receding at low speed (U < 50 nm/s). The results put an end to long-standing debate about the microscopic contact angle, which turned out to be varying with the speed as opposed to the constant-angle assumption that has been frequently employed in modeling. Moreover, a residual film of nanometer thickness ubiquitously remained on the solid after the receding contact line passed. This microscopic residual film modified the solid surface and thus made dewetting far from a simple reverse of wetting. A complete scenario for dewetting and coating is provided.
NASA Technical Reports Server (NTRS)
Sims, J. F.; Hamilton, T.
1972-01-01
Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch trisonic wind tunnel during March 1972 on a .003366 scale model of a solid rocket motor version of the space shuttle ascent configuration. The configuration consisted of a parallel burn solid rocket motor booster on an external H-O centerline tank orbiter. Six component aerodynamic force and moment date were recorded over an angle of attack range from -10 to 10 deg at zero degrees sideslip and over a sideslip range from -10 to 10 deg at 0, +6, and -6 deg angle of attack. Mach number ranged from 0.6 to 4.96. The performance and stability characteristics of the complete ascent configuration and build-up, and the effects of variations in tank diameter, orbiter incidence, fairings and positioning of the solid rocket motors and tank fins were determined.
Impregnation transition in a powder
NASA Astrophysics Data System (ADS)
Raux, Pascal; Cockenpot, Heloise; Quere, David; Clanet, Christophe
2011-11-01
When an initially dry pile of micrometrical grains comes into contact with a liquid, one can observe different behaviors, function of the wetting properties. If the contact angle with the solid is low, the liquid will invade the pile (impregnation), while for higher contact angles, the grains will stay dry. We present an experimental study of this phenomenon: a dry pile of glass beads is deposed on the liquid surface, and we vary the contact angle of the liquid on the grains. We report a critical contact angle below which impregnation always occurs, and develop a model to explain its value. Different parameters modifying this critical contact angle are also investigated. Collaboration with Marco Ramaioli, Nestle Research Center, Lausanne, Switzerland.
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1976-01-01
An experimental investigation (SA16F) was conducted in the AEDC PWT 4T to determine the entry static stability of a 0.00548 scale space shuttle solid rocket booster (SRB). The primary objective was to improve the definition of the aerodynamic characteristics in the angle of attack range beyond 90 deg in the vicinity of the entry trim point. The SRB scale model consisted of the reentry configuration with all major protuberances. A simulated heat shield around the engine nozzle was also included. Data were obtained for a 60 deg side mounted sting and a straight nose mounted sting. The angle of attack range for the side mounted sting was 113 deg to 147 deg and for the nose mounted sting 152 deg to 187 deg. The Mach number range consisted of 0.4 to 1.2 at roll angles of 0 and 90 deg. The resulting 6-component aerodynamic force data was presented as the variation of coefficients with angle of attack for each Mach number and roll angle.
Zigzag laser with reduced optical distortion
Albrecht, G.F.; Comaskey, B.; Sutton, S.B.
1994-04-19
The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends. 11 figures.
Zigzag laser with reduced optical distortion
Albrecht, Georg F.; Comaskey, Brian; Sutton, Steven B.
1994-01-01
The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends.
CP/MAS /sup 13/C NMR spectroscopic study of chlorophyll a in the solid state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.E.; Spencer, R.B.; Burger, V.T.
1983-09-01
Solid-state cross-polarization, magic-angle sample spinning carbon-13 nuclear magnetic resonance spectra have been recorded on chlorophyll a- water aggregates, methyl pyrochlorophyllide a and methyl pyropheophorbide a (derivatives that lack a phytyl chain). Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid state spectra.
Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve
2016-03-22
We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and small contact angle from jump to jump; the result is a large evaporation rate leading to faster evaporation.
NASA Astrophysics Data System (ADS)
Corti, T.; Krieger, U. K.; Koop, T.; Peter, T.
2003-04-01
Within a liquid aerosol particle a solid phase may coexist with the liquid over a wide range of ambient conditions. The optical properties of such particles are of interest for a number of reasons. They will affect the scattering albedo of atmospheric aerosols, may cause depolarisation in lidar measurements, and potentially open a window for studying the internal morphology and physical properties (e.g. wetting properties, diffusion constants) of composite particles in laboratory experiments. In this contribution, we will present results of experimental and theoretical work on mixed-phase aerosol particles. The optical properties of mixed-phase particles depend on the location of the inclusion in the liquid phase, which is determined by the surface tensions of the involved interfaces. In the case of complete wetting, the energetically favoured position of the inclusion is in the volume of the liquid phase. For partial wetting, a position at the surface of the liquid phase is favoured, with the contact angle between the solid, liquid and air being described by Young's equation. For systems with small contact angles, the difference in energy between an inclusion situated at the droplets surface and in its volume may be so small that the thermal energy kT is sufficient to displace the inclusion from the droplet surface into its volume. The critical contact angle depends on the size of the inclusion and the droplet and ranges from 0.1 to 10 degrees. Examples of mixed-phase aerosol particles are aged soot particles and sea salt particles at low relative humidity. For aged soot, contact angles on sulphuric acid clearly above 10 degrees have been reported, so that soot inclusions are expected to be located at the surface of aerosol particles. For mixed-phase sea salt particles, consisting of a solid NaCl inclusion and an aqueous solution of mainly NaCl and MgCl2, our measurements on macroscopic NaCl crystals show a contact angle clearly below 10 degrees and possibly as low as 0.1 degrees. An experimental method - based on measuring photon count statistics - is developed to distinguish in single levitated aerosol particle whether a solid inclusion is located in the volume of the particle or at its surface.
Jin, Jingwei; Dai, Xiaohu
2014-01-01
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352
Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu
2014-01-01
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.
Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium
NASA Astrophysics Data System (ADS)
Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi
2016-01-01
Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.
Pittoni, Paola G; Lin, Chia-Hui; Yu, Teng-Shiang; Lin, Shi-Yow
2014-08-12
Could a unique receding contact angle be indicated for describing the wetting properties of a real gas-liquid-solid system? Could a receding contact angle be defined if the triple line of a sessile drop is not moving at all during the whole measurement process? To what extent is the receding contact angle influenced by the intrinsic properties of the system or the measurement procedures? In order to answer these questions, a systematic investigation was conducted in this study on the effects of substrate roughness and relative humidity on the behavior of pure water drops spreading and evaporating on polycarbonate (PC) surfaces characterized by different morphologies. Dynamic, advancing, and receding contact angles were found to be strongly affected by substrate roughness. Specifically, a receding contact angle could not be measured at all for drops evaporating on the more rugged PC surfaces, since the drops were observed strongly pinning to the substrate almost until their complete disappearance. Substrate roughness and system relative humidity were also found responsible for drastic changes in the depinning time (from ∼10 to ∼60 min). Thus, for measurement observations not sufficiently long, no movement of the triple line could be noted, with, again, the failure to find a receding contact angle. Therefore, to keep using concepts such as the receding contact angle as meaningful specifications of a given gas-liquid-solid system, the imperative to carefully investigate and report the inner characteristics of the system (substrate roughness, topography, impurities, defects, chemical properties, etc.) is pointed out in this study. The necessity of establishing methodological standards (drop size, measurement method, system history, observation interval, relative humidity, etc.) is also suggested.
Microorganism billiards in closed plane curves.
Krieger, Madison S
2016-12-01
Recent experiments have shown that many species of microorganisms leave a solid surface at a fixed angle determined by steric interactions and near-field hydrodynamics. This angle is completely independent of the incoming angle. For several collisions in a closed body this determines a unique type of billiard system, an aspecular billiard in which the outgoing angle is fixed for all collisions. We analyze such a system using numerical simulation of this billiard for varying tables and outgoing angles, and also utilize the theory of one-dimensional maps and wavefront dynamics. When applicable we cite results from and compare our system to similar billiard systems in the literature. We focus on examples from three broad classes: the ellipse, the Bunimovich billiards, and the Sinai billiards. The effect of a noisy outgoing angle is also discussed.
NASA Technical Reports Server (NTRS)
Ramsey, P. E.; Buchholz, R.; Allen, E. C. JR.; Dehart, J.
1973-01-01
Wind tunnel tests were conducted to determine the aerodynamic interference between the space shuttle orbiter, external tank, and solid rocket booster on a 0.004 scale ascent configuration. Six component aerodynamic force and moment data were recorded over an angle of attack range from minus 10 to plus 10 degrees at zero degree sideslip. A sideslip range of minus 10 to plus 10 degrees at zero degree angle of attack was also tested. The Mach number range was varied from 0.6 to 4.96 with Reynolds number varying between 4.9 and 6.8 times one million per foot.
Corner wetting during the vapor-liquid-solid growth of faceted nanowires
NASA Astrophysics Data System (ADS)
Spencer, Brian; Davis, Stephen
2016-11-01
We consider the corner wetting of liquid drops in the context of vapor-liquid-solid growth of nanowires. Specifically, we construct numerical solutions for the equilibrium shape of a liquid drop on top of a faceted nanowire by solving the Laplace-Young equation with a free boundary determined by mixed boundary conditions. A key result for nanowire growth is that for a range of contact angles there is no equilibrium drop shape that completely wets the corner of the faceted nanowire. Based on our numerical solutions we determine the scaling behavior for the singular surface behavior near corners of the nanowire in terms of the Young contact angle and drop volume.
Effect of measurement on the ballistic-diffusive transition in turbid media.
Glasser, Ziv; Yaroshevsky, Andre; Barak, Bavat; Granot, Er'el; Sternklar, Shmuel
2013-10-01
The dependence of the transition between the ballistic and the diffusive regimes of turbid media on the experimental solid angle of the detection system is analyzed theoretically and experimentally. A simple model is developed which shows the significance of experimental conditions on the location of the ballistic-diffusive transition. It is demonstrated that decreasing the solid angle expands the ballistic regime; however, this benefit is bounded by the initial Gaussian beam diffraction. In addition, choosing the appropriate wavelength according to the model's principles provides another means of expanding the ballistic regime. Consequently, by optimizing the experimental conditions, it should be possible to extract the ballistic image of a tissue with a thickness of 1 cm.
NASA Technical Reports Server (NTRS)
Sanger, N. L.
1973-01-01
The flow characteristics of several tandem bladed compressor stators were analytically evaluated over a range of inlet incidence angles. The ratios of rear-segment to front-segment chord and camber were varied. Results were also compared to the analytical performance of a reference solid blade section. All tandem blade sections exhibited lower calculated losses than the solid stator. But no one geometric configuration exhibited clearly superior characteristics. The front segment accepts the major effect of overall incidence angle change. Rear- to front-segment camber ratios of 4 and greater appeared to be limited by boundary-layer separation from the pressure surface of the rear segment.
NASA Technical Reports Server (NTRS)
Sims, F.; Olive, R.
1971-01-01
Experimental aerodynamic investigations were conducted on a .003366-scale model of the Grumman space shuttle configuration mounted to a three (3) segmented solid propellant booster. These tests were conducted in the MSFC 14-inch trisonic wind tunnel over a Mach number range of 0.6 to 4.96. The purpose of the test was to determine the aerodynamic characteristics of this configuration. Aerodynamic data was taken over a nominal angle of attack and angle of sideslip of -10 degrees to 10 degrees at zero degrees beta and alpha respectively. In addition, data was obtained for the H-33 orbiter alone to supplement data from TWT 502 and TWT 503.
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Braddock, W. F.; Praharaj, S. C.
1975-01-01
A force test of a scale model of the Space Shuttle Solid Rocket Booster was conducted in a trisonic wind tunnel. The model was tested with such protuberances as a camera capsule, electrical tunnel, attach rings, aft separation rockets, ET attachment structure, and hold-down struts. The model was also tested with the nozzle at gimbal angles of 0, 2.5, and 5 degrees. The influence of a unique heat shield configuration was also determined. Some photographs of model installations in the tunnel were taken and are included. Schlieren photography was utilized for several angles of attack.
Aguiar, Julio C; Galiano, Eduardo; Arenillas, Pablo
2005-08-01
The activity concentration of a (238)Pu solution was measured by the determined solid angle method employing a novel dual diaphragm-detector assembly, which has been previously described. Due to the special requirements of the detector, a new type of source holder was developed, which consisted of sandwiching the radioisotope between two organic films called VYNS. It was experimentally demonstrated that the VYNS films do not absorb alpha particles, but reduce their energy by an average of 22 keV.A mean activity concentration for (238)Pu of 359.10+/-0.8 kBq/g was measured.
Providing solid angle formalism for skyshine calculations.
Gossman, Michael S; Pahikkala, A Jussi; Rising, Mary B; McGinley, Patton H
2010-08-17
We detail, derive and correct the technical use of the solid angle variable identified in formal guidance that relates skyshine calculations to dose-equivalent rate. We further recommend it for use with all National Council on Radiation Protection and Measurements (NCRP), Institute of Physics and Engineering in Medicine (IPEM) and similar reports documented. In general, for beams of identical width which have different resulting areas, within ± 1.0 % maximum deviation the analytical pyramidal solution is 1.27 times greater than a misapplied analytical conical solution through all field sizes up to 40 × 40 cm². Therefore, we recommend determining the exact results with the analytical pyramidal solution for square beams and the analytical conical solution for circular beams.
Solid State Division progress report, September 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials,more » and special materials); and isotope research materials. Publications and papers are listed. (WHK)« less
NASA Technical Reports Server (NTRS)
Nichols, M. E.
1976-01-01
The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.
Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H
2011-11-01
In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics
Design of 9.271-pressure-ratio 5-stage core compressor and overall performance for first 3 stages
NASA Technical Reports Server (NTRS)
Steinke, Ronald J.
1986-01-01
Overall aerodynamic design information is given for all five stages of an axial flow core compressor (74A) having a 9.271 pressure ratio and 29.710 kg/sec flow. For the inlet stage group (first three stages), detailed blade element design information and experimental overall performance are given. At rotor 1 inlet tip speed was 430.291 m/sec, and hub to tip radius ratio was 0.488. A low number of blades per row was achieved by the use of low-aspect-ratio blading of moderate solidity. The high reaction stages have about equal energy addition. Radial energy varied to give constant total pressure at the rotor exit. The blade element profile and shock losses and the incidence and deviation angles were based on relevant experimental data. Blade shapes are mostly double circular arc. Analysis by a three-dimensional Euler code verified the experimentally measured high flow at design speed and IGV-stator setting angles. An optimization code gave an optimal IGV-stator reset schedule for higher measured efficiency at all speeds.
Apparatus and methods for filtering granular solid material
NASA Technical Reports Server (NTRS)
Backes, Douglas J. (Inventor); Poulter, Clay B. (Inventor); Godfrey, Max R. (Inventor); Tolman, Dennis K. (Inventor); Dutton, Melinda S. (Inventor)
2011-01-01
Apparatuses for screening granular solid particulate material include a generally planar first screen and a second screen. A plurality of apertures extends through the first screen. At least a portion of the second screen is oriented at an angle to the first screen, and apertures extend through a perforated region of the second screen. The second screen includes at least one region configured to prevent at least some particles of solid material from passing through the second screen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trapote-Barreira, Ana, E-mail: anatrapotebarreira@gmail.com; Porcar, Lionel; Large Scale Structure Group, Institut Laue Langevin, Grenoble
2015-06-15
Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). Themore » SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.« less
Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix
NASA Astrophysics Data System (ADS)
Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael
2017-04-01
Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.
Packing the silica colloidal crystal beads: a facile route to superhydrophobic surfaces.
Sun, Cheng; Gu, Zhong-Ze; Xu, Hua
2009-11-03
To mimic the structure of the lotus leaf, we present a facile route to prepare superhydrophobic surfaces by depositing nanoparticle clusters onto a solid surface. These clusters were fabricated via solidification of an emulsion droplet containing a nanoparticle in silicone oil. Thus, the microsized clusters and nanoparticles form dual-scale roughness structures. The surface is modified by fluoroalkylsilane and exhibits superhydrophobicity, with a contact angle greater than 165 degrees as well as a sliding angle less than 1 degrees . On the basis of size tuning of the nano/microstructures, various contact angles and sliding angles were investigated. Furthermore, the influence of micro/nanostructures on superhydrophobicity is discussed.
Friction pull plug welding: chamfered heat sink pull plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2005-01-01
The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.
Diminution of contact angle hysteresis under the influence of an oscillating force.
Manor, Ofer
2014-06-17
We suggest a simple quantitative model for the diminution of contact angle hysteresis under the influence of an oscillatory force invoked by thermal fluctuations, substrate vibrations, acoustic waves, or oscillating electric fields. Employing force balance rather than the usual description of contact angle hysteresis in terms of Gibbs energy, we highlight that a wetting system, such as a sessile drop or a bubble adhered to a solid substrate, appears at long times to be partially or fully independent of contact angle hysteresis and thus independent of static friction forces, as a result of contact line pinning. We verify this theory by studying several well-known experimental observations such as the approach of an arbitrary contact angle toward the Young contact angle and the apparent decrease (or increase) in an advancing (or a receding) contact angle under the influence of an external oscillating force.
A "Conveyor Belt" Model for the Dynamic Contact Angle
ERIC Educational Resources Information Center
Della Volpe, C.; Siboni, S.
2011-01-01
The familiar Young contact angle measurement of a liquid at equilibrium on a solid is a fundamental aspect of capillary phenomena. But in the real world it is not so easy to observe it. This is due to the roughness and/or heterogeneity of real surfaces, which typically are not perfectly planar and chemically homogeneous. What can be easily…
Contact Angle Measurements Using a Simplified Experimental Setup
ERIC Educational Resources Information Center
Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric
2010-01-01
A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…
Xu, Z N; Wang, S Y
2015-02-01
To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.
NASA Technical Reports Server (NTRS)
Brewer, E. B.
1975-01-01
A 0.013 scale model of the solid rocket booster (SRB) used to launch the space shuttle was tested at a Mach number of 3.7 and Reynolds numbers of 1,500,000 and 3,500,000 per foot. The objective of the test was to obtain aerodynamic heat transfer data on the surface of scaled models of the SRB at simulated full scale reentry flight conditions. Three separate models were utilized to measure film coefficients over an angle of attack range from 0 deg to 180 deg at 0 deg sideslip. All three models were representations of the MCR0200 baseline configuration and varied only by the way they were mounted in the tunnel. Model A, sting mounted thru the model base, was utilized for testing between 0 deg and 40 deg angle of attack. Model B was blade mounted from the top of the model and was tested between 60 deg and 120 deg angle of attack. Model C was sting mounted thru the model nose and utilized for testing between 140 deg and 180 deg angle of attack.
NASA Astrophysics Data System (ADS)
Prajitno, D. H.; Trisnawan, V.; Syarif, D. G.
2017-05-01
The solid surface tension plays an important role in the heat and mass transfer system for heat exchanger equipment. In the nuclear power plant industry, the stainless steel AISI 316 and Zircalloy 4 have been used for long time as structure materials. The purpose of the experimental is to study solid state surface tension behavior by measure contact angle Nano fluid contain nano particle alumina on metal surface of stainless steel AISI 316 and Zircalloy 4 by sessile drop method. The experiment is to measure the static contact angle and drop nano fluid contains nano particle alumina on stainless steel 316 and zircalloy 4 with different spreading time from 1 to 30 minute. It was observed that stainless steel 316 and zircalloy 4 lose their hydrophobic properties with increasing elapsed time during drop of nano fluid on the surface of alloy. As a result the contact angle of nano fluid on surface of metal is decrease with increasing elapsed time. While the magnitude diameter of drop nano fluid and wetting surface is increase with increasing elapsed time on the surface of the stainless steel SS 316 and Zircalloy 4.
Incorporating contact angles in the surface tension force with the ACES interface curvature scheme
NASA Astrophysics Data System (ADS)
Owkes, Mark
2017-11-01
In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).
Teng, Q; Nicholson, L K; Cross, T A
1991-04-05
An analytical method for the determination of torsion angles from solid state 15N nuclear magnetic resonance (n.m.r.) spectroscopic data is demonstrated. Advantage is taken of the 15N-1H and 15N-13C dipolar interactions as well as the 15N chemical shift interaction in oriented samples. The membrane-bound channel conformation of gramicidin A has eluded an atomic resolution structure determination by more traditional approaches. Here, the torsion angles for the Ala3 site are determined by obtaining the n.m.r. data for both the Gly2-Ala3 and Ala3-Leu4 peptide linkages. Complete utilization of the orientational constraints derived from these orientation-dependent nuclear spin interactions in restricting the conformational space is most effectively achieved by utilizing spherical trigonometry. Two possible sets of torsion angles for the Ala3 site are obtained (phi, psi = -129 degrees, 153 degrees and -129 degrees, 122 degrees), both of which are consistent with a right-handed beta-helix. Other functional and computational evidence strongly supports the set for which the carbonyl oxygen atom of the Ala3-Leu4 linkage is rotated into the channel lumen.
Su, Xiaoshi; Norris, Andrew N
2016-06-01
Gradient index (GRIN), refractive, and asymmetric transmission devices for elastic waves are designed using a solid with aligned parallel gaps. The gaps are assumed to be thin so that they can be considered as parallel cracks separating elastic plate waveguides. The plates do not interact with one another directly, only at their ends where they connect to the exterior solid. To formulate the transmission and reflection coefficients for SV- and P-waves, an analytical model is established using thin plate theory that couples the waveguide modes with the waves in the exterior body. The GRIN lens is designed by varying the thickness of the plates to achieve different flexural wave speeds. The refractive effect of SV-waves is achieved by designing the slope of the edge of the plate array, and keeping the ratio between plate length and flexural wavelength fixed. The asymmetric transmission of P-waves is achieved by sending an incident P-wave at a critical angle, at which total conversion to SV-wave occurs. An array of parallel gaps perpendicular to the propagation direction of the reflected waves stop the SV-wave but let P-waves travel through. Examples of focusing, steering, and asymmetric transmission devices are discussed.
Controlling the Accumulation of Water at Oil-Solid Interfaces with Gradient Coating.
Li, Yan; Yang, Qiaomu; Mei, Ran Andy; Cai, Meirong; Heng, Jerry Y Y; Yang, Zhongqiang
2017-07-13
In this work, we demonstrate a strategy to control the accumulation of water in the oil-solid interface using a gradient coating. Gradient chemistry on glass surface is created by vapor diffusion of organosilanes, leading to a range of contact angles from 110 to 20°. Hexadecane is placed on the gradient substrate as an oil layer, forming a "water/hexadecane/gradient solid substrate" sandwich structure. During incubation, water molecules spontaneously migrate through the micrometer-thick oil layer and result in the formation of micrometer-sized water droplets at the oil-solid interface. It turns out that water droplets at more hydrophobic regions tend to be closer to a regular spherical shape, which is attributed to their higher contact angle with the hydrophobic substrate. However, along the gradient from hydrophobic to hydrophilic, the water droplets gradually form more irregular shapes, as hydrophilic surfaces pin the edges of droplets to form a distorted morphology. It indicates that more hydrophilic surfaces containing more Si-OH groups lead to a higher electrostatic interaction with water and a higher growth rate of interfacial water droplets. This work provides further insights into the mechanism of spontaneous water accumulation at oil-solid interfaces and assists in the rational design for controlling such interfacial phenomenon.
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Braddock, W. F.
1975-01-01
A force test of a 2.112 percent scale Space Shuttle Solid Rocket Booster (SRB), MSFC Model 454, was conducted in test section no. 2 of the Unitary Plan Wind Tunnel. Sixteen (16) runs (pitch polars) were performed over an angle of attack range from 144 through 179 degrees. Test Mach numbers were 2.30, 2.70, 2.96, 3.48, 4.00 and 4.63. The first three Mach numbers had a test Reynolds number of 1.5 million per foot. The remaining three were at 2.0 million per foot. The model was tested in the following configurations: (1) SRB without external protuberances, and (2) SRB with an electrical tunnel and a SRB/ET thrust attachment structure. Schlieren photographs were taken during the testing of the first configuration. The second configuration was tested at roll angles of 45, 90, and 135 degrees.
Hsu, Hsun-Feng; Huang, Wan-Ru; Chen, Ting-Hsuan; Wu, Hwang-Yuan; Chen, Chun-An
2013-05-10
This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation.
2013-01-01
This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726
Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong
2016-10-01
The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xenon Sputter Yield Measurements for Ion Thruster Materials
NASA Technical Reports Server (NTRS)
Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.
2003-01-01
In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.
21 CFR 610.16 - Total solids in serums.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Total solids in serums. 610.16 Section 610.16 Food... GENERAL BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.16 Total solids in serums. Except as... solids. ...
21 CFR 610.16 - Total solids in serums.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Total solids in serums. 610.16 Section 610.16 Food... GENERAL BIOLOGICAL PRODUCTS STANDARDS General Provisions § 610.16 Total solids in serums. Except as... solids. ...
Effect of contact angle hysteresis on moving liquid film integrity
NASA Technical Reports Server (NTRS)
Simon, F. F.; Hsu, Y. Y.
1972-01-01
A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.
Effect of contact angle hysteresis on moving liquid film integrity.
NASA Technical Reports Server (NTRS)
Simon, F. F.; Hsu, Y. Y.
1972-01-01
A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.
How Does a Liquid Wet a Solid? Hydrodynamics of Dynamic Contact Angles
NASA Technical Reports Server (NTRS)
Rame, Enrique
2001-01-01
A contact line is defined at the intersection of a solid surface with the interface between two immiscible fluids. When one fluid displaces another immiscible fluid along a solid surface, the process is called dynamic wetting and a "moving" contact line (one whose position relative to the solid changes in time) often appears. The physics of dynamic wetting controls such natural and industrial processes as spraying of paints and insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, application of coatings, printing, drying and imbibition of fibrous materials, oil recovery from porous rocks, and microfluidics.
[The design of all solid-state tunable pulsed Ti:sapphire laser system].
Chen, Zhe; Ku, Geng; Wan, Junchao; Wang, Wei; Zhou, Chuanqing
2013-05-01
This paper presented a design of broadly all solid-state tunable pulsed Ti:sapphire laser with high power and stable performance. The laser was pumped by custom-made Nd:YAG laser which had water cooling system and amplified by two stage amplifier. The method accomplished tunable output of all solid-state tunable pulsed Ti:sapphire laser by modifying the reflection angle of the back mirror. We investigated the relationship between the power of the pumping laser and the all solid-state tunable pulsed Ti: sapphire laser by changing the power of the pumping source.
NASA Astrophysics Data System (ADS)
Hong, Mei
1999-08-01
We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive 13C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective 13C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-13C]glucose preferentially labels the ends of the side chains, while [2-13C]glycerol labels the Cα of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles φ simultaneously, using an isotropic-anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively 13C labeled protein were performed using 15N-13C 2D correlation spectroscopy. From the time dependence of the 15N-13C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective 13C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.
Park, Sang Eun; Lee, Chun Taek
2007-10-01
This study was aimed to compare robotic-assisted implantation of a total knee arthroplasty with conventional manual implantation. We controlled, randomized, and reviewed 72 patients for total knee arthroplasty assigned to undergo either conventional manual implantation (excluding navigation-assisted implantation cases) of a Zimmer LPS prosthesis (Zimmer, Warsaw, Ind) (30 patients: group 1) or robotic-assisted implantation of such a prosthesis (32 patients: group 2). The femoral flexion angle (gamma angle) and tibial angle (delta angle) in the lateral x-ray of group 1 were 4.19 +/- 3.28 degrees and 89.7 +/- 1.7 degrees, and those of group 2 were 0.17 +/- 0.65 degrees and 85.5 +/- 0.92 degrees. The major complications were from improper small skin incision during a constraint attempt of minimally invasive surgery and during bulk fixation frame pins insertion. Robotic-assisted technology had definite advantages in terms of preoperative planning, accuracy of the intraoperative procedure, and postoperative follow-up, especially in the femoral flexion angle (gamma angle) and tibial flexion angle (delta angle) in the lateral x-ray, and in the femoral flexion angle (alpha angle) in the anteroposterior x-ray. But a disadvantage was the high complication rate in early stage.
Protein structure and interactions in the solid state studied by small-angle neutron scattering.
Curtis, Joseph E; McAuley, Arnold; Nanda, Hirsh; Krueger, Susan
2012-01-01
Small-angle neutron scattering (SANS) is uniquely qualified to study the structure of proteins in liquid and solid phases that are relevant to food science and biotechnological applications. We have used SANS to study a model protein, lysozyme, in both the liquid and water ice phases to determine its gross-structure, interparticle interactions and other properties. These properties have been examined under a variety of solution conditions before, during, and after freezing. Results for lysozyme at concentrations of 50 mg mL(-1) and 100 mg mL(-1), with NaCl concentrations of 0.4 M and 0 M, respectively, both in the liquid and frozen states, are presented and implications for food science are discussed.
NASA Astrophysics Data System (ADS)
Wenzlau, F.; Altmann, J. B.; Müller, T. M.
2010-07-01
Heterogeneous porous media such as hydrocarbon reservoir rocks are effectively described as anisotropic viscoelastic solids. They show characteristic velocity dispersion and attenuation of seismic waves within a broad frequency band, and an explanation for this observation is the mechanism of wave-induced pore fluid flow. Various theoretical models quantify dispersion and attenuation of normal incident compressional waves in finely layered porous media. Similar models of shear wave attenuation are not known, nor do general theories exist to predict wave-induced fluid flow effects in media with a more complex distribution of medium heterogeneities. By using finite element simulations of poroelastic relaxation, the total frequency-dependent complex stiffness tensor can be computed for a porous medium with arbitrary internal heterogeneity. From the stiffness tensor, velocity dispersion and frequency-dependent attenuation are derived for compressional and shear waves as a function of the angle of incidence. We apply our approach to the case of layered media and to that of an ellipsoidal poroelastic inclusion. In the case of the ellipsoidal inclusion, compressional and shear wave modes show significant attenuation, and the characteristic frequency dependence of the effect is governed by the spatiotemporal scale of the pore fluid pressure relaxation. In our anisotropic examples, the angle dependence of the attenuation is stronger than that of the velocity dispersion. It becomes clear that the spatial attenuation patterns show specific characteristics of wave-induced fluid flow, implying that anisotropic attenuation measurements may contribute to the inversion of fluid transport properties in heterogeneous porous media.
NASA Technical Reports Server (NTRS)
Sims, F.
1972-01-01
Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch trisonic wind tunnel during April 1972 on a 0.004-scale model of a solid rocket motor version of the space shuttle ascent configuration. The configuration consisted of a parallel burn solid rocket motor booster on an external HO centerline tank orbiter. Six component aerodynamic force and moment data were recorded over an angle of attack range from -10 deg to +10 deg at zero degrees sideslip and over a sideslip range from -10 deg to +10 deg at zero degrees angle of attack. Mach numbers ranged from 0.6 to 4.96. The purpose of the test was to determine the performance and stability characteristics of the complete ascent configuration and buildup, and to determine the effects of variations in HO tank and SRM nose shaping, orbiter incidence and position, and position of the solid rocket motors.
Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source
NASA Astrophysics Data System (ADS)
Martínez-Verdú, Francisco; Perales, Esther; Chorro, Elisabet; de Fez, Dolores; Viqueira, Valentín; Gilabert, Eduardo
2007-06-01
We present a systematic algorithm capable of searching for optimal colors for any lightness L* (between 0 and 100), any illuminant (D65, F2, F7, F11, etc.), and any light source reported by CIE. Color solids are graphed in some color spaces (CIELAB, SVF, DIN99d, and CIECAM02) by horizontal (constant lightness) and transversal (constant hue angle) sections. Color solids plotted in DIN99d and CIECAM02 color spaces look more spherical or homogeneous than the ones plotted in CIELAB and SVF color spaces. Depending on the spectrum of the light source or illuminant, the shape of its color solid and its content (variety of distinguishable colors, with or without color correspondence) change drastically, particularly with sources whose spectrum is discontinuous and/or very peaked, with correlated color temperature lower than 5500 K. This could be used to propose an absolute colorimetric quality index for light sources comparing the volumes of their gamuts, in a uniform color space.
Low VOC Barrier Coating for Industrial Maintenance
2007-11-01
Color - VOC - Total Solids (wt) - Total Solids (volume) - Percent Pigment - Stormer Viscosity - Brookfield Viscosity - Pot Life...17 NTPEP LVBC Testing (R 31-02) ●Formula - Color - VOC - Total Solids (wt) - Total Solids (volume) - Percent Pigment - Stormer ...Consistency of Paints Measuring Krebs Unit (KU) Viscosity Using the Stormer -Type Viscometer D 610 Test Method for Evaluating Degree of
Frustrated Total Internal Reflection: A Simple Application and Demonstration.
ERIC Educational Resources Information Center
Zanella, F. P.; Magalhaes, D. V.; Oliveira, M. M.; Bianchi, R. F.; Misoguti, L.; Mendonca, C. R.
2003-01-01
Describes the total internal reflection process that occurs when the internal angle of incidence is equal to or greater than the critical angle. Presents a demonstration of the effect of frustrated total internal reflection (FTIR). (YDS)
Fiber reinforced solids possessing great fracture toughness: The role of interfacial strength
NASA Technical Reports Server (NTRS)
Atkins, A. G.
1975-01-01
The results of angle-ply investigations for strength and toughness of brittle fiber/brittle filament composites are presented. General results are discussed for both unidirectional and angle-ply intermittently bonded boron/epoxy composites as affected by soaking and freezing water environments. A description of and the operating instructions are included for the modified 230 mm (9 inch) wide intermittent coating tape making apparatus.
Equilibrium contact angle or the most-stable contact angle?
Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A
2014-04-01
It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.
The Influence of Glove Type on Simulated Wheelchair Racing Propulsion: A Pilot Study.
Rice, I; Dysterheft, J; Bleakney, A W; Cooper, R A
2016-01-01
Our purpose was to examine the influence of glove type on kinetic and spatiotemporal parameters at the handrim in elite wheelchair racers. Elite wheelchair racers (n=9) propelled on a dynamometer in their own racing chairs with a force and moment sensing wheel attached. Racers propelled at 3 steady state speeds (5.36, 6.26 & 7.60 m/s) and performed one maximal effort sprint with 2 different glove types (soft & solid). Peak resultant force, peak torque, impulse, contact angle, braking torque, push time, velocity, and stroke frequency were recorded for steady state and sprint conditions. Multiple nonparametric Wilcoxon matched pair's tests were used to detect differences between glove types, while effect sizes were calculated based on Cohen's d. During steady state trials, racers propelled faster, using more strokes and larger contact angle, while applying less impulse with solid gloves compared to soft gloves. During the sprint condition, racers achieved greater top end velocities, applying larger peak force, with less braking torque with solid gloves compared to soft gloves. Use of solid gloves may provide some performance benefits to wheelchair racers during steady state and top end velocity conditions. © Georg Thieme Verlag KG Stuttgart · New York.
Galloway, Joel M.; Evans, Dennis A.; Green, W. Reed
2005-01-01
Suspended-sediment concentration and total suspended solids data collected with automatic pumping samplers at the L'Anguille River near Colt and the L'Anguille River at Palestine, Arkansas, August 2001 to October 2003 were compared using ordinary least squares regression analyses to determine the relation between the two datasets for each of the two sites. The purpose of this report is to describe the suspended-sediment concentration and total suspended-solids data and examine the comparability of the two datasets for each site. Suspended-sediment concentration and total suspended solids data for the L'Anguille River varied spatially and temporally from August 2001 to October 2003. The site at the L'Anguille River at Palestine represents a larger portion of the L'Anguille River Basin than the site near Colt, and generally had higher median suspended-sediment concentration and total suspended solids and greater ranges in values. The differences between suspended-sediment concentration and total suspended solids data for the L'Anguille River near Colt appeared inversely related to streamflow and not related to time. The relation between suspended-sediment concentration and total suspended solids at the L'Anguille River at Palestine was more variable than at Colt and did not appear to have a relation with flow or time. The relation between suspended-sediment concentration and total suspended solids for the L'Anguille River near Colt shows that total suspended solids increased proportionally as suspended-sediment concentration increased. However, the relation between suspended-sediment concentration and total suspended solids for the L'Anguille River at Palestine showed total suspended solids increased less proportionally as suspended-sediment concentration increased compared to the L'Anguille River near Colt. Differences between the two analytical methods may partially explain differences between the suspended-sediment concentration and total suspended solids data at the two sites. Total suspended solids are analyzed by removing an aliquot of the original sample for further analysis, and suspended-sediment concentrations are analyzed using all sediment and the total mass of the sample. At the L'Anguille River at Palestine another source of variability in the two data sets could have been the location of the automatic pumping sampler intake. The intake was located at a point in the stream cross-section that was subject to sedimentation, which may have resulted in positive sample bias.
Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B
2015-08-01
Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Expressions for the Total Yaw Angle
2016-09-01
1. Introduction 1 2. Mathematical Notation 1 3. Total Yaw Expression Derivations 2 3.1 First Derivation 2 3.2 Second Derivation 4 3.3 Other...4 iv Approved for public release; distribution is unlimited. 1. Introduction The total yaw angle, γt , of a ballistic projectile is... elevation angles from spherical coordinates.∗ We again place point A at the end point of V. Now imagine a plane parallel to the y-z plane that includes
NASA Astrophysics Data System (ADS)
Quotane, Ilyasse; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram
2018-01-01
We investigate theoretically and numerically the possibility of existence of Fano and acoustic-induced transparency (AIT) resonances in a simple though realistic one-dimensional acoustic structure made of solid-fluid layers inserted between two fluids. These resonances are obtained by combining appropriately the zeros of transmission (antiresonance) induced by the solid layers and the local resonances induced by the solid or combined solid-fluid layers with surface free boundary conditions. In particular, we show the possibility of trapped modes, also called bound states in continuum, which have recently found a high renewal interest. These modes appear as resonances with zero width in the transmission spectra as well as in the density of states (DOS). We consider three different structures: (i) a single solid layer inserted between two fluids. This simple structure shows the possibility of existence of trapped modes, which are discrete modes of the solid layer that lie in the continuum modes of the surrounding fluids. We give explicit analytical expressions of the dispersion relation of these eigenmodes of the solid layer which are found independent of the nature of the surrounding fluids. By slightly detuning the angle of incidence from that associated to the trapped mode, we get a well-defined Fano resonance characterized by an asymmetric Fano profile in the transmission spectra. (ii) The second structure consists of a solid-fluid-solid triple layer embedded between two fluids. This structure is found more appropriate to show both Fano and acoustic-induced transparency resonances. We provide detailed analytical expressions for the transmission and reflection coefficients that enable us to deduce a closed-form expression of the dispersion relation giving the trapped modes. Two situations can be distinguished in the triple-layer system: in the case of a symmetric structure (i.e., the same solid layers) we show, by detuning the incidence angle θ , the possibility of existence of Fano resonances that can be fitted following a Fano-type expression. The variation of the Fano parameter that describes the asymmetry of such resonances as well as their width versus θ is studied in detail. In the case of an asymmetric structure (i.e., different solid layers), we show the existence of an incidence angle that enables to squeeze a resonance between two transmission zeros induced by the two solid layers. This resonance behaves like an AIT resonance, its position and width depend on the nature of the fluid and solid layers as well as on the difference between the thicknesses of the solid layers. (iii) In the case of a periodic structure (phononic crystal), we show that trapped modes and Fano resonances give rise, respectively, to dispersionless flat bands with zero group velocity and nearly flat bands with negative or positive group velocities. The analytical results presented here are obtained by means of the Green's function method which enables to deduce in closed form: dispersion curves, transmission and reflection coefficients, DOS, as well as the displacement fields. The proposed solid-fluid layered structures should have important applications for designing acoustic mirrors and acoustic filters as well as supersonic and subsonic materials.
Floren, H K; Sischo, W M; Crudo, C; Moore, D A
2016-09-01
The Brix refractometer is used on dairy farms and calf ranches for colostrum quality (estimation of IgG concentration), estimation of serum IgG concentration in neonatal calves, and nonsalable milk evaluation of total solids for calf nutrition. Another potential use is to estimate the total solids concentrations of milk replacer mixes as an aid in monitoring feeding consistency. The purpose of this study was to evaluate the use of Brix refractometers to estimate total solids in milk replacer solutions and evaluate different replacer mixes for osmolality. Five different milk replacer powders (2 milk replacers with 28% crude protein and 25% fat and 3 with 22% crude protein and 20% fat) were mixed to achieve total solids concentrations from approximately 5.5 to 18%, for a total of 90 different solutions. Readings from both digital and optical Brix refractometers were compared with total solids. The 2 types of refractometers' readings correlated well with one another. The digital and optical Brix readings were highly correlated with the total solids percentage. A value of 1.08 to 1.47 would need to be added to the Brix reading to estimate the total solids in the milk replacer mixes with the optical and digital refractometers, respectively. Osmolality was correlated with total solids percentage of the mixes, but the relationship was different depending on the type of milk replacer. The Brix refractometer can be beneficial in estimating total solids concentration in milk replacer mixes to help monitor milk replacer feeding consistency. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Numerical Investigations of Slip Phenomena in Centrifugal Compressor Impellers
NASA Astrophysics Data System (ADS)
Huang, Jeng-Min; Luo, Kai-Wei; Chen, Ching-Fu; Chiang, Chung-Ping; Wu, Teng-Yuan; Chen, Chun-Han
2013-03-01
This study systematically investigates the slip phenomena in the centrifugal air compressor impellers by CFD. Eight impeller blades for different specific speeds, wrap angles and exit blade angles are designed by compressor design software to analyze their flow fields. Except for the above three variables, flow rate and number of blades are the other two. Results show that the deviation angle decreases as the flow rate increases. The specific speed is not an important parameter regarding deviation angle or slip factor for general centrifugal compressor impellers. The slip onset position is closely related to the position of the peak value in the blade loading factor distribution. When no recirculation flow is present at the shroud, the variations of slip factor under various flow rates are mainly determined by difference between maximum blade angle and exit blade angle, Δβmax-2. The solidity should be of little importance to slip factor correlations in centrifugal compressor impellers.
Deformation of Surface Nanobubbles Induced by Substrate Hydrophobicity.
Wei, Jiachen; Zhang, Xianren; Song, Fan
2016-12-13
Recent experimental measurements have shown that there exists a population of nanobubbles with different curvature radii, whereas both computer simulations and theoretical analysis indicated that the curvature radii of different nanobubbles should be the same at a given supersaturation. To resolve such inconsistency, we perform molecular dynamics simulations on surface nanobubbles that are stabilized by heterogeneous substrates either in the geometrical heterogeneity model (GHM) or in the chemical heterogeneity model (CHM) and propose that the inconsistency could be ascribed to the substrate-induced nanobubble deformation. We find that, as expected from theory and computer simulation, for either the GHM or the CHM, there exists a universal upper limit of contact angle for the nanobubbles, which is determined by the degree of supersaturation alone. By analyzing the evolution of the shape of nanobubbles as a function of substrate hydrophobicity that is controlled here by the liquid-solid interaction, two different origins of nanobubble deformation are identified. For substrates in the GHM, where the contact line is pinned by surface roughness, variation in the liquid-solid interaction changes only the location of the contact line and the measured contact angle, without causing a change in the nanobubble curvature. For substrates in the CHM, however, the liquid-solid interaction exerted by the bottom substrate can deform the vapor-liquid interface, resulting in variations in both the curvature of the vapor-liquid interface and the contact angle.
NASA Astrophysics Data System (ADS)
de Gennes, Pierre-Gilles
On analyse la progression d'un coin fiuide sur uo solide (dans le cas ou Tangle de contact thermodynamique θa est nul : regie d'Antonov satisfaite) en tenant compte des interactions Van der Waals a longue portee. On trouve : (a) un angle de contact apparent θa relie a la vitesse d'avancee U par θ^{3}_{a} ˜ U η/γ (η = viscosity, γ tension superficielle du liquide) d'ou une loi rayon/temps d'etalement pour une goutte r(t) 1/10. (b) un film precurseur ζ d'epaisseur ζ(x, f) decroissant asymptotiquement comme x1 ou x est la distance a la ligne triple. L'epaisseur h* d u film au voisinage de la ligne triple est h* a/θa (ou a est une distance atomique). Ceci permet de comprendre le fait (reconnu) que le film precurseur est bien visible seulement si l'angle de contact thermodynamique est nul. We analyse the shape of the liquid-air interface for a droplet spreading on a solid, in a regime where the Antonov rule is satisfied, taking into account the long range Van der Waals interactions between liquid and solid. We find: (a) an apparent contact angle θa related to the velocity U of the triple line by θ^{3}_{a} ˜ U η/γ (η = viscosity, γ surface tension of the liquid). This leads to a law of spreading (radius r/time t) for a droplet r t1/10. (b) a precursor film of thickness ζ, decreasing asymptotically like x-1, where x is the distance from the triple line. The thickness h* of the film at this line is h* a/θa where a is an atomic length: this explains why the precursor films are observed only when the thermodynamic contact angle vanishes.
Kahn, Timothy L; Soheili, Aydin; Schwarzkopf, Ran
2013-12-01
Total knee arthroplasty (TKA) is the preferred surgical treatment for end-stage osteoarthritis. However, substantial numbers of patients still experience poor outcomes. Consequently, it is important to identify which patient characteristics are predictive of outcomes in order to guide clinical decisions. Our hypothesis is that preoperative patient-reported outcome measures and radiographic measures may help to predict TKA outcomes. Using cohort data from the Osteoarthritis Initiative, we studied 172 patients who underwent TKA. For each patient, we compiled pre- and postoperative Western Ontario and McMaster University Arthritis Index (WOMAC) scores. Radiographs were measured for knee joint angles, femorotibial angles, anatomical lateral distal femoral angles, and anatomical medial proximal tibial angles; Kellgren and Lawrence (KL) grades were assigned to each compartment of the knee. All studied measurements were compared to WOMAC outcomes. Preoperative WOMAC disability, pain, and total scores were positively associated with postoperative WOMAC total scores (P = .010, P = .010, and P = .009, respectively) and were associated with improvement in WOMAC total scores (P < .001, P < .001, and P < .001, respectively). For radiographic measurements, preoperative joint angles were positively associated with improvements in postoperative WOMAC total scores (P = .044). Combined KL grades (medial and lateral compartments) were negatively correlated with postoperative WOMAC disability and pain scores (P = .045 and P = .044) and were positively correlated with improvements in WOMAC total scores (P = .001). All preoperative WOMAC scores demonstrated positive associations with postoperative WOMAC scores, while among the preoperative radiographic measurements only combined KL grades and joint angles showed any correlation with postoperative WOMAC scores. Higher preoperative KL grades and joint angles were associated with better (lower) postoperative WOMAC scores, demonstrating an inverse correlation.
Three-dimensional vibrations of cylindrical elastic solids with V-notches and sharp radial cracks
NASA Astrophysics Data System (ADS)
McGee, O. G.; Kim, J. W.
2010-02-01
This paper provides free vibration data for cylindrical elastic solids, specifically thick circular plates and cylinders with V-notches and sharp radial cracks, for which no extensive previously published database is known to exist. Bending moment and shear force singularities are known to exist at the sharp reentrant corner of a thick V-notched plate under transverse vibratory motion, and three-dimensional (3-D) normal and transverse shear stresses are known to exist at the sharp reentrant terminus edge of a V-notched cylindrical elastic solid under 3-D free vibration. A theoretical analysis is done in this work utilizing a variational Ritz procedure including these essential singularity effects. The procedure incorporates a complete set of admissible algebraic-trigonometric polynomials in conjunction with an admissible set of " edge functions" that explicitly model the 3-D stress singularities which exist along a reentrant terminus edge (i.e., α>180°) of the V-notch. The first set of polynomials guarantees convergence to exact frequencies, as sufficient terms are retained. The second set of edge functions—in addition to representing the corner stress singularities—substantially accelerates the convergence of frequency solutions. This is demonstrated through extensive convergence studies that have been carried out by the investigators. Numerical analysis has been carried out and the results have been given for cylindrical elastic solids with various V-notch angles and depths. The relative depth of the V-notch is defined as (1- c/ a), and the notch angle is defined as (360°- α). For a very small notch angle (1° or less), the notch may be regarded as a "sharp radial crack." Accurate (four significant figure) frequencies are presented for a wide spectrum of notch angles (360°- α), depths (1- c/ a), and thickness ratios ( a/ h for plates and h/ a for cylinders). An extended database of frequencies for completely free thick sectorial, semi-circular, and segmented plates and cylinders are also reported herein as interesting special cases. A generalization of the elasticity-based Ritz analysis and findings applicable here is an arbitrarily shaped V-notched cylindrical solid, being a surface traced out by a family of generatrix, which pass through the circumference of an arbitrarily shaped V-notched directrix curve, r( θ), several of which are described for future investigations and close extensions of this work.
2014-01-01
Background Estimation of the quantity of colostral IgG or serum IgG absorbed following ingestion of colostrum by calves is essential for monitoring the effectiveness of colostrum feeding practices on dairy farms. Milk total solids concentrations determination is a critical part of quality assessment of nonsaleable whole milk prior to feeding to calves. To date, on-farm methods to assess colostral IgG, serum IgG or milk total solids concentrations have been performed separately with various instruments. The objective of this study was to evaluate the diagnostic performance of a single electronic, hand-held refractometer for assessing colostral and serum IgG concentrations and milk total solids in dairy cattle. Colostral IgG, serum IgG and milk total solids concentrations were determined by the refractometer. Corresponding analysis of colostral and serum IgG concentrations were determined by radial immunodiffusion (RID) while milk total solids were determined by spectrophotometry. Sensitivity and specificity of the refractometer for colostrum and serum samples were calculated as determined by RID. Sensitivity and specificity of the refractometer for milk samples was calculated as determined by spectrophotometry. Results The sensitivity of the refractometer was 1 for colostral IgG, serum IgG and milk total solids determinations. Specificity of the refractometer was 0.66, 0.24 and 0 for colostral IgG, serum IgG and milk total solids determinations, respectively. The refractometer underestimated colostral IgG, serum IgG and milk total solids concentrations compared to the concentrations determined by RID or spectrophotometry. Conclusions The refractometer was an acceptable, rapid, convenient on-farm method for determining colostral IgG and milk total solids. The refractometer was not an acceptable method for determination of serum IgG concentrations as it severely underestimated the serum IgG concentrations. PMID:25125217
An Apparatus for Sizing Particulate Matter in Solid Rocket Motors.
1984-06-01
accurately measured. A curve for sizing polydispersions was presented which was used by Cramer and Hansen [Refs. 2, 12]. Two phase flow losses are often...Concentration...... 54 18. 5 Micron Polystyrene, Curve Fit .......... ... 55 19. 5 Micron Polystyrene, Two Angle Method ........ .56.... 20. 10 Micron...Polystyrene, Curve Fit .. ........ 57....[57 21. 10 Micron Polystyrene, Two Angle Method .. ....... .58 . . .6_ *22. 20J Mizron P3iystvrene Cu. .Fi
Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers
2016-01-06
characterize the protein-rich fluid in the various spider silk producing glands. We have been using a battery of magnetic resonance methods including...solution and solid-state nuclear magnetic resonance (NMR) and micro imaging (MRI) in combination with wide angle and small angle X-ray diffraction...range of magnetic resonance methods. We successfully developed magnetic resonance imaging (MRI) techniques with localized spectroscopy to probe the silk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lief, E
2015-06-15
Purpose: To reduce the skin dose from the carbon fiber couch scatter in radiation treatment of breast cancer in the prone position. If this issue is not addressed, the prone breast touching the solid carbon fiber couch can absorb significant dose to the skin and cause the skin reaction. Methods: 1. Use of “tennis racket” instead of the solid couch. To check this hypothesis, we measured the dose at the depth of 5 mm in solid water phantom placed on the couch, using a Farmer chamber. A plan for a patient with 6MV beams, gantry angles of 113 and 286more » degrees Varian scale was used. It was found that treatment with “tennis racket” instead of the solid carbon fiber couch reduces the surface dose by 5–7%, depending on the beam direction. 2. Use of the air gap between the couch and the body was analyzed using radiochromic film on the surface of the solid water phantom 10 cm thick. Initially the phantom was placed on the couch with the film sandwiched in between. Two fields at the angles of 135 and 315 degrees were used. The measurements were repeated for the air gap of 2 and 5 cm and 6 and 15 MV beams. Results: It was found that a 2-cm gap decreased the surface dose by 3% for a 6 MV beam and by 5.5% for a 15 MV beam. A 5-cm gap reduced the dose by 9% for 6 MV and 13.5% for 15 MV. Conclusion: Use of both methods (combined if possible) can significantly reduce the surface dose in radiation therapy of the prone breast and possible skin reaction. We plan to explore dependence of the dose reduction upon the angle of incidence.« less
A Combinatorial Geometry Computer Description of the M578 Light Recovery Vehicle
1984-05-01
cannot overlap. 10 TABLE 1. GEOMETRIC SOLIDS USED IN COM-GEOM DESCRIPTIONS Symbol Solid Name RPP Rectangular Parallelepiped BOX Box RAW Right Angle...20R «OX 209 PCC 210 RCC 211 TRC 212 RHX "»13 RCC 214 RCC 2T5 TRC 216 BOX ?17 PrC ?"»R R^C SOLID PARAMETERS REMARKS 74.0303 3694.444...821720 «OX 221 RCC 22’ PC* 223 TPC 224 30V 225 "CC 2?6 PCC 227 TRC 22* BOX 220 RCC 230 »CC 231 TRC ?3’ TPC 233 TRC 234 RCC SOLID
Direct determination of three-phase contact line properties on nearly molecular scale
Winkler, P. M.; McGraw, R. L.; Bauer, P. S.; ...
2016-05-17
Wetting phenomena in multi-phase systems govern the shape of the contact line which separates the different phases. For liquids in contact with solid surfaces wetting is typically described in terms of contact angle. While in macroscopic systems the contact angle can be determined experimentally, on the molecular scale contact angles are hardly accessible. Here we report the first direct experimental determination of contact angles as well as contact line curvature on a scale of the order of 1nm. For water nucleating heterogeneously on Ag nanoparticles we find contact angles around 15 degrees compared to 90 degrees for the corresponding macroscopicallymore » measured equilibrium angle. The obtained microscopic contact angles can be attributed to negative line tension in the order of –10 –10 J/m that becomes increasingly dominant with increasing curvature of the contact line. Furthermore, these results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.« less
Laundry Detergency of Solid Non-Particulate Soil Using Microemulsion-Based Formulation.
Chanwattanakit, Jarussri; Chavadej, Sumaeth
2018-02-01
Laundry detergency of solid non-particulate soil on polyester and cotton was investigated using a microemulsion-based formulation, consisting of an anionic extended surfactant (C 12,13 -4PO-SO 4 Na) and sodium mono-and di-methyl naphthalene sulfonate (SMDNS) as the hydrophilic linker, to provide a Winsor Type III microemulsion with an ultralow interfacial tension (IFT). In this work, methyl palmitate (palmitic acid methyl ester) having a melting point around 30°C, was used as a model solid non-particulate (waxy) soil. A total surfactant concentration of 0.35 wt% of the selected formulation (4:0.65 weight ratio of C 12,13 -4PO-SO 4 Na:SMDNS) with 5.3 wt% NaCl was able to form a middle phase microemulsion at a high temperature (40°C),which provided the highest oil removal level with the lowest oil redeposition and the lowest IFT, and was much higher than that with a commercial detergent or de-ionized water. Most of the detached oil, whether in liquid or solid state, was in an unsolubilized form. Hence, the dispersion stability of the detached oil droplets or solidified oil particles that resulted from the surfactant adsorption played an important role in the oil redeposition. For an oily detergency, the lower the system IFT, the higher the oil removal whereas for a waxy (non-particulate) soil detergency, the lower the contact angle, the higher the solidified oil removal. For a liquefied oil, the detergency mechanism was roll up and emulsification with dispersion stability, while that for the waxy soil (solid oil) was the detachment by wettability with dispersion stability.
NASA Technical Reports Server (NTRS)
Rhim, W. K.; Burum, D. P.; Elleman, D. D.
1977-01-01
Adiabatic demagnetization (ADRF) can be achieved in a dipolar coupled nuclear spin system in solids by applying a string of short RF pulses and gradually modulating the pulse amplitudes or pulse angles. This letter reports an adiabatic inverse polarization effect in solids and a rotary spin echo phenomenon observed in liquids when the pulse angle is gradually changed across integral multiples of pi during a string of RF pulses. The RF pulse sequence used is illustrated along with the NMR signal from a CaF2 single crystal as observed between the RF pulses and the rotary spin echo signal observed in liquid C6F6 for n = 2. The observed effects are explained qualitatively on the basis of average Hamiltonian theory.
Determination of aerodynamic stability and drag of the Titan 3 C SRM during entry
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1974-01-01
An experimental aerodynamic investigation was conducted in the NASA/MSFC 14-inch Trisonic Wind Tunnel on a 0.00736 scale model of Titan 3 C Solid Rocket Motor (SRM). Static stability and drag data were obtained for Mach numbers of 0.6 to 4.96, angles of attack of minus 10 deg to 190 deg, and roll angles of 0 to 360 deg. The resulting data will be used to predict the dynamic motions of the SRM during entry which will then be compared to flight data. This comparison will improve and lend credibility to methods for predicting the entry dynamics of the space shuttle Solid Rocket Booster (SRB), which is needed for recovery studies and design of the parachute recovery system.
NASA Technical Reports Server (NTRS)
Riffel, R. E.; Rothrock, M. D.
1980-01-01
A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.44. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated.
Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice
2018-08-01
We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.
13C CP MAS NMR and GIAO-CHF calculations of coumarins.
Zolek, Teresa; Paradowska, Katarzyna; Wawer, Iwona
2003-01-01
13C cross-polarization magic-angle spinning NMR spectra were recorded for a series of solid coumarins. Ab initio calculations of shielding constants were performed with the use of GIAO-CHF method. The combined CPMAS NMR and theoretical approach was successful in characterizing solid-state conformations of coumarins; a relationship sigma (ppm) = -1.032 xdelta + 205.28 (R(2) = 0.9845) can be used to obtain structural information for coumarins, for which solid-state NMR or crystal structure data are not available. Copyright 2002 Elsevier Science (USA)
Fang, Ning; Sun, Wei
2015-04-21
A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.
Optical distortion correction of a liquid-gas interface and contact angle in cylindrical tubes
NASA Astrophysics Data System (ADS)
Darzi, Milad; Park, Chanwoo
2017-05-01
Objects inside cylindrical tubes appear distorted as seen outside the tube due to the refraction of the light passing through different media. Such an optical distortion may cause significant errors in geometrical measurements using optical observations of objects (e.g., liquid-gas interfaces, solid particles, gas bubbles) inside the tubes. In this study, an analytical method using a point-by-point correction of the optical distortion was developed. For an experimental validation, the method was used to correct the apparent profiles of the water-air interfaces (menisci) in cylindrical glass tubes with different tube diameters and wall thicknesses. Then, the corrected meniscus profiles were used to calculate the corrected static contact angles. The corrected contact angle shows an excellent agreement with the reference contact angles as compared to the conventional contact angle measurement using apparent meniscus profiles.
Solid impingement erosion mechanisms and characterization of erosion resistance of ductile metals
NASA Technical Reports Server (NTRS)
Rao, V. P.; Buckley, D. H.
1982-01-01
Experimental results pertaining to spherical glass bead and angular crushed glass particle impingement are presented. A concept of energy adsorption to explain the failure of material is proposed. The erosion characteristics of several pure metals were correlated with the proposed energy parameters and with other properties. Correlations of erosion and material properties were also carried out with these materials to study the effect of the angle of impingement. Analyses of extensive erosion data indicate that surface energy, strain energy, melting point, bulk modulus, hardness, ultimate resilience, atomic volume and product of linear coefficient of thermal expansion, bulk modulus, and temperature rise required for melting, and ultimate resilience, and hardness exhibit the best correlations. It appears that both energy and thermal properties contribute to the total erosion.
NASA Technical Reports Server (NTRS)
Mozer, F.
1974-01-01
A split Langmuir probe has been developed to make in situ measurements of ionospheric current density and plasma bulk flow. The probe consists of two conducting elements that are separated by a thin insulator that shield each other over a 2 pi solid angle, and that are simultaneously swept from negative to positive with respect to the plasma. By measuring the current to each plate and the difference current between plates, information is obtained on the plasma's current density, bulk flow, electron temperature, and density. The instrument was successfully flown twice on sounding rockets into auroral events. Measurement data indicate that the total auroral current configuration is composed of several alternating east and west electrojets associated with several alternating up and down Birkeland currents.
Solid-state fractional capacitor using MWCNT-epoxy nanocomposite
NASA Astrophysics Data System (ADS)
John, Dina A.; Banerjee, Susanta; Bohannan, Gary W.; Biswas, Karabi
2017-04-01
Here, we propose the fabrication of a solid state fractional capacitor for which constant phase (CP) angles were attained in different frequency zones: 110 Hz-1.1 kHz, 10 kHz-118 kHz, and 230 kHz-20 MHz. The configuration makes use of epoxy resin as the matrix in which multi-walled carbon nanotubes (MWCNTs) are dispersed. Adhesive nature of the epoxy resin is utilized for binding the electrodes, which avoids the extra step for packaging. The fractional capacitive behavior is contributed by the distribution of time constants for the electron to travel from one electrode to the other. The distributive nature of the time constant is ensured by inserting a middle plate which is coated with a porous film of polymethyl-methacrylate in between the two electrodes. The phase angle trend for the configuration is studied in detail, and it is observed that as the % of carbon nanotubes (CNTs) loading increases, the CP angle increases from - 85 ° to - 45 ° in the frequency zones above 100 Hz. The developed device is compact and it can be easily integrated with the electronic circuits.
Jurd, Andrew P S; Titman, Jeremy J
2009-08-28
Solid-state NMR experiments can be used to determine conformational parameters, such as interatomic distances and torsion angles. The latter can be obtained from measurements of the relative orientation of two chemical shift tensors, if the orientation of these with respect to the surrounding bonds is known. In this paper, a new rotor-synchronized magic angle spinning (MAS) dipolar correlation experiment is described which can be used in this way. Because the experiment requires slow MAS rates, a novel recoupling sequence, designed using symmetry principles, is incorporated into the mixing period. This recoupling sequence is based in turn on a new composite cyclic pulse referred to as COAST (for combined offset and anisotropy stabilization). The new COAST-C7(2)(1) sequence is shown to give good theoretical and experimental recoupling efficiency, even when the CSA far exceeds the MAS rate. In this regime, previous recoupling sequences, such as POST-C7(2)(1), exhibit poor recoupling performance. The effectiveness of the new method has been explored by a study of the dipeptide L-phenylalanyl-L-phenylalanine.
Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images
NASA Technical Reports Server (NTRS)
Diner, D.; Paradise, S.; Martonchik, J.
1994-01-01
In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.
NASA Technical Reports Server (NTRS)
Lundy, T. E.
1979-01-01
The primary objective of the test was to determine the aerodynamic increments due to the attach structure. Secondary objectives were to determine the effects of: (1) orbiter nose mold line changes; (2) wire bundle fairings on data measurements; and (3) flow angularity. The scale model was tested over the Mach range from 0.60 to 1.25 at angles of attack and sideslip from -8 to +8 deg. The total pressure was 22 psia for all runs. Six-component orbiter data were obtained from a balance in the orbiter which was sting supported. The external tank was attached to the solid rocket booster, each of which was sting supported. An alternate two sting/two balance arrangement was also tested with a single sting and balance in the external tank measuring combined ET/SRB aero data replacing the two stings in the SRB's. Two runs were also made at Mach number 4.96 with the two SRB's removed. The aerodynamic coefficients obtained are tabulated as a function of angle of attack or sideslip for each Mach number value.
Plume Characterization of a One-Millipound Solid Teflon Pulsed Plasma Thruster, Phase 2
NASA Technical Reports Server (NTRS)
Rudolph, L. K.; Harstad, K. G.; Pless, L. C.; Jones, R. M.
1979-01-01
Measurements of the pulsed plasma thruster (PPT) plume upstream mass flux were made in the Molecular Sink (MOLSINK) vacuum facility in order to minimize the plume-tank wall reflected mass flux. Using specially designed collimators on 4 rows of Quartz Crystal Microbalanced (QCMs) mounted on a support extending radially away from the plume axis, measurements were made of the mass flux originating in a thin slice of the PPT primary plume at an arbitrary dip angle with respect to the thruster axis. The measured and analytically corrected mass flux from particles reflected from the MOLSINK walls was substracted from the collimated QCM measurements to improve their accuracy. These data were then analytically summed over dip angle to estimate the total plume backflow upstream of the thruster nozzle. The results indicate that the PPT backflow is of order 10 to the minus 10th power g/square cm/pulse in the region from 38 to 86 cm from the PPT axis in the nozzle exit plane. This flux drops with the square of the radial distance from the PPT axis and is comparable to the backflow of an 8 cm ion thruster, which has performance characteristics similar to those of the PPT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, J.S.; Lee, G.T.; Seachman, S.M.
2008-05-13
Flow regime study was conducted in a 0.3 m diameter, 15.5 m tall circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U. S. Department of Energy. A statistical designed test series was conducted including four (4) operating set points and a duplicated center point (therefore a total of 6 operating set points). Glass beads of mean diameter 200 μm and particle density of 2,430 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 5.6 to 7.6 m/s and solid mass flux frommore » a low of 86 to a high of 303 kg/m2-s. Results of the apparent solids fraction profile as well as the radial particle velocity profile were analyzed in order to identify the presence of Dense Suspension Upflow (DSU) conditions. DSU regime was found to exist at the bottom of the riser, while the middle section of the riser was still exhibiting core-annular flow structure. Due to the abrupt geometry of the exit, the DSU regime was also found at the top of the riser. In addition the effects of the azimuthal angle, riser gas velocity, and mass solids flux on the particle velocity were investigated and are discussed in this paper.« less
Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures
2010-02-28
evaporation induced self-assembly of aqueous silica precursors with a biologically compatible surfactant, glycerol monooleate ( GMO ) via dip-coating...film is first deposited, it has a relatively low contact angle with water and remains in a semi-solid state. Upon exposure to UV/ozone, the GMO begins...Figure 8. A) Water contact angle of a GMO -templated silica film as a function of UV light and ozone exposure time, B) Localization of fluorescently
Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.
2014-01-01
The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance, however, decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples. Seasonal patterns and long-term trends in flow-adjusted water-quality concentrations were identified for five representative constituents—total nitrogen, total phosphorus, total zinc, total dissolved solids, and total suspended solids. Seasonal patterns for all five constituents were fairly similar, with higher concentrations in the summer and lower concentrations in the winter. Significant linear long-term trends in stormflow composite concentrations were identified for 36 of the 60 constituent-watershed combinations (5 constituents multiplied by 12 watersheds) for the period of record through water year 2011. Significant trends typically were decreasing for total nitrogen, total phosphorus, total suspended solids, and total zinc and increasing for total dissolved solids. Total dissolved solids and total suspended solids trends had the largest magnitude changes per year. Stream water loads were estimated for 10 water-quality constituents. These estimates represent the cumulative effects of watershed characteristics, hydrologic processes, biogeochemical processes, climatic variability, and human influences on watershed water quality. Yields, in load per unit area, were used to compare loads from watersheds with different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.
Chen, Jianrong; Shen, Liguo; Zhang, Meijia; Hong, Huachang; He, Yiming; Liao, Bao-Qiang; Lin, Hongjun
2016-02-01
Concept of hydrophobicity always fails to accurately assess the interfacial interaction and membrane fouling, which calls for reliable parameters for this purpose. In this study, effects of contact angle on interfacial interactions related to membrane fouling were investigated based on thermodynamic analysis. It was found that, total interaction energy between sludge foulants and membrane monotonically decreases and increases with water and glycerol contact angle, respectively, indicating that these two parameters can be reliable indicators predicting total interaction energy and membrane fouling. Membrane roughness decreases interaction strength for over 20 times, and effects of membrane roughness on membrane fouling should consider water and glycerol contact angle on membrane. It was revealed existence of a critical water and glycerol contact angle for a given membrane bioreactor. Meanwhile, diiodomethane contact angle has minor effect on the total interaction, and cannot be regarded as an effective indicator assessing interfacial interactions and membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Formation and structure of Al-Zr metallic glasses studied by Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Li, J. H.; Zhao, S. Z.; Dai, Y.; Cui, Y. Y.; Liu, B. X.
2011-06-01
Based on the recently constructed n-body potential, both molecular dynamics and Monte Carlo simulations revealed that the Al-Zr amorphous alloy or metallic glass can be obtained within the composition range of 24-66 at. % Zr. The revealed composition range could be considered the intrinsic glass-forming range and it quantitatively indicates the glass-forming ability of the Al-Zr system. The underlying physics of the finding is that, within the composition range, the amorphous alloys are energetically favored to form. In addition, it is proposed that the energy difference between a solid solution and the amorphous phase could serve as the driving force of the crystalline to amorphous transition and the driving force should be sufficiently large for amorphization to take place. The minimum driving forces for fcc Al-based and hcp Zr-based Al-Zr solid solutions to amorphize are calculated to be about -0.05 and -0.03 eV/atom, respectively, whereas the maximum driving force is found to be -0.23 eV/atom at the alloy stoichiometry of Al60Zr40. A thermodynamics parameter γ¯, defined as the ratio of the driving force to the formation energy of the solid solution, is further proposed to indicate the glass-forming ability of an Al-Zr alloy. Thermodynamics calculations show that the glass-forming ability of the Al56Zr44 alloy is the largest, implying that the Al56Zr44 amorphous alloy is more ready to form than other alloys in the Al-Zr system. Besides, Voronoi analysis found that there exists a strong correlation between the coordinate number and structure. Amorphization could result in increase of coordinate numbers and about 1.5% volume-expansion. The volume-expansion induced by amorphization can be attributed to two factors, i.e., the total bond number of the Al-Zr amorphous phase is greater than that of the corresponding solid solution, and the averaged bond length of the Al-Zr amorphous phase is longer than that of the corresponding solid solution. For the Al-Zr alloys, especially for the Al-Zr amorphous phase, there exists a negative chemical micro-inhomogeneity in the alloys, suggesting that metallic bonds prefer to be formed between the atoms of dissimilar species. Finally, it is found that there is a weak correspondence between the bond-angle distributions of Al-Zr amorphous alloys and the solid solutions. It is further suggested that the configuration of Al-Zr amorphous alloys embodies some hybrid imprint of bcc, fcc, and hcp structures. More interestingly, the short-range order is also observed in the bond-angle distributions.
A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism
NASA Astrophysics Data System (ADS)
Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei
2014-07-01
We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.
NASA Astrophysics Data System (ADS)
Ye, Shigong; Wu, Junru
2000-05-01
Shear wave propagation properties including phase velocity and attenuation coefficient are indispensable information in materials characterization and nondestructive evaluation. A computer controlled scanning shear-wave ultrasonic imaging system has been developed. It consists of a pair of focusing broadband pvdf transducers of central frequency of 50 MHz immersed in distilled water. Shear waves in a solid specimen are generated by mode-conversion. When ultrasonic waves generated by one of the pvdf transducers impinge upon a solid specimen from water with angle of incidence of θ that is greater than θcr, the critical angle of the longitudinal wave in the solid, only shear waves can propagate in the solid and longitudinal waves become evanescent waves. The shear waves pass through the specimen and received by the other pvdf transducer. Meanwhile, the specimen was scanned by a stepped motor of a step of 10 μm. The system was used to generated shear waves amplitude and phase velocity images of bone specimen of 1280 μm and they are compared with their longitudinal wave counterparts. The results have shown shear wave images can provide additional shear modulus and shear viscous information that longitudinal waves can't provide. The lateral resolution of 60 μm was achieved using shear wave imaging technique applied in bone sample.
Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces
NASA Astrophysics Data System (ADS)
Dalgamoni, Hussein; Yong, Xin
2017-11-01
Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.
NASA Astrophysics Data System (ADS)
Guerry, Paul; Brown, Steven P.; Smith, Mark E.
2017-10-01
In the context of improving J coupling measurements in disordered solids, strong coupling effects have been investigated in the spin-echo and refocused INADEQUATE spin-echo (REINE) modulations of three- and four-spin systems under magic-angle-spinning (MAS), using density matrix simulations and solid-state NMR experiments on a cadmium phosphate glass. Analytical models are developed for the different modulation regimes, which are shown to be distinguishable in practice using Akaike's information criterion. REINE modulations are shown to be free of the damping that occurs for spin-echo modulations when the observed spin has the same isotropic chemical shift as its neighbour. Damping also occurs when the observed spin is bonded to a strongly-coupled pair. For mid-chain units, the presence of both direct and relayed damping makes both REINE and spin-echo modulations impossible to interpret quantitatively. We nonetheless outline how a qualitative comparison of the modulation curves can provide valuable information on disordered networks, possibly also pertaining to dynamic effects therein.
NASA Astrophysics Data System (ADS)
Wang, Suhuan; Liu, Jianguo; Lv, Ming; Zeng, Xiaoyan
2014-09-01
In this paper, a low-cost, high-efficiency and high-flexibility surface modification technology for polymer materials was achieved at high laser scanning speeds (600-1000 mm s-1) and using an all-solid state, Q-switched, high-average power, and nanosecond pulse ultraviolet (355 nm wavelength) laser. During the surface modification of a very important engineering plastic, i.e., black bisphenol A polycarbonate (BAPC) board, it was found that different laser parameters (e.g., laser fluence and pulse frequency) were able to result in different surface microstructures (e.g., many tiny protuberances or a porous microstructure with periodical V-type grooves). After the modification, although the total relative content of the oxygen-containing groups (e.g., Csbnd O and COO-) on the BAPC surface increased, however, the special microstructures played a deciding role in the surface properties (e.g., contact angle and surface energy) of the BAPC. The change trend of the water contact angle on the BAPC surface was with an obvious increase, that of the diiodomethane contact angle was with a most decrease, and that of the ethylene glycol contact angle was between the above two. It showed that the wetting properties of the three liquids on the modified BAPC surface were different. Basing on the measurements of the contact angles of the three liquids, and according to the Young equation and the Lifshitz van der Waals and Lewis acid-base theory, the BAPC surface energy after the modification was calculated. The results were that, in a broad range of laser fluences, pulse frequencies and scanning speeds, the surface energy had a significant increase (e.g., from the original of about 44 mJ m-2 to the maximum of about 70 mJ m-2), and the higher the laser pulse frequency, the more significant the increase. This would be very advantageous to fabricate the high-quality micro-devices and micro-systems on the modified surface.
Solid-state NMR studies of form I of atorvastatin calcium.
Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil
2012-03-22
Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).
Keramati, H; Alidadi, H; Parvaresh, A R; Movahedian, H; Mahvi, A H
2008-10-01
The aim of this research was to sudy the reduction of pollution of vegetable oil manufacturing wastewater with DAF system. At first phase of this examination, the optimum dosage of the coagulants was determined. The coagulants that used in this study were Alum and Ferric Chloride. The second phase was flotation in this series of examinations, oil, COD, total solid, volatile solid, fixed solid and suspended solid measured in raw wastewater and the effluent of the DAF pilot. Optimum value of pH for alum and ferric chloride obtained 7.5 and 5.5, respectively. Optimum dosage for these obtained 30 and 32 mg L(-1) in this research. Mean removal for the parameters ofoil, COD, total solid, volatile solid, fixed solid and suspended solid obtained 75.85, 78.27, 77.32, 82.47, 73.52 and 85.53%, respectively. With pressure rising from 3 to 4 and 5 atm removing rate of COD, total solid, volatile solid, fixed solid parameters reduced, but oil and suspended solid have increase. In addition, following increase of flotation time up to 120 sec all of the measured parameters have increase in removing rate. Optimum A/S for removal of COD, total solid, volatile solid, fixed solid parameters obtained 0.001 and for oil and suspended solid obtained 0.0015.
The Measurement of Wettability
ERIC Educational Resources Information Center
Pirie, Brian J. S.; Gregory, David W.
1973-01-01
Discusses the use of a simple apparatus to measure contact angles between a liquid drop and a solid surface which are determining factors of wettability. Included are examples of applying this technique to various experimental situations. (CC)
30 CFR 75.1318 - Loading boreholes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock... the borehole; and (2) The explosive cartridges shall be loaded in a manner that provides contact...
A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.
Smith, E R; Müller, E A; Craster, R V; Matar, O K
2016-12-06
Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.
Zheng, Shi-Biao
2005-08-19
We propose a new approach to quantum phase gates via the adiabatic evolution. The conditional phase shift is neither of dynamical nor geometric origin. It arises from the adiabatic evolution of the dark state itself. Taking advantage of the adiabatic passage, this kind of quantum logic gates is robust against moderate fluctuations of experimental parameters. In comparison with the geometric phase gates, it is unnecessary to drive the system to undergo a desired cyclic evolution to obtain a desired solid angle. Thus, the procedure is simplified, and the fidelity may be further improved since the errors in obtaining the required solid angle are avoided. We illustrate such a kind of quantum logic gates in the ion trap system. The idea can also be realized in other systems, opening a new perspective for quantum information processing.
Multiplexed image storage by electromagnetically induced transparency in a solid
NASA Astrophysics Data System (ADS)
Heinze, G.; Rentzsch, N.; Halfmann, T.
2012-11-01
We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.
NASA Technical Reports Server (NTRS)
Braddock, W. F.; Streby, G. D.
1977-01-01
The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.
Malgarinos, Ilias; Nikolopoulos, Nikolaos; Marengo, Marco; Antonini, Carlo; Gavaises, Manolis
2014-10-01
In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact angles. These angles are required in order to define the wetting properties of liquid phases when interacting with a solid surface. The physical model is implemented as a source term in the momentum equation of a Navier-Stokes CFD flow solver as an "adhesion-like" force which acts at the triple-phase contact line as a result of capillary interactions between the liquid drop and the solid substrate. The numerical simulations capture the liquid-air interface movement by considering the volume of fluid (VOF) method and utilizing an automatic local grid refinement technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously minimize numerical diffusion of the interface. The proposed model is validated against previously reported experimental data of normal impingement of water droplets on dry surfaces at room temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both for hydrophilic (θadv=10°-70°) and hydrophobic (θadv=105°-120°) surfaces, has been examined. Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact angle; the latter is found in reasonable agreement against available experimental measurements. It is thus concluded that theimplementation of this model is an effective approach for overcoming the need of a pre-defined dynamic contact angle law, frequently adopted as an approximate boundary condition for such simulations. Clearly, this model is mostly influential during the spreading phase for the cases of low We number impacts (We<˜80) since for high impact velocities, inertia dominates significantly over capillary forces in the initial phase of spreading. Copyright © 2014 Elsevier B.V. All rights reserved.
Visible and infrared polarization ratio spectroreflectometer
NASA Technical Reports Server (NTRS)
Batten, C. E. (Inventor)
1980-01-01
The instrument assists in determining the refractive index and absorption index, at different spectral frequencies, of a solid sample by illuminating the sample at various angles in incidence and measuring the corresponding reflected intensities at various spectral frequencies and polarization angles. The ratio of the intensity of the reflected light for parallel polarized light to that for perpendicular polarized light at two different angles of incidence can be used to determine the optical constants of the sample. The invention involves an apparatus for facilitating the utilization of a wide variety of angles of incidence. The light source and polarizing element are positioned on an outer platform; the sample is positioned on an inner platform. The two platforms rotate about a common axis and cooperate in their rotation such that the sample is rotated one degree for every two degrees of rotation of the light source. This maintains the impingement of the reflected light upon the detector for any angle of incidence without moving or adjusting the detector which allows a continuous change in the angle of incidence.
Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers
NASA Astrophysics Data System (ADS)
Zeng, Wenduo
Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.
NASA Technical Reports Server (NTRS)
Frost, A. L.; Dill, C. C.
1986-01-01
An investigation to determine the sensitivity of the space shuttle base and forebody aerodynamics to the size and shape of various solid plume simulators was conducted. Families of cones of varying angle and base diameter, at various axial positions behind a Space Shuttle launch vehicle model, were wind tunnel tested. This parametric evaluation yielded base pressure and force coefficient data which indicated that solid plume simulators are an inexpensive, quick method of approximating the effect of engine exhaust plumes on the base and forebody aerodynamics of future, complex multibody launch vehicles.
Design of supercritical cascades with high solidity
NASA Technical Reports Server (NTRS)
Sanz, J. M.
1982-01-01
The method of complex characteristics of Garabedian and Korn was successfully used to design shockless cascades with solidities of up to one. A code was developed using this method and a new hodograph transformation of the flow onto an ellipse. This code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.
Solid-dielectric compound parabolic concentrators: on their use with photovoltaic devices.
Goodman, N B; Ignatius, R; Wharton, L; Winston, R
1976-10-01
Prototype solid dielectric compound parabolic concentrators have been made and tested. By means of the geometry and refractive properties of a transparent solid they provide a technique for increasing the power output of silicon solar cells exposed to the sun by an amount nearly equal to the increase in effective collecting area. The response is uniform over a large angle which eliminates the necessity of diurnal tracking of the sun. The technique can be applied to the construction of thin panels and has the potential for significantly reducing, their cost per unit area.
EMIIM Wetting Properties & Their Effect on Electrospray Thruster Design
2012-03-01
tension and contact or “wetting" angle formed when a liquid droplet comes in contact with a solid surface. Ideally this angle is a function of the...3 3 Picture of a Taylor cone formed at AFRL, note bubbles present. . . . . . . 3 4 Titanium electrode grids in use at AFRL...cone formed using an internally wetted emitter and the ionic liquid BMI-BG4 is shown in Figure 3.[7] Emitters are precisely aligned with openings
NASA Astrophysics Data System (ADS)
Amini, Amirhossein; Homsy, G. M.
2017-04-01
Experiments on evaporating droplets on structured surfaces have shown that the contact line does not move with constant speed, but rather in a steplike "stick-slip" fashion. As a first step in understanding such behavior, we study the evaporation of a two-dimensional volatile liquid droplet on a nonplanar heated solid substrate with a moving contact line and fixed contact angle. The model for the flat case is adapted to include curved substrates, numerical solutions are achieved for various periodic and quasiperiodic substrate profiles, and the dynamics of the contact line and the apparent contact angle are studied. In contrast with our results for a flat substrate, for which the contact line recedes in a nearly constant speed, we observe that the contact line speed and position show significant time variation and that the contact line moves in an approximate steplike fashion on relatively steep substrates. For the simplest case of a periodic substrate, we find that the apparent contact angle is periodic in time. For doubly periodic substrates, we find that the apparent contact angle is periodic and that the problem exhibits a phase-locking behavior. For multimode quasiperiodic substrates, we find the contact line behavior to be temporally complex and not only limited to a stick-slip motion. In all cases, we find that the overall evaporation is increased relative to the flat substrate.
Petrovic, Igor; Hip, Ivan; Fredlund, Murray D
2016-09-01
The variability of untreated municipal solid waste (MSW) shear strength parameters, namely cohesion and shear friction angle, with respect to waste stability problems, is of primary concern due to the strong heterogeneity of MSW. A large number of municipal solid waste (MSW) shear strength parameters (friction angle and cohesion) were collected from published literature and analyzed. The basic statistical analysis has shown that the central tendency of both shear strength parameters fits reasonably well within the ranges of recommended values proposed by different authors. In addition, it was established that the correlation between shear friction angle and cohesion is not strong but it still remained significant. Through use of a distribution fitting method it was found that the shear friction angle could be adjusted to a normal probability density function while cohesion follows the log-normal density function. The continuous normal-lognormal bivariate density function was therefore selected as an adequate model to ascertain rational boundary values ("confidence interval") for MSW shear strength parameters. It was concluded that a curve with a 70% confidence level generates a "confidence interval" within the reasonable limits. With respect to the decomposition stage of the waste material, three different ranges of appropriate shear strength parameters were indicated. Defined parameters were then used as input parameters for an Alternative Point Estimated Method (APEM) stability analysis on a real case scenario of the Jakusevec landfill. The Jakusevec landfill is the disposal site of the capital of Croatia - Zagreb. The analysis shows that in the case of a dry landfill the most significant factor influencing the safety factor was the shear friction angle of old, decomposed waste material, while in the case of a landfill with significant leachate level the most significant factor influencing the safety factor was the cohesion of old, decomposed waste material. The analysis also showed that a satisfactory level of performance with a small probability of failure was produced for the standard practice design of waste landfills as well as an analysis scenario immediately after the landfill closure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Measuring contact angle and meniscus shape with a reflected laser beam.
Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K
2014-01-01
Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.
Measuring contact angle and meniscus shape with a reflected laser beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibach, T. F.; Nguyen, H.; Butt, H. J.
2014-01-15
Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collectedmore » on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.« less
Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape.
Kawaguchi, Junki; Yoshimoto, Shunsuke; Kuroda, Yoshihiro; Oshiro, Osamu
2017-09-01
An approach to finger motion capture that places fewer restrictions on the usage environment and actions of the user is an important research topic in biomechanics and human-computer interaction. We proposed a system that electrically detects finger motion from the associated deformation of the wrist and estimates the finger joint angles using multiple regression models. A wrist-mounted sensing device with 16 electrodes detects deformation of the wrist from changes in electrical contact resistance at the skin. In this study, we experimentally investigated the accuracy of finger joint angle estimation, the adequacy of two multiple regression models, and the resolution of the estimation of total finger joint angles. In experiments, both the finger joint angles and the system output voltage were recorded as subjects performed flexion/extension of the fingers. These data were used for calibration using the least-squares method. The system was found to be capable of estimating the total finger joint angle with a root-mean-square error of 29-34 degrees. A multiple regression model with a second-order polynomial basis function was shown to be suitable for the estimation of all total finger joint angles, but not those of the thumb.
Motion of Drops on Surfaces with Wettability Gradients
NASA Technical Reports Server (NTRS)
Subramanian, R. Shankar; McLaughlin, John B.; Moumen, Nadjoua; Qian, Dongying
2002-01-01
A liquid drop present on a solid surface can move because of a gradient in wettability along the surface, as manifested by a gradient in the contact angle. The contact angle at a given point on the contact line between a solid and a liquid in a gaseous medium is the angle between the tangent planes to the liquid and the solid surfaces at that point and is measured within the liquid side, by convention. The motion of the drop occurs in the direction of increasing wettability. The cause of the motion is the net force exerted on the drop by the solid surface because of the variation of the contact angle around the periphery. This force causes acceleration of an initially stationary drop, and leads to its motion in the direction of decreasing contact angle. The nature of the motion is determined by the balance between the motivating force and the resisting hydrodynamic force from the solid surface and the surrounding gaseous medium. A wettability gradient can be chemically induced as shown by Chaudhury and Whitesides who provided unambiguous experimental evidence that drops can move in such gradients. The phenomenon can be important in heat transfer applications in low gravity, such as when condensation occurs on a surface. Daniel et al have demonstrated that the velocity of a drop on a surface due to a wettability gradient in the presence of condensation can be more than two orders of magnitude larger than that observed in the absence of condensation. In the present research program, we have begun to study the motion of a drop in a wettability gradient systematically using a model system. Our initial efforts will be restricted to a system in which no condensation occurs. The experiments are performed as follows. First, a rectangular strip of approximate dimensions 10 x 20 mm is cut out of a silicon wafer. The strip is cleaned thoroughly and its surface is exposed to the vapor from an alkylchlorosilane for a period lasting between one and two minutes inside a desiccator. This is done using an approximate line source of the vapor in the form of a string soaked in the alkylchlorosilane. Ordinarily, many fluids, including water, wet the surface of silicon quite well. This means that the contact angle is small. But the silanized surface resists wetting, with contact angles that are as large as 100 degs. Therefore, a gradient of wettability is formed on the silicon surface. The region near the string is highly hydrophobic, and the contact angle decreases gradually toward a small value at the hydrophilic end away from this region. The change in wettability occurs over a distance of several mm. The strip is placed on a platform within a Plexiglas cell. Drops of a suitable liquid are introduced on top of the strip near the hydrophobic end. An optical system attached to a video camera is trained on the drop so that images of the moving drop can be captured on videotape for subsequent analysis. We have performed preliminary experiments with water as well as ethylene glycol drops. Results from these experiments will be presented in the poster. Future plans include the refinement of the experimental system so as to permit images to be recorded from the side as well as the top, and the conduct of a systematic study in which the drop size is varied over a good range. Experiments will be conducted with different fluids so as to obtain the largest possible range of suitably defined Reynolds and Capillary numbers. Also, an effort will be initiated on theoretical modeling of this motion. The challenges in the development of the theoretical description lie in the proper analysis of the region in the vicinity of the contact line, as well as in the free boundary nature of the problem. It is known that continuum models assuming the no slip condition all the way to the contact line fail by predicting that the stress on the solid surface becomes singular as the contact line is approached. One approach for dealing with this issue has been to relax the no-slip boundary condition using the Navier model. Molecular dynamics simulations of the contact line region show that for a non-polar liquid on a solid surface, the no-slip boundary condition is in fact incorrect near the contact line. Furthermore, the same simulations also show that the usual relationship between stress and the rate of deformation breaks down in the vicinity of the contact line. In developing continuum theoretical models of the system, we shall accommodate this knowledge to the extent possible.
Investigation of Super Tube Structure and Performance (Postprint)
2010-04-01
thermosyphon is claimed as thermally superconductive and offers solid state mode of heat transport. A host of speculations about this claim was emerging...sealed structure and design of a conventional heat pipe or thermosyphon is claimed as thermally superconductive and offers solid state mode of heat...matrix. The tilt angle was varied to check for gravity dependence. Tests were run as step functions allowing the tube to reach steady state at a new
33 CFR 159.319 - Fecal coliform and total suspended solids standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Certain Alaskan Waters by Cruise Vessel Operations § 159.319 Fecal coliform and total suspended solids... solids greater than 150 mg/l. (b) Graywater effluent discharges. [Reserved] ...
33 CFR 159.319 - Fecal coliform and total suspended solids standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Certain Alaskan Waters by Cruise Vessel Operations § 159.319 Fecal coliform and total suspended solids... solids greater than 150 mg/l. (b) Graywater effluent discharges. [Reserved] ...
Characterization of solid particle erosion resistance of ductile metals based on their properties
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1985-01-01
This paper presents experimental results pertaining to spherical glass bead and angular crushed glass particle impingement. A concept of energy absorption to explain the failure of material is proposed and is correlated with the erosion characteristics of several pure metals. Analyses of extensive erosion data indicate that the properties - surface energy, specific melting energy, strain energy, melting point, bulk modulus, hardness, atomic volume - and the product of the parameters - linear coefficient of thermal expansion x bulk modulus x temperature rise required for melting, and ultimate resilience x hardness - exhibit the best correlations. The properties of surface energy and atomic volume are suggested for the first time for correlation purposes and are found to correlate well with erosion rates at different angles of impingement. It further appears that both energy and thermal properties contribute to the total erosion.
Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patommel, Jens; Klare, Susanne; Hoppe, Robert
In response to the conjecture that the numerical aperture of x-ray optics is fundamentally limited by the critical angle of total reflection, the concept of adiabatically focusing refractive lenses was proposed to overcome this limit. Here, we present an experimental realization of these optics made of silicon and demonstrate that they indeed focus 20 keV x rays to a 18.4 nm focus with a numerical aperture of 1.73(9) × 10 –3 that clearly exceeds the critical angle of total reflection of 1.55 mrad.
Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses
Patommel, Jens; Klare, Susanne; Hoppe, Robert; ...
2017-03-06
In response to the conjecture that the numerical aperture of x-ray optics is fundamentally limited by the critical angle of total reflection, the concept of adiabatically focusing refractive lenses was proposed to overcome this limit. Here, we present an experimental realization of these optics made of silicon and demonstrate that they indeed focus 20 keV x rays to a 18.4 nm focus with a numerical aperture of 1.73(9) × 10 –3 that clearly exceeds the critical angle of total reflection of 1.55 mrad.
Investigation of energy dissipation due to contact angle hysteresis in capillary effect
NASA Astrophysics Data System (ADS)
Athukorallage, Bhagya; Iyer, Ram
2016-06-01
Capillary action or Capillarity is the ability of a liquid to flow in narrow spaces without the assistance of, and in opposition to, external forces like gravity. Three effects contribute to capillary action, namely, adhesion of the liquid to the walls of the confining solid; meniscus formation; and low Reynolds number fluid flow. We investigate the dissipation of energy during one cycle of capillary action, when the liquid volume inside a capillary tube first increases and subsequently decreases while assuming quasi-static motion. The quasi-static assumption allows us to focus on the wetting phenomenon of the solid wall by the liquid and the formation of the meniscus. It is well known that the motion of a liquid on an non-ideal surface involves the expenditure of energy due to contact angle hysteresis. In this paper, we derive the equations for the menisci and the flow rules for the change of the contact angles for a liquid column in a capillary tube at a constant temperature and volume by minimizing the Helmholtz free energy using calculus of variations. We describe the numerical solution of these equations and present results from computations for the case of a capillary tube with 1 mm diameter.
Hua, Shih-Hao; Chen, Chao-Pin; Han, Pin
2017-08-01
The simple and nondestructive detection system studied in this work uses a near-infrared (NIR) detector and parallel-polarized (P-wave) NIR lasers to determine the soluble solids content (SSC) of apples. The P-wave NIR laser in this system is incident into the apple's pulp at the Brewster angle to minimize the interference caused by interfacial reflections. After the apple has been illuminated by four P-wave NIR lasers that correspond to the specified wavelengths of the SSC chemical bonds (880, 940, 980, and 1064 nm), the prediction of correlation (rp2) and the root-mean-square error for prediction (RMSEP) of the SSC are determined via partial least square regression analysis of the reflectance. Our results indicate that the use of P-wave lasers at the Brewster angle (as the angle of incidence) and the above specified wavelengths for the prediction set measurement of the SSC of apples obtained an rp2 of 0.88 and an RMSEP of 0.47°Brix. These rp2 are 6% higher, and the RMSEPs are 9% lower, than those obtained using non-polarized lasers.
Mote, Kaustubh R.; Gopinath, T.; Veglia, Gianluigi
2013-01-01
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments (POE), for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ∼ 0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional O-ssNMR and MAS-ssNMR. PMID:23963722
Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15
Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.
2017-02-23
The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.
Distortion Correction for a Brewster Angle Microscope Using an Optical Grating.
Sun, Zhe; Zheng, Desheng; Baldelli, Steven
2017-02-21
A distortion-corrected Brewster angle microscope (DC-BAM) is designed, constructed, and tested based on the combination of an optical grating and a relay lens. Avoiding the drawbacks of most conventional BAM instruments, this configuration corrects the image propagation direction and consequently provides an image in focus over the entire field of view without any beam scanning or imaging reconstruction. This new BAM can be applied to both liquid and solid subphases with good spatial resolution in static and dynamic studies.
A Path Loss Model for Non-Line-of-Sight Ultraviolet Multiple Scattering Channels
2010-01-01
scattering is self -governed, and the distances and angles for different scattering events are conditioned on previous quantities. Therefore, the arrival...solid angle of the receiver determined by the receiver area and distance rn. Note that no integration over rn is needed because it is a function of...www.eurasip.org). This year edition will take place in Barcelona, capital city of Catalonia (Spain), and will be jointly organized by the Centre Tecnològic de
Creation of Woven Structures Impacting Self-cleaning Superoleophobicity
NASA Astrophysics Data System (ADS)
Lim, Jihye
For protection of human life from harmful or toxic liquids in working areas, solid surface resistance to liquid with low surface tension (e.g. oil) should be achieved in the outermost layer of protective clothing. Based on the literature review, multiscale structures were emphasized because they can increase roughness on a solid surface and create more void spaces of different sizes. The roughness and void spaces contribute to creating a liquid-vapor interface and reducing the liquid contact area to the solid surface. Woven fabric inherently consists of multiscale structures by its construction: microscale in a yarn structure and macroscale in a fabric structure. When the solid surface tension is low relative to oil, creating an appropriate structural geometry will become a critical way to obtain a superoleophobic surface for oil-resistance. Theoretical modeling and experiments with actual fabric samples were utilized to predict and prove the highest performing structural geometry in woven fabric, respectively. The theoretical geometric modeling accounted for the different weave structures, the yarn compression by the yarn flattening factor, e, and the void space by the void space ratio to the fiber or yarn diameter, T, impacting the liquid apparent contact angle on a fabric surface. The Cassie-Baxter equations were developed using Young's contact angle, thetae, thetae and e, or thetae, e, and T, to predict the liquid apparent contact angle for different geometries. In addition, to prevent a liquid's penetration into a solid structure, the ranges of the protuberance height (>> h2) and distance (< 4ℓ 2 cap) were predicted by the definition of the Laplace pressure, the capillary pressure, and the sagging phenomenon. Those predictions were in strong agreement with the results from the empirical experiment using the actual woven fabric samples. This study identified the impact of the geometries in yarn and woven fabric structures on the fabric resistance against oil through theoretical modeling and experiments. The results suggest particular weave structures, the range of the void space (or the protuberance distance) and the protuberance height in the yarn and fabric structures for the highest performing self-cleaning superoleophobic woven fabric surface.
Connector For Embedded Optical Fiber
NASA Technical Reports Server (NTRS)
Wilkerson, Charles; Hiles, Steven; Houghton, J. Richard; Holland, Brent W.
1994-01-01
Partly embedded fixture is simpler and sturdier than other types of outlets for optical fibers embedded in solid structures. No need to align coupling prism and lenses. Fixture includes base, tube bent at 45 degree angle, and ceramic ferrule.
Alpha-particle emission probabilities of ²³⁶U obtained by alpha spectrometry.
Marouli, M; Pommé, S; Jobbágy, V; Van Ammel, R; Paepen, J; Stroh, H; Benedik, L
2014-05-01
High-resolution alpha-particle spectrometry was performed with an ion-implanted silicon detector in vacuum on a homogeneously electrodeposited (236)U source. The source was measured at different solid angles subtended by the detector, varying between 0.8% and 2.4% of 4π sr, to assess the influence of coincidental detection of alpha-particles and conversion electrons on the measured alpha-particle emission probabilities. Additional measurements were performed using a bending magnet to eliminate conversion electrons, the results of which coincide with normal measurements extrapolated to an infinitely small solid angle. The measured alpha emission probabilities for the three main peaks - 74.20 (5)%, 25.68 (5)% and 0.123 (5)%, respectively - are consistent with literature data, but their precision has been improved by at least one order of magnitude in this work. © 2013 Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Burstadt, P. L.; Radford, W. D.
1975-01-01
A 2.112 percent scale Space Shuttle Solid Rocket Booster (SRB) was tested in a ten foot, supersonic wind tunnel. The test Mach numbers were 2.0 and 2.7. Test angles of attack were from minus 5 degrees to plus 185 degrees. The Reynolds numbers ranged from 0.514 to 2.81 million per foot. Test roll angles were 0, 22.5, 45, 90, and 135 degrees. The following configurations were tested: (1) SRB without external protuberances, (2) SRB with an electrical tunnel and a thrust attachment structure, (3) SRB with two engine shroud strakes, (4) SRB with eight engine shroud strakes, and (5) SRB with an electrical tunnel, thrust attachment structure, eight engine shroud strakes, and separation motors.
Performance of JT-60SA divertor Thomson scattering diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kajita, Shin, E-mail: kajita.shin@nagoya-u.jp; Hatae, Takaki; Tojo, Hiroshi
2015-08-15
For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, themore » influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views.« less
Performance of JT-60SA divertor Thomson scattering diagnostics.
Kajita, Shin; Hatae, Takaki; Tojo, Hiroshi; Enokuchi, Akito; Hamano, Takashi; Shimizu, Katsuhiro; Kawashima, Hisato
2015-08-01
For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, the influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views.
Providing solid angle formalism for skyshine calculations
Pahikkala, A. Jussi; Rising, Mary B.; McGinley, Patton H.
2010-01-01
We detail, derive and correct the technical use of the solid angle variable identified in formal guidance that relates skyshine calculations to dose‐equivalent rate. We further recommend it for use with all National Council on Radiation Protection and Measurements (NCRP), Institute of Physics and Engineering in Medicine (IPEM) and similar reports documented. In general, for beams of identical width which have different resulting areas, within ±1.0% maximum deviation the analytical pyramidal solution is 1.27 times greater than a misapplied analytical conical solution through all field sizes up to 40×40 cm2. Therefore, we recommend determining the exact results with the analytical pyramidal solution for square beams and the analytical conical solution for circular beams. PACS number(s): 87.52.‐g, 87.52.Df, 87.52.Tr, 87.53.‐j, 87.53.Bn, 87.53.Dq, 87.66.‐a, 89., 89.60.+x
Observation of NMR noise from solid samples.
Schlagnitweit, Judith; Dumez, Jean-Nicolas; Nausner, Martin; Jerschow, Alexej; Elena-Herrmann, Bénédicte; Müller, Norbert
2010-11-01
We demonstrate that proton NMR noise signals, i.e. NMR spectra without excitation by radio frequency, can be obtained from solid samples. Experimental results are shown for static and magic-angle spinning conditions. In addition, a tuning procedure based on the probes' NMR noise characteristics and similar to the one described previously for liquids probes can also be used to optimize signal-to-noise ratios in ¹H-MAS experiments. Copyright © 2010 Elsevier Inc. All rights reserved.
Li, Xiaofan; Nie, Qing
2009-07-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alamo, R.G.; Mandelkern, L.; Londono, J.D.
1994-01-17
The state of mixing in blends of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) in the liquid and solid state has been examined by small-angle neutron scattering (SANS) in conjunction with deuterium labeling. In the melt, SANS results indicate that HDPE/LDPE mixtures from a single-phase solution for all concentrations, including blends containing high volume fractions ([phi] > 0.5) of branched polymer, for which multiphase melts have previously been suggested. Proper accounting for isotope effects is essential to avoid artifacts, because the H/D interaction parameter is sufficiently large ([sub [chi]HD] [approximately] 4 [times] 10[sup [minus]4]) to cause phase separation in themore » amorphous state for molecular weights (MW) >150,000. In the solid state, after slow cooling from the melt ([approximately]0.75 C/min), the HDPE/LDPE system shows extensive segregation into separate domains [approximately]100--300 [angstrom] in size. Both the shape and magnitude of the absolute scattering cross section are consistent with the conclusion that the components are extensively segregated into separate lamellae. Two-peak melting curves obtained for such mixtures support the SANS interpretation, and the segregation of components in the solid state is therefore a consequence of crystallization mechanisms rather than incompatibility in the liquid state.« less
Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.
Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H
2006-08-15
The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, L. N.; Hu, Z. D.; Zheng, Y.
2014-09-15
Proton acceleration from 4 μm thick aluminum foils irradiated by 30-TW Ti:sapphire laser pulses is investigated using an angle-resolved proton energy spectrometer. We find that a modulated spectral peak at ∼0.82 MeV is presented at 2.5° off the target normal direction. The divergence angle of the modulated zone is 3.8°. Two-dimensional particle-in-cell simulations reveal that self-generated toroidal magnetic field at the rear surface of the target foil is responsible for the modulated spectral feature. The field deflects the low energy protons, resulting in the modulated energy spectrum with certain peaks.
NASA Technical Reports Server (NTRS)
Kingsland, R. B.
1976-01-01
The results of wind tunnel tests conducted on a 0.010-scale version of the Vehicle 3 Space Shuttle Configuration were presented. Pressure measurements were made on the launch configuration, orbiter alone, external tank alone, and solid rocket booster alone, to provide heat transfer pressure data. The tests were conducted for a Mach number range from 2.36 to 4.6 and Reynolds number range from 1.2 to 5 million per foot. The model was tested at angles of attack from -10 deg to 20 deg for a sideslip angle range from -5 deg to +5 deg and at sideslip angles from -5 deg to 48 deg for 0 deg angle of attack.
Schuy, Steffen; Faiss, Simon; Yoder, Nicholas C.; Kalsani, Venkateshwarlu; Kumar, Krishna; Janshoff, Andreas; Vogel, Reiner
2008-01-01
Lipid bilayers consisting of lipids with terminally perfluoroalkylated chains have remarkable properties. They exhibit increased stability and phase-separated nanoscale patterns in mixtures with nonfluorinated lipids. In order to understand the bilayer properties that are responsible for this behavior, we have analyzed the structure of solid-supported bilayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and of a DPPC analogue with 6 terminal perfluorinated methylene units (F6-DPPC). Polarized attenuated total reflection Fourier-transform infrared spectroscopy indicates that for F6-DPPC, the tilt of the lipid acyl chains to the bilayer normal is increased to 39° as compared to 21° for native DPPC, for both lipids in the gel phase. This substantial increase of the tilt angle is responsible for a decrease of the bilayer thickness from 5.4 nm for DPPC to 4.5 nm for F6-DPPC, as revealed by temperature-controlled imaging ellipsometry on microstructured lipid bilayers and solution atomic force microscopy. During the main phase transition from the gel to the fluid phase, both the relative bilayer thickness change and the relative area change are substantially smaller for F6-DPPC than for DPPC. In light of these structural and thermotropic data, we propose a model in which the higher acyl-chain tilt angle in F6-DPPC is the result of a conformational rearrangement to minimize unfavorable fluorocarbon–hydrocarbon interactions in the center of the bilayer due to chain staggering. PMID:18563929
Effect of surface hydrophobicity on the formation and stability of oxygen nanobubbles.
Pan, Gang; Yang, Bo
2012-06-04
The formation mechanism of a nanoscale gas state is studied on inorganic clay surfaces modified with hexamethyldisilazane, which show different contact angles in ethanol-water solutions. As the dissolved oxygen becomes oversaturated due to the decrease in ethanol-water ratio, oxygen nanoscale gas state are formed and stabilized on the hydrophobic surfaces so that the total oxygen content in the suspension is increased compared to the control solution without the particles. However, the total oxygen content in the suspension with hydrophilic surfaces is lower than the control solution without the particles because the hydrophilic particle surfaces destabilize the nanobubbles on the surfaces by spreading and coagulating them into microbubbles that quickly escape from the suspension solution. No significant correlation was observed between the nanobubble formation and the shape or roughness of the surfaces. Our results suggest that a nanoscale gas state can be formed on both hydrophobic and hydrophilic particle surfaces, but that the stability of the surface nanoscale gas state can vary greatly depending on the hydrophobicity of the solid surfaces. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Drobnitzky, Matthias; Klose, Uwe
2017-03-01
Magnetization-prepared rapid gradient-echo (MPRAGE) sequences are commonly employed for T1-weighted structural brain imaging. Following a contrast preparation radiofrequency (RF) pulse, the data acquisition proceeds under nonequilibrium conditions of the relaxing longitudinal magnetization. Variation of the flip angle can be used to maximize total available signal. Simulated annealing or greedy algorithms have so far been published to numerically solve this problem, with signal-to-noise ratios optimized for clinical imaging scenarios by adhering to a predefined shape of the signal evolution. We propose an unconstrained optimization of the MPRAGE experiment that employs techniques from resource allocation theory. A new dynamic programming solution is introduced that yields closed-form expressions for optimal flip angle variation. Flip angle series are proposed that maximize total transverse magnetization (Mxy) for a range of physiologic T1 values. A 3D MPRAGE sequence is modified to allow for a controlled variation of the excitation angle. Experiments employing a T1 contrast phantom are performed at 3T. 1D acquisitions without phase encoding permit measurement of the temporal development of Mxy. Image mean signal and standard deviation for reference flip angle trains are compared in 2D measurements. Signal profiles at sharp phantom edges are acquired to access image blurring related to nonuniform Mxy development. A novel closed-form expression for flip angle variation is found that constitutes the optimal policy to reach maximum total signal. It numerically equals previously published results of other authors when evaluated under their simplifying assumptions. Longitudinal magnetization (Mz) is exhaustively used without causing abrupt changes in the measured MR signal, which is a prerequisite for artifact free images. Phantom experiments at 3T verify the expected benefit for total accumulated k-space signal when compared with published flip angle series. Describing the MR signal collection in MPRAGE sequences as a Bellman problem is a new concept. By means of recursively solving a series of overlapping subproblems, this leads to an elegant solution for the problem of maximizing total available MR signal in k-space. A closed-form expression for flip angle variation avoids the complexity of numerical optimization and eases access to controlled variation in an attempt to identify potential clinical applications. © 2017 American Association of Physicists in Medicine.
Rosen, Michael R.
2003-01-01
Analysis of trends in nitrate and total dissolved-solids concentrations over time in Carson Valley, Nevada, indicates that 56 percent of 27 monitoring wells that have long-term records of nitrate concentrations show increasing trends, 11 percent show decreasing trends, and 33 percent have not changed. Total dissolved-solids concentrations have increased in 52 percent of these wells and are stable in 48 percent. None of these wells show decreasing trends in total dissolved-solids concentrations. The wells showing increasing trends in nitrate and total dissolved-solids concentrations were always in areas that use septic waste-disposal systems. Therefore, the primary cause of these increases is likely the increase in septic-tank usage over the past 40 years.
Small-angle neutron scattering study of micropore collapse in amorphous solid water.
Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas
2014-08-14
Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.
Iuzzolino, Luca; Reilly, Anthony M; McCabe, Patrick; Price, Sarah L
2017-10-10
Determining the range of conformations that a flexible pharmaceutical-like molecule could plausibly adopt in a crystal structure is a key to successful crystal structure prediction (CSP) studies. We aim to use conformational information from the crystal structures in the Cambridge Structural Database (CSD) to facilitate this task. The conformations produced by the CSD Conformer Generator are reduced in number by considering the underlying rotamer distributions, an analysis of changes in molecular shape, and a minimal number of molecular ab initio calculations. This method is tested for five pharmaceutical-like molecules where an extensive CSP study has already been performed. The CSD informatics-derived set of crystal structure searches generates almost all the low-energy crystal structures previously found, including all experimental structures. The workflow effectively combines information on individual torsion angles and then eliminates the combinations that are too high in energy to be found in the solid state, reducing the resources needed to cover the solid-state conformational space of a molecule. This provides insights into how the low-energy solid-state and isolated-molecule conformations are related to the properties of the individual flexible torsion angles.
Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.
Zhang, Jun; Borg, Matthew K; Sefiane, Khellil; Reese, Jason M
2015-11-01
We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.
Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latkowski, J F; Meier, W R; Reyes, S
1999-08-09
Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less
Solid solubility of Yb 2Si 2O 7 in β-, γ- and δ-Y 2Si 2O 7
NASA Astrophysics Data System (ADS)
Fernández-Carrión, A. J.; Alba, M. D.; Escudero, A.; Becerro, A. I.
2011-07-01
This paper examines the structural changes with temperature and composition in the Yb 2Si 2O 7-Y 2Si 2O 7 system; members of this system are expected to form in the intergranular region of Si 3N 4 and SiC structural ceramics when sintered with the aid of Yb 2O 3 and Y 2O 3 mixtures. A set of different compositions have been synthesised using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1650 °C during different times. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of Yb 2Si 2O 7 in β-Y 2Si 2O 7 and γ-Y 2Si 2O 7. Although Yb 2Si 2O 7 shows a unique stable polymorph (β), Yb 3+ is able to replace Y 3+ in γ-Y 2Si 2O 7 and δ-Y 2Si 2O 7 at high temperatures and low Yb contents. IR results confirm the total solid solubility in the system and suggest a constant SiOSi angle of 180° in the Si 2O 7 unit across the system. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β- RE2Si 2O 7 polymorph, with γ- RE2Si 2O 7 and δ- RE2Si 2O 7 showing reduced stability fields. The diagram is in accordance with Felsche's diagram if average ionic radii are assumed for the members of the solid solution at any temperature, as long as the β-γ phase boundary is slightly shifted towards higher radii.
Zhang, Rongchun; Ramamoorthy, Ayyalusamy
2015-07-21
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
Nonimaging optical concentrators using graded-index dielectric.
Zitelli, M
2014-04-01
A new generation of inhomogeneous nonimaging optical concentrators is proposed, able to achieve simultaneously high optical efficiency and acceptance solid angle at a given geometrical concentration factor. General design methods are given, and concentrators are numerically investigated and optimized.
Normal Forces at Solid-Liquid Interface
NASA Astrophysics Data System (ADS)
Das, Ratul
Adhesion can be defined as the tendency of dissimilar particles or surfaces to cling on to one another. Fields that require knowledge about adhesion interactions at the solid-liquid interface span over a wide spectrum from biotechnological issues such as liquid adhesion to skin tissues, insect feet adhesion to solids, or contact lenses to tear fluid adhesion; filtration issues such as membrane fouling and membrane affinity to different liquids; oil and gas extraction where one needs knowledge of the adhesion of the oil and brine to the rock; fuel cells in which droplets are formed on the electrodes and need to be considered in the system's design; classic chemical engineering industry such as drop adhesion to the mist eliminators in flash drums, or to heat exchangers; and classic surface science such as nano-structured surfaces, self cleaning surfaces, and general wetting phenomena. We execute the Young-Dupre (Y-P) gedanken experiment to establish unique values of work of adhesion rather than a work of adhesion range that the contact angle hysteresis results in. We use the Centrifugal Adhesion Balance (CAB) which allows independent manipulation of normal and lateral forces to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. The values obtained for the work of adhesion are independent of drop size and are in agreement with the Y-P estimate. Cyclically varying the normal force, just to prevent the drop flying away from the surface will also enable us to study the Contact Angle Hysteresis for a pendant drop. With this set up, the work of adhesion is not only calculated from experimental normal force measurements, but the found results are also used to provide a venue for calculating the Young equilibrium contact angle, theta0. According to Shanahan and de Gennes, a liquid drop with a non-zero contact angle is associated with a deformation of the solid surface at the three phase contact line, causing the triple line to protrude up and form a rim, this is due to the unsatisfied normal component of the surface tension. Such rims were demonstrated by Care et al, and by Extrand, and the stresses associated with the rims facilitate reorientation of solid molecules at the interface, and therefore result in stronger solid liquid interaction at the rim. This stronger interaction gives rise to retention forces (due to adhesion). Recently, Xu et al, wrote a force equation based on this understanding, we test the validity of this approach and the Furmidge - Dussan model and other, more empirical, retention force approaches. A liquid drop that partially wets a solid surface will slide along the plane when a force beyond a critical value is applied to it. We study the sliding pattern of such a drop. Experiments for identifying the pattern of motion of liquid drops under influence of different normal forces are performed. We use a centrifugal adhesion balance (CAB) to study the pattern of drop motion under different effective gravities. A drop on a solid surface only slides after a certain critical force is applied to it, which is dependent on the drop volume, surface heterogeneities and other factors, even after the application of force the drop doesn't continue to move uniformly, which is the subject matter of this discussion.
NASA Astrophysics Data System (ADS)
Das, Saurish; Patel, H. V.; Milacic, E.; Deen, N. G.; Kuipers, J. A. M.
2018-01-01
We investigate the dynamics of a liquid droplet in contact with a surface of a porous structure by means of the pore-scale level, fully resolved numerical simulations. The geometrical details of the solid porous matrix are resolved by a sharp interface immersed boundary method on a Cartesian computational grid, whereas the motion of the gas-liquid interface is tracked by a mass conservative volume of fluid method. The numerical simulations are performed considering a model porous structure that is approximated by a 3D cubical scaffold with cylindrical struts. The effect of the porosity and the equilibrium contact angle (between the gas-liquid interface and the solid struts) on the spreading behavior, liquid imbibition, and apparent contact angle (between the gas-liquid interface and the porous base) are studied. We also perform several simulations for droplet spreading on a flat surface as a reference case. Gas-liquid systems of the Laplace number, La = 45 and La = 144 × 103 are considered neglecting the effect of gravity. We report the time exponent (n) and pre-factor (C) of the power law describing the evolution of the spreading diameter (S = Ctn) for different equilibrium contact angles and porosity. Our simulations reveal that the apparent or macroscopic contact angle varies linearly with the equilibrium contact angle and increases with porosity. Not necessarily for all the wetting porous structures, a continuous capillary drainage occurs, and we find that the rate of the capillary drainage very much depends on the fluid inertia. At La = 144 × 103, numerically we capture the capillary wave induced pinch-off and daughter droplet ejection. We observe that on the porous structure the pinch-off is weak compared to that on a flat plate.
Factors affecting the shear strength behavior of municipal solid wastes.
Pulat, Hasan Firat; Yukselen-Aksoy, Yeliz
2017-11-01
In this study, the shear strength behavior of European (E-1), Turkey (T-1), and United States of America (U-1) average synthetic municipal solid waste (MSW) compositions were investigated. The large-scale direct shear tests were conducted using fresh and aged MSW samples collected from the Manisa Landfill. The natural samples' test results were compared with synthetic samples. The affecting factors such as ageing, waste composition, and waste type (synthetic and natural) on the shear strength of MSWs were investigated. The effect of composition was evaluated using three main and six modified synthetic MSW compositions. In addition to the synthetic fresh MSW samples, synthetic aged samples were also used. Angle of shearing resistance decreased with increasing organic content whereas cohesion intercept increased with increasing organic content. The fresh and aged wastes with higher coarse fraction lead to a higher angle of shearing resistance. The synthetic aged samples had higher internal friction angles but lower cohesion values than the synthetic fresh samples. Waste with average European composition had the highest internal friction angle as it has the highest fibrous content. On the other hand, the highest cohesion belonged to the Turkey composition, which had the highest organic matter ratio. The main differences between E-1, T-1 and U-1 samples in terms of compositions were observed. The results of this study indicated that shear strength of waste significantly depends on composition and hence a site specific evaluation is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.
2018-03-01
Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.
Changes in contact angle providing evidence for surface alteration in multi-component solid foods
NASA Astrophysics Data System (ADS)
Reinke, Svenja K.; Hauf, Katharina; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan
2015-11-01
Chocolate blooming, one of the major problems in the confectionery industry, is the formation of visible white spots or a greyish haze on the surface of chocolate products due to large sugar or fat crystals on the surface. This leads to aesthetic changes and deterioration of taste and thus large sales losses for the confectionery industry due to consumer complaints. Chocolate blooming is often related to migration of lipids or sugar molecules to the chocolate surface, where they recrystallize with an associated polymorphic change of crystal structure on the surface. The wetting behaviour from contact angle measurements gives further insight into surface properties and is needed to determine surface energies and to evaluate possible migration mechanisms and preferred pathways. Therefore, an equilibrium contact angle is needed which is not directly accessible and is influenced by surface texture and interaction between solid and test liquid. In this study, the surface of cocoa butter and conventional chocolates was characterized by measuring the contact angle with the sessile drop protocol. The influence of roughness, test liquid and pre-crystallization of the samples as well as the storage temperature were investigated. In case of no pre-crystallization, a change in surface properties due to storage at 20 °C was detected, whereas samples stored at 30 °C showed the same wetting behaviour as fresh samples. This is associated with polymorphic transformation from thermodynamically less stable crystals to more stable configurations.
NASA Astrophysics Data System (ADS)
Ren, Xueguang; Amami, Sadek; Zatsarinny, Oleg; Pflüger, Thomas; Weyland, Marvin; Dorn, Alexander; Madison, Don; Bartschat, Klaus
2016-06-01
As a further test of advanced theoretical methods to describe electron-impact single-ionization processes in complex atomic targets, we extended our recent work on Ne (2 p ) ionization [X. Ren, S. Amami, O. Zatsarinny, T. Pflüger, M. Weyland, W. Y. Baek, H. Rabus, K. Bartschat, D. Madison, and A. Dorn, Phys. Rev. A 91, 032707 (2015), 10.1103/PhysRevA.91.032707] to Ar (3 p ) ionization at the relatively low incident energy of E0=66 eV. The experimental data were obtained with a reaction microscope, which can cover nearly the entire 4 π solid angle for the secondary electron emission. We present experimental data for detection angles of 10, 15, and 20∘ for the faster of the two outgoing electrons as a function of the detection angle of the secondary electron with energies of 3, 5, and 10 eV, respectively. Comparison with theoretical predictions from a B -spline R -matrix (BSR) with pseudostates approach and a three-body distorted-wave (3DW) approach, for detection of the secondary electron in three orthogonal planes as well as the entire solid angle, shows overall satisfactory agreement between experiment and the BSR results, whereas the 3DW approach faces difficulties in predicting some of the details of the angular distributions. These findings are different from our earlier work on Ne (2 p ), where both the BSR and 3DW approaches yielded comparable levels of agreement with the experimental data.
Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors
Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.
2016-01-01
This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894
Dynamic Contact Angle at the Nanoscale: A Unified View.
Lukyanov, Alex V; Likhtman, Alexei E
2016-06-28
Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.
Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.
Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H; Tahir, M M
2016-01-01
This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.
Contact angle and local wetting at contact line.
Li, Ri; Shan, Yanguang
2012-11-06
This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.
Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Wychen, Stefanie; Laurens, Lieve M. L.
2016-01-13
This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575 deg. C is covered for ash content.
Lee, Jinkyu; Song, Yongnam; Shin, Choongsoo S
2018-05-01
During landing, the ankle angle at initial contact (IC) exhibits relatively wide individual variation compared to the knee and hip angles. However, little is known about the effect of different IC ankle angles on energy dissipation. The purpose of this study was to investigate the relationship between individual ankle angles at IC and energy dissipation in the lower extremity joints. Twenty-seven adults performed single-leg landings from a 0.3-m height. Kinetics and kinematics of the lower extremity joints were measured. The relationship between ankle angles at IC and negative work, range of motion, the time to peak ground reaction force, and peak loading rate were analyzed. The ankle angle at IC was positively correlated with ankle negative work (r = 0.80, R 2 = 0.64, p < 0.001) and the contribution of the ankle to total (ankle, knee and hip joint) negative work (r = 0.84, R 2 = 0.70, p < 0.001), but the ankle angle was negatively correlated with hip negative work (r = -0.46, R 2 = 0.21, p = 0.01) and the contribution of the hip to total negative work (r = -0.61, R 2 = 0.37, p < 0.001). The knee negative work and the contribution of the knee to total negative work were not correlated with the ankle angle at IC. The ankle angle at IC was positively correlated with total negative work (r = 0.50, R 2 = 0.25, p < 0.01) and negatively correlated with the peak loading rate (r = -0.76, R 2 = 0.57, p < 0.001). These results indicated that landing mechanics changed as the ankle angle at IC increased, such that the ankle energy dissipation increased and redistributed the energy dissipation in the ankle and hip joints. Further, these results suggest that increased ankle energy dissipation with a higher IC plantar flexion angle may be a potential landing technique for reducing the risk of injury to the anterior cruciate ligament and hip musculature. Copyright © 2018 Elsevier B.V. All rights reserved.
Directional self-cleaning superoleophobic surface.
Zhao, Hong; Law, Kock-Yee
2012-08-14
In this work, we report the creation of a grooved surface comprising 3 μm grooves (height ~4 μm) separated by 3 μm from each other on a silicon wafer by photolithography. The grooved surface was then modified chemically with a fluorosilane layer (FOTS). The surface property was studied by both static and dynamic contact angle measurements using water, hexadecane, and a polyethylene wax ink as the probing liquids. Results show that the grooved surface is both superhydrophobic and superoleophobic. Its observed contact angles agree well with the calculated Cassie-Baxter angles. More importantly, we are able to make a replica of the composite wax ink-air interface and study it by SEM. Microscopy results not only show that the droplet of the wax ink "sits" on air in the composite interface but also further reveal that the ink drop actually pins underneath the re-entrant structure in the side wall of the grooved structure. Contact angle measurement results indicate that wetting on the grooved surface is anisotropic. Although liquid drops are found to have lower static and advancing contact angles in the parallel direction, the drops are found to be more mobile, showing smaller hysteresis and lower sliding angles (as compared to the FOTS wafer surface and a comparable 3-μm-diameter pillar array FOTS surface). The enhanced mobility is attributable to the lowering of the resistance against an advancing liquid because 50% of the advancing area is made of a solid strip where the liquid likes to wet. This also implies that the contact line for advancing is no longer smooth but rather is ragged, having the solid strip area leading the wetting and the air strip area trailing behind. This interpretation is supported by imaging the geometry of the contact lines using molten ink drops recovered from the sliding angle experiments in both the parallel and orthogonal directions. Because the grooved surface is mechanically stronger against mechanical abrasion, the self-cleaning effect exhibited in the parallel direction suggests that groove texturing is a viable approach to create mechanically robust, self-cleaning, superoleophobic surfaces.
Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.
Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M
2017-06-01
This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermodynamics of Surface Nanobubbles.
Zargarzadeh, Leila; Elliott, Janet A W
2016-11-01
In this paper, we examine the thermodynamic stability of surface nanobubbles. The appropriate free energy is defined for the system of nanobubbles on a solid surface submerged in a supersaturated liquid solution at constant pressure and temperature, under conditions where an individual nanobubble is not in diffusive contact with a gas phase outside of the system or with other nanobubbles on the time scale of the experiment. The conditions under which plots of free energy versus the radius of curvature of the nanobubbles show a global minimum, which denotes the stable equilibrium state, are explored. Our investigation shows that supersaturation and an anomalously high contact angle (measured through the liquid) are required to have stable surface nanobubbles. In addition, the anomalously high contact angle of surface nanobubbles is discussed from the standpoint of a framework recently proposed by Koch, Amirfazli, and Elliott that relates advancing and receding contact angles to thermodynamic equilibrium contact angles, combined with the existence of a gas enrichment layer.
Evaporation of inclined water droplets.
Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook
2017-02-16
When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.
Evaporation of inclined water droplets
Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook
2017-01-01
When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642
NASA Technical Reports Server (NTRS)
Kingsland, R. B.
1976-01-01
Results of wind tunnel tests, conducted at the Langley Research Center Unitary Plan Wind Tunnel, are presented. The model tested was an 0.010-scale version of the Vehicle 3 Space Shuttle Configuration. Pressure measurements were made on the launch configuration, Orbiter alone, external tank alone, and solid rocket booster alone, to provide heat transfer pressure data. The tests were conducted for a Mach number range from 2.36 to 4.6 and Reynolds number range from 1.2 to 5 million per foot. The model was tested at angles of attack from -10 to 20 deg for a sideslip angle range from -5 to +5 deg, and at sideslip angles from -5 to 48 deg for 0 deg angle of attack. Tabulated data are given and photographs of the test configuration are shown.
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1976-01-01
An aerodynamic investigation was conducted in the MSFC High Reynolds Number Wind Tunnel to determine the pressure distribution over the foresection of the current 146 inch diameter shuttle SRB. The test model consisted of a 0.0137 scale version of the SRB nose cone and a forward portion of the cylindrical body which was approximately 2.7 calibers in length. The pressure distributions are plotted as a function of longitudinal station ratioed to body diameter and circumferential location for each angle of attack and Mach number. A Reynolds number variation study was made for Mach numbers of 0.4 and 0.6 at an angle of attack of 270 deg and roll angle of 180 deg.
Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng
2015-01-01
We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional total absorption effect. By changing the tilt angle of LC by an external electric field, the total absorption character can be adjusted. The total absorption character also depends on the concentration, geometric dimension of nanorods, and defect of nanorod arrangement in LC. When the LC contains different size of gold nanorods, a broadband absorption can be easily realized. The characteristics including flexibility, omnidirectional, broadband and tunablility make the infrared metamaterial absorber possess potential use in smart metamaterial devices. PMID:26576660
NASA Astrophysics Data System (ADS)
Ward, Thomas; Wey, Chi; Glidden, Robert; Hosoi, A. E.; Bertozzi, A. L.
2009-08-01
The flow of viscous, particle-laden wetting thin films on an inclined plane is studied experimentally as the particle concentration is increased to the maximum packing limit. The slurry is a non-neutrally buoyant mixture of silicone oil and either solid glass beads or glass bubbles. At low concentrations (ϕ <0.45), the elapsed time versus average front position scales with the exponent predicted by Huppert [Nature (London) 300, 427 (1982)]. At higher concentrations, the average front position still scales with the exponent predicted by Huppert on some time interval, but there are observable deviations due to internal motion of the particles. At the larger concentration values and at later times, the departure from Huppert is seen to strongly depend on total slurry volume VT, inclination angle α, density difference, and particle size range.
The effect of circumferential distortion on fan performance at two levels of blade loading
NASA Technical Reports Server (NTRS)
Hartmann, M. J.; Sanger, N. L.
1975-01-01
Single stage fans designed for two levels of pressure ratio or blade loading were subjected to screen-induced circumferential distortions of 90-degree extent. Both fan rotors were designed for a blade tip speed of 425 m/sec, blade solidity of 1.3 and a hub-to-tip radius ratio of 0.5. Circumferential measurements of total pressure, temperature, static pressure, and flow angle were obtained at the hub, mean and tip radii at five axial stations. Rotor loading level did not appear to have a significant influence on rotor response to distorted flow. Losses in overall pressure ratio due to distortion were most severe in the stator hub region of the more highly loaded stage. At the near stall operating condition tip and hub regions of (either) rotor demonstrated different response characteristics to the distorted flow. No effect of loading was apparent on interactions between rotor and upstream distorted flow fields.
NASA Technical Reports Server (NTRS)
Galvas, M. R.
1972-01-01
Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.
Calculation of Stress Intensity Factors for Interfacial Cracks in Fiber Metal Laminates
NASA Technical Reports Server (NTRS)
Wang, John T.
2009-01-01
Stress intensity factors for interfacial cracks in Fiber Metal Laminates (FML) are computed by using the displacement ratio method recently developed by Sun and Qian (1997, Int. J. Solids. Struct. 34, 2595-2609). Various FML configurations with single and multiple delaminations subjected to different loading conditions are investigated. The displacement ratio method requires the total energy release rate, bimaterial parameters, and relative crack surface displacements as input. Details of generating the energy release rates, defining bimaterial parameters with anisotropic elasticity, and selecting proper crack surface locations for obtaining relative crack surface displacements are discussed in the paper. Even though the individual energy release rates are nonconvergent, mesh-size-independent stress intensity factors can be obtained. This study also finds that the selection of reference length can affect the magnitudes and the mode mixity angles of the stress intensity factors; thus, it is important to report the reference length used with the calculated stress intensity factors.
2002-03-01
37 Plate 12. Box plots of turbidity, total suspended solids, and chlorophyll a levels for the...38 Plate 13. Box plots of turbidity, total suspended solids, and chlorophyll a levels for the...39 Plate 14. Box plots of turbidity, total suspended solids, and chlorophyll a levels for the backwater and
Medalie, Laura
2014-01-01
Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.
John F. Kennedy Space Center's Wireless Hang Angle Instrumentation System
NASA Technical Reports Server (NTRS)
Kohler, Jeff
2009-01-01
The technology is a high-precision, wireless inclinometer. The system was designed for monitoring the suspension angle of the Orbiter vehicle during loading onto the Solid Rocket Boosters of the Space Shuttle. Originally, operators manually measured the alignment of the Orbiter with a hand-held inclinometer on a nonrigid surface. The measurement was open to interpretation by the loader. If the Orbiter is misaligned, it can crush ball joints and delay the loading while repairs are made. With this system, the Orbiter can be loaded without damage and without manual measurement.
Tadich, A; Riley, J; Thomsen, L; Cowie, B C C; Gladys, M J
2011-10-21
Chiral interfaces and substrates are of increasing importance in the field of enantioselective chemistry. To fully understand the enantiospecific interactions between chiral adsorbate molecules and the chiral substrate, it is vital that the chiral orientation of the substrate is known. In this Letter we demonstrate that full-hemisphere angle-resolved photoemission permits straightforward identification of the orientation of a chiral surface. The technique can be applied to any solid state system for which photoemission measurements are possible. © 2011 American Physical Society
Linear and Non-Linear Response of Liquid and Solid Particles to Energetic Radiation
1991-03-11
for particle 2 located on the + x6 axis (perpendicular to the beam propagation axis) one diameter surface-to-surface from particle 1 (i 12 = 4.0, Obd2 ...axis direction. Off is the far field scattering angle relative to the beam propagation axis. Obd2 is the orientation angle of particle 2 relative to...Particle 2 in the Xb - Zb plane and positioned one diameter surface-to-surface from particle 1 (P12 = 4.0). a.) Obd2 = 00, b.) Obd2 = 30 ° , c.) ebd
NASA Astrophysics Data System (ADS)
Wempe, W.; Spetzler, H.; Kittleson, C.; Pursley, J.
2003-12-01
We observed significant reduction in wetting hysteresis with time while a diesel-contaminated quartz crystal was dipped in and out of an oil-reducing bacteria solution. This wetting hysteresis is significantly greater than the wetting hysteresis when the diesel-contaminated quartz crystal is dipped in and out of (1) water, (2) diesel and (3) the bacterial food solution that does not contain bacteria. The reduction in wetting hysteresis of the bacteria solution on the quartz surface results from a reduction in the advancing contact angle formed at the air-liquid-quartz contact with time; the receding contact angle remains the same with time. Our results suggest that the bacteria solution moves across the quartz surface with less resistance after bioremediation has begun. These results imply that bioremediation may influence fluid flow behavior with time. For many fluid-solid systems there is a difference between the contact angle while a contact line advances and recedes across a solid surface; this difference is known as wetting hysteresis. Changes in wetting hysteresis can occur from changes in surface tension or the surface topography. Low contact angle values indicate that the liquid spreads or wets well, while high values indicate poor wetting or non-wetting. Contact angles are estimated in the lab by measuring the weight of the meniscus formed at the air-liquid-quartz interface and by knowing the fluid surface tension. In the lab, we have been able to use low-frequency seismic attenuation data to detect changes in the wetting characteristics of glass plates and of Berea sandstone. The accepted seismic attenuation mechanism is related to the loss of seismic energy due to the hysteresis of meniscus movement (wetting hysteresis) when a pore containing two fluids is stressed at very low frequencies (< 10 Hz). When fluid-fluid-solid systems that exhibit wettability hysteresis are stressed at low frequencies, we observe seismic attenuation, whereas in a system that does not exhibit wettability hysteresis we do not. From our wettability hysteresis results, we conclude that we may be able to monitor bioremediation progress using seismic attenuation data. We are measuring low-frequency seismic attenuation in the lab while flowing bacteria solution through Berea sandstone and we are testing this application in the field.
Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.
2013-01-01
Previous investigations examined sources and sinks of mercury to Sinclair Inlet based on historic and new data. This included an evaluation of mercury concentrations from various sources and mercury loadings from industrial discharges and groundwater flowing from the Bremerton naval complex to Sinclair Inlet. This report provides new data from four potential sources of mercury to Sinclair Inlet: (1) filtered and particulate total mercury concentrations of creek water during the wet season, (2) filtered and particulate total mercury releases from the Navy steam plant following changes in the water softening process and discharge operations, (3) release of mercury from soils to groundwater in two landfill areas at the Bremerton naval complex, and (4) total mercury concentrations of solids in dry dock sumps that were not affected by bias from sequential sampling. The previous estimate of the loading of filtered total mercury from Sinclair Inlet creeks was based solely on dry season samples. Concentrations of filtered total mercury in creek samples collected during wet weather were significantly higher than dry weather concentrations, which increased the estimated loading of filtered total mercury from creek basins from 27.1 to 78.1 grams per year. Changes in the concentrations and loading of filtered and particulate total mercury in the effluent of the steam plant were investigated after the water softening process was changed from ion-exchange to reverse osmosis and the discharge of stack blow-down wash began to be diverted to the municipal water-treatment plant. These changes reduced the concentrations of filtered and particulate total mercury from the steam plant of the Bremerton naval complex, which resulted in reduced loadings of filtered total mercury from 5.9 to 0.15 grams per year. Previous investigations identified three fill areas on the Bremerton naval complex, of which the western fill area is thought to be the largest source of mercury on the base. Studies of groundwater in the other two fill areas were conducted under worst-case higher high tidal conditions. A December 2011 study found that concentrations of filtered total mercury in the well in the fill area on the eastern boundary of the Bremerton naval complex were less than or equal to 11 nanograms per liter, indicating that releases from the eastern area were unlikely. In addition, concentrations of total mercury of solids were low (<3 milligrams per kilogram). In contrast, data from the November 2011 study indicated that the concentrations of filtered total mercury in the well located in the central fill area had tidally influenced concentrations of up to 500 nanograms per liter and elevated concentrations of total mercury of solids (29–41 milligrams per kilogram). This suggests that releases from this area, which has not been previously studied in detail, may be substantial. Previous measurements of total mercury of suspended solids in the dry dock discharges revealed high concentration of total mercury when suspended-solids concentrations were low. However, this result could have been owing to bias from sequential sampling during changing suspended‑solids concentrations. Sampling of two dry dock systems on the complex in a manner that precluded this bias confirmed that suspended-solids concentrations and total mercury concentrations of suspended solids varied considerably during pumping cycles. These new data result in revised estimates of solids loadings from the dry docks. Although most of the solids discharged by the dry docks seem to be recycled Operable Unit B Marine sediment, a total of about 3.2 metric tons of solids per year containing high concentrations of total mercury were estimated to be discharged by the two dry dock systems. A simple calculation, in which solids (from dry docks, the steam plant, and tidal flushing of the largest stormwater drain) are widely dispersed throughout Operable Unit B Marine, suggests that Bremerton naval complex solids would likely have little effect on Operable Unit B Marine sediments because of high concentrations of mercury already present in the sediment.
Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A
2007-01-01
The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.
Light deflection and Gauss-Bonnet theorem: definition of total deflection angle and its applications
NASA Astrophysics Data System (ADS)
Arakida, Hideyoshi
2018-05-01
In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild-de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle α of the light ray by constructing a quadrilateral Σ^4 on the optical reference geometry M^opt determined by the optical metric \\bar{g}_{ij}. On the basis of the definition of the total deflection angle α and the Gauss-Bonnet theorem, we derive two formulas to calculate the total deflection angle α ; (1) the angular formula that uses four angles determined on the optical reference geometry M^opt or the curved (r, φ ) subspace M^sub being a slice of constant time t and (2) the integral formula on the optical reference geometry M^opt which is the areal integral of the Gaussian curvature K in the area of a quadrilateral Σ ^4 and the line integral of the geodesic curvature κ _g along the curve C_{Γ}. As the curve C_{Γ}, we introduce the unperturbed reference line that is the null geodesic Γ on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting Γ vertically onto the curved (r, φ ) subspace M^sub. We demonstrate that the two formulas give the same total deflection angle α for the Schwarzschild and the Schwarzschild-de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein-Shapiro's formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild-de Sitter case, there appear order O(Lambda;m) terms in addition to the Schwarzschild-like part, while order O(Λ) terms disappear.
A short working distance multiple crystal x-ray spectrometer
Dickinson, B.; Seidler, G.T.; Webb, Z.W.; Bradley, J.A.; Nagle, K.P.; Heald, S.M.; Gordon, R.A.; Chou, I.-Ming
2008-01-01
For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed ???1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K?? x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L??2 partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary. ?? 2008 American Institute of Physics.
Two-dimensional nuclear magnetic resonance of quadrupolar systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuanhu
1997-09-01
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combiningmore » the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.« less
Microparticle sampling by electrowetting-actuated droplet sweeping.
Zhao, Yuejun; Cho, Sung Kwon
2006-01-01
This paper describes a new microparticle sampler where particles can be efficiently swept from a solid surface and sampled into a liquid medium using moving droplets actuated by the electrowetting principle. We successfully demonstrate that super hydrophilic (2 microm and 7.9 microm diameter glass beads of about 14 degrees contact angle), intermediate hydrophilic (7.5 microm diameter polystyrene beads of about 70 degrees contact angle), and super hydrophobic (7.9 microm diameter Teflon-coated glass beads and 3 microm size PTFE particles of over 110 degrees contact angles) particles on a solid surface are picked up by electrowetting-actuated moving droplets. For the glass beads as well as the polystyrene beads, the sampling efficiencies are over 93%, in particular over 98% for the 7.9 microm glass beads. For the PTFE particles, however, the sampling efficiency is measured at around 70%, relatively lower than that of the glass and polystyrene beads. This is due mainly to the non-uniformity in particle size and the particle hydrophobicity. In this case, the collected particles staying (adsorbing) on the air-to-water interface hinder the droplet from advancing. This particle sampler requires an extremely small amount of liquid volume (about 500 nanoliters) and will thus be highly compatible and easily integrated with lab-on-a-chip systems for follow-up biological/chemical analyses.
Telescope aperture optimization for spacebased coherent wind lidar
NASA Astrophysics Data System (ADS)
Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning
2015-08-01
Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajeena Beevi, B., E-mail: sajeenanazer@gmail.com; Madhu, G., E-mail: profmadhugopal@gmail.com; Sahoo, Deepak Kumar, E-mail: dksahoo@gmail.com
2015-02-15
Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration ofmore » 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.« less
Wetting properties of molecularly rough surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, Martin; Lísal, Martin, E-mail: lisal@icpf.cas.cz; Department of Physics, Institute of Science, J. E. Purkinje University, 400 96 Ústí n. Lab.
2015-09-14
We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties bymore » measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.« less
NASA Astrophysics Data System (ADS)
Yen, Tsu-Hsu
2015-12-01
Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.
Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.
Kempgens, Pierre; Britton, Jonathan
2016-05-01
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and 'high speed' (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Kanmi; Pruski, Marek
Two-dimensional through-bond {sup 1}H({sup 13}C) solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse {sup 1}H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of {sup 1}H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N-formyl-l-methionyl-l-leucyl-l-phenylalanine (f-MLF-OH) and brown coal.
NASA Astrophysics Data System (ADS)
Mao, Kanmi; Pruski, Marek
2009-12-01
Two-dimensional through-bond 1H{ 13C} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse 1H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of 1H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N- formyl- L-methionyl- L-leucyl- L-phenylalanine (f-MLF-OH) and brown coal.
Torsional Angle Driver (TorAD) System for HyperChem/Excel
NASA Astrophysics Data System (ADS)
Starkey, Ronald
1999-02-01
The torsional angle driver system for HyperChem/Excel is a package of several Excel spreadsheets and macro programs to be used with HyperChem to obtain and plot information, such as total energy, for the conformations that result from a 360° rotation about a torsional angle system in a molecule. The TorAD system also includes several HyperChem scripts to facilitate its use. TorAD was developed for use in the undergraduate organic chemistry laboratory. The results obtained with TorAD could be obtained manually with HyperChem, but it would take considerable time and would not be instructive to the students. Use of the TorAD system allows students to spend their time on the more important aspect of conformation analysisinterpretation of results. The Excel spreadsheet/macro programs in TorAD include:
· Tor_xl_a and tor_xl obtain and plot the total energy at 5° torsional-angle intervals. The calculation method, the torsional-angle restraint, and the structure to be used at each angle can be set by the user. The advanced version, tor_xl_a, which requires HyperChem 4.5 or later, also allows torsional-angle structures to be saved for later recall as individual structures or, using a HyperChem script, in a movie format. It also provides a rapid scan of the 360° rotation where only single-point calculations, rather than geometry optimizations, are performed. The tor_xl system will perform routine tasks in a manner suitable for most instructional settings. · Tor_Comp performs molecular mechanics optimizations at 5° intervals and obtains and plots four energy parameters (total, torsional, nonbonded, and bond [bend plus stretch] energy) as a function of torsional angle. The calculation method and the restraint can be specified.Both tor2_180 and tor2_360 provide an x, y, z plot (x = angle 1, y = angle 2, z = energy) and a topo plot (x = angle 1, y = angle 2, z = topo lines and color coding). The molecular mechanics method and the restraint can be specified. Hardware and Software Requirement Hardware and software requirements for Torsional Angle Driver (TorAD) are shown in Table 1. These programs require a version of HyperChem 4.0 or later that supports DDE. Also required is Microsoft Excel 5.0 or higher. HyperChem and Excel are not included with the issue.· TorDipol produces a plot of the total energy and the calculated dipole moment at 5° steps of the torsional angle. The default calculation is the semi-empirical AM1 method, but other methods can be used. The calculation method and the restraint can be specified. · Tor2_180 and Tor2_360 rotate two torsional angles to provide a 3D plot of the resulting total energy surface. Tor2_180 performs a 0 to 180° rotation, in 10° steps, on each of the two torsional angle systems (tor1 and tor2) selected. Tor2_360 will do a -180° to +180° (360° total) rotation of the two torsional angles in 20° steps.

77 FR 73282 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... system for the angle of attack sensor, the total air temperature, and the pitot probes. We are issuing this AD to prevent ice from forming on air data system sensors and consequent loss of or misleading... angle of attack sensor, the total air temperature, and the pitot probes. Actions Since Issuance of NPRM...
Revisiting HgCl 2: A solution- and solid-state 199Hg NMR and ZORA-DFT computational study
NASA Astrophysics Data System (ADS)
Taylor, R. E.; Carver, Colin T.; Larsen, Ross E.; Dmitrenko, Olga; Bai, Shi; Dybowski, C.
2009-07-01
The 199Hg chemical-shift tensor of solid HgCl 2 was determined from spectra of polycrystalline materials, using static and magic-angle spinning (MAS) techniques at multiple spinning frequencies and field strengths. The chemical-shift tensor of solid HgCl 2 is axially symmetric ( η = 0) within experimental error. The 199Hg chemical-shift anisotropy (CSA) of HgCl 2 in a frozen solution in dimethylsulfoxide (DMSO) is significantly smaller than that of the solid, implying that the local electronic structure in the solid is different from that of the material in solution. The experimental chemical-shift results (solution and solid state) are compared with those predicted by density functional theory (DFT) calculations using the zeroth-order regular approximation (ZORA) to account for relativistic effects. 199Hg spin-lattice relaxation of HgCl 2 dissolved in DMSO is dominated by a CSA mechanism, but a second contribution to relaxation arises from ligand exchange. Relaxation in the solid state is independent of temperature, suggesting relaxation by paramagnetic impurities or defects.
Holmes, Michael W R; Keir, Peter J
2014-04-01
Understanding joint stiffness and stability is beneficial for assessing injury risk. The purpose of this study was to examine joint rotational stiffness for individual muscles contributing to elbow joint stability. Fifteen male participants maintained combinations of three body orientations (standing, supine, sitting) and three hand preloads (no load, solid tube, fluid filled tube) while a device imposed a sudden elbow extension. Elbow angle and activity from nine muscles were inputs to a biomechanical model to determine relative contributions to elbow joint rotational stiffness, reported as percent of total stiffness. A body orientation by preload interaction was evident for most muscles (P<.001). Brachioradialis had the largest change in contribution while standing (no load, 18.5%; solid, 23.8%; fluid, 26.3%). Across trials, the greatest contributions were brachialis (30.4±1.9%) and brachioradialis (21.7±2.2%). Contributions from the forearm muscles and triceps were 5.5±0.6% and 9.2±1.9%, respectively. Contributions increased at time points closer to the perturbation (baseline to anticipatory), indicating increased neuromuscular response to resist rotation. This study quantified muscle contributions that resist elbow perturbations, found that forearm muscles contribute marginally and showed that orientation and preload should be considered when evaluating elbow joint stiffness and safety.
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-01-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201
NASA Astrophysics Data System (ADS)
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.
Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in; Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com; Santhosh, L.G., E-mail: lgsanthu2006@gmail.com
Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated bymore » performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.« less
Sivakumar Babu, G L; Lakshmikanthan, P; Santhosh, L G
2015-05-01
Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3kN/m(3) to 10.3kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experiment Evaluation of Bifurcation in Sands
NASA Technical Reports Server (NTRS)
Alshibi, Khalid A.; Sture, Stein
2000-01-01
The basic principles of bifurcation analysis have been established by several investigators, however several issues remain unresolved, specifically how do stress level, grain size distribution, and boundary conditions affect general bifurcation phenomena in pressure sensitive and dilatant materials. General geometrical and kinematics conditions for moving surfaces of discontinuity was derived and applied to problems of instability of solids. In 1962, the theoretical framework of bifurcation by studying the acceleration waves in elasto-plastic (J2) solids were presented. Bifurcation analysis for more specific forms of constitutive behavior was examined by studying localization in pressure-sensitive, dilatant materials, however, analyses were restricted to plane deformation states only. Bifurcation analyses were presented and applied to predict shear band formations in sand under plane strain condition. The properties of discontinuous bifurcation solutions for elastic-plastic solids under axisymmetric and plane strain loading conditions were studied. The study focused on theory, but also references and comparisons to experiments were made. The current paper includes a presentation of a summary of bifurcation analyses for biaxial and triaxial (axisymmetric) loading conditions. The Coulomb model is implemented using incremental piecewise scheme to predict the constitutive relations and shear band inclination angles. Then, a comprehensive evaluation of bifurcation phenomena is presented based on data from triaxial experiments performed under microgravity conditions aboard the Space Shuttle under very low effective confining pressure (0.05 to 1.30 kPa), in which very high peak friction angles (47 to 75 degrees) and dilatancy angles (30 to 31 degrees) were measured. The evaluation will be extended to include biaxial experiments performed on the same material under low (10 kPa) and moderate (100 kPa) confining pressures. A comparison between the behavior under biaxial and triaxial loading conditions will be presented, and related issues concerning influence of confining pressure will be discussed.
Paulson, Anthony J.; Dinicola, Richard S.; Noble, Marlene A.; Wagner, Richard J.; Huffman, Raegan L.; Moran, Patrick W.; DeWild, John F.
2012-01-01
The majority of filtered total mercury in the marine water of Sinclair Inlet originates from salt water flowing from Puget Sound. About 420 grams of filtered total mercury are added to Sinclair Inlet each year from atmospheric, terrestrial, and sedimentary sources, which has increased filtered total mercury concentrations in Sinclair Inlet (0.33 nanograms per liter) to concentrations greater than those of the Puget Sound (0.2 nanograms per liter). The category with the largest loading of filtered total mercury to Sinclair Inlet included diffusion of porewaters from marine sediment to the water column of Sinclair Inlet and discharge through the largest stormwater drain on the Bremerton naval complex, Bremerton, Washington. However, few data are available to estimate porewater and stormwater releases with any certainty. The release from the stormwater drain does not originate from overland flow of stormwater. Rather total mercury on soils is extracted by the chloride ions in seawater as the stormwater is drained and adjacent soils are flushed with seawater by tidal pumping. Filtered total mercury released by an unknown freshwater mechanism also was observed in the stormwater flowing through this drain. Direct atmospheric deposition on the Sinclair Inlet, freshwater discharge from creek and stormwater basins draining into Sinclair Inlet, and saline discharges from the dry dock sumps of the naval complex are included in the next largest loading category of sources of filtered total mercury. Individual discharges from a municipal wastewater treatment plant and from the industrial steam plant of the naval complex constituted the loading category with the third largest loadings. Stormwater discharge from the shipyard portion of the naval complex and groundwater discharge from the base are included in the loading category with the smallest loading of filtered total mercury. Presently, the origins of the solids depositing to the sediment of Sinclair Inlet are uncertain, and consequently, concentrations of sediments can be qualitatively compared only to total mercury concentrations of solids suspended in the water column. Concentrations of total mercury of suspended solids from creeks, stormwater, and even wastewater effluent discharging into greater Sinclair Inlet were comparable to concentrations of solids suspended in the water column of Sinclair Inlet. Concentrations of total mercury of suspended solids were significantly lower than those of marine bed sediment of Sinclair Inlet; these suspended solids have been shown to settle in Sinclair Inlet. The settling of suspended solids in the greater Sinclair Inlet and in Operable Unit B Marine of the naval complex likely will result in lower concentrations of total mercury in sediments. Such a decrease in total mercury concentrations was observed in the sediment of Operable Unit B Marine in 2010. However, total mercury concentrations of solids discharged from several sources from the Bremerton naval complex were higher than concentrations in sediment collected from Operable Unit B Marine. The combined loading of solids from these sources is small compared to the amount of solids depositing in OU B Marine. However, total mercury concentration in sediment collected at a monitoring station just offshore one of these sources, the largest stormwater drain on the Bremerton naval complex, increased considerably in 2010. Low methylmercury concentrations were detected in groundwater, stormwater, and effluents discharged from the Bremerton naval complex. The highest methylmercury concentrations were measured in the porewaters of highly reducing marine sediment in greater Sinclair Inlet. The marine sediment collected off the largest stormwater drain contained low concentrations of methylmercury in porewater because these sediments were not highly reducing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu
2015-07-21
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferredmore » to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.« less
Solid effect in magic angle spinning dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2012-08-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.
Plantar pressure distribution of ostrich during locomotion on loose sand and solid ground
Han, Dianlei; Ma, Songsong; Luo, Gang; Ji, Qiaoli; Xue, Shuliang; Yang, Mingming; Li, Jianqiao
2017-01-01
Background The ostrich is a cursorial bird with extraordinary speed and endurance, especially in the desert, and thus is an ideal large-scale animal model for mechanic study of locomotion on granular substrate. Methods The plantar pressure distributions of ostriches walking/running on loose sand/solid ground were recorded using a dynamic pressure plate. Results The center of pressure (COP) on loose sand mostly originated from the middle of the 3rd toe, which differed from the J-shaped COP trajectory on solid ground. At mid-stance, a high-pressure region was observed in the middle of the 3rd toe on loose sand, but three high-pressure regions were found on solid ground. The gait mode significantly affected the peak pressures of the 3rd and 4th toes (p = 1.5 × 10−6 and 2.39 × 10−8, respectively), but not that of the claw (p = 0.041). The effects of substrate were similar to those of the gait mode. Discussion Ground reaction force trials of each functional part showed the 3rd toe bore more body loads and the 4th toe undertook less loads. The pressure distributions suggest balance maintenance on loose sand was provided by the 3rd and 4th toes and the angle between their length axes. On loose sand, the middle of the 3rd toe was the first to touch the sand with a smaller attack angle to maximize the ground reaction force, but on solid ground, the lateral part was the first to touch the ground to minimize the transient loading. At push-off, the ostrich used solidification properties of granular sand under the compression of the 3rd toe to generate sufficient traction. PMID:28761792
Microscopic treatment of a barrel drop on fibers and nanofibers.
Berim, Gersh O; Ruckenstein, Eli
2005-06-15
The microscopic approach of Berim and Ruckenstein (J. Phys. Chem. B 108 (2004) 19330, 19339) regarding the shape and stability of a liquid drop on a planar bare solid surface is extended to a liquid barrel drop on the bare surface of a solid cylinder (fiber) of arbitrary radius. Assuming the interaction potentials of the liquid molecules between themselves and with the molecules of the solid of the London-van der Waals form, the potential energy of a liquid molecule with an infinitely long fiber was calculated analytically. A differential equation for the drop profile was derived by the variational minimization of the total potential energy of the drop by taking into account the structuring of the liquid near the fiber. This equation was solved in quadrature and the shape and stability of the barrel drop were analyzed as functions of the radius of the fiber and the microscopic contact angle theta(0) which the drop profile makes with the surface of the fiber. The latter angle is dependent on the fiber radius and on the microscopic parameters of the model (strength of the intermolecular interactions, densities of the liquid and solid phases, hard core radii, etc.). Expressions for the evaluation of the microcontact angle from experimentally measurable characteristics of the drop profile (height, length, volume, location of inflection point) are obtained. All drop characteristics, such as stability, shape, are functions of theta(0) and a certain parameter a which depends on the model parameters. In particular, the range of drop stability consists of three domains in the plane theta(0)-a, separated by two critical curves a=a(c)(theta(0)) and a=a(c1)(theta(0)) [a(c)(theta(0))h(m1) cannot exist, whereas in the third domain (between those curves) the drop can have values of h(m) either smaller than h(m1) or larger than h(m2), where h(m2)>h(m1) is a second critical height. For sufficiently large fiber radii, R(f)1 >/= microm, the critical curves almost coincide and only two domains, the first and the second, remain. The smaller the radius, the larger is the difference between the critical curves and the larger is the second domain of drop stability. The shape of the drop depends on whether the point (theta(0),a) on the theta(0)-a plane is far from the critical curve or near it. In the first case the drop profile has generally a large circular part, while in the second case the shape is either almost planar or contains a long manchon that is similar to a film on the fiber.
Influence of Different Diffuser Angle on Sedan's Aerodynamic Characteristics
NASA Astrophysics Data System (ADS)
Hu, Xingjun; Zhang, Rui; Ye, Jian; Yan, Xu; Zhao, Zhiming
The aerodynamic characteristics have a great influence on the fuel economics and the steering stability of a high speed vehicle. The underbody rear diffuser is one of important aerodynamic add-on devices. The parameters of the diffuser, including the diffuser angle, the number and the shape of separators, the shape of the end plate and etc, will affect the underbody flow and the wake. Here, just the influence of the diffuser angle was investigated without separator and the end plate. The method of Computational Fluid Dynamics was adopted to study the aerodynamic characteristics of a simplified sedan with a different diffuser angle respectively. The diffuser angle was set to 0°, 3°, 6°, 9.8° and 12° respectively. The diffuser angle of the original model is 9.8°. The conclusions were drawn that when the diffuser angle increases, the underbody flow and especially the wake change greatly and the pressure change correspondingly; as a result, the total aerodynamic drag coefficients of car first decrease and then increases, while the total aerodynamic lift coefficients decrease.
21 CFR 886.1870 - Stereoscope.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-dimensional appearance of solidity and relief. It is intended to measure the angle of strabismus (eye muscle deviation), evaluate binocular vision (usage of both eyes to see), and guide a patient's corrective exercises of eye muscles. (b) Classification. Class I (general controls). The AC-powered device and the...
21 CFR 886.1870 - Stereoscope.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-dimensional appearance of solidity and relief. It is intended to measure the angle of strabismus (eye muscle deviation), evaluate binocular vision (usage of both eyes to see), and guide a patient's corrective exercises of eye muscles. (b) Classification. Class I (general controls). The AC-powered device and the...
21 CFR 886.1870 - Stereoscope.
Code of Federal Regulations, 2012 CFR
2012-04-01
...-dimensional appearance of solidity and relief. It is intended to measure the angle of strabismus (eye muscle... exercises of eye muscles. (b) Classification. Class I (general controls). The AC-powered device and the... current good manufacturing practice requirements of the quality system regulation in part 820 of this...
21 CFR 886.1870 - Stereoscope.
Code of Federal Regulations, 2014 CFR
2014-04-01
...-dimensional appearance of solidity and relief. It is intended to measure the angle of strabismus (eye muscle... exercises of eye muscles. (b) Classification. Class I (general controls). The AC-powered device and the... current good manufacturing practice requirements of the quality system regulation in part 820 of this...
21 CFR 886.1870 - Stereoscope.
Code of Federal Regulations, 2013 CFR
2013-04-01
...-dimensional appearance of solidity and relief. It is intended to measure the angle of strabismus (eye muscle... exercises of eye muscles. (b) Classification. Class I (general controls). The AC-powered device and the... current good manufacturing practice requirements of the quality system regulation in part 820 of this...
NASA Astrophysics Data System (ADS)
Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny
2017-04-01
Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water stable aggregates in the profile under arable land. These data indicate the correlation between the wettability of soils with the content of organic matter and their influence on the formation of water stable structure, as well as the negative impact of tillage on the analyzed characteristics.
An ultra-high gain and efficient amplifier based on Raman amplification in plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieux, G.; Cipiccia, S.; Grant, D. W.
Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr -1, and net gainsmore » of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm -1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr -1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.« less
A mesoscopic simulation of static and dynamic wetting using many-body dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Ghorbani, Najmeh; Pishevar, Ahmadreza
2018-01-01
A many-body dissipative particle dynamics simulation is applied here to pave the way for investigating the behavior of mesoscale droplets after impact on horizontal solid substrates. First, hydrophobic and hydrophilic substrates are simulated through tuning the solid-liquid interfacial interaction parameters of an innovative conservative force model. The static contact angles are calculated on homogeneous and several patterned surfaces and compared with the predicted values by the Cassie's law in order to verify the model. The results properly evaluate the amount of increase in surface superhydrophobicity as a result of surface patterning. Then drop impact phenomenon is studied by calculating the spreading factor and dimensionless height versus dimensionless time and the comparisons made between the results and the experimental values for three different static contact angles. The results show the capability of the procedure in calculating the amount of maximum spreading factor, which is a significant concept in ink-jet printing and coating process.
An ultra-high gain and efficient amplifier based on Raman amplification in plasma
Vieux, G.; Cipiccia, S.; Grant, D. W.; ...
2017-05-25
Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr -1, and net gainsmore » of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm -1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr -1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.« less
Metastable nanobubbles at the solid-liquid interface due to contact angle hysteresis.
Nishiyama, Takashi; Yamada, Yutaka; Ikuta, Tatsuya; Takahashi, Koji; Takata, Yasuyuki
2015-01-27
Nanobubbles exist at solid-liquid interfaces between pure water and hydrophobic surfaces with very high stability, lasting in certain cases up to several days. Not only semispherical but also other shapes, such as micropancakes, are known to exist at such interfaces. However, doubt has been raised as to whether or not the nanobubbles are gas-phase entities. In this study, surface nanobubbles at a pure water-highly ordered pyrolytic graphite (HOPG) interface were investigated by peak force quantitative nanomechanics (PF-QNM). Multiple isolated nanobubbles generated by the solvent-exchange method were present on the terraced areas, avoiding the steps of the HOPG surface. Adjacent nanobubbles coalesced and formed metastable nanobubbles. Coalescence was enhanced by the PF-QNM measurement. We determined that nanobubbles can exist for a long time because of nanoscale contact angle hysteresis at the water-HOPG interface. Moreover, the hydrophilic steps of HOPG were avoided during coalescence, providing evidence that the nanobubbles are truly gas phase.
Modeling Oblique Impact Dynamics of Particle-Laden Nanodroplets
NASA Astrophysics Data System (ADS)
Yong, Xin; Qin, Shiyi
2016-11-01
A fundamental understanding of the impact dynamics of nanoscopic droplets laden with nanoparticles has important implications for materials printing and thin film processing. Using many-body dissipative particle dynamics (MDPD), we model nanometer sized suspension droplets imping on dry solid substrate with oblique angles, and compare their behavior with pure liquid droplets. Equilibrated floating droplets containing two types of nanoparticles, namely fully-wetted hydrophilic particles and surface-active Janus particles, impact onto the solid surface with varying initial velocities and impact angles. The velocity components in the normal and tangential directions to the substrate defines normal and tangential Reynolds and Weber numbers, which are used to classify impact regimes. Droplets with nanoparticles dispersed in the bulk and covering the droplet surface (resembling liquid marbles) exhibit quite different behavior in the course of impact. We also reveal the influences of substrate wettability and its interaction with nanoparticles on the impact dynamics. In addition, the vapor film beneath an impinging droplet shows no significant effect on the impact dynamics in our MDPD simulations.
Shear localization in three-dimensional amorphous solids.
Dasgupta, Ratul; Gendelman, Oleg; Mishra, Pankaj; Procaccia, Itamar; Shor, Carmel A B Z
2013-09-01
In this paper we extend the recent theory of shear localization in two-dimensional (2D) amorphous solids to three dimensions. In two dimensions the fundamental instability of shear localization is related to the appearance of a line of displacement quadrupoles that makes an angle of 45^{∘} with the principal stress axis. In three dimensions the fundamental plastic instability is also explained by the formation of a lattice of anisotropic elastic inclusions. In the case of pure external shear stress, we demonstrate that this is a 2D triangular lattice of similar elementary events. It is shown that this lattice is arranged on a plane that, similarly to the 2D case, makes an angle of 45^{∘} with the principal stress axis. This solution is energetically favorable only if the external strain exceeds a yield-strain value that is determined by the strain parameters of the elementary events and the Poisson ratio. The predictions of the theory are compared to numerical simulations and very good agreement is observed.
NASA Technical Reports Server (NTRS)
1983-01-01
Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.
Newman, Roger H; Hill, Stefan J; Harris, Philip J
2013-12-01
A synchrotron wide-angle x-ray scattering study of mung bean (Vigna radiata) primary cell walls was combined with published solid-state nuclear magnetic resonance data to test models for packing of (1→4)-β-glucan chains in cellulose microfibrils. Computer-simulated peak shapes, calculated for 36-chain microfibrils with perfect order or uncorrelated disorder, were sharper than those in the experimental diffractogram. Introducing correlated disorder into the models broaden the simulated peaks but only when the disorder was increased to unrealistic magnitudes. Computer-simulated diffractograms, calculated for 24- and 18-chain models, showed good fits to experimental data. Particularly good fits to both x-ray and nuclear magnetic resonance data were obtained for collections of 18-chain models with mixed cross-sectional shapes and occasional twinning. Synthesis of 18-chain microfibrils is consistent with a model for cellulose-synthesizing complexes in which three cellulose synthase polypeptides form a particle and six particles form a rosette.
Calculation of effective penetration depth in X-ray diffraction for pharmaceutical solids.
Liu, Jodi; Saw, Robert E; Kiang, Y-H
2010-09-01
The use of the glancing incidence X-ray diffraction configuration to depth profile surface phase transformations is of interest to pharmaceutical scientists. The Parratt equation has been used to depth profile phase changes in pharmaceutical compacts. However, it was derived to calculate 1/e penetration at glancing incident angles slightly below the critical angle of condensed matter and is, therefore, applicable to surface studies of materials such as single crystalline nanorods and metal thin films. When the depth of interest is 50-200 microm into the surface, which is typical for pharmaceutical solids, the 1/e penetration depth, or skin depth, can be directly calculated from an exponential absorption law without utilizing the Parratt equation. In this work, we developed a more relevant method to define X-ray penetration depth based on the signal detection limits of the X-ray diffractometer. Our definition of effective penetration depth was empirically verified using bilayer compacts of varying known thicknesses of mannitol and lactose.
Biomolecular solid state NMR with magic-angle spinning at 25K.
Thurber, Kent R; Tycko, Robert
2008-12-01
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (+/-5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature (13)C NMR data for two biomolecular samples, namely the peptide Abeta(14-23) in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and (13)C MAS NMR linewidths are discussed.
Polymer-functionalized nanoparticles for improving oil displacement
NASA Astrophysics Data System (ADS)
Fossati, Ana B.; Martins Alho, Miriam; Jacobo, Silvia E.
2018-03-01
This work focuses on the synthesis, functionalization, and characterization of magnetic nanoparticles to be used for improving the oil recovery in the oil exploitation industry. In this manuscript we explore three different types of hydrophobic/hydrophilic functionalization through a silanized particle: with styrene, with acrylic acid and with a copolymer of styrene and maleic acid. Further application of such nanoparticles dispersions (nanofluid) are discussed as the wetting and spreading behaviour of liquids on the solid surfaces change if the wettability of solid surface is altered. In order to investigate the influence of wettability alternation on enhancing oil recovery after nanofluid treatment, flushing oil experiment and contact angle measurement were conducted in our laboratory. The results indicated that nanofluid can produce a better flushing efficiency compared with brine solution, and the contact angles of oil phase increased from 13° to 37° after nanofluid treatment (0.005% w/w). We focus on the synthesis of magnetic iron oxide nanoparticles considering recovering possibility.
Survey of background scattering from materials found in small-angle neutron scattering.
Barker, J G; Mildner, D F R
2015-08-01
Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300-700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3 He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3 He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed.
Survey of background scattering from materials found in small-angle neutron scattering
Barker, J. G.; Mildner, D. F. R.
2015-01-01
Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088
Wetting properties of phospholipid dispersion on tunable hydrophobic SiO2-glass plates.
Alexandrova, Lidia; Karakashev, Stoyan I; Grigorov, L; Phan, Chi M; Smoukov, Stoyan K
2015-06-01
We study the wetting properties of very small droplets of salty aqueous suspensions of unilamellar liposomes of DMPC (dimyristoylphosphatidylcholine), situated on SiO2-glass surfaces with different levels of hydrophobicity. We evaluated two different measures of hydrophobicity of solid surfaces - receding contact angles and the thickness of wetting films trapped between an air bubble and the solid surface at different levels of hydrophobicity. We established a good correlation between methods which differ significantly in measurement difficulty and experimental setup. We also reveal details of the mechanism of wetting of different surfaces by the DMPC liposome suspension. Hydrophilic surfaces with water contact angles in the range of 0° to 35° are readily hydrophobized by the liposomes and only showed corresponding contact angles in the range 27°-43°. For same range of surface hydrophobicities, there was a clear reduction of the thickness of the wetting films between the surface and a bubble, reaching a minimum in the 35°-40° range. At higher levels of hydrophobicity both pure water and the liposome suspension show similar contact angles, and the thickness of wetting films between a bubble and those surfaces increases in parallel. Our analysis showed that the only force able to stabilize the film under these experimental conditions is steric repulsion. The latter suggests that nanobubbles adsorbed on hydrophobic parts of the surface, and coated with a DMPC layer, may be the cause of the 40-70 nm thickness of wetting films we observe. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ogurtani, Tarik Omer; Celik, Aytac; Oren, Ersin Emre
2010-09-01
A systematic study based on the self-consistent dynamical simulations is presented for the spontaneous evolution of an isolated thin solid droplet (bump) on a rigid substrate, which is driven by the surface drift diffusion induced by the capillary and mismatch stresses. In this study, we mainly focused on the development kinetics of the "Stranski-Krastanow" island type morphology, initiated by the nucleation route rather than the surface roughening scheme. The physicomathematical model, which bases on the irreversible thermodynamics treatment of surfaces and interfaces with singularities [T. O. Ogurtani, J. Chem. Phys. 124, 144706 (2006)], furnishes us to have autocontrol on the otherwise free-motion of the triple junction contour line between the substrate and the droplet without presuming any equilibrium dihedral contract (wetting) angles at the edges. During the development of the bell-shaped Stranski-Krastanow island through the mass accumulation at the central region of the droplet via surface drift diffusion with and/or without growth, the formation of an extremely thin wetting layer is observed. This wetting layer has a thickness of a fraction of a nanometer and covers not only the initial computation domain but also its further extension beyond the original boundaries. We also observed the formation of the multiple islands separated by shallow wetting layers above a certain threshold level of the mismatch strain and/or the size (i.e., volume) of the droplets. This threshold level depends on the initial physicochemical data and the aspect ratio (i.e., shape) of the original droplets. During the course of the simulations, we continuously tracked both the morphology (i.e., the peak height, the extension of the wetting layer beyond the domain boundaries, and the triple junction contact angle) and energetic (the global Helmholtz free energy changes associated with the total strain and surface energy variations) in the system. We observed that the morphology related quantities are reaching certain saturation limits or plateaus, when the growth mode is turned-off. On the other hand, the global Helmholtz free energy showed a steady decrease in time even though the total surface free energy of the droplet reaches a stationary value as expected a priori. Based on these observations and according to the accepted irreversible thermodynamic terminology as coined by celebrated Prigogine, we state that the Stranski-Krastanow type island morphologies are genuine stationary nonequilibrium states.
Gräsing, Daniel; Bielytskyi, Pavlo; Céspedes-Camacho, Isaac F; Alia, A; Marquardsen, Thorsten; Engelke, Frank; Matysik, Jörg
2017-09-21
Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13 C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.
Ionic liquids at the surface of graphite: Wettability and structure
NASA Astrophysics Data System (ADS)
Bordes, Emilie; Douce, Laurent; Quitevis, Edward L.; Pádua, Agílio A. H.; Costa Gomes, Margarida
2018-05-01
The aim of this work is to provide a better understanding of the interface between graphite and different molecular and ionic liquids. Experimental measurements of the liquid surface tension and of the graphite-liquid contact angle for sixteen ionic liquids and three molecular liquids are reported. These experimental values allowed the calculation of the solid/liquid interfacial energy that varies, for the ionic liquids studied, between 14.5 mN m-1 for 1-ethyl-3-methylimidazolium dicyanamide and 37.8 mN m-1 for 3-dodecyl-1-(naphthalen-1-yl)-1H-imidazol-3-ium tetrafluoroborate. Imidazolium-based ionic liquids with large alkyl side-chains or functionalized with benzyl groups seem to interact more favourably with freshly peeled graphite surfaces. Even if the interfacial energy seems a good descriptor to assess the affinity of a liquid for a carbon-based solid material, we conclude that both the surface tension of the liquid and the contact angle between the liquid and the solid can be significant. Molecular dynamics simulations were used to investigate the ordering of the ions near the graphite surface. We conclude that the presence of large alkyl side-chains in the cations increases the ordering of ions at the graphite surface. Benzyl functional groups in the cations lead to a large affinity towards the graphite surface.
Dynamics of hard sphere colloidal dispersions
NASA Technical Reports Server (NTRS)
Zhu, J. X.; Chaikin, Paul M.; Phan, S.-E.; Russel, W. B.
1994-01-01
Our objective is to perform on homogeneous, fully equilibrated dispersions the full set of experiments characterizing the transition from fluid to solid and the properties of the crystalline and glassy solid. These include measurements quantifying the nucleation and growth of crystallites, the structure of the initial fluid and the fully crystalline solid, and Brownian motion of particles within the crystal, and the elasticity of the crystal and the glass. Experiments are being built and tested for ideal microgravity environment. Here we describe the ground based effort, which exploits a fluidized bed to create a homogeneous, steady dispersion for the studies. The differences between the microgravity environment and the fluidized bed is gauged by the Peclet number Pe, which measures the rate of convection/sedimentation relative to Brownian motion. We have designed our experiment to accomplish three types of measurements on hard sphere suspensions in a fluidized bed: the static scattering intensity as a function of angle to determine the structure factor, the temporal autocorrelation function at all scattering angles to probe the dynamics, and the amplitude of the response to an oscillatory forcing to deduce the low frequency viscoelasticity. Thus the scattering instrument and the colloidal dispersion were chosen such as that the important features of each physical property lie within the detectable range for each measurement.
A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz
McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.
2009-01-01
Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870
Measurements of advancing and receding contact angles of water on PMMA and CR-39 at various g-levels
NASA Astrophysics Data System (ADS)
Mireault, Nicolas; Abel, Gilles; Andrzejewski, Lukasz; Ross, Guy
2005-03-01
The main purpose of this work is to clarify the controversy that has been widely discussed after the publication of Ward et al. [1, 2, 3] about whether varying g-levels should have an influence on contact angles of liquids on solid surfaces. Surface modification using PBII has been used to vary the contact angles of water on PMMA and CR-39 samples by implantation of O2 and Ar ions. Advancing and receding contact angles (θa and θr) have been measured using the injection and the withdrawn of a 3 μL water drop at a 2 μL/min rate on these PMMA and CR-39 samples, implanted or not. Analysis of the recorded frames of the whole parabola yielded the θa and θr vs g plots that are shown and discussed, while g-level vary from g˜0.03 up to g˜2.5. Comparison of the variable g hystereses with those measured in constant 1 g using the same samples is also made. Angle variations being lower than the measurement precision, the results indicate that the contact angles do not vary with g-level.
Setting the magic angle for fast magic-angle spinning probes.
Penzel, Susanne; Smith, Albert A; Ernst, Matthias; Meier, Beat H
2018-06-15
Fast magic-angle spinning, coupled with 1 H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1 H dimension to directly detect protons, which have a gyromagnetic ratio approximately four times larger than 13 C spins. However, the gains in sensitivity can quickly be lost if the rotation angle is not set precisely. The most common method of magic-angle calibration is to optimize the number of rotary echoes, or sideband intensity, observed on a sample of KBr. However, this typically uses relatively low spinning frequencies, where the spinning of fast-MAS probes is often unstable, and detection on the 13 C channel, for which fast-MAS probes are typically not optimized. Therefore, we compare the KBr-based optimization of the magic angle with two alternative approaches: optimization of the splitting observed in 13 C-labeled glycine-ethylester on the carbonyl due to the Cα-C' J-coupling, or optimization of the H-N J-coupling spin echo in the protein sample itself. The latter method has the particular advantage that no separate sample is necessary for the magic-angle optimization. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Singh, Dhruv P.; Singh, J. P.
2014-03-01
A facile approach to manipulate the hydrophobicity of surface by controlled growth of standing Ag nanorod arrays is presented. Instead of following the complicated conventional method of the template-assisted growth, the morphology or particularly average diameter and number density (nanorods cm-2) of nanorods were controlled on bare Si substrate by simply varying the deposition rate during glancing angle deposition. The contact angle measurements showed that the evolution of Ag nanorods reduces the surface energy and makes an increment in the apparent water contact angle compared to the plain Ag thin film. The contact angle was found to increase for the Ag nanorod samples grown at lower deposition rates. Interestingly, the morphology of the nanorod arrays grown at very low deposition rate (1.2 Å sec-1) results in a self-cleaning superhydrophobic surface of contact angle about 157° and a small roll-off angle about 5°. The observed improvement in hydrophobicity with change in the morphology of nanorod arrays is explained as the effect of reduction in solid fraction within the framework of Cassie-Baxter model. These self-cleaning Ag nanorod arrays could have a significant impact in wide range of applications such as anti-icing coatings, sensors and solar panels.
Core Formation: an Experimental Study of Metallic Melt-Silicate Segregation
NASA Astrophysics Data System (ADS)
Herpfer, M. A.; Larimer, J. W.
1993-07-01
To a large extent, the question of how metallic cores form reduces to the problem of understanding the surface tension between metallic melts and silicates [1]. This problem was addressed by performing experiments to determine the surface tensions between metallic melts with variable S contents and the silicate phases (olivine and orthopyroxene) expected in planetary mantles. The experiments were conducted in a piston-cylinder apparatus at P = 1GPa and T = 1250-1450 degrees C. Textural and chemical equilibration was confirmed in several ways: theoretical estimates were checked by conducting a series of experiments at progressively longer times (up to 72 hrs) until phase composition and dihedral angle ceased to change and the distribution of measured "apparent" angles matched the standard cumulative frequency curve. The dihedral "wetting" angles (theta) were measured from high resolution photomicrgraphs using a 10X optical protractor; 100-400 measurements were made for most experiments. The dihedral angle is related to the ratio of interfacial energies: gamma(sub)ss/gamma(sub)sl = 2 cos(theta/2), where gamma(sub)ss and gamma(sub)sl are the interfacial energies between solid-solid and liquid-solid. Since data exist for the pertinent solid-solid energies, the liquid-solid interfacial energies can be computed from measured theta values. However, the important relations are best expressed in terms of theta values. The extent to which a melt is interconnected along grain boundaries, and hence able to flow and segregate depends on the value of theta and the fraction of melt present. When theta < 60 degrees, the liquid can be interconnected at all melt fractions but when theta > 60 degrees, the melt fraction must be at least 1 vol% and increses as theta increases. Actually there is a predicted effect, analogous to a hysteresis effect, where for a given theta value the amount of melt that needs to be added for interconnection is greater than the amount left when the melt disconnects (pinches off). In our experiments, where dense metallic melt drained away, the disconnect theta values match the theoretical predictions. The composition of the metallic melt in the experiments was varied from stoichiometric FeS to Fe/S ratios near the the eutectic and on to more Fe rich compositons. The theta values vary in a systematic manner; for example, for melts in contact with olivine at 1300 degrees C the theta values range from 67 degrees for FeS to 55 degrees at the eutectic and back toward higher values at higher Fe contents. Theoretical considerations indicate that eutectic compositions are expected to have the lowest theta values, just as observed. The theta values indicate that melts with eutectic composition can interconnect and segregate at 1-2 vol% melt fraction at 1300 degrees C. Some previous estimates of the melt fraction required for interconnection are much higher [2,3], but the inferences were drawn from experiments that were not designed to test for textural equilibrium, fraction of melt present, etc. The present experiments clearly show that metallic melts can readily segregate from solid silicates. Simple extrapolations to other phases, compositions and PT conditions provide a rather complete picture of how the "plumbing" worked in the mantles of planetary objects during the initial stages of core segregation. References: [1] Stevenson D. J. (1990) In Origin of the Earth, 231-249. [2] Taylor G. J. (1989) LPSC XX, 1109. [3] Walker D. and Agee C. B. Meteor. 23, 81-91.
40 CFR 421.264 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Ammonia (as N) 599.900 263.700 Total suspended solids 67.500 54.000 pH (1) (1) 1 Within the range of 7.5....269 Combined metals 0.192 Ammonia (as N) 85.310 37.500 Total suspended solids 9.600 7.680 pH (1) (1) 1... 0.080 Zinc 1.020 0.420 Combined metals 0.300 Ammonia (as N) 133.300 58.600 Total suspended solids 15...
40 CFR 421.264 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Ammonia (as N) 599.900 263.700 Total suspended solids 67.500 54.000 pH (1) (1) 1 Within the range of 7.5....269 Combined metals 0.192 Ammonia (as N) 85.310 37.500 Total suspended solids 9.600 7.680 pH (1) (1) 1... 0.080 Zinc 1.020 0.420 Combined metals 0.300 Ammonia (as N) 133.300 58.600 Total suspended solids 15...
40 CFR 421.264 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Ammonia (as N) 599.900 263.700 Total suspended solids 67.500 54.000 pH (1) (1) 1 Within the range of 7.5....269 Combined metals 0.192 Ammonia (as N) 85.310 37.500 Total suspended solids 9.600 7.680 pH (1) (1) 1... 0.080 Zinc 1.020 0.420 Combined metals 0.300 Ammonia (as N) 133.300 58.600 Total suspended solids 15...
40 CFR 421.264 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Ammonia (as N) 599.900 263.700 Total suspended solids 67.500 54.000 pH (1) (1) 1 Within the range of 7.5....269 Combined metals 0.192 Ammonia (as N) 85.310 37.500 Total suspended solids 9.600 7.680 pH (1) (1) 1... 0.080 Zinc 1.020 0.420 Combined metals 0.300 Ammonia (as N) 133.300 58.600 Total suspended solids 15...
40 CFR 421.144 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 19.370 Mercury 4.687 1.875 Total suspended solids 468.700 375.000 pH (1) (1) 1 Within the range of 7... Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 Total suspended solids 234.400 187.500 pH... Arsenic 21.720 9.687 Mercury 2.344 0.937 Total suspended solids 234.400 187.500 pH (1) (1) 1 Within the...
Reference hematologic and plasma chemistry values of brown tree snakes (Boiga irregularis).
Lamirande, E W; Bratthauer, A D; Fischer, D C; Nichols, D K
1999-12-01
Reference hematologic and plasma chemistry values were determined from 103 blood samples collected from 53 clinically healthy brown tree snakes (Boiga irregularis). Female snakes had significantly higher mean plasma values for total solids, total protein, calcium (Ca), phosphorus (P), uric acid, and blood monocyte percentage than did males, whereas males had significantly higher mean plasma fibrinogen values. The variances for hematocrit, monocyte percentage, azurophil percentage, plasma total solids, plasma total protein, albumin, Ca, and P also differed significantly between sexes. The higher mean values and greater variances for plasma total protein, plasma total solids, Ca, and P in the female snakes were probably associated with yolk synthesis and accumulation.
FTIR spectrometer with solid-state drive system
Rajic, Slobodan; Seals, Roland D.; Egert, Charles M.
1999-01-01
An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).
Solid-state NMR and computational studies of 4-methyl-2-nitroacetanilide.
Harris, Robin K; Ghi, Phuong Y; Hammond, Robert B; Ma, Cai Yun; Roberts, Kevin J; Yates, Jonathan R; Pickard, Chris J
2006-03-01
Studies on the solid-state structure of two polymorphs of 4-methyl-2-nitroacetanilide (MNA) were conducted using magic-angle spinning (13)C, (15)N and (1)H NMR spectroscopy, together with first-principles computations of NMR shielding (including use of a program that takes explicit account of the translational symmetry inherent in crystalline structures). The effects on (13)C chemical shifts of side-chain rotations have been explored. Information derived from these studies was then incorporated within a systematic space-search methodology for elucidation of trial crystallographic structures from powder XRD.
Torque command steering law for double-gimbaled control moment gyros applied to rotor energy storage
NASA Technical Reports Server (NTRS)
Kennel, H. F.
1984-01-01
A steering law is presented which has all the features required for space applications, assuming the CMG outer gimbal freedom is unlimited. The reason is the idea of mounting all the outer gimbal axes of the CMGs parallel to each other. This allows the decomposition of the steering law problem into a linear one for the inner gimbal angle rates and a planar one for the outer gimbal angle rates. The inner gimbal angle rates are calculated first, since they are not affected by the outer gimbal angle rates. For the calculation of the outer rates, the inner rates are then known quantities. An outer gimbal angle distribution function (to avoid singularities internal to the total angular momentum envelope) generates distribution rates next, and finally the pseudoinverse method is used to insure that the desired total torque is delivered.
Alagdar, Gada Sulaiman A.; Oo, May Kyaw; Sengupta, Pinaki; Mandal, Uttam Kumar; Jaffri, Julian Md.; Chatterjee, Bappaditya
2017-01-01
Background and Objective: One of the established strategies to improve solubility and dissolution rate of poorly water-soluble drugs is solid dispersion (SD). Polyethylene glycol (PEG) is used as common carrier despite its stability problem which may be overcome by the addition of hydrophobic polymer. The present research aimed to develop an SD formulation with ibuprofen, a poor water-soluble BCS Class II drug as active pharmaceutical ingredient (API) and PEG 4000-ethyl cellulose (EC) as binary carrier. Methods: Melt mixing SD method was employed using a ratio of API: binary carrier (1:3.5 w/w) (SDPE). Another SD was prepared using only PEG (SDP) as a carrier for comparative study. The developed formulation was evaluated using optical microscopy, scanning electron microscopy (SEM), determination of moisture content, differential scanning calorimetry (DSC), in vitro dissolution test, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and flow properties. Results: SEM and DSC indicated the conversion of crystalline ibuprofen to fine partly amorphous solid dispersion, which was responsible for the increase in dissolution rate of SD than a physical mixture. The release characteristics within 1 h from the higher to the lower value were the SDPE> SDP> physical mixture. Flow property evaluation using the angle of repose showed no difference between SD and PM. However, by Carr index and Hausner ratio, the flow properties of SDPE was excellent. Conclusion: The SD formulation with the PEG 4000-EC carrier can be effective to enhance in vitro dissolution of ibuprofen immediate release dosage form. PMID:29184827
Radiologic changes of ankle joint after total knee arthroplasty.
Lee, Jung Hee; Jeong, Bi O
2012-12-01
The authors noticed that ankle joint osteoarthritis was not uncommon when lower extremity malalignment, such as a knee varus deformity, was present as a result of severe osteoarthritis of the knee. The purpose of this study was to analyze radiologic changes of the ankle joint after total knee arthroplasty. This study included 142 cases in 110 patients who underwent total knee arthroplasty and were followed for at least 3 years. The varus knee group included 128 cases and the valgus knee group included 14 cases. On anteroposterior standing lower extremity radiographs, varus and valgus angles of the knee were measured preoperatively and at the last follow-up. The angle between the ground surface and the distal tibial plafond as well as the upper talus was also measured. In addition, tibial anterior surface angle, talar tilt, space between the medial malleolar distal tip and the medial articular surface of the talus, and medial tibiotalar joint space of the ankle joint were measured. Out of 142 cases, 50 (35.2%) had arthritis in the ankle before total knee arthroplasty and 31 (21.8%) had newly developed or progressive arthritis after surgery. In particular, the varus knee group demonstrated statistically significant differences in preoperative varus deformity, preoperative talar tilt, and postoperative correction angle between the cases that developed or had progressive arthritis and those that did not show any changes (p < .05). After total knee arthroplasty, arthritis developed or progressed in the ankle of many cases radiographically. In particular, when the preoperative talar tilt increased medial to the ankle or the postoperative correction angle was large, the incidence of arthritis in the ankle joint increased. The authors recommend more cautious follow-up on the symptoms of the ankle joint after total knee arthroplasty.
Nakazawa, Yasumoto; Asakura, Tetsuo
2003-06-18
Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.
NASA Astrophysics Data System (ADS)
Thrippleton, Michael J.; Ball, Thomas J.; Wimperis, Stephen
2008-01-01
The satellite transitions acquired in real time by magic angle spinning (STARTMAS) NMR experiment combines a train of pulses with sample rotation at the magic angle to refocus the first- and second-order quadrupolar broadening of spin I =3/2 nuclei in a series of echoes, while allowing the isotropic chemical and quadrupolar shifts to evolve. The result is real-time isotropic NMR spectra at high spinning rates using conventional MAS equipment. In this paper we describe in detail how STARTMAS data can be acquired and processed with ease on commercial equipment. We also discuss the advantages and limitations of the approach and illustrate the discussion with numerical simulations and experimental data from four different powdered solids.
Disordered porous solids : from chord distributions to small angle scattering
NASA Astrophysics Data System (ADS)
Levitz, P.; Tchoubar, D.
1992-06-01
Disordered biphasic porous solids are examples of complex interfacial media. Small angle scattering strongly depends on the geometrical properties of the internal surface partitioning a porous system. Properties of the second derivative of the bulk autocorrelation function quantitatively defines the level of connection between the small angle scattering and the statistical properties of this interface. A tractable expression of this second derivative, involving the pore and the mass chord distribution functions, was proposed by Mering and Tchoubar (MT). Based on the present possibility to make a quantitative connection between imaging techniques and the small angle scattering, this paper tries to complete and to extend the MT approach. We first discuss how chord distribution functions can be used as fingerprints of the structural disorder. An explicit relation between the small angle scattering and these chord distributions is then proposed. In a third part, the application to different types of disorder is critically discussed and predictions are compared to available experimental data. Using image processing, we will consider three types of disorder : the long-range Debye randomness, the “ correlated " disorder with a special emphasis on the structure of a porous glass (the vycor), and, finally, complex structures where length scale invariance properties can be observed. Les solides poreux biphasiques sont des exemples de milieux interfaciaux complexes. La diffusion aux petits angles (SAS) dépend fortement des propriétés géométriques de l'interface partitionant le milieu poreux. Les propriétés de la dérivée seconde de la fonction d'autocorrélation de densité définit quantitativement le niveau de connection entre la diffusion aux petits angles et les caractéristiques statistiques de cette interface. Une expression utilisable de cette seconde dérivée, impliquant les distributions de cordes associées à la phase massique et au réseau de pores, fut proposée par Mering et Tchoubar (MT). Mettant à profit la possibilité actuelle d'une comparaison quantitative entre les techniques d'imagerie et la diffusion aux petits angles, ce papier tente de compléter et d'étendre l'approche MT. Dans un premier temps, nous montrons en quoi la connaissance de ces distributions de cordes permet de distinguer certains types de désordres structuraux. Une relation explicite entre le spectre de diffusion aux petits angles et les distributions de cordes est alors proposée. Dans une troisième partie, l'application à différents types de désordre est discutée et les prédictions du modèle comparées aux résultats expérimentaux disponibles. Par utilisation du traitement d'images, nous nous intéressons à trois types de désordre : le milieu aléatoire de Debye, pour ses propriétés à grandes distances, le désordre “ corrélé " avec une attention particulière pour le cas d'un verre poreux (le Vycor) et enfin des organisations complexes où des propriétés d'invariance d'échelle de longueur peuvent être observées.
Christensen, Victoria G.; Kieta, Kristen A.
2014-01-01
This study examined conservation easements and their effectiveness at reducing phosphorus and solids transport to streams. The U.S. Geological Survey cooperated with the Minnesota Board of Water and Soil Resources and worked collaboratively with the Hawk Creek Watershed Project to examine the West Fork Beaver Creek Basin in Renville County, which has the largest number of Reinvest In Minnesota land retirement contracts in the State (as of 2013). Among all conservation easement programs, a total of 24,218 acres of agricultural land were retired throughout Renville County, and 2,718 acres were retired in the West Fork Beaver Creek Basin from 1987 through 2012. Total land retirement increased steadily from 1987 until 2000. In 2000, land retirement increased sharply because of the Minnesota River Conservation Reserve Enhancement Program, then leveled off when the program ended in 2002. Streamflow data were collected during 1999 through 2011, and total phosphorus and total suspended solids data were collected during 1999 through 2012. During this period, the highest peak streamflow of 1,320 cubic feet per second was in March 2010. Total phosphorus and total suspended solids are constituents that tend to increase with increases in streamflow. Annual flow-weighted mean total-phosphorus concentrations ranged from 0.140 to 0.759 milligrams per liter, and annual flow-weighted mean total suspended solids concentrations ranged from 21.3 to 217 milligrams per liter. Annual flow-weighted mean total phosphorus and total suspended solids concentrations decreased steadily during the first 4 years of water-quality sample collection. A downward trend in flow-weighted mean total-phosphorus concentrations was significant from 1999 through 2008; however, flow-weighted total-phosphorus concentrations increased substantially in 2009, and the total phosphorus trend was no longer significant. The high annual flow-weighted mean concentrations for total phosphorus and total suspended solids in 2009 were affected by outlier concentrations documented in March 2009. Agricultural land-retirement data only were available through 2008; therefore, it was not possible to compare total phosphorus and total suspended solids concentrations to agricultural land-retirement data for 2009–11. A downward trend in annual flow-weighted mean total-phosphorus concentrations was related significantly to annual land retirement for 1999–2008. The relation between annual flow-weighted mean total suspended solids concentration and annual land retirement was not statistically significant for 1999–2008. If land-retirement data had been available for 2009–11, it is possible that the relation between total phosphorus and land retirement would no longer be evident because of the marked increase in flow-weighted concentrations during 2009. Alternatively, the increase in annual flow-weighted mean total-phosphorus concentrations during 2009–11 may be because of other factors, including industrial discharges, increases in drain tile installation, changes in land use including decreases in agricultural land retirement after 2008, increases in erosion, increases in phosphorus applications to fields, or unknown causes. Inclusion of land-retirement effects in agency planning along with other factors adds perspective with regard to the broader picture of interdependent systems and allows agencies to make informed decisions on the benefits of perpetual easements compared to limited duration easements.
NASA Astrophysics Data System (ADS)
Shishko, Victor A.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.
2017-11-01
This work presents the estimation of contribution of the main types of optical beams to the light backscatter for randomly oriented hexagonal ice column, the right dihedral angle of which was distorted within the range of 0° (regular particle) to 10°. Calculations were obtained within the physical optics approximation. The wavelength was 532 nm and the refractive index was 1.3116. The results showed that the total contribution of the main types of optical beams to the total backscattering cross section reach the value of 85% at small distortion angle of the hexagonal column and at substantial distortion angle the total contribution of the main types of optical beams decrease up to 55% of the total backscattering cross section. The obtained conclusions can significantly reduce the calculation time in the case when there is no need for high accuracy of the calculation.
Speciation Mapping of Environmental Samples Using XANES Imaging
Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such mu...
Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...
Solid Waste, Air Pollution and Health
ERIC Educational Resources Information Center
Kupchik, George J.; Franz, Gerald J.
1976-01-01
This article examines the relationships among solid waste disposal, air pollution, and human disease. It is estimated that solid waste disposal contributes 9.7 percent of the total air pollution and 9.9 percent of the total air pollution health effect. Certain disposal-resource recovery systems can be implemented to meet air quality standards. (MR)
40 CFR 421.334 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
....170 Nickel 4.948 3.329 Ammonia (as N) 1,199.000 527.200 Total suspended solids 135.000 108.000 pH (1... Nickel 6.335 4.262 Ammonia (as N) 1,535.000 675.000 Total suspended solids 172.800 138.200 pH (1) (1) 1... Nickel 0.312 0.210 Ammonia (as N) 75.710 33.280 Total suspended solids 8.520 6.816 pH (1) (1) 1 Within...
40 CFR 421.244 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 24.410 12.850 Nickel 24.670 16.320 Total suspended solids 526.800 250.500 pH (1) (1) 1 Within the... Nickel 9.590 6.344 Total suspended solids 204.800 97.400 pH (1) (1) 1 Within the range of 7.5 to 10.0 at....523 Total suspended solids 49.160 23.380 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. ...
40 CFR 421.334 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
....170 Nickel 4.948 3.329 Ammonia (as N) 1,199.000 527.200 Total suspended solids 135.000 108.000 pH (1... Nickel 6.335 4.262 Ammonia (as N) 1,535.000 675.000 Total suspended solids 172.800 138.200 pH (1) (1) 1... Nickel 0.312 0.210 Ammonia (as N) 75.710 33.280 Total suspended solids 8.520 6.816 pH (1) (1) 1 Within...
An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boschini, F.; Hedayat, H.; Dallera, C.
2014-12-15
Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.
High-current, relativistic electron-beam transport in metals and the role of magnetic collimation.
Storm, M; Solodov, A A; Myatt, J F; Meyerhofer, D D; Stoeckl, C; Mileham, C; Betti, R; Nilson, P M; Sangster, T C; Theobald, W; Guo, Chunlei
2009-06-12
High-resolution coherent transition radiation (CTR) imaging diagnoses electrons accelerated in laser-solid interactions with intensities of approximately 10;{19} W/cm;{2}. The CTR images indicate electron-beam filamentation and annular propagation. The beam temperature and half-angle divergence are inferred to be approximately 1.4 MeV and approximately 16 degrees , respectively. Three-dimensional hybrid-particle-in-cell code simulations reproduce the details of the CTR images assuming an initial half-angle divergence of approximately 56 degrees . Self-generated resistive magnetic fields are responsible for the difference between the initial and measured divergence.
Measurement of surface tension and viscosity by open capillary techniques
Rye,Robert R. , Yost,Frederick G.
1998-01-01
An open-channel capillary is provided, having preferably a v-shaped groove in a flat wettable surface. The groove has timing marks and a source marker in which the specimen to be tested is deposited. The time of passage between the timing marks is recorded, and the ratio of surface tension .gamma. to viscosity .mu. is determined from the equation given below: ##EQU1## where h.sub.0 is the groove depth, .alpha. is the groove angle, .theta. is the liquid/solid contact angle, and t is the flow time. It has been shown by the
The use of variable temperature and magic-angle sample spinning in studies of fulvic acids
Earl, W.L.; Wershaw, R. L.; Thorn, K.A.
1987-01-01
Intensity distortions and poor signal to noise in the cross-polarization magic-angle sample spinning NMR of fulvic acids were investigated and attributed to molecular mobility in these ostensibly "solid" materials. We have shown that inefficiencies in cross polarization can be overcome by lowering the sample temperature to about -60??C. These difficulties can be generalized to many other synthetic and natural products. The use of variable temperature and cross-polarization intensity as a function of contact time can yield valuable qualitative information which can aid in the characterization of many materials. ?? 1987.
Hsiao, Erik; Marino, Matthew J; Kim, Seong H
2010-12-15
This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer. Copyright © 2010 Elsevier Inc. All rights reserved.
High wettability of liquid caesium iodine with solid uranium dioxide.
Kurosaki, Ken; Suzuki, Masanori; Uno, Masayoshi; Ishii, Hiroto; Kumagai, Masaya; Anada, Keito; Murakami, Yukihiro; Ohishi, Yuji; Muta, Hiroaki; Tanaka, Toshihiro; Yamanaka, Shinsuke
2017-09-13
In March 2011, the Fukushima Daiichi Nuclear Power Plant accident caused nuclear fuel to melt and the release of high-volatility fission products into the environment. Caesium and iodine caused environmental contamination and public exposure. Certain fission-product behaviours remain unclear. We found experimentally that liquid CsI disperses extremely favourably toward solid UO 2 , exhibiting a contact angle approaching zero. We further observed the presence of CsI several tens of micrometres below the surface of the solid UO 2 sample, which would be caused by the infiltration of pores network by liquid CsI. Thus, volatile fission products released from molten nuclear fuels with complex internal composition and external structure migrate or evaporate to varying extents, depending on the nature of the solid-liquid interface and the fuel material surface, which becomes the pathway for the released fission products. Introducing the concept of the wettability of liquid chemical species of fission products in contact with solid fuels enabled developing accurate behavioural assessments of volatile fission products released by nuclear fuel.
Some effects of electron channeling on electron energy loss spectroscopy.
Kirkland, Earl J
2005-02-01
As an electron beam (of order 100 keV) travels through a crystalline solid it can be channeled down a zone axis of the crystal to form a channeling peak centered on the atomic columns. The channeling peak can be similar in size to the outer atomic orbitals. Electron energy loss spectroscopy (EELS) measures the losses that the electron experiences as it passes through the solid yielding information about the unoccupied density of states in the solid. The interaction matrix element for this process typically produces dipole selection rules for small angle scattering. In this paper, a theoretical calculation of the EELS cross section in the presence of strong channeling is performed for the silicon L23 edge. The presence of channeling is found to alter both the intensity and selection rules for this EELS signal as a function of depth in the solid. At some depths in the specimen small but significant non-dipole transition components can be produced, which may influence measurements of the density of states in solids.
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-03-21
Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGHmore » β-sheet.« less
Monitoring Cocrystal Formation via In Situ Solid-State NMR.
Mandala, Venkata S; Loewus, Sarel J; Mehta, Manish A
2014-10-02
A detailed understanding of the mechanism of organic cocrystal formation remains elusive. Techniques that interrogate a reacting system in situ are preferred, though experimentally challenging. We report here the results of a solid-state in situ NMR study of the spontaneous formation of a cocrystal between a pharmaceutical mimic (caffeine) and a coformer (malonic acid). Using (13)C magic angle spinning NMR, we show that the formation of the cocrystal may be tracked in real time. We find no direct evidence for a short-lived, chemical shift-resolved amorphous solid intermediate. However, changes in the line width and line center of the malonic acid methylene resonance, in the course of the reaction, provide subtle clues to the mode of mass transfer that underlies cocrystal formation.
Landsat test of diffuse reflectance models for aquatic suspended solids measurement
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Alfoldi, T. T.
1979-01-01
Landsat radiance data were used to test mathematical models relating diffuse reflectance to aquatic suspended solids concentration. Digital CCT data for Landsat passes over the Bay of Fundy, Nova Scotia were analyzed on a General Electric Co. Image 100 multispectral analysis system. Three data sets were studied separately and together in all combinations with and without solar angle correction. Statistical analysis and chromaticity analysis show that a nonlinear relationship between Landsat radiance and suspended solids concentration is better at curve-fitting than a linear relationship. In particular, the quasi-single-scattering diffuse reflectance model developed by Gordon and coworkers is corroborated. The Gordon model applied to 33 points of MSS 5 data combined from three dates produced r = 0.98.
Yousuf, Basharat; Srivastava, Abhaya Kumar
2017-11-01
Flaxseed gum (FSG) in combination with lemongrass essential oil (LGEO) was investigated for coating of ready-to-eat pomegranate arils. FSG was used at 0.3% and 0.6% concentrations and with both concentrations LGEO was incorporated at levels of 0ppm, 200ppm, 500ppm and 800ppm. Changes in headspace gases, physicochemical, microbiological and sensory attributes of pomegranate arils stored at 5°C were studied on different days of analysis during the 12day storage period. Coatings containing LGEO were effective in reducing total plate count and yeast and mold populations. Increasing LGEO concentrations in the coatings resulted in more decline in microbial populations. Reduced weight loss occurred in coated samples as compared to uncoated (control) sample. Coated samples showed a gradual decrease in ripening index in contrast with control where a significantly higher decline was observed. Total soluble solids, pH and titratable acidity significantly varied over the storage period. Color change (ΔE) for control increased steeply over the storage time in comparison to coated samples. Furthermore, chroma decreased while as hue angle increased over time. Copyright © 2017 Elsevier B.V. All rights reserved.
Mass production of monodisperse microbubbles for real applications avoiding microfluidics
NASA Astrophysics Data System (ADS)
Sanchez Quintero, Enrique Jesus; Evangelio, Alvaro; Gordillo, Jose Manuel
2017-11-01
In this presentation we report experiments showing the effect on the controlled generation of microbubbles of the pressure gradient imposed by the relative flow of a liquid stream around an airfoil-shaped solid. Taking advantage of the conclusions in, where the local pressure gradient was identified as the mechanism responsible of the generation of microbubbles in microfluidic devices and, with the purpose of overcoming the low production rates associated with these kind of microdevices, we have used the same physical principle but have applied it to a totally different geometry: a rectangular planar wing composed by symmetrical airfoils. The relative velocity field is imposed either submerging the static wing within a flowing hydraulic channel or by rotating the wings within a reservoir containing the otherwise quiescent liquid mass. We provide physical insight on the bubbling process and deduce a scaling law which expresses the diameters of the bubbles formed as a function of the gas flow rate, relative liquid velocity and the angle of attack of the incident flow. In spite of the geometry is totally different, we recover the same results obtained using microfluidic devices but with much higher production rates.
Array Of Sensors Measures Broadband Radiation
NASA Technical Reports Server (NTRS)
Hoffman, James W.; Grush, Ronald G.
1994-01-01
Multiple broadband radiation sensors aimed at various portions of total field of view. All sensors mounted in supporting frame, serving as common heat sink and temperature reference. Each sensor includes heater winding and differential-temperature-sensing bridge circuit. Power in heater winding adjusted repeatedly in effort to balance bridge circuit. Intended to be used aboard satellite in orbit around Earth to measure total radiation emitted, at various viewing angles, by mosaic of "footprint" areas (each defined by its viewing angle) on surface of Earth. Modified versions of array useful for angle-resolved measurements of broadband radiation in laboratory and field settings on Earth.
In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.
Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen
2017-04-11
The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.
Tsukada, Sachiyuki; Fujii, Tomoko; Wakui, Motohiro
2017-08-01
This study was performed to assess the impact of soft tissue imbalance on the knee flexion angle 2 years after posterior stabilized total knee arthroplasty (TKA). A total of 329 consecutive varus knees were included to assess the association of knee flexion angle 2 years after TKA with preoperative, intraoperative, and postoperative variables. All intraoperative soft tissue measurements were performed by a single surgeon under spinal anesthesia in a standardized manner including the subvastus approach, reduced patella, and without use of a pneumonic tourniquet. Multiple linear regression analysis showed no significant correlations in terms of intraoperative valgus imbalance at 90-degree flexion or the difference in soft tissue tension between 90-degree flexion and 0-degree extension (β = -0.039; 95% confidence interval [CI], -0.88 to 0.80; P = .93 and β = 0.015; 95% CI, -0.29 to 0.32; P = .92, respectively). Preoperative flexion angle was significantly correlated with knee flexion angle 2 years after TKA (β = 0.42; 95% CI, 0.33 to 0.51; P < .0001). Avoiding valgus imbalance at 90-degree flexion and aiming for strictly equal soft tissue tension between 90-degree flexion and 0-degree extension had little practical value with regard to knee flexion angle 2 years after posterior stabilized TKA. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Lee, Ji-Ho; Lee, Dong-Oh; Lee, Jae Hyup; Shim, Hee Jong
2015-01-01
This study aims to assess the differences in the radiological and clinical results depending on the lordotic angles of the cage in posterior lumbar interbody fusion (PLIF). We reviewed 185 segments which underwent PLIF using two different lordotic angles of 4° and 8° of a polyetheretherketone (PEEK) cage. The segmental lordosis and total lumbar lordosis of the 4° and 8° cage groups were compared preoperatively, as well as on the first postoperative day, 6th and 12th months postoperatively. Clinical assessment was performed using the ODI and the VAS of low back pain. The pre- and immediate postoperative segmental lordosis angles were 12.9° and 12.6° in the 4° group and 12° and 12.0° in the 8° group. Both groups exhibited no significant different segmental lordosis angle and total lumbar lordosis over period and time. However, the total lumbar lordosis significantly increased from six months postoperatively compared with the immediate postoperative day in the 8° group. The ODI and the VAS in both groups had no differences. Cages with different lordotic angles of 4° and 8° showed insignificant results clinically and radiologically in short-level PLIF surgery. Clinical improvements and sagittal alignment recovery were significantly observed in both groups. PMID:25685795
Ishii, Hiroaki; Hamada, Yoko; Utsugi, Hajime
2012-10-01
We investigated the effects of sun- and shade-shoot architecture on the photosynthetic rates of two Picea species by applying light from various angles in the laboratory. Compared with sun shoots, shade shoots were characterized by lower mass allocation per light-intercepting area, less leaf mass per shoot mass, less mutual shading among leaves and more efficient allocation of chlorophyll to photosynthesis. The shoot silhouette to total leaf area ratio (STAR(ϕ)) decreased with increasing shoot inclination angle (ϕ, the shoot axis angle relative to the projection plane) and was consistently higher for the shade shoots. Morphological and physiological characteristics of the shade shoots resulted in maximum rates of net photosynthesis at ϕ = 0° (P(max,0)) similar to that of the sun shoots when expressed on a leaf mass, total leaf area and chlorophyll basis. When the angle of incoming light was varied, P(max,ϕ) per total leaf area (P(max,ϕ )/A(T)) of the shade shoots increased linearly with increasing STAR(ϕ), while P(max,ϕ) per shoot silhouette area did not change. In contrast, the response of the sun shoots was non-linear, and an optimum angle of incoming light was determined. Our results suggest that shade-shoot morphology is adaptive for utilizing diffuse light incoming from various angles, while sun-shoot morphology is adaptive for avoiding the negative effects of strong direct radiation and for enhancing light diffusion into the canopy. We propose that the angle of incoming light should be taken into account when estimating photosynthetic rates of sun shoots of conifer trees in the field.
Silva, A A; Azevedo, A L S; Gasparini, K; Verneque, R S; Peixoto, M G C D; Panetto, B R; Guimarães, S E F; Machado, M A
2011-10-31
Fourteen Brazilian Gir sire families with 657 daughters were analyzed for quantitative trait loci (QTL) on chromosome 6 affecting lactose and total solids. Cows and sires were genotyped with 27 microsatellites with a mean spacing between markers of 4.9 cM. We used a 1% chromosome-wide threshold for QTL qualification. A QTL for lactose yield was found close to marker MNB66 in three families. A QTL for total solid yield was identified close to marker BMS2508 in three families. A QTL for lactose percentage, close to marker DIK1182, was identified in two families. A QTL for total solid percentage, close to marker MNB208, was identified in four families. These QTLs could be used for selection of animals in dairy production systems.
Visualizing the shape of soft solid and fluid contacts between two surfaces
NASA Astrophysics Data System (ADS)
Pham, Jonathan; Schellenberger, Frank; Kappl, Michael; Vollmer, Doris; Butt, Hans-Jürgen
The soft contact between two surfaces is fundamentally interesting for soft materials and fluid mechanics and relevant for friction and wear. The deformation of soft solid interfaces has received much interest because it interestingly reveals similarities to fluid wetting. We present an experimental route towards visualizing the three-dimensional contact geometry of either liquid-solid (i.e., oil and glass) or solid-solid (i.e., elastomer and glass) interfaces using a home-built combination of confocal microscopy and atomic force microscopy. We monitor the shape of a fluid capillary bridge and the depth of indentation in 3D while simultaneously measuring the force. In agreement with theoretical predictions, the height of the capillary bridge depends on the interfacial tensions. By using a slowly evaporating solvent, we quantify the temporal evolution of the capillary bridge and visualized the influence of pinning points on its shape. The position dependence of the advancing and receding contact angle along the three-phase contact line, particle-liquid-air, is resolved. Extending our system, we explore the contact deformation of soft solids where elasticity, in addition to surface tension, becomes an important factor.
Singular lensing from the scattering on special space-time defects
NASA Astrophysics Data System (ADS)
Mavromatos, Nick E.; Papavassiliou, Joannis
2018-01-01
It is well known that certain special classes of self-gravitating point-like defects, such as global (non gauged) monopoles, give rise to non-asymptotically flat space-times characterized by solid angle deficits, whose size depends on the details of the underlying microscopic models. The scattering of electrically neutral particles on such space-times is described by amplitudes that exhibit resonant behaviour when thescattering and deficit angles coincide. This, in turn, leads to ring-like structures where the cross sections are formally divergent ("singular lensing"). In this work, we revisit this particular phenomenon, with the twofold purpose of placing it in a contemporary and more general context, in view of renewed interest in the theory and general phenomenology of such defects, and, more importantly, of addressing certain subtleties that appear in the particular computation that leads to the aforementioned effect. In particular, by adopting a specific regularization procedure for the formally infinite Legendre series encountered, we manage to ensure the recovery of the Minkowski space-time, and thus the disappearance of the lensing phenomenon, in the no-defect limit, and the validity of the optical theorem for the elastic total cross section. In addition, the singular nature of the phenomenon is confirmed by means of an alternative calculation, which, unlike the original approach, makes no use of the generating function of the Legendre polynomials, but rather exploits the asymptotic properties of the Fresnel integrals.
Evaluation of light penetration on Navigation Pools 8 and 13 of the Upper Mississippi River
Giblin, Shawn; Hoff, Kraig; Fischer, Jim; Dukerschein, Terry
2010-01-01
The availability of light can have a dramatic affect on macrophyte and phytoplankton abundance in virtually all aquatic ecosystems. The Long Term Resource Monitoring Program and other monitoring programs often measure factors that affect light extinction (nonvolatile suspended solids, volatile suspended solids, and chlorophyll) and correlates of light extinction (turbidity and Secchi depth), but rarely do they directly measure light extinction. Data on light extinction, Secchi depth, transparency tube, turbidity, total suspended solids, and volatile suspended solids were collected during summer 2003 on Pools 8 and 13 of the Upper Mississippi River. Regressions were developed to predict light extinction based upon Secchi depth, transparency tube, turbidity, and total suspended solids. Transparency tube, Secchi depth, and turbidity all showed strong relations with light extinction and can effectively predict light extinction. Total suspended solids did not show as strong a relation to light extinction. Volatile suspended solids had a greater affect on light extinction than nonvolatile suspended solids. The data were compared to recommended criteria established for light extinction, Secchi depth, total suspended solids, and turbidity by the Upper Mississippi River Conservation Committee to sustain submersed aquatic vegetation in the Upper Mississippi River. During the study period, the average condition in Pool 8 met or exceeded all of the criteria whereas the average condition in Pool 13 failed to meet any of the criteria. This report provides river managers with an effective tool to predict light extinction based upon readily available data.
NASA Astrophysics Data System (ADS)
Watanabe, T.; Kitano, M.
2011-12-01
Intercrystalline fluid can significantly affect rheological and transport properties of rocks. Its influences are strongly dependent on its distribution. The dihedral angle between solid and liquid phases has been widely accepted as a key parameter that controls solid-liquid textures. The liquid phase is not expected to be interconnected if the dihedral angle is larger than 60 degree. However, observations contradictory to dihedral angle values have been reported. Watanabe (2010) suggested the coexistence of grain boundary fluid with a positive dihedral angle. For good understanding of fluid distribution, it is thus critical to study the nature of grain boundary fluid. We have developed a high pressure and temperature apparatus for study of intercrystalline fluid distribution. It was specially designed for measurements of elastic wave velocities and electrical conductivity. The apparatus mainly consists of a conventional cold-seal vessel with an external heater. The pressure medium is silicon oil of the viscosity of 0.1 Pa s. The pressure and temperature can be controlled from 0 to 200 MPa and from 20 to 200 C, respectively. Dimensions of a sample are 9 mm in diameter, and 15 mm in length. Halite-water system is used as an analog for crustal rocks. The dihedral angle has been studied systematically at various pressure and temperature conditions [Lewis and Holness, 1996]. The dihedral angle is larger than 60 degree at lower pressure and temperature. It decreases to be smaller than 60 degree with increasing pressure and temperature. A sample is prepared by cold-pressing and annealing of wet NaCl powder. Optical examination has shown that synthesized samples are microstructurally homogeneous. Grains are polygonal and equidimensional with a mean diameter of 100 micrometer. Grain boundaries vary from straight to bowed and 120 degree triple junctions are common. Gas and fluid bearing inclusions are visible on the grain boundaries. There are spherical inclusions or isolated worm-like channels. In this presentation, we will report preliminary results of compressional wave velocity and electrical conductivity measurements.
Automatic measurement of contact angle in pore-space images
NASA Astrophysics Data System (ADS)
AlRatrout, Ahmed; Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.
2017-11-01
A new approach is presented to measure the in-situ contact angle (θ) between immiscible fluids, applied to segmented pore-scale X-ray images. We first identify and mesh the fluid/fluid and fluid/solid interfaces. A Gaussian smoothing is applied to this mesh to eliminate artifacts associated with the voxelized nature of the image, while preserving large-scale features of the rock surface. Then, for the fluid/fluid interface we apply an additional smoothing and adjustment of the mesh to impose a constant curvature. We then track the three-phase contact line, and the two vectors that have a direction perpendicular to both surfaces: the contact angle is found from the dot product of these vectors where they meet at the contact line. This calculation can be applied at every point on the mesh at the contact line. We automatically generate contact angle values representing each invaded pore-element in the image with high accuracy. To validate the approach, we first study synthetic three-dimensional images of a spherical droplet of oil residing on a tilted flat solid surface surrounded by brine and show that our results are accurate to within 3° if the sphere diameter is 2 or more voxels. We then apply this method to oil/brine systems imaged at ambient temperature and reservoir pressure (10MPa) using X-ray microtomography (Singh et al., 2016). We analyse an image volume of diameter approximately 4.6 mm and 10.7 mm long, obtaining hundreds of thousands of values from a dataset with around 700 million voxels. We show that in a system of altered wettability, contact angles both less than and greater than 90° can be observed. This work provides a rapid method to provide an accurate characterization of pore-scale wettability, which is important for the design and assessment of hydrocarbon recovery and carbon dioxide storage.
View planetary differentiation process through high-resolution 3D imaging
NASA Astrophysics Data System (ADS)
Fei, Y.
2011-12-01
Core-mantle separation is one of the most important processes in planetary evolution, defining the structure and chemical distribution in the planets. Iron-dominated core materials could migrate through silicate mantle to the core by efficient liquid-liquid separation and/or by percolation of liquid metal through solid silicate matrix. We can experimentally simulate these processes to examine the efficiency and time of core formation and its geochemical signatures. The quantitative measure of the efficiency of percolation is usually the dihedral angle, related to the interfacial energies of the liquid and solid phases. To determine the true dihedral angle at high pressure and temperatures, it is necessary to measure the relative frequency distributions of apparent dihedral angles between the quenched liquid metal and silicate grains for each experiment. Here I present a new imaging technique to visualize the distribution of liquid metal in silicate matrix in 3D by combination of focus ion beam (FIB) milling and high-resolution SEM image. The 3D volume rendering provides precise determination of the dihedral angle and quantitative measure of volume fraction and connectivity. I have conducted a series of experiments using mixtures of San Carlos olivine and Fe-S (10wt%S) metal with different metal-silicate ratios, up to 25 GPa and at temperatures above 1800C. High-quality 3D volume renderings were reconstructed from FIB serial sectioning and imaging with 10-nm slice thickness and 14-nm image resolution for each quenched sample. The unprecedented spatial resolution at nano scale allows detailed examination of textural features and precise determination of the dihedral angle as a function of pressure, temperature and composition. The 3D reconstruction also allows direct assessment of connectivity in multi-phase matrix, providing a new way to investigate the efficiency of metal percolation in a real silicate mantle.
NASA Astrophysics Data System (ADS)
Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Seleznev, L. I.
2017-11-01
The paper presents the results of metallographic studies and solid particle erosion tests of uncoated blade steel 20kH13 samples and samples with a protective coating based on chromium carbide (Cr-CrC) at a flow (air) velocity CA = 180 m/s, flow temperature tA = 25 °C, attack angle α = 30° and consumption of solid abrasive particles GP = 5·10-4 kg/s. It was found that the coating has a granular structure, a thickness is about 11 μm, the microhardness of the surface is 1520 ± 50 HV0.05. Processing of the obtained data by statistical analysis methods showed that the protective coating based on Cr-CrC increases the solid particle erosion resistance of the blade steel 20kH13 by the incubation-transitional period duration more than 2.5 times.
Viscoelasticity of nano-alumina dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rand, B.; Fries, R.
1996-06-01
The flow and viscoelastic properties of electrostatically stabilized nano-alumina dispersions have been studied as a function of ionic strength and volume fraction of solids. At low ionic strength the suspensions were deflocculated and showed a transition from viscous to elastic behavior as the solid content increased associated with the onset of double layer interpenetration. The phase transition was progressively shifted to higher solids fractions with increasing ionic strength. At higher ionic strength, above the critical coagulation concentration, the suspensions formed attractive networks characterized by high elasticity. Two independent methods of estimating the effective radius of electrostatically stabilized {open_quotes}soft{close_quotes} particles, a{submore » eff}, are presented based on phase angle data and a modified Dougherty-Krieger equation. The results suggest that a{sub eff} is not constant for a given system but changes with both solids fraction and ionic strength.« less
Surfactant and Irrigation Effects on Runoff, Erosion, and Water Retention of Three Wettable Soils
USDA-ARS?s Scientific Manuscript database
Surfactants are chemical compounds that change the contact angle of water on solid surfaces and are commonly used to increase infiltration into hydrophobic soil. Since production fields with water-repellent soil often contain areas of wettable soil, surfactants applied to such fields will likely be ...
Surfactant and irrigation effects on wettable soils: Runoff, erosion, and water retention responses
USDA-ARS?s Scientific Manuscript database
Surfactants are chemical compounds that change the contact angle of water on solid surfaces and are commonly used to increase infiltration into hydrophobic soil. Since production fields with water-repellent soil often contain areas of wettable soil, surfactants applied to such fields will likely be ...
Manifold to uniformly distribute a solid-liquid slurry
Kern, Kenneth C.
1983-01-01
This invention features a manifold that divides a stream of coal particles and liquid into several smaller streams maintaining equal or nearly equal mass compositions. The manifold consists of a horizontal, variable area header having sharp-edged, right-angled take-offs which are oriented on the bottom of the header.
Backscattering spectrometry device for identifying unknown elements present in a workpiece
Doyle, Barney L.; Knapp, James A.
1991-01-01
A backscattering spectrometry method and device for identifying and quantifying impurities in a workpiece during processing and manufacturing of that workpiece. While the workpiece is implanted with an ion beam, that same ion beam backscatters resulting from collisions with known atoms and with impurities within the workpiece. Those ions backscatter along a predetermined scattering angle and are filtered using a self-supporting filter to stop the ions with a lower energy because they collided with the known atoms of the workpiece of a smaller mass. Those ions which pass through the filter have a greater energy resulting from impact with impurities having a greater mass than the known atoms of the workpiece. A detector counts the number and measures the energy of the ions which pass through the filter. From the energy determination and knowledge of the scattering angle, a mass calculation determines the identity, and from the number and solid angle of the scattering angle, a relative concentration of the impurity is obtained.
Contact angle change during evaporation of near-critical liquids
NASA Astrophysics Data System (ADS)
Nikolayev, Vadim; Hegseth, John; Beysens, Daniel
1998-03-01
An unexpected change of the dynamic contact angle was recently observed in a near-critical liquid-gas system in a space experiment. While the near-critical liquid completely wets a solid under equilibrium conditions, the apparent contact angle changed from 0^circ to about 120^circ during evaporation. We propose an explanation for this phenomenon by taking into account vapor recoil due to evaporation (motion of the vapor from the free liquid surface). This force is normal to the vapor-liquid interface and is directed towards the liquid. It increases sharply near the triple contact line. Near the critical point, where the surface tension force is very weak, the vapor recoil force can be important enough to change the apparent contact angle. A similar effect can also explain the drying of a heater during boiling at high heat flux. The drying greatly reduces the heat transfer to the liquid causing the heater to melt. This phenomenon is called ``boiling crisis", ``burnout" or ``Departure from Nuclear Boiling".
40 CFR 421.154 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...,700.0 4,378.0 Total Suspended solids 3,300.0 2,640.0 pH (1) (1) 1 Within the range of 7.5 to 10.0 at....000 Total Suspended solids 33,690.000 26,950.000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all...,269.000 Total Suspended solids 3,218.000 2,574.000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all...
Code of Federal Regulations, 2011 CFR
2011-07-01
....833 3.070 Zinc 4.482 1.873 Ammonia (as N) 409.300 179.900 Total suspended solids 125.900 59.870 pH (1... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... (as N) 129.300 56.840 Total suspended solids 39.770 18.920 pH (1) (1) 1 Within the range of 7.5 to 10...
Code of Federal Regulations, 2010 CFR
2010-07-01
....833 3.070 Zinc 4.482 1.873 Ammonia (as N) 409.300 179.900 Total suspended solids 125.900 59.870 pH (1... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... (as N) 129.300 56.840 Total suspended solids 39.770 18.920 pH (1) (1) 1 Within the range of 7.5 to 10...
Aerodynamic Design of Axial-flow Compressors. Volume 2
NASA Technical Reports Server (NTRS)
1956-01-01
Available experimental two-dimensional-cascade data for conventional compressor blade sections are correlated. The two-dimensional cascade and some of the principal aerodynamic factors involved in its operation are first briefly described. Then the data are analyzed by examining the variation of cascade performance at a reference incidence angle in the region of minimum loss. Variations of reference incidence angle, total-pressure loss, and deviation angle with cascade geometry, inlet Mach number, and Reynolds number are investigated. From the analysis and the correlations of the available data, rules and relations are evolved for the prediction of the magnitude of the reference total-pressure loss and the reference deviation and incidence angles for conventional blade profiles. These relations are developed in simplified forms readily applicable to compressor design procedures.
Moriya, Yoshio; Hasegawa, Takeshi; Okada, Tetsuo; Ogawa, Nobuaki; Kawai, Erika; Abe, Kosuke; Ogasawara, Masataka; Kato, Sumio; Nakata, Shinichi
2006-11-15
Gibbs monolayers of lipophilic tetraphenylporphyrinatomanganese(III) and hydrophilic diacid of meso-tetrakis(4-sulfonatopheny)porphyrin adsorbed at the liquid-liquid interface have been analyzed by UV-visible external reflection (ER) and partial internal reflection (PIR) spectra measured at different angles of incidence. The angle-dependent ER and PIR spectra over the Brewster angles (thetaERB and thetaIRB) have readily been measured at the toluene/water interface. As preliminarily expected in our previous study, the present study has first proved that the reflection-absorbance of UV-visible PIR spectra quantitatively agrees with the theoretical calculations for the Gibbs monolayer over thetaIRB. In addition, it has also been proved that the absorbance of the PIR spectra is greatly enhanced in comparison to that of the ATR spectra. The enhancement is caused by an optical effect in the monolayer sandwiched between two phases of toluene and water that have different but refractive indices close to each other. This optical enhancement requires an optically perfect contact between the phases, which is difficult to prepare for a solid-solid contact. At the liquid/liquid interface, however, an ideal optical contact is easily realized, which makes the enhancement as much as the theoretical expectation. The PIR spectrometry will be recognized to be a new high-sensitive analytical tool to study Gibbs monolayer at the liquid/liquid interface.
Voronov, Roman S; Papavassiliou, Dimitrios V; Lee, Lloyd L
2006-05-28
Correlations between contact angle, a measure of the wetting of surfaces, and slip length are developed using nonequilibrium molecular dynamics for a Lennard-Jones fluid in Couette flow between graphitelike hexagonal-lattice walls. The fluid-wall interaction is varied by modulating the interfacial energy parameter epsilonr=epsilonsfepsilonff and the size parameter sigmar=sigmasfsigmaff, (s=solid, f=fluid) to achieve hydrophobicity (solvophobicity) or hydrophilicity (solvophilicity). The effects of surface chemistry, as well as the effects of temperature and shear rate on the slip length are determined. The contact angle increases from 25 degrees to 147 degrees on highly hydrophobic surfaces (as epsilonr decreases from 0.5 to 0.1), as expected. The slip length is functionally dependent on the affinity strength parameters epsilonr and sigmar: increasing logarithmically with decreasing surface energy epsilonr (i.e., more hydrophobic), while decreasing with power law with decreasing size sigmar. The mechanism for the latter is different from the energetic case. While weak wall forces (small epsilonr) produce hydrophobicity, larger sigmar smoothes out the surface roughness. Both tend to increase the slip. The slip length grows rapidly with a high shear rate, as wall velocity increases three decades from 100 to 10(5) ms. We demonstrate that fluid-solid interfaces with low epsilonr and high sigmar should be chosen to increase slip and are prime candidates for drag reduction.
Quantification of Marangoni flows and film morphology during solid film formation by inkjet printing
NASA Astrophysics Data System (ADS)
Ishizuka, Hirotaka; Fukai, Jun
2018-01-01
We visualized experimentally the internal flow inside inkjet droplets of polystyrene-anisole solution during solid film formation on substrates at room temperature. The effects of contact angle and evaporation rate on the internal flow and film morphology were quantitatively investigated. The transport process during film formation was examined by measuring the relationship between internal flow and film morphology, which provided three remarkable findings. First, self-pinning and the strength of outward flow on the free surface under 2.3 Pa s determined film morphology. The solute distribution, corresponding to rim areas in ring-like films and a convex trough in dot-like films, had already developed at self-pinning. Second, the mass fraction at self-pinning close to the contact line converged to one, regardless of the film morphology. This implies that self-pinning is independent of parameters such as the contact angle and evaporation rate. Third, at room temperature, the solutal Marangoni numbers were 20-30 times larger than the thermal ones. Thus, the outward flow on the free surface caused by the solutal Marangoni effect dominates in droplets before self-pinning. The solutal Marangoni number at self-pinning and thickness variation at the center of the film displayed a good relationship for droplets with different contact angles and evaporation rates. This suggests that film morphology can be technically controlled by solutal Marangoni number at room temperature.
Apparent dynamic contact angle of an advancing gas--liquid meniscus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalliadasis, S.; Chang, H.
1994-01-01
The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle [Theta] that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecularmore » forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan [Theta]=7.48 Ca[sup 1/3] for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca[sup 1/3] dependence occurs only at very low Ca, where the intermolecular forces become more important and tan [Theta] diverges slightly from the above asymptotic behavior toward lower values.« less
An Investigation of Convergent-Divergent Diffusers at Mach Number 1.85
NASA Technical Reports Server (NTRS)
Wyatt, Demarquis D; Hunczak, Henry R
1947-01-01
An investigation has been conducted in the Cleveland 18- by 18-inch supersonic tunnel at a Mach number of 1.85 and angles of attack from 0 deg to 5 deg to determine optimum design configurations for a convergent-divergent type of supersonic diffuser with a subsonic diffuser of 5 deg included divergence angle. Total pressure recoveries in excess of theoretical recovery across a normal shock at a free-stream Mach number of 1.85 wore obtained with several configurations. The highest recovery for configurations without a cylindrical throat section was obtained with an inlet having an included convergence angle of 20 deg. Insertion of a 2-inch throat section between a 10 deg included angle inlet and the subsonic diffuser stabilized the shock inside the diffuser and resulted in recoveries as high as 0.838 free-stream total pressure at an angle of attack of 0 deg, corresponding to recovery of 92.4 percent of the kinetic energy of the free air stream. Use of the throat section also lessened the reduction in recovery of all configurations due to angle of attack.
Lift mechanics of downhill skiing and snowboarding.
Wu, Qianhong; Igci, Yesim; Andreopoulos, Yiannis; Weinbaum, Sheldon
2006-06-01
This study is conducted to develop a simplified mathematical model to describe the lift mechanics of downhill skiing and snowboarding, where the lift contributions due to both the transiently trapped air and the compressed solid phase (snow crystals) are determined. To our knowledge, this is the first time that anyone has attempted to realistically estimate the relative contribution of the transiently trapped air to the total lift in skiing and snowboarding. The model uses Shimizu's empirical relation to predict the local variation in Darcy permeability due to the compression of the solid phase. The forces and moments on the skier or snowboarder are used to predict the angle of attack of the planing surface, the penetration depth at the leading edge, and the shift in the center of pressure for two typical snow types, fresh and wind-packed snow. We present numerical solutions for snowboarding and asymptotic analytic solutions for skiing for the case where there are no edging or turning maneuvers. The force and moment balance are then used to develop a theory for control and stability in response to changes in the center of mass as the individual shifts his/her weight. Our model predicts that for fine-grained, windpacked snow that when the velocity (U) of the snowboarder or skier is 20 m.s, approximately 50% of the total lift force is generated by the trapped air for snowboarding and 40% for skiing. For highly permeable fresh powder snow, the lift contribution from the pore air pressure drops substantially. This paper develops a new theoretical framework for analyzing the lift mechanics and stability of skis and snowboards that could have important applications in future ski and snowboard design.
NASA Astrophysics Data System (ADS)
Paschalidis, Nicholas; McNutt, Ralph
One of the most critical challenges of the Pluto Energetic Particle Spectrometer Science Inves-tigation (PEPSSI) was to meet the science requirements with a total mass and power of ¡1.5 kg and ¡2.5 W, respectively. A key, enabling technology to achieve these goals was the exten-sive use of high-performance, low-power, application-specific integrated circuits (ASICs) for the miniaturization of the 12-channel solid state detector (SSD) readout system, the time-of-flight (TOF) system, and the power supply and housekeeping systems. The PEPSSI instrument is a TOF-versus-energy, compact particle spectrometer that provides measurements of ions and electrons from 20keV to 1MeV in a 160 x 12 solid angle field of view divided into six dual-channel sectors. TOF, constant fraction discriminator (CFD), energy, peak detector, and temperature, remote input/output (TRIO, housekeeping) ASICs were all used synergistically in the instrument enabling the high science performance within the resource constraints. The ASICs were space qualified in accord with military specifications (Class S) for total radiation dose and single-event effects (SEEs), and, most importantly, for a 2000-hour life test to increase the reliability for the long duration of the mission. PEPSSI flies on-board the New Horizons NASA spacecraft to measure pick-up ions from the Pluto's outgassing atmosphere. The space-craft was launched 19 Jan 2006 and presently is en route to Pluto, having passed Jupiter in early 2007. Closest approach to Pluto will occur in mid-July 2015. The instrument has already produced excellent measurements in interplanetary space and during the traversal of Jupiter's magnetotail in 2007.
Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong
2013-01-01
Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.
Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P
2013-03-04
Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.
NASA Astrophysics Data System (ADS)
Mukherjee, Amrita
Carbonaceous solid-water slurries (CSWS) are concentrated suspensions of coal, petcoke bitumen, pitch etc. in water which are used as feedstock for gasifiers. The high solid loading (60-75 wt.%) in the slurry increases CSWS viscosity. For easier handling and pumping of these highly loaded mixtures, low viscosities are desirable. Depending on the nature of the carbonaceous solid, solids loading in the slurry and the particle size distribution, viscosity of a slurry can vary significantly. Ability to accurately predict the viscosity of a slurry will provide a better control over the design of slurry transport system and for viscosity optimization. The existing viscosity prediction models were originally developed for hard-sphere suspensions and therefore do not take into account surface chemistry. As a result, the viscosity predictions using these models for CSWS are not very accurate. Additives are commonly added to decrease viscosity of the CSWS by altering the surface chemistry. Since additives are specific to CSWS, selection of appropriate additives is crucial. The goal of this research was to aid in optimization of CSWS viscosity through improved prediction and selection of appropriate additive. To incorporate effect of surface chemistry in the models predicting suspension viscosity, the effect of the different interfacial interactions caused by different surface chemistries has to be accounted for. Slurries of five carbonaceous solids with varying O/C ratio (to represent different surface chemistry parameters) were used for the study. To determine the interparticle interactions of the carbonaceous solids in water, interfacial energies were calculated on the basis of surface chemistries, characterized by contact angles and zeta potential measurements. The carbonaceous solid particles in the slurries were assumed to be spherical. Polar interaction energy (hydrophobic/hydrophilic interaction energy), which was observed to be 5-6 orders of magnitude higher than the electrostatic interaction energy, and the van der Waals interaction energy, was clearly the dominant interaction energy for such a system. Hydrophobic interactions lead to the formation of aggregation networks of solids in the suspensions, entrapping a part of the bulk water, whereas hydrophilic interactions result in the formation of hydration layers around carbonaceous solids. Both of these phenomena cause a loss of bulk water from the slurry and increase the effective solid volume fraction, resulting in an increase in slurry viscosity. The water in the bulk of the slurry, responsible for the fluidity of the slurry is called free water. The amount of free water was determined using thermogravimetric analysis and was observed to increase with an increase in the O/C ratio of a carbonaceous solid (up to ˜20%). The free water to total water ratio was observed to be constant for the slurry of a particular carbonaceous solid for various loadings of solids (44 wt.% to 67 wt.%). The increase in the effective solid volume fractions of slurries was determined using viscosity measurements. A relationship between the effective solid volume fraction and the O/C ratio of the carbonaceous solid was developed. This correlation was then incorporated into the existing equation for viscosity prediction (developed based on particle size distribution and solid volume fraction), to account for the surface chemistry of the carbonaceous solid and hence improve the predictive capabilities. This modified equation was validated using three concentrated carbonaceous slurries with different particle size distributions and was observed to significantly improve accuracy of prediction (deviation of predicted results decreased from up to 96% to 25%). The validation was performed with a lignite, bituminous coal and a petcoke-all with low ash yield. Additives modify the surface chemistry of the carbonaceous solids, thereby affecting the interfacial interactions. Through this research, the effects of additives on the interfacial interactions and hence on slurry viscosity were determined. Since the additives used are specific to the surface chemistry of the solids in the slurry, this knowledge aids in the selection of the appropriate additive. The study was conducted using three carbonaceous solids with different O/C ratios and an anionic and a non-ionic additive. The adsorption of the additives on the carbonaceous solids, the change in the zeta potential and hydrophobicity/hydrophilicity of the solids and the change in the free water content of the slurries were determined. The adsorption of the additives increased with an increase in the mineral matter content of the carbonaceous solids. There was also an increase in the zeta potential of the carbonaceous solids in water upon the addition of the anionic additive (up to ˜30%). However, the calculated resultant electrostatic repulsion energy upon the addition of the anionic additive was 5-6 orders of magnitude lower than the polar interaction energy of the carbonaceous solids in water. Contact angle measurements indicated that both additives changed the hydrophobicity/hydrophilicity of the solid surface (by up to 70°). This resulted in the release of bound water into the bulk slurries (up to 6%), resulting in greater fluidity. The increase in free water content of the slurries with additives was confirmed by thermogravimetric analysis (TGA). A correlation predicting the slurry viscosity on the basis of the weight fraction of free water in the slurries with additives was also developed.
Solid fat content as a substitute for total polar compound analysis in edible oils
USDA-ARS?s Scientific Manuscript database
The solid fat contents (SFC) of heated edible oil samples were measured and found to correlate positively with total polar compounds (TPC) and inversely with triglyceride concentration. Traditional methods for determination of total polar compounds require a laboratory setting and are time intensiv...
Kehl, Sven; Eckert, Sven; Sütterlin, Marc; Neff, K Wolfgang; Siemer, Jörn
2011-06-01
Three-dimensional (3D) sonographic volumetry is established in gynecology and obstetrics. Assessment of the fetal lung volume by magnetic resonance imaging (MRI) in congenital diaphragmatic hernias has become a routine examination. In vitro studies have shown a good correlation between 3D sonographic measurements and MRI. The aim of this study was to compare the lung volumes of healthy fetuses assessed by 3D sonography to MRI measurements and to investigate the impact of different rotation angles. A total of 126 fetuses between 20 and 40 weeks' gestation were measured by 3D sonography, and 27 of them were also assessed by MRI. The sonographic volumes were calculated by the rotational technique (virtual organ computer-aided analysis) with rotation angles of 6° and 30°. To evaluate the accuracy of 3D sonographic volumetry, percentage error and absolute percentage error values were calculated using MRI volumes as reference points. Formulas to calculate total, right, and left fetal lung volumes according to gestational age and biometric parameters were derived by stepwise regression analysis. Three-dimensional sonographic volumetry showed a high correlation compared to MRI (6° angle, R(2) = 0.971; 30° angle, R(2) = 0.917) with no systematic error for the 6° angle. Moreover, using the 6° rotation angle, the median absolute percentage error was significantly lower compared to the 30° angle (P < .001). The new formulas to calculate total lung volume in healthy fetuses only included gestational age and no biometric parameters (R(2) = 0.853). Three-dimensional sonographic volumetry of lung volumes in healthy fetuses showed a good correlation with MRI. We recommend using an angle of 6° because it assessed the lung volume more accurately. The specifically designed equations help estimate lung volumes in healthy fetuses.
Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.
Qiu, J; Ran, D F; Liu, Y B; Liu, L H
2016-07-10
Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.
Sorenson, Jason R.
2013-01-01
Material accumulating and washing off urban street surfaces and ultimately into stormwater drainage systems represents a substantial nonpoint source of solids, phosphorus, and other constituent loading to waterways in urban areas. Cost and lack of usable space limit the type and number of structural stormwater source controls available to municipalities and other public managers. Non-structural source controls such as street cleaning are commonly used by cities and towns for construction, maintenance and aesthetics, and may reduce contaminant loading to waterways. Effectiveness of street cleaning is highly variable and potential improvements to water quality are not fully understood. In 2009, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, the U.S. Environmental Protection Agency, and the city of Cambridge, Massachusetts, and initiated a study to better understand the physical and chemical nature of the organic and inorganic solid material on street surfaces, evaluate the performance of a street cleaner at removing street solids, and make use of the Source Loading and Management Model (SLAMM) to estimate potential reductions in solid and phosphorus loading to the lower Charles River from various street-cleaning technologies and frequencies. Average yield of material on streets collected between May and December 2010, was determined to be about 740 pounds per curb-mile on streets in multifamily land use and about 522 pounds per curb-mile on commercial land-use streets. At the end-of-winter in March 2011, about 2,609 and 4,788 pounds per curb-mile on average were collected from streets in multifamily and commercial land-use types, respectively. About 86 percent of the total street-solid yield from multifamily and commercial land-use streets was greater than or equal to 0.125 millimeters in diameter (or very fine sand). Observations of street-solid distribution across the entire street width indicated that as much as 96 percent of total solids resided within 9 feet of the curb. Median accumulation rates of street solids and median washoff of street solids after rainstorms on multifamily and commercial land-use streets were also similar at about 33 and 22 pounds per curb-mile per day, and 35 and 40 percent, respectively. Results indicate that solids on the streets tested in Cambridge, Mass., can recover to pre-rainstorm yields within 1 to 3 days after washoff. The finer grain-size fractions tended to be more readily washed from the roadway surfaces during rainstorms. Street solids in the coarsest grain-size fraction on multifamily streets indicated an average net increase following rainstorms and are likely attributed to debris run-on from trees, lawns, and other plantings commonly found in residential areas. In seven experiments between May and December 2010, the median removal efficiency of solids from street surfaces following a single pass by a regenerative-air street cleaner was about 82 percent on study sites in the multifamily land-use streets and about 78 percent on the commercial land-use streets. Median street-solid removal efficiency increased with increasing grain size. This type of regenerative-air street cleaner left a median residual street-solid load on the street surface of about 100 pounds per curb-mile. Median concentrations of organic carbon and total phosphorus (P) on multifamily streets were about 35 and 29 percent greater, respectively, than those found on commercial streets. The median total mass of organic carbon and total P in street solids on multifamily streets was 68 and 75 percent greater, respectively, than those found on commercial streets. More than 87 percent of the mass of total P was determined to be in solids greater than or equal to 0.125 millimeters in diameter for both land-use types. The median total accumulation rate for total P on multifamily streets was about 5 times greater than on commercial streets. Total P accumulation in the medium grain-size fraction was nearly the same for streets within both land-use types at 0.004 pounds per curb-mile per day. Accumulation rates within the coarsest and finest grain-size fractions on multifamily streets were about 11 and 82 times greater than those on the commercial streets. Median washoff of total P was 58 and 48 percent from streets in multifamily and commercial land-use types, respectively, and generally increased with decreasing grain size. Total P median reductions resulting from a single pass of a regenerative-air street cleaner on streets in multifamily and commercial land-use types were about 82 and 62 percent, respectively, and were similar in terms of grain size between both land-use types. A Source Loading and Management Model for Microsoft Windows (WinSLAMM) was applied to a 21.8 acre subcatchment in Cambridge, Mass. The subcatchment area consists of mostly commercial and multifamily land-use types to evaluate the potential reductions of total and particulate solids, and P attributed to street cleaning. Rainwater runoff from rooftops represented between 20 and 50 percent of the total basin runoff. Street surfaces only accounted for about 20 percent of the total basin runoff. Monthly applications of mechanical-brush and vacuum-assisted street cleaners within the subcatchment as defined by SLAMM for areas with long-term (24-hour) on-street parking and monthly parking controls using five average climatic years resulted in total solid reductions of about 3 and 5 percent, respectively. Simulating the regenerative-air street cleaner tested as part of this study resulted in total solid reductions of about 16 percent. Increasing street cleaning frequency to three times weekly increased total solids removal for mechanical-brush, vacuum-assisted, and regenerative-air street cleaners to about 6, 14, and 19 percent, respectively. Monthly applications of mechanical-brush, vacuum-assisted, and regenerative-air street cleaners within the subcatchment resulted in total P reductions of about 1, 3, and 8 percent, respectively. A street cleaning frequency of three times each week for each of the three street-cleaner types increased total P removal to about 3, 7, and 9 percent, respectively.
Hydraulic droplet coarsening in open-channel capillaries
NASA Astrophysics Data System (ADS)
Warren, Patrick B.
2016-11-01
Over a range of liquid-solid contact angles, an open-channel capillary with curved or angled sides can show a maximum in the Laplace pressure as a function of the filling state. Examples include double-angle wedges, grooves scored into flat surfaces, steps on surfaces, and the groove between touching parallel cylinders. The liquid in such a channel exhibits a beading instability if the channel is filled beyond the Laplace pressure maximum. The subsequent droplet coarsening takes place by hydraulic transport through the connecting liquid columns that remain in the groove. A mean-field scaling argument predicts the characteristic droplet radius R ˜t1 /7 , as a function of time t . This is confirmed by one-dimensional simulations of the coarsening kinetics. Some remarks are also made on the spreading kinetics of an isolated drop deposited in such a channel.
Stress induced modulation of magnetic domain diffraction of single crystalline yttrium iron garnet
NASA Astrophysics Data System (ADS)
Mito, Shinichiro; Yoshihara, Yuki; Takagi, Hiroyuki; Inoue, Mitsuteru
2018-05-01
Stress induced modulation of the diffraction angle and efficiency of the light reflected from a stripe-domain magnetic garnet was demonstrated. The spacing of the magnetic domain was changed using the inverse magnetostriction effect. The sample structure was a piezo actuator/Al reflection layer/magnetic garnet substrate. A diffraction angle between the 0th and 1st ordered light was changed from 9.12 deg. to 10.20 deg. This result indicates that the domain spacing was changed from 3.3 μm to 3.0 μm. The change of the diffraction angle was irreversible for the voltage. However, reversible, linear and continuous change of the diffraction efficiency was observed. These results could be applicable for a voltage-driven optical solid state light deflector with low power consumption and high switching speed.
The range of options for handling plane angle and solid angle within a system of units
NASA Astrophysics Data System (ADS)
Quincey, Paul
2016-04-01
The radian and steradian are unusual units within the SI, originally belonging to their own category of ‘supplementary units’, with this status being changed to dimensionless ‘derived units’ in 1995. Recent papers have suggested that angles could be handled in two different ways within the SI, both differing from the present system. The purpose of this paper is to provide a framework for putting such suggestions into context, outlining the range of options that is available, together with the advantages and disadvantages of these options. Although less rigorously logical than some alternatives, the present SI approach is generally supported, but with some changes to the SI brochure to make the position clearer, in particular with regard to the designation of the radian and steradian as derived units.
David J. Lewis; Kenneth W. Tate; Randy A. Dahlgren; Jacob Newell
2002-01-01
Resource agencies, private landowners, and citizen monitoring programs utilize turbidity (water clarity) measurements as a water quality indicator for total suspended solids (TSS â mass of solids per unit volume) and other constituents in streams and rivers. The dynamics and relationships between turbidity and TSS are functions of watershed-specific factors and...
Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.
2015-07-28
The wettability of graphitic carbon and silicon surfaces was numerically and theoretically investigated. A multi-response method has been developed for the analysis of conventional molecular dynamics (MD) simulations of droplets wettability. The contact angle and indicators of the quality of the computations are tracked as a function of the data sets analyzed over time. This method of analysis allows accurate calculations of the contact angle obtained from the MD simulations. Analytical models were also developed for the calculation of the work of adhesion using the mean-field theory, accounting for the interfacial entropy changes. A calibration method is proposed to providemore » better predictions of the respective contact angles under different solid-liquid interaction potentials. Estimations of the binding energy between a water monomer and graphite match those previously reported. In addition, a breakdown in the relationship between the binding energy and the contact angle was observed. The macroscopic contact angles obtained from the MD simulations were found to match those predicted by the mean-field model for graphite under different wettability conditions, as well as the contact angles of Si(100) and Si(111) surfaces. Finally, an assessment of the effect of the Lennard-Jones cutoff radius was conducted to provide guidelines for future comparisons between numerical simulations and analytical models of wettability.« less
Study of silicon crystal surface formation based on molecular dynamics simulation results
NASA Astrophysics Data System (ADS)
Barinovs, G.; Sabanskis, A.; Muiznieks, A.
2014-04-01
The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.
Analytical study of the reflection and transmission coefficient of the submarine interface
NASA Astrophysics Data System (ADS)
Zhang, Guangli; Hao, Chongtao; Yao, Chen
2018-05-01
The analytical study of the reflection and transmission coefficient of the seafloor interface is essential for the characterization of the ocean bottom in marine seismic exploration. Based on the boundary conditions of the seafloor interface, the analytical expression of the reflection and transmission coefficient at the submarine interface is derived in this study by using the steady-state wave solution of the elastic wave in a homogeneous, isotropic medium. With this analytical expression, the characteristics of the reflection and transmission coefficient at the submarine interface are analysed and discussed using critical angles. The results show that the change in the reflection and transmission coefficient with the incidence angle presents a "segmented" characteristic, in which the critical angle is the dividing point. The amplitude value and phase angle of the coefficient at the submarine interface change dramatically at the critical angle, which is related to the P- and S-wave velocities in the seabed layer. Compared with the stiff seabed, the soft seabed has a larger P-wave critical angle and an absence of the converted S-wave critical angle, owing to the low P- and S-wave velocities in the solid seabed layer. By analysing and discussing the special changes that occur in the coefficient values at the critical angle, the reflection and transmission characteristics of the different incident angles are obtained. Synthetic models of both stiff and soft seafloors are provided in this study to verify the analytical results. Finally, we compared our synthetic results with real data from the Gulf of Mexico, which enabled the validation of our conclusions.
Effect of attack angle on flow characteristic of centrifugal fan
NASA Astrophysics Data System (ADS)
Wu, Y.; Dou, H. S.; Wei, Y. K.; Chen, X. P.; Chen, Y. N.; Cao, W. B.
2016-05-01
In this paper, numerical simulation is performed for the performance and internal flow of a centrifugal fan with different operating conditions using steady three-dimensional incompressible Navier-Stokes equations coupled with the RNG k-e turbulent model. The performance curves, the contours of static pressure, total pressure, radial velocity, relative streamlines and turbulence intensity at different attack angles are obtained. The distributions of static pressure and velocity on suction surface and pressure surface in the same impeller channel are compared for various attack angles. The research shows that the efficiency of the centrifugal fan is the highest when the attack angle is 8 degree. The main reason is that the vortex flow in the impeller is reduced, and the jet-wake pattern is weakened at the impeller outlet. The pressure difference between pressure side and suction side is smooth and the amplitude of the total pressure fluctuation is low along the circumferential direction. These phenomena may cause the loss reduced for the attack angle of about 8 degree.
Guo, Wen; Morrisett, Joel D.; DeBakey, Michael E.; Lawrie, Gerald M.; Hamilton, James A.
2010-01-01
Because of renewed interest in the progression, stabilization, and regression of atherosclerotic plaques, it has become important to develop methods for characterizing structural features of plaques in situ and noninvasively. We present a nondestructive method for ex vivo quantification of 2 solid-phase components of plaques: crystalline cholesterol and calcium phosphate salts. Magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of human carotid endarterectomy plaques revealed 13C resonances of crystalline cholesterol monohydrate and a 31P resonance of calcium phosphate hydroxyapatite (CPH). The spectra were obtained under conditions in which there was little or no interference from other chemical components and were suitable for quantification in situ of the crystalline cholesterol and CPH. Carotid atherosclerotic plaques showed a wide variation in their crystalline cholesterol content. The calculated molar ratio of liquid-crystalline cholesterol to phospholipid ranged from 1.1 to 1.7, demonstrating different capabilities of the phospholipids to reduce crystallization of cholesterol. The spectral properties of the phosphate groups in CPH in carotid plaques were identical to those of CPH in bone. 31P MAS NMR is a simple, rapid method for quantification of calcium phosphate salts in tissue without extraction and time-consuming chemical analysis. Crystalline phases in intact atherosclerotic plaques (ex vivo) can be quantified accurately by solid-state 13C and 31PMAS NMR spectroscopy. PMID:10845882
Dynamics of the Molten Contact Line
NASA Technical Reports Server (NTRS)
Sonin, Ain A.; Schiaffino, Stefano
1996-01-01
In contrast to the ordinary contact line problem, virtually no information is available on the similar problem associated with a molten material spreading on a solid which is below the melt's fusion point. The latter is a more complex problem which heat transfer and solidification take place simultaneously with spreading, and requires answers not only for the hot melt's advance speed over the cold solid as a function of contact angle, but also for how one is to predict the point of the molten contact line's arrest by freezing. This issues are of importance in evolving methods of materials processing. The purpose of our work is to develop, based on both experiments and theory, an understanding of the dynamic processes that occur when a molten droplet touches a subcooled solid, spreads partly over it by capillary action, and freezes. We seek answers to the following basic questions. First, what is the relationship between the melt's contact line speed and the apparent (dynamic) contact angle? Secondly, at what point will the contact line modon be arrested by freezing? The talk will describe three components of our work: (1) deposition experiments with small molten droplets; (2) investigation of the dynamics of the molten contact line by means of a novel forced spreading method; and (3) an attempt to provide a theoretical framework for answering the basic questions posed above.
Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1975-01-01
The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.
Comparison of measured and computed pitot pressures in a leading edge vortex from a delta wing
NASA Technical Reports Server (NTRS)
Murman, Earll M.; Powell, Kenneth G.
1987-01-01
Calculations are presented for a 75-deg swept flat plate wing tested at a freestream Mach number of 1.95 and 10 degrees angle of attack. Good agreement is found between computational data and previous experimental pitot pressure measurements in the core of the vortex, suggesting that the total pressure losses predicted by the Euler equation solvers are not errors, but realistic predictions. Data suggest that the magnitude of the total pressure loss is related to the circumferential velocity field through the vortex, and that it increases with angle of attack and varies with Mach number and sweep angle.
NASA Technical Reports Server (NTRS)
Heitkotter, Robert H
1956-01-01
A flight investigation of two Nike-Deacon (DAN) two-stage solid-propellant rocket vehicles indicated satisfactory performance may be expected from the DAN meteorological sounding rocket. Peak altitudes of 356,000 and 350,000 feet, respectively, were recorded for the two flight tests when both vehicles were launched from sea level at an elevation angle of 75 degrees. Performance calculations based on flight-test results show that altitudes between 358,000 feet and 487,000 feet may be attained with payloads varying between 60 pounds and 10 pounds.
Topological Qubits from Valence Bond Solids
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; Affleck, Ian; Raussendorf, Robert
2018-05-01
Topological qubits based on S U (N )-symmetric valence-bond solid models are constructed. A logical topological qubit is the ground subspace with twofold degeneracy, which is due to the spontaneous breaking of a global parity symmetry. A logical Z rotation by an angle 2 π /N , for any integer N >2 , is provided by a global twist operation, which is of a topological nature and protected by the energy gap. A general concatenation scheme with standard quantum error-correction codes is also proposed, which can lead to better codes. Generic error-correction properties of symmetry-protected topological order are also demonstrated.
Shi, Kenrin; Hayashida, Kenji; Umeda, Naoya; Yamamoto, Kengo; Kawai, Hideo
2008-02-01
Femoral component rollback and tibial rotation were evaluated using lateral radiographs taken during passive knee flexion under fluoroscopy in NexGen Legacy Posterior Stabilized Flex (Zimmer, Warsaw, Ind) total knee arthroplasties (TKAs; 30 with mobile insert and 26 with fixed insert). Measured maximal flexion angle demonstrated no significant differences. Femoral component rollback was observed predominantly in TKAs with fixed insert in more than 45 degrees flexion and correlated with maximal flexion angle in each group. Tibial internal rotation was more significant in TKAs with mobile insert in maximal flexion. However, tibial internal rotation from 90 degrees to maximal flexion, which demonstrated correlation with maximal flexion angle in each group, did not show significant difference. The kinematic differences between 2 inserts seemed to have little relevance to the maximal flexion angle.
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device
Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.
1999-01-01
This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.
Data Report for an Extensive Store Separation Test Program Conducted at Supersonic Speeds.
1979-12-01
PBn)/IDPI3/PBnil (Note: T PHIT ) 203 ALPLn - Flow angle based on total angle of attack and rolln angle, deg ALPLn TAN-[Tan(aT) * cos(T)] + [TANG(n...PB)yaw - CCORR1 - ACORR2 • SIN( PHIT n )] + TANG(n)yaw CCORRI = CIDP24/PBni 2.5 and C = (0.5)2.5 • 318.5 M 5 • (DP2 4/PBn )/IDP24/PBn TANG(n)yaw = Angle
NASA Astrophysics Data System (ADS)
Ishii, Yoshitaka
2001-05-01
A technique is presented to recouple homonuclear dipolar couplings between dilute spin pairs such as 13C-13C systems under very fast magic angle spinning (MAS) in solid-state nuclear magnetic resonance (NMR) spectroscopy. The presented technique, finite pulse rf driven recoupling (fpRFDR), restores homonuclear dipolar interactions based on constructive usage of finite pulse-width effects in a phase- and symmetry-cycled π-pulse train in which a rotor-synchronous π pulse is applied every rotation period. The restored effective dipolar interaction has the form of a zero-quantum dipolar Hamiltonian for static solids, whose symmetry in spin space is different from that obtained by conventional rf driven recoupling (RFDR) techniques. It is demonstrated that the efficiency of recoupling by fpRFDR is not strongly dependent on chemical shift differences or resonance offsets in contrast to previous recoupling methods under very fast MAS. To realize distance measurements without effects of spin relaxation, a constant-time version of fpRFDR (CT-fpRFDR) is introduced, in which the effective evolution period is varied by refocusing dipolar evolution with a rotor-synchronized solid echo while the total recoupling period is kept constant. From CT-fpRFDR experiments at a spinning speed of 30.3 kHz in a field of 17.6 T, the 13C-13C distance of [1-13C]Ala-[1-13C]Gly-Gly was determined to be 3.27 Å, which agrees well with the value of 3.20 Å obtained by x-ray diffraction. Also, two-dimensional (2D) 13C/13C chemical-shift correlation NMR spectrum in a field of 9.4 T was obtained with fpRFDR for fibrils of the segmentally 13C- and 15N-labeled Alzheimer's β-Amyloid fragments, Aβ16-22 (residues 16-22 taken from the 40-residue Aβ peptide) in which Leu-17 through Ala-21 are uniformly 13C- and 15N-labeled. Most 13C resonances for the main chain as well as for the side chains are assigned based on 2D 13C/13C chemical-shift correlation patterns specific to amino-acid types. Examination of the obtained 13C chemical shifts revealed the formation of β-strand across the entire molecule of Aβ16-22. Possibility of high throughput determination of global main-chain structures based on 13C shifts obtained from 2D 13C/13C chemical-shift correlation under very fast MAS is also discussed for uniformly/segmentally 13C-labeled protein/peptide samples.